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Abstract

In this thesis we studied the radiation of particles infalling into compact objects

where General Relativity Field Equations (GRFEs) were used. In particular the

Schwarzschild and Kerr black holes were considered. The radiation is considered to

occur at the horizons due to the strong gravity of the compacts. The calculated total

energy radiated and the time of fall into the black holes depend both on the black

hole and the falling particles dynamical parameters specification. For mathematical

analysis the latest Mathematica 11.3 was used. The results are in good agreement

with the works of the others. Specially, the falling of particles into Schwarzschild

black hole fits with that of the results of Zerilli (1970).

Key words: GRFEs, Schwarzschild metric, Kerr metric, COs, event horizon, elec-

tromagnetic radiation, gravitational radiation.
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Chapter 1

Introduction

1.1 Background and Literature Review

In astronomy, the term compact objects (compact stars) is used to refer collec-

tively to white dwarfs, neutron stars, other exotic dense stars and black holes. Their

compactness gives them many extreme properties which make them relevant for the

high energy astrophysics, emission of X-rays and Gamma-rays [1]. When a star has

exhausted all its fuel, the gas pressure of the hot interior can no longer support the

weight of the star and the star dies by collapsing to a denser state, then a compact

star is born [2].

A low-mass star, such as our Sun, will end up as a white dwarf, in which the

degeneracy pressure of the electron gas balances the gravity of the object. For a more

massive star, the formed compact object can be more massive than around 1.4M⊙,

the so-called Chandrasekhar limit, in which the degeneracy pressure of the electron

gas cannot resist the gravity, as pointed out by Chandrasekhar. In this case, the com-

pact object has to further contract to become a neutron star, in which most of the

free electrons are pushed into protons to form neutrons as suggested by Zwicky and
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Landau. Then as Oppenheimer and others noted, if the neutron star is too massive,

for example, more than around 3M⊙, the internal pressure in the object also cannot

resist the gravity and the object must undergo catastrophic collapse and form a black

hole [3].

The term black hole was first introduced by an American physicist J.A. Wheeler

because everything, including the light wave and any electro-magnetic wave, that

went into its zone was not able to get out and consequently it was appeared as black.

In the 18th century, Laplace and Michell hypothesized for the first time that there

exist an astronomical body with a massive mass that was able to cause an escape

velocity greater than the speed of light in vacuum for which no light was able to

resist the strongest gravitational force generated by this celestial body to escape from

it. However, this hypothesis was not supported by the wave theory of light rather

by the corpuscular theory of light. On this account, the concept of black hole was

abandoned at that time. But some months after the publication of General theory of

relativity by Einstein in 1916, the black hole was again become famous because the

theory of general relativity predicted that a sufficiently huge and compact mass can

deform space-time to form a black hole [4]. However, nowadays the question of how

black holes modify space and time around them is still open [5].

The process of capture of masses by black holes investigated, in the hypotesis that

the infalling mass M2 is smaller than a black hole of mass M1, with the technics of

first-order perturbations of the background geometry. Einsteins perturbed equations
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split into two separated sets of equations that can be reduced to two second-order in-

homogeneous wave equations with real (and different) potential barriers and different

source terms describing the radial part of axial and polar perturbations (Regge and

Wheeler, 1957, Zerilli, 1970). The source term for these equations comes out from

the stress-energy tensor of the mass M2 which is assumed to fall along a geodesic

of the unperturbed Schwarzschild spacetime. A particle can fall following a radial

or a spiralling trajectory, and an analysis of the source term shows that for polar

perturbations it is different from zero in both cases and for axial perturbations it is

non-null only in the second case. It means that axial perturbations can be excited

only if the particle has an initial angular momentum.

The case of a particle falling onto a star was no more studied before. However,

researchers believed that one way of identifying a collapsed star or black hole in

space is by observing the electromagnetic radiation spectrum emitted by interstellar

gas accreting onto the object. Knowing from theoretical considerations the charac-

teristic frequency spectrum of the emitted radiation, one can presumably determine

from observations whether or not a black hole has indeed been located. Spherically

symmetric, steady-state accretion onto stars for simple polytropic gases has been ex-

amined by Bondi (1952) in the nonrelativistic limit. Michel (1972) considered the

general-relativistic version of the same problem and applied his analysis to the ac-

cretion of matter onto condensed objects. The possibility that gas accreting onto

a black hole might be an important source of radiant energy was first suggested by

Zeldovich (1964) and Salpeter (1964). Shvartsman (1971) employed nonrelativistic

approximations for both the fluid dynamics and radiative processes to estimate the
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total energy radiated by a fully ionized gas accreting onto a black hole [6].

Later on, interaction of radiation and matter in the context of black hole astro-

physics was investigated as early as 1974 by Wickramasinghe, when he studied the

radiation pressure driven mass loss from the outermost region of an accretion disc.

Icke (1980) studied the effect of radiative acceleration of gas flow above a Sakura-

Sunyaev Keplerian disc (1973). However, the effect of radiation drag on the gas flow

was ignored [7].

One of indirect evidence for the existence of BHs is with the radiative efficiency

when matter falls toward a central compact object. A matter in a gravitational po-

tential well must continue to fall inward, either through the event horizon of a BH

or hitting the surface of a compact object not enclosed by an event horizon but with

a radius either larger or smaller than the event horizon of the given mass (called a

compact star or naked compact object, respectively). No further radiation is pro-

duced after the matter falls through the event horizon of the BH; thus, the majority

of the kinetic energy of the infalling matter is carried into the BH. On the other hand,

surface emission will be produced when matter hits the surface of the compact star

or naked compact object, because it is not a BH. Therefore, the radiative efficiencies

for these different scenarios are significantly different [3].

Black holes are most often detected by the radiation produced when they grav-

itationally pull in surrounding gas. The efficiency with which the hot gas radiates

its thermal energy strongly influences the geometry and dynamics of the accretion
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flow. Both radiatively efficient thin disks and radiatively inefficient thick disks are

observed. When the accreting gas gets close to the central black hole, the radiation

it produces becomes sensitive to the spin of the hole and the presence of an event

horizon. Analysis of the luminosities and spectra of accreting black holes has yielded

tantalizing evidence for both rotating holes and event horizons [8].

Studying the X-ray spectrum of an accreting black hole reveals X-rays of differ-

ent energies emitted by different processes. It is possible to see both the thermal

X-rays emitted from the surface of the accretion disc and the X-rays emitted from

high energy particles in the hot corona around the black hole. In addition, the X-rays

emitted from the corona can be reflected from the accretion disc. Reflection from the

accretion disc imprints a number of atomic features on the spectrum we observe, not

least emission lines. When atoms are excited, their electrons emit light at very spe-

cific energies. It is why different metal compounds glow different colors when heated

[9].

The amount of energy emitted by a star in the form of electromagnetic radiation

can be inferred directly from the temperature of certain layers of gas in the stars at-

mosphere (called the effective temperature of the star) and from the stars size. When

gas, dust or other kinds of matter fall towards a compact object (such as a black

hole or a neutron star), a disk of infalling matter forms around the central object

(accretion disk). The energy that matter gains in its fall is transformed into heat

energy of the disk matter. Consequently, accretion disks are extremely hot. Their

thermal radiation they emit is an important tool for indirect observation of neutron
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stars and black hole. Within the disk, matter spirals around and coming closer and

closer to the central object until at last it falls onto its surface (or in the case of a

black hole, through its event horizon). Accretion disks emit large amounts of energy

in the form of electromagnetic radiation. Most of that energy is radiated away at

very high frequencies, in the form of X-rays.

If the central body is a black hole, matter can fall directly towards the black holes

horizon and into the black hole, never to be seen again. In both cases, matter takes

a straight plunge. But this is by no means the only possibility in fact, it was not

ruled out rather than the exception . Usually, matter will be in motion even before it

is close enough for the central object to exert a significant pull. Unless this motion is

directed exactly towards the central object a special case, and thus very rare there

will be a component of sideways motion, and if that component is large enough, the

falling matter will not hit the central object, but go past it [10].

A number of investigators have studied the gravitational radiation given off when

a particle falls into a black-hole. Zel’dovich and Novikov (1964a), using linearized

general relativity, calculated that an energy of 0.01M2c
2(M2/M1) is radiated as grav-

itational radiation when a small mass M2 falls straight into a black-hole of mass M1.

They also calculate that up to 5.7 percent of the incoming particle’s rest mass can

be radiated as gravitational radiation if the particle orbits the black-hole and slowly

spirals inward. Orbiting particles were also considered by Peters and Mathews (1963).

Zerilli (1970), used the full nonlinear Einstein theory, calculates 0.0016M2c
2(M2/M1)
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instead of the above for zero angular momentum fall. However, Bardeen (1971) con-

sidered an extreme Kerr rotating black-hole and found that a particle in an antiro-

tating orbit radiates 3.8 percent of its rest mass while a particle in a corotating orbit

radiates 42.3 percent of its rest mass. Zel’dovich and Novikov have also considered

that the thermal electromagnetic radiation given off as gas funneled into a black-hole

is compressed and heated to a very high temperature. The gas as a whole emits the

radiation and not individual particles [11].

This was a plausible extension to the models for X-ray and radio emission from

matter falling into (much lighter) stellar-mass black hole candidates, such as the ones

observed by the group led by Riccardo Giacconi, the 2002 Nobel Laureate. The grav-

itational pull must come from an extremely massive object, or else they would exceed

the Eddington limiting luminosity, 1.3× 1031(M1/M⊙)W (where M⊙ is the mass of

the sun), at which point the radiation pressure would overcome gravity, rendering

instabilities, which would blow the object apart [12].

1.2 Statement of problem

An accelerated charged particle interacting with a neutral Schwarzschild black-hole,

the electromagnetic radiation was computed when particle infalling with zero angular

momentum and in the case of spiraling black hole. The gravitational radiation due

to a point-like particle falling into a black hole (BH) is a classic problem in General

Relativity have computed. It has considered as an application of BH perturbation
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theory to study the effect of strong gravity on environment. In the case of the gravi-

ational radiation from a particle falling into a Kerr BH, the motion of a particle is

derived from the the Kerr metric. However, its radiation is calculated using flat space

linearized theory of gravitation. In addition to this, in the case of inspiralling particle,

the power radiated observed at infinity is not fully derived classically. The problem of

gravitational radiation waves by bodies moving in the field of a collapsing star have

also studied. Unfortunately, such considerations can only be valid for bodies which

move at distances large compared to the Schwarzschild radius of the central body

[13]. Then, in subsequent studies, many-particles in fall radiation have treated in

various ways. By now, at least the general features of the radiated waveform, spectra

and energies are computed and understood. However, still an extension of the study

is an active research area to complement.

Research questions

• What does strong gravity spacetime geometry do on in falling particles into

black hole?

• How particles in falling onto black holes be affected at the horizons of Schwarzschild

and Kerr BH?

• What amount of energy is being radiated from in falling particles into gravita-

tional BH?

• How fast does a particle orbit during in spiralling into Schwarzschild black hole?
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1.3 Objectives

1.3.1 General objective

To study the radiation from falling particles onto compact object.

1.3.2 Specific objectives

• To study the effect of strong gravity in falling particles into black hole.

• To derive equation of motion of particles falling into Schwarzschild and Kerr

black hole.

• To derive energy radiated from in falling particles into Schwarzschild and Kerr

black hole.

• To derive time of infalling particle and spirals into Schwarzschild black hole.

1.4 Significance of the study

The significance of this study will be:

• Contribute enlightenment in the field study of Astrophysics.

• To provide interesting in scientific input for the progress of research in Astron-

omy and space science.

• To provide clear mathematical procedures with their physical explanations for

other researchers who wish to carry out related investigations.
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1.5 Methodology

General Theory of Relativity field equations are used to derive equations of motion

of freely falling and in spiralling particle into Schwarzschild and Kerr black hole. Sub-

sequently, electromagnetic radiation equations for charged particle and gravitational

radiation in case of uncharged one in falling into Schwarzschild is also used. For Kerr

black hole, the power radiated energy of co-rotating particle from infinity with and

without angular momentum after infalling is derived. To derive the electromagnetic

radiation equation, the semi-classical electrodynamics accelerated charged system is

used where curvature effect is included by the metric of the spacetime. For reason-

ably nearby environment to the central gravitating system, the Schwarzschild and

Kerr geometries are considered in our case. Finally, the analytically obtained equa-

tions will be used to generate some numerical values using the latest Mathematics

software (Mathematica 11.3) to compare with others.
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Chapter 2

Introduction to General Relativity
Theory

Einstein’s General Theory of Relativity (GTR) is a powerful theory to describe com-

pact stars mathematically. It is a theory that describes gravity as curved spacetime.

Einstein presented a description of gravity in the sense that the relative acceleration

of particles is not viewed as a consequence of gravitational forces, but results from the

curvature of the spacetime in which the particles are moving. Consequently, black

holes are an extreme form of curved spacetime containing a curvature singularity

that swallows matter and light. Later on he developed Equivalence Principle and

Metricity. Einstein’s principle of equivalence has played an important role in the de-

velopment of gravitation theory. The Einstein equivalence principle (EEP) has played

an important role in gravitational theory, for it is possible to argue convincingly that

if EEP is valid, then gravitation must be a curved spacetime phenomenon, then the

effects of gravity must be equivalent to the effects of living in a curved spacetime [1].

