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ABSTRACT 

Climate change is a global concern as one of the most challenging and threatening issues of the 

21st century to the world devastating natural hazards, which can significantly damage human lives 

and properties. This study examined the Impact of Climate change on Flood frequency in the 

Guder watershed in upper Abay river basin of Ethiopia. For the future, CORDEX-Africa data 

output of three RCMs under RCP 4.5 and RCP 8.5 climate scenarios were predicted for two 

horizons time (2041-2070) and (2071-2100) as the mid-term and the long-term respectively with 

a baseline period of (1971-2000). The three RCMs model performances were evaluated in terms 

of BIAS, RMSE and R2 evaluation criteria, how the RCMs perform in simulating the rainfall. In 

terms of BIAS, and RMSE the RCA4 model performed best whereas the CCLM4-8 model 

performed poorest. The biases of climate variables were removed by Delta change and Variance 

Scaling for precipitation and temperature respectively. Non-parametric Mann-Kendall test was 

carried out to detect trends of observed and future projected climate variables. The result of MK 

test shows; the future precipitation shows increase trend. HEC-HMS Model was used to simulate 

future daily stream flow data in both time horizons to checking model performance. The R2 and 

Nash- Sutcliffe Efficiency (NSE) values for the Watershed were 0.76 and 0.73 for calibration and 

0.79 and 0.76 for the validation respectively shows good performance of the model.  Flood 

frequency analysis considering the GEV distribution, AM data series, and the Maximum likelihood 

method for parameter estimation was selected based on goodness of fit. The future flood in 

different time horizons under dominant RCP’s will expected to increase for 2, 5, 10, 25, 50, 100, 

200 and 1000 return periods. The quantile estimated from observed and simulated discharge for 

three RCMs in both terms of Guder watershed indicated that RACMO22T for both terms of 

RCP4.5 and RCP8.5 revealed high quantile estimates.  In the future, the change of flood 

magnitude for CCLM4-8 and RACMO22T in AM series by GEV show increasing in all return 

periods under RCP4.5 and RCP8.5 of both terms by 1.2 %and 1.4% respectively. But 

RCA4_RCP8.5 mid-term of return period shows decrease with magnitude of -0.3% while 

RCA4_RCP4.5 long-term is increased. The magnitude change of analysis shows increasing future 

Flood frequency in dominant RCP scenarios for both mid-term and long-term periods.  

Keywords: Climate Change; CORDEX; Guder Watershed, HEC-HMS; RCMs; Flood frequency 
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1. INTRODUCTION 

1.1. Background 

Climate change is a global concern as one of the biggest challenges of the 21st century to the whole 

world will face cause enormous suffering economic and catastrophic environmental damage 

throughout the world (Yanjuan Wu et al., 2021). The result is increased variability in rainfall 

intensity in the future, leading to more frequent flooding a substantial loss of lives and it affects 

many aspects of (Ye Bai et al., 2019). Climate change is the variation in the statistical distribution 

of average weather conditions over a prolonged period and statistically significant change of 

climate elements, such as precipitation, temperature, and pressure sustained over several decades 

or longer in any region of the world (Ibe Go & Amikuzuno J, 2019). Thus, Climate change will 

result in global warming leads to many changes in climatic conditions which cause extreme 

weather events like floods and droughts to become more frequent & severe (Ahmad I. et al., 2019). 

Global warming is one of the most immediate caused by anthropogenic increases of greenhouse 

gases concentrations in the atmosphere is associated with climate change around the world          

(Maikel et al., 2020),would be the changes in the local and regional water availability,  extreme 

weather events since the climate system is interactive with hydrological cycle (Ibe Go & 

Amikuzuno J, 2019). The hydrological regime change can induce the acceleration of water the 

cycle, which can consequently affect the frequency and intensity of future storm events. The entire 

globe has been experiencing surface warming and the evidence for this warming comes from 

multiple climate system (Ionela Gabriela Bucse et al., 2019). 

Greenhouse gases have played a great role in changing the climate change at global as well as 

regional level causes subsequent global warming and changes the Earth’s hydrologic cycle in 

multiple ways (Shrestha S & Sharma S, 2021). The Earth warming and as global temperatures 

increase the hydrological cycle is becoming more vigorous (Mahmood Azari et al., 2016)and 

global average temperature would rise between 1.4 and 5.8°C by 2100 with the doubling of the 

CO2 concentration in the atmosphere which consequence of rising global temperature (Abeba et 

al., 2017). This is expected to have a potential impact on level rise, change in precipitation pattern, 

and change in other different socio-economic sectors (IPCC, 2018).   
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In the 19th century, progress in science and technology led to the Industrial Revolution. Starting 

in Great-Britain, industrialization spread first to Europe and then worldwide. Alongside expansion 

in the industry, transportation, and agriculture, the global population grew rapidly due to progress 

in urban growth, hygiene and medicine. Together, these factors led to a rapid increase in fossil fuel 

consumption, and consequently, global greenhouse gas emission and water resource related 

problems will be of utmost significance throughout the next decades (IPCC Special Report of 

Global Warming, 2018). 

Today, the environmental issue become the biggest concern of mankind because of the increasing 

of the concentration of greenhouse gas in the atmospheric and the climate change of the earth and 

recently at global scale temperature is increasing probably cause changes in the region’s weather 

patterns hydrological cycle (Muhammad Shahid Iqbal, 2018). Under the effect of global warming 

and climate change, there will be more water vapor in the atmosphere, increased capacity of air to 

accommodate rainfall intensities, intensified hydrological cycle, resulting in increasing the 

frequency and cause future extreme storm events to occur more frequently (Singh R. et al., 2016). 

Climate change is expected to amplify existing stresses on water availability, agriculture and will 

affect public health (Rangecroft al et., 2018) and manifests itself on different time-scales: through 

changes like single, short-lived extreme weather events, hurricanes, and through incremental 

changes that build up over decades, such as sea level rise. These can interact and reinforce one 

another of extensive flooding due to a storm surge in addition to long-term sea level rise. The 

intensification of the global water cycle generally causes dry areas to become drier due to increased 

evaporation and wet areas to become wetter (IPCC Special Report of Global Warming, 2018). 

Africa is highly vulnerable continent expose to impacts of climate change has an extensive effect 

on already daunting challenges facing sustainable development, especially in Sub-Saharan 

Africa (Ibe Go & Amikuzuno J, 2019) and on water resources in particular of high significance 

due to the dependence on agriculture as well as their poor financial, technical, and institutional 

capacity to adapt (Oladayo N.A. and Jonathan T., 2017). Ethiopia is often cited as one of the most 

vulnerable and with the least capacity to respond and adapt. The direct impact of climate change 

can be a varied and changing pattern of water resources availability, influence water supply system, 

power generation, and hydrological extreme events such as floods frequency and the occurrence 

will lead to severe water shortages or flooding (Belay & Getaneh, 2016). 
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For a country like Ethiopia, which is vulnerable to climate change and the unpredictability of 

climate variability is imperative to implement coordinated adaptation measures (Ethiopia’s 

Climate Resilient Green Economy, NAP-ETH, 2019).The Impact may be worse for developing 

countries like Ethiopia because their economies are strongly dependent on basic forms of natural 

resources mainly on agriculture and their economic structure is less flexible to adjust to such 

drastic changes. Agriculture is one of the sectors, which is sensitive to climate change of global 

warming, most farmers make low crop yields due to the incidents of extreme weather conditions 

such as high fluctuating rainfall patterns, flooding, droughts, high temperature, and other 

disparaging weather conditions (Ibe Go & Amikuzuno J, 2019).  

Climate change affects multiple deleterious consequences in all regions around the world. The 

negative effects of climate change on water systems aggravate the impact of other changes 

expected by specialists such as population growth, changing economic activity, changing land use 

and urbanization expansion (Fikru et al, 2018). Besides the impact on water availability, climate 

change also affects the operation of existing water infrastructure (hydropower, hydraulic structures 

for flood defenses, drainage and irrigation systems) as well as water management practice at local 

and regional scales under changing climate is a major challenge (M. Caian et.al., 2021). 

Generally, the impacts of climate change on water resource availability and the regime of 

hydrologic extremes have will be alterations in major climate variables changes in stream flow, 

Flood frequency, and timing of extreme events are one of the most significant consequences of 

climate change. It is expected that future climate change may exacerbate the level of water stress 

or increase the water resource across the basin and it is therefore important to assess and manage 

the potential effects of such changes in the Guder watershed. 

1.2. Statement of the Problems 

Abay River Basin is critically significant in Ethiopia in terms of large population coverage, 

massive resources and high potential developments of different projects. One of the basin which 

has been affected by climate change, as well as catchment characteristics alteration due to the 

natural or anthropogenic activities, which may lead to extreme event such as flood (Shimelis, 

2017). Accordingly, the number of studies that were conducted on the Guder Watershed has the 

Climate change impact on flow volume was analyzed on a monthly, seasonal and annual basis. 

The response of the water resources of the river catchment to the scenarios of projected climate 
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change an annual and seasonal increase in inflow volume in the future periods for the next 90 years 

up to 35% may be an average (Fikru et al., 2018).The projected increase in annual Potential 

Evapotranspiration in the sub-basin will vary on an annual average in the catchment will also 

increase up to 25% (Fikru et al., 2018). The incidence of severe precipitation promotes increased 

amounts of surface runoff causing a higher flood frequency (Joonghyeok Hoe, 2018). 

Climate-driven changes in flood frequency exhibit a huge complexity that depends on the 

generating mechanisms. Changes in Earth's climate system can disrupt the delicate balance of 

hydrologic cycle and can eventually lead to increased occurrence of extreme events such runoff, 

increases in the frequency and intensity of heavy rainfall would contribute to increases in rain-

generated local floods, and spring peak flows fed rivers are expected to flood magnitudes are rise. 

Extreme rainfall events and the resulting floods usually could cause significant damage to 

agriculture, causing huge economic losses (C. Hu, et al, 2019) and ecology, infrastructure, loss of 

lives and negative impact on environmental issues (Biniyam Y. & Abdella K., 2017). 

But in the past finding does not consider the impact of climate change that has on the flood 

frequency in the Guder Watershed. The impact of climate change is expected to increase the 

challenges for water and flood management in the 21st century. The frequency and magnitude of 

hydrological extreme events caused by rising temperatures and heavy rainfall such as floods and 

drought are on the rise and are expected to continue to increase as a consequence of climate change 

through the world (Dawit T. G & Hatim O. S, 2021). Therefore, the potential impacts of such 

variations in the future climate need to be taken into consideration by policy and decision-makers 

when managing water resources and making plans for the future. It is extremely important to 

conduct a research on the impacts of climate change on hydrological regimes so that people and 

society can foresee and respond to the tentative future challenges either by mitigating the worst 

condition that likely to happen in the future or at least be well prepared and resilient to face the 

possible challenges. Potential future increases in flooding due to climate change should be taken 

into account when designing flood protection devices or planning new infrastructure or 

subdivisions (A.L. Kay et al., 2021). 
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1.3. Objectives 

1.3.1. General Objective 

The general objective of this study is to evaluate the impact of climate changes on flood frequency 

of Guder Watershed  

 1.3.2. Specific Objective 

1. To assess the future trends climatic variables of rainfall and temperature in Guder watershed   

2. To evaluate the performance of regional climate model simulations over study area  

3. To analyze the impact of climate change on the future flood frequency and magnitude in the 

study area.  

1.4. Research Questions  

This study will address the following research questions: 

1. What will be the trends of climate variables in the future in Guder watershed? 

2. Which CORDEX-Regional Climate Model Performance is best over the Study area? 

3. Is that the future climate change impact on the flood frequency over the study area?  

1.5. Significance of the study 

This study is expected to become valuable on the prediction of flood frequency under the changing 

climate for various return periods provides important and valuable information for the proper 

management and planning of water resources, management of flood disasters or Flood risk 

estimation, economic evaluation of flood control projects, design of water resources management 

options on the study area. Therefore, the information will contribute to future planning as well as 

managing the current water resource use in an adaptive way and the effect of climate change on 

extreme flood events. In addition, it will use as an input for anyone who likes to work and avoid 

or minimize the adverse impact of climate change on flood frequency of Guder watershed. 

This study analyzed the flood flow, generated the future stream flow for the projected climate by 

using a selected hydrological model, and quantified the impact of climate change on flood 

frequency over Guder catchment. Hence, it may enable the government and NGOs to recognize 

the impact of climate change and work together towards finding lasting solutions that will help to 

reduce the risk of extreme flood events in the study area. And also, facilitate various policy 
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decision makers and stakeholders while deciding mitigation and adaptation strategies ahead of 

time, and any further investigation that will undertake on the Guder Watershed. 

1.6. Scope of the study 

The domain of the study is the Guder Watershed, which is a sub-basin of the upper Abay basin 

located in the Oromia Region, Northwest of Ethiopia. The downscaled regional climate data from 

the HadGEM2-ES output of CORDEX-Africa with recently developed RCPs (RCP 4.5 and RCP 

8.5) scenarios were used to indicate future projections in mid-term (2041-2070) and long-term 

(2071-2100) two periods with respect to the baseline period (1971-2000). The HEC-HMS model 

was applied to simulate future streamflow of the basin for both terms. Further to this, Hydrologic 

and climatic variabilities trends were investigated in the watershed using MK trend test. The flood 

frequency was analyzed for observed and two horizons time employed AM time series and 

Generalize Extreme Value distribution in Guder watershed using the simulated streamflow and 

compared it with the observed flood frequency.  In this study, the impact of climate change was 

assessed by assuming the land cover will remain the same at future time horizons.  
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2. LITERATURAL REVIEW 

2.1. Global Climate Change Overview 

Climate change refers synthesis of atmospheric conditions characteristic of a particular place in 

the state of the climate that can be identified by changes in the mean or the variability of its 

properties and that persists for a long period (G. Gelete et al., 2019). Natural climate variability 

maybe happens because of external factors forcing persistent anthropological induced activity; 

mainly due to fossil fuel burning, deforestation, and internal variability climate system like volcano 

irruption, earthquake (Belay & Getaneh, 2016). Global atmospheric and oceanic perturbations and 

local weather variability induced factors highly alter the rainfall pattern (Negash & Marie, 2016). 

Climate change will have  a significant impact on water cycle and will lead to severe environmental 

problems, disaster (Yamamoto et al., 2021) and the various challenges being faced by the world 

have different impact on Water resources, especially flood frequency (Demissie et al., 2016) and 

is expected to exacerbate in future; becoming an increasingly important issue that threatens the 

imperiled (Singh R. et al., 2016). In recent decades, the dramatic development of industrial 

activities, leads to increasing greenhouse gases, causes a climatic imbalance on the earth. An 

increase of atmospheric greenhouse gases results in climate changes, causing rapidly rising sea 

levels and an increased frequency of extreme climatic events; this includes intense storms, heavy 

rainfall and droughts. Global climate and water stress are serious problems, including loss of native 

biodiversity and risks to ecosystems and humans, from increased flooding or water shortages 

(Ionela Gabriela Bucse et al., 2019). 

The consequences of climate change are unpredictable weather patterns, Droughts and extreme 

flooding can be triggered by weather instability (Sharu, 2021). The devastation caused by floods 

in different parts of the world in addition to the challenges currently being posed by uncertainties 

occasioned by climate change phenomenon has made the reliable estimation of rainfall events 

more imperative (G. D. Akpen et al., 2018). Climate change has influenced the recurrence of 

extreme rainfall events resulting to destructive soil erosion, flooding, landslides triggered by poor 

land conservation (R.C.C. Puno, et al., 2019) and may lead to unexpected impacts on the 

characteristics of watershed hydrology like evaporation, streamflow and sedimentation (A. N. Hilo 

et al, 2019). 
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2.2. Climate Change of Africa 

African countries are more affected by climate change inducing climate-relate to natural disasters 

such as droughts and floods, because of their macroeconomic reliance on agriculture as well as 

their lower financial, technical, and institutional capacity to adapt (Jessie R.G. et.al.). Agriculture 

is considered as the largest main economic activities about 80% are rural dwellers engaged in rain-

fed agriculture in Africa (Gebreegziabher et al., 2016) and it provides employment approximately 

60 % of the African population, and more than 50 % of GDP in some countries (Oladayo N.A. and 

Jonathan T., 2017). A growing consensus in the scientific community indicates that climate change 

will reduce crop yields in developing countries and multiplier of existing threats to food security 

(T. Alemu and A. Mengistu, 2019).  

The rise in average global surface temperature is attributed to the accelerated human activities and 

an increase in the concentration of greenhouse gasses in the atmosphere over the last century 

(Schardong & Simonovic, 2019). Temperatures in Africa are forecasted to rise faster than the 

global average during the 21st Century, with temperature extremes breaching levels experienced 

today by 2°C by 2050 and 4°C-6°C. Changes to rainfall regimes are more uncertain, but indications 

from global climate modeling exercises are that southern African will become drier, and eastern 

and western Africa will become wetter, with rain falling more intensely and bringing an increase 

in the risk of floods. These broad directional changes mask variability on a smaller scale; for 

example, modeling results in Ethiopia indicate a wide range of rainfall pattern changes (Climate 

Change Adaptation in Africa, 2018). 

