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Abstract 

Background: Anaemia poses significant public health challenges to most developing countries, 

associated with serious health consequences and affecting about one-fourth of the world’s 

population, mostly under five-year children.  

Objectives: This study aimed to Analyze the Spatial Pattern and Determinants of childhood 

anaemia in Ethiopia using Bayesian Geo-additive approach. 

Methods: Our study participants were all the children U5 who were confirmed to anaemia from 

the 2016 EDHS data source. The survey considered 10,641 children U5; of which 7,953 children 

with complete anaemia levels were included in this study. The outcome variable was defined as 

the presence or absence of anaemia based on the WHO cut-off points. In this study Moran’s, I was 

used to investigate the presence of spatial autocorrelation. A geo-additive model which allowed 

joint analyses of nonlinear effects of some covariates, spatial effects, and other fixed covariates 

were used. Inference used a fully Bayesian approach via Markov Chain Monte Carlo techniques. 

Results: Out of 7,953 children U5 years included in this study 4567 (57.4%) were anemic.  Based 

on DIC model selection criteria Bayesian Geo-additive model was found to be appropriate. From 

the Model, household wealth index, types of toilet facilities, size of child at birth, education levels 

of mothers, and mother’s anemia status are found to be the significant determinants of childhood 

anaemia. Child age and mother BMI were found to have a nonlinear relationship with childhood 

anaemia.   

Conclusion:  Our finding revealed that there was spatial variation in childhood anaemia across the 

region of Ethiopia with higher prevalence in the eastern and north-eastern parts of Ethiopia. 

Bayesian Geo-additive models that capture spatial effects fit the data well. Therefore, the 

concerned body may use the anemia prevalence map as a basis for interventions and resource 

allocations.   

Keywords: Childhood anaemia; spatial effect; Bayesian Geo-additive models; MCMC
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CHAPTER ONE 

1. INTRODUCTION 

1.1 Background of the Study 

Anaemia in childhood is defined by the World Health Organization (WHO) as a decline in the 

concentration of circulating red blood cells or in the hemoglobin (Hgb) concentration and a related 

impaired capacity to transport oxygen. It is also defined as a hemoglobin level below 11g/dl for 

children under 5 years. WHO classified anaemia as mild if the hemoglobin concentration level is 

between 10-11.9 g/dl, moderate if the level is between 7-9.9 g/dl, and severe if the hemoglobin 

level is below 7g/dl [1].  

Anaemia is a global public health problem affecting both developing and developed countries with 

major consequences for human health and socio-economic development and affecting about one-

fourth of the world’s population, mostly under five-year children and women of reproductive 

ages[2, 3]. The presence of anaemia in children under five can negatively impact their mental 

development and future social performance. Children suffering from iron deficiency anaemia 

during their 2 years of life have slower cognitive development, poorer school performance, and 

poorer work capacity in later years[4]. It is also not only a major cause of pre and postpartum 

morbidities and mortalities for children in developing countries but it also affects the physical and 

cognitive development of children, so the health of children in particular and adults, in general, is 

very essential for their survival and the future development of the country [5].  

The etiology of anaemia involves the interaction between multiple factors including nutritional 

deficiencies, genetic red blood cell disorders, and infectious diseases, particularly malaria and 

hookworm infections. Iron deficiency was also the most common cause of anaemia in High-

Income Countries (HIC). Approximately 50% of anaemia cases are due to iron deficiency, though 

the proportion varies among population groups and in different areas, according to the prevailing 

local conditions [1]. In highly malaria-endemic countries, particularly in Sub-Saharan Africa 

(SSA), malaria is a significant contributing factor to childhood anaemia[6]. 
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Globally, anaemia affects 1.62 billion people, which corresponds to 24.8% of the population. The 

highest prevalence is in under-five children which are 47.4%. WHO regional estimates generated 

for preschool-age children and pregnant and non-pregnant women indicate that the highest 

proportion of individuals affected are in Africa (47.5–67.6%), while the greatest number are in 

South-East Asia where 315 million individuals are affected and in the United States, the prevalence 

is approximately 3.6%. In Europe, the prevalence of anemia in countries such as Sweden and 

Germany is 8.6% and 7.8% respectively[7].  

According to the most recent estimates of the WHO, the highest anaemia prevalence was 42.6% 

in 2011 occurred in children under the age of five years old which translated to just over 273 

million children suffering from anaemia globally[8]. According to a study conducted in other parts 

of the world, the magnitude of anaemia in under-five children was 62% in India  [9]. On the other 

hand, the prevalence of anemia was 40% in Bangladesh[10]. Furthermore, a study conducted in 

western China, showed that the prevalence of mild, moderate, and severe anemia to be 27.4%, 

21.9%, and 3.2%, respectively [11]. Another study conducted in Brazil's children under-five 

indicated that the overall prevalence of anemia was 51.2 % [12].     

The global estimate for anaemia prevalence in the year 2010 was 32.9%, with East sub-Saharan 

Africa having the highest-burden and the hardest-hit age group was children under age 5[13]. In a 

recent report in 2011, the WHO [8] estimated that the prevalence of anaemia in children was 

reaching 62.3% in Sub-Saharan Africa remains the most affected region. A study conducted in 

some parts of Africa shows that the prevalence of childhood anaemia ranged from 36.4% to 61.9% 

for  Malawi, Uganda, and Tanzania [14]. In Cape Verde, West Africa, the prevalence of anemia 

was 51.8% [15]. A cross-sectional hospital-based study conducted in Kassala, Eastern Sudan 

indicated that 86% of all children were anemic[16] and the prevalence of anaemia was high in 

Uganda which was 58.8% [17]. 

In Ethiopia, the prevalence of anaemia in under-five children ranges from 34% to 68.5%[18–21]. 

The national data from Ethiopian Demographic and Health Survey (EDHS) in 2011 showed that 

the prevalence of anaemia among children under five was 44%, which was around more than four 

out of ten under-five children were anaemic. From these, about 21% of children were mildly 
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anaemic, 20% were moderately anaemic, and 3% were severely anaemic[22]. A study conducted 

by Habte et al., [20] showed that the prevalence of anaemia among children between  6-59 months 

old was 50.3% with a peak at age of 6-11 months (68.5%).  The prevalence of anemia is also 

reported about 37 % in Northern Ethiopia with a higher magnitude among children less than 6-11 

months (53.2%)[23]. These findings suggest that the prevalence of anaemia among children less 

than five is higher for the younger age children. 

According to the 2011 EDHS report, the prevalence of anaemia among children 6- 23 months 

group is 60.9% [22]. There are also relatively few studies regarding the prevalence of anemia 

among children 6- 23 months of age in Ethiopia. Woldie et al., [18] reported an anaemia prevalence 

of 66.6% in northern Ethiopia. Another study conducted in the Sidama region of southern Ethiopia 

revealed that 24% of children were anaemic at 6 months and increased to 36% at 9 months[19]. 

Also, a study conducted in Ethiopia among an under-five year of age children identified that the 

magnitude of anemia was 27.1%,43.7%, and 32.4% in the eastern part of  Ethiopia, southwest part 

of Ethiopia, and Gilgel Gibe Hydroelectric dam of South West Ethiopia [24–26]. Furthermore, a 

study conducted in Wollo also shows that the overall prevalence of anemia in under-five children 

was 41.1%[27]. Another study conducted in Debre Berhan Town, North Shewa, Ethiopia shows 

that the overall prevalence of anemia was 47.5%, of which 18.3% were mildly anemic, 25%  

moderately anemic, and 4.1%  severely anemic[28]. 

Although substantial progress in control has been achieved over the past decade, anaemia remains 

one of the world's largest killers of children U5 in 2016. Anaemia prevalence among children U5 

old in Ethiopia was 57%, rising unexpectedly from 44% in 2011. Infants and young children bear 

the highest burden of anaemia in Ethiopia, with a 72% prevalence among those under two years 

of age[29].  Even though the previous study has been emphasized the importance of understanding 

the prevalence of anaemia, limited statistical work has been carried out from data arising from 

demographic and health survey in Ethiopia with evidence confirming that prevalence of anaemia 

among children U5 in Ethiopia was a severe public health problem, by applying classical models 

under frequentist settings that assumed that the random components at the contextual level (a 

region in our case) are mutually independent [30–33].  EDHS data are based on a random sample 

of the region which, in turn, introduces a structured component. Such a component allows us to 
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borrow strength from neighbors to cope with the posterior uncertainty of the region effect and 

obtain estimates for areas that may have inadequate sample sizes. The geo-additive model was 

used to examine the potential bias incurred when ignoring the dependence between aggregated 

spatial areas, through simultaneously investigating the geographical variation and the risk factor 

of child anaemia. Therefore, this study applies a Bayesian Geo-additive model that accounts for 

possible non-linear effects of some factors on childhood anaemia at the disaggregated regional 

level that cannot be explained by the classical set of fixed linear socioeconomic and bio-

demographic factors while simultaneously controlling for geographical variation. 

1.2 Statement of the Problem 

Research involving childhood growth and development has become increasingly important as 

several international agencies, governments and researchers agree that investing in the health of 

the young child today will lead to an improved society in the future. Children who lack basic health 

care needs are more susceptible to infections diseases and more prone to delayed mental and 

cognitive development. These lead to poor school performance when they are enrolled in school, 

leading to a reduction in intellectual achievement and subsequently reduced work capacity in their 

adulthood. In effect, economic productivity is decrease[34]. 

From the current Ethiopian demographic and health survey reports in 2016, anaemia prevalence 

among children under five years was 57%, rising unexpectedly from 44% in 2011. Infants and 

young children bear the highest burden of anaemia in Ethiopia with a 72% prevalence of anaemia 

among those under two years of age[29]. Although the biological immediate causes of anaemia 

are also documented and the government of Ethiopia applied tremendous efforts to decrease the 

prevalence of childhood anaemia but still it was a major public health problem according to WHO 

criteria [35]. 

Previous studies in Ethiopia have mainly focused on the contribution of individuals and household 

factors in explaining the childhood anaemia prevalence in the country using Classical models like 

Binary logistic regression and the Multilevel model[30–33]. Such studies, while neglecting the 

critical influence of community-level variables and regional variation that can be explored by 
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considering spatial dependence in the analysis. Neglecting of the spatial pattern (spatial 

dependence) in our data and unobserved heterogeneity among clusters may lead to considerably 

biased estimates for the remaining effects as well as false standard estimates. Also considering 

some nonlinear continuous covariate in linear form into models leads them no more significant 

even though they have more significant effects on anaemia status. Bayesian Geo-additive model, 

on the other hand, allows for joint modeling of fixed effects, nonlinear effects of the metrical 

covariate, and spatial effect simultaneously and provide valid and efficient inference. 

Mapping of areas with high under five anaemia under investigation is crucial in economically 

constrained country like Ethiopia. The map enables efficient allocation of scarce resource. To 

achieve this one the structured additive regression model was used. The novelty of this study was 

the use of recently developed structured additive regression model which provides the valid and 

realistic statistical inference. Researcher motivated to focus on anaemia since it is the world’s 

second-largest cause of disability and death after malaria for children U5 years and women of 

reproductive ages [36] and the lack of statistical investigations applied on childhood anaemia data 

by adopting the Bayesian Geo-additive model in looking at the effect of some covariates and 

geographical variation on the health of children with anaemia.  

Therefore, this study focused on modeling the determinants of anaemia among under-five children 

in Ethiopia via the Bayesian Geo-additive model which captures spatial heterogeneity for 

unobserved influential factors and also accounts for nonlinear effects of a metrical covariate.  

The study has attempted to answer the following basic research questions: - 

❖ What is the pattern of anaemia among under-five years of age children in Ethiopia? 

❖ Which factors are significantly associated with anaemia among U5 children in Ethiopia?  

❖ What is the spatial distribution of anaemia in children under five years in Ethiopia?   

❖ Which statistical model allows for joint modeling of fixed effects, nonlinear effects of the 

metrical covariate, and spatial effect? 
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1.3 Objectives of the study 

1.3.1 General Objective 

The General Objectives of this study is to Analyze the Spatial Pattern and Determinants of 

childhood anaemia in Ethiopia using Bayesian Geo-additive approach. 

1.3.2 Specific objectives 

➢ To identify the pattern of anaemia among under-five years of age children in Ethiopia.   

➢ To determine factors significantly associated with anaemia among U5 children in Ethiopia.  

➢ To determine the spatial distribution of anaemia among U5 year of age children in Ethiopia.  

➢ To select the best flexible statistical model that allows for joint modeling of fixed effects, 

nonlinear effects of the metrical covariate, and spatial effect. 

1.4 Significance of the Study 

Knowledge of disease burden in populations especially in U5 children in Ethiopia was essential 

for health authorities who seek to use limited resources to the best effect by identifying priority 

health programs for prevention and care. Therefore, studying the spatial distribution and factors 

associated with anaemia in U5 year children would provide more insight and practical guidelines 

to the formulation of policies aimed at fighting the spread of childhood anaemia.  

Mapping the spatial distribution of anaemia prevalence by the regions of the country was the main 

contribution of this study. Thus policymakers, program planning committee members, and other 

non-governmental organizations are well informed of the regions with the greatest prevalence of 

this disease and provide more insight and practical guidelines to the formulation of policies aimed 

at fighting the spread of this disease. This study was also providing the specific factors that lead 

to this prevalence of anaemia and help to reduce the prevalence of childhood anaemia by giving 

awareness for society on the factors that increase the risk of this disease. Lastly, this study would 

also use as a bridge for further studies for the health sector and another researcher. 
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CHAPTER TWO 

2 Literature Review 

This section provides a review done by other authors about anaemia. The review discusses 

different statistical approaches previously used in assessing the relationship between 

childhood anaemia and influential factors and also determinant factors. 

2.1 Burden of anaemia among under-five children in the Africa and Globe 

Anaemia is often associated with childhood malnutrition, impairment of red cell production, and 

increased red cell destruction, which could increase mortality risk [36]. In 2012, 6.6 million 

children under age 5 died. Most of these deaths occurred in low-income countries and specifically 

in the African region where children are 16 times more likely to die than children in the developed 

countries. More than half of these deaths are due to preventable infections and lack of access to 

simple affordable interventions[37]. 

Globally the prevalence of anaemia in children under age 5 is 47.4%, that is about 293 million 

children are anaemic according to WHO of 2008 and 2009 reports. The highest overall prevalence 

is in Africa, 67.6%, and South-East Asia 65.5%. In the Eastern Mediterranean, the prevalence is 

46% and around 20% in the other WHO regions, the Americas, Europe, and Western Pacific[7].  

The prevalence of anaemia among children under age 5 in countries such as Monaco and Australia 

were as low as 5.0% and 1.1% respectively, while the prevalence of anaemia in most African 

countries was high ranging from 74% in Tanzania to 43% in the Democratic Republic of Congo. 

In almost all countries in the Sub-Saharan African region, the prevalence of anaemia in children 

under 5 is above the severe prevalence threshold of 40%. The highest overall prevalence of 

anaemia in children under 5 age is recorded in the Western and Central African Region, around 

75%[7].  

In Ethiopia, according to the EDHS reports in 2011, more than four out of ten under-five children 

(44%) were anemic [22]. A different study showed that the prevalence of anaemia among children 
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6-59 months old was 50.3% in Ethiopia[20] and 37 % in Northern Ethiopia with a higher 

magnitude among children less than 6-11 months (53.2%)[23].  While in 2016, anaemia prevalence 

among children under five years old in Ethiopia was 57%, rising unexpectedly from 44% in 2011. 

Infants and young children bear the highest burden of anaemia in Ethiopia, with a 72% prevalence 

of anaemia among those under two years of age[29]. WHO classifies anaemia prevalence above 

40% as a severe public health[35]. 

2.2 Determinants of anaemia in children under five  

A large number of variables have been associated with childhood anaemia status as discussed in 

many kinds of literature. The variables are classified under child factors, maternal factors, and 

socio-demographic factors. The conceptual framework depicting the classification of these factors 

was shown below in Figure 3.1.   

Age of Child: The current age of the child has been identified to be significantly associated with 

anaemic status of the child.   