The modern solution of general theory of relativity that would suggest a black

hole was found by Karl Schwarzschild in 1916, although its interpretation as a region
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of space from which nothing can escape including light was first introduced by David

Finkelstein in 1958. However, the problem with the Schwarzschild metric is that it

describes the geometry as measured by observers at rest. It is now realized that once

inside the Schwarzschild radius, there can be no observers at rest: everything plunges

inevitably to the central singularity [14].

On 13 January 1916, after Einstein completed his theory of general relativity on

18 November 1915, Karl Schwarzschild published a solution to Einsteins field equa-

tions, describing the curved space-time around a spherically symmetric, non-rotating,

mass of black hole. Nevertheless, after two years later(1918) the Austrian physicists

Lense and Thirring studied the equations of the General Relativity Theory (GRT)

and concluded that a spinning black hole will drag time and space around, an effect

since called the Lense-Thirring effect. The effect predicts that the rotation axis of the

disk should precede around the rotation axis of the black hole. In 2016 (almost a

century after the prediction) there is a claim that the effect has been detected [15].

However, Schwarzschilds theories were predicted by Einstein and then borne out

mathematically in 1939 by American astrophysicists Robert Oppenheimer and Hart-

land Snyder. The Schwarzschild solution is the simplest non-trivial solution to Ein-

steins equation and it is well suited to introduce some important concepts as the

event horizon, geodesics. The Schwarzschild solution describes the simplest category

of the black holes, i.e. with only mass and neither rotation nor charge [12].
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Most of the current tests of General Relativity are performed in the weak gravita-

tional fields present in our solar system. The consequences of General Relativity (GR)

of the ”no-hair” theorem, for which black holes can be fully characterized by their

mass, angular momentum and charge was understated. Since no charge on astro-

physical black holes, the spacetime that surrounds a black hole can be nearly exactly

described by the Kerr metric. The only way to test this theorem is to investigate the

spacetime very close to the hole. Fortunately, the X-ray emission of accreting black

holes carries information about the inner region of the accretion disk, within a few

gravitational radii (Rg = GM1/c
2) from the hole, encoded in the fast variability of

its spectrum [5].

2.1 The geodesic equation

The freely falling inertial coordinate frame in which the effects of gravity are locally

absent is denoted by, ξα. In this frame, the equation of motion for a particle is

d2ξα

dτ 2
= 0 (2.1.1)

with

c2dτ 2 = −ηαβdξαdξβ (2.1.2)

being the invariant time interval. Next, we write this equation in any other set of

coordinates we like, and call them xµ . Our inertial coordinates ξα will be some

function or other of the xµ so

0 =
d2ξα

dτ 2
(2.1.3)

=
d

dτ

(
∂ξα

∂xµ

dxµ

dτ

)
(2.1.4)
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where we have used the chain rule to express dξα/dτ in terms of dxµ/dτ . Carrying

out the differentiation,

0 =
∂ξα

∂xµ

d2xµ

dτ 2
+

∂2ξα

∂xµ∂xν

dxµ

dτ

dxν

dτ
(2.1.5)

where now the chain rule has been used on ∂ξα/∂xµ. This may not look very promis-

ing. But if we multiply this equation by ∂xλ/∂ξα, and remember to sum over α now,

then the chain rule in the form

∂xλ

∂ξα

∂ξα

∂xµ
= δλ

µ (2.1.6)

Our equation becomes

d2xλ

dτ 2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0 (2.1.7)

where

Γλ
µν =

∂xλ

∂ξα

∂2ξα

∂xµ∂xν
(2.1.8)

is known as the affine connection, and is a quantity of central importance in the study

of Riemannian geometry and relativity theory in particular. We should be able to

prove, using the chain rule of partial derivatives, an identity for the second derivatives

of ξα a that we will use shortly:

∂2ξα

∂xµ∂xν
=

∂ξα

∂xλ
Γλ

µν (2.1.9)

In our locally inertial coordinates, the invariant spacetime interval is

c2dτ 2 = −ηαβdξαdξβ (2.1.10)

so that in any other coordinates, dξα = (∂ξα/dxµ)dxν and

c2dτ 2 = −ηαβ
∂ξα

∂xµ

∂ξβ

∂xν
dxµdxν ≡ −gµνdxµdxν (2.1.11)
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where

− gµν = ηαβ
∂ξα

∂xµ

∂ξβ

∂xν
dxµdxν (2.1.12)

is known as the metric tensor. The metric tensor embodies the information of how

coordinate differentials combine to form the invariant interval of our spacetime, and

once we know gµν , we know everything, including the affine connections Γλ
µν .

2.2 The Newtonian limit

For a slowly moving mass (of course means relative to c, the speed of light) in a

weak gravitational field (GM1/rc
2 � 1). Since cdt � |dx|, the geodesic equation

greatly simplifies:

d2xµ

dτ 2
+ Γµ

00

(
cdt

dτ

)2

= 0 (2.2.1)

Now

Γµ
00 =

1

2
gµν

(
∂g0ν

∂(cdt)
+

∂g0ν

∂(cdt)
− ∂g00

∂xν

)
(2.2.2)

In the Newtonian limit, the largest of the g derivatives is the spatial gradient, hence

Γµ
00 ' −

1

2
gµν ∂g00

∂xν
(2.2.3)

Since the gravitational field is weak, gαβ differs very little from the Minkoswki value:

gαβ = ηαβ + hαβ (2.2.4)

hαβ � 1 and the µ = 0 geodesic equation is

d2t

dτ 2
+

1

2

∂h00

∂t

(
dt

dτ

)2

= 0 (2.2.5)
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The second term is zero for a static field, so that the spatial components of the

geodesic equation become

d2r

dt2
− c2

2
∇h00 = 0 (2.2.6)

This equation rewritten as

d2r

dt2
+∇Φ = 0, (2.2.7)

where Φ is being the classical gravitational potential. The two views are consistent if

h00 ' −
2Φ

c2
' −2GM1

c2r
(2.2.8)

We get

g00 ' −
(

1− 2GM1

c2r

)
(2.2.9)

2.3 The relationship between the metric tensor

and affine connection

Because of their reliance of the local freely falling inertial coordinates ξα, the gµν and

Γλ
µν quantities are difficult to use in their present formulation. Fortunately, there is a

direct relationship between Γλ
µν and the first derivatives of gµν with the ξα altogether.

Differentiate equation 2.1.12 with respect to ∂/∂xλ

∂gµν

∂xλ
= ηαβ

∂2ξα

∂xλ∂xµ

∂ξβ

∂xν
+ ηαβ

∂ξα

∂xµ

∂2ξβ

∂xλ∂xν
(2.3.1)

Now we use equation 2.1.9 for the second derivatives of ξ:

∂gµν

∂xλ
= ηαβ

∂ξα

∂xρ

∂ξβ

∂xν
Γρ

λµ + ηαβ
∂ξα

∂xµ

∂ξβ

∂xρ
Γρ

λν (2.3.2)
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All remaining ξ derivatives may be absorbed as part of the metric tensor, leading to

∂gµν

∂xλ
= gρνΓ

ρ
λµ + gµρΓ

ρ
λν (2.3.3)

By adding ∂gλν/∂xµ to the above, then subtracting it with indices µ and ν reversed.

∂gµν

∂xλ
+

∂gλν

∂xµ
− ∂gλµ

∂xν
= gρνΓ

ρ
λµ + gµρΓ

ρ
λν + gρνΓ

ρ
µλ + gρλΓ

ρ
µν − gρµΓρ

νλ

−gρλΓ
ρ
νµ (2.3.4)

Remembering that Γ is symmetric in its bottom indices, only the gρν terms survive,

leaving

∂gµν

∂xλ
+

∂gλν

∂xµ
− ∂gλµ

∂xν
= 2gρνΓ

ρ
µλ (2.3.5)

Finally, we multiply by the inverse matrix gνσ, defined by

gνσgρν = δσ
ρ (2.3.6)

then it yields

Γσ
µλ =

gνσ

2

(
∂gµν

∂xλ
+

∂gλν

∂xµ
− ∂gλµ

∂xν

)
(2.3.7)

2.4 The Einstein Field Equations

Einsteins field equations are the relativistic generalization of Newtons law of grav-

itation. It also connects the curvature of spacetime (Einstein tensor) and the proper-

ties of an object that curves spacetime (Energy-Momentum tensor). Newtons gravita-

tional law tells how mass generates gravitational force, while Einstein’s field equations
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tell how matter and energy curves space-time. In the general theory of relativity the

Einstein Field Equations (EFE) in vacuum space-time is;

Rµν −
1

2
Rgµν =

8πG

c4
Tµν (2.4.1)

For non-vacuum space-time, EFEs take the form;

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (2.4.2)

where Λ is cosmological constant, Rµν is Ricci tensor, R is Curvature scalar, G is

Newton’s constant, Tµν is energy-momentum tensor, gµν general metric tensor [16].

2.5 The Schwarzschild Solution

Now we determine the form of the metric tensor gµν for the spacetime surrounding a

point mass M1 by solving the equation Rµν = 0, subject to the appropriate boundary

conditions. Because the spacetime is static and spherically symmetric, we expect the

invariant line element to take the form

dτ 2 = Bdt2 − Adr2 − CdΩ2 (2.5.1)

where dΩ is the solid angle, dΩ2 = dθ2 + sin2 θdφ2 and A, B, and C are all functions

of the radial variable. We may choose our coordinates so that C is defined to be r2.

A and B will then be some unknown functions of r to be determined. Our metric is

now in standard form:

dτ 2 = B(r)dt2 − A(r)dr2 − r2(dθ2 + sin2 θdφ2) (2.5.2)
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We may now read the components of gµν :

gtt = −B(r) (2.5.3)

grr = A(r) (2.5.4)

gθθ = r2 (2.5.5)

gφφ = r2 sin2 θ (2.5.6)

and its inverse gµν ,

gtt = −B−1(r) (2.5.7)

grr = A−1(r) (2.5.8)

gθθ = r−2 (2.5.9)

gφφ = r−2(sin θ)−2 (2.5.10)

The determinant of gµν is −g, where

g = r4AB sin2 θ (2.5.11)

The affine connection for a diagonal metric tensor will be of the form

Γa
ab = Γa

ba

=
1

2gaa

∂gaa

∂xb

no sum on a, with a = b, then

Γa
bb = − 1

2gaa

∂gbb

∂xa
(2.5.12)
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The nonvanishing components are:

Γt
tr = Γt

rt =
B′

2B

Γr
tt =

B′

2A

Γr
rr =

A′

2A

Γr
θθ = − r

A

Γr
φφ = −r sin2 θ

A

Γθ
rθ = Γθ

θr =
1

r

Γθ
φφ = − sin θ cos θ

Γφ
φr = Γφ

rφ =
1

r

Γφ
φθ = Γφ

θφ = cot θ (2.5.13)

where

A′ =
dA

dr

B′ =
dB

dr

Next, the Ricci Tensor is given as:

Rµκ = Rλ
µλκ

=
∂Γλ

µλ

∂xκ
−

∂Γλ
µκ

∂xλ
+ Γη

µλΓ
λ
κη − Γη

µκΓ
λ
λη (2.5.14)

where by definition

Γλ
λµ =

gλρ

2

(
∂

∂xµ
gρλ +

∂

∂xλ
gρµ −

∂

∂xρ
gλµ

)
(2.5.15)

gλρ is symmetric in its indices, whereas the last two g derivatives are antisymmetric

in the same indices, so they disappeared. We are left with Γλ
λµ = gλρ

2
∂

∂xµ gρλ, in which
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λ = ρ for nonvanishing entries, and gλρ is the reciprocal of gλρ.