2.3. Impact of Climate change in Ethiopia 

Climate change poses a huge challenge to Ethiopia and its people faced with increasingly 

unpredictable rains, floods, landslides, and in some years the complete failure of seasonal rains 

occurrences that are linked to climate change (Climate Change Profile: Ethiopia, 2018). Ethiopia 

is most vulnerable to climate risks to current variability and there are also indications that climate 

change will increase rainfall variability which will likely increase losses from heavy dependence 

on rain-fed, subsistence agriculture (Belay & Getaneh, 2016).  
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Climate change will make the prospect of economic development harder for Ethiopia in at least 

two ways: first, by reducing agricultural production and output in sectors linked to agriculture, 

which is likely to reduce Ethiopia’s GDP by about 10% from its benchmark level; and second, by 

raising the degree of income inequality which is likely to further decrease economic growth 

(Ethiopia Climate Action Report, 2016). Ethiopia is a country where about 80% of the population 

is engaged in the agricultural sector and the main source of income for rural communities. Climate 

change will be increasingly intense rainfall will bring increased floods and soil erosion, which is 

the main cause of sediments and pollutants in freshwater bodies. Soil erosion is a serious problem 

in Ethiopia every year, 1.5 billion metric tons of topsoil erodes from the highlands into streams 

and rivers, thus increasing sediments, pollutants (Ethiopia Climate Action Report, 2016) 

Consequently, agricultural and livestock production, people’s livelihoods, and food security 

depend strongly on weather conditions mainly on rainfall patterns such as amounts and timing. 

The increment of greenhouse gas concentration in the atmosphere results in changing of global 

climate, increasing of temperature, excessive deforestation during the last century and a half has 

increased concentration of carbon dioxide in Earth's atmosphere and alteration of the amount and 

distribution of precipitation (Biniyam Y. & Abdella K., 2017). According to the IPCC, an increase 

in global warming, extreme climate events like drought, and flooding occur more frequently. 

Climate change increases uncertainty in water availability which negatively affects agricultural 

production, threatens the environment, and results in a socio-economic problem (IPCC Special 

Report of Global Warming, 2018). 

2.4. Climate Change and Flood Events 

Climate change is expected to alter average temperature and precipitation values in the frequency 

and intensity of flooding events may produce serious impacts on society, such as enormous 

economic, societal and environmental damage, including loss of lives and disrupting livelihoods 

throughout the world (Badri Bhakta Shrestha et al., 2019). Climate change can increase the 

likelihood of occurrence and strength of extreme weather such as extreme precipitation events, 

which might lead to cause more flooding in some regions (R.C.C. Puno, et al., 2019). Floods are 

due to natural factors such as heavy rainfall, the glaciers melt and ocean levels are rising and high 

tides, (Ionela Gabriela Bucse et al., 2019) and human factors such as blocking of channels or 
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aggravation of drainage channels, improper land use and deforestation in headwater regions (Aicha 

Saad et al., 2019). 

The occurrence of extreme events is more frequent due to a variety of natural global climatic 

phenomena (Lauro C et al., 2018) and anthropogenic factors are the most common environmental 

hazard affecting people globally leading cause of natural disaster deaths worldwide (M.S. Bhat et 

al., 2019). ` The World Disaster Report reveals that flooding is the leading disaster accounting for 

around 55% of all the natural disasters. Flood magnitude and frequency are essential for both 

hydraulic structures and flood risk management but it will change as climate changes (J.G. Duan 

et al., 2017). The probability of extreme weather events increases with rising temperatures from 

global climate change and a possible cause of extreme hydrologic events such as flood, drought, 

snowmelt, heat-waves, and variability (Ye Bai et al., 2019). 

 2.5. Climate change modeling approach 

 To capture the range of possible changes in flood magnitude under a future climate change, an 

ensemble methodology is applied here in which data several GMC/RCM combinations are used 

for hydrological modeling of climate change impacts on floods, based on the different global 

scenarios for technological change. The GCM/RCM predictions are employed to derive 

recommendations for policymakers by Statistical and dynamic downscaling methods are applied 

to cope with this issue and provide for bias correction of the dataset series from the climate models 

to the observation records at the catchment levels (Schardong & Simonovic, 2019).The climate 

downscaling technique is used to bridge the gap between the higher resolution GCMs and the local 

climatic process, which is broadly classified as statistical or dynamical downscaling (Muhammad 

Noor et al., 2018). The outputs from GCMs are typically defined at 150–300 km coarse grids, 

while regional climate models resolutions are about 12–50km (Ashish Shrestha et al., 2017). 

Statistical Downscaling: It is widely used for assessing climate change on local scales due to 

simplicity of use, lower computational cost, representations can be generated quickly and 

flexibility, without compromising on downscaling accuracy (Muhammad Noor et al., 2018). 

Statistical downscaling is based on coarse resolution predictors that lead to high-resolution 

predictions for temperature and precipitation. 
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Dynamic Downscaling: The use of finer-scale Regional Climate Models (RCMs) that produce 

output series with a spatial resolution (Schardong & Simonovic, 2019) and improving spatial 

resolution typically by the factor of five-ten times as compared to the host GCMs (P. Ganguli & 

P. Coulibaly, 2019). Dynamic downscaling requires a large amount of computational and data 

storage resources. Dynamical downscaling is physically based regional climate models (RCMs) 

driven by conditions provided by a GCM and techniques transfer information from GCMs to 

produced finer scales output by applying higher resolution RCMs over a limited area with initial 

boundary conditions taken from a driving GCM (Maikel et al., 2020). 

2.5.1. Global Climate Model/General Circulation Model (GCM) 

General Climate Models (GCMs) are developed to represent the dynamics within the Earth’s 

atmosphere to understand current and future climatic conditions (Schardong & Simonovic, 2019). 

It is the physically-based models that provide information of current and future climate conditions, 

are typically designed to simulate large-scale atmospheric processes (large scale models; 

horizontal grid spacing of 150-300 km) (P. Ganguli & P. Coulibaly, 2019), can serve as the basic 

input for climate change impact studies on water resources (Nkululeko Simeon Dlamini et al, 

2017). Virtually all published estimates of how are the climate could change in the future are 

produced climate by the computer models of the earth’s climate system.  To estimate the impacts 

of anthropogenic emissions on climate, a mathematical model has to be constructed of the 

complete climate system, which must include the atmosphere, oceans, land, glaciers and ice sheets.  

GCMs are the prime tools used for simulating present climate and projecting future climate change 

impacts (Myo, H. T. et al ., 2020) and physically based on derived scenarios of climate change 

used for predicting climates condition  (Melke and Abegaz , 2017), typically designed to simulate 

large-scale atmospheric processes (P. Ganguli & P. Coulibaly, 2019). This model is a mathematical 

description of the earth’s climate system, firstly broken down into layers (both above and below 

sea level) and then each grid is broken down into boxes or cells. The GCMs are designed to predict 

the climatic variables based on greenhouse gas emissions as the primary variable for generating 

future conditions. However, other variables such as land-use, energy production, global and 

regional economy, and population growth (Schardong & Simonovic, 2019). The outputs of GCMs, 

at various spatial resolutions, can be used as the inputs to hydrological model simulations to assess 

the impact of climate change on hydrology and water resources (Myo, H. T. et al ., 2020). 
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2.5.2. Regional Climate Models (RCMs) 

Regional Climate Model can sit within a global model to provide more detailed information for a 

particular location and ability to provide additional climate change signals that are not resolved in 

the coarser-resolution GCMs (Maikel et al., 2020). It relies on the observed climate as a basis for 

driving future projections. Local topographical features, such as mountains, influence no doubt 

local climate change significantly. RCMs are more reliable at reproducing relevant patterns of 

local precipitation, atmospheric processes so that the topographic effects on precipitation can be 

much better represented at a regional scale and future projections of precipitation have extensively 

been used to assess the impact of climate change on various water resources systems (Maikel et 

al., 2020).   

 2.5.3. CORDEX Dataset and Emission Scenario 

CORDEX data project formed under the World Climate Research Center to improve the Regional 

Climate Model of the world and it’s the most recent provided. These models were run using 

different emission scenarios of Representative Concentration Pathways which provide different 

assumptions of greenhouse gas emission pathways (Batablinle et al., 2018). The Coordinated 

Regional Downscaling Experiment aims is to provide coordinated sets of high-resolution regional 

climate projections worldwide climate information produced by different dynamical and statistical 

downscaling techniques. Recently, various studies had been conducted globally using ensembles 

of high-resolution regional climate projections generated by Regional Climate Models (RCMs) 

within the CORDEX (Negash et.al., 2020). CORDEX focused on the GCM experiments using 

emission scenarios known as RCP2.6, RCP4.5, RCP 6.0 and RCP8.5 which represent Low, mid 

and high-level emission scenarios respectively.  

The RCPs represent the range of Greenhouse gas emissions, Out of four alternative emission 

scenarios of a stringent mitigation scenario RCP 2.6, two intermediate Scenarios (RCP 4.5 and 

RCP 6.0), and one scenario with very high GHG emissions RCP8.5 (Myo, H. T. et al ., 2020). But, 

Regional climate model data from the ensemble of CORDEX Africa models performed well in 

simulating rainfall over east Africa and predicted high variation both run under RCP 4.5 and 8.5 

(Negash et.al., 2020). CORDEX-Africa RCMs generate an ensemble of high resolution historical 

and future climate projections at regional scale by downscaling different GCMs forced by RCPs. 
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2.3.4. Uncertainty of Climate Modeling 

There are several sources of uncertainty in the generation of climate change information associated 

with alternative scenarios of future emissions and their radiative effects. The dynamically or 

statistically downscaled projections within these two distinct approaches to downscaling, 

uncertainty arises in the resulting ensemble for different reasons. In dynamically downscaled 

ensembles, structural uncertainty arises from the choice of regional and global climate model 

pairing, while in statistically downscaled ensembles, the statistical technique of bias correction 

and spatial downscaling (Wootten et al ., 2017).  

The motivation behind the use of multiple models in climate change research is to cover different 

sources of uncertainties, for more details (R. A .I. Wilcke and L.Barring, 2016). The CORDEX 

after applying on an ensemble RCMs for multiple GCMs produced high resolution downscaled 

historical and future climate data based on CMIP5 simulations used for impact and adaptation 

studies (Fikru et al, 2018). Uncertainty can be inherited from GCMs due to factors such as internal 

variability, modeling assumptions, greenhouse gas emissions scenarios, and the spatial resolution 

of the RCM used in impact assessment; but can addressed by using an ensemble of multiple models 

(Lauren M. Cook, et al., 2020). 

2.5.5. Hydrologic Modeling 

Hydrological modeling is a tool generally used to estimate the hydrological response of the basin 

due to rainfall (Mokhtari E.H. et al., 2016). Deterministic hydrological models ignore the 

uncertainty or randomness involved in the hydrologic variables widely applied in research and 

decision-making processes (L. Ammann et al., 2019). Models can also be used to simulate 

information in both space and time when measurements are limited, not available (e.g. regarding 

the future) (Rangecroft al et., 2018) and process with its output being close to exactly what 

happened in the real system consists of a set of simultaneous equations or a logical set of operations 

contained within a computer program. Hydrological model is, Quantifying expression of 

observation analysis and prediction of the interaction of the various hydrological processes which 

vary in time and over space i.e. Rainfall, infiltration, evaporation, and streamflow. Hydrological 

models are simplified, conceptual representations of the hydrologic cycle. They are primarily used 
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for hydrologic prediction, understanding of hydrologic processes and also considered to be 

mathematical formulations to simulate natural hydrologic phenomena. 

2.5.6. Type of Hydrologic Modelling 

Hydrological Models are classified as Physical based, conceptual and empirical depending on the 

degree of complexity and physical completeness in the information of the structures. Modes are 

further classified as Lumped, semi-distributed and distributed depending on the degree of 

decentralization when describing the terrain in the basin. This type of model is routinely used to 

evaluate the hydrological behavior of watersheds in several applications, such as river flows 

forecasting, water availability assessment, and its dependence on external factors like climate or 

land-use change (F. Mendonça dos Santos al et., 2018). 

2.5.6.1. Lumped Model 

Parameters of lumped models assume spatially uniform watershed Characteristics within the basin 

(F. Mendonça dos Santos al et., 2018) and thus, basin response is evaluated only at the outlet, 

without explicitly counting for the response of individual sub-basins. Parameters of lumped models 

often do not represent physical features of hydrologic processes. The impact of spatial variability 

on the model parameters is evaluated by using certain procedures for calculating effective values 

for the entire basin. The lumped models simulate runoff while considering the whole catchment as 

a single unit irrespective of the spatial variation in rainfall and land use, the outputs generated can 

potentially vary widely when compared to the observed flows (Proloy Deb et al., 2018). 

2.5.6.2. Distributed and Semi Distributed Model 

Parameters of distributed models are adjusted each model cell independently allowed to vary in 

space at a resolution usually chosen by the user and approach attempts to incorporate data 

concerning the spatial distribution of parameter variations together with computational algorithms. 

Distributed models generally require large amounts of data for parameterization and which 

consider the spatial distribution of rainfall, evapotranspiration and watershed characteristics at a 

resolution normally selected by the modeler to reflect the spatial-temporal variability of runoff        

(Ambrose M.et.al., 2021). 
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Semi-distributed models have been widely used to simulate catchment specific hydrological 

processes in environmental studies strategies in the areas of land use, runoff processes, factors 

influencing hydrological processes, and climate change impact assessments (I. Kása et al., 2017). 

Parameters of semi-distributed models are adjusted in a few spots over a river basin partially 

allowed to vary in space by dividing the basin into many smaller sub-basins and can be 

accomplished based on varies catchment characteristics such as topography, elevation, soil type 

and land use. The main advantage of semi-distributed model is more physically based structure 

than that of lumped models, and the lesser amount of input data than fully distributed models. 

HEC-HMS is in the domain of semi-distributed hydrological model rainfall-runoff widely applied 

in operation for applications such as the impact of climate change and flood forecasting (M. Dal 

Molin et al., 2020). 

2.5.7. Hydrological Model Selection 

Model selection is challenging for practicing a hydrologist for the reason of complex, patterns of 

the hydrologic data and which models are the right ones for their purposes (I. Kása et al., 2017). 

Validation of hydrological models against measurements could help the researchers to select the 

best model for their purpose. However, the model section is based the availability of input data, 

on the characteristics of the problem under analysis, nature and type of hydrologic process needed 

to be simulated and nature of data handling mechanisms (F. Mendonça dos Santos al et., 2018) for 

this study the semi-distributed model HEC-HMS is selected to calibrate the streamflow data of the 

Guder Watershed.    

2.5.7.1. Hydrologic Modeling System (HEC-HMS) 

 Hydrologic Modeling System is a rainfall-runoff simulation model used to simulate peak river 

discharge values for current and future conditions to calibrated and validated based on the observed 

river discharge data (A. Rafiei Emam et al., 2016). HEC-HMS is one of those models significantly 

used in different parts of the world used to predict the hydrologic response of the basin to the 

climate changes scenarios (Mokhtari E.H. et al., 2016), the GCM outputs were bias-corrected at 

the selected HRUs and fed to the calibrated HEC-HMS model and the future water resource was 

assessed (Proloy Deb et al., 2018). HEC-HMS has become very popular and adopted in many 

hydrological research institute because of its ability to simulate and run in both short and long time 

events (Sharu, 2021) 
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HEC-HMS is developed by the US Army Corps of Engineers Hydrologic Engineering Centre, 

which is designed to simulate the precipitation runoff processes within a wide range of geographic 

areas, such as large river basins and a rainfall-runoff simulation model. HEC-HMS has become 

very popular and been adopted in many hydrological studies to the simulation of runoff volume in 

integrated water resources and watershed management projects and for estimating flood peaks in 

flood forecasting (M. Dal Molin et al., 2020). A special extension programmed of the HEC-

GeoHMS in ArcGIS has been applied in some of the studies and allowed researchers to generate 

relevant spatial data to terrain characteristics which cloud be used as input data for the HEC-HMS 

model. Hence, choosing a particular model structure for a particular application is one of the 

challenges of the model user suggested four criterions for selecting model structures. 

1. Consider models which are readily available and whose investment of time and money appeared 

worthwhile.  

2. Decide whether the model under the consideration will produce the outputs needed to meet the 

aims of a particular project.  

3. Prepare a list of assumptions made the model and check the assumptions likely to be limiting in 

terms of what is known about the response of the catchment. This assessment will generally be a 

relative one, or at best a screen to project those models that are obviously based on the incorporate 

representation of the catchment process.  