The study conducted by Roberts et al., [14] on investigating the demographic and socio-economic 

determinants as well as the spatial variation of anaemia in children aged 6 to 59 months in Kenya, 

Malawi, Tanzania, and Uganda using Bayesian hierarchical model, their study result showed that 

prevalence of childhood anaemia ranged from 36.4% to 61.9% across the four countries. The 

results of this study also revealed that the non-linear effect of a child’s age in months has 

significant effects and there was an increase in effect from 6 to 10 months, after which the effect 

declined. 

Sex of Child: According to the available literature on childhood anaemia, there exists some 

association between the sex of the child and his/her anaemic status and the prevalence was in males 

than females.  

According to Leite et al., [12], the results of the National Survey of Brazil point to an association 

between sex and anaemia in indigenous children, male have been observed to be at a higher risk 

of anaemic than females. Similar research conducted in Tanzania on the socio-demographic 
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determinants of anaemia among children aged 6-59 months in mainland using Alternating Logistic 

Regression, Males aged 6 to 59 months had 1.26 times higher odds of anaemia than their female 

counterparts[38]. 

Birth Weight: The weight of a child at birth is significantly associated with an increased risk of 

infections, diseases as well as mortality. Children with low birth weight have increased exposure 

to infections and diseases and are also more likely to die before their 1st birthday[39].  

A study conducted in Ghana by Ewusie et al., [4], on the prevalence of anaemia among under 5 

children using Ghana demographic and health survey identified that the prevalence was lower in 

children with larger birth weight than those with small birth weight. The birth weight used in this 

study was the categorical subgroups which are originally coded as “size of child at birth” in the 

2016 EDHS. For ease of interpretation, the birth weight was recoded into 3 categories: Larger than 

Average, Average and less than average. 

Child’s Nutritional Intake: Poor nutrition in children leads to anaemia. Nutritional anaemia 

occurs due to insufficient intake of nutrients by cells. Among them, Iron deficiency anemia is the 

most common cause of anaemia and blood diseases in developing countries. It is estimated that 

75% of anaemia is related to iron deficiency, followed by folate and vitamin B12 deficiencies[39].  

A study conducted on the prevalence of anaemia in Ethiopia using multilevel logistic regression 

revealed that iron deficiency is one of the main factors for the prevalence of anaemia and the odds 

of the prevalence of anaemia among under-five children had statistically decreased by 26.76% for 

children who had been given iron pills/syrup[40]. Another study conducted in Cameroon using 

logistic regression revealed that children who did not give iron pills/syrup were 1.3 times more 

likely to be anaemic as compared to children with children who had been given iron pills/syru[41]. 

Had fever in previous weeks: According to Konstantyner et al.,[42] fever is a common symptom 

of acute and chronic inflammatory diseases, most infections, which have been associated with 

lower hemoglobin levels. 
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The study conducted by Ngwira and Kazembe [43] in Malawi on investigating the risk factors 

affecting the severity of childhood anaemia using multinomial cumulative logistic regression in 

the Bayesian approach, revealed that fever is associated with higher levels of childhood anemia, 

severe anaemia compared to having no fever. The risk of anaemia was 0.423 times more on a child 

who had fever two weeks before the study compared to having no fever. 

There was a similar study conducted in Lesotho, South Africa by Gaston et al.,[44], on 

determinants of factors associated with anaemia among children under five years, revealed that 

child who has a fever in the last two weeks before study was 1.674 times more likely to be anaemic 

than the child who did not have a fever in the last two weeks before the survey.  

Another study was conducted in Rwanda on assessing the determinants of childhood anaemia 

using structured additive quantile regression, showed that fever has a significant negative effect 

on childhood hemoglobin concentration in all quantiles of interest and therefore a child having a 

fever increases the likelihood of childhood anaemia[45]. 

Diarrhea before two weeks of the study: The presence of infections can result in loss of appetite 

and malabsorption of nutrients which increases the risk for anaemia and also increases metabolic 

rate after infection. 

A study conducted in Ethiopia on factors associated with anaemia among children aged 6–23 

months show that from anaemic child, 14.7% of them had diarrhea in the last two weeks. They 

used the Binary logistic regression analysis model and their results revealed that children with a 

history of diarrhea before two weeks of the study were 4.9 times more likely to be anemic than 

children without diarrhea[18]. 

Mother Educational Level: One variable that has been significant in almost all studies of the 

anaemia status of children was the educational level of the mother. Educated mothers are better 

informed on the knowledge and use of health facilities, appropriate infant and young child feeding 

practices, and better sanitation practice[46].  
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A study conducted in Kenya by Oscar Ngesa and Henry Mwambi [47] on the title “Prevalence and 

Risk Factors of Anaemia among Children Aged between 6 Months and 14 Years in Kenya”. Their 

study revealed that children whose mothers had secondary, and higher levels of education, were 

less likely to be anaemia positive. The risk of anaemia was 1.5 times more in children whose 

mothers had no education as compared to children whose mothers had post-secondary education. 

A cross-sectional study conducted in Northeast Ethiopia on a title “Factors Associated with 

Anemia among Children Aged 6-23 Months Attending Growth Monitoring at Tsitsika Health 

Center, Wag-Himra Zone” using Binary logistic regression analysis, revealed that mother level of 

education may positively influence practices related to the health care and feeding practice of their 

children. The risk was children of mothers with no formal education were 2.6 times more likely to 

be anemic than children of a mother with secondary and above education levels[18]. 

Mother Occupation: Maternal occupation was another significant risk factor of anaemia in 

children in Ethiopia. 

A study conducted by Kindie [30]in Ethiopia to investigate the determinants of severity levels of 

anaemia among children aged 6–59 months using ordinal logistic regression analysis, based on 

cross-sectional data from EDHS 2011, revealed that the odds of being anaemic status was higher 

for children from non-employed mothers. The risk is about 1.13 times higher in children from non-

employed mothers than children from employed mothers.  

A similar study was conducted in Ethiopia on title “Spatial Distribution and factors associated with 

childhood anemia in Ethiopia”.based cross-sectional study design using mixed effect logistic 

regression model, revealed that the likelihood of developing anaemia among children who had 

employed mothers was decreased by 13% as compared with children whose mothers were not 

employed currently[48].  

Mother Body Mass index: The impact of the nutritional situation of the mothers, measured using 

the Body Mass Index (BMI, defined as the weight in kg divided by the square of height in meters) 

on the child’s anaemia status is presumed to follow nonlinear effects. Mothers who exhibit a very 

low BMI, indicating their poor nourishment, are likely to have poorly nourished children. At the 
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same time, parents with a very high BMI might also have poorly nourished children as the obesity 

associated with their high BMI indicates poor quality of nutrition and might therefore indicate poor 

quality of nutrition for their children. 

A study conducted by Roba et al.,[49] on the Prevalence of stunting and anaemia among children 

6-23 months of age in two agro-ecological zones of Rural Ethiopia using Binary logistic 

regression, revealed that as the haemoglobin level of the mother increased, the risk of the child 

being anaemic decreased by 29%. Similarly, as mothers’ BMI increased the likelihood of the 

children being anaemic decreased. This study provides strong evidence that there is a relationship 

between child anaemia and maternal nutritional status (measured by her Body Mass Index).  

Other studies on Prevalence of anemia and associated factors among indigenous children in Brazil: 

using the First National Survey of Indigenous People’s Health and Nutrition, using hierarchical 

multivariate analysis, revealed that the odds of being severely/moderately anaemic were higher for 

children whose mother's BMI was underweight compared to children whose mother's BMI was 

normal[12].   

Mother Anaemia level: Maternal anaemia level is one of the determinant factors of child anaemia.  

Erkihun and Tiruneh [48] used a Mixed effect logistic regression model to analyze the spatial 

distribution and factors associated with childhood anemia in Ethiopia, The findings show that there 

is a strong association between child anaemia status and mother anaemia status which reveals that 

children who live with anaemic mothers were 53% more likely to develop anaemia as compared 

with those children who lives with non anaemic mother. 

A study conducted in Uganda on Socio-Demographic Determinants of Anaemia in Children using 

multilevel analysis, identified that children of anaemic women are associated with a higher 

prevalence than those of no anaemic women, the risk was children of anaemic mothers are 

associated with two folds increased risk of anaemia compared with those whose mothers are not 

anaemic[50]. 
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Another study undertaken in Ethiopia by Gebrehaweria and Lemma[21], on Factors associated 

with anaemia among children 6–23 months of age in Ethiopia using a Multilevel Analysis showed 

that the odds of anaemia were higher for children from anaemic mothers than non-anaemic 

mothers. The risk were children of mothers who had anaemia had 1.53 times greater odds of being 

at higher levels of anaemia compared to the children of mothers who had no anaemia. 

Household wealth index: Some of the socio-economic factors that have been studied as indicators 

of the socio-economic status of a household was the household income/wealth index.   

Gebremedhin et al.,[23] studied the determinants of anaemia among children aged 6–59 Months 

Living in Kilte Awulaelo Woreda, Northern Ethiopia using Multivariate logistic regression 

analyses based on a cross-sectional study, showed that the higher prevalence of anaemia among 

the children living in the household with lower monthly income compared to those with higher 

income. 

Stephen [51] conducted cross-sectional study on title “Spatially Adjusted Determinants of Malaria 

and Anaemia Morbidity among Children Under age 5 years in Ghana” using GDHS data, noted 

that lower wealth index status was allied with the increase in the danger of development of anaemia 

in children. 

 Source of drinking water: Access to clean water is found to be negatively correlated to all forms 

of nutrition deficiency[46, 52]. Access to clean drinking water decreases the risk of water-borne 

diseases such as cholera, diarrhea, and typhoid. 

Rashid et al.,[53] conducted a cross-sectional study on Predictors and prevalence of anemia, 

among children aged 6 to 59 months in Shabelle zone, Somali region, eastern Ethiopia, revealed 

that the source of drinking water has significant effects on childhood anaemia, drinking of 

unprotected water were almost five times (AOR = 4.9, 95% CI= 2.204, 10.820) more likely to 

develop anemia compared to drinking protected water. 

A study conducted in Bangladesh [54] aiming to analyze determinants of severity levels of 

childhood anaemia using a proportional odds model, based 2011 Bangladesh Demographic and 
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Health Survey (BDHS), show that the odds of being at higher anemia status were higher for 

children whose households used non-improved source of drinking water (OR = 1.328; 95% CL: 

1.002–1.758). 

Toilet facilities: The type of toilet used by a household is an indicator of household wealth and a 

determinant of environmental sanitation. This means that poor households, which are mostly 

located in rural areas for both countries, are less likely to have sanitary toilet facilities.  

A study conducted by Roberts et al., [14] on investigating the demographic and socio-economic 

determinants as well as the spatial variation of anaemia in children aged 6 to 59 months in Kenya, 

Malawi, Tanzania, and Uganda using multivariable hierarchical Bayesian geo-additive model, 

showed that a significantly lower odds of anaemia was suggested for children living in households 

with improved toilet facilities (PIT latrine and flush toilet). 

Several studies revealed that there were spatial variations of anaemia disease in under-five children 

in various countries around the world. Research conducted by Gayawan et al., [55] on Possible 

determinants and spatial patterns of anaemia among young children in Nigeria, exploring 

geographical variations of anaemic status avails policy-makers with tools to prioritize and roll out 

interventions in a more prudent manner. Findings from this study show a significant geographical 

variation in the anaemic status of children in Nigeria. Children from Jigawa, Kebbi, Kwara, and 

Yobe states were significantly associated with higher chances of being anaemic. 

A study conducted in Nigeria titled “Spatial heterogeneity and determinants of childhood anaemia 

carried out by Chigozzie and Temesgen [56], presented solid evidence of geographical 

heterogeneity for childhood anaemia prevalence in Nigeria. This study suggested that both 

socioeconomic and environmental covariates may be essential risk factors for anaemia prevalence 

across geographical variation.  

A study conducted by Erkihun and Tiruneh [48] on Spatial Distribution and factors associated with 

childhood anaemia in Ethiopia based cross-sectional study design using a generalized linear 

mixed-effect logistic regression model, revealed that there was spatial clustering of childhood 

anaemia in Ethiopia. 
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Research conducted by Stephen [51], further disclosed that the clusters of high moderate and 

severe anaemia prevalence were located in a spatial difference in all ten regions of the country in 

children under age 5 years in Ghana. It shows that anaemia “hotspots” are clustered in mostly rural 

districts of very high poverty and low level of educated mothers.   

2.4 Spatial pattern of anaemia among under-five children  

Spatial epidemiology was founded on the premise that individuals who lived in close proximities 

were generally exposed to similar factors which were likely to affect detected outcomes[65]. 

Bayesian geostatistical methods are increasingly utilized in spatial analysis, disease mapping, and 

consequently, decision-making. Their flexibility enables them to integrate spatial correlation and 

modeling of fixed and random variables[66]. In so doing, using Bayesian geostatistical analysis 

provides researchers with a tool for the identification of high prevalent areas where great variations 

exist in disease epidemics. This provides correct estimates of parameters tested, predicts risk at 

non sampled locations and estimates heterogeneity in areal data, which was used to identify high 

risk determinants behind the spread of a disease may assist in guiding health and policy planners 

in developing and allocating resources for anaemia prevention programs among under five 

children[67]. 

Spatial variations were observed in childhood anaemia at the African level [68]. The variation is 

more pronounced based on the geographical and socio-economic status of the regions. Study on 

Possible determinants and spatial patterns of anaemia among young children in Nigeria using 

Bayesian geo-additive modeling and come up with the results among Nigerian states, namely, 

Jigawa, Kano, Kwara, and Yobe, had a significantly higher likelihood of being anaemic, while 

Benue, Delta, Kogi, and Rivers states were significantly associated with non-anaemia (normal) 

[55]. 

According to Roberts et al.,[14] study entitled “Investigating the spatial variation and risk factors 

of childhood anaemia in four sub-Saharan African countries,” the study revealed distinct spatial 

variation in childhood anaemia within and between Malawi, Uganda, and Tanzania. The spatial 

variation appeared predominantly due to unmeasured district-specific factors that do not transcend. 
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According to a study conducted by Alfred and Lawrence [43] on “Bayesian random-effects 

modeling with application to childhood anaemia in Malawi,” they found that the observed residual 

spatial pattern in childhood anaemia shows most districts in the north reducing child anaemia, and 

the districts that increased risk of anaemia were all close to water bodies. The observed spatial 

heterogeneity may be due to unobserved factors not captured by the covariates in the models, and 

it is a matter of conjecture to identify them. Therefore, this research focuses on a geo-additive 

model that allows the mapping of spatial effects to childhood anaemia in Ethiopia's case, while 

accounting for non-linear covariate effects under the assumption of addictiveness. Modeling of 

metrical continuous covariates non linearly revealed their subtle influences that could not be 

observed when modeled linearly and the incorporation of spatial effect in the linear models made 

some covariates not to be significant anymore. 
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CHAPTER THREE 

3 DATA AND METHODS 

3.1 Description of the study area 

This study was conducted in Ethiopia. Ethiopia is strategically located in the northeastern part of 

Africa popularly known as “the Horn of Africa". It shares a boundary with the North and South 

Sudan on the west, Somalia and Djibouti on the East, Eritrea on the North and northwest, and 

Kenya on the South. Ethiopia is officially known as the Federal Democratic Republic of Ethiopia, 

is a landlocked country located in the Horn of Africa. It is the second-most populous nation in 

Africa, with over 105,350,020 populations [29] and the tenth-largest by area, occupying 

1,100,000k2m. Ethiopia has eleven geographic or administrative regions: nine regional states 

(Tigray, Afar, Amhara, Oromia, Somali, Benishangul-Gumuz, SNNPR, Gambela, and Harari) and 

two city administrations (Addis Ababa and Dire Dawa that are considered as a region) with a 

capital city of Addis Ababa. 

3.2 Source of Data  

The standard EDHS of 2016 dataset was used in this study, which is designed to encompass the 

national populace and includes a wide range of households. The primary objective of the EDHS is 

to provide up-to-date estimates of key demographic and health indicators. Here, a sample of 

children under five years of age with anaemia confirmed test results from the EDHS in 2016 would 

be included in this study. More specifically, the EDHS Conducted haemoglobin testing on eligible 

children age 6-59 months to provide information on the prevalence of anaemia in these groups.  