Hence

Γλ
λµ =

gλρ

2

∂

∂xµ
gρλ

=
1

2

∂

∂xµ
ln |g| (2.5.16)

Then Ricci Tensor becomes

Rµκ =
1

2

∂2 ln g

∂xκ∂xµ
−

∂Γλ
µκ

∂xλ
+ Γη

µλΓ
λ
κη −

Γη
µκ

2

∂ ln g

∂xη
(2.5.17)

By using 2.5.11 and 2.5.17, the Rtt tensor of static fields becomes

Rtt = −∂Γr
tt

∂r
+ Γη

tλΓ
λ
tη + Γη

ttΓ
t
tη −

Γη
µκ

2

∂ ln g

∂xη

= − ∂

∂r

(
B′

2A

)
+ Γt

trΓ
r
tt + Γr

ttΓ
t
tr −

Γr
tt

2

∂

∂r
ln(r4AB sin2 θ)

= −
(

B′′

2A

)
+

B′A′

2A2
+

B′2

4AB
− B′

4A

(
A′

A
+

B′

B
+

4

r

)
= −B′′

2A
+

B′

4A

(
B′

B
+

A′

A

)
− B′

rA
(2.5.18)

Next, Rrr:

Rrr =
1

2

∂2 ln g

∂r2
− Γr

rr

∂r
+ Γη

rλΓ
λ
rη −

Γr
rr

2

∂ ln g

∂r

=
1

2

∂

∂r

[
∂

∂r
ln(r4AB sin2 θ)

]
− ∂

∂r

A′

2A
+ Γη

rλΓ
λ
rη −

A′

2A

[
∂

∂r
ln(r4AB sin2 θ)

]
=

1

2

∂

∂r

(
A′

A
+

B′

B
+

4

r

)
− ∂

∂r

(
A′

2A

)
+ Γη

rλΓ
λ
rη +

A′

4A

(
A′

A
+

B′

B
+

4

r

)
=

B′′

2B
− 1

2

(
B′

B

)2

− 2

r2
+
(
Γt

rt

)2
+ (Γr

rr)
2 +

(
Γθ

rθ

)2
+
(
Γφ

rφ

)
− 1

4

(
A′

A

)2

− A′B′

4AB
− A′

rA

=
B′′

2B
− 1

2

(
B′

B

)2

− 2

r2
+

B′2

4B2
+

A′2

4A2
+

1

r2
+

1

r2
− 1

4

(
A′2

A

)
− A′B′

4AB
− A′

rA

=
B′′

2B
− 1

4

B′

B

(
A′

A
+

B′

B

)
− A′

rA
(2.5.19)

21



Rθθ =
∂Γλ

θλ

∂θ
− ∂Γλ

θθ

∂xλ
+ Γη

θλΓ
λ
θη − Γη

θθΓ
λ
λη

=
1

2

∂2 ln g

∂θ2
− ∂Γr

θθ

∂r
+ Γη

θλΓ
λ
θη − Γr

θθΓ
λ
λr

=
d(cot θ)

dθ
+

d

dr

( r

A

)
+ Γη

θλΓ
λ
θη +

r

2A

∂ ln g

∂r

= − 1

sin2 θ
+

1

A
− rA′

A2
+ Γr

θλΓ
λ
θr + Γθ

θλΓ
λ
θθ + Γφ

θλΓ
λ
θφ +

r

2A

(
A′

A
+

B′

B
+

4

r

)
= − 1

sin2 θ
+

3

A
− rA′

2A2
+ Γr

θθΓ
θ
θr + Γθ

θrΓ
r
θθ +

(
Γφ

θφ

)2

+
rB′

2AB

= − 1

sin2 θ
+

3

A
− rA′

2A2
− 2

A
+ cot2 θ +

rB′

2AB

= − csc2 θ + cot2 θ +
3

A
− rA′

2A2
− 2

A
+

rB′

2AB
(2.5.20)

But from trigonometric identities we have (− csc2 θ + cot2 θ = −1), then equation

2.5.20 becomes

Rθθ = −1 +
1

A
+

r

2A

(
−A′

A
+

B′

B

)
(2.5.21)

Rφφ is the last nonvanishing Ricci component. The first term in equation 2.5.14

vanishes, since nothing in the metric depends on φ. Then,

Rφφ = −
∂Γλ

φφ

∂xλ
+ Γη

φλΓ
λ
φη −

Γη
φφ

2

∂ ln |g|
∂xη

= −
Γr

φφ

∂r
−

Γθ
φφ

∂θ
+ Γr

φλΓ
λ
φr + Γθ

φλΓ
λ
φθ + Γφ

φλΓ
λ
φφ −

1

2
Γr

φφ

∂ ln |g|
∂θ

=
∂

∂r

(
r sin2 θ

A

)
+

∂

∂θ
(sin θ cos θ) + Γr

φφΓ
φ
φr + Γθ

φφΓ
φ
φθ + Γφ

φrΓ
r
φφ + Γφ

φθΓ
θ
φφ

+
1

2
sin θ cos θ

∂ ln sin2 θ

∂θ
+

1

2

(
r sin2 θ

A

)(
A′

A
+

B′

B
+

4

r

)
=

sin2 θ

A
− rA′ sin2 θ

A2
+ cos2 θ − sin2 θ − sin2 θ

A
− cos2 θ − sin2 θ

A
− cos2 θ + cos2 θ

+
r sin2 θ

2A

(
A′

A
+

B′

B
+

4

r

)
= sin2 θ

[
r

2A

(
−A′

A
+

B′

B

)
+

1

A
− 1

]
= sin2 θRθθ (2.5.22)
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To solve the equations Rµν = 0, we have only A and B and all others components

then vanish identically. Rrr and Rtt, both of which must separately vanish, so

Rrr

A
+

Rtt

B
= − 1

rA

(
A′

A
+

B′

B

)
= 0 (2.5.23)

Hence we find

AB = constant = 1 (2.5.24)

Furthermore, we impose on A and B the boundary condition that for r → ∞ the

metric tensor must approach Minkowski tensor in spherical coordinates, that is

lim
r→∞

A = lim
r→∞

B = 1 (2.5.25)

From 2.5.24 and 2.5.25, we have

A =
1

B
(2.5.26)

Plugging this result into the expression for Rθθ, we obtain

Rθθ = 0 ⇒ −1 + B′r + B(r) = 0 (2.5.27)

Then we get

d

dr
(rB) = rB′ + B = 1

The solution is

rB = r + C ⇒ B = 1 +
C

r
(2.5.28)

To fix C, we recall that at great distances from a central mass M1, the component

gtt = −B must approach −1−2Φ, where Φ is Newtonian potential (−GM1/r). Hence

C = −2GM1 and we have

B = 1− 2GM1

c2 r
, A =

(
1− 2GM1

c2 r

)−1

(2.5.29)
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Finally, the Schwarzschild Metric for the spacetime around a point mass is

c2dτ 2 = ds2 =

(
1− 2GM1

c2 r

)
c2dt2 −

(
1− 2GM1

c2 r

)−1

dr2 − r2dΩ2 (2.5.30)

where dΩ2 = dθ2 + sin2 θdφ2, t is the time coordinate, r is the radial coordinate, θ

and φ are the usual angles for polar coordinates, and τ is the proper time.

2.5.1 The Schwarzschild Radius

At the end of the 18th century Laplace showed that a sufficiently massive body

would prevent the escape of light from its surface. According to classical mechanics,

the escape velocity from a body of radius R and mass M1 is given by;

ve =

√
2GM1

R
(2.5.31)

This is greater than the speed of light if the radius is smaller than the critical radius,

then the Schwarzschild radius is given by

RSch = 2

(
GM1

c2

)
(2.5.32)

where

RSch = Schwarzschild radius.

G = Gravitational constant.

M1 = Mass of Black Hole.

c = Speed of light.
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Figure 2.1: Showing Schwarzschild radius (Schwarzschild radius Wikidata; 2020)

This critical radius is now called the Schwarzschild radius and is the radius of the

event horizon of non-rotating black holes. The term Black Hole is often attributed

to John A. Wheeler, who wrote according to Einsteins general theory of relativity, as

mass is added to a degenerate star a sudden collapse will take place and the intense

gravitational field of the star will close in on itself. Such a star then forms a black

hole in the universe.

The Schwarzschild geometry is the geometry of spacetime outside a spherical star.

It is determined by one parameter, the mass M1 [16]. The Schwarzschild geometry

is asymptotically flat, because the metric tends to the Minkowski metric in polar

coordinates at large radius as r →∞.

High-energy astrophysics required to study of the processes that occur within
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stars, black holes and supernovae. These processes monitored by measuring the high-

energy electromagnetic radiation and particles that they emit including x-rays, ultra-

violet light and gamma rays. These sources are remnants of stellar explosions, such

as neutron stars, white dwarfs and black holes. Due to their extraordinary properties,

compact objects form unique laboratories for understanding the physics of extreme

environments. In addition, many questions about their origin, composition and evo-

lution are still open today, more than 50 years after they were first discovered. The

main study focus in the High Energy Astrophysics group Tbingen was X-ray binaries.

These binary systems consist of a star and a compact object orbiting one another. In

certain configurations and evolutionary states, the gravitational interactions of both

objects leads to matter transfer from the outer envelope of the star onto the compact

object. When this happens, the kinetic energy of the in-falling matter is converted

into heat once it reaches the surface and X-rays can be observed. This physical pro-

cess is called accretion [1].

2.6 The Kerr Solution

Kerr metric is the second exact solution of Einstein field equation, which can be used

to describe space-time geometry in the vacuum area near a rotational, axialsymmetric

heavenly body (Kerr, 1963). It is a generalized form of Schwarzschild metric. Kerr

metric in Boyer-Lindquist coordinate system can be expressed in [17]

ds2 =

(
1− 2M1r

ρ2

)
dt2 +

4M1 r a sin2 θ

ρ2
dtdφ− ρ2

∆
dr2 − ρ2dθ2

−
(

r2 + a2 +
2M1 r a2 sin2 θ

ρ2

)
sin2 θdφ2 (2.6.1)
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where

ρ2 = r2 + a2 cos2 θ (2.6.2)

∆ = r2 − 2M1r + a2 (2.6.3)

a =
J

M1

(2.6.4)

Here, M1 is the mass of the black hole, and a is its angular momentum per unit

mass, φ is the angle around the axis of symmetry, t is the time coordinate. Far from

the black hole, r � GM1; a, the metric reduces to flat Minkowski spacetime, with

(t, r, θ, π) the usual coordinates, with θ ∈ [0; π] and φ ∈ [0; 2π).

By examining the components of metric tensor gµν in equation 2.6.1 , one can

obtain:

g00 = 1− 2M1r

ρ2

g11 = −ρ2

∆

g22 = −ρ2

g03 = g30 =
2M1 r a sin2 θ

ρ2

g33 = −
(

r2 + a2 +
2M1 r a2 sin2 θ

ρ2

)
sin2 θ (2.6.5)

Both g03(gtφ) and g30(gφt) off-diagonal terms in Kerr metric are not present in Schwarzschild

metric, apparently due to rotation. If the rotation parameter a = 0, these two terms

vanish. g00g11 = gttgrr = −1 in Schwarzschild metric, but not in Kerr metric. When

spin parameter a = 0, Kerr metric turns into Schwarzschild metric and therefore is a

generalized form of Schwarzschild metric.
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Chapter 3

Radiation From Particles Falling
Into Black-Holes

Once the solutions of the Einstein field equations (EFE) are found, we can study

the geodesic equation of the free falling particles onto compact objects (COs). Since

particles freely falling from infinity into event horizon of black hole, some amount

of energy liberated due to strong gravitational pull of the black hole. This energy

occurred in the form of radiation, travels through space at the speed of light. It has

an electric field and magnetic field associated with it, and has wave-like properties. In

our case the energy emitted in the form of electromagnetic radiation when a charged

particle falls into a neutral Schwarzschild black-hole with zero angular momentum

and gravitational radiation for uncharged particle of mass M2 is calculated. The

gravitational radiation due to a pointlike particle falling into a black hole (BH) is a

classic problem in general relativity [18].
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Another preview in this chapter is the study of Kerr black holes, exhibit frame-

dragging effect. This effect predicts that objects coming close to a rotating central-

mass will be entrained to participate in its rotation. Following Kerr metric in Boyer-

Lindquist, the power radiated energy of particle falls onto neutral rotating black hole

is calculated.

3.1 Free Falling of Charged Particles with Zero

Angular Momentum

The total power passing out through a spherical surface at radius r is the integral

of the Poynting vector [19] and given by

P(r) =

∮
S · da =

1

µ0

∮
(E×B) · da (3.1.1)

For an accelerated point charge q in straight-line motion, the angular distribution of

the radiation through out solid angle (dΩ = sin θdθdφ) is given by

dP

dΩ
=

µ0q
2a2

16π2c

sin2 θ

(1− β cos θ)5
(3.1.2)

where (µ0 = 1/c2ε0, β = v/c). Using equation 3.1.2, we can now calculate the

electromagnetic radiation emitted by a charged particle falling radially into a black-

hole. Then the energy given off per unit time is given by

− dE(θ)

dt
=

v̇2

c3

e2z2

16π2ε0

sin2 θ

(1− β cos θ)5
(3.1.3)

where ze is the charge, β = v/c, θ is the angle between the line of sight and the

particles velocity v, and a dot denotes differentiation with respect to time. Since we
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are not interested in the angular distribution, we integrate over θ to get

− dE

dt
=

v̇2

c3

e2

6πε0

{
1

(1− β2)3

}
(3.1.4)

Through terms of order β3 and for the velocities of interest to us, we can approx-

imate this by

− dE

dt
=

v̇2

c3

e2

6πε0

(
1 + 3β2

)
(3.1.5)

This gives the energy emitted by the accelerating charge, where retardation effects

have been taken into account. The total energy received at infinity, neglecting the

radiation lost down the black-hole would be calculated. To get this we must first

correct equation 3.1.5 for redshift. If a clock at infinity records the passive of a time

∆t∞, then one near the black hole will record a time

∆t0 = ∆t∞

(
1− 2GM1

r0c2

) 1
2

= ∆t∞

(
1− RSch

r0

) 1
2

(3.1.6)

Thus objects near RSch appear to outside observers to slow down, until at RSch they

become entirely frozen in time.