4. Make a list of the inputs required by the model and decide whether all the information required 

by the model can be provided within the time and cost constraints of the project. Considering the 

above four criterions into account the better performance model for this study is event based HEC-

HMS hydrological model is selected. Based on the model selection suggestions criterions Arc GIS, 

Arc-Hydro, HEC-GeoHMS and HEC-HMS were selected. 

2.5.7.2. Arc GIS  

For hydrological modeling, GIS, especially through their powerful capabilities to process DEM 

data, has provided modelers with new platforms for data management, visualization and have made 

extra efforts to improve the analytical and modeling capabilities of their products (Aicha Saad et 

al., 2019). For all GIS-related tasks, the Environmental Systems Research Institute´s (ESRI) 

ArcMap software, version 10.1 was used in this study. ArcMap is the main component of ESRI´s 
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ArcGIS suite of geospatial processing software. Most of the GIS tasks were performed based on 

the functionality of the ArcMap extensions Arc-Hydro and HEC-GeoHMS. 

2.5.7.3. Arc-Hydro 

Arc-Hydro is an extension of different Arc GIS versions, which is developed in the Esri water 

resource team to support water resources applications. The availability of DEM and GIS tools, 

watershed properties can be extracted by using compatible version of Arc-Hydro automatically. It 

simplifies the process of delineating watershed, sub-watersheds, stream network, and some other 

watershed characteristics that collectively describe the drainage patterns of a basin. Arc Hydro 

tools can be used to create input files for hydrologic models (HEC-GeoHMS).   

2.5.7.4. HEC-GeoHMS  

 Hydrologic Engineering Center’s Geospatial Modeling System has been developed as a geospatial 

hydrology tool kit for engineers and hydrologists allows users to visualize spatial information, 

water shade characteristics, perform spatial analysis, delineate sub-basins and streams, and 

construct inputs to hydrologic models (Demissie et al., 2016). Analyzing digital terrain 

information, HEC-GeoHMS transforms the drainage paths and watershed boundaries into a 

hydrologic data structure that represents the watershed response to Rainfall. ArcGIS uses HEC-

GeoHMS Version 10.1 and Spatial Analyst to develop many hydrological model inputs. 

Concerning hydrologic parameter estimation, HEC-GeoHMS contains tools to assist the user in 

estimating initial values of some hydrologic parameters. The program allows users to visualize 

spatial information, document watershed characteristics, perform spatial analysis, delineate sub-

basins and streams, construct inputs to hydrologic models, and assist with report preparation.  

HEC-Geo HMS is used to create hydrologic inputs that can be use directly with the HEC-HMS, it 

creates background map files, basin model files, meteorology model files, and a grid cell parameter 

file, digital elevation model, soil types, land use information and meteorology model (Demissie et 

al., 2016). The HEC-GeoHMS program features illustrate functionality and ease use of Data 

management, terrain preprocessing, basin processing, hydrologic parameter estimation and HMS 

model support. These features perform administrative tasks, terrain preprocessing and sub-basin 

delineation in either a systematic fashion or batch mode. In addition to these, it computes the Curve 

Number (CN) and other loss rate parameters based on various soil and land use databases, 
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watershed and channel characteristics. The outputs obtained from HEC-GeoHMS were used as 

input for the HEC-HMS model to set up (Proloy Deb et al., 2018). 

2.5.7.5. Advantages HEC-HMS  

HEC-HMS has merits to simulate the flow in the outlet of the watershed, and then provide data 

that help manager and decision makers to adopt the plausible management strategies, the future 

enhancements in progress and help the ecosystems to build a strong resilience capacity against 

climate change and natural hazard risks (Ismail Elhassnaoui et al., 2019). Additionally, it is in the 

public domain and peer-reviewed and available to download free of charge from HEC's web site. 

Therefore, the model applicability and efficiency to simulate rainfall stream flow was done in 

various regions of the world, the model widely applied in Abay river basin in Ethiopia more 

recently. The suggested criterions are; freely the model availability, the model efficiency to meet 

the target objective of the study, the model representations of assumed process in the catchment, 

and availability of all information required by the model within time and cost constraints. 

2.6. Bias correction  

Bias correction methods are used to minimize the discrepancy between observed and simulated 

climate variables of precipitation and temperature projections given by climate models in the 

control period usually do not fit the observations in the same period exactly from a statistical point 

of view (Enrique S. et al., 2018).The bias correction of the daily RCM precipitations and 

temperatures is therefore necessary to produce seasonal and regional hydrological variability, and 

extremes, that are in line with the observations of the control period (Noora Veijalainen et al., 

2017). For applying bias correction to climate model simulated rainfall, different options are 

available to be applied entire time series, annual mean precipitation (P. Ganguli & P. Coulibaly, 

2019) Bias correction is the adjustment of biased simulated data to observations and it is the 

systematic deviation between an observed or computed value (Maikel et al., 2020) 

The Bias correction should be applied to compensate for any tendency to overestimate or 

underestimate the mean of downscaled variables. Often, the outputs of RCMs/GCMs cannot be 

directly used for impact assessment as the computed variables may differ systematically from the 

observed ones. Bias correction is the differences in observed climatological mean values between 

downscaled GCM and observations for historical reference period used to “correct” future 
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downscaled GCM simulations, to compensate for any tendency to overestimate or underestimate 

the mean of the downscaled variables (Zhe Yuan et al., 2018). 

There are several bias correction methods which have been developed to adjust meteorological 

variables: Delta change, Variance Scaling Linear scaling, local intensity scaling, power 

transformation, and distribution mapping are among the bias correction methods applied for many 

studies yet. The delta-change method generates climate scenarios by adding the future change 

signal (anomalies) from GCM-RCM simulations for a perturbation of the observational datasets 

(Maikel et al., 2020) and conventional way to construct precipitation time series for a projected 

future climate change (Yèkambèssoun N’Tcha M’Po, et.al., 2016). For temperature correction 

methods including linear scaling, variance scaling and are used for many studies. The Variance 

scaling method was developed to correct both the  mean and variance of normally distributed 

variables of temperature while the linear scaling method aims to perfectly match the long-term 

monthly mean of corrected values with those of observed values (Maikel et al., 2020).  

2.7. Streamflow data Transfer to ungauged watershed  

Streamflow is one of the crucial data for practical hydrological applications in such as basin 

management, the design of flood control infrastructure, water resource system planning and 

management, disaster risk management, and environmental impact assessment (Xiao et al, 2017). 

The stream flow prediction are very important for ungauged or poorly gauged river basins to 

characterizing the hydrological behavior in response to climate change in growing economies 

countries like Ethiopia; because, there are a limited number of stations in the streamflow gauging 

network (Mustafa U. Y. & Bihrat O., 2020).  

There are different regionalization techniques to transfer information from gauged sites to 

ungauged sites (target station) through the use of catchment physical characteristics should be 

hydrologically reasonable (B. Choubin, et al., 2019), in order to make reliable predictions in 

ungauged basins. Regionalization is a statistical process of transferring information, which aims 

to estimate streamflow at ungauged basins or interest site (B. Choubin, et al., 2019). There are 

many methods used for parameter regionalization statistical process that are used to predict 

streamflow at target station.  
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i.  Drainage Area Ratio Method : The most common and oldest information transferring method 

appealing as it requires no additional information other than the streamflow values at the donor 

station, the drainage areas of the donor and target stations., making it the easiest possible method 

that one could consider (F. Saka &H. T.Babacan, 2019). Parameter set of gauged watershed are 

transferred to un gauged watershed of comparable area based on the assumption that watershed 

area was the dominant factor for controlling the volume of water that can be generated from the 

rainfall and gauged watershed that is located nearest to the ungauged watershed of interest is 

identified as stream flow values are transferred from gauged to ungauged watershed.  Model 

parameter sets of gauged catchments are transferred to ungauged catchments by catchment size 

comparison. The method is a simple approximation, which works best when the gauging station is 

close to the respective outlet and the area ratio gauged to ungauged is 1 to 1.5 intervals 

ii. Spatial proximity: The transfer parameters approach is based on the geographical distance 

between catchment centroids or catchment outlets, between the catchments may be an appropriate 

measure of similarity when selecting the donor catchment to receiver catchments, but the accuracy 

of results depend upon the density of gauged catchment networks (J.B. Swain & K.C. Patra , 2017). 

iii. Inverse Similarity Weighted (ISW) Method: It is the most Sophisticated method has 

capability to transfer from Multiple donor gauged catchment to ungauged catchment; which based 

physical similarity approach, to determines appropriate donor basins by considering similarities 

between gauged and ungauged basin (T. Razavi and P. Coulibaly, 2016). The similarity coefficient 

is used to define the physical similarity between the target station and the donor station. Drainage 

area, elevation, annual mean total precipitation, annual mean temperature, basin slope, channel 

length, latitude, and longitude were considered as the basin characteristics in order to measure the 

physical similarity between the donor station and the target station (Mustafa U. Y. & Bihrat O., 

2020). In this method, the parameters set from the most physically similar the donor catchment is 

transferred to the target site using similarity indices (X. Yang et al, 2018). 
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2.8. Flood frequency Analysis 

The flood frequency analysis is one of the important studies of river hydrology and crucial 

parameter to determine the extended flooding for the different return periods (Ery Suhartanto et 

al., 2018). To describe the flood frequency at a particular site, the choice of an appropriate 

probability distribution and parameter estimation methods are immense importance to identify 

underlying probability model of flood peaks which can then be used to perform risk-based design 

and flood risk assessment. (Mahmood Ul Hassan et al., 2019). It attempts to quantify the flood 

peak discharge as a function of the probability of exceeding a discharge and essential to 

interpreting the record of flood events to evaluate future possibilities of such occurrences (M. L. 

Kavvas, et al., 2017). The magnitude and probable frequency of such recurrence are also required 

for proper design and location of hydraulic structures and other allied studies. 

Flood frequency analysis is the determination of the magnitude of flood flows extreme events to 

their probability distribution at different frequency or recurrence interval (Usman A. I. et.al, 

2016)and a technique used by hydrologists to predict flow values corresponding to specific return 

periods or probabilities along with river floods of high magnitude for larger return periods (Ahmad 

I. et al., 2019). Classic flood frequency analysis fits a probability distribution to annual maximum 

flow series which is caused by Climate change that can result in changes in the mean or the 

variability of floods that persists for an extended period, decades or longer (Xin Yu et al., 2018). 

A return period is a recurrence interval which is an estimate of the interval of time between events 

flood or river discharge flow of a certain intensity. Flood frequency analysis has been mainly aimed 

at frequency estimations at the design level, and to make adaptation plans against recent 

devastating flood disasters and climate change, the rational estimation of extreme floods over the 

design level is also crucial (Tomohiro Tanaka et al., 2016). 

Flood frequency analysis is the procedure to extract information from a flow record data to 

estimate the relationship between flows (Noor S. R & Zulkifli Y., 2017) and return periods of a 

hydrological event such as flood, using observed annual peak flow discharge data as a function of 

recurrence interval. In flood frequency modeling, there are problems related to the Choice of model 

type, distribution to be used, method of a parameter, and quantile estimation. The impact of climate 

change on flood frequency is analyzed using the extreme discharge series extracted using two main 

model types of data series available. 
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i) Annual maximum series (AMS) 

Flood frequency analysis by using annual maximum instantaneous streamflow records are required 

to reduce the uncertainty due to time resolution of the sampling model approach and the most 

frequently used, which is composed of the single maximum streamflow for each year of the record 

(T.T. Hailegeorgis & K. Alfredsen, 2017).The main advantages of using the annual maximum 

series: there is a high probability that flood events are independent; the series is easily and 

unambiguously extracted, and the form of the frequency distribution of annual floods generally 

conform to theoretical distributions (S.Malik & S.Chandra Pal, 2021). The major disadvantage of 

using the annual series is that because only one flood is included from each year of the stream-

flow record, the annual series may exclude significantly large floods if several occur in a single 

year and may include small annual maximums for some years. 

ii) Partial duration series  

Peaks over threshold is also called the partial duration series approach and defined by all peak 

values that lie above a certain truncation level.  In POT method, the derived series provide a more 

complete description of flood behavior than annual maximum series and well-defined peaks above 

a specified threshold value. The POT series model replaces the continuous hydrograph of flows 

by a series of randomly spaced spikes on the time axis. Major difficulties in using the POT method 

are assuring the independence of the data series and choosing an appropriate threshold value. 

2.8.1. Probability Distribution 

To describe the flood frequency at a particular site, the choice of an appropriate probability 

distribution and parameter estimation methods are immense importance (Mahmood Ul Hassan et 

al., 2019). The most common technique used for the at-site estimation of flood recurrence 

magnitude and the four most commonly used distribution methods (Muhammad Farooq elt al., 

2018), the number of probability distribution models viz., Weibull, gamma (Pearson type 3), 

generalized extreme value (GEV), lognormal, Gumbel, and normal are in use in the hydrologic 

frequency analysis of floods. The use of probabilistic approaches to fit and select the best fitting 

probability model to a set of observed data has lately gained currency among researchers (Philip 

Kibet Langat et al., 2019). Within probabilistic models, the two most popular are Gumbel 

maximum value and Log Pearson type III distribution (Vikas Kamal et al., 2017). 
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After obtaining the data series, it is essential to determine the proper statistical distribution families 

fit most AM flood data that is able to describe the time series data fit best model amongst these 

distributions. Two distribution families are suggested as reasonable to choice for AM series, 

namely the GEV and LP3 but, GEV distribution is frequently used for AMS data (Firdaus M.H. 

et.al., 2021).  The GEV model fits the AM series well and the GPD model fits the POT series well 

(Zhanling Li et.al., 2016). 

2.8.1. Parameters of Flood Estimation Methods 

One of the biggest challenges for hydrologists is the reliable estimation of extreme flood events 

(Igor Lešcešen and Dragan Dolinaj, 2019). Accurate estimation of maximum flood discharges is 

very crucial to assign hydraulic structures dimensions design and operation of flood control 

structures (dams, retaining basins) of infrastructures such as flood defenses, bridges, roads and 

dams, as well for flood risk management, planning, and diversion canals for  increases safety of 

the performance the hydraulic structures (Fevzi Onen and Tamer Bagatur, 2017). The nature of 

most hydrological events such as rainfall is erratic and varies with time and space, it is commonly 

possible to predict return periods using various probability distributions (Wan Husna Aini Wan 

Deraman et al., 2017). The most commonly used methods for estimation of flood frequency 

analysis are the maximum likelihood estimation method, the method of moments, the L-moments 

(LM) method and the probability-weighted moments method (Mahmood Ul Hassan et al., 2019).  

i) Maximum likelihood Method  

The method of maximum likelihood (MML) is considered to be the most accurate method, 

especially for large datasets since it leads to efficient parameter estimators with Gaussian 

asymptotic distributions. are consistent, reliable, and unbiased (Tegegne G.et.al., 2020). It provides 

the smallest variance of the estimated parameters, and hence of the estimated quintiles, compared 

to other methods. The ML method is one of the most applied methods for parameter estimation of 

probability distributions obtained by maximizing the likelihood function or log-likelihood function 

of the probability distribution (Kousar S et al., 2020). 
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ii) Method of moment   

Method of moment (MOM) is relatively easy and is more commonly used methods of estimating 

parameters of a probability distribution. It can also be used to obtain starting values for numerical 

procedures involved in MML estimation. However, MOM estimates are generally not as efficient 

as the MML estimates. Especially for distributions with a large number of parameters, as higher 

order moments are more likely be used to obtain starting values for numerical procedure involved 

in MML estimation and to be highly biased for relatively small samples.  The method of moments 

is based on observation, noting that the parameters of probability destitution can be estimated using 

sample statistics. Afterwards, the parameters of the distribution can be calculated using the relation 

between the parameters and the moments (Hasan, 2020). 

iii) L-Moment method  

The most popularized method to frequency analysis in recent time is L-moment approach which 

is widely used for developing regional flood frequency relationships (Vikas Kamal et al., 2017), 

able to characterize a wider range of distributions, they are less subject to bias in estimation and 

more robust to the presence of the data outliers (Igor Lešcešen and Dragan Dolinaj, 2019). Linear 

moment method offers small bias, which is an advantage over all other parameter estimation 

methods developed methodology in statistics and probability FFA (Muhammad Rizwan et al., 

2018). L-moments are alternative to the conventional moments can be directly interpreted as a 

measure of the scale and shape of the distribution , but computed from linear combinations of order 

statistics (Mahmood Ul Hassan et al., 2019) . 

iv) Probability-weighted moments method  

Probability-weighted moments (PWM) are useful in the deriving expression for the parameters of 

distributions can be explicitly defined. Methods of parameter estimation obtained in this method 

are by equating moment of the distribution with the corresponding sample moment of observed 

data. For a distribution with a parameter, the first sample moments are set equal to the 

corresponding population moments. The resulting equation then solved simultaneously for the 

unknown parameters. PWM are often considered to be higher than standard moment-based 

estimates and may be useful in the absence of maximum likelihood estimates or if they are difficult 

to compute (Philip Kibet Langat et al., 2019).Parameter estimation by PWM, which is relatively 

new is as easy to apply as ordinary moments is usually unbiased and is almost as efficient as MML.   