Children aged 6 months to 59 months who stayed in the household and eligible to be measured for 

hemoglobin during the survey comprise the study population, whereas the target population of this 

study was under-five aged children in Ethiopia. The lower limit of 6 months was chosen since the 

cut-off for anaemia is not defined in children below 0.5 years of age but by 6 months hemoglobin 

has risen to normal values. 
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3.3 Study Variables  

Response Variable 

The outcome variable of this study was the anaemia status among under five years children in 

Ethiopia, classified based on the WHO definition of anaemia in children under five years[7]. 

𝑦𝑖 = {
1      𝑖𝑓 ℎ𝑎𝑒𝑚𝑜𝑔𝑙𝑜𝑏𝑖𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 < 11 𝑔 𝑑𝑙⁄      (𝐴𝑛𝑎𝑒𝑚𝑖𝑐)     

0  𝑖𝑓 ℎ𝑎𝑒𝑚𝑜𝑔𝑙𝑜𝑏𝑖𝑛 𝑙𝑒𝑣𝑒𝑙 > 11 𝑔 𝑑𝑙⁄          (𝑁𝑜𝑛 𝑎𝑛𝑎𝑒𝑚𝑖𝑐)
} 

Explanatory Variables   

From the literature support, the explanatory variables considered in this study were several 

demographics, socio-economic, and environmental factors (Fig.3.1).   

 

Figure 3.1:  Conceptual framework for anaemia and its related factors 
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3.4 Methods of Data Analysis 

3.4.1 Advantages of Bayesian Methods    

From the complex nature of hierarchical models to the knowledge required to simulate from the 

posterior distribution, Bayesian methods can appear daunting. However, Bayesian methods also 

offer many advantages over classical inference. This is especially true for spatial models. 

First, spatial data are by nature autocorrelated. To account for autocorrelation, it is necessary to 

use some sort of hierarchical structure. Bayesian models are inherently hierarchical and thus 

accounting for autocorrelation within the Bayesian framework is straightforward. This includes 

the use of the CAR models as MRF prior distributions for Bayesian inference. The complicated 

structure of hierarchical models often results in the posterior being intractable, but MCMC 

sampling techniques overcome this problem[69]. 

Second, Bayesian hierarchical models are very flexible, accommodating for the uncertainty in 

estimated random and fixed effects, a priori knowledge through the specification of priors and 

hyper-priors [70]. Despite accounting for heterogeneity in spatial data, non-Bayesian methods can 

lead to underestimation of uncertainty in the model parameters. 

Last, Bayesian analysis provides better estimates in several ways. Bayesian estimation provides a 

distribution rather than a more informative point estimate. Bayesian estimation avoids ‘over-

fitting’ of the model by integrating over the model parameters and estimating parameters in 

mixture models, especially when the number of mixture components is unknown, is more 

convenient and accurate in a Bayesian framework [71]. The specification of a prior distribution 

allows for the formal inclusion of information from previous studies or expert opinion. The 

posterior distribution, in turn, allows for easy estimation of a (posterior) probability that is more 

intuitive and interpretable than the frequentist p-value. 
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3.4.2   Advantages of Bayesian Geo-Additive Model 

There are many potential advantages of this approach over classical approaches like regression 

models with fixed or random provinces effects; or standard 2-level multilevel modeling with 

unstructured spatial effects[72]. In the classical models, it is assumed that the random components 

at the contextual level (a region in our case) are mutually independent. In practice, these 

approaches specify correlated random effects[73], which are contrary to that assumption.  

Further, Borgoni and Billari [74] point out that the independence assumption has an inherent 

problem of inconsistency. They argue that if the location of the event matters, it makes sense to 

assume that areas close to each other are more similar than areas that are far apart.  

Also, treating groups (in our case region) as independent is unrealistic and leads to poor estimates 

of the standard errors. As Rabe-Heskesth and Everitt [75] stipulate, Standard errors for between-

region factors are likely to be underestimated because we are treating observations from the same 

region as independent and thus increasing the apparent sample size. On the contrary, standard 

errors for within-province factors are likely to be overestimated [76].  

On the other hand, Demographic and Health Survey data are based on a random sample of the 

region which, in turn, introduces a structured component. Such a component allows us to borrow 

strength from neighbors to cope with the posterior uncertainty of the region effect and obtain 

estimates for areas that may have inadequate sample sizes or are not represented in the sample.  

In an attempt to highlight the advantages of our approach in a spatial context and examine the 

potential bias incurred when ignoring the dependence between aggregated spatial areas, we fitted 

three models with and without the structured and random components in this study. Controlling 

for important risk factors such as geographical location (spatial autocorrelation) arising from 

environment impact on health gives statistically robust estimates of prevalence.   
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3.4.3 Overview of Geo-additive Model for other areas of Application 

Structured additive regression (STAR) models provide a flexible framework for modeling possible 

nonlinear effects of covariates and spatial effects: They contain the well-established frameworks 

of generalized linear models (GLM) and generalized additive models (GAM) as special cases but 

also allow a wider class of effects, e.g., for geographical or Spatio-temporal data, allowing for the 

specification of complex and realistic models [57].  

Geo-additive model, which combines the idea of geo-statistics and additive models uses mostly 

recorded observations in which there is provision for the assessment of geographical information 

of the location as well as nonlinear effects of metrical covariates, have been shown, over the years 

and by various researchers, to be very useful in some other areas.  

 Kamman and Wand [59] have shown that linear mixed models could be used for geo-additive 

model fitting and inference. Extension of geo-additive models in the direction of generalized 

responses are contained in Fahrmeir and Echavarria [60] deal with exponential family models like 

for count response. They used a Bayesian mixed model framework, with fitting via MCMC and 

provide applications.  

The extension of Geo-additive models to survival data has seen considerably researched since 

2003. Hennerfeind et al., [61] developed geo-additive survival models for both geographical point 

data and count data. They take a Bayesian P-spline approach and use Gaussian and Markov random 

fields for the spatial components. 

Geo-additive models with missing data covariate are studied by French, Wand, and Ibrahim 

[62] extended that work to Geo-additive models that allow for specification of the covariate 

distribution and the missing data mechanism.   

3.4.4 The Concept of Spatial Dependence 

The main concern of spatial statistics is to account for observation correlational effects arising 

from the geographic configuration of data[77]. The geographical configurations of anaemia 



 

22 | P a g e  

 

prevalence were assessed to investigate the presence of spatial autocorrelation in the distribution 

of the data. The essence of spatial analysis is that “space matters”, i.e., what happens in one region 

is related to what happens in neighboring regions. This has been made more precise in what Tobler 

[78] refers to as the First Law of Geography: “Everything is related to everything else, but closer 

things more so”. One way to approach this is via the notion of spatial autocorrelation[79]. 

Therefore, the spatial distribution of childhood anaemia in Ethiopia was determined by the 

geographic relationships among them. 

Griffith and Layne [80] also assert that observations are correlated strictly due to their relative 

locational positions resulting in a spillover of information from one location to another. Hence, 

spatial autocorrelation is defined as the relationship among a single quantitative variable that 

results from the geographical patterning of the areas in which the values occur. It is a measure of 

similarity of objects within an area, the degree to which a spatial phenomenon is related to itself 

in space.  

According to Anselin and Bera[79], spatial autocorrelation can be loosely defined as the 

coincidence of value similarity with location similarity. In other words, high or low values for a 

random variable tend to cluster in space (positive spatial autocorrelation) or locations tend to be 

surrounded by neighbors with very dissimilar values (negative spatial autocorrelation). If it is 

positive, the anaemia prevalence at a given site tends to be similar to the prevalence of a nearby 

site. Conversely, negative autocorrelation among the site prevalence indicates that dissimilar 

prevalence is in nearby or adjacent locations. This study investigated whether there is this 

systematic spatial variation in the distribution of anaemia prevalence in under-five children.   

 3.4.5 Global Measures of Spatial Autocorrelation 

Tests for global spatial autocorrelation examine whether the data as a whole exhibit spatial 

autocorrelation (against Ho: no spatial autocorrelation) as well as the strength and direction 

(positive or negative) of any spatial autocorrelation [81].  The Moran’s I [82] and Geary’s c [83] 

are the most commonly used global measures of spatial autocorrelation. They indicate the nature 

and extent of spatial autocorrelation present in the anaemia prevalence data.   
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 Defining Spatial Weights Matrix 

To assess the nature and degree of spatial autocorrelation, it is necessary to represent the spatial 

arrangement of observations to get a sense of how close or distant they are apart from each other. 

To express the degree of proximity between observations in space we may attribute a value of one 

if the observations are nearby (neighbors) and zero otherwise. There are different other options for 

defining these weights, they may be based on neighborhood which has common boundary [84]. In 

these cases, pairs of observations might be defined as neighborhoods as a measure of the degree 

of proximity. In this research, we were adopting the binary adjacency weights such that 𝜔ij = 1 if 

sites i and j are neighbor’s and zero otherwise.  

Tests of Spatial Autocorrelation 

The two most commonly used measures for spatial autocorrelation are Moran’s I and 

Geary’s C statistics. These tests indicate the degree of spatial association as reflected in the data 

set as a whole [81]. Test for spatial autocorrelation is designed to quantify the extent of clustering 

and to allow for statistical inference. The null hypothesis (under the normality and independence 

assumptions) is given by: H0: No spatial autocorrelation (H0 : 𝝆 =0). Under the alternative 

hypothesis (H1: 𝝆  0) of spatial autocorrelation (spatial dependence), the interest focuses on 

instances where large values are systematically surrounded by other large values, or where small 

values are surrounded by small values. 

Global Moran’s I 

For binary weights, Moran [82] introduced the following coefficient of autocorrelation: 

𝐼 =
𝑁 ∑ ∑ 𝜔𝑖𝑗𝑗 (𝑦𝑖 − �̅�)(𝑦𝑗 − �̅�)𝑖

∑ ∑ 𝜔𝑖𝑗𝑗𝑖 ∑ (𝑦𝑖 − �̅�)2
𝑖

                                                                                (3.1 ) 

Where N is the number of spatial units indexed by 𝑖 and 𝑗; 𝑦 is the variable of interest; �̅� is the 

mean of 𝑦; and 𝜔𝑖𝑗 is an element of a matrix of spatial weights; 𝑦𝑖 and 𝑦𝑗 are the values of the 

dependent variable at locations 𝑖 and 𝑗 respectively; The observed value of 𝐼 can be compared to 
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its distribution under the null hypothesis of no spatial autocorrelation or no clustering i.e., when 

the values of 𝑦𝑖 are independent of the values 𝑦𝑗(𝑖 ≠  𝑗) at neighboring locations. Under the normal 

and randomization assumptions, the resulting z-values can be compared to a table of standard 

normal to assess significance. The null hypothesis (no spatial autocorrelation), will be rejected if 

the calculated value of |𝑍| > 𝑧𝛼 2⁄  and the z-statistic is given by: 

𝑍(𝐼) =
𝐼 − 𝐸(𝐼)

𝑆𝐸(𝐼)
 

Where 

𝐸(𝐼)𝑁 =
−1

𝑁−1
 =𝐸(𝐼)𝑅                                                                                               (3.2) 

The variance of Moran’s I and Geary’s C will vary under the assumption’s normality and 

randomization. Under the normality assumption, the variance of Moran’s I (𝑉𝑎𝑟(𝐼)𝑁) is given as 

𝑉𝑎𝑟(𝐼)𝑁 = 𝐸(𝐼2) − (𝐸(𝐼2))
2

=
𝑁2(𝑁−1)𝑆1−𝑁(𝑁−1)𝑆2−2𝑆0

2

(𝑁+1)(𝑁−1)𝑆0
2 , whereas under randomization 𝑉𝑎𝑟(𝐼)𝑅 

is given by  

𝑉𝑎𝑟(𝐼)𝑅 =
𝑁(𝑆1(𝑁2−3𝑁+3)−𝑁𝑆2+3𝑆0

2)

(𝑁−1)(𝑁−2)(𝑁−3)𝑆0
2 −

𝐾(𝑆1(𝑁2−𝑁)−2𝑁𝑆2+6𝑆0
2)

(𝑁−1)(𝑁−2)(𝑁−3)𝑆0
2 − (

1

𝑁−1
)

2

  

Where 𝑆0 = ∑ 𝜔𝑖𝑗 ,𝑛
𝑖≠𝑗 𝑆1 =

1

2
∑ ∑ (𝜔𝑖𝑗 + 𝜔𝑗𝑖)

2
,𝑗𝑖 𝑆2 = ∑ (∑ 𝜔𝑖𝑗 +𝑗 𝜔𝑗𝑖)

2
,𝑖 𝐾 =

𝑁 ∑ (𝑦𝑖−�̅�)4𝑁
𝑖=1

∑ ((𝑦𝑖−�̅�)2)2𝑁
𝑖=1

 

Interpretation: a positive global Moran’s that differs significantly from the expected value under 

the null hypothesis indicates positive spatial autocorrelation and implying the clustering of similar 

values (i.e., high values are found closer together, and low values are found closer together) on the 

dependent variable among neighboring observations.  

A negative global Moran’s that differs significantly from the expected value under the null 

hypothesis indicates negative spatial autocorrelation and implies the clustering of dissimilar values 
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(means high values are found far away from other high values, and low values are found far away 

from other low values) on the dependent variable among neighboring observations [81]. 

Global Geary’s C 

The global Moran’s I define value (dis)similarity as deviations from the mean, whereas the global 

Geary’s C defines value (dis)similarity as the squared difference in values between neighboring 

observations. For binary weights, Geary[83] introduced the following coefficient. 

𝑐 =
(𝑁 − 1) ∑ ∑ 𝑤𝑖𝑗𝑗 (𝑦𝑖 − 𝑦𝑗)2

𝑖

2 ∑ ∑ 𝑤𝑖𝑗𝑗𝑖 ∑ (𝑦𝑖 − �̅�)2
𝑖

                                                                                           (3.3) 

The z-statistics of Geary’s C is given by  

𝑍(𝐶) =
𝐶 − 𝐸(𝐶)

𝑆𝐸(𝐶)
 

Where  

𝐸(𝐶)𝑁 = 1 = 𝐸(𝐶)𝑅                                                                                                        (3.4) 

A variance of Geary’s C under normality assumption (𝑉𝑎𝑟(𝐶)𝑁) is given as  

(𝑉𝑎𝑟(𝐶)𝑁) =
 ((2𝑆1+𝑆2)𝑁(𝑁−1)−4𝑆0

2)

2(𝑁+1)𝑆0
  , and under randomization is given by  

(𝑉𝑎𝑟(𝐶)𝑅) =
𝑆1(𝑁−1)(𝑁2−3𝑁+3−𝐾(𝑁−1))

𝑆0𝑁(𝑁−2)(𝑁−3)
+

(𝑁2−3−𝐾(𝑁−1)2)

𝑁(𝑁−2)(𝑁−3)
−

(𝑁−1)𝑆2(𝑁2+3𝑁−6−𝐾(𝑁2−𝑁+2))

4𝑁(𝑁−2)(𝑁−3)𝑆0
2   

Where all the notations are as in (3.2). Therefore, the null hypothesis of no spatial autocorrelation 

(𝐻0 = 𝜌 = 0) will be rejected if the calculated values of |𝑍(𝐶)| > 𝑧𝛼 2⁄  

Interpretation: A value of Geary’s C that is significantly larger than one indicates negative spatial 

autocorrelation, while a value that is significantly smaller than one indicates positive spatial 

autocorrelation [81]. Due to the squared term in the numerator in (3.3), Geary’s C gives greater 
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weight to extreme values than Moran’s 𝐼. As a consequence, the global Moran’s I is generally 

preferred in practice[85]. 