The frequency of a photon of frequency ν0 emitted at a radius r0 around a black

hole and received at infinity will have frequency

ν∞ = ν0

(
1− 2GM1

r0c2

) 1
2

= ν0

(
1− RSch

r0

) 1
2

(3.1.7)

Note that this formula has the property that, as r0 → RSch, the observed frequency

ν∞ → 0. Thus, light emitted near the event horizon becomes more and more red-

shifted, until finally at the event horizon it becomes infinitely redshifted and can no
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longer be observed by the outside world. The light coming out of the clock near the

black hole will be redshifted, so its frequency will diminish as seen from an observer

at infinity. This means that fewer wave crests pass the detector on that clock than

pass the detector at infinity in the same amount of time. When the clock near the

black hole is pulled back up, it will have recorded fewer ticks than the clock at infinity.

Therefore, time must slow down near the black hole.

Since the particle is in falling, then the radial part from equation 2.5.30 being

calculated as

c2dτ 2 =

(
1− RSch

r

)
c2dt2 −

(
1− RSch

r

)−1

dr2 (3.1.8)

For an object at fixed r, then the spacing of ticks of the clock in proper time is given

by

dτr =

(
1− RSch

r

) 1
2

dt (3.1.9)

Thus for an observer at infinity (as r →∞,
(
1− RSch

r

) 1
2 → 1), then

dτ∞ = dt (3.1.10)

Thus the frequency of a photon observed at infinity ν∞ is related to the frequency

νr emitted at a distance r from a black-hole by

ν∞
νr

=
dτr

dτ∞

=

(
1− 2GM1

c2r

) 1
2 dt

dt

=

(
1− RSch

r

) 1
2

(3.1.11)
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where G is the gravitational constant, RSch is Schwarzschild radius. Thus the energy

received at infinity is related to the energy emitted near a black-hole by

dEreceived = dEemitted

(
1− 2M1

r

) 1
2

(3.1.12)

and we have

− dEreceived

dt
=

v̇2

c3

e2

6πε0

(
1 + 3β2

)(
1− 2M1

r

) 1
2

(3.1.13)

The redshift correction is very important near the Schwarzschild radius r = 2M1.

To integrate equation 3.1.13 we need v and v̇ for a particle falling in a Schwarzschild

field. We are considering the problem of a small mass M2 � M1 so that the falling

particle does not perturb the metric. To find the geodesics of the Schwarzschild

metric, we use variational principle along a curvature by the parameter τ . We have

s =

∫
L dτ = extremum (3.1.14)

So that equation 2.5.30 rewritten as

1 =
ds2

dτ 2
=

(
1− 2M1

r

)
dt2

dτ 2
−
(

1− 2M1

r

)
dr2

dτ 2
− r2 dθ2

dτ 2
− r2 sin2 θ

dφ2

dτ 2

ds

dτ
=

[(
1− 2M1

r

)
ṫ2 −

(
1− 2M1

r

)
ṙ2 − r2θ̇2 − r2 sin2 θφ̇2

] 1
2

∫
ds =

∫ [(
1− 2M1

r

)
ṫ2 −

(
1− 2M1

r

)
ṙ2 − r2θ̇2 − r2 sin2 θφ̇2

] 1
2

dτ

s =

∫ [(
1− 2M1

r

)
ṫ2 −

(
1− 2M1

r

)
ṙ2 − r2θ̇2 − r2 sin2 θφ̇2

] 1
2

dτ (3.1.15)

From 3.1.14 and 3.1.15, the Euler-Lagrange equation of the Schwarzschild metric
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becomes

L = 1 =

[(
1− 2M1

r

)
c2ṫ2 − ṙ2

1− 2M1

r

− r2θ̇2 − r2 sin2 θφ̇2

] 1
2

(3.1.16)

The Euler-Lagrange equation for t is then

d

dτ

∂L
∂ṫ
− ∂L

∂t
= 0 (3.1.17)

which since ∂L
∂t

= 0,

∂L
∂ṫ

=
1

2

[(
1− 2M1

r

)
c2ṫ2 − ṙ2

1− 2M1

r

− r2θ̇2 − r2 sin2 θφ̇2

]− 1
2 (

1− 2M1

r

)
2ṫ

(3.1.18)

where, (ṫ = dt
dτ

, θ̇ = dθ
dτ

, φ̇ = dφ
dτ

)

so that eq. 3.1.18 reduced to

cṫ

(
1− 2M1

r

)
= constant. (3.1.19)

This implies that there is a conserved quantity we will call energy per unit mass:

∂L
∂ṫ

=
E

M2

(3.1.20)

We have

cṫ

(
1− 2M1

r

)
=

E

M2

(3.1.21)

For r → ∞, the Schwarzschild metric goes to the Minkowski metric and for the

Minkowski metric ṫ = E/M2 for (c=1).

Next we find the φ equation:

d

dτ

∂L
∂φ̇

=
∂L
∂φ

= 0 (3.1.22)
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so again we have a conserved quantity pφ = ∂L/∂φ̇ = −L/m, where we will call

this conserved quantity the angular momentum per unit mass. The metric does not

depend explicitly on the angle φ, we get that result here. Hence we have

∂L
∂φ̇

=
1

2

[(
1− 2M1

r

)
c2ṫ2 − ṙ2

1− 2M1

r

− r2θ̇2 − r2 sin2 θφ̇2

]− 1
2

×
(
−r2 sin2 θ2φ̇

)
= −r2 sin2 θφ̇ (3.1.23)

Thus our φ equation reads

L

M2

= r2 sin2 θφ̇ (3.1.24)

So it makes sense that we called the constant of motion L/M2.

Next, we consider the θ equation. Here we find that

d

dτ

∂L
∂θ̇

=
∂L
∂θ
6= 0 (3.1.25)

thus we do not have a conserved quantity for this equation. We find

∂L
∂θ

=
1

2

[(
1− 2M1

r

)
c2ṫ2 − ṙ2

1− 2M1

r

− r2θ̇2 − r2 sin2 θφ̇

]− 1
2

×
(
−r22 sin θ cos θφ̇2

)
= −r2φ̇2 sin θ cos θ (3.1.26)

and

∂L
∂θ̇

=
1

2

[(
1− 2M1

r

)
c2ṫ2 − ṙ2

1− 2M1

r

− r2θ̇2 − r2 sin2 θφ̇

]− 1
2 (
−r22θ̇

)
= −r2θ̇ (3.1.27)
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Thus our θ equation reads:

d

dr

(
r2θ̇
)

= r2φ̇2 sin θ cos θ (3.1.28)

In our case, the whole squared equations of motion from 3.1.16 becomes

1 =

(
1− 2GM1

r

)
ṫ2 − ṙ2

(1− 2GM1

r
)
− r2θ̇2 − r2 sin2 θφ̇2 (3.1.29)

Since our object and metric are spherically symmetric we can simplify things by only

considering motion in the equatorial plane (θ = π/2, θ̇ = 0). In this case then,

equation 3.1.16 gives:

1 =

(
1− 2GM1

r

)
ṫ2 − ṙ2

(1− 2GM1

r
)
− r2φ̇2 (3.1.30)

Now eliminate variables other than r, using the constants of motion we have from the

above equations:

L/M2 = r2φ̇ and E/M2 = (1− 2GM1

r
)ṫ2, to get:

1 =
E2

M2
2 (1− 2GM1

r
)
− ṙ2

(1− 2GM1

r
)
− L2

M2
2 r2

(3.1.31)

We can write this by solving for M2ṙ
2,

M2ṙ
2 =

E2

M2

−
(

M2 +
L2

M2r2

)
(1− 2GM1

r
), (3.1.32)

then this equation rewritten as:

M2

(
dr

dτ

)2

=
E2

M2c2
−
(

1− 2GM1

rc2

)(
M2c

2 +
L2

M2r2

)
(3.1.33)

This geodesic equation shows that things fall due to the spacetime curvature of the

metric as a step in proper time dτ forces a step dr in the r direction. Suppose the
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angular momentum L = 0, which we might expect for radial infall towards a spherical

mass. Our equation then is:

M2

(
dr

dτ

)2

=
E2

M2c2
−
(

1− 2GM1

rc2

)
M2c

2 = 0 (3.1.34)

Next we consider a case where we start at rest far from the object so that at proper

time τ = 0, M2

(
dr
dτ

)2
= 0, and r →∞. Our equation becomes:

E2

M2c2
−M2c

2 + lim
r→∞

2GM1M2

r
= 0, (3.1.35)

or E2/M2c
2 = M2c

2, or simply E = M2c
2. So at τ = 0 the total energy is just

E = M2c
2. In Newtonian mechanics the energy at infinity is usually defined as

E = 0. Also since energy E is conserved along geodesics we know that E = M2

always. This E is not the Newtonian energy; it is the conserved quantity, which is

better than the sum of 1
2
M2v

2 + V . If we would have started with some velocity at

r →∞ then E > M2c
2 but it still would have been conserved.

At later times during this radial infall from rest, our equation becomes:

M2

(
dr

dτ

)2

=
E2

M2c2
−M2c

2 +
2GM1

rc2
M2c

2 =
2GM1M2

r
(3.1.36)

That is simply

1

2
M2

(
dr

dτ

)2

− GM1M2

r
= 0, (3.1.37)

which looks remarkably like the Newtonian case 1
2
M2v

2−GM1M2/r = 0. But this is

not the same equation.

If we consider the case where the particle has zero velocity at infinity and falls

from there, we find that the constant in equation 3.1.19 is equal to 1. Since our
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particle radially infalling (dθ = dφ = 0), then dividing eq. 2.5.30 by dt2(
ds

dt

)2

=

(
1− 2M1

r

)
c2 −

(
1− 2M1

r

)−1
dr2

dt2
(3.1.38)

But equation 3.1.19 rewritten as

c

(
dt

ds

)(
1− 2M1

r

)
= 1

⇒ ds

dt
= c

(
1− 2M1

r

)
(3.1.39)

Substituting equation 3.1.39 into 3.1.38 gives

c2

(
1− 2M1

r

)2

=

(
1− 2M1

r

)
c2 −

(
1− 2M1

r

)−1
dr2

dt2
(3.1.40)

By collecting like terms we get

c2

(
1− 2M1

r

)[
1− 2M1

r
− 1

]
= −

(
1− 2M1

r

)−1
dr2

dt2

−
(

dr

dt

)2

= c2

(
1− 2M1

r

)2(
2M1

r

)
v =

dr

dt
= −c

(
1− 2M1

r

)√
2M1

r
(3.1.41)

Differentiating this equation with respect to t then gives the acceleration.

v̇ =
d2r

dt2

= −M1c
2

r2

[
1− 2M1

r
− 3(dr/dt)2

1− 2M1

r

]

= −M1c
2

r2

(
1− 2M1

r

)(
1− 6M1

r

)
= −M1c

2

r2

(
1− 8M1

r
+

12M2
1

r2

)
(3.1.42)

If M1

r
� 1, equations 3.1.41 and 3.1.42 reduce to the Newtonian values. We note

from equation 3.1.41 that the maximum velocity is βmax = 0.385 and that it occurs at
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r = 6M1. If we had taken the velocity to be zero at a radius rα instead of at infinity,

the constant in equation 3.1.19 would be
(
1− 2M1

rα

)1/2

, then equation 3.1.41 becomes

dr

dt
= −

[
1− 2M1

r

]1−
(
1− 2M1

r

)(
1− 2M1

rα

)
 1

2

c (3.1.43)

Now multiplying equation 3.1.13 through by dt/dr and putting in our expressions

for v and v̇ gives

− dEobs

dr
= − e2z2c

6πεo16M1

α4 (1− 3α)2 (1− α)3/2 [1 + 3α (1− α)2]√ 1

α
(3.1.44)

where α = 2M1/r. Integrating this equation from r = ∞ to some radius r = rmin by

changing variables to α, then gives

Eobserved = Mec
2

(
re

M1

)(
I

12

)
z2 (3.1.45)

where re is the classical electron radius and Me is the electron rest mass (Mec
2re =

e2/4πεo). The I in equation 3.1.45 is given by

I = 0.017166
[π
2
− arcsin(1− 2x)

]
+ 0.034332(2x− 1)(x− x2)1/2 + (x− x2)3/2

×
[
−0.0915528 + 0.290137x− 0.811272x2 − 3.568081x3

+10.834821x4 − 9.5625x5 + 3x6
]

(3.1.46)

where x = 2M1/rmin. Since the particle is falling onto the Schwarzschild radius,

then rmin = 2M1 and equation 3.1.46 reduces to I = 0.017166π. Finally, our equation

3.1.45 becomes

Eobserved = 0.0044932 Mec
2

(
r0

M1

)
z2 (3.1.47)
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This is the result for the electromagnetic radiation which escapes to infinity if a

particle of charge ze falls into a black-hole from r = ∞ to r = 2M1 with zero angular

momentum. The mass of the falling particle M2 does not enter. It is interesting

that if the redshift and β2 corrections are not made in equation 3.1.13 the above

coefficient is increased to 0.008. If higher order terms are neglected in v and v̇, the

coefficient is further increased to 0.033.