 25 

3. MATERIALS AND METHODS 

3.1. Description of the Study Area 

3.1.1. Location  

Ethiopia has twelve river basins among them, the Abay river basin is the largest catchment area 

hydropower development potential and runoff. It has the major sub-basins of Anger, Beles, Dabus, 

Debre Markos, Didesa, Fincha, Guder, Jemma, Lake Tana, Mota, and Muger.  Guder Watershed 

found in the Northwest of Ethiopia; in the Southeastern part of the Abay River Basin 

approximately between 7o30' to 9º30' N latitude and 37º00' to 39º00'E longitude. The Guder River 

originates from the mountainous area of the southern towns of Ambo and Guder at an elevation of 

3000masl. The river flows from the south to the north and has its outlet to the Abay River. 

 

                                              Figure 3.1 Map of Guder Watershed 



 26 

Guder is a river of central Ethiopia which is a tributary of the Abay or Blue Nile on the left side; 

tributaries of the Guder include the Dabissa and the Taranta. The Guder Watershed has a total area 

approximately about 6758 square kilometers in size. 

3.1.2. Climate 

The movement of the intertropical convergence zone primarily regulates the distribution of 

precipitation in the Upper Blue Nile basin which is conditioned by the convergence of trade winds 

of the northern and southern hemispheres and the associated atmospheric circulation. The annual 

climate may be divided into a rainy and dry season. The main rainy season is from June to 

September, above 75-90% of the total rainfall occurs and in Belg season from March to May small 

rainfall occurs. The mean daily temperature of the watershed ranges between 17.30C and 23.40C. 

Lower annual rainfall less than 1600 mm in the major sub basin and higher rainfall greater than 

1600 mm in same high lands of catchment. 

3.1.3. Topography  

The response of a catchment to flood is primarily influenced by the morphological characteristics 

and climatic elements. The elevation of Guder Watershed varies from 1500 to 3000masl. The 

higher elevation ranges are located on the mountainous area at the South of the town of Ambo and 

Guder. To cope the adverse effect of climate change, a sound understanding of hydrologic 

processes is very important. Stream networks originate from southern, eastern and western parts 

of the catchment and confluence at central part where they form Guder River. 

3.1.4. Land Cover and Land Use 

Climatic changes can influence land use changes plays an important role in the environment, as it 

partitions rainfall into the components of the hydrological cycle such as evaporation, runoff and 

groundwater land use changes thus change the balance between the components of the 

hydrological cycle, which can lead to several challenges in water resources and environmental 

management. The combined effects of climate change and land use changes on hydrology and the 

environment can lead to severe water resources and environmental problems at the local scale. 

Adaptation through land use planning, flood mapping, flood risk management and changes in 

regulation rules and practices can help diminish potential increases in flood damages (Noora 

Veijalainen et al., 2017). 
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The majority of the catchments are dominated by Agricultural areas and state farms. Forest are 

also used in the catchment with Woodlands in some parts of the watershed. However, Bushland, 

water, grassland and state farmland uses practiced in the watershed. The reasons provided for the 

increased frequency and magnitude of the flood events were attributed to land-use change 

(deforestation and over cultivation) and climate change in the area. The land cover of the Guder 

Watershed essentially follows the divide between highland and lowland. The high land around the 

Ambo and Guder mountainous areas were once dominantly covered with forests. However, these 

sub-humid tropical forests have been reduced to remnants, having been converted to cultivation 

and grazing. The spatial distribution and land use type in these sub-basins and watershed used for 

deciding the loss model in HEC-HMS model and also for better understanding of the study area. 

The land use types in each subdivision and its area have been used for initial estimation of loss 

and transform parameters in loss and transform method in HEC-HMS.  

 

Figure 3. 2: Land use Land cover of Guder Watershed 
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3.1.5. Geology and Soil  

Guder Sub-Basin lies in a large structural basin surrounded by volcanic mountains composed 

mostly of Quaternary volcanic rocks on the mountainous area of south of the towns of Ambo and 

Guder and Mesozoic sedimentary rock on the lower part of the river. Corresponding to the 

variation in landscape and other soil forming factors such as climate and vegetation, the soils of 

the Guder sub-basin are also highly  variable.  

 

Figure 3.3:Map of the soil type classification of Guder watershed 

3.2. Data types and Sources 

The data used for this research is varies in types and sources. Daily climate variables of  

Rainfall, maximum and minimum temperature were sourced from National Meteorological 

Service Agency of Ethiopia (NMSA). Regional climate model data from Coordinated Regional 

Downscaling Experiment (CORDEX) were downloaded via the download node (https://esgf-

data.dkrz.de/search/cordexdkrz).  
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3.2.1. Spatial data 

NASA’s Earth Observing System Data and Information System is the data distribution system 

facilitated with NASA’s Distributed Active Archive Centers (DAACs). Alaska Satellite Facility is 

one of the DAAC providing various data sources that offer worldwide coverage of void filled data 

at a resolution of 12.5m Alos Palsar DEM and provide open distribution of this high-resolution 

global dataset. For hydrologic model development, the watershed was delineated from the same 

Digital Elevation Model (DEM) spatial data. Creation of radio metrically terrain corrected (RTC) 

products is a project of the Alaska Satellite Facility that makes SAR data accessible to a broader 

community of users, https//vertex.daac.asf.alaska.edu. The project corrects synthetic aperture 

radar geometry and radiometry, and presents the data in the GIS-friendly GeoTiff format. 

  A) Meteorological Data  

Daily data like Rainfall, TMax and TMin data required for input to the HEC-HMS model, collect 

from Ethiopian National Meteorological Service Agency at Head Office. The meteorological 

variables collected vary from station to station depending on the class of the stations. 

Table 3. 1:Location of selected Meteorological stations of study area: 

S No  Stations   Latitude        Longitude Elevation % of missed data  

1 Ambo Agr.  8.986 37.83967 2068 1.67 

2 Combolcha  9.504 37.477 2341 3.4 

3 Fincha  9.572 37.373 2262 2.5 

4 Gedo  9.024 37.463 2520 2 

5 Jeldu  9.257 38.086 2951 2.4 

6 Kachise  9.608 37.861 2557 2 

 

B) Hydrological Data  

The hydrological data required for calibration and validation of the model results, the daily 

streamflow records of gauge stations found in the Gudar Watershed can be collected from the 

Ministry of Water, Irrigation Energy office, and hydrology department. Four river gauging stations 

named Bello, Fatto, Guder, and Indris data for 24years (1986-2009) record period are available.  
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Table 3. 2:Hydrological data Gauging station of Guder watershed 

River  Latitude  Longitude Area (km2) Elevation Missed data Daily (%) 

Belo  8o52'N  37o40'E  290 2509          5 

Fatto  8o52'N  37o43'E  96 2551          3 

Guder  8o57'N  37o45'E  524 2518         1.1 

Indris 8°56'N 37°45'E 111 2520         4.5 

 

C) Potential Evapotranspiration (ET) 

Evapotranspiration is responsible for significant water losses from a watershed and defined as the 

evapotranspiration that would occur with specified weather and vegetative cover conditions and 

unlimited soil moisture. It is one of the major inputs into flood forecasting models. In this study, 

the potential ET was calculated using the Hargreaves method. This method is selected as the 

method gives reasonable estimates of evaporation despite its low demand for input data. To 

estimate potential ET using this method input data like TMax and TMin air temperature, latitude 

coordinate of the station, and altitude (elevation) are required. Since only little meteorological time 

series data is available in the study area, evapotranspiration for the baseline period (1971-2000) 

and future time horizons (2041-2100) was also calculated by Hargreaves’s method.                                             

ET = 0.0023(Tmaen + 17.8) (Tmax-Tmin)0.5Ra …………………………………………………… (1) 

Where: ET is the potential evapotranspiration by the Hargreaves method (mm/day), Ra is the 

extraterrestrial radiation (mm/day); Tmean is the average temperature (°C);TMax and TMin are the 

maximum and minimum temperature respectively. 

D) CORDEX-RCP climate data 

The Coordinated Regional Climate Downscaling Experiment provides a means to evaluate model 

performance, assess downscaling, and provide a more solid scientific basis for impact assessments 

and other uses of downscaled climate information (Ye Bai et al., 2019). In this study, the results 

of CORDEX-Africa ensemble RCMs simulations for the historical and future climate projections 

downscaled from GCMs under RCP4.5 and RCP8.5 with a spatial resolution of 50km is used. The 
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climate data contains daily values of Precipitation, Maximum, and Minimum Temperature but the 

other climate variables were assumed to be constant for the future time. Climate change time series 

will be deriving for two RCP scenarios using downscaled GCM and analyze for two 30-year 

periods, representing mid-century (2041–2070) and near to end-century (2071-2100) conditions. 

Changes in temperature and precipitation under the different RCPs projected by three RCMs in 

the two time horizons were compared to those in the reference period (1971–2000). 

3.2.2. Filling missing data 

Incomplete records of hydro metrological data sometimes occur possibly due to absence of 

observer, instrumental failure or equipment malfunction further the personal to take readings are 

either too few or unreliable this the problem to many developing countries. In such a case, before 

using any data for analysis, one can estimate and fill the missing data by varies methods based on 

their needs and accuracy. For this study, XLSTAT2021 was employed for each station to estimate 

the meteorological and hydrological gauging station missing data. 

3.3. Checking consistency of the data 

The most common method of checking for the inconsistency of recorded data is Double Mass 

Curve analysis. After all, the meteorological and hydrological input data is filled in missing data, 

their consistency is checked, and the data is prepared as per the standard format for each type of 

the selected model. Double-mass curve analysis is a graphical method for identifying or adjusting 

inconsistencies in a station record by comparing its time trend with those of other stations. If 

significant change in the regime of the curve is observed, it should be corrected by using the 

equation (2). The trend of the RF records at a station may slightly change after some years. Due to 

a change in the environment (or exposure) of a station either due to the coming of a new building, 

fence, planting of trees or cutting of forest nearby, overgrazing, which affects the catchment of the 

gage due to change in the wind pattern or exposure.  

                                        𝑃𝑥′ =
𝑀′

𝑀
∗ 𝑃𝑥  …………………………………………………… (2)        

                             Where: Px'= corrected precipitation at station x  

                              Px =original recorded precipitation at station x  

                              M’ =corrected slope of the double mass curve  

                              M= original slope of the double mass curve. 
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Figure 3. 4:Precipitation Consistency test of Meteorological stations (Monthly Cumulative) 
3.3.1. Rainbow Homogeneity Test 

Rainbow software is the popular one which offers to check the homogeneity of Rainfall data. 

Homogeneity analysis is employed to identify a change in the statistical properties of the time 

series data. In RAINBOW, the test for homogeneity based on the cumulative deviation from the 

mean. The cause’s non homogeneity can be either natural or man-made, these include alterations 

to land use and relocation of the observation station. Therefore, to select the representative 

meteorological station for the analysis of areal rainfall estimation, checking homogeneity of group 

stations is essential, the homogeneity of the selected gauging stations. The data recorded in the 

selected stations of the study area are cheeked and plotted for comparison with each other, which 

characterized by unimodal types of rainfall regime. It notifies that the monthly rainfall distribution 

and rainfall pattern of the basin is monomodial in which the basin gets only one peak rainfall 

season (June to September). The basin gets high amount of seasonal rainfall during the Kiremt 

season is that due to the migration of ITCZ RF & PET(mm) (bundle of cloud) to the north western 

Ethiopia in this season.  
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Figure 3. 5: Homogeneity test of Ambo Agriculture station 

The figure 3.5 shows the homogeneity test of Ambo Agriculture station. Probability of rejecting 

homogeneity test is accepted at all significance levels (90, 95, and 99 %) for both range of 

cumulative deviation and maximum of cumulative deviation. Appendix: A shows other stations 

homogeneity test of annual rainfall. 
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3.4. Estimation of Areal rainfall  

The observed and future rainfall stations are used for this study to drive time series of areal rainfall 

spatial distribution for the sub-basin in Guder watershed. A rainfall measurement is a point 

observation and may not be used as representative values for some large catchment areas under 

consideration. Therefore, time point measurements have to be averaged over the area. In this study, 

the Thiessen polygon method was used to estimate the areal rainfall. The method assumes that the 

recorded rainfall in gauge is representative for the areal half-way to the adjacent gauge. Thiessen 

polygon method is best suited for finding out the mean rainfall of the catchment concerned. 

Thiessen polygon are formed around each precipitation station by drawing perpendicular bisectors 

of the lines join adjacent stations, if there are ‘n’ number of stations and ‘n’ polygons, the average 

depth of the precipitation over the total area A is given by  

                               𝑃 = 1

𝐴
∑ 𝐴𝑖 ∗ 𝑃𝑖𝑛

𝑖=1   ……………………………………………………….(3) 

                                               Where, P = Areal mean RF,  

                                                 Pi = RF measured at sub-region,   

                                                 Ai= Area of sub-region and   

                                                  A = total area of sub-regions. 

 

Figure 3. 6:Thiessen polygon of Guder watershed 
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3.5. Regional Climate Model Data Analysis 

The study focuses on HADGEM2-ES climate model outputs (RCP4.5 and RCP 8.5) within three 

RCM families of CCLM4-8, RCA4 and RCAMO22T. Representative concentration pathways 

(RCPs) of CORDEX climate model output stands for a pathway in order to provide time-dependent 

projections of atmospheric greenhouse gas (GHG) concentrations. This study uses the results for 

the most extreme RCP8.5 and moderate RCP4.5 emission scenarios. The RCP4.5 is a stabilization 

scenario where total radioactive forcing is stabilized before 2100 by employing technologies and 

strategies to reduce greenhouse gas emissions, whereas RCP8.5 characterized by increasing 

greenhouse gas emissions that lead to high greenhouse gas concentrations over time. 

Hence, this study used HadGEM2-ES United Kingdom Met Office Hadley Center, Uk of climate 

model, the reason is that the earth system components of this model compare well with 

observations and with other models. Therefore, the HadGEM2-ES models is a valuable tool for 

predicting future climate and understanding the climate feedbacks within the earth system. The 

downscaled climate data has been obtained from CORDEX-Africa database of the Africa domain 

AFR-44 has a 0.44-degree spatial resolution in daily time frequency base from 1951-2100. The 

climate data download simulated daily maximum and minimum temperatures and daily amounts 

of precipitation from CORDEX project (Coordinated Regional Climate Downscaling Experiment) 

at spatial grid resolution of 0.440 (~50 Km) (http://esgfdata.dkrz.de/login/?next=http://esgf-

data.dkrz.de/search/cordex-dkrz/) 

3.6. Grid Point Selection for RCM data 

The grid point selection data have been based on Ethio-CORDEX of their grid location between 

latitude and longitude (8030’ -100 0’ & 37010’-380 20’) respectively. After grid point selection, 

create thiessen polygon for both RCM and Meteorological coordinate by union and intersection 

area of sub-basins can be obtained, bias correction has been computed for three RCMs from 

areal rainfall. There are 6 grid points within the catchment for the study area is cover by thiessen 

polygon created by using selected grid points that the RCM data was extract by using R-Studio 

Programming language. 
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Figure 3. 7:RCMs Grid point selection of Guder watershed 
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3.7. Bias correction method of climate data 

Bias correction is the adjustment of biased simulated data to observations which is always applied 

within Climate impact studies to correct the climate input data provided by General Circulation 

Models (GCMs) or regional climate models (RCMs) for systematic statistical deviations from 

observational data. Bias correction is the differences in observed climatological mean values 

between downscaled RCM and observations for historical reference period used to “correct” future 

downscaled RCM simulations. The out puts of RCMs/GCMs cannot be directly used for impact 

assessment as the computed variables may differ systematically from the observed ones. Bias 

correction methods are assumed to be stationary, i.e., the correction algorithm and its 

parameterization for current climate conditions are also valid for future conditions. 

Climate model data for hydrologic modeling (CMhyd) is a tool that can be used to extract and 

bias-correct data obtained from global and regional climate models by adjusting climate model 

output. CMhyd was designed to provide simulated climate data that can be considered 

representative for the location of the gauges used in a watershed model setup. The tool has been 

tested using the CORDEX archive, which is a reliable source for regional climate models. The 

precipitation extracted from three RCMs by R-studio simulated were bias corrected using CMhyd 

tool. The Delta Change Correction bias removal approach is selected which is Conventional way 

to construct precipitation time series for a future climate is to perturb an observed data series and 

Variance Scaling for Temperature with a projected future climate change. 
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Figure 3. 8:Intersection of Meteorological and RCM Grid Points 
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3.8. Mann-Kendall (MK) Trend test analysis  

MK-Trend test to identify trends in time series data for observed and future projected climate 

variables. The Mann-Kendall test gives interesting insight about annual precipitation and 

temperature data to understand climate change over time. For this study trend analysis has been 

computed by using non-parametric MK trend test since the purpose of a trend analysis is to 

determine if the values of a series of data have a general increase or decrease with time. Trend 

analysis of observed rainfall and temperature data of all used stations for this study were evaluated 

by using MK trend test in XLSTAT2021.Analyzing the long term series data for predicting the 

influence of potential climate change is an important application of statistics in recent researches. 