Moran Scatter Plot 

The Moran Scatter plot enables us to visualize the linear correlation and the Moran’s I coefficient 

will be the slope of the regression curve. In additions to this, inspection of global and local spatial 

instability is carried out by the means of the Moran scatter plot. The four different quadrants of the 

scatter plot correspond to the four types of local spatial association between a region and its 

neighbors: the first quadrant, (HH) a region with a high value surrounded by regions with high 

values (top on the right), the second, (LH) a region a with low value surrounded by regions with 

high values (top on the left),the third (LL) a region with a low value surrounded by regions with 

low values (bottom on the left) and the last (HL) a region with a high value surrounded by regions 

with low values (bottom on the right) as shown in the following Figure 4.3 below. The first and 

the third quadrants refer to positive spatial autocorrelation indicating spatial clustering of similar 

values whereas the second and the forth quadrants represent negative spatial autocorrelation 

indicating spatial clustering of dissimilar values[81]. 

Generalized linear models 

A common way to build regression models extending the classical linear model for Gaussian 

responses to more general situations such as binary responses is generalized linear models, 

originally introduced by Nelder and Wedderburn [86]. They are used for modeling non-Gaussian 

response variables. In these models the influence of covariates on a response variable y is assumed 

to satisfy the following two assumptions: 

Distributional assumption: - Conditional on covariates 𝑥, the responses y is independent and the 

distribution of 𝑦𝑖  belongs to an exponential family, i.e., its density can be written as 

𝑝(𝑦𝑖|𝑥𝑖) = 𝑒𝑥𝑝
{
[𝑦𝑖𝜃𝑖−𝑏(𝜃𝑖)]

𝜙
 𝜔𝑖+𝑐(𝑦𝑖 ,𝜃𝑖, 𝜔𝑖)} ,            𝑖=1,…..,𝑛

                                        (3.5) 
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under the univariate response properties. Where,𝜃𝑖  is the natural parameter of the exponential 

family,𝜙 is the dispersion parameter common to all observations and  𝜔𝑖 represent a weight for 

the observations. Furthermore, b(.) and c(.) are functions depending on the specific exponential 

family. 

Structural assumption: -The (conditional) expectation 𝐸(𝑦|𝑥) = 𝜇 is linked to the strictly linear 

predictor  

           𝜂𝑖 = 𝑥𝑖
′𝛽.    Via     𝜇𝑖 = ℎ(𝜂𝑖) 𝑜𝑟 𝜂𝑖 = 𝑔(𝜇𝑖),                                                             (3.6) 

where the design vector 𝑥𝑖 usually includes the grand mean, ℎ is a smooth, bijective response 

function, 𝑔(. ) is the inverse of ℎ called the link function and 𝛽 is a vector of unknown regression 

coefficients. Both assumptions are connected by the fact that the mean of y is also determined by 

the distributional assumption and can be shown to be given as 

𝜇𝑖 = 𝐸(𝑦𝑖|𝑥𝑖) = 𝑏′(𝜃𝑖) 

Also,  𝑣𝑎𝑟(𝑦𝑖|𝑥𝑖)  is the variance of 𝑦𝑖  in general which it dependent on the linear predictor with 

𝜙𝑣(𝜇𝑖)

𝜔𝑖
= 𝑏′′(𝜃𝑖) being the variance function of the underlying exponential family. 

                                𝜎2(𝜇𝑖) =  𝑣𝑎𝑟(𝑦𝑖|𝑥𝑖) = 𝑏′′(𝜃𝑖)/𝜔𝑖  

For binary responses 𝑦𝜖(0,1), the expectation is given by the probability 𝜋 = 𝑝(𝑦 = 1), which 

requires appropriate response functions to ensure 𝜋𝜖[0,1].Obviously, any cumulative distribution 

function satisfies this condition and different model formulations are obtained for different choices 

of the distribution function. In any case, the scale parameter is again fixed at 𝜙 = 1. When 

choosing the natural link function 

𝑔(𝜋) = log
𝜋

1 − 𝜋
= 𝜂, 

the logit model is obtained, which corresponds to the logistic distribution function as response 

function: 
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                   ℎ(𝜂) =
𝑒𝑥𝑝(𝜂)

1 − 𝑒𝑥𝑝(𝜂)
= 𝜋 

The logistic distribution function is symmetric and has somewhat heavier tails than the standard 

normal distribution function used in probit models. The logit model is most commonly used when 

analyzing binary data, especially in medical applications.   

3.4.6 Bayesian Generalized Linear Model 

Bayesian methods are an increasingly popular choice for sufficiently flexible to accommodate the 

complex forms of relationships between the response variable and the predictors. In contrast to 

other statistical methods, Bayesian models assume the vector of unknown parameters to be 

estimated is random, rather than fixed, and vary according to some ‘prior’ distribution [87]. In this 

study, first, we fitted categorical covariates that have a linear effect on the response variable and 

compare them with the result from the semiparametric model and geo-additive model. The effect 

of the covariates on the response is modeled by a linear predictor as: 

𝜂𝑖 = 𝜔𝑖
′𝛾                                  𝑖 = 1,2, … … , 𝑝                                                     (3.7) 

where:  

     𝜔𝑖 = (𝜔𝑖1, 𝜔𝑖2 , … … , 𝜔𝑖𝑝)
′
  is a vector of categorical covariates 

      𝛾 =(𝛾0, 𝛾1, … … … , 𝛾𝑝)
′
is a vector of regression coefficients for the categorical covariates. 

3.4.7 Bayesian Semiparametric Model  

Generalized Additive Models are methods and techniques developed and popularized by Hastie 

and Tibshirani [88]. In our study, however, the data contain detailed information on continuous 

covariates like body mass index of the mother, mother age, and child age in a month. The practical 

experience has shown that this continuous covariate often have nonlinear effects as suggested in 

[14, 89–91].  Therefore, in this study, we examine the generalized additive model as an alternative 

to the common linear model in the context of analyzing childhood anaemia status in Ethiopia, 
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which can simultaneously incorporate the usual linear effects as well as nonlinear effects of 

continuous covariates within a semi-parametric Bayesian approach. Semiparametric model [88] 

assume that, given 𝑥𝑖 = (𝑥𝑖1, … . . , 𝑥𝑖𝑘) and 𝜔𝑖,the distribution of 𝑦𝑖  belongs to an exponential 

family, with mean 𝜇𝑖 = 𝐸(𝑦𝑖|𝑥𝑖,𝜔𝑖) linked to an additive semiparametric predictor 𝜂𝑖 by 

𝜇𝑖 = ℎ(𝜂𝑖) 

                                  𝜂𝑖 = 𝑓1(𝑥𝑖1) +  𝑓2(𝑥𝑖2) … … … … . . +𝑓𝑘(𝑥𝑖𝑘)   + 𝜔𝑖
′𝛾                               (3.8)  

Here ℎ is a known link and   𝑓1, 𝑓2, … … . , 𝑓𝑘  are possibly unknown nonlinear smooth functions of 

continuous covariates. 

3.4.8 Bayesian Geo-additive Models     

Structured Additive Regression Models 

Structured additive regression (STAR) models provide a unified framework for extending classical 

models to a more flexible approach. This approach allows for the inclusion of the different types 

of covariates such as the spatial random effects and nonlinear effects in the linear predictor. STAR 

models are based on the framework of Bayesian generalized linear models [92, 93], which 

cover several well-known model classes as special cases include: Geo-additive Model, 

Generalized Additive, Generalized Additive Mixed Model, Varying Coefficient Models, and 

Geographical Weighted Regression  

Bayesian structured additive regression (STAR) has been proposed in Fahrmeir, Kneib, and Lang 

[94] as a comprehensive class of semiparametric regression models with discrete responses and 

different types of covariates and corresponding effects. STAR models allow to combination of 

these different model classes and several extensions in a unifying framework that also facilitates 

the development of generally applicable inferential schemes. Bayesian Geo-additive models were 

subclasses of STAR models that consist of nonparametric effects of continuous covariates, spatial 

effects, and cluster-specific random effects in different combinations [59]. The assumption of a 

parametric linear predictor for assessing the influence of covariate effects on responses seems to 
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be rigid and restrictive in our practical application situation and also in many real statistically 

complex situations. 

Besides, when practical experience has shown that metrical covariates often have nonlinear effects 

and data may have spatial dependence by nature, we are facing one of the following problems: -  

In the application, for the continuous covariates in the data set, the assumption of a strictly linear 

effect on the predictor may not be appropriate. Another difficulty is that we have a spatial covariate 

in our models. Hence, it is necessary to seek a more flexible approach for estimating the metrical 

covariates by relaxing the parametric linear assumptions. This, in turn, allows assessing of the true 

functional form of the metrical effects of the data and this approach is referred to as the 

nonparametric regression model. To specify a nonparametric regression model, an appropriate 

function that contains the unknown regression function needs to be chosen. This choice is usually 

motivated by smoothness properties, which the regression function can be assumed to possess. To 

overcome these difficulties, the Geo-additive Bayesian model was considered which caters for 

all the shortcomings of most of the regression analysis as well as retains its flexibility to 

accommodate nonlinear and spatial effects. We replace the strictly linear predictor in 3.2 with a 

geo-additive predictor. 

Observation model 

Suppose that regression data consists of observations(𝑦𝑖 , 𝑥𝑖 , 𝜔𝑖, 𝑠𝑖), 𝑖 = 1,2, … . . 𝑛  on a response 

𝑦𝑖. The response variables in this application used the logit model in the case of childhood anaemia. 

In this application 𝜔𝑖 include a vector of fixed (categorical) effects, which are coded in effect code 

such as such child sex, educational level of the mother, …, etc.,  𝑥𝑖 represent the 

metrical(continuous) covariates include the child age in months and mother’s BMI and the spatial 

covariate,  𝑠𝑖, which including the region in which the most of child’s anaemia would be 

considered. Bayesian Geo-additive models of Kamman and Wand [59] assume that, given 𝑥𝑖 =

(𝑥𝑖1 , . . 𝑥𝑖𝑝,) , 𝜔𝑖 = (𝜔𝑖1, … , 𝜔𝑖𝑝) and 𝑠𝑖 = 1, … , S   labeling the region of in the country, the 

distribution of 𝑦𝑖  belongs to an exponential family, with mean 𝜇𝑖 = 𝐸(𝑦𝑖|𝑥𝑖, 𝜔𝑖, 𝑠𝑖) linked to an 
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additive predictor 𝜂𝑖  by an appropriate response function ℎ. We assume a semiparametric 

regression model with geo-additive predictors 𝜂𝑖 by 

𝜇𝑖 = ℎ(𝜂𝑖), 𝜂𝑔𝑒𝑜 = 𝑓1(𝑥𝑖1 ) + 𝑓2(𝑥𝑖2)+, … . +𝑓𝑝(𝑥𝑖𝑝,) + 𝑓𝑠𝑝𝑎𝑡(𝑠𝑖) + 𝜔𝑖
′𝛾.                                    (3.9) 

Here ℎ is a known response function, and 𝑓1, 𝑓2, … … . 𝑓𝑝 are possibly nonlinear functions of 

metrical covariates and 𝑓𝑠𝑝𝑎𝑡  is the effect of the spatial covariate 𝑠𝑖  𝜖 1,.…., S  labeling the region 

in the country. Regression models with predictors as in 3.9 are referred to as geo-additive models. 

These random effects are incorporated in the model to capture extra variation. Thus, to capture 

unobserved influential factors that vary across the regions, the model accounts for the structured 

random effects and unstructured random effects account for unobserved heterogeneity within each 

region. In a further step, we may split up the spatial effect 𝑓𝑠𝑝𝑎𝑡  into a spatially correlated 

(structured) and uncorrelated spatial (unstructured) effect. 

𝑓𝑠𝑝𝑎𝑡(𝑠𝑖) = 𝑓𝑠𝑡𝑟(𝑠𝑖) + 𝑓𝑢𝑛𝑠𝑡𝑟(𝑠𝑖)                                                                                               (3.10) 

One rationale is that a spatial effect is usually a surrogate of many unobserved influences, some of 

them may obey a strong spatial structure and others may be present only locally. Also, the two 

components are assumed to have independent prior distributions [95]. By estimating a structured 

and an unstructured effect we attempt to separate these effects. 

  3.4.9 Specification of Prior distribution 

The Bayesian approach provides a cohesive framework for mixing complex data and external 

knowledge[96]. Within this framework, the models are assigned appropriate mixing probability 

distribution. This probability is determined by the prior distribution, assigned before the data are 

observed. In Bayesian inference, the unknown smooth functions 𝑓𝑗, the fixed effects parameters 𝛾 

as well as the variance parameter 𝜎2 are considered as random variables and therefore, have to be 

supplemented by appropriate priors’ distribution. 

Suppose that (𝑓(1), 𝑓(2) … … . . 𝑓(𝑛))′the vector of corresponding function evaluations at 

observed values of 𝑥. Then, the general form of the prior for 𝑓is 
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𝑓|𝜏2 ∝ 𝑒𝑥𝑝 (−
1

2𝜏2 𝑓′𝐾𝑓)                                                                                            (3.11)                                                                                     

Where K is a penalty matrix that penalizes too abrupt jumps between neighboring parameters. In 

most cases K will be rank deficient, therefore the prior for f would be improper. This implies that 

𝑓|𝜏2 follows a partially improper Gaussian prior 𝑓|𝜏2~𝑁(0, 𝜏2𝐾−) where 𝐾− is a generalized 

inverse of a band-diagonal precision or penalty matrix K. 

In the frequentist approach, the smoothing parameter is the equivalent with the variance parameter 

τ2 which controls the tradeoff between flexibility and smoothness. To estimate the smoothness 

parameter 𝑓, a highly dispersed but proper hyperprior is assigned to τ2. The proper prior for τ2 is 

required to obtain a proper posterior for 𝑓 [97]. The variance parameters must have distributions 

on the positive real line. The gamma, inverse gamma, or uniform families are often the 

noninformative distributions in this range. The common are choices are highly dispersed inverse 

gamma distribution with hyperparameters 𝑎 and 𝑏, i.e. 

𝑝(𝜏2)~𝐼𝐺(𝑎, 𝑏) 

A particular prior depends on the type of the covariates and prior beliefs about the smoothness of 

𝑓. Furthermore, a prior for a function f is defined by specifying a smoothness prior, and the 

hyperparameters 𝑎 and b of the inverse gamma prior for 𝜏 2.A possible choice for 𝑎 and 𝑏 is very 

small 𝑎 =  𝑏, for example, 𝑎 = b = 0.0001, leading to almost diffuse priors for the variance 

parameters. An alternative proposed, for example, in Besag et al. [98] is 𝑎 = 1 and small value for 

𝑏, such as 𝑏 = 0:005. The choice of such a highly dispersed but proper prior avoids problems 

arising with improper priors [99]. 

Priors for Fixed Effects 

The noninformative prior is the type of prior distribution that is assumed not to make a strong 

preference over the data [100]. According to Lawson[100], the prior choice can be usually made 

based on some general understanding of the range and behavior of the variable. For the parameter 
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vector 𝛾 of fixed effects the usual approach is to assign diffuse priors (uninformative prior) 

to the parameters of the fixed effects, that is:  

𝛾𝑖 ∝ 𝑐𝑜𝑛𝑠𝑡,         𝑗 = 1,2, … . 𝑟. 

Another choice would be to work with a multivariate Gaussian distribution 𝛾~𝑁(𝛾0, Σ0)  In this 

application, we used diffuse priors for the fixed effects. 

 Priors for Metrical (Continuous) Effects 

Several alternatives are available to specify the priors of the unknown (smooth) functions 𝑓𝑗 ,j=

1,2 … . . p. These are basis function approaches with adaptive knot selection and approaches based 

on smoothness priors. Also, several alternatives have been recently proposed for specifying a 

smoothness prior for the effect 𝑓 of metrical covariate x. These are random walk priors [101], 

Bayesian smoothing splines [97], and Bayesian P-splines[102].    

Random Walk Models 

In models where parametric modeling is not sufficient, a more flexible approach is adopted. 

Ideally, this approach is used to handle covariates differently, such as allowing for nonlinear effects 

for continuous covariates which the data may contain. These continuous covariates are modeled 

with a semiparametric and generalized additive approach. Such models are used to describe 

smooth curves in time or surface in space [103]. Similar to spatial area effects, metrical covariates 

are assigned specific priors to allow smoothing. Several alternative specifications are available for 

smoothness prior functions of metrical covariates, the commonly used priors for smooth functions 

are first or second-order random walk models, but we focus on the second-order random walk 

model. 