3.2 Particle Spiralling Black-Hole

Using equation 3.1.31, the orbital energy of a particle spiraling a black-hole is

E2 =

[
ṙ2

(1− 2M1

r
)

+ (1 +
L2

M2
2 r2

)

]
M2

2 (1− 2M1

r
)

=

[
ṙ2 + (1− 2M1

r
)(1 +

L2

M2
2 r2

)

]
M2

2

E = M2

[
ṙ2 + (1− 2M1

r
)(1 +

L2

M2
2 r2

)

]1/2

(3.2.1)

For the case of particle starts at rest far from the black hole, then the proper time

τ = 0; M2(
dr
dτ

)2 = 0, thus we get the energy of spiralling particle as

E(r) = M2c
2

(
1 +

L2

M2
2 c2r2

) 1
2
(

1− 2M1

r

) 1
2

(3.2.2)

where L is the angular momentum of the orbiting particle, M1 = GM1/c
2, M2 and

M1 is mass of spiraling particle and black hole respectively. The particle will orbit

stably where equation 3.2.2 goes through a minimum as a function of r. This radius

is given by differentiating 3.2.2 as
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d

dr

[
M2

(
1 +

L2

M2
2 r2

) 1
2
(

1− 2M1

r

) 1
2

]
= 0

−
L2
(
1− 2M1

r

) 1
2

r3M2

(
1 + L2

M2
2 r2

) +
M1M2

(
1 + L2

M2
2 r2

) 1
2

(
1− 2M1

r

) 1
2 r2

= 0

L2r2(1− 2M1

r
)−M1M

2
2 r3(1 +

L2

M2
2 r2

) = 0

L2r2 − 2
L2r2M1

r
−M1M

2
2 r3 − M1M

2
2 L2r3

M2
2 r2

= 0

M1M
2
2 r2 − L2r + 3M1L

2 = 0 (3.2.3)

which is in the form of quadratic equation. Now we can find the circular radius of

spiraling massive particle from this equation, then it yields

r =
L2 ±

√
L4 − 12M2

1 M2
2 L2

2M1M2
2

=
L2

2M1M2
2

±

√
L4

4M2
1 M4

2

− 3L2

M2
2

(3.2.4)

This equation can be rewritten as

r =
(
a2 +

√
a4 − 3a2

)
2M1

= 2M1a(a +
√

a2 − 3) (3.2.5)

where a = L/2M1M2. So as we see from 3.2.5, the radius is real only if a ≥
√

3. An

orbit with a =
√

3 has the minimum possible angular momentum. In this optimum

case a particle will spiral down to r = 6M1 before it falls into the black-hole without

further radiation of energy. Particle in this material will gradually lose energy because

of friction in the disc and so its value of E will decrease. As a result r will decrease:

the particle will gradually spiral in to smaller and smaller r. Eventually the particle
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will reach the innermost stable circular orbit (ISCO), which has E = M2c
2
√

8
9
, after

which it falls rapidly into the hole. The energy that the particle loses as it moves

towards the ISCO leaves the disc as radiation, M2c
2(1−

√
8
9
) is radiated away. This

is 5.7% of the rest mass of the orbiting particle.

A charged and uncharged particle with the same mass will radiate away the same

total energy as they spiral inward. This is in contradistinction to the straight fall

case. The difference now is that charged and uncharged particles spiral inward at

different rates. It is of interest then to calculate the time required for a charged and

uncharged particle to spiral in from a given distance away from the black-hole.

In order to calculate the spiral time, we shall use equation 3.2.2 with the value

a =
√

3. This is the most interesting case since it gives the most energy out. The

orbital energy of the particle is then

E(r) = M2c
2

(
1 +

12M2
1

r2

)1/2(
1− 2M1

r

)1/2

(3.2.6)

We can now differentiate this with respect to r to get

dE

dr
= −

12M2
1 M2c

2(1− 2M1

r
)1/2

(1 +
12M2

1

r2 )1/2r3
+

M1M2(1 +
12M2

1

r2 )1/2

(1− 2M1

r
)1/2r2

= −3M2c
2α3 (1− α)1/2

(1 + 3α2)1/2
+

M2c
2

4M1

α2 (1 + 3α2)1/2

(1− α)1/2
(3.2.7)

where α = 2M1/r. Equation 3.2.7 holds for both charged and uncharged particles.

To calculate the spiral time, we need expressions for dE/dt for the gravitational

and electromagnetic cases separately. These expressions for dE/dt can be combined

with equation (20) to give dr/dt which in turn can be integrated over r to give the

41



spiral time ∆t. This dr/dt is the radial velocity as the particle spirals inward and

not the orbital velocity. From Jackson (1999), for quasi-circular motion we have for

electromagnetic radiation

−
(

dE

dt

)
e.m

=

(
e2z2v̇2

6πε0c3

)
γ4 (3.2.8)

where γ = 1/
√

1− v2

c2
. Approximating the β dependence, equation 3.2.8 can be

written as

−
(

dE

dt

)
e.m

=

(
e2z2v̇2

6πε0c3

)
(1 + 2β2

orbital) (3.2.9)

The angular dependence has been integrated out. β is the orbital velocity of the

particle now. We can get this easily from the angular momentum. Since

L =
M2 c r βorbital√

1− β2
orbital

and since a =
√

3, we have

β2
orbital =

12M2
1

(r2 + 12M2
1 )

(3.2.10)

The radial acceleration is the same as for the straight fall case and is given by equation

3.1.42. Putting equations 3.1.42 and 3.2.10 into equation 3.2.9 then gives(
−dE

dt

)
e.m

=
z2Me c3 r0

24M1

α4(1− 3α)2(1− α)2 (1 + 9α2)

(1 + 3α2)
(3.2.11)

Because we will combine equation 3.2.7 with equation 3.2.11 and cancel out the dE

in order to obtain dr/dt, we will work to second order in α only. This will introduce

very little error in ∆t since the main contribution to ∆t comes from large radii and

since αmax = 1/3 for the smallest radius of interest. From equation 3.2.11 we then

have (
dt

dE

)
e.m

= −
(

12M2
1

z2Mec3r0

)
1

α4
(1 + 8α + 36α2) (3.2.12)
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To second order in α we can write equation 3.2.7 as

dE

dr
=

M2c
2

4M1

α2(1− 11

2
α +

39

8
α2) (3.2.13)

Multiplying equations 3.2.12 and 3.2.13 gives(
dt

dr

)
e.m

= − 6M1M2

z2Me c r0

1

α2
(1 + 8α + 36α2)(1− 11

2
α +

39

8
α2)

= − 6M1M2

z2Me c r0

1

α2

(
1− 11

2
α +

39

8
α2 + 8α− 44α2 + 36α2

)
dte.m = − 6M1M2

z2Me c r0

1

α2

(
1 +

5

2
α− 25

8
α2

)
dr (3.2.14)

But we have dr = −2M1

α2 dα, then we can integrate equation 3.2.14 over r by way of

a variable change to α gives

∆te.m =
12M2

1 M2

z2Me c r0

∫ rmax

rmin

(
1

α4
+

5

2α3
− 25

8α2

)
dα

=
4M2

1 M2

z2Me c r0

∫ rmax

rmin

(
3

α4
+

15

2α3
− 75

8α2

)
dα

=
4M2

1 M2

z2Me c r0

[
A3

(
1 +

15

4

1

A
− 75

8

1

A2

)
−B3

(
1 +

15

4

1

B
− 75

8

1

B2

)]
(3.2.15)

where A = rmax/2M1, B = rmin/2M1 and rmax and rmin are the beginning and ending

radii of the spiraling orbit. The gravitational radiation from an uncharged particle in

a circular orbit [20] is (
dt

dE

)
grav

= −5G

c5

(
M1

M2

)2
1

α5
(3.2.16)

using the linearized gravitational field equations and M2 �M1. Combining equation

3.2.13 and 3.2.16 and integrating as above then gives

∆tgrav =
5

8

(
G

c3

)
M2

(
M1

M2

)2 [
A4

(
1− 22

3

1

A
+

39

4

1

A2

)
−B4

(
1− 22

3

1

B
+

39

4

1

B2

)]
(3.2.17)
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From the equations 3.2.15 and 3.2.17, we have the results of coordinate time for

the observer. By taking the mass of the black-hole, M1 equal to one solar mass,

we can compare our results for ∆te.m and ∆tgrav. Let us consider the very end of

the spiral process where events happen most rapidly and choose A = 10 and B = 3

(the minimum possible value). If the orbiting particle is a system of N electrons,

we find from equations 3.2.15 and 3.2.17 that ∆te.m = 0.394 × 109/N years and

∆tgrav = 0.79 × 1051/N years. Therefore, we have that ∆tgrav/∆te.m = 2 × 1042 so

that charged particles spiral in much faster. ∆tgrav is so prohibitively long that the

particles essentially never spiral in.

3.3 Geodesics Equations of Radially Infalling Par-

ticles

In this section we consider the simple spacetime trajectory of a test particle mov-

ing radially with respect to a spherical mass. A test particle is sufficiently small in

comparison with the gravitating spherical mass so that the particles contribution to

the overall gravitational field is negligible. Since we are considering the situation

where no other external forces are present we expect that these particles will travel

on timelike equations governed by the geodesic equations.

The particle dropped from a radius r0 � rs (where rs is the Schwarzschild radius

of the black hole) and fall radially inward starting from rest [21], then the initial
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conditions of this particle will be:

xα
0 = (0, r0,

π

2
, 0)

uα
0 = (ut

0, 0, 0, 0) (3.3.1)

The value of ut
0 found from

gµνu
µ
0u

ν
0 = −1

then ut
0 becomes

ut
0 =

1√
1− 2M1

r0

(3.3.2)

Using the Christoffel symbols from 2.5.13 into the geodesic equation of 2.1.7, we get

d2xt

dτ 2
= − 2M1

r2(1− 2M1

r
)
utur

d2xr

dτ 2
= −M1

r2

(
1− 2M1

r

)
(ut)2 +

M1

r2(1− 2M1

r
)
(ur)2 − (1− 2M1

r
)(uθ)2 − (1− 2M1

r
)r sin2 θ(uφ)2

d2xθ

dτ 2
= −2

r
uruθ + sin θ cos θ(uφ)2

d2xφ

dτ 2
= −2

r
uruφ − cos θ

sin θ
uφuφ (3.3.3)

By writing d2xt

dτ2 = dut

dτ
and ur = dr

dτ
, then integrating the first of the geodesic equations

using the initial conditions becomes:

dut

dτ
= − 2M1

r2(1− 2M1

r
)
ut dr

dτ∫ ut

ut
0

dut

ut
= −

∫ r

r0

2M1

r2(1− 2M1

r
)
dr

ln

(
ut

ut
0

)
= ln

(
1− 2M1

r0

1− 2M1

r

)

ut = ut
0

(
1− 2M1

r0

1− 2M1

r

)
(3.3.4)
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Since we are considering the particle is expected to fall radially only, then uθ and uφ

are zero. Therefore d2xθ

dτ2 and d2xφ

dτ2 are constant.

The radial component of the geodesic equation can be found by 4-velocity and

inserting the values for ut, uθ and uφ

− 1 = −(1− 2M1

r
)(ut)2 +

(ur)2

(1− 2M1

r
)

+ r2uθ + r2 sin2 θ(uφ)2

=
1− 2M1

r0

1− 2M1

r

+
(ur)2

1− 2M1

r

(ur)2

1− 2M1

r

=
1− 2M1

r0

1− 2M1

r

− 1

ur =

√
(1− 2M1

r0

)− (1− 2M1

r
)

= −
√

2M1

r
− 2M1

r0

(3.3.5)

This yields the left components of the 4-velocity,

ut = ut
0

(
1− 2M1

r0

1− 2M1

r

)

=
1√

1− 2M1

r0

(
1− 2M1

r0

1− 2M1

r

)

dt

dτ
=

√
1− 2M1

r0

1− 2M1

r

(3.3.6)

uθ = 0

uφ = 0 (3.3.7)

The radial equation 3.3.5 can be integrated to find the proper time for the particle
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to start at r0 and fall to the horizon at r = 2M1. We get

dr

dτ
= −

√
2M1

r
− 2M1

r0

(3.3.8)

τ = −
∫ r

r0

dr√
2M1

r
− 2M1

r0

= r0

(√
r0

2M1

(
π

2
− sin−1

√
2M1

r0

)
+

√
1− 2M1

r0

)
(3.3.9)

When the initial radius is much larger than 2M1 (r0 � 2M1), then the proper time

that it would take for the particle to fall from r0 to 2M1 would be approximately

cτ = r0

(√
r0

2M1

(
π

2
− sin−1

√
2M1

r0

)
+

√
1− 2M1

r0

)

τ =
r0

c

(√
r0

2M1

π

2
+ 1

)
≈ π

2c

√
r3
0c

2

2GM1

=

√
π2r3

0

8GM1

(3.3.10)

Using this, a value for r0 can be substituted and the proper time elapsed for the

particle to fall into the event horizon of the black hole can be found. At r0 = 8M1,

then we have

τ = 8M1

(√
8M1

2M1

(
π

2
− sin−1

√
2M1

8M1

)
+

√
1− 2M1

8M1

)