3.9. Streamflow data transferring from gauged to ungauged watershed 

Stream flow measurements are important for characterizing the hydrologic behavior of river basins 

within modeling frameworks, so that future assessments of hydrologic behavior in response to 

climate and/or land-use change can be obtained. The streamflow estimation at ungauged or poorly 

gauged basins are essential issue in growing economic countries like Ethiopia for Water resource 

management system and plan. The regional model  developed for gauged catchments is used to 

estimate model parameters of ungauged catchments by respective Physical Catchment 

Characteristics (PCCs). But it needs more than two gauged stream flow around the target station 

or ungauged station. For this study Inverse Distance Similarity Weight of spatial were selected 

based on the physical catchment characteristic similarity correlation. In this study, the physical 

similarities between the donor and the target station were taken into account when selecting the 

appropriate donor station for the target station. 

Table 3. 3:Physical characteristics of Upper Guder watershed or donor Station 

Station  Elevation 

(m) 

Latitude 

(m) 

Longitude 

(m) 

Area 

(Km2) 

Basin 

Slope (%) 

Channel 

Length(Km) 

AM 

Temp.  

A.M.total 

Precip 

Bello  2509 8.8667 37.7167 290 35.23 45 17.71 2.25 

Fatto 2551 8.8667 37.6670 96 35.23 47 17.71 2.25 

Guder 2518 8.9500 37.7500 524 20.23 62 17.71 2.25 

Indris 2520 8.9333 37.7500 111 20.23 58 17.71 2.25 
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Table 3. 4: Physical characteristics used in Donor or upstream of Guder watershed 

Physical Characteristics  Maximum  Minimum Mean 

Drainage Area (Km2)                                      524  96  310 

Elevation (m)  3221  1984  2602.5 

AMTP(mm)  2.25  0  1.125 

AMT(0C)  24.44  10.98  17.71 

Basin Slope (%)  35.23  20.23  27.73 

Channel Length  62  45  52.5 

Latitude  8.95  8.667  8.8085 

Longitude  37.75  37.667  37.7085 

 

Table 3. 5:Physical Characteristics of Downstream of Guder or Target station ( Outlet) 

Station  Elev. Lat. Long. Area Slope Channel L. AMT Target AMTP 

Target  1209 9.605 37.623 6165.87 15 132 16.61 4.79 

qtarget= ∑ 𝑤𝑖 ∗ 𝑞𝑑𝑜𝑛𝑜𝑟𝑛
𝑖=1  and Qtarget= qtarget*A target 

Where qtarget is the area normalized streamflow (m3/s/km2) at the target station and donor is the 

area normalized streamflow (m3/s/km2) at the donor station i. the weights based on physical 

similarity can be calculated for all donor station by using the following equation. 

                                          wi=
1

𝑆𝑖𝑝⁄

∑
1

𝑆𝑖𝑝

𝑛

𝑖=1

 and ∑ 𝑤𝑖 = 1…………………..……………………………………..(3) 

Where si is the similarity coefficient between the target station and donor station i and where the 

Exponent p is called a power parameter (p > 0). The station with the lowest similarity coefficient 

was selected as the donor station. The similarity coefficient was used both to select the donor 

stations and to transfer streamflow from several donor stations as the weight. 

                                         Si= ∑
|𝑋𝑖𝑑𝑜𝑛𝑜𝑟−𝑋𝑖𝑡𝑎𝑟𝑔𝑒𝑡|

𝛥𝑋𝑖

𝑛

𝑖=1
………………………………………………………………(4) 
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Where i indicates one of a total of k selected basin characteristics values of basin characteristic i 

for the donor station and the target station, ΔX is a range of values for Xi donor in the dataset. 

Lower Si indicates a higher similarity between basins which it means the best donor with decrease 

the distance between donor and target station, but the weight coefficient is increase. 

3.10. Model Setup  

The relationship between GIS, HEC-GeoHMS, and HEC-HMS is the preprocessing of required 

geospatial data computations. After computing the hydrological model for future conditions, the 

process starts with the availability of DEM and GIS tools, watershed properties can be extracted 

by using automated procedures. Then the data assembly is complete, HEC-GeoHMS with the help 

of Arc-Hydro starts terrain preprocessing, basin processing, hydrologic parameter estimation, and 

spatial information to generate many input files to HEC-HMS model. This helps to estimate 

hydrologic parameters from the stream, sub-basin characteristics, gaged RF and streamflow data. 

Then input files provided and facilitation of the HEC-HMS model to calculate streamflow 

simulation.  

 

Figure 3. 9:Model setup and Sub-basins of Guder watershed 
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3.10.1. HEC-HMS Hydrological parameters used in basin model 

The HEC model consists of three main model components; basin model, meteorological model, 

and control Specification. Among of them, the basin model consists different catchment 

characteristics such river reach, basin area, junction and outlets. This study basin model consists 

of sub-basin_1, sub-basin_2, sub-basin_3, J1, J2, R1, R2 and outlet where J and R stand for 

junction & reach respectively. There are different sub-basins elements for this study, the listed 

below are applied based on their purpose and suitability.  To compute simulation, Loss (Curve 

number), Transform (SCS unit Hydrography), Base flow of recession and Routing (Muskingum) 

methods were employed. 

i. Loss Method 

The average curve number for sub-basins is computed using HEC- GeoHMS and this value is 

imported during the exporting of the Basin Model to HEC-HMS for initial parameter inputs before 

optimization. The curve number value of a certain land depends on infiltration characteristics of 

the soil and the land use/land cover conditions. The soil texture characteristics is one of the factor 

that determine infiltration of the soil. Soils of the study area are reclassified into hydrologic soil 

groups using their textural classes. The soil condition of the Guder watershed is dominated by type 

D soil (Clay loam, silty clay loam, sandy clay, silty clay, clay) that caused high runoff potential 

and low infiltration rates.  The value of the CN varies from 100 (for waterlogged surfaces) to 30 

for non-watertight surfaces with high infiltration values.  The value of Initial Abstraction for the 

corresponding Curve Number value is calculated using the following formula. 

                                  Ia=0.2 *S                                 

                                        S =
25400−254∗CN

CN
                      

                                        Ia=Initial abstraction 

                                         S=Potential maximum retention value 
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ii. Transform  

Transform methods is an approach for computing direct runoff at the outlet of watershed area from 

the excess precipitation falling over it and this is done based on principles of unit hydrograph. Unit 

hydrograph can be defined as the runoff hydrograph produced from excess rainfall of unit depth 

occurring over the watershed. The SCS unit hydrograph method was used for this study because 

the required parameter can simply be extracted from catchment characteristics using HEC-

GeoHMS for initial estimations. The SCS unit hydrograph method requires only one parameter for 

each sub-basin: lag time between rainfall and runoff in the sub-basin to specified time to peak. The 

lag time is already computed in HEC- GeoHMS Model and imported with the Basin Model.  

     iii. Base Flow 

Subsurface flow in the catchment is illustrated by base flow in HMS. Base flow comprises of 

interflow and flow in groundwater aquifer. There is insignificant contribution of base flow in case 

of short rainfall event, so it can be ignored. While in case of long rainfall event, the base-flow 

contributes to the recession limb of hydrograph and has a significant contribution in flood volume. 

v. Routing-Muskingum 

The Muskingum model seeks a method of parameter estimation to determine the values of the 

displacement time of the K wave and the mass coefficient of release x. Many methods or 

optimization techniques, including the trial-and-error method. 

3.10.2. Model Calibration and validation 

Model Calibration is a crucial step in any hydrological modeling study to reduce the uncertainty 

in the modeled discharge and systematic process of adjusting model parameter values until model 

results match acceptably the observed data. The quantitative measure of the match is described by 

the objective function. In the precipitation runoff models, this function measures the degree of 

variation between the observed and the computed hydrographs. The calibration process finds the 

optimal parameter values that minimize the objective function. Validation is essential to trust the 

model’s performance to evaluate the model simulation outputs relative to the observed data 

(Muhammad Shahid Iqbal, 2018). The model performance will evaluate through visual inspection 

of the simulated and observed hydrographs and through a set of objective functions that measure 

the goodness-of-fit between simulated and observed values. 
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3.10.3. Model Performance Evaluation 

The Model evaluation procedure include Calibration, Validation and Sensitivity analysis. The 

HEC-HMS uses the climate data and spatial data to calibration and validation of streamflow 

according to its own program parameters. For Model calibration and validation, daily 

measurements of flow Guder watershed for the period from 1986 to 2009 were used. The available 

hydro-meteorological data was divided into two (1989-2002) for model calibration and the other 

(2003-2009) for model validation. Then finally, the future streamflow simulations accomplished 

by running the HEC-HMS Model with the climate data under the CORDEX Project of both 

Scenarios RCP4.5 and RCP8.5. To evaluate the model simulation outputs relative to the observed 

data, model performance is determined by checking statistical parameters evaluation. For this 

study, the most common methods were employed.  

  1. Coefficient of determination (R2) 

The determination coefficient (R2) describes the proportion of the variance measured in data by 

the model and R2 values vary from 0 to 1, with values closer to 1 indicating better agreement 

between the data in comparison. It provides a measure of how well- observed outcomes observed 

desperation is explained by the prediction.  

                           𝑅2 =
[∑ (𝑄𝑠−𝑄̅𝑠)(𝑄𝑂−𝑄̅𝑂)𝑛

𝑖=1 ]
2

∑ (𝑄𝑠−𝑄̅𝑠)2𝑛
𝑖=1 ∑ (𝑄𝑂−𝑄̅𝑂)𝑛

𝑖=1  2
  ……………………………………………… (5) 

                   Where:     𝑄𝑂     Observed flow 

                                  𝑄̅𝑂    The average of observed   flow 

                                   𝑄𝑠    The simulated flow and  

                                   𝑄̅𝑠   The average simulated flow and n is umber of observed data points,  

2. Nash-Sutcliffe coefficient (NSE) 

Nash-Sutcliffe coefficient measures the efficiency of the model by relating the goodness of fit of 

the model to the variance of the measured data, range from −∞ to 1.  Efficiency values between 0 

and 1 are considered acceptable for model performance, with an optimal value of indicates a 

perfect match of simulated discharge to the observed data. If NSE is equal to 0, the simulated 

results are as of accurate as the observed average; whereas an efficiency less than zero, (−∞ < NSE 

< 0) the observed mean is more reliable in prediction than the simulated results. 
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                              NSE = 1 − [
∑ [𝑄0−𝑄𝑠]

2𝑛
𝑖=1

∑ [𝑄𝑂−𝑄̅𝑂]
2𝑛

𝑖=1

] ……………………………………………… (6) 

3. Percent of Bias (PBIAS) 

The PBIAS indicates the average tendency of the simulated to be larger or smaller than their 

observed values. The PBIAS can be utilized as the indicator of under or over-estimation which 

means negatives PBIAS indicates the under-estimation model generated values with respect to the 

measured values. 

                   PBIAS= 100* 

Observations Standard Deviation Ratio (SDR) 

Observations Standard Deviation Ratio (RSR), RSR is calculated as the ratio of the root mean 

square error and standard deviation of measured data, as shown in the following equation: 

            𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
= [

√∑ (𝑄0−𝑄𝑠
𝑛
𝑡=1 )2

√∑ (𝑄𝑂−𝑄̅𝑂)2𝑛
𝑡=1

]…...……………………………………….. (7) 

STDEVobs  is the standard deviation of observed data of the constituent being evaluated, RSR 

varies from the optimal value of 0, which indicates zero RMSE or residual variation and therefore 

perfect model simulation, to a large positive value.  

3.11. Flood Frequency Analysis Methods 

The data analysis often requires the estimation of parameters for a probability distribution. Before 

the analysis can be done, the parameter for each selected distribution needs to be estimated first, 

even if an acceptable distribution is selected, a proper estimation of parameters is important. 

Hydrologic systems are sometimes impacted by extreme events, such as floods. The magnitude of 

the flood is inversely proportional to its frequency of occurrence. When the magnitude of flood 

predicted accurately it reduces the risk of hazard. To avoid the problem of data dependency, the 

annual maximum flow series model was selected. In addition to this, AM series is widely and 

universally used model by different researchers for the purpose of FFA result, to keep away from 

the concern of requirement on data, AMF series model was chosen for this study.  
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3.12. Goodness of- fit test and selection Probability Distribution 

GOF tests are used to assist in finding the distribution that best fits the given data. These tests 

describe the differences between the observed data values and the expected values calculated from 

the specific distribution in case of parameter estimation. Statistical Software (Easy Fit5.6) trial 

version was used to select the best fit probability distribution with its method of parameter 

estimations, a goodness of fit tests and to check the estimation accuracy of each RCMs and 

observed data. In this study, Distributions fit tests were employed like Anderson-Darling (A-D), 

Kolmogorov-Smirnov (K-S) and Chi-Squared (x2) tests were used for the goodness-of-fit tests. 

These selected distributions have been checked by using the Easy Fit software application weather 

the distribution has goodness of fit test or not for flood series data. 

3.12.1. Probability Distribution and Parameter estimation 

A fundamental step in flood frequency analysis is the selection of an appropriate probability 

distribution model that can accurately simulate the observed flood series. To do this, in this study 

distributions are selected based on best fits of goodness. The selected distribution was Generalized 

Extreme Value method for AM data series. The maximum likelihood estimation (MLE) technique 

generally show less bias and provides a more consistent approach to parameter estimation 

problems. It provides the smallest variance of the estimated parameters, most accurate method, 

especially for large datasets since it leads to efficient parameter estimate distribution.         

3.12.2. Generalized Extreme Value (GEV) Distribution  

The GEV distribution was used to fit the annual maximum discharges using the method of 

maximum likelihood parameter, and estimate changes in the flood levels and has three parameters 

distribution; shape (k), location (), and scale σ). GEV distribution is a combination of three 

different distributions according to the shape parameter, when the k=0, the GEV distribution 

reduces to Gumbel (EV1) distribution, when K < 0), we have Extreme Value type II (Fetchet), 

when K > 0, GEV becomes Extreme Value Type   

QT = 𝜇 +
𝜎

𝑘
(1 − (ln (1 −

1

𝑇
) ^𝑘) 

                                                   k=Shape parameter 

                                           =Location parameter 

                                           σ=Scale parameter 
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3.13. Evaluating flood frequency analysis under climate change 

To evaluate flood magnitude and frequency under climate change after calibrating the hydrological 

model for the study area is extremely crucial. First, for RCM outputs, going to extract climate data 

for RCP 4.5 and RCP8.5 scenarios. The next step, flood frequency scenarios that can represent the 

effect of climate change on flood extremes from acceptable ranges of climate scenario known from 

dynamically downscaled RCM outputs and continuous simulation modeling is developed. The 

downscaled climate scenario consists of maximum temperature; minimum temperature and 

precipitation together was used as input to the hydrological model. The hydrological model was 

simulated a streamflow corresponding to future climate conditions for bias corrected precipitation 

and temperature data under the RCP 4.5 and RCP8.5 scenarios. The baseline period (1971-2000) 

used to define the observe climate with which climate change information is usually combined to 

create a climate scenario while the periods (2041- 2070) and (2071- 2100) were employed for 

future scenarios analysis. 

 3.13.1. Flood magnitude under climate change 

The flood magnitude of future period was compare with baseline flood magnitude at time horizons 

under dominant RCP4.5 and RCP8.5 changes in flood magnitude will be estimated for each 

ensemble under climate scenarios. The quantile estimations for the time horizons (2041-2070) and 

(2071-2100) were used to calculate for the 2, 5, 10, 25, 50,100,200,500 and 1000 recurrence 

intervals under the RCP 4.5 and RCP8.5 scenarios comparison carried out. 

3.14. Conceptual Frame work 

The study required different materials and methods to arrive at the stated objectives. Regionally 

downscaled climate, meteorological, hydrological, digital elevation model, land use and land cover 

and soil data were required. Regionally Downscaled Climate change data derived from HadGEM2-

ES Global climate model outputs that are dynamically downscaled by the CORDEX-Africa 

program using RCA4 regional model for the Representative Concentration Pathway scenario, 

RCP4.5 & RCP8.5 scenarios. Those data were selected to the local impact based on the grid points 

which are fitted to the study area by using bias correction method. The data input is bias-corrected 

by Delta-change and Scaling variance method were used to estimate the future climate change for 

hydrological model and its impact on hydrology of the catchment. 
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                                      Figure 3. 10: General frame work of the study  

 

 

 

 

 

 

 

 

 

Preparation of data input 

Hydrological Data 
DEM Data Meteorological Data CORDEX Data 

Hydrological Model HEC-HMS 

Model Calibration and Validation 

Stream flow Simulation Bias correction under 

RCP4.5 & RCP8.5 
Hypothetical 

scenario 

Flood frequency analysis  

Fitting statistical distribution to 

annual flood series by Easy fit 



 49 

4. RESULTS AND DISCUSSIONS 

 

The analysis of climate change trends in relation to the derivation of climate change scenarios by 

disrupting the observed series with increments deduced from the HadGEM2-ES climate model 

simulations. The spatial resolution of Africa CORDEX-RCMs grid data size is at 50km*50km and 

aggregate metrics for Rainfall, TMin and TMax for the six grid cells spanning of Guder catchment. 

