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ABSTRACT 

Accurate quantification of forest above-ground live carbon stock is crucial for sustaining 

forests as a climate change mitigation mechanism. However, the major challenge is to find 

an accurate technique for timely processing and driving biomass information estimates at 

the extent of big data. This study is thus mainly aimed in estimating and modeling forest 

aboveground biomass and carbon stock using field inventory data and automated scenario 

based analysis of satellite images in Google Earth Engine cloud computing environment. 

The carbon stock estimation was computed at three stages viz: at plot level, at full-hectare 

basis and using satellite images. The plot level biomass was estimated based on field 

inventory of 20 circular plots which then extrapolated to determine the biomass of the study 

area. The resulting biomass was then converted into carbon based on IPCC guidelines. 

For satellite based biomass and carbon stock estimation, 10m surface reflectance bands 

and respective vegetation indices were geocomputed for the years 2016 to 2020. These 

were later correlated with derived satellite variables to validate the AGC derived from 

sentinel-2 and SAR images of 2019. The coefficient of determination (R2) between observed 

and the predicted AGC was then used to validate the estimated result. The sentinel 2 NDVI 

showed the strongest correlation (r = 0.9) with AGC in the study area. Sentinel 1 variables 

revealed moderate correlation (r = 0.08 to 0.7) with the on-situ AGC. To develop AGB 

predictive model, NDVI, NDWI, EVI and Entropy were selected based on their correlation 

coefficient and variable importance. The model has a coefficient of determination value of 

0.86. Forest above ground carbon stock map was produced by the developed model and 

masked by the forest cover produced from fusion image composited from B2, B3, B4, B8, 

NDVI, EVI, NDWI, VH, elevation and slope band. The per-pixel AGC for the study area 

ranged from 0.538 – 1.6153, 0.353 -1.518, 0.319-1.480, 0.517 – 1.614 tons for the years 

2016 to 2020 respectively. The total plot level per pixel AGC was found between 6 and 7.4 

tons.  The fusion of Sentinel-2 variables with sentinel-1 GRD images, GLCM and ALOS 

DSM scenario performed better in estimating AGB and carbon stock compared to use of 

sentinel-1 and Sentinel-2 alone with model accuracy of 98%. Overall, integrating field data 

with multisensor remote sensing method increases the accuracy of modeling and 

estimating forest AGC stock.  

 

Key Words: Above Ground Carbon, GEE, GLCM, Image Fusion, SAR, Sentinel-2.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background  

Climate change is one of the world’s most pressing challenges these times. Anthropogenic 

activities such as deforestation and the expansion of agricultural land become the main 

factors of climate change. These activities have led to the release of numerous pollutant 

gases into the air such as carbon dioxide (CO2), methane (CH₄), and various organic gases 

(Adnan, Yusoff, et al., 2017). The global temperature has increased by around 1℃ since 

pre-industrial times as the emissions of these greenhouse gases’ concentration (GHG) rise 

(Reiche, 2015).  

The changing climate as a result of these gases has thus a range of potential ecological, 

physical and health impacts. These impacts include but not limited to extreme weather 

events such as floods, droughts, storms, and heatwaves; sea-level rise; altered crop growth; 

and disrupted water systems. A process that contributes to the removal of CO2 from the 

atmosphere and storage for a certain period is known as a carbon sink. This carbon storage 

occurs mainly in oceans, soils, and forests, where organisms capture carbon and release 

oxygen into the atmosphere. To enhance the carbon storage ecosystems and make the 

climate at its normal condition globally, there has been thus an increasing effort by nations. 

This basically includes responding to the effects of the changing climate within the extent 

of the United Nations Framework Convention on Climate Change (UNFCCC) and protect 

forest resources (UNFCCC, 2016, SERVIR, 2019). 

Protecting forests has thus gained concern as a mitigation mechanism to combat climate 

change. This is because forests represent one of the most important ecosystems in our 

planet and a fundamental element to fight climate change. They provide fundamental 

ecosystem services such as absorbing, storing and converting carbon dioxide (CO2) into 

oxygen. Moreover, forests absorb and store about 30% of current levels of carbon 

emissions from fossil fuels and industry into their carbon pools(GFOI, 2013).  
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The main forest carbon pools within and around vegetation that have the potential to store 

much more carbon are Above-ground biomass (stems, bark, and leaves), Below-ground 

biomass (roots of all sizes), Deadwood (organic matter in deadwood), Litter or dead 

organic matter in litter and soil organic carbon (SOC). These pools are interconnected to 

one another through several important fluxes such as photosynthesis as shown in Figure 1 

below. These fluxes keep a balance between CO2 captured by forests through 

photosynthesis and the CO2 released through respiration and forest fires, representing a 

positive balance of capture and storage (The Carbon Cycle, 2011).  