= 8M1

(
2(

π

2
− sin−1(

1

2
)) +

√
3

4

)

= 8M1

(
2π

3
+

√
3

2

)
≈ 9.83M1 (3.3.11)

where M1 = GM1

c2
. From equation 3.3.6 and 3.3.8 we consider the relation of finite
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amount of proper time to coordinate time, then

dt

dr
=

( dt
dτ

)

( dr
dτ

)

= −

√
1− 2M1

r0

1− 2M1
r√

2M1

r
− 2M1

r0

dt = −

√
1− 2M1

r0

(1− 2M1

r
)
√

2M1

r
− 2M1

r0

dr

t = −
∫ √

1− 2M1

r0

(1− 2M1

r
)
√

2M1

r
− 2M1

r0

dr

= −
∫ r

r0

(
1− 2M1

r

)−1√
r

2M1

dr

= −2

3

(
1

2M1

) 1
2 (

r
3
2 − r

3
2
0 + 6M1r

1
2 − 6M1r

1
2
0

)
+ 2M1 ln


(
r

1
2 + (2M1)

1
2

)(
r

1
2
0 − (2M1)

1
2

)
(
r

1
2
0 + (2M1)

1
2

)(
r

1
2 − (2M1)

1
2

)
 (3.3.12)
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3.4 Rotating black hole

3.4.1 The Kerr metric

The Kerr metric or Kerr geometry describes the geometry of empty spacetime

around a rotating uncharged axially-symmetric black hole with a quasispherical event

horizon. The Kerr metric is the second exact solution of the Einstein field equations of

general relativity; these equations are highly non-linear, which makes exact solutions

very difficult to find. The Kerr metric is a generalization to a rotating body of the

Schwarzschild metric, discovered by Karl Schwarzschild in 1915. The corresponding

solution for a charged, spherical, non-rotating body, the Reissner Nordstrm metric,

was discovered soon afterwards (1916-1918). However, the exact solution for an un-

charged, rotating black-hole, the Kerr metric, remained unsolved until 1963, when it

was discovered by Roy Kerr [22].

According to the Kerr metric, a rotating body should exhibit frame-dragging, a

distinctive prediction of general relativity. The first measurement of this frame drag-

ging effect was done in 2011 by the Gravity Probe B experiment. This effect predicts

that objects coming close to a rotating mass will be entrained to participate in its ro-

tation, not because of any applied force or torque that can be felt, but rather because

of the swirling curvature of spacetime itself associated with rotating bodies. In the

case of a rotating black hole, at close enough distances, all objects even light must

rotate with the black hole; the region where this holds is called the ergosphere. Rotat-

ing black holes have surfaces where the metric seems to have apparent singularities;

the size and shape of these surfaces depends on the black hole’s mass and angular

momentum. The outer surface encloses the ergosphere and has a shape similar to
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a flattened sphere. The inner surface marks the event horizon; objects passing into

the interior of this horizon can never again communicate with the world outside that

horizon. The LIGO experiment that first detected gravitational waves, announced in

2016, provided the first direct observation of a pair of Kerr black holes [23].

When a = 0, the Kerr metric reduces to the Schwarzschild metric. The event

horizon is situated at the point where the sign of the dr term changes, i.e. at ∆ = 0.

Solving ∆ = 0 for r now gives two horizons,

0 = r2 − 2M1r + a2

r = r± = M1 ±
√

M2
1 − a2 (3.4.1)

The outer horizon, r+, is the event horizon while the inner one, r−, is called a Cauchy

horizon. We see that a < M , else a black hole can not exist. A black hole with

a = M1 is called a maximally rotating black hole. When a < M1 the event horizon r+

is smaller than the Schwarzschild radius, and if a = 0 then r+ = rs. The horizon of a

rotating black hole is thus smaller than a stationary one. Another surface of rotating

black hole is ergosphere (outer surface). Its solution is given at gtt = 0

gtt = −∆− a2 sin2 θ

ρ2

0 =
∆− a2 sin2 θ

ρ2

0 = r2 − 2M1r + a2 − a2 sin2 θ

r = r± = M1 ±
√

M2
1 − a2 cos2 θ (3.4.2)
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3.4.2 Geodesics in the equatorial plane

The general equations for non-null and null geodesics in the Kerr geometry are

much less persuasive than in the Schwarzschild case, and particle trajectories exhibit

complicated behavior. For example, in general the trajectory of a massive particle

or photon is not constrained to lie in a plane. This is a direct consequence of the

fact that the spacetime is not spherically symmetric and so, in general, the angular

momentum of a test particle is not conserved. Since the Kerr geometry is stationary

and axisymmetric, the conserved quantities along particle trajectories are pt and pφ.

The component of angular momentum along the rotation axis is conserved. Since the

motion of the particle is in equatorial plane, then we have θ = π/2. The Kerr metric

from 2.6.1 rewritten as

ds2 =

(
1− 2M1

r

)
dt2 +

4M1 a

r
dtdφ− r2

∆
dr2 −

(
r2 + a2 +

2M1 a2

r

)
dφ2

(3.4.3)

From this equation we can immediately write down the corresponding Lagrangian

L = gµν ẋ
µẋν . In our case, for a massive particle we shall take the particle to have

unit rest mass and for a photon we shall choose an appropriate affine parameter along

the null geodesic such that, in both cases, pµ = ẋµ. We may obtain the geodesic

equations by writing down the appropriate Euler-Lagrange equations. However, we

use the fact that pt and pφ are conserved along geodesics (since the metric does not

depend explicitly on t and φ). The Lagrangian equation of 3.4.3 becomes

L =

(
1− 2M1

r

)
ṫ2 +

4M1 a

r
ṫφ̇− r2

∆
ṙ2 −

(
r2 + a2 +

2M1 a2

r

)
φ̇2 (3.4.4)
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Overdots denote differentiation with respect to an affine parameter (λ). By using the

Euler-Lagrange equation

d

dλ

∂L
∂ẋµ

− ∂L
∂xµ

= 0 (3.4.5)

From this expression we obtain for the momenta

pt = gttṫ + gtφφ̇

=

(
1− 2M1

r

)
ṫ +

4M1 a

r
φ̇

= E (3.4.6)

pr =
r2

∆
ṙ (3.4.7)

pφ = gφtṫ + gφφφ̇

=
2M1 a

r
ṫ−
(

r2 + a2 +
2M1 a2

r

)
φ̇

= −L (3.4.8)

The corresponding Hamiltonian is given by

H = ptṫ + prṙ + pφφ̇− L

=
1

2

(
1− 2M1

r

)
ṫ2 +

2M1 a

r
ṫφ̇− r2

2∆
ṙ2 − 1

2

[
r2 + a2 +

2a2M1

r

]
φ̇2

(3.4.9)

Since H is independent of t, we find

2H =

[(
1− 2M1

r

)
ṫ +

2M1 a

r
φ̇

]
ṫ− r2

∆
ṙ2 −

[(
r2 + a2 +

2a2M1

r

)
φ̇ +

2M1 a

r
ṫ

]
φ̇

(3.4.10)
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This can be written as

2H = Eṫ− Lφ̇− r2

∆
ṙ2 = δ1 (3.4.11)

where δ1 is an integration constant, which can be chosen as δ1 = −1 for time-like

geodesics and δ1 = 0 for null geodesics. With these expressions we can solve for the

velocity components in terms of the conserved quantities E and L

ṫ =
1

∆

[(
r2 + a2 +

2M1 a2

r

)
E − 2M1 a

r
L

]
(3.4.12)

φ̇ =
1

∆

[
2M1a

r
E +

(
1− 2M1

r

)
L

]
(3.4.13)

When we insert this into the equation 3.4.11 , we obtain the radial equation

r3ṙ2 = r3E2 + 2M1(aE − L)2 + r(a2E2 − L2)− r∆ (3.4.14)

Both constants E and L may be obtained by considering the limit as r →∞, we

can rewrite the energy equation 3.4.14 in the form

1

2
ṙ2 + Veff (r; E, L) =

1

2
(E2 − 1) (3.4.15)

where we have identified the effective potential per unit mass as

Veff (r; E, L) = −M1

r
+

E2 − a2(E2 − 1)

2r2
− M1(L− aE)2

r3
(3.4.16)

This equation reduces to the Schwarzschild result in the limit a → 0. When a 6= 0,

however an effective potential depends on the energy E of the particle (as well as

the usual dependence on the angular momentum L). Nevertheless, by differentiating

3.4.15 with respect to τ , one finds that the radial acceleration of a particle is still

given by r̈ = −dVeff/dr. An incoming particle will fall into the black hole only if

the parameters L and E defining its trajectory are such that the maximum value of

Veff (r; E, L) exceeds 1/2(E2 − 1).
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3.4.3 Equatorial motion of massive particles with zero angu-
lar momentum

For a particle falling into a Kerr black hole whose angular momentum about the

black hole is zero, we have L = 0. Therefore, equation 3.4.14 becomes

r3ṙ2 = E2(r3 + 2M1a
2 + ra2)− r∆ (3.4.17)

From this equation we can find the energy of infalling particle as

E = ±

√
r3ṙ2 + r∆

r3 + 2M1a2 + ra2
(3.4.18)

We will also consider the limit in which the particle starts at rest from infinity, in

which case E = 1. In this case the particle will initially be moving radially. Using

these values of L and E, the geodesic equations become

ṫ =
1

∆

(
r2 + a2 +

2M1a
2

r

)
(3.4.19)

φ̇ =
2M1a

∆
(3.4.20)

ṙ2 =
2M1

r

(
1 +

a2

r2

)
(3.4.21)

From these expression, we see that both ṫ and φ̇ are infinite at the horizons (when

∆ = 0), the singular behaviours of the t and φ coordinates cancel in the expression

for ṙ2. The above equations may in turn be used to obtain expressions relating

differentials of the coordinates along the particle trajectory. In particular, we find

that

dr

dt
=

ṙ

ṫ
= −∆

[
2M1

r

(
1 +

a2

r2

)] 1
2
(

r2 + a2 +
2M1a

2

r

)−1

(3.4.22)
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dφ

dt
=

φ̇

ṫ
=

2M1a

r

(
r2 + a2 +

2M1a
2

r

)−1

(3.4.23)

dφ

dr
=

φ̇

ṙ
= −2M1a

r∆

[
2M1

r

(
1 +

a2

r2

)]− 1
2

(3.4.24)

Now differentiating equation 3.4.18 with respect to r for the energy of particle

with zero angular momentum infalling onto Kerr black hole as

dE

dr
=

M1a
4 + M1r

4 + a2r(r2ṙ2 − 4M2
1 + M1r(2 + 3ṙ2))

(r3 + 2M1a2 + a2r)
3
2 (r3ṙ2 + r3 − 2M1r2 + a2)

1
2

(3.4.25)

Multiplying this equation by 3.4.22, then the power radiated energy of particle is

given as

− dE

dt
=

M1a
4 + M1r

4 + a2r(r2ṙ2 − 4M2
1 + M1r(2 + 3ṙ2))

(r3 + 2M1a2 + a2r)
3
2 (r3ṙ2 + r3 − 2M1r2 + a2)

1
2

×

{
∆

[
2M1

r

(
1 +

a2

r2

)] 1
2
(

r2 + a2 +
2M1a

2

r

)−1
}

(3.4.26)

where ∆ = r2 − 2M1r + a2

Using 3.4.21 into 3.4.26, then we get

− dE

dt
=

(
M1a

4 + M1r
4 + a2r

(
2M2

1 + 4M1r + 2M1a2

r
+

6M2
1 a2

r2

))
(r3 + 2M1a2 + a2r)

3
2 (r3 + 2M1a2 + a2)

1
2

∆
(

2M1

r

(
1 + a2

r2

)) 1
2(

r2 + a2 + 2M1a2

r

)
(3.4.27)

An off-diagonal term of Kerr metric is given as

gtφ = gφt = −a
2M1r sin2 θ

ρ2
(3.4.28)

Where Kerr metric is independent of φ and t. pφ and pt will then be conserved. And

we have:

pφ = M2
dφ

dτ
(3.4.29)
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pt = M2
dt

dτ
(3.4.30)

and thus with angular velocity

ω(r, t) =
dφ

dt
=

pφ

pt
(3.4.31)

For the sake of particle with zero angular momentum at spatial infinity, then pφ = 0

and using the equations 3.4.23, 3.4.29 and 3.4.30

ω(r, t) =
2M1a

r3 + a2r + 2M1a2
(3.4.32)

As of gravitational redshift expressed in Schwarzschild black hole, we can also

do for Kerr black hole. We first derive the gravitational time dilation to obtain

the gravitational redshift. It is given for a clock that is stationary (motionless) in a

gravitational field (dr = dθ = dφ = 0) [24]. Hence the Kerr metric in Boyer-Lindquist

coordinate system reduced to

ds2 = gttc
2dt2

=

(
1− 2GM1r

r2 + a2 cos2 θ

)
dt2 (3.4.33)

and we have

dτ =
√

gtt dt (3.4.34)

where G = c = 1. It is not possible to determine dt at any specific point in the

gravitational field because all devices are affected in exactly the same way. Thus,

two points in the gravitational field are required to determine the influence of gtt.