Let us consider the case of a metrical covariate x with equally-spaced observations  𝑥𝑖 , 𝑖 = 1,2 … .. 

m, m≤ 𝑛. Then 𝑥(1) < 𝑥(2) < ⋯ . . < 𝑥(𝑚) defines the ordered sequence of distinct covariate 

values. Here m denotes the number of different observations for 𝑥 in the data set. A common 

approach in dynamic or state-space models is to estimate one parameter 𝑓(𝑡) for each distinct 
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𝑥(𝑡); i: e Define, 𝑓(𝑡) = 𝑓(𝑥(𝑡)) and let 𝑓 = (𝑓(1), … . , 𝑓(𝑡), … … . . , 𝑓(𝑚))′denote the vector of 

function evaluation. Fahrmeir and Lang [103] show that a first and second-order random walk 

smoothness prior to Normal errors would be specified as: 

Then a first-order random walk prior for 𝑓is defined by 

𝑓(𝑡) = 𝑓(𝑡 − 1) + 𝑢(𝑡)                                                                                           (3.12)                                                                      

A second-order random walk is given by 

𝑓(𝑡) = 2𝑓(𝑡 − 1) − 𝑓(𝑡 − 2) + 𝑢(𝑡)                                                                                     (3.13)                                              

𝑢(𝑡) ∼ 𝑁(0; 𝜏2) 

with diffuse priors 𝑓(1) ∝ const and 𝑓(2) ∝const, for initial values, respectively. A first-order 

random walk penalizes too abrupt jumps 𝑓(𝑡) − 𝑓(𝑡 − 1) between successive states. While a 

second-order random walk penalizes large deviations from the linear trend 2𝑓(𝑡 − 1) − 𝑓(𝑡 − 2) . 

Also, the variance 𝜏 2 controls the degree of smoothness 𝑓. Thus, the conditional prior distribution 

of 𝑓(𝑡) given its immediate past 𝑓(𝑡 − 1) is given by: 

 𝑓𝑡|𝑓𝑡−1, 𝜏 2~𝑁(𝑓𝑡−1, 𝜏 2)                                                                                                                           (3.14)     

Moreover, Random walk priors may be equivalently defined in a more symmetric form by 

specifying the conditional distributions of function 𝑓(𝑡) given its left and right neighbors. That 

means we can write the prior in (3.12 and 3.13) in a general form as                                       

𝑓|𝜏2 ∝ 𝑒𝑥𝑝 (−
1

𝜏2
𝑓′𝐾𝑓)                                                                                                       (3.15) 

                                                                          

The penalty matrix is of the form 𝐾 =  𝐷 𝐷 ′ where D is a first or second-order difference matrix. 

Here the design matrix K is the penalty matrix that penalizes too abrupt jumps between neighboring 
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parameters. More often, K is not full rank and this implies that 𝑓|𝜏2 follows a partially improper 

Gaussian prior 

𝑓|𝜏2~𝑁(0, 𝜏 2𝐾−) 

where 𝐾−is a generalized inverse of the penalty matrix 𝐾. 

For the case of nonequally spaced observations, random walk or autoregressive priors have to be 

modified to account for non-equal distances 𝛿𝑡 = 𝑥(𝑡) − 𝑥(𝑡 − 1) between observations. Random 

walks of the first order are now specified by  

𝑓(𝑡) = 𝑓(𝑡 − 1) + 𝑢(𝑡)                                                                                           (3.16)                                                               

𝑢(𝑡) ∼ 𝑁(0; 𝛿𝑡𝜏2) 

i.e., by adjusting from  𝜏2 to 𝛿𝑡(𝜏2). 

Random walks second order are 

𝑓(𝑡) = (1 +
𝛿𝑡

𝛿𝑡−1
) 𝑓(𝑡 − 1) − (

𝛿𝑡

𝛿𝑡−1
) 𝑓(𝑡 − 2) + 𝑢(𝑡)                                                         (3.17)                                      

𝑢~𝑁(0; 𝑤𝑡𝜏2) 

where  𝑤𝑡,is an appropriate weight. Several possibilities are conceivable for weights. The simplest 

one is 𝑤𝑡=𝛿𝑡 for the first-order random walk.  

Spatial Covariates 

Conditional Autoregressive Model 

The conditional autoregressive model has been widely used in the field of epidemiology and other 

studies of diseases and was developed by Besag [69]. These models are also known as the Markov 

random field (MRF) model and are in the class of the Gaussian Markov random field (GMRF) 

models. In the spatial modeling for administrative regional areal data, such as disease mapping, 
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the MRF models are commonly employed. The virtual common form of MRF incorporates the 

structure of spatial dependence, based on the idea that areas that share a border or boundary are 

regarded as neighbors. The neighboring areas are bound to have too many similarities to those far 

apart. Thus, smoothing of the health outcome risk for an areal unit depends on its neighbor’s risk. 

In this research, we focus on the MRF model for the incorporation of the spatially structured 

random term.  

Consider first that the spatial index 𝑠ϵ {1,2, … . 𝑆} represents a location or site in connected 

geographical regions. It is assumed that neighboring sites that share boundaries are more 

homogenous than any other arbitrary sites. Therefore, for a valid prior definition, a set of neighbors 

must be defined for each site s. Hence sites 𝑠 and 𝑡 are neighbors if they share a common boundary. 

Depending on the application, the spatial effect may be further split into a spatially correlated 

(structured) and an uncorrelated (unstructured) effect, i.e., 𝑓𝑠𝑝𝑎𝑡 = 𝑓𝑠𝑡𝑟 + 𝑓𝑢𝑛𝑠𝑡𝑟. A rationale is that 

a spatial effect is usually a surrogate of many unobserved influential factors, some of them may 

obey a strong spatial structure while others may exist only locally. Besag et.al [69] proposed a 

Markov random field prior for the correlated spatial effects 𝑓𝑠𝑡𝑟. The spatial smoothness prior of 

function evaluations 𝑓𝑠𝑡𝑟(s) is 

𝑓𝑠𝑡𝑟,𝑠|𝑓𝑠𝑡𝑟,𝑡,𝑡 ≠ 𝑠, 𝜏2~𝑁 (∑
𝑓𝑠𝑡𝑟,𝑡 

𝑁𝑠
𝑡∈𝛿𝑠

,
𝜏2

𝑠𝑡𝑟

𝑁𝑠
),                                                                                  (3.18)                                                             

where 𝑁𝑠 are the number of adjacent sites and 𝑡 ∈ 𝛿𝑠 denotes, that site 𝑓𝑠  is a neighbor of the site 𝑓𝑡,. 

Thus the (conditional) mean of 𝑓𝑠 is an unweighted average of function evaluations of neighboring 

sites. Note that spatial data conditioning is undirected since there is no natural ordering of different 

sites 𝑓𝑠  as in the case for metrical covariates. 

In a general form, (3.18) can be given by 

𝑓𝑠𝑡𝑟,𝑠|𝑓𝑠𝑡𝑟,𝑡,𝑡 ≠ 𝑠, 𝜏2~𝑁 (∑
𝑤𝑠𝑡 

𝑤𝑠+
𝑡∈𝛿𝑠

𝑓𝑠𝑡𝑟,𝑡 ,
𝜏2

𝑠𝑡𝑟

𝑤𝑠+
),                                                                   (3.19)                                                 

where 𝑤𝑠𝑡 are known equal weights and 𝑤𝑠+ denotes the marginal sum of 𝑤𝑠𝑡 over the missing 

subscript. Such a prior is called a Gaussian intrinsic autoregression.  The design matrix 𝑋𝑠𝑡𝑟 is a 
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𝑛 × 𝑆   incidence matrix whose entry in the 𝑖𝑡ℎ row and 𝑠𝑡ℎ 𝑡ℎ𝑒 column is equal to one if 

observation 𝑖 has been observed at location 𝑠 and zero otherwise.  

Unit- or cluster-specific heterogeneity 

In many situations, we observe the problem of heterogeneity among clusters of observations 

caused by unobserved covariates. Neglecting unobserved heterogeneity may lead to considerably 

biased estimates for the remaining effects as well as false standard error estimates. Suppose 

now  𝑥𝜖{1, … , 𝐾}  is a cluster variable indicating the cluster a particular observation belongs too. 

A common approach to overcome the difficulties of unobserved heterogeneity is to introduce 

additional Gaussian i.i.d. effects 𝑓(𝑥) = 𝛽𝑥 with 

𝛽𝑥~𝑁(0, 𝜏2
𝑢𝑛𝑠𝑡𝑟),                                  𝑥 = 1, … . . , 𝐾.                                                                 (3.20)                             

The design matrix 𝑿 is again a 𝑛 × 𝐾-dimensional 0 1 ⁄ incidence matrix that represents the 

grouping structure of the data, while the penalty matrix is simply the identity matrix, i.e., 𝑲 =  𝑰. 

From a classical perspective, (3.20) defines i.i.d. random effects. However, from a Bayesian point 

of view, all unknown parameters are assumed to be random, and hence the notation” random 

effects” in this context is misleading. Hence, one may also think of (3.20) as an approach for 

modeling an unsmooth function. 

Formally, the priors for 𝑓𝑠𝑡𝑟  and 𝑓𝑢𝑛𝑠𝑡𝑟 can both be brought into the form (3.15). For 𝑓𝑠𝑡𝑟 , the 

elements of 𝐾 given by  𝐾𝑠𝑠 = 𝑤𝑠+. and 

𝐾𝑠𝑡 = {
𝑤𝑠 = −1 𝑤ℎ𝑒𝑟𝑒 𝑡 ∈ 𝛿𝑠

0,                𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒
 

For 𝑓𝑢𝑛𝑠𝑡𝑟   we may set 𝐾 =  𝐼. 

Furthermore, the inverse Gamma priors are assumed for 𝜏2
𝑢𝑛𝑠𝑡𝑟  [𝐼𝐺(𝑎𝑢𝑛𝑠𝑡𝑟 , 𝑏𝑢𝑛𝑠𝑡𝑟)] and 

𝜏2
𝑠𝑡𝑟 [𝐼𝐺(𝑎𝑠𝑡𝑟 , 𝑏𝑠𝑡𝑟)]. 
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3.4.10 Models Specification 

The following set of models were examined to investigate the linear, spatial, and nonlinear effects 

of metric covariates on childhood anaemia. The first model is a Bayesian Generalized Linear 

Model which incorporates fixed effects of categorical covariates. This model is given by 

Model 1:  𝜂𝑖 = 𝜔𝑖
′𝛾                                                                                               (3.21)  

The second model is Bayesian Semiparametric Model given by  

Model 2:   𝜂𝑖 = 𝑓1(𝑥𝑖1) +  𝑓2(𝑥𝑖2) … … … … . . +𝑓𝑘(𝑥𝑖𝑘)   + 𝜔𝑖
′𝛾                             (3.22)                   

this model is similar to Model 1, it accounts for fixed effects of categorical covariates, and assumes 

nonlinear effects of child age and mother BMI which are continuous covariates of an individual. 

The final (Bayesian Geo-additive Models) model is a structured additive model which captures 

spatial heterogeneity for unobserved influential factors and also accounts for nonlinear effects of 

child age and mother BMI and the effects of categorical covariates.  The model is given by 

Model 3: 𝜂𝑔𝑒𝑜 = 𝜔𝑖
′𝛾 + 𝑓1(𝑥𝑖1 ) + 𝑓2(𝑥𝑖2) + 𝑓𝑠𝑡𝑟(𝑠𝑖) + 𝑓𝑢𝑛𝑠𝑡𝑟(𝑠𝑖)                                           (3.23) 

Here spatially structured random effects account for unobserved covariates across the region or 

spatial location in general and the unstructured heterogeneity caters for unobserved influential 

covariates that are inherent within the regions.  

In all the models’ formulation in this section, we assumed an independent diffuse prior for the 

fixed effects 𝛾 ∝ 𝑐𝑜𝑛𝑠𝑡, the smooth functions (𝑓1 and 𝑓2) of continuous covariates child age and 

mother BMI were both assigned second-order random walk priors discussed in Section 3.13. 

Second-order random walk priors which permit enough flexibility while avoiding overfitting the 

data was suggested by Wecker and Ansley [104] and our prior was supported by Gebrenegus and 

Kandala, considered spatial modeling of under-five mortality in Nigeria, based on data from 

Nigeria Demographic and Health Survey (NDHS) [50], adopted independent diffuse prior for the 
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fixed effects and second-order random walk priors for the smooth functions (𝑓1 and 𝑓2) of 

continuous covariates. 

Furthermore, the spatially structured effects 𝑓𝑠𝑡𝑟(𝑠𝑖)  were assigned Markov random fields (MRFs) 

prior (Equation (3.18)) and the spatially unstructured  𝑓𝑢𝑛𝑠𝑡𝑟(𝑠𝑖) were assigned the i.i.d Gaussian 

prior (Equation (3.20)). Rue and Held [105] suggested that if the spatial data are in form of discrete, 

for cluster-specific heterogeneity, the Gaussian random field priors, and structured spatial effect, 

we assume spatial correlations defined implicitly by assuming a Markov random field prior for a 

suitable neighbourhood structure derived from the spatial orientation of the data. The most 

common case would be to treat regions as neighbours if they share a common boundary. 

For variance parameter  τ2 we assigned an inverse gamma  τ2 ~𝐼𝐺(𝑎, 𝑏) (with 𝑎, = 𝑏 = 0.001) to 

obtain a data-driven amount of smoothness and since the variance parameters must have 

distributions on the positive real line.  

3.4.11 Inference 

3.4.11.1 Fully Bayesian inference based on MCMC techniques 

Statistical inference is done using Markov chain Monte Carlo techniques in a fully Bayesian 

setting. Fully Bayesian inference is based on the entire posterior distribution meanings all the 

unknown parameters are assumed to be random variables and are assigned priors and further 

hyperparameters are assigned hyperpriors. In FB, the unknown variance parameters 𝜏2
𝑗 are also 

considered as random variables supplemented with suitable hyperprior assumptions. The highly 

dispersed (but proper) inverse Gamma priors 𝑝(𝜏2
𝑗)~𝐼𝐺(𝑎𝑗 , 𝑏𝑗) are assigned to the variances. The 

corresponding probability density function is given by 

𝜏2
𝑗 ∝ (𝜏2

𝑗)
−𝑎𝑗−1

𝑒𝑥𝑝 (−
𝑏𝑗

𝜏2
𝑗
) 

Using proper priors for 𝜏2
𝑗  (with 𝑎𝑗 > 0 and 𝑏𝑗 > 0) ensures propriety of the joint posterior despite 

the partial impropriety of the priors for the 𝛾𝑗. A common choice for the hyperparameters are small 
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values for 𝑎𝑗 and 𝑏𝑗, e.g., 𝑎𝑗 = 𝑏𝑗 =0.001. In some situations, the estimated nonlinear functions 𝑓𝑗 

may depend considerably on the particular choice of hyperparameters 𝑎𝑗  and 𝑏𝑗. This may be the 

case for a very low signal-to-noise ratio and/or a small sample size. Bayesian inference is based 

on the posterior of the model given by 

𝑝(𝛽1, … . , 𝛽𝑝, 𝜏1
2, … , 𝜏𝑝

2, 𝛾|𝑦) ∝ 𝐿(𝑦, 𝛽1, … . , 𝛽𝑝, 𝛾) ∏ {𝑝(𝛽𝑗|𝜏𝑗
2)𝑝(𝜏𝑗

2)}
𝑝

𝑗
                      (3.24)     

Where  𝐿(. ) denotes the likelihood which, under the assumption of conditional independence, is 

the product of individual likelihood contributions. 

3.4.11.2 Markov Chain Monte Carlo (MCMC) Methods 

In many practical situations (and in particular for most structured additive regression models) the 

posterior distribution is numerically intractable. A technique that overcomes this problem is the 

Markov Chain Monte Carlo (MCMC) simulation method that allows drawing of random samples 

from the posterior. From these random samples, characteristics of the posterior such as posterior 

means, standard deviations, or quantiles can be estimated by their empirical analogs. Instead of 

drawing samples directly from the posterior, MCMC devices a way to construct a Markov chain 

with the posterior as stationary distribution. Hence, the iterations of the transition kernel of this 

Markov chain converge to the posterior yielding a sample of dependent random numbers. Usually, 

the first part of the sample (the burn-in phase) is discarded since the algorithm needs some time to 

converge [102]. Also, some thinning is typically applied to the Markov chain to reduce 

autocorrelations.  