The potential Evapotranspiration is calculated for three sub-basins based on areal temperature by 

Thiessen polygon using TMax and TMin of observed and RCM data. The hydrological studies are 

used to assess the potential consequences of climate change on streamflow in the Guder 

Watershed. The future streamflow data was generated by using RF and temperature data based on 

the calibrated and validation HEC-HMS model. Lastly, analyzing the flood frequency of generated 

streamflow under climate change requires employing the AMS data. 

4.1. Performance evaluation of regional climate model output  

The performance of the model simulation outputs was evaluated by comparing observed and 

RCMs Rainfall extracted to understand in replicating or capturing observed average annual 

rainfall. The comparison was performed to determine the capability of CORDEX RCMs to 

simulate the annual cycles. When comparing the gauged mean annual rainfall to model 

counterparts there have differences, that all the models underestimated the observed Guder 

watershed annual rainfall amount. The mean annual precipitation of overlapped period for Bias 

correction (1986-2000) of Guder watershed which computed by Thiessen polygon, areal RF 

(SB_1, SB_2& SB_3) was 1305.5mm and 1069.51mm for observed and models respectively.   

 

The performance of the CORDEX rainfall simulations assessed under the basis of the time-series 

based evaluation metrics. Mean annual rainfall amount of Guder watershed compared as obtained 

from gauging data and climate model. Three Stastical model performance evaluation criteria 

BIAS, RMSE and R2 were used to evaluate how the RCMs perform in simulating the rainfall as 

shown in table 4.1. RMSE is the absolute error the climate models in simulating the climate 

variables. The smaller the absolute value of BIAS and the smaller RMSE indicates the better is the 

model performance and the vice versa. In terms of BIAS, and RMSE (Root Mean Square) the 

RCA4 model performed best whereas the CCLM4-8 model performed poorest. 
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Table 4. 1:Performance of the CORDEX-RCMs mean annual RF of Guder watershed 

Stastical Evaluation Observed CCLM4-8 RACMO22T RCA4 Ensemble 

Annual RF(mm) 1305.5 1001.5 1066.68 1140.35 1069.51 

Mean 3.57 2.74 2.92 3.12 2.93 

Bias …. -23.279 -18.287 -12.645 -18.07 

RMSE …. 0.838 0.653 0.552 0.761 

R2 …. 0.014 0.019 0.174 0.102 

 

Table 4. 2:Annual mean Rainfall of Guder sub-basins (1986-2000) 

Stations Observed CCLM4-8 RACMO22T RCA4 

Sub-basin_1 886.65 1256.65 1122.61 2157.10 

Sub-basin_2 1329.290 935.19 1041.96 600.99 

Sub-basin_3 1700.46 812.67 1035.48 662.96 

 

 

Figure 4. 1: The Comparison of Annual rainfall of Observed and RCM baseline 
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4.2. Evaluation of Bias Corrected Precipitation and Temperature 

The daily bias corrections between the observed and simulated variables during the control period 

for each RCM models were applied. The output RCP precipitation, maximum and minimum data 

temperature is not directly used for climate change impact assessment. To remove and correct 

uncertainty of between downscaled RCM daily data and the observed climate variables, the bias 

correction is being carried out for Rainfall, TMax and TMin for Guder Watershed. The selected 

method for this study was Delta Change Correction (multiplicative) and Variance Scaling method 

significant corrects the bias raw RCMs respectively for precipitation and temperature. 

The Projected future scenarios have been divided into two successive periods of 30 years based on 

WMO recommendations.  The climate data for baseline period (1971-2000) data with observed 

climate variables for future different RCP’s Scenarios for two horizon time of (2041-2070) and 

(2071-2100) climate data was bias corrected. The mean monthly precipitation, maximum 

temperature and minimum temperature of observed, RCPs uncorrected and RCPs corrected 

compared for the catchment. The RCPs output predictions of precipitation, maximum and 

minimum temperature resembled in producing the observed data for the base period. Therefore, it 

is plausible to use RCPs data output for future prediction for the catchment. 

4.2.1. Bias corrected Precipitation  

The daily bias corrections between the observed and simulated variables during the control period   

for each RCM models were applied. The outputs of the raw RCMs underestimate and overestimate 

the mean monthly rainfall and as compared to an Observed RF. At monthly level, as shown in 

figure 4.2, some months have overestimated RCP precipitation as compared to the observed 

precipitation (January, February, March, and April), while the rest months are underestimated 

especially the three months July, August and September which are found in the main rainy season. 

Areal precipitation has been computed under each scenario for general analysis of precipitation 

over the catchment. The values indicated that mean monthly RF of the area is monomodal, high 

RF relatively recorded in the main rainy season, and low RF recorded in dry season.  
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Figure 4. 2: Monthly Mean of Observed RF and Bias Corrected, Raw RCMs (2041-2100)   

4.2.2. Bias Corrected RCMs Temperature 

The bias corrected mean TMax and TMin in the area shows a good agreement with controlled   

and observed period.  
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Figure 4. 3: Monthly mean of Observed, raw RCMs and Bias Corrected for TMax and TMin 

 

4.3. Mann-Kendal(MK) Trend Analysis 

The Mann-Kendall (MK) non-parametric test is frequently used to quantify the significance of 

time series trends and also employed to detect monotonic trends in time series of climate data, 

hydrological or environmental data.  In this research Mann-Kendal trend analysis across Guder 

watershed and streamflow trend test based on the baseline period (1971-2000) future 

meteorological data from 2041 to 2100. Non-Parametric MK Stastical test was used to detect 

trends RF and Temperature in each three RCMs over the series aggregated to areal mean of 

catchment. If the p value is less than the significance level α = 0.05 Ho, (there is trend), hence, the 

hypothesis is rejected. Rejecting Ho indicates that there is a trend in the time series while accepting 

Ho indicates no trend-detected hypothesis is accepted. Rejecting the null hypothesis implies that 

the result is said to be statistically significant at α = 0.05 level of significance level and Vice versa. 

0

5

10

15

20

25

30

35

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

T
em

p
er

at
u
re

(o
C

)
Monthly TMax Observed and RCMs_RCA4 Raw_4.5

Corrected_4.5

Raw_8.5

Corrected_8.5

Observed Tmax

0

5

10

15

20

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

T
em

p
er

at
u
re

 (
o

C
)

Monthly TMin Observe and RCMs_RCA4 Raw_4.5
Corrected_4.5
Raw_8.5

Corrected_8.5
Observed Tmin



 54 

4.3.1. Trend test of observed hydro-meteorological datasets 

The MK test statistics was applied to the annual mean observed areal Rainfall pattern of Guder 

watershed. Areal annual mean of Observed, baseline and future RF of seven stations over Guder 

watershed is calculated by thiessen polygon method. The computed P-value is greater than 

significant confidence level (5%) and one cannot reject H0.  The result of Mk test showed that 

slightly increase trend in Annual Areal precipitation of Guder watershed. Trend slope magnitude 

is increase by 0.991 mm/year, 0.065°C/year & 0.072°C/year for Precipitation, TMax & TMin 

respectively in observed data of Guder watershed. Depending on the computed p-values of 

Precipitation is greater than the significance level alpha =0.05 its accept the null hypothesis H0, 

TMax & TMin are rejected because of p-values less than the significance level alpha.  

Table 4. 3:MK statistical result of Observed Rainfall, TMax and TMin 

 

Figure 4. 4: Annual Areal observed RF of Guder Watershed 

 

Variables(1986-2018)  Kendall's tau p-value Sen's slope  S Alpha( α) Trend Type 

Precipitation 0.032 0.808 0.991  16 0.05 AcceptH0 

TMax 0.569 <0.0001 0.065   282 0.05 RejectH0 

TMin 0.504 <0.0001 0.072   250 0.05 RejectH0 



 55 

 

Figure 4. 5: MK test of Guder TMax and TMin Observed 

4.3.2. Trend test of future hydro-meteorological datasets for RCP4.5 and RCP8.5 

4.3.2.1. Precipitation Trend test (2041-2100)  

MK trend test of Areal precipitation of Guder Watershed under two scenarios RCP4.5 and RCP8.5 

are tested and their statistic illustrated below. The trend was done for entire period of two horizon 

time which test show that the change is non-significance over the catchment at the given 5% 

interval confidence level and slightly increase with 0.852mm/year ,0.825mm/year two scenarios 

of RCP4.5, RCP8.5 respectively. The computed p-values for RCP4.5 and RCP8.5 are less than the 

significance level α= 0.05, null hypothesis H0 is rejected. 

4.3.2.2. Temperature trend test 

MK trend test of temperature has done under two RCPs scenarios for Maximum temperature and 

Minimum temperature of Guder watershed. Annual average temperature will increase non-

significance for both RCP4.5, RCP8.5 of TMax and RCP8.5 of TMin 0.028ºC/year, 0.051 ºC/year 

and 0.045ºC/year respectively, that reject the null hypothesis H0, and accept the alternative 

hypothesis Ha for average TMin, 0.001ºC/year under RCP4.5 scenarios because of p-value 0.750 

which is greater than alpha level. 
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Table 4. 4:MK Trend test of annual mean areal RF, TMax and TMin of RCP4.5 and RCP8.5 

 

XLSTAT sketches the graph of MK trend automatically for future mean areal RF, TMax and TMin 

show increasing trend over the catchment for the study area was analyzed using the MK test and 

the results in Fig 4.6 revealed that there has a significant increasing trend except for TMin of 

RCP4.5, indicates an increasing trend but not significant at 5% significant level since the p-value 

is greater than the significant level alpha = 0.05. 

 

Figure 4. 6: MK Trend Test Annual Areal Rainfall of RCP4.5 and RCP8.5 (2041-2100) 

Variables   RCP’s Kendall's tau p-value Sen's slope  S Alpha( α) Trend Status 

Precipitation 
RCP4.5 

RCP8.5 

0.543 <0.0001 0.852    836 0.050 RejectH0 

 0.526 <0.0001 0.825 820 0.050 RejectH0 

T Max 
RCP4.5 

RCP8.5 

0.621 <0.0001 0.028    956 0.050 RejectH0 

 0.809 <0.0001 0.051 1246 0.050 RejectH0 

TMin 
RCP4.5 

RCP8.5  

0.030 0.750 0.001   46 0.050 AcceptH0 

 0.827 <0.0001 0.045 1274 0.050 RejectH0 
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Figure 4. 7: MK Trend test for TMax & TMin of RCP4.5 and RCP8.5 (2041-2100) 

4.4. Projected Future Climate Change variables for RCMs 

4.4.1. Precipitation 

The percent change of mean monthly, seasonal and annual RF results showed that the future RF 

variability on the catchment. The hydro-climate variable changes analysis was done between the 

baseline period and projected future data to know the positive or negative difference of change. 

All RCPs projected are decrease up to -1% in all seasonal and annual time except at mid-term 

(2041-2070) of RCP4.5, RCP8.5 and RCP4.5 of long-term (2071-2100) time horizon which 

increase 1-4.6% for CCLM4-8 RCM under Guder watershed. Under RACMO22T model the RF 

is decreased 1-1.5% for both RCP4.5 &RCP8.5 (2041-2100) in all Seasonal and Annual times, 

except RCP4.5 & RCP8.5 of long-term (2071-2100) is increase in Spring, Summer and annual 1-

5% in magnitude. The precipitation changes of RCA4 model will increase by 1% in Spring, 4.5% 

in Summer and 2% in Annual time for RCP4.5 & RCP8.5 of long-term (2071-2100). But during 

the Winter and Autumn of two horizon time of RCP4.5 &RCP8.5 also at the mid-term of Spring, 
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Summer and Annual the RF is decrease by-1%. The Ensemble change RF of Guder watershed 

increase 1-6% in Spring, Summer and Annual at two horizons time of RCP4.5 & RCP8.5, except 

spring season of mid-term RCP8.5. But its decreases 1-2 % for Winter and Autumn under all RCPs. 

 

Figure 4. 8: Monthly, Seasonal and Annual Rainfall percent change of RCMs 
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4.4.2. Temperature Change  

Future projected of Average minimum temperature of Guder watershed under all RCMs and RCPs 

scenarios will increase up to 0.7ºC for two horizons time at all seasons, Annual and Months except 

October for CCLM4-8 & RACMO22T. The average maximum temperature of all RCMs under 

RCP4.5 and RCP8.5 increase in Spring and Winter is 0.3 ºC, also in Annual 0.2ºC at mid-term & 

far term. But during Summer season average of TMax of all RCMs will decrease up to 0.2% for 

(2041-2070) and (2071-2100). TMax During the Autumn season for RCP4.5 & RCP8.5 of 

midterm the magnitude of temperature is decrease up to 0.2ºC and increase up to 0.2ºC at far term 

of RCP4.5 & RCP8.5 under all RCMs.  

 

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

Ja
n

F
eb

M
a
r

A
p
r

M
a
y

Ju
n

Ju
l

A
u
g

S
ep

O
ct

N
o
v

D
ec

S
p
ri

n
g

W
in

te
r

A
u
tu

m
n

S
u
m

m
er

A
n
n
u
alT
em

p
er

at
u
re

 C
h
an

g
e 

(º
C

)

Month, Seasonal & Annual time

Average TMax change of CCLM4-8 (2041-2100) 2041-2070 RCP4.5Mx

2070-2100 RCP4.5Mx

2041-2070 RCP8.5Mx

2071-2100 RCP8.5 Mx

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ja
n

F
eb

M
a
r

A
p
r

M
a
y

Ju
n

Ju
l

A
u
g

S
ep

O
ct

N
o
v

D
ec

S
p
ri

n
g

W
in

te
r

A
u
tu

m
n

S
u
m

m
er

A
n
n
u
al

T
em

p
er

at
u
re

 C
h
an

g
e 

(º
C

)

Month, Seasonal &Annual time

Average TMin change of CCLM4-8(2041-2100) 2041-2070 RCP4.5

2071-2100 RCP4.5

2041-2070 RCP8.5

2071-2100 RCM8.5



 60 

 

 

Figure 4. 9: RCMs average Temperature change 

-0.4

-0.2

0.0

0.2

0.4

F
eb

M
a
r

A
p
r

M
a
y

Ju
n

Ju
l

A
u
g

S
ep

O
ct

N
o
v

D
ec

S
p

ri
n

g

W
in

te
r

A
u
tu

m
n

S
u

m
m

er

A
n
n
u
al

T
em

p
er

at
u
re

 C
h
an

g
e 

(º
C

)

Month, Seasonal & Annual time

Average TMax Change of RACMO22T(2041-2100) 2041-2070 RCP4.5
2071-2100 RCP4.5
2041-2070 RCP8.5
2071-2100 RCP8.5

-0.2

0.0

0.2

0.4

0.6

0.8

Ja
n

F
eb

M
a
r

A
p
r

M
a
y

Ju
n

Ju
l

A
u
g

S
ep

O
ct

N
o
v

D
ec

S
p
ri

n
g

W
in

te
r

A
u
tu

m
n

S
u
m

m
er

A
n
n
u
alT

em
p
er

at
u
re

 C
h
an

g
e 

(º
C

)

Month, Season & Annual

Average TMin Change of RCM RACMO22T(2041-2100) 2041-2070 RCP4.5

2071-2100 RCP4.5

2041-2070 RCP8.5

2071-2100 RCP8.5

-0.4

-0.2

0.0

0.2

0.4

Ja
n

F
eb

M
a
r

A
p
r

M
a
y

Ju
n

Ju
l

A
u
g

S
ep

O
ct

N
o
v

D
ec

S
p
ri

n
g

W
in

te
r

A
u
tu

m
n

S
u
m

m
er

A
n
n
u
al

T
em

p
er

at
u
re

 C
h
an

g
e 

(º
C

)

Month, Seasonal & Annual time

Average TMax change of RCA4 (2041-2100)
2041-2070 RCP4.5
2071-2100 RCP4.5
2041-2070 RCP8.5
2071-2100 RCP8.5

0.0

0.2

0.4

0.6

0.8

Ja
n

F
eb

M
a
r

A
p
r

M
a
y

Ju
n

Ju
l

A
u
g

S
ep

O
ct

N
o
v

D
ec

S
p

ri
n
g

W
in

te
r

A
u
t…

S
u
m

…

A
n
n
u

al

T
em

p
er

at
u
re

 

C
h
an

g
e(

ºC
)

Month. Seasonal & Annual time

Average TMin Change of RCA4 (2041-2100) 2041-2070 RCP4.5
2071-2100 RCP4.5
2041-2070 RCP8.5
2071-2100 RCP8.5



 61 

4.5. HEC-HMS Hydrological Model Results 

The HEC-HMS program was selected for the current study due to its versatility, capability for flow 

generation, automatic parameter optimization, and its connection with GIS through HEC-Geo-

HMS. The systematic search for the optimum parameter is carried out using automatic HEC-HMS 

Model parameter optimization from the model compute toolbar regarding observed flow of Guder 

watershed. 