By considering two points in the gravitational field, point A, where electromagnetic
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radiation of a specific frequency is emitted and point B, where it is received. We have

from equation 3.4.34

dτA =
√

gtt(rA) dtA =
√

gtt(rem) dtem (3.4.35)

dτB =
√

gtt(rB) dtB =
√

gtt(rre) dtre (3.4.36)

As the time intervals, dtA and dtB , we assign the time between adjacent crests of

electromagnetic radiation. This means they are equal to the reciprocal of the period

or frequency, νA and νB , of the electromagnetic radiation. That is:

dτA = dτemitted =
1

νemitted

(3.4.37)

dτB = dτreceived =
1

νreceived

(3.4.38)

From equations 3.4.35, 3.4.36, 3.4.37 and 3.4.38, we get

νreceived

νemitted

=

(
gtt(rem)

gtt(rre)

)1/2

(3.4.39)

Plugging equation 3.4.33 into 3.4.39

νreceived

νemitted

=

(
1− 2M1 rem

r2
re+a2 cos2 θ

1− 2M1 rre

r2
re+a2 cos2 θ

)1/2

(3.4.40)

For the receiver at infinity (rreceived � remitted),(
1− 2M1 rre

r2
re + a2 cos2 θ

)1/2

→ 1,
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then equation 3.4.40 becomes

νreceived

νemitted

=

(
1− 2M1rem

r2
em + a2 cos2 θ

)1/2

(3.4.41)

The energy received at infinity related to the energy emitted near a Kerr black-hole

is given as

dEreceived = dEemitted

(
1− 2M1 rem

r2
em + a2 cos2 θ

)1/2

(3.4.42)

The energy per unit time of this equation is given by

dEreceived

dt
=

dEemitted

dt

(
1− 2M1rem

r2
em + a2 cos2 θ

)1/2

(3.4.43)

Plugging 3.4.27 into 3.4.43, then we have

− dEre

dt
=

(
M1a

4 + M1r
4 + a2r

(
2M2

1 + 4M1r + 2M1a2

r
+

6M2
1 a2

r2

))
(r3 + 2M1a2 + a2r)

3
2 (r3 + 2M1a2 + a2)

1
2

∆
(

2M1

r

(
1 + a2

r2

)) 1
2(

r2 + a2 + 2M1a2

r

)
×
(

1− 2M1rem

r2
em + a2 cos2 θ

)1/2

(3.4.44)

3.4.4 Equatorial circular motion of massive particles

For circular motion, we require that ṙ = 0 and, for the particle to remain in a

circular orbit, that the radial acceleration r̈ must also vanish. For time-like geodesics

we may write this in order of decreasing powers in r as

r3ṙ2 = r3E2 − r∆− r(L2 − a2E2) + 2M1(aE − L)2 (3.4.45)
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E is now the total energy per unit mass of a particle (or star) and L the angular

momentum per unit mass. This radial equation can directly be obtained from the

conservation laws and the normalization of the four momentum, p2 = −M2
2 . The

radial equation reduces to the Schwarzschild form in the case a = 0.(
dr

dτ

)2

= E2 − V 2
s (3.4.46)

dφ

dτ
=

L

r2
, (3.4.47)

with the effective potential defined as

V 2
s =

(
1− 2M1

r

)(
1 +

L2

r2

)
(3.4.48)

However, in the case of Kerr, we cannot transform to a simple effective potential. For

this reason, we introduce, as in the Newtonian case, the variable u = 1/r and write

the radial equation as

u−3u̇2 = 2M1(L− aE)2u3 − (L2 − a2E2)u2 − (a2u2 − 2M1u + 1) + E2

(3.4.49)

Since particle is in the circular orbits, u̇ = 0, for given values of E and L. For circular

orbits, the above cubic polynomial will have a double root. This is easily calculated

to be the case for

2M1l
2u3 − (l2 + 2alE)u2 − (a2u2 − 2M1u + 1) + E2 = 0 (3.4.50)

and

3M1l
2u2 − (l2 + 2alE)u− (a2u−M1) = 0 (3.4.51)

where we have introduced the reduced angular momentum

l = L− aE (3.4.52)
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These two equations can be combined to give

E2 = 1−M1u + M1l
2u3 (3.4.53)

and

2alEu = l2(3M1u− 1)u− (a2u−M1) (3.4.54)

We can eliminate the energy E from these two equations and combine them into a

quadratic equation for l2

u2
[
(3M1u− 1)2 − 4a2M1u

3
]
l4

− 2u
[
(3M1u− 1)(a2u−M1)− 2a2u(M1u− 1)

]
l2

+ (a2u−M1)
2 = 0 (3.4.55)

The discriminant of this equation is

D = 4a2M1u
3D2

µ, Dµ = a2u2 − 2M1u + 1 (3.4.56)

we get

R± = 1− 3M1u± 2a
√

M1u3 (3.4.57)

and the identity

(3M1u− 1)2 − 4a2M1u
3 = R+R− (3.4.58)

We find

l± = −a
√

u±M1√
uR∓

(3.4.59)

Inserting this solution into the energy equation 3.4.53, we find

E =
1− 2M2u∓ a

√
M1u3

√
R∓

(3.4.60)
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and the value of L to be associated with this value for E is

L = l + aE

= ∓

√
M1(a2u2 + 1± 2a

√
M1u3)

√
uR∓

(3.4.61)

Finally, the energy per unit mass of circular orbits is given as

E =
r2 − 2M1r ∓ a

√
M1r

r
√

r2 − 3M1r ∓ 2a
√

M1r
(3.4.62)

and the specific angular momentum as

L = ∓

√
M1r(r2 − 2a

√
M1r + a2)

r
√

r2 − 3M1r ∓ 2a
√

M1r
(3.4.63)

where the plus sign correspond to co-rotating orbits and the minus to counter-rotating

ones. We can now differentiate equation 3.4.62 for co-rotating with respect to r as

dE

dr
=

M2
1

(
8aM1r − 3a2

√
M1r + r

√
M1r(r − 6M1)

)
2(M1r)3/2(r2 − 3M1r + 2a

√
M1r)3/2

(3.4.64)

Multiplying this equation with 3.4.22, then it yields

− dE

dt
=

M2
1

(
8aM1r − 3a2

√
M1r + r

√
M1r(r − 6M1)

)
2(M1r)3/2(r2 − 3M1r + 2a

√
M1r)3/2

∆
(

2M1

r

(
1 + a2

r2

)) 1
2(

r2 + a2 + 2M1a2

r

)
(3.4.65)

By using the r-component of the Euler-Lagrangian equation, the circular geodesic

of the particles spiralling Kerr spacetime is ṙ = r̈ = 0. Thus equation 3.4.5 rewritten

as

d

dλ

∂L
∂ṙ

=
∂L
∂r

(3.4.66)
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Being grµ = 0 if µ 6= r, then we have

d

dλ
(grrṙ) =

1

2
gµν,rẋ

µẋν (3.4.67)

This equation reduced to

gtt,r ṫ
2 + 2gtφ,r ṫφ̇ + gφφ,rφ̇

2 = 0 (3.4.68)

The angular velocity is

ω =
φ̇

ṫ
=

uφ

ut
, (3.4.69)

Dividing both sides of 3.4.68 by ṫ2, then we get

gφφ,rω
2 + 2gtφ,rω + gtt,r = 0 (3.4.70)

where we have on the equatorial plane,

gtt = −
(

1− 2M1

r

)
(3.4.71)

gtφ = −2M1a

r
(3.4.72)

gφφ = r2 + a2 +
2M1a

2

r2
, (3.4.73)

then

2

(
r − M1a

2

r2

)
ω2 +

4M1a

r2
ω2 − 2M1

r2
= 0 (3.4.74)

This quadratic equation can be rewritten in the form of,

(
r3 −M1a

2
)
ω2 + 2M1aω −M1 = 0 (3.4.75)

has discriminant

M2
1 a2 + M1(r

3 −M1a
2) = M1r

3, (3.4.76)
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then we get

ω± =
−M1a±

√
M1r3

r3 −M1a2

= ±
√

M1

r3/2 ± a
√

M1

(3.4.77)

This is the relation between angular velocity and radius of circular orbits, and reduces,

in Schwarzschild limit a = 0, to

ω± = ±
(

M1

r3

)1/2

, (3.4.78)

Four velocity of a stationary point on the surface can be written as,

uµ = (ut, 0, 0, uφ) (3.4.79)

Using equation 3.4.69 in above equation 3.4.79

uµ = (ut, 0, 0, ωuφ) (3.4.80)

Through the normalization condition of the four velocity given by [25]

uµu
ν = gµνu

µuν = 1 (3.4.81)

gttu
tut + 2gtφu

tuφ + gφφu
φuφ = 1 (3.4.82)

Using equation 3.4.80 in to 3.4.82, we obtain the time-like component of the four

velocities in terms of the metric components of Kerr field and angular velocity of
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rotation (ω)

gtt + 2gtφω + gφφ

(
uφ

ut

)2

=

(
1

ut

)2

(
gtt + 2gtφω + gφφω

2
)1/2

=
1

ut

ut =
1

(gtt + 2gtφω + gφφω2)1/2
(3.4.83)

Any observer measures the frequency ν of a photon following null geodesic xµ(λ) can

be calculated by the expression given by

ν = uµ dxµ

dxλ

= uµgµν
dxν

dxλ

(3.4.84)

If photon is emitted at r = θ = constant, dr = dθ = 0, then using 3.4.84 the

frequency ν can be expressed as

ν = ut(gttṫ + gtφφ̇) + uφ(gtφṫ + gφφφ̇) (3.4.85)

Using equation 3.4.6 and 3.4.8 in above equation 3.4.85, we can write

ν = ut(−E) + uφ(L) = ut(−E + ωL) (3.4.86)

Using equation 3.4.83 in above equation 3.4.86, we can write the expression of

frequency observed as

ν =
(−E + ωL)

(gtt + 2gtφω + gφφω2)1/2
(3.4.87)

In general relativity gravitational redshift (z) is defined as

1

z + 1
=

νreceived

νemitted

=
(
gtt + 2gtφω + gφφω

2
)1/2

(3.4.88)
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Now we can write the energy received at infinity related to the energy emitted near

a rotating black-hole as

dEreceived = dEemitted

(
gtt + 2gtφω + gφφω

2
)1/2

(3.4.89)

Using equations 3.4.65 and 3.4.89, then the power radiated energy observed at

infinity is

− dEobs

dt
=

M2
1

(
8aM1r − 3a2

√
M1r + r

√
M1r(r − 6M1)

)
2(M1r)3/2(r2 − 3M1r + 2a

√
M1r)3/2

∆
(

2M1

r

(
1 + a2

r2

)) 1
2(

r2 + a2 + 2M1a2

r

)
×
(
gtt + 2gtφω + gφφω

2
)1/2

(3.4.90)
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Chapter 4

Result and Discussion

Using General Theory of Relativity (GTR) we have developed the equations of mo-

tion of freely in falling particle into Schwarzschild and Kerr black hole. Since equations

of motion free falling particles were computed, the equation of energy emitted in the

form of electromagnetic radiation in the case of charged particle infalling with zero

angular momentum and gravitational radiation for uncharged particle into black hole

is derived for both Schwarzschild and Kerr case. The time of infalling particles into

Schwarzschild black hole is derived and for the orbit case we have calculated the time

required for both a charged and an uncharged particle to spiral into the black-hole.