Bayesian inference via MCMC is based on updating full conditionals of single parameters or 

blocks of parameters, given the rest and the data. For Gaussian models, Gibb’s sampling with so-

called multi-move steps can be applied. For non-Gaussian responses, Gibb’s sampling is no longer 

feasible and Metropolis-Hastings’s algorithms are needed. More details can be found in [101].  let 

α denote the vector of all unknown parameters in the model. Then, the logit model is given:  
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𝑃(𝛼|𝑦)

∝ ∏ 𝐿𝑖

𝑛

𝑖=1

(𝑦𝑖; 𝜂𝑖) ∏ {(𝛽𝑗|𝜏𝑗
2)𝑝(𝜏𝑗

2)}
𝑝

𝑗
𝑝(𝑓𝑠𝑡𝑟|𝜏𝑠𝑡𝑟

2)𝑝(𝑓𝑢𝑛𝑠𝑡𝑟|𝜏𝑢𝑛𝑠𝑡𝑟
2) ∏ 𝑝(𝛾𝑗

𝑟

𝑗=1

)   𝑝(𝜎2).         (3.25)  

where 𝛽𝑗; j = 1………. p; are the vectors of regression coefficients corresponding to the 

functions𝑓𝑗.While the full conditionals for the variance components 𝜏2; 𝑗 =  1, . . . … . 𝑝, str, unstr 

and 𝜎2 are inverse gamma distributions. More details can be found in [106–108].  

The estimation of models is based on different sampling schemes depending on the distribution of 

the response. For non-gaussian responses here, we now turn the attention to general responses from 

an exponential family. In this case, the full conditionals are no longer Gaussian. For fixed effects 

and i.i.d. random effects we use a slightly modified version of the Metropolis-Hastings algorithm 

which correctly applied for non-Gaussian data and if the posterior distribution doesn’t follow some 

known distribution (no conjugate distribution) based on iteratively weighted least squares( IWLS) 

proposal suggested by  Brezger and Lang, [109]. In addition, Fahrmeir and Lang propose a MH-

algorithm for updating unknown regression parameters based on conditional prior proposals[101]. 

The basic idea behind IWLS proposals is to combine Fisher scoring or IWLS for estimating 

regression parameters in generalized linear models, and the Metropolis-Hastings algorithm[93]. 

More precisely, the goal is to approximate the full conditionals of regression parameters 𝛽𝑗 and 𝛾 

by a Gaussian distribution, obtained by accomplishing one Fisher scoring step in every iteration 

of the sampler. Suppose we want to update the regression coefficients 𝛽𝑗  of the function 𝑓𝑗 with 

current state 𝛽𝑐
𝑗
 of the chain. Then, according to IWLS, a new value 𝛽𝑝

𝑗
 is proposed by drawing 

a random number from the multivariate Gaussian proposal distribution  𝑞 (𝛽𝑐
𝑗
 , 𝛽𝑝

𝑗
 ).  

 The acceptance rates are significantly higher for the sampling scheme of IWLS-proposals based 

on the current posterior mode 𝑚𝑐
𝑗 rather than the current 𝛽𝑐

𝑗
. This is particularly useful for 

updating spatial effects based on Markov random fields where, in many cases, a sampling scheme 

based on the current state of the chain yields quite low acceptance rates. 
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3.4.11.3 Model Comparison and Selection 

    Deviance Information Criteria (DIC) 

The classical approach to model comparison involves a trade-off between how well the model fits 

the data and the level of complexity. Spiegelhalter et al. [110] devised a selection criterion that 

was based on Bayesian measures of model complexity and how good the fit of a model is for the 

data. The deviance information criterion (DIC) proposed by Spiegelhalter is a commonly used tool 

for model comparison and assessment. It is a generalization of the AIC. The DIC has become a 

popular model comparison criterion in a fully Bayesian (FB) context [110]. A complexity 

measure, 𝑝𝐷 is suggested by using an information theoretic argument to get more effective number 

of parameters in a model. As the difference between the posterior mean of the deviance and the 

deviance at the posterior estimates of the parameters of interest. 

𝑝𝐷 is assumed to be an approximate trace of the product of Fisher’s information and the posterior 

covariance matrix. It could be obtained through a Markov Chain Monte Carlo analysis. In the case 

of normal models, 𝑝𝐷 corresponds to the trace of ’hat’ matrix projection observations onto fitted 

values. In an exponential family model, �̅� which calls for posterior mean deviance, can be taken 

as a measure of fit. Assume that 𝑓(𝑦) is a fully specified standardizing term, then 

𝑝𝐷 =  �̅�(�̅�) − 𝐷(�̅�)                                                                                                                (3.26)                                                                                                   

𝐷(𝜃) = −2 log 𝑝(𝑦|𝜃) + 2 log 𝑓(𝑦) , is Bayesian deviance. 

A Deviance Information Criteria (DIC), which could be used for model comparison, is computed 

by adding the fit 𝐷 ̅to a complexity 𝑝𝐷. DIC is defined as a "Plugin" estimate of fit plus twice the 

effective number of parameters, as follows: 

𝐷𝐼𝐶 = 𝐷(�̅�) + 2𝑝𝐷 = �̅� + 𝑝𝐷,                                                                                       (3.27) 

where the posterior mean of the deviance �̅�(𝜃) is penalized by the effective number of model 

parameters 𝑝𝐷. Therefore, to select the best model among several fitted models in this study, DIC 
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was used. The advantage of DIC over other criteria, for Bayesian model selection, is that the DIC 

is easily calculated from the samples generated by a Markov chain Monte Carlo simulation. 

Assessing goodness of fit involves investigating how close the values are predicted by the model 

with that of observed values. The model goodness of fit was assessed based on the DIC that states 

that the smaller the value of the DIC the better is the model fit[110].    

3.4.11.4 Model Diagnostic  

 Model diagnoses were performed based on MCMC post-estimation diagnosis, to examine the 

convergence of MCMC. Among several ways of a test convergence, the most popular and 

straightforward convergence assessment methods have been used for this study. The following 

methods were more likely considered for this study.  

Autocorrelation plot: High correlation between the parameters of a chain tends to give slow 

convergence, whereas high autocorrelation within a single parameter chain leads to slow mixing 

and possibly individual nonconvergence to the limiting distribution because the chain tends to 

explore less space infinite time. In analyzing Markov chain autocorrelation, it is helpful to identify 

lags in the series to calculate the long-run trends in correlation, and in particular, whether they 

decrease with increasing lags[111]. 

  Data management and relevant software of the study 

To analyses the spatial pattern and determinants of childhood anaemia software such as SPSS 24. 

version: - were for Data cleaning and management, (renaming, recoding, and range checking of 

variables). R version 3.6.3 and ArcGIS 10.3: -were used for practical modeling and analysis. 
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CHAPTER FOUR  

4 Results and Discussion 

4.1 Descriptive statistics 

4.1.1 Child Anaemia prevalence rate 

From the total of 7953 children under age 5 years with anaemia test results were included in this 

study,3386 (42.6%) were non-anemic and 4567 (57.4%) are anaemic children, which presented in 

table 4.1 below. 

Table 4.1: Frequency distribution of childhood anaemia status in Ethiopia  

Anaemia status   Frequency  Percent 

Not Anaemic 3386 42.6% 

Anaemic  4567 57.4% 

Total  7953 100% 

4.1.2 Trends of childhood anaemia (2005 -2016) 

The prevalence of anaemia among Ethiopian children declined from 54% to 44% from 2005 to 

2011 but increased to 57.4% in 2016. 

 

                 Figure 4.1 Trends in childhood anaemia  
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The percentage of children U5 years of age suffering from anaemia in the poorest family was high 

(62.8%) as compared with the wealth index status in the middle and rich categories, (53.7% and 

52.0% respectively).  Thus, lower wealth index status was allied with the increase in the danger of 

the development of anaemia in children. This association between the wealth index status of the 

family and anaemia among children under 5 was found to be statistically significant (p<0.001).     

Results from Table 4.2 also revealed that proportions of children U5 years suffering from anaemia 

were 58.2%,57.2%, and 49.1% among those whose mothers had no education, educated up to the 

primary, and secondary, and above respectively. It was found that the lower the level of education 

of the mother, the higher the probability of the child suffering from anaemia. This association in 

the mothers’ educational status and anaemia was found to be significant statistically (p< 0.001). 

From the study population,393(49.8%) children with anaemia were from urban areas and 4174 

(58.3%) were from the rural parts. A significant association was found between anaemia and place 

of residence (p<0.001). The Percentage of having anaemia is lower among urban children as 

compared to their rural counterparts. The region was also found to be significantly associated 

(p<.001), with the percentage of children who had anaemia ranging from 42.7% to 83.3%. The 

Greater prevalence in the Somali region (83.3%) and in the Afar region (74.7%) followed by Dire 

Dawa city (72.4%) and Harari region (66.7%) while the lowest percentage of children with 

anaemia in the Addis Ababa city (50%) followed by Benishangul (44.2%) and the Amhara region 

(42.7%). Hence, there appears to be some variation in the prevalence of anaemia among the region 

of Ethiopia (see Table 4.2). 

As shown in table 4.2, a slightly more prevalence of anaemia was observed in female children 

(57.9%) than male children (57.0%). Regarding on size of child at birth, the highest prevalence of 

anaemia was observed among children whose size at their birth is smaller than average (61.6%) as 

opposed to the lowest prevalence of anaemia was recorded from children whose size at their birth 

is the larger than averages and average level (57.3% and 55.1%) respectively.  

As observed in Table 4.2, the prevalence of anaemia among children U5 years also varies with 

their mother age groups. For instance, a higher proportion of anaemia was observed for children 
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whose mothers are under 15-24 year of age (63.1%), and the lowest proportion was found for 

children whose mother age group between 25 - 34 age (57.7%) followed by mother between 35-

49 age (52.3%). Hence, as the age of the mother increased the prevalence of anemia among 

children U5 years was decreased.    

From results found in Table 4.9, source of drinking water had also a significant association with 

anemia status among under five years children. The proportion of anemia status was also high for 

children who did not use improved water which is around (54.7%) and (58.4%) for those who used 

improved water respectively. The prevalence of anemia among children U5 years was 57.1% for 

children who lived with 0-3 U5 children in the household and 69.9% for children who lived with 

4-6 U5 children in the household.  

Table 4.2: The description of the socio-economic, demographic, and environmental factors of 

childhood anaemic status in the regional states of Ethiopia. 

             Anaemia status   

Variables Names Category Not Anaemic (%) Anaemic (%)  Total 

Region  Tigray 232(45.7) 276(54.3) 508 

Afar 20(25.3) 59(74.7) 79 

Amhara 890(57.3) 664(42.7) 1554 

Oromia  1205(34.8) 2257(65.2) 3462 

Somali 55(16.7) 274(83.3) 329 

Benishangul 48(55.8) 38(44.2) 86 

SNNPR 844(48.8) 886(51.2) 1730 

Gambela 8(44.4) 10(55.6) 18 

Harari 5(33.3) 10(66.7) 15 

Addis Ababa 72(50) 72(50) 144 

Dire Dawa 8(27.6) 21(72.4) 29 

Residence  Urban 396(50.2) 393(49.8) 789 

Rural 2989(41.7) 4174(58.3) 7163 

Gender of Child  Male  1769(43.0) 2346(57.0) 4115 

Female  1616(42.1) 2221(57.9) 3837 
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Mother occupation No  2426(41.7) 3393(58.3) 5819 

Yes  959(45.0) 1174(55.0) 2133 

Mother Education level No education 2226(41.8) 3105(58.2) 5331 

Primary 920(42.8) 1230(57.2) 2150 

Sec. and above 239(50.9) 231(49.1) 470 

Currently breastfeeding No 1220(48.6) 1292(51.4) 2512 

Yes 2166(39.8) 3275(60.2) 5441 

Taking iron pills, 

sprinkles/syrup 

No 3058(42.4) 4151(57.6) 7209 

Yes  327(44.0) 416(56.0) 743 

Fever in last two weeks No 2970(43.9) 3794(56.1) 6764 

Yes 415(34.9) 773(65.1) 1188 

Had diarrhea recently No 2995(43.2) 3941(56.8) 6936 

Yes 390(38.3) 627(61.7) 1017 

cough in last two weeks No 2716(43.2) 3572(56.8) 6288 

Yes 670(40.2) 995(59.8) 1665 

No. of child U5in HH 0-3 3320(42.9) 4416(57.1) 7736 

4-6 65(30.1) 151(69.9) 216 

Birth size of child   S. than average 777(38.4) 1244(61.6%) 2021 

Average 1511(44.9) 1851(55.1) 3362 

L. than average 1097(42.7) 1471(57.3) 2568 

Wealth Index Poor 1377(37.2) 2328(62.8) 3705 

Middle 797(46.3) 926(53.7) 1723 

Rich 1212(48.0) 1313(52.0) 2525 

Mother age 15-24 590(36.9) 1009(63.1) 1599 

25-34 1841(42.3) 2512(57.7) 4353 

35-49 955(47.7) 1046(52.3) 2001 

House Hold size 1-4 836(42.9) 1114(57.1) 1950 

5-8 2140(43.4) 2789(56.6) 4929 

9 and above 409(38.1) 664(61.9) 1073 

Husband occupation  Not Working 239(36.6) 414(63.4) 653 
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Working 3146(43.1) 4153(56.9) 7299 

Mother Anaemia level Not anaemic 2633(47.5) 2909(52.5) 5542 

Anaemic 752(31.2) 1658(68.8) 2410 

Types of toilet facility Not improved 1180(38.7) 1870(61.3%) 3050 

Improved 2205(45.0) 2697(55.0) 4902 

Sour. of drinking water Not Improved 2464(41.6) 3454(58.4) 5918 

Improved 922(45.3) 1113(54.7) 2035 

Husb. education level No education 1563(41.4) 2211(58.6) 3774 

Primary 1389(42.8) 1856(57.2) 3245 

Sec. and above 408(47.0) 460(53.0) 868 

Unknown 25(38.5) 40(61.5) 65 

4.2 Spatial Distribution of Childhood Anaemia in Ethiopia    

Of all the regions in the country, the Somalia regions recorded the highest prevalence of anemia 

in children (see Figure 4.2, Table 4.2), almost 83.3% of children in these regions were anaemic. 

The second highest prevalence was recorded in the Afar region,74.6%, followed by the Dire Dawa 

region, 72.40%. The lowest prevalence was recorded in the Amhara region, 42.7%. The result 

shows that the prevalence of anaemia varies from region to region.  Given this high prevalence 

between most of the regions, further investigation was needed to check that region that is correlated 

with that of neighboring regions contributing to childhood anaemia. 
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Figure 4.2: Spatial Distribution of Childhood Anaemia in Ethiopia 

4.3 Testing for Spatial Autocorrelation  

In this study, the distribution of childhood anemia across the country among children under 5 age 

was also investigated. To get a general insight into the spatial clustering of anaemia, a global spatial 

statistic was estimated using Moran’s I statistic and Geary C test statistic. This was done after 

establishing the number of anaemia cases in each of the clusters using the ArcGIS 10.3 version 

and the results are found in table 4.3 below.  

Table 4.3: Results of Global Moran’s I and Geary’s C statistics 

Assumption Coefficient Observed  Expected  Std dev p-value 

Normality Moran, I test   0.478  -0.100 2.960 0.002 

Normality Geary C test   0.471         1.000  1.644   0.050 

Randomization Moran, I test   0.478         -0.100  2.915   0.002 

Randomization Geary C test   0.471        1.000  1.789    0.037 

The test result showed the presence of significant global positive spatial autocorrelation for the 

prevalence of anaemia (I = 0.478, P-value <0.0015, and Geary c =0.4706, P-value < 005011). 