4.5.1 Model sensitivity Analysis 

Sensitivity analysis is a process of selecting powerful parameters which can significantly affect 

model simulated result. To find the best value relate to observed and simulated streamflow of the 

catchment. Optimization of objective function needs changing of parameters to find the best value 

to relate observed and simulated daily streamflow. The sensitivity parameters are selected from 

the value of sensitivity function the results showed that with respect to peak flood magnitude, the 

event model was most sensitive the initial. In terms of peak discharge, the event model was most 

sensitive to the recession constant of base flow. Recession constant and ratio to peak were found 

to be the most sensitive parameters for the simulated stream flow for all the three sub basins. In 

this analysis sensitive analysis adopted for evaluating the model parameters were CN or loss, SCS 

Unit hydrograph (Transforming), Routing (Muskingum), Recession Constant, Ratio to peak. 

4.5.2.  Model Calibration and Validation  

For this research, HEC-HMS model output results including Simulation, Calibration and 

Validation of flow data for observed period 1986-2009. The model was calibrated at the Guder 

watershed Outlet for the period of 1989 to 2002 daily data, where the three years (1986-1988) were 

used to “warm-up” the model. The period starting from 2003 to 2009 was used as validation period. 

The details for calibration and validation with their values of optimization criteria including model 

parameters are illustrated below. Model parameters were calibrated manually followed by HEC-

HMS automatic optimization until the satisfactory agreement between simulated and observed 

flow was obtained. The model goodness of fit and the model performance was evaluated after 

adjusting the parameters.  The optimization parameter value has taken for future simulation of the 

outflow using climate scenarios RCP4.5 and RCP8.5. 
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Table 4. 5:Calibrated initial value and Optimized Parameters  of the sub-watershed 

Element Parameter Initial Value Optimized Value 

 

 

Sub-basin_1 

 

Curve Number(CN) 

Loss (Initial Abstraction) 

Peak to ratio 

Recession Constant 

74.355   

 9.3312 

 0.6954 

 0.3920 

           73.063 

            9.2999 

0.7137 

0.3832 

 

 

Sub-basin_2 

 

Curve Number(CN) 

Loss (Initial Abstraction) 

Peak to ratio 

Recession Constant 

Routing (Muskingum K) 

Routing (Muskingum X) 

79.358 

12.312 

  0.3945 

  0.89484 

  28.560            

  0.3846  

78.936 

11.890 

            0.3743 

0.84517 

28.626 

0.39698 

 

 

Sub-basin_3 

 

Curve Number(CN) 

Loss (Initial Abstraction) 

Peak to ratio 

Recession Constant 

Routing (Muskingum K) 

Routing (Muskingum X)  

  80.578 

  13.256 

  0.4264 

  0.8360 

 32.645 

 0.28642 

            81.794 

14.622 

0.4178 

0.8286 

33.202 

0.26715 

The model has been calibrated systematically and automatically to optimize for best possible 

option to identify and gives the trial of parameters depending on objective function. By rerunning 

the automatic calibration process used to minimize objective functions, like sum of the absolute 

error, sum of the squared error, percent error in peak, and peak weighted root mean square error 

by inspecting concurrently streamflow volume and peak flow depth. The model well-predicts 

streamflow depth and peak streamflow respectively values in the watershed with the optimized 

parameters. Since the goal of calibration scheme is to find reasonable parameters that yield the 

minimum value of the objective function. Hence for this study the peak-weighted root mean square 

error (RMS) objective function has been used.  



 63 

 

Figure 4. 10: Guder Stream Flow Calibration graph (1989-2002) 

The process of assessing the performance of a hydrologic model requires both visual inspections 

and mathematical estimate of the error between the simulated and observed hydrologic variable. 

Different efficiency criteria are used to evaluate performance of hydrologic models; such as the 

Nash-Sutcliffe efficiency, coefficient of determination and volume difference are frequently used 

in hydrologic modeling. The performance evaluation measure of the model for the calibration 

period of the model showed in below table 6. Thus, the statistical test of error function value of 

RMSE and PBias as 0.7 and 10.22% respectively and also the values of R2 and NSE between the 

observed and simulated data obtained as 0.74 and 0.76 respectively. The model performed good 

during the calibration and validation period which is acceptable the efficiency criteria for model 

evaluation. 

Table 4. 6:Statistical performance evaluation of HEC-HMS  

                Performance evaluations 

Modeling type RMSE R2 NSE PBias 

Calibration 

 Validation 

0.7 

0.7 

0.76 

0.79 

0.73 

0.76 

10.22 

            11.78 
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Figure 4. 11: HEC-HMS calibration performance of Guder streamflow 

During the simulation process, the observed data of areal precipitation, areal evapotranspiration 

and observed streamflow at Guder station for Validation results show that there is good agreement 

between the observed and simulated daily flows. Fig:4.7 reveals that the simulated streamflow 

hydrograph is close to the observed one in the study watershed.  The peak streamflow recorded at 

Guder river gages on 14 August 2006.  As the values of statistical test error function are very small 

and Nash-Sutcliffe model efficiency (NSE) is greater than 0.5 then the model is validated. Thus, 

the validation result for the period 2003-2008 the value of RMSE and PBias are 0.7 and 11.78% 

respectively. Whereas the value of NSE 0.76 and R2 0.79 and hence the result indicates that a close 

relationship between the observed and simulated streamflow. 
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Figure 4. 12: Guder Stream flow Validation 

Table 4. 7: Simulated and observed streamflow peak of calibration and validation 

                                                   Peak streamflow m3/s 

Modeling type Simulated Observed Percent  difference 

Calibration 

 Validation 

1442.4 

1896.7 

1371.8 

1812.9 

5.2 

4.6 

 

4.6. RCP scenarios future simulated streamflow change  

In this research, future climate projected precipitation and Temperature (TMax and TMin) 

HadGEM2-ES of three RCMs model data under two RCP’s scenarios were used. HEC-HMS 

hydrological model is used to simulate the future streamflow for Mid-term (2041-2070) and far 

term (2071-2100) periods for Guder catchment.  The RCMs RF bias corrected climate data for the 

period of 2041-2100 of two time horizons was used as input to HEC-HMS to simulate discharge 

at outlet of Guder watershed under RCP4.5 and RCP8.5. Observed streamflow for period of 1986-

2009 and baseline period of 1971-2000 streamflow data was compared with simulated streamflow 

data under RCP4.5 & RCP8.5. Finally, the potential discharge changes were explored in these time 

horizons with respect to observed discharge data and simulated flow for the baseline period to 
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determine the future discharge changes. The model outputs analyzed in order to quantify the mean 

change of streamflow monthly, seasonal and annual in the study area of Guder watershed. Annual 

maximum streamflow simulated of all RCMs are in Appendix B.  

4.6.1. Monthly Stream Flow Change Analysis 

 The mean Monthly streamflow change shows almost increase in all RCMs under   RCP4.5 and 

RCP8.5 in both terms, a condition has shown increment in magnitude when compared with a 

baseline period.  The maximum incremental value of both terms are 35% under RCP4.5 and 

RCP8.5 of all RCMs. This will happen because of the expectation in precipitation for future both 

periods under all RCP scenarios shows incremental change. Starting from April to Oct, the average 

streamflow will show increasing for mid-term and long-term periods under all RCP’s scenarios. 

The minimum change of the streamflow happens in Jan and Feb months decrease (-1%) for RCP4.5 

and RCP8.5 in mid-term and long-term periods of All RCMs except RACMO22 of mid-term. The 

mean stream flow decreased in the main rainy season (Jun- July) of RACMO22T for RCP4.5 and 

RCP8.5 scenarios, while mean annual stream flow will be increased Sept-Oct in mid-term.  

The impact of climate change in precipitation and temperature has produced a significant change 

on stream flow. The CCLM4-8, RACMO22T and resulted different projection response to climate 

change over the basin. The result shows that, mean monthly and annual stream flow will increase 

for most months for both future periods of RCP4.5 and RCP8.5 scenarios. Maximum streamflow 

change projected during the month of July +35.15% under RCP 4.5 of RCA4 and the minimum 

change Jan to Feb -1% under RCP 4.5 and RCP8.5 of both term except RACMO22T. The average 

monthly streamflow at the watershed outlet from three climate models was projected to increase 

for all simulation periods (2041-2070), and 2071-2100) under two emission scenarios RCP 4.5 and 

RCP 8.5. The following figures shows monthly, seasonal and annual mean streamflow change for 

two periods under all RCP scenarios. 
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Figure 4. 13: Monthly, Seasonal and annual average stream flow change of RCMs 
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4.6.2. Seasonal stream flow change in the Long-term and Mid-term 

Seasonal stream flow change showed an increase in Spring (2-19%), Autumn (0.44-6.2%) and 

Summer (0.48-13.11%) for all RCMs under RCP4.5 and RCP8.5 of both terms. The Winter season 

flow shows a considerable decrease (-1%) in average change in under RCP4.5 and RCP8.5 

scenarios for both terms except mid-term of RACMO22T. The Annual result is decrease in all 

term except, long term of RACMO22T for RCP4.5 7 RCP8.5.  The percentage change of projected 

streamflow Summer seasons all RCMs shows increment compared to baseline period. 

Table 4. 8: Seasonal and Annual stream flow of RCMs under RCP4.5 and RCP8.5 

Model Horizon T. RCPs Spring Winter Autumn Summer Annual 

 

 

CCLM4-8 

Mid-term 

 

RCP4.5     3.96       -0.90            -0.42           7.55           -0.52 

RCP8.5    2.39        -0.90     0.44           0.78            -0.64 

Long term RCP4.5   -0.12        -0.99           0.69          7.02             -0.14 

RCP8.5   0.08        -0.99            0.62           5.93             -0.32 

 

 

RACMO22T 

Mid-term RCP4.5  7.35       4.62    1.63            0.67            0.05 

RCP8.5 6.98         4.76          1.17            0.57            -0.09 

Long term RCP4.5    18.96      -0.65           0.70            10.00          1.07 

RCP8.5    18.89       -0.38          0.60            9.58            1.00 

 

 

RCA4 

Mid-term 

 

RCP4.5    0.88         -0.85           6.20           12.10         -0.24 

RCP8.5    5.52         -0.73           1.16           13.11          -0.34 

Long term RCP4.5    3.23        -0.93           -0.53           0.48          -0.79 

RCP8.5    7.42        -0.92            2.41            0.35          -0.66 
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4.7. Flood Frequency Analysis  

4.7.1. Probability Distribution  

Frequency analyses of hydrologic and meteorological data use probability distributions to relate 

the magnitude of extreme events to their frequency of occurrence. In this research, Generalize 

Extreme value, Gumble Max, Log Pearson type III and Lognormal distribution were considered 

and the comparison was made based on Goodness of test result. Frequency analysis was done for 

observed and simulated future streamflow for Guder watershed under different RCP’s scenarios. 

Flooding events with return periods 2, 5, 10, 25, 50, 100, 200, 500, and 1000 year were computed 

using the simulated streamflow at the basin outlet. Simulated flooding events from three RCMs 

under RCP 4.5 and RCP 8.5 were compared against observed flooding events and percentage 

change was computed. 

The best fit distributions were checked by using Easy fit software. To obtain the best-fit 

distribution to the annual maximum flow series, and the most commonly adopted goodness-of-fit 

tests such as Kolmogorov-Smirnov, Anderson-Darling and Chi- squared and P-P and Q-Q plots 

were applied. The best-fit result of time data series was taken as the distribution with the lowest 

sum of the rank orders from each of the three test statistics. This GOFs at 5% level of significance 

was used to define the best-fit ranking using Easy Fit Statistical Software.    

4.8. Goodness-of-Fit Test 

The goodness of fit test was performed for all distributions using K-S, A-D and Chi-Squared 

methods AM time series data and the assessment of the best probability distribution was based on 

the total rank obtained from all the tests. The best-fit result was taken as the distribution with the 

lowest sum of the rank orders from each of the three test statistics. This GOFs at 5% level of 

significance was used to define the best-fit ranking using Easy Fit Statistical Software. The 

selection of distribution for the AM data series is based on the goodness of fit. The probability 

distribution having the first rank along with their test statistic was presented table below and 

Appendix-C. The results were summarized in table 4.8 and table 4.9 for CCLM4-8 of RCP4.5 mid 

and long term respectively using the three tests, it was detected that generalized extreme value 

distribution for both terms provides the best fit to the AMS data.  Based on the overall analyses 

three test statistics the generalized extreme value distribution proved to be the robust distribution 

for flood frequency analysis over different spatial scales in the study area. 
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Table 4. 9: GOF test values for selected distributions of CCLM4-8_RCP4.5_Mid-term 

 Distribution 

K-S A-D Chi-Squared 

Statistic Rank Statistic Rank Statistic Rank 

1 GEV 0.06871 1 0.23604 1 1.9945 5 

4 Lognormal 0.07599 3 0.24253 2 1.1193 3 

2 Gumbel Max 0.07298 2 0.24406 3 1.2887 4 

5 Lognormal (3P) 0.08178 4 0.25284 4 1.1016 1 

3 Log-Pearson 3 0.08403 5 0.25895 5 1.1107 2 

 

Table 4. 10: GOF test values for selected distributions of CCLM4-8_RCP4.5_Long-term 

 Distribution 

K-S A-D Chi-Squared 

Statistic Rank Statistic Rank Statistic Rank 

1 GEV 0.12908 2 0.35183 1 0.78399 1 

2 Gumbel Max 0.13859 4 0.45827 5 0.82536 4 

3 Log-Pearson 3 0.13382 3 0.3726 2 0.79429 3 

4 Lognormal 0.13999 5 0.40436 4 0.8375 5 

5 Lognormal (3P) 0.12365 1 0.3799 3 0.78492 2 

 

 

 

 

unsaved://ThtmlViewer.htm/orderBy=Name|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/orderBy=KS|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/orderBy=AD|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/orderBy=CS|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/#detailsId=1|Shows the details.
unsaved://ThtmlViewer.htm/#detailsId=4|Shows the details.
unsaved://ThtmlViewer.htm/#detailsId=2|Shows the details.
unsaved://ThtmlViewer.htm/#detailsId=5|Shows the details.
unsaved://ThtmlViewer.htm/#detailsId=3|Shows the details.
unsaved://ThtmlViewer.htm/orderBy=Name|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/orderBy=KS|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/orderBy=AD|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/orderBy=CS|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/#detailsId=1|Shows the details.
unsaved://ThtmlViewer.htm/#detailsId=2|Shows the details.
unsaved://ThtmlViewer.htm/#detailsId=3|Shows the details.
unsaved://ThtmlViewer.htm/#detailsId=4|Shows the details.
unsaved://ThtmlViewer.htm/#detailsId=5|Shows the details.


 71 

     Table 4. 11:Fitting results for probability distribution of annual flood CCLM4-8 of RCP4.5  

  CCLM4-8_RCP4.5_Mid-term CCLM4-8_RCP4.5 Long-term 

 Distribution         Parameters Parameters 

1 GEV 
 k=0.03112   =276.1  

=1208.7 

k=0.05225   =449.64   

=1538.5 

2 Gumbel Max =259.94  =1209.8 =404.49  =1542.3

3 Log-Pearson 3 
=359.4    = 0.01285  

=11.804 

=974.86   =0.0093   

=-1.6275

4 Lognormal =0.23948  =7.1866 =0.28503  =7.4414

 Lognormal (3P) 
=0.20561   =7.338  

   =-210.72 

=0.39242   =7.1175  

=446.31

Where; k = shape parameter, 𝜎 = scale parameter and 𝜇 = location parameter  

4.9. Quantiles Estimation and Magnitude Change 

Flooding events with return periods were computed using the simulated streamflow at the basin 

outlet. Simulated flooding events from Three climate models under RCP 4.5 and RCP 8.5 were 

compared against observed flooding events. Annual maximum discharge series were extracted for 

each hydrological was selected AM single value to each year. GEV distributions and Maximum 

Likelihood Estimation (MLE) was used to estimate magnitude of recurrent period.  