The results for the particle falling with zero angular momentum and for the particle

orbiting the black-hole is calculated in turn and compared with the corresponding

results for gravitational radiation.
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4.1 Equations of motion of particle freely infalling

into Schwarzschild spacetime

We have considered a radially falling particle in a Schwarzschild spacetime and the

way to calculate the equations of motion. The Schwarzschild spacetime is the ge-

ometry of the vacuum spacetime outside a spherical star. It is determined by one

parameter, the mass M1, and has the line element

ds2 =

(
1− 2M1

r

)
dt2 −

(
1− 2M1

r

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2 (4.1.1)

For Schwarzschild metric, we have the Lagrangian equation as

L =
1

2

[(
1− 2M1

r

)
ṫ2 − ṙ2

1− 2M1

r

− r2θ̇2 − r2 sin2 θφ̇2

]
(4.1.2)

The corresponding canonical momenta are

pt =
∂L
∂ṫ

=

(
1− 2M1

r

)
ṫ =

E

M2

(4.1.3)

pr = −∂L
∂ṙ

=

(
1− 2M1

r

)−1

ṙ (4.1.4)

pθ = −∂L
∂θ̇

= r2θ̇ (4.1.5)

pφ = −∂L
∂φ̇

= r2 sin2 θφ̇ =
L

M2

(4.1.6)

For equatorial plane (θ = π/2) 4.1.2 becomes

1 =

(
1− 2GM1

r

)
ṫ2 − ṙ2

(1− 2GM1

r
)
− r2φ̇2 (4.1.7)

Since the particle is radially infalling, the the equation of motion 2.5.30 becomes(
ds

dt

)2

=

(
1− 2M1

r

)
c2 −

(
1− 2M1

r

)−1
dr2

dt2
(4.1.8)
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then the velocity of infalling particle is given by

v =
dr

dt
= −c

(
1− 2M1

r

)√
2M1

r
(4.1.9)

Differentiating this equation with respect to t then gives the acceleration,

d2r

dt2
= −M1c

2

r2

(
1− 8M1

r
+

12M2
1

r2

)
(4.1.10)

4.2 Amount of energy radiated during infalling of

particles onto black hole

4.2.1 The Schwarzschild black hole

For an accelerated point charge q in straight-line motion, the angular distribution of

the radiation through out solid angle (dΩ = sin θdθdφ) is given by

dP

dΩ
=

µ0q
2a2

16π2c

sin2 θ

(1− β cos θ)5
(4.2.1)

where (µ0 = 1/c2ε0, β = v/c). The energy given off per unit time by a charged

particle falling radially into a black-hole is given by

− dE(θ)

dt
=

v̇2

c3

e2z2

16π2ε0

sin2 θ

(1− β cos θ)5
(4.2.2)

By integrating this equation over θ to get

− dE

dt
=

v̇2

c3

e2

6πε0

{
1

(1− β2)3

}
(4.2.3)

Thus the energy emitted by the accelerating charge is given by

− dE

dt
=

v̇2

c3

e2

6πε0

(
1 + 3β2

)
(4.2.4)
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We would like to calculate the total energy received at infinity, if a clock at infinity

records the passive of a time ∆t∞, then one near the black hole will record a time

∆tr = ∆t∞

(
1− 2GM1

rc2

) 1
2

(4.2.5)

The frequency of a photon of frequency νr emitted at a radius r around a black

hole and received at infinity will have frequency

ν∞ = νr

(
1− 2GM1

rc2

) 1
2

(4.2.6)

We observe from this equation that as r → RSch, the observed frequency ν∞ → 0.

Thus, light emitted near the event horizon becomes more and more redshifted, until

finally at the event horizon it becomes infinitely redshifted and can no longer be ob-

served by the outside world.

Since the particle is in falling, then the radial part from equation 2.5.30 being

calculated as

c2dτ 2 =

(
1− RSch

r

)
c2dt2 −

(
1− RSch

r

)−1

dr2 (4.2.7)

For an observer at infinity (as r →∞,
(
1− 1− 2GM1

rc2

) 1
2 → 1), then

dτ∞ = dt (4.2.8)

Thus the energy received at infinity is related to the energy emitted near a black-hole

by

dEreceived = dEemitted

(
1− 2M1

r

) 1
2

(4.2.9)

Combining equation 4.2.4 and 4.2.9, then we get

− dEreceived

dt
=

v̇2

c3

e2

6πε0

(
1 + 3β2

)(
1− 2M1

r

) 1
2

(4.2.10)
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By using equation of motion of infalling particle onto Schwarzschild black hole, the

values of v and v̇ were calculated.

Finally, the result of electromagnetic radiation which escapes to infinity for a

particle of charge ze falls into a black-hole from r = ∞ to r = 2M1 with zero angular

momentum is given as

Ee.m = 0.0044932 mec
2

(
re

M1

)
z2 (4.2.11)

where

me = MeG
c2

, Me = 9.11× 10−31kg (mass of electron), G = 6.67384× 10−11 m3

kg s2 (grav-

itational constant), re = 2.8 × 10−15m (radius of electron), M1 is mass of black hole

and c = 3×108 m
s

(speed of light.) The mass of the falling particle M2 does not enter.

When an uncharged particle of mass M2 emits gravitational radiation in zero

angular momentum fall [13], then an amount of radiated energy,

Egrav =
1

625
(
M2

M1

)M2 c2

= 0.0016(
M2

M1

)M2 c2 (4.2.12)

where M1 is mass of black hole.

By taking M2 to a system composed of N electrons, then the ratio of electromag-

netic radiation to gravitational one is

Ee.m

Egrav

= 2.8

(
re

me

)
= 2.8

(
2.8× 10−15m × 9× 1016m2/s2

9.11× 10−31kg × 6.67× 10−11m3 kg−1s−2

)
= 1.16× 1043 (4.2.13)
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We get far more electromagnetic radiation in this case. The ratio in equation 4.2.13

will, of course, become smaller as the mass M2 increases and the charge decreases.

For the case of particle starts at rest far from the black hole, then the energy of

spiralling particle and effective potential per unit rest-mass of particle are given as

E(r) = M2 c2

(
1 +

L2

M2
2 c2 r2

) 1
2
(

1− 2M1

r

) 1
2

(4.2.14)

V (r) =

(
1 +

L2

r2

)(
1− 2M1

r

)
(4.2.15)

respectively.

The particle will orbit stably where equation 4.2.14 goes through a minimum as a

function of r, which is written as

r =
(
a2 +

√
a4 − 3a2

)
2M1

= 2M1a(a +
√

a2 − 3) (4.2.16)

where a = L/2M1M2. By following this equation, the radius is real only if a ≥
√

3.

From this value, we have two cases for angular momentum (L) for the particle.
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Figure 4.1: Effective potential as a function of radius for various values of the angular
momentum L < 2

√
3M1. The abscissa is a dimensionless radius in units of gravita-

tional radii, and GM1/c is the natural unit for the specific angular momentum L of
a particle.

Case I: As illustrated in figure 4.1; if L < 2
√

3M1, then there are no turning

points. For these values of angular momentum no more type of finite motion is pos-

sible, then a test body will inevitably fall in the black hole whatever values of E it

may have. The effective potential is a monotonically increasing function of r.
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Figure 4.2: Effective potential as a function of radius for various values of the angular
momentum L > 2

√
3M1. The abscissa is a dimensionless radius in units of gravita-

tional radii, and GM1/c is the natural unit for the specific angular momentum L of a
particle. The relativistic effective potential attains a maximum for L > 2

√
3M1 and

then vanishes at the Schwarzschild radius 2M1

Case II: Figure 4.2 shows that if L > 2
√

3M1, then there are two turning points.

The effective potential has two extrema: maximum and minimum, at the radii of

which unstable and stable circular motion are possible correspondingly. In the case

when L equals to the boundary value 2
√

3M1, two extrema of effective potential (EP)

merge into one inflection point. This boundary value of L defines parameters of the

last stable orbit which is also called the innermost stable circular orbit (ISCO), i. e.

the boundary orbit on which the finite motion is still possible [26]. For Schwarzschild

BH case, a minimum of the ISCO is r = 6M1.
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The existence of an innermost stable orbit has some interesting astrophysical con-

sequences. Gas in an accretion disc around a massive compact central body settles

into circular orbits around the compact object. However, the gas slowly loses angular

momentum because of turbulent viscosity. As the gas loses angular momentum it

moves slowly inwards, losing gravitational potential energy and heating up. Even-

tually it has lost enough angular momentum that it can no longer follow a stable

circular orbit, and so it spirals rapidly inwards onto the central object. Therefore,

particle will spiral down to r = 6M1 before it falls into the black-hole without further

radiation of energy. The energy per unit rest-mass of a particle at this lowest orbit

is given by

E2 =
(r − 2M1)

2

r(r − 3M1)

E =
r − 2M1√
r(r − 3M1)

=
6M1 − 2M1√

6M1(6M1 − 3M1)

=

√
8

9

E = 0.9428 (4.2.17)

Therefore, the amount of energy of a particle radiated away at r = 6M1 is

Eemitted = M2 c2

(
1−

√
8

9

)
= 0.0572 M2 c2 (4.2.18)

which is 5.7% of the rest mass of the orbiting particle.

74



The time of spiralling charged particle into Schwarzschild BH written as

∆te.m =
4M2

1 M2

z2Me c r0

[
A3

(
1 +

15

4

1

A
− 75

8

1

A2

)
−B3

(
1 +

15

4

1

B
− 75

8

1

B2

)]
(4.2.19)

and time of uncharged one becomes,

∆tgrav =
5

8

(
G

c3

)
M2

(
M1

M2

)2 [
A4

(
1− 22

3

1

A
+

39

4

1

A2

)
−B4

(
1− 22

3

1

B
+

39

4

1

B2

)]
(4.2.20)

where A = rmax/2M1, B = rmin/2M1 and rmax and rmin are the beginning and ending

radii of the spiraling orbit for both cases.

From these results, we observed that the energy radiated when a particle orbits

a black-hole is much greater than when it falls with zero angular momentum and is

the same for charged and uncharged particles. However, the charged particle spirals

in much faster than the uncharged one.

4.2.2 The Kerr black hole

In the case of Kerr metric, the energy per unit mass of circular orbits of particle is

given as

E =
r2 − 2M1r ∓ a

√
M1r

r
√

r2 − 3M1r ∓ 2a
√

M1r
(4.2.21)

and the specific angular momentum as

L = ∓

√
M1r(r2 − 2a

√
M1r + a2)

r
√

r2 − 3M1r ∓ 2a
√

M1r
(4.2.22)
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For the neutral rotating BH, the innermost stable circular orbit of particle with co-

rotating is r = M1, then 4.2.21 becomes

E =
1√
3

(4.2.23)

This gives the maximum energy per unit mass which a stable circular orbit can have

in a Kerr geometry with a2 ≤M2
1 . Hence the amount of energy radiated in this case

is

E = M2 c2(1− 1√
3
)

= 0.4227 M2 c2 (4.2.24)

Therefore, a particle in a co-rotating orbit with Kerr BH radiates 42.3% of its rest

mass. This high gravitational energy is the reason why black holes can so efficiently

transform accretion streams into radiation. Now, we can compare the results from

4.2.11, 4.2.12 and 4.2.18 that the energy radiated away of a particle in co-rotating

with Kerr spacetime is more than that of Schwarzschild in both cases (radially freely

falling and spiralling).

The energy received at infinity related to the energy emitted near a Kerr black-hole

is given as

dEreceived = dEemitted

(
1− 2M1rem

r2
em + a2 cos2 θ

)1/2

(4.2.25)

For a = 0, this equation reduced to 4.2.9 of the Schwarzschild case. The power

radiation of a particle falling into a Kerr black hole whose angular momentum about
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the black hole is zero, we have L = 0 is given by

− dEre

dt
=

(
M1a

4 + M1r
4 + a2r

(
2M2

1 + 4M1r + 2M1a2

r
+

6M2
1 a2

r2

))
(r3 + 2M1a2 + a2r)

3
2 (r3 + 2M1a2 + a2)

1
2

∆
(

2M1

r

(
1 + a2

r2

)) 1
2(

r2 + a2 + 2M1a2

r

)
×
(

1− 2M1rem

r2
em + a2 cos2 θ

)1/2

(4.2.26)

From 3.4.70 to 3.4.77, then the angular velocity of particle spiralling Kerr space-

time is

ω = ±
√

M1

r3/2 ± a
√

M1

(4.2.27)

The energy received at infinity related to the energy emitted near a rotating black-hole

is given as

dEreceived = dEemitted

(
gtt + 2gtφω + gφφω

2
)1/2

(4.2.28)

where

gtt = −
(

1− 2M1

r

)
(4.2.29)

gtφ = −2M1a

r
(4.2.30)

gφφ = r2 + a2 +
2M1a

2

r2
(4.2.31)

Finally, the power radiated observed at infinity is given as

− dEobs

dt
=

M2
1

(
8aM1r − 3a2

√
M1r + r

√
M1r(r − 6M1)

)
2(M1r)3/2(r2 − 3M1r + 2a

√
M1r)3/2

∆
(

2M1

r

(
1 + a2

r2

)) 1
2(

r2 + a2 + 2M1a2

r

)
×
(
gtt + 2gtφω + gφφω

2
)1/2

(4.2.32)
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Chapter 5

Summary and Conclusion

To summarize briefly, the Schwarzschild geometry is the geometry of the vacuum

spacetime outside a spherical star. It is determined by one parameter, the mass M.

The Kerr black hole is axially symmetric but not spherically symmetric (that is ro-

tationally symmetric about one axis only, which is the angular-momentum axis), and

is characterized by two parameters, mass (M) and angular-momentum (J). In the

Schwarzschild solution, the horizon was the place where gtt = 0 and grr = ∞. In the

Kerr solution, the ergosphere occurs at gtt = 0 and the horizon is at grr = ∞, i.e.

where ∆ = 0. Then we have seen that the energy emitted when a charged particle

such as an electron falls straight into a Schwarzschild black-hole is much more than

the energy emitted when an uncharged particle falls in. The energy radiated when

a particle orbits a black-hole is much greater than when it falls with zero angular

momentum and is the same for charged and uncharged particles. Concerning to the

time of inspiralling, a charged particle spirals in much faster than the uncharged one.

In fact, for real bodies ∆tgrav is so prohibitively long that the energy theoretically

available is never emitted.
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A particle freely infalling straight in from infinity is dragged just by the influence

of gravity so that it acquires an angular velocity in the same sense as rotating black

hole (Kerr BH). However, a particle slowly loses angular momentum, then moves

slowly inwards and losing gravitational potential energy, then heating up. Eventually

it has lost enough angular momentum that it can no longer follow a stable circular

orbit and so it spirals rapidly inwards onto the central compact object.
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