Based on the global Moran’s I statistic, Geary C test statistic result and P-values of the reported 
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Moran’s I and Geary’s C coefficients, we can reject the null hypothesis of no spatial auto-

correlation which indicating the existence of significant positive spatial autocorrelation 

(clustering). Both results suggest that there is spatial dependence in our data which needs to be 

further explained by including spatial dependency in our model.   

In order to visualize global spatial autocorrelation, we use also Moran’s scatter plot under the 

assumptions of normality (Figure 4.3).  The figure also shows that anaemia prevalence is spatially 

correlated with neighboring values. 

 

Figure 4.3: Global Moran’s I Scatter Plot for Anaemia prevalence 

4.4 Diagnosing Nonlinearity 

Scatterplot (partial-residual plots)   

Before we consider continuous independent variables in our model in linear form, we had checked 

their linearity on response variable using scatterplot especially partial-residual plots. Component-

plus-residual plots, also called partial-residual plots, are a simple graphical device that can be 

effective in detecting departures from linearity and detecting the need to transform a predictor.  

The plots in Figure 4.9 are for child age, Maternal age, and MBI, using child anaemia status as the 

response.  Both for child age and mother body mass index plots look nonlinear. The partial 

relationship of child anaemia to child age and BMI is simply tending to increase at the lower ages 
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and BMI and turning back down at the higher ages and BMI. Whereas for mother age it looks 

linear so we fit this variable in fixed effects (see Appendix A). 

4.5 Model-Based Data Analysis 

4.5.1 Model fit criterion for model comparison 

The table (table 4.4) provides the model fitted and the DIC values which used to select the best 

fitting model, the smaller the DIC value the better the fit. The results reveal that Model 3 which 

include both structured and unstructured spatial effects is the more preferred model, with the DIC 

value given by (DIC = 8563.32), where Model 1, Model 2, and Model 3 are Bayesian Generalized 

linear Model, Bayesian Semiparametric Model, and Bayesian Geo-additive Models respectively. 

Table 4.4: Summary of the model fit criterion for model comparison for all the fitted models. 

Models �̅� pD DIC 

Model1  8815.65  19.67 8854.97 

Model2  8783.91  33.68 8851.26 

Model3  8477.71 42.81 8563.32 

4.5.2 Results of Bayesian Geo-additive Analysis 

Starting with very simple models, we increase complexity to show what can be gained by more 

sophisticated approaches.  A flexible approach was adopted for such models that allows capturing 

of different types of covariates. One of interest was the incorporation of spatial random effects 

which allow for correlated and uncorrelated heterogeneity, significant effects of nonlinear and 

categorical covariates. Furthermore, these models should be best in terms of DIC too.  

4.5.3 Fixed effects   

The results based on Model 3 are more concerned to be presented and interpreted. The posterior 

odds ratio (POR) estimates and their corresponding 95% credible intervals (CI) are presented in 

Table 4.5. Results of this model revealed that that, most of the covariates such as mother anaemia 
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level, House Hold wealth index, type of toilet facility they used, mother education level, size of 

a child at birth and whether the child had a fever for the last two weeks has a significant effect on 

anaemic disease of childhood. 

The study revealed that the household wealth index has significant effects on childhood anaemia 

prevalence. The odds of being anaemic were steadily dropped as household wealth increased. 

Children from medium-income households were found to have 27.2% times lower odds of being 

anaemic compared to those from the poorest households (POR = 0.728, CI: 0.622, 0.859), while 

holding other variables in the model constant. The odds further dropped as the children in the 

richest households had 29.46% lower odds of being anaemic (POR = 0.7054, CI: 0.609, 0.826), 

while holding other variables in the model constant. This can be shown that a child born to a rich 

family is less likely to be anaemic compared to a child born to a poor family.  

The study also revealed that a significantly higher odds of being anaemic was observed for children 

living in households with not improved toilet facilities. Children living in households with 

improved toilet facilities had lower odds of being anaemic compared to those living in households 

with not improved toilet facilities (POR = 0.88; CI: 0.766, 0.997) while holding other variables in 

the model constant. Furthermore, children whose sizes were larger than averages at birth were 

found to have 18% times lower odds of being anaemic compared to those their size at birth was 

smaller than average (POR= 0.82; CI: 0.715, 0.937) while holding other variables in the model 

constant. This means that the risk of anaemia remains high for children whose size at birth was 

smaller than average than others. 

The study also revealed that fever was also found to be a significant predictor of childhood anemia. 

A child who had a fever in the last two weeks before the survey was found to have 25% times 

higher odds of being anaemic compared to those who did not have a fever in the two weeks before 

the survey (POR=1.25; CI: 1.077, 2.937) while holding other variables in the model constant. It 

can be deduced that a child who had a fever in the two weeks before the survey is more likely to 

be anaemic than a child who did not have a fever in the two weeks before the survey. 
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The study also revealed that the education levels of mothers were the most significantly associated 

with of childhood anemia. It was noted from the results that childhood anaemia was negatively 

affected among children born to an illiterate mother compared to that of children that are born to 

a literate mother. The odds of being anaemic was 19.5% times lower in children whose mothers 

had secondary and above education as compared to children whose mothers had no education 

(POR= 0.805; CI: 0.649, 0.996), while holding other variables in the model constant.   

The study also revealed that a mother’s anaemia status has also a significant effect on her child’s 

anaemia status. Children from anaemic mothers were found to have 58% times higher odds of 

being anaemic compared to those from non anaemic mothers (POR= 1.58; CI: 1.41, 1.763) while 

holding other variables in the model constant. This can be shown that a child born to an anaemic 

mother is more likely to be anemic than a child born to a non-anaemic mother. 
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Table 4.5: Posterior mean estimates of Bayesian geo-additive models 

 

 

Fixed effects Category Estimate Std. Error Median 95%CI 

(Intercept)  0.4221    0.1758  0.4251 (0.0622, 0.7715) 

Mother Anaemia       Not Anaemic(ref) 0.00    

Anaemic 0.4558 0.0596 0.4571 (0.3434, 0.5672) 

HH Wealth Index Poor(ref) 0.00    

Middle                                   -0.317       0.0817 -0.3171 (-0.4752, -0.152)                    

Rich -0.3490 0.0811 -0.3498 (-0.4966, -0.191) 

Toilet facility Not Improved (ref) 0.00    

Improved -0.1327 0.0676 -0.1308      (-0.2663, -0.0034)                   

Mother Education 

level 

No education(ref) 0.00    

Primary 0.0060 0.0667 0.0064    (-0.1221, 0.144) 

Second. and above                                    -0.2175 0.1154 -0.2151 (-0.433, -0.0035) 

  Child Birth Size S. than average(ref) 0.00    

Average -0.1248 0.0668 -0.2084 (-0.2545, 0.007) 

L. than averages -0.2005 0.0711 -0.1966 (-0.3356, -0.065) 

Had fever in the last 

2 weeks 

No(ref) 0.00    

Yes 0.2239 0.0770 0.2235 (0.0745,0.3771) 

Smooth terms variances: 

 Estimate Std. Error Median 95%CI 

Effects Nonlinear of Metrical covariates  

sx(Mother BMI)  0.0007 0.0005                                      0.0005 (0.0002.0.0020)   

sx(C. age of child in month) 0.0010 0.0008                 0.0007 (0.0002,0.0035)  

Spatial structured and unstructured Random effects variances 

sx (regions): mrf 0.3911 0.3623                                    0.3348       (0.0014,1.2762) 

sx(regions):re  0.1322 0.1713            0.0712                                                  (0.001, 0.6067)                                   
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4.7.4 Nonlinear Effects of child age and mother BMI on childhood anaemia 

From our analysis, some effects have an unknown nonlinear form (such as child’s age and mother’s 

BMI). These two variables have a nonlinear effect on the response variables. 

 

       Figure 4.4 Non-linear effects of child age in months on childhood anaemia. 

Note: red band (95% CI) and green band (80% CI). 

Abbreviation: CI, credible interval 

Each non-linear graph consists of a center line representing the posterior mean estimate bounded 

by 95% credible intervals (outer lines) and 80% credible intervals (inner lines). As shown in figure 

4.4 above, child age has significant nonlinear effects on childhood anaemia, as child age increase, 

its effects on child anaemia decrease, meaning that the risk of anaemia was found to be highest 

among children of younger age. The chance of having anaemia is much higher in children aged 

about 6 months to 13 months and then decreases after this month.  
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Figure 4.5 Non-linear effects of Mother Body mass index on childhood anaemia. 

Note: red band (95% CI and green band (80% CI). 

Abbreviation: CI, Credible Interval 

As shown in figure 4.5 above, the effect of maternal body mass index (which measures the 

nutritional status of mothers) on childhood anaemia, which produced a similar trend line on the 

Hb concentration value of their children. It reveals that mother body mass index below 19 

(underweight mother) produced increased childhood anaemia, then stabilizes in between 19 - 30, 

and decline of anaemia in children of maternal body mass index above 30 (overweight or obese 

mothers) 
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4.6.5 Geographical mapping of childhood anaemia (Spatial effects) 

 

 

Figure 4.6 Estimated posterior means of the unstructured spatial effect (top) and structured 

spatial effect (bottom) on the log-odds of anaemia. 
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Figure 4.7: Estimated posterior means of both structured and the unstructured spatial effect 

on the log-odds of anaemia 

From the estimated posterior means of the structured and unstructured spatial effects on the log-

odds of anaemia, the structured spatially correlated effect (0.3911) exceeds the unstructured effect 

(0.1322) which indicates that there is a spatial dependency in our data. From the map (fig 4.6 and 

fig 4.7), the blue region has a negative spatial effect and are therefore the north- western and 

northern parts of the country were associated with a lower odds of childhood anaemia and the red 

region have a positive spatial effect and are therefore the eastern and north-eastern parts of the 

country were associated with a higher odds of childhood anaemia.  

The structured spatial effect, which ranged from -0.55 to 0.55, was high in comparison to the 

unstructured spatial effect, which ranged from -0.33 to 0.33. Furthermore, the effects of spatially 

correlated factors contributing to childhood anaemia in all the regions were statistically significant. 

Therefore, failure to take into consideration the posterior uncertainty in the spatial location would 

invariably lead to an overestimation of the precision in predicting childhood anaemia risks in the 

unsampled area. The spatial effects could therefore be interpreted as representing the cumulative 

effect of unidentified or unmeasured additional covariates that may reflect impacts of 

environmental and socio-cultural factors.  
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4.6.6Assessment of Model Convergence 

There are several methods to check for convergence. From this, we used the Autocorrelation Plot. 

Auto-correlation plot produces lag-autocorrelations for the monitored parameters within each 

chain. In Markov chain auto-correlation analysis, it is necessary to identify lags in the series to 

calculate the long-run trends in correlation, and in particular whether they decrease with increasing 

lags. In Figure 4.8, the auto-correlations for all lags closer to zero as lag increases. So, the figure 

has evidence of convergence. Not all auto correlation plots are presented here; the rest plots can 

be found in appendices (see Appendix A). 
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Figure 4.8: Convergence of autocorrelation plots for coefficients of child who had fever in the 

last two weeks, size of child at birth and regions 

4.6.7 Discussion of the Results 

The objective of this research was also to apply suitable statistical models that are used in assessing 

influential factors and geographical variation of childhood anaemia. One of the advantages of this 

research was to incorporates both the spatial variability and the nonlinear relationships between 

covariates and response variables by using the recent model (STAR) which provides valid and 

realistic statistical inference. 

Bayesian Geo-additive models have highlighted specific socioeconomic and demographic risk 

factors associated with anaemia among children from Ethiopia. In particular, the results have 

shown that household wealth index, types of toilet facilities, size of child at birth, the child who 

had a fever in the two weeks before the survey, education levels of mothers and mother’s anaemia 

status are strongly associated with anaemia among children under five in Ethiopia. 

However, the relationship which was suggested in model1 and model2 analysis between anaemia 

and factors such as Mother’s age, Mother’s employment status, Husband/partner’s education 

level, Number of children U5 years in the household, household size, mother occupation is not 

significant anymore after accounting for the effects of spatial effects in model 3. The spatial 

Lag

AC
F

1 100 200 300 400

-0.
2

0.4
1.0

Variance autocorrelation of term sx(regions):re

Lag

AC
F

1 100 200 300 400

-0.
2

0.4
1.0

Variance autocorrelation of term sx(regions):mrf

Lag

AC
F

1 100 200 300 400

-0.
2

0.4
1.0

Variance autocorrelation of term sx(regions):total



 

61 | P a g e  

 

component in model 3 according to Osei and Duker [112] helped to avoid underestimation model 

parameter standard errors which could result the insignificance of the covariates.   

The descriptive results of this study indicate that the prevalence of childhood anaemia was found 

to be 57.4% with varied among regions of Ethiopia with the highest proportion of childhood 

anaemia was observed at Somali (83.3%) followed by Afar (74.7%) while the lowest percentage 

of the prevalence of childhood anaemia in the Benishangul region (44.2%) and the Amhara region 

(42.7%). The results of our study were relatively consistent with the 2016 Edhs report of the 

national prevalence of childhood anaemia in Ethiopia (57%) and the result was slightly higher than 

2011 and 2005 EDHS reports, which were 44% and 54%, respectively [29]. The results of this 

study also higher than studies done in Kilte Awulaelo Woreda, Northern Ethiopia about 37.3% of 

children were anaemic[113]. 

The current study revealed that maternal anaemia status is an important risk factor of anaemia 

among children. Children of anaemic mothers are more likely to have anaemia. The possible reason 

might be related to the shared socio-economic status of the family which may affect both children 

and their mothers, and leading to anemia. This result was consistent with other findings of a study 

conducted in Uganda that children from anaemic mothers are associated with two folds increased 

risk of anaemia compared with those whose mothers are not anaemic [50]. Similar results were 

found in a study undertaken in Ethiopia on those children of mothers who had anaemia had 1.53 

times greater odds of being at higher levels of anaemia compared to the children from mothers 

who had no anaemia [114]. 

The results of this study also found that type of toilet facility was an important factor for anemia 

levels of under five-year children. The risk was lower odds of being anaemic was suggested for 

children living in households with improved toilet facilities This might be because that poor 

sanitation is a known risk factor of the intestinal parasite hookworm which causes anaemia in 

infected children. This finding agreed with studies conducted in Kenya, Malawi, Tanzania and 

Uganda  [47] showed that a significantly lower odds of anaemia was suggested for children living 

in households with improved toilet facilities (PIT latrine and flush toilet).  
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The results of this study also found that wealth index was significantly associated with anaemia in 

under five-year children. Children from the richer household had a significantly lower risk of 

anaemia compared to those from the poorer household. This is due to wealthier families are more 

likely to meet the expense of improved health services and afford suitable housing amenities which 

may prevent the increase of anaemia. Gebremedhin et al. [113] used multivariate logistic 

regression analyses to identify factors related to anaemia based on a cross-sectional study, higher 

prevalence of anaemia among the children living in a household with lower monthly income 

compared to those with higher income which is consistent with the results of this study. The results 

of this study are also consistent with what Stephen [51]  noted that lower wealth index status was 

allied with the increase in the danger of development of anaemia among children under age 5 years 

in Ghana. 

Our findings reveal that hat educational level of the mother was one of the most core factors 

associated with childhood anaemia. The results of this study found that the higher a mother’s 

education, the lesser chance of their child being infected with anaemia. The reason was educated 

mothers are better informed on the knowledge and use of health facilities, appropriate infant and 

young child feeding practices, and better sanitation practice. This result is in line with a study 

conducted in some parts of Ethiopia  [18, 48, 113], where the risk of having anaemia for children 

from mothers with no formal education much higher than those children from mothers with 

secondary and above education level. Also, this study is consistent with studies conducted in 

Kenya [47] revealed that the risk of anaemia was 1.5 times more in children whose mothers had 

no education as compared to children whose mothers had post-secondary education among 

children U5 in Kenya. 

Furthermore, the results of this study also suggested that the size of a child at birth is significantly 

associated with the risk of anaemia in under-five children. This might be due to children with low 

birth weight have an increased exposure to infections and diseases. This is consistent with the 

result of a study conducted in Ghana [4], which identified that the prevalence was lower in children 

with a larger birth weight than those with a small birth weight. 
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Although every fever is not merely due to malaria, fever has been used as a proxy for malaria. 