After estimating parameters for the selected best-fit distributions, the extreme flow quantile (QT) 

corresponding to different return periods, T in years were computed from the statistics of the 

adopted distribution. An annual maximum event has a recurrence interval of T years if its 

magnitude is equaled or exceeded once on the average of every T year. The results of estimated 

extreme flow quantiles from observed and simulated AM discharge for three RCMs in both terms 

of Guder watershed shown in Table 4.12 for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, 500 

and 1000 years. The result indicated that RACMO22T for both terms of RCP4.5 and RCP8.5 

revealed high quantile estimates.  
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Table 4. 12: Quantile Estimated in(m3/s)  and return period for mid-term 

Return 

period 

Observed          RCA4   CCLM4-8     RACMO22T 

 RCP4.5   RCP8.5  RCP4.5   RCP8.5 RCP4.5 RCP8.5 

2 1290.484 1622.580 904.044 1310.463 1082.282 2669.477 2289.755 

5 1492.533 1860.355 1119.476 1632.654 1418.618 2854.910 2668.572 

10 1672.188 2053.670 1247.256 1852.283 1670.646 3002.936 2917.853 

25 1767.321 2256.429 1393.547 2137.255 2026.927 3087.584 3122.810 

50 1879.110 2506.457 1492.123 2354.089 2321.566 3226.003 3369.009 

100 1995.513 2916.191 1582.311 2574.117 2642.367 3494.043 3626.872 

200 2056.444 3198.289 1665.174 2798.227 2992.808 3819.509 4067.749 

500 2271.260 3884.978 1764.729 3101.369 3507.115 4238.592 4597.474 

1000 2533.782 4400.743 1833.230 3336.231 3939.380 4742.377 4744.485 

 

Table 4. 13: Return period and flood magnitude in(m3/s) for Long-term  

Return 

Period 

Observed  `              RCA4       CCLM4-8       RACMO22T 

 RCP4.5       RCP8.5 RCP4.5 RCP8.5  RCP4.5      RCP8.5 

2 1290.484 1696.645 1568.871 1704.845 1989.683 2778.583 2623.627 

5 1492.533 1863.543 1796.753 2240.024 2321.050 3123.188 2872.118 

10 1672.188 1981.399 1985.979 2612.240 2672.159 3481.831 3044.291 

25 1767.321 2139.419 2279.944 3111.990 2983.396 3864.693 3398.545 

50 1879.110 2263.604 2546.074 3484.611 3375.628 4056.311 3607.013 

100 1995.513 2393.052 2859.126 3876.628 3541.506 4668.043 4010.569 

200 2056.444 2528.457 3228.417 4281.760 3865.486 5090.307 4482.312 

500 2271.260 2717.470 3623.425 4839.245 4179.877 5270.441 5321.198 

1000 2533.782 2868.580 4233.638 5278.696 4467.226 5504.207 5558.596 
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The flood quantile obtained using generalized extreme value distribution for AM flood data series 

with all goodness of fit tests used globally for flood forecasting. The results in both tables show 

the change of flood magnitude for different future stream flow data under RCP scenarios in 

different return periods to the observed stream flow. In the future, the change of flood magnitude 

from CCLM4-8 and RACMO22T in AM series show increasing in all return periods for RCP4.5 

and RCP8.5 of both terms by 1.2 %and 1.4% respectively. But RCA4_RCP8.5 mid-term of return 

period shows decrease changes in all return periods with magnitude of -0.3%. while 

RCA4_RCP4.5 long-term is increased. Flood magnitude of RCMs for long term will be increase 

under RCP4.5 and RCP8.5. The result of magnitude change analysis shows increasing future 

stream flow in dominant RCP scenarios for both near-term and mid-term periods. 

 

Figure 4. 14: Flood Magnitude change  for RCP4.5 and RCP8.5 of both terms 
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4.10. Flood Frequency Curves 

Flood frequency curves were developed by drawing for each RCM return period T versus the 

estimated extreme flood quantile QT smooth curve to provide an estimate of the intensity of a flood 

event and point on a stream shows how often flood discharges magnitudes equaled or exceeded. 

 

Figure 4. 15: Flood Frequency Curve of Observed and RCMs Quantiles estimated 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. CONCLUSIONS 

Impact of climate change is a major threat to world wide problem of natural global climatic 

phenomena and anthropogenic factors leading to more frequent flooding and a substantial loss of 

lives and properties. Hydrological modeling and flood frequency analyses have used together with 

climate scenario data to develop projections for the impact change on the flood flows.   The impact 

climate change on flood frequency represents an important issue for water resources planning and 

design of various water resources projects, and flood risk mitigation, especially relevant for policy 

makers, those charged with the responsibility of selecting appropriate adaptation measures.   

This study utilized the gridded bias-corrected climate scenarios data for the future (2041-2100), 

the observed climate data for 1986- 2018 and baseline (1971-2000). The future impact of climate 

change on hydro-meteorological characteristics of the catchment has been studied like: RF, TMax 

and TMin and Potential ET for (2041- 2070) and (2071-2100) using CORDEX data output, under 

RCP4.5 and RCP8.5 scenarios for future streamflow generation is by HEC-HMS. The values of 

performance efficiency of the HEC-HMS good agreement in both calibration and validation 

according to performance evaluation. The Regional climate models performances were evaluated 

for three climate models in terms of RMSE, R2 PBIAS, show that RCA4 has best performance.  

Man-Kendal(MK) trend test was done for observed and projected hydro climatic variables of 

precipitation, temperature (max and min) at 5% confidence level. Result of observed areal 

precipitation of Guder watershed shows slightly increase trend. Also, future precipitation under 

different RCP’s scenarios for long-term period show non-significance over the catchment at the 

given 5% interval confidence level and slightly increase with 0.852mm/year ,0.825mm/year two 

scenarios of RCP4.5, RCP8.5 respectively both terms. The minimum and maximum temperature 

shows increasing trend for all RCP’s. 

Generally, the analysis was conducted to investigate the possible increase in the flood frequency 

in the future for various return periods including 2-, 5-, 10-, 50-, 100-, 200-, 500- and 1000 year 

compared to Observed flood frequency using GEV probability distribution and ML parameter 

estimation method.These long-term hydrologic predictions using projected climate data may 

provide the basis for the water resources managers or decision-makers to develop flood regulating 

strategies, especially when there is a likelihood of overflow of the flood regulating reservoir.  
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5.2. RECOMMENDATIONS 

This research set target to analysis the impact of climate change on flood frequency of Guder 

watershed under RCP’s scenarios. Based on the result of the study, the following points are   

recommended.   

 For assessing climate change impact on this study, only three RCMs of the same family 

GCM model with different emission RCP’s scenarios (RCP4.5 and RCP8.5) scenarios was 

used.  But, the result may not be the same if different climate models were used. So, it is 

better to study further by including different climate models.  

 In this study, only climate variable parameters (precipitation, maximum temperature and 

minimum temperature) were used for future climate change impact analysis. But, all other 

parameters assumed as constant. The future study must include other parameters like: ETo, 

change in land use, soil, management activity and other climate parameters to get better 

results. Because, they have direct and indirect impact on flood frequency. 

 In this study, the impact of climate change was assessed on the assumption that land cover 

will remain the same going forward. But for the future, LULC must be consider because 

of urbanization expansion, deforestation and agricultural development change the volume 

of runoff will be increase which leads to flooding events. 

 For simulation of observed and future stream flow in HEC-HMS, the daily stream flow 

data was used and it is the minimum requirement allowable data for simulation. But, for 

further model performance, it is better to use hourly and less time data depending on data 

availability to increase its accuracy.  

  In last, as discussed under result part the future flood frequency expected to increase in 

the study area. Any regarding body, stockholders and development water planners must 

take into account the increment of summer and spring seasons precipitation and its causes 

on both seasons stream flow leads increasing frequent flood on rural livelihoods at 

downstream.   
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APPENDICES 

Appendix A:  Annual Rainfall data homogeneity tests of Meteorological stations. 
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Appendix B: Annual maximum Simulated streamflow of all RCMs for Mid and Long term  

CCLM4-8 Mid-term 

simulated Streamflow  

 CCLM4-8 Long-term 

simulated Streamflow  

Year RCP4.5 RCP8.5 Year RCP4.5 RCP8.5 

2041 1358.3 1346.4 2071 1223.7 475.4 

2042 1815 1771.9 2072 2452.2 2989.6 

2043 1068.6 836.4 2073 1455.9 1551.1 

2044 1240 1243.8 2074 1333.3 984.8 

2045 1353.1 1348.7 2075 1196.9 977.7 

2046 695.8 681.9 2076 1392.8 1704.7 

2047 1660.7 1247.4 2077 1378.4 2280.4 

2048 2289.5 1636.4 2078 2178.8 3311 

2049 1222.6 895.1 2079 1688.9 808.5 

2050 1921.2 1399.7 2080 1727.8 1211 

2051 1391 1402.4 2081 2081.6 1533.3 

2052 1609 1148.2 2082 1327.9 883.3 

2053 1076.1 1035 2083 1957.9 1954.9 

2054 1128.2 821.8 2084 2092.4 3275 

2055 1318.4 942.2 2085 1725.8 1662.6 

2056 1149.2 1067.4 2086 2235.3 1870.5 

2057 1015.3 1000.3 2087 1367.2 1317.2 

2058 1477.8 1133.6 2088 1399.1 2376.3 

2059 1455.6 1442 2089 1100.8 2556.1 

2060 1396.2 1366.5 2090 1777.3 3478.3 

2061 1036.9 997.2 2091 2044.3 1488.6 

2062 1151.6 666.3 2092 2318.8 1720.4 

2063 1388.6 835.6 2093 2802 3173.1 

2064 952.3 935.3 2094 985.5 3169.8 

2065 1164.4 677.6 2095 2316.6 3001.3 

2066 1631.1 1347.1 2096 2912 2768.6 

2067 1192.5 885 2097 1473.8 1843.4 

2068 1142.6 855.8       

2069 1737.1 1164.6       

2070 1756 1005.4       
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Mid-term RACMO22T 

Simulated streamflow 

Long term RACMO22T 

Simulated streamflow 

Year RCP4.5 RCP8.5    Year RCP4.5 RCP8.5 

2041 3162.5 2711.8 2071 2090.1 2009.2 

2042 3446.9 3144.8 2072 3189.7 2868.4 

2043 2456.6 1783.4 2073 2420.5 2259.4 

2044 2942.1 2569.1 2074 1754.4 1688.7 

2045 2850.6 2784.5 2075 2144.2 2028.5 

2046 1474.3 1434.9 2076 2952.2 2861.2 

2047 3259.2 2663.9 2077 2501.2 2426.5 

2048 3254.6 3437.7 2078 2822.1 2551.1 

2049 2883.6 2047.1 2079 2312.3 2229 

2050 3334.6 3074.7 2080 2241.8 1990.5 

2051 2974.5 2917.1 2081 3155.5 3050.6 

2052 2621.1 2461.7 2082 2040.6 1972.6 

2053 2032.4 2003.4 2083 3323.1 3231.9 

2054 2667.9 1885.7 2084 3037.5 2936.4 

2055 3135.8 2183.3 2085 2731.5 2638.3 

2056 2209.4 2148.8 2086 2847.5 2497.7 

2057 2125.9 1976.5 2087 2879.8 2786.8 

2058 3465 2550.4 2088 2978.1 2887.7 

2059 3277 2810 2089 2377.8 2313.7 

2060 2937.1 2862.8 2090 2622.6 2543.6 

2061 2483.5 2144 2091 2640.3 2571.2 

2062 1752 1224.8 2092 2940.6 2831 

2063 2579.8 1866.1 2093 3392.6 3129.5 

2064 1967 1924.4 2094 2028.3 1836.1 

2065 1793.3 1380.2 2095 3023.5 2673.6 

2066 3014.9 2700.6 2096 3345.3 2910.5 

2067 2810.7 2006.6 2097 3155.2 3065.6 

2068 2619 1897       

2069 3213.3 2355.3       

2070 1840.4 1489.7       
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Mid-term  RCA4 simulated 

Streamflow 

Long term RCA4 simulated  

streamflow   

Year RCP4.5 RCP8.5 Year RCP4.5 RCP8.5 

2041 2106.2 699.9 2071 1632.2 1402.4 

2042 2342.4 1463.7 2072 1686.4 1337 

2043 2764.7 1442.9 2073 1680.9 1340.7 

2044 3175.3 947.5 2074 1574.8 1437.6 

2045 3107.4 1233.2 2075 1576.8 1246.2 

2046 1591.4 700.8 2076 1820.4 1727.7 

2047 2044.1 826.4 2077 1951.9 1534.4 

2048 2571.8 763.4 2078 1607.1 1705.8 

2049 3175.2 611.7 2079 1580 1408.3 

2050 3132.7 837.4 2080 1646.8 1412.6 

2051 2261.6 1109.9 2081 1786.4 1624 

2052 1863.4 1234.7 2082 1908.6 1680.9 

2053 2425.6 840.7 2083 2069.1 1801.8 

2054 2918 965.3 2084 1547 1514.5 

2055 1977.3 843.8 2085 1703.2 1576.2 

2056 2518.7 732.1 2086 1918.7 1591.3 

2057 2386.1 647.9 2087 1518.5 1451.9 

2058 1612.7 1412 2088 1895.4 1639.9 

2059 2417.1 917.3 2089 1504.8 1574.4 

2060 2206 1243.8 2090 1713.7 1606.9 

2061 2712.1 1172.5 2091 1715.9 1601.1 

2062 1837.2 728.3 2092 1820.3 1479.7 

2063 2895.7 1678.5 2093 1735.5 1991.5 

2064 2199 729.7 2094 1484.5 1553.9 

2065 1904.8 799.9 2095 1946.8 1644.6 

2066 2140.5 981.1 2096 1601.8 1698.3 

2067 3124.7 763.6 2097 1712.1 1758.8 

2068 2933.3 1487.1    

2069 2481.8 842.3    

2070 1557.9 670.5    
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Appendix: C Goodness fit test results of Probability distribution for RCMs 

  CCLM4-8_RCP 8.5_Mid-term CCLM4-8_RCP8.5 Long-term 

 Distribution         Parameters Parameters 

1 GEV 
k=0.13195   =262.12  

 =983.85 

k=0.20179   =871.68  

 =1658.1 

2 Gumbel Max =221.2  =976.88 =692.85  =1613.7

3 Log-Pearson 3 
=587.35   =0.01068   

=13.25 

=7.8651   =0.18209   

=8.9283 

4 Lognormal =0.25458  =6.9751 =0.50113  =7.4961

5 Lognormal (3P) 
=0.24684   =7.006  

 =-32.455 

=0.15896   =8.6037  

 =-3507.1

 

  RACMO22T RCP 4.5 Mid RACMO22T RCP4.5 Long 

 Distribution         Parameters Parameters 

1 GEV 
k=0.57906   =634.62  

 =2567.1 

k=0.46105   =508.09  

 =2575.7 

2 Gumbel Max =438.4  =2433.1 =357.91  =2495.2

3 Log-Pearson 3 
=5.0591   =0.10236   

=8.3897 

=10.673   =0.05474   

=8.471 

4 Lognormal =0.22636  =7.8719 =0.17548  =7.8868

5 Lognormal (3P) 
=0.0316   =9.779   

=-14983.0 

=0.03782   =9.3988   

=-9376.8
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  RACMO22T RCP 8.5 Mid RACMO22T RCP8.5 Long 

 Distribution       Parameters Parameters 

1 GEV 
k=-0.25732   =566.3  

 =2072.1 

k=0.47453   =476.19   

=2433.0 

2 Gumbel Max =438.15  =2028.4 =334.69  =2354.6

3 Log-Pearson 3 
=18.252   =-0.06074   

=8.81 

=10.267   =0.05539   

=8.3971 

4 Lognormal =0.25515  =7.7013 =0.17418  =7.8283

5 Lognormal (3P) 
=0.05107   =9.2909   

=-8569.1 

=0.03454   =9.4125   

=-9693.8

 

  RCA4 RCP 4.5 Mid-term RCA4 RCP4.5 Long-term 

 Distribution       Parameters Parameters 

1 GEV 
k=-0.27833   =212.98  

 =1540.4 

k=0.06984   =137.76   

=1645.7 

2 Gumbel Max =389.37  =2188.1 =121.72  =1646.0

3 Log-Pearson 3 
=37.571   =-0.03491   

=9.0786 

=30.98   =0.0161   

=6.9451 

4 Lognormal =0.21039  =7.767 =0.08795  =7.444

5 Lognormal (3P) 
=0.04638   =9.2677  

 =-8186.7 

=0.36621   =5.9916  

 =1289.1

  RCA4 RCP 8.5 Mid-term RCA4 RCP8.5 Long-term 

 Distribution       Parameters Parameters 

1 GEV 
k=0.11627   =211.69   

=828.1 

k=0.24232   =159.86   

=1507.6 

2 Gumbel Max =231.21  =844.14 =127.04  =1494.9

3 Log-Pearson 3 
=16.114   =0.07135  

 =5.6943 

=16045.0   =8.1875   

 =20.49 

4 Lognormal =0.28159  =6.844 =0.10177  =7.3525

5 Lognormal (3P) 
=0.72464   =5.8227   

=546.37 

=0.09742   =7.3963   

=-69.378

 