Malaria is argued to be strongly related to anaemia and destroy red blood cells and reduce 

haemoglobin levels leading to anaemia[115]. The findings of this study also revealed that fever 

was found to be a significant predictor of childhood anaemia. The results of this study found that 

a child who had a fever in the two weeks before the survey is more likely to be anaemic than those 

who didn’t have a fever.  This is due to fever is a common symptom of acute and chronic diseases 

that have been associated with lower hemoglobin levels as well as anemia. This result was 

consistent with another finding of a study conducted by Ngwira and Kazembe [43] in Malawi, 

which revealed that fever is associated with higher levels of childhood anemia, severe anaemia 

compared to having no fever. Also, our finding was consistent with another study conducted in 

Rwanda that revealed that a child having a fever increases the likelihood of childhood anaemia 

[45].  

With regards to age, younger children (6 months to 13 months) are more likely to be anaemic 

compared with those children aged between 14- and 59-month years old. Reasons for being 

anaemia is more prevalent within the ages of 6 to 13 months due to the reduction of haemoglobin 

that was available during birth and their antibodies could still be weak below the months of 14 

years. The other factors which might expose younger children to anaemia are the lack of proper 

dietary food and lack of child health knowledge. The results are also in line with a study that 

suggested that the peak prevalence of anaemia occurs around 6 to 10 months of age after that 

prevalence of anaemia decline[14]. Similar results were found in studies looking at risk factors 

associated with other anaemia-related illnesses which suggest that odds of prevalence of childhood 

anaemia were increased at their young age[40]. 

The finding of this study also revealed that the body mass index of the mother is the main factor 

associated with childhood anaemia.  The results indicate that a mother's body mass index of below 

around 19 increases the risk of childhood anaemia. This is due to mother who exhibits a very low 

BMI, indicating their poor nourishment, are likely to have poorly nourished children and mother’s 

nutritional status which is assessed using BMI affects her ability to successfully carry, deliver, and 

care for her children. The result of this study was consistent with the finding of Roba et al., [49] 

conducted on prevalence of stunting and anaemia among children 6-23 months of age in two 
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agroecological zones of rural Ethiopia, show that as mothers’ BMI increased the likelihood of the 

children being anaemic decreased.   

Bayesian Geo-additive model allows the inclusion of generic types of covariates, such as nonlinear 

covariates and which incorporate both the spatially structured and spatially unstructured random 

effects. In our study, we have checked the spatial dependency in our data using Global Moran’s I 

and Geary C statistic value before analysis of data using Bayesian Geo-additive models and it was 

shown that a significant positive spatial autocorrelation (regional variation) of childhood anemia 

in Ethiopia. The finding of this study showed that the eastern and north-eastern parts of the country 

mainly Somali and Afar regions are associated with a higher risk of anaemia whereas low anaemia 

rate areas were noted in the north western and northern parts of Ethiopia. This is because of living 

standards, socioeconomic status, cultural norms, and feeding habits among regions. Also, the 

regional nutritional disparities may explain the spatial heterogeneity of childhood anaemia in 

Ethiopia.  
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CHAPTER FIVE 

5 Conclusion and Recommendation 

5.1 Conclusion 

 The findings showed that more than half of the study population were found to be anaemic with 

57.4%. The trend was increased to 57.4% from 44% in 2011 and 54% in 2005. 

Based on the DIC model comparison, the most appropriate statistical model among other different 

models is the Geo-additive model. Bayesian Geo-additive models are good with their flexibility to 

allow the inclusion of generic types of covariates, such as nonlinear covariates and which 

incorporate both the spatially structured and spatially unstructured random effects were better 

fitting models of our data. Especially in targeted interventions, maps produced from our model can 

be of great importance to policy makers and the government for interventions and resource 

allocations. The inclusion of nonlinear effects of metrical covariate further improved the results.  

The risk factors found to be significantly associated with childhood anemia were, household 

wealth index, types of toilet facilities, size of child at birth, a child who had a fever in the two 

weeks before the survey, education levels of mothers, and mother’s anemia status. Odds of being 

anemic were higher for children from the poorest households, those living in households with not 

improved toilet facilities, whose mothers had no education and those their size at birth were smaller 

than average. The non-linear function showed observable relationships with anaemia status and 

continuous covariates. It is found that children are at high risk of anaemia during the young age of 

their life and when their mother's body mass index is in underweight mother.    

The study also shows that there is a variation in the spatial distribution of childhood anaemia in 

the Ethiopia region and the prevalence was high in the eastern and north-eastern parts of the 

country, while low prevalence areas of childhood anaemia were noted in the north western and 

northern parts of Ethiopia.  
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 5.2 Recommendation 

Despite the limitation discussed below, we feel that this study fills the gap in knowledge of 

geographical variation, effects of metrical covariates, and fixed effects on childhood anaemia. 

Therefore, the following recommendations arise from the findings of this study. These are: - 

• The concerned body, government, and non-governments may use anaemia prevalence 

map as a basis for interventions and resource allocations. Moreover, it can serve as a tool 

for getting funds to carry out more research in areas of high risk and over a large 

geographical area.   

• The survey might be conducted across the district for further detailed analysis of the health 

facility factors associated with childhood anaemia. 

• Policy makers should focus on activities that can improve household income to ensure 

sufficient food production.  

• The education sector should focus on effective public education programs on child health, 

the dangers of anaemia, and appropriate feeding practices to target pregnant women. 

• The health sector should focus on the improvement of clinical and health care 

infrastructure and services such as controlling infectious diseases which could also help in 

addressing the issue of childhood anaemia. 

• Future research may consider other prior distributions for the spatial random effects, such 

as the two-dimensional P spline. Also, the Bayesian approach for modeling the different 

nature of anaemia response like ordinal response would be of interest for future research.   

5.3 Limitation of the study  

The following are some of the limitations of the study:  

• Some limitations are related to the use of secondary data. Apart from the factors that were 

found to be associated with childhood anaemia in this study, there are a variety of other 

factors that may increase the risk of anaemia in children, but they were not included in this 

analysis due to lack of information on them, such variables include: like current status/ 
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history of infectious disease particularly those which have a potential role in the risk of 

anaemia such as malaria and HIV.   

• Another limitation of this research was the administration area level which ends at the 

regional level. It limits us not to know the hotspot area at district level from that region and 

compare the area levels such as district and regional levels, thus to focus on those areas in 

a more reliable manner and also advice policymakers to focus their interventions on such 

relevant areas. 
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Appendices 

Table 4.6: Summary of Generalized linear models for binary logistic models 

Fixed effects  Categories Estimate Std. Error z value Pr(>|z|) 

(Intercept)  2.035  0.1955 10.410 < 2e-16 

Mother Anaemia 

                                             

Not Anaemic(ref) 

        Anaemic 

0.000 

0.6667 

 

0.0561 

 

11.877 

 

< 2e-16 

Wealth index                                   

                                                 

Poor(ref) 

             Middle 

                Rich      

0.000 

-0.4348  

-0.349  

 

0.0789  

0.0754  

 

-5.507 

-4.628 

 

3.64e-08 

3.70e-06 

Mother age                                                                             15-24 (ref) 

25-34 

35-49                 

0.00 

-0.0616  

-0.285  

 

0.0728 

0.0886 

 

-0.846 

-3.218 

 

0.3974 

0.0012 

Toilet facility                                                 Not Improv (ref) 

         Improved   

0.0000 

-0.2084 

 

0.0625  

 

-3.332 

 

0.0008  

Mother education level 

                              

No educ(ref)  

Primary    

Sec. and above                                    

0.00 

-0.1089  

-0.3114                                                    

 

0.0652 

0.1013  

 

-1.670 

-3.073 

 

0.0949 

0.0021  

Source of drinking water                                                    Not improv.(ref) 

      Improved       

0.000 

0.1514 

 

0.0637 

 

2.378 

 

0.0174  

No of child U5 in the HH            0-3(ref) 

4-6 

0.00 

0.534 

 

0.1770  

 

3.016 

 

0.0026 

Child size at birth 

                                      

S. than aver.(ref) 

Average  

L. than averages 

0.00 

-0.1576 

-0.1666  

 

0.0643 

0.0691 

 

-2.451 

-2.410 

 

0.0142  

0.0159  

Household   size 

                                                   

                                            

                1-4(ref) 

                      5-8 

         9 and above 

0.000 

0.1869 

0.3375  

 

0.0675 

0.0998 

 

2.767 

3.382 

 

0.0056  

0.0007  
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Fever in last two weeks                                               No(ref) 

                      Yes 

0.000 

0.2048 

 

0.0755 

 

2.711 

 

0.0067  

C. Breast Feeding status                                            No(ref) 

                      Yes 

0.000 

-0.1264 

 

0.0566 

 

-2.233 

 

0.0255 

Mother Occupation                                            No(ref) 

              Yes 

0.000 

-0.1786  

 

0.0583  

 

-3.060 

 

0.002  

Table 4.7: Posterior mean estimates for the Bayesian Generalized linear model. 

Fixed effects   Estimate Std. Error Median 95%CI 

(Intercept)  2.0526   0.1959   2.0555   (1.6648, 2.4388) 

Mother Anaemia 

                                   

Not Anaemic(ref) 

Anaemic 

0.000 

0.6680   

 

0.0558   

 

0.6683   

 

(0.5606, 0.7808) 

HH Wealth index 

                                            

                                                         

Poor(ref) 

             Middle 

                Rich      

0.000 

-0.4312    

 -0.3480   

 

0.0790  

0.0760 

 

-0.4321  

-0.3490 

 

(-0.5766 -,0.2720) 

(-0.4950, -0.1905)                     

Mother age 

                                            

                                              

15-24 (ref) 

25-34 

35-49     

0.00 

-0.0608    

-0.2810   

 

 0.0696 

0.0875 

 

-0.0620    

-0.2810 

 

(-0.1978, 0.0760)   

(-0.4509, -0.1066)          

Toilet   facility                              Not Improv. (ref) 

Improved   

0.0000 

-0.2139    

 

0.0632   

 

-0.2136   

 

 (-0.3357, -0.0904)                   

Mother education  

                          

No educ(ref) 

    Primary   

Sec. and above  

0.00 

-0.1073   

 -0.3115   

  

0.0644 

0.0981 

 

-0.1064   

-0.3112 

 

 (-0.2301 ,0.0198)                               

(-0.5153, -0.1222) 

Drinking water                    Not improv.(ref) 

Improved   

0.000 

0.1549    

 

 0.0643   

 

0.1536    

 

(0.0332, 0.2853)                                      

No. children U5 HH             0-3(ref) 

                4-6 

0.00 

0.5417    

 

0.1751    

 

0.5440    

 

(0.1978, 0.8666) 

Child birth size             

                                         

S. than aver(ref) 

Average 

L. than average 

0.00 

-0.1600   

-0.1676   

 

0.0622 

0.0670 

 

-0.1589 

-0.1694 

 

(-0.2845, -0.0302) 

(-0.2991, -0.0324) 
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Household   size 

                                           

                                    

1-4(ref) 

5-8 

9 and above 

0.000 

0.1860    

0.3345   

 

0.0680    

0.0958   

 

0.1870   

0.3329   

 

(0.0514, 0.3191) 

(0.1541, 0.5181) 

Fever in last 2 weeks                               No(ref) 

                    Yes 

0.000 

0.2057    

 

0.0741   

 

0.2093   

 

(0.0642,0.3566) 

C. breast feeding sta.                            No(ref) 

                 Yes 

0.000 

-0.1284   

 

0.0571 

 

-0.1267 

 

(-0.2422 -0.0185) 

Mother Occupation                         No(ref) 

           Yes 

0.000 

-0.1797   

 

0.0575 

 

-0.1801 

 

(-0.2936, -0.0689) 

Table 4.8: Posterior mean estimates for Bayesian semi-parametric model  

Fixed effects  Categories Estimate Std. Error Median 95%CI 

Intercept  0.6697       0.1341       0.6702    (0.4027,0.9301) 

Mother Anaemia 

                                   

Not Anaemic(ref) 

Anaemic 

0.000 

   0.6728   

 

0.0536      

 

0.6740      

 

(0.5597, 0.7761) 

Wealth index 

                                            

                                              

Poor(ref) 

               Middle 

                 Rich      

0.000 

-0.4322    

-0.3621     

 

0.0808 

0.0757 

 

 -0.4327 

-0.3614 

 

(-0.5919, -0.2695) 

(-0.5107, -0.2152)                     

Mother age 

                                                                     

    15-24 (ref) 

    25-34 

    35-49   

0.00 

-0.0694   

-0.2915   

 

0.0718 

0.0862 

 

-0.0704   

-0.2913 

 

(-0.2127 ,0.0744) 

(-0.4577, -0.1221) 

Toilet facility                              Not Improv. (ref) 

Improved 

0.0000 

  -0.1987    

  

0.0673 

 

-0.1964     

 

 (-0.3304, -0.0724)                    

Mother education level 

                          

No educ.(ref)  

Primary    

Second.and above 

0.00 

  -0.1047    

-0.3480   

  

 0.0669 

0.1049 

 

 -0.1038   

-0.3458 

 

(-0.2291,0.0332)    

(-0.5458, -0.1363) 

Sour. of drinking water                    Not improv.(ref) 

Improved   

0.000 

0.1318       

 

 0.0621      

 

0.1329       

 

(0.0077, 0.2488)                                     
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No. child U5 in the HH                             0-3(ref) 

                  4-6 

0.00 

0.5651       

 

0.1881       

 

0.5669       

 

(0.1820 ,0.9181)  

Size of child at birth                                              S. than aver. (ref) 

Average 

L. than averages 

0.00 

 -0.1597    

-0.1700   

 

0.0624 

0.0686 

 

-0.1601 

-0.1662 

 

(-0.2873, -0.0408) 

(-0.3040, -0.0316) 

Household   size 

                                           

                                      

1-4(ref) 

              5-8 

       9 and above 

0.000 

0.1868   

0.3195   

 

0.0656   

0.1023   

 

0.1878   

0.3202   

 

(0.0562 ,0.3160) 

(0.1122, 0.5129) 

Fever in last two weeks                               No(ref) 

                     Yes 

0.000 

    0.2067   

 

   0.0766   

 

0.2073      

 

(0.0622, 0.3519) 

Currently breast 

Feeding status                              

          No (ref) 

                Yes 

0.000 

 -0.1353     

 

0.0565   

 

-0.1362   

 

( -0.2421, -0.0195) 

Mother Occupation                            No (ref) 

     Yes 

0.000 

-0.1725      

 

0.0595   

 

 -0.1726 

 

( -0.2979 -0.0550) 

Smooth terms variances of non-linear Metrical covariates  

 Estimate Sd                                   Median  95% CI 

sx(Mother BMI) 0.0007 0.0006                         0.0005   (0.0002,0.0021) 

sx(Current age of child in month) 0.0010 0.0008    0.0008  (0.0002,0.0031) 

Table 4.9: Association between childhood anaemia and socio-economic, demographic and 

environmental factors. 

Variable Names  Pearson’s Chi-squared  p-value 

Region  364.240a .000 

Residence  20.815a .000 

Gender of Child  .619a .432 

Mother occupation 6.823a .009 

Mother Education level 14.672a .001 

Currently breastfeeding 53.917a .000 

Taking iron pills, sprinkles/syrup .698a .403 
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Fever in last two weeks 33.304a .000 

Had diarrhea recently 8.472a .004 

cough in last two weeks 4.696a .030 

No. of child U5in HH 14.134a .000 

Birth size of child   21.827a .000 

Wealth Index 84.284a .000 

Mother age 42.936a .000 

House Hold size 10.219a .006 

Husband occupation  10.363a .001 

Mother Anaemia level 182.683a .000 

Types of toilet facility 30.457a .000 

Sour. of drinking water 8.349a .004 

Husb. education level 9.563a .023 
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Appendix A 

  

 

Figure 4.9: Component-plus-residual plot (partial-residual plots) for child age in month, Mothe 

age, and Mother Body Mass Index 
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Figure 4.10: Autocorrelation plot of convergence check. 
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