However, the AGB in natural forest trees often represent the greatest fraction of total 

biomass of a forested area and respond more rapidly and significantly as a result of land-

use change than other carbon pools.  Consequently, the majority of carbon accounting 

efforts are focused on tree AGB as the carbon stored in the living biomass of trees is 

typically the largest pool and the most directly impacted by deforestation and degradation. 

The estimate of forest AGB carbon is thus a critical step in quantifying carbon stocks and 

fluxes (Figure 1) from tropical forests (Barredo et al., 2016). 

   

Figure 1: Forest carbon pools and fluxes (adapted from Vickers B. et al. 2012)  

Moreover, forests mitigate climate change through carbon sequestration, contribute to the 

balance of oxygen, carbon dioxide, and humidity in the air supplying 75% of freshwater 

worldwide. Forests are the most biologically diverse ecosystems on land, home to more 
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than 80% of the terrestrial species of animals, plants, and insects. This makes forests 

especially, tropical forests as vital in the global carbon balance. Moreover, forests can 

effectively contribute to CO2 capture and sequestration over different periods through 

protection, conservation, and forest management in light of the high existing degradation 

and deforestation rates (Plugge et al., 2016).  

Conversely, the rapid shrinking of the forests creates a major threat and increase the effects 

of climate change. This ends the net flow of carbon from the atmosphere into the forest. In 

forests that are left standing, logging, wood fuel extraction, fires and grazing typically 

reduce carbon stocks faster than they can naturally recover. Deforestation and forest 

degradation, located primarily in tropical regions, have thus reported accounting for 12–

20% of global anthropogenic greenhouse gas (GHG) emissions in the 1990s and early 

2000s. These processes also impact the future potential of forests to remove additional 

carbon from the atmosphere (Nunes et al., 2020).  

An earlier study in the tropics by (Chave et al., 2005) has investigated that tropical forests 

are important in global climate change mitigation as they contain as much carbon in their 

vegetation and soils as temperate and boreal forests combined. The Intergovernmental 

Panel on Climate Change (IPCC) estimates that forestry or, rather, deforestation, forest 

degradation and other changes in forests-contributes 17.4% of global annual greenhouse 

gas (GHG) emissions mainly in tropical developing countries. This is 5.8 gigatons (Gt) of 

carbon dioxide equivalent (CO2-e) per year (Brack, 2019).   

Reducing Emissions from Deforestation and Forest Degradation in developing countries 

(REDD) (UNFCC,2013) is one of the key global initiatives under the UNFCC. REDD was 

extended to REDD+ in 2014 by adding the carbon sink potential as well as conservation 

and sustainable forest management issues. It aims at mitigating climate change by 

rewarding tropical developing countries for reducing emissions by avoiding deforestation 

and forest degradation while also slowing the drivers of landuse change (Thapa, et al., 

2015).  

However, successful implementation of such mechanisms to reliably estimate GHG 

emissions require consistent and accurate detection of tropical forest cover change (Reiche, 

2015) and the corresponding carbon stock of the land that is cleared (Saatchi et al., 2011).  



 

4 
 

Ethiopia under the Paris agreement (Nations, 2016) is therefore inquired to design and 

implement an operational monitoring, reporting, and verification (MRV) system (see 

Figure 2: Functions of the national monitoring system) to report changes in forest and 

forest carbon stock for receiving rewarding compensations (Reiche, 2015).  This has been 

clearly stated in the Ethiopian national CRGE strategy, in particular, the green economy 

strategy as a basis for determining Ethiopia’s proposed contribution to GHG emission 

reductions by sector. 

 

Figure 2: Functions of the national monitoring system (source: Bekele et al., 2019) 

To contribute and Ethiopia to complement this agreement, managing forests is crucial to 

respond to the rising climate change issue. Besides this, it enables to generate carbon credit 

in line with conserving biodiversity and improving the livelihoods of the communities 

(Abere et al., 2017). Assessing the forest carbon stock is thus one of the important steps to 

start with sustainable landuse planning concerning low carbon emission. This is because in 

developing countries for example, about 38 % of the primary energy consumption comes 

from forest biomass. In Ethiopia, biomass supplies 93 % of total household energy 

consumption (Shiferaw et al. 2010).  

To successfully implement mitigating policies and take advantage of the REDD+ program 

of the UNFCCC, a well-authenticated estimates of forest carbon stocks is needed. Though 
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efforts to measure and map biomass stocks nationwide is growing, obtaining high-quality 

information on biomass carbon stocks is one of the most evasive tasks associated with 

REDD+ MRV in Ethiopia. These efforts on natural forest restoration and the development 

of plantations are expected to result in a reduction of forest degradation and deforestation. 

For this reason, different methodologies are being piloted to assess and monitor the state 

of forests such as the use of dense time-series image analysis at project scale (MEFCCC, 

2017).  

To develop a robust methodology for monitoring forest AGB carbon and reduce carbon 

emissions, successful attempts at the local level such as forest inventory, wall-to-wall and 

sample-based remote sensing are thus vital. Hence these efforts may be transferred into a 

cost-effective accounting mechanism at the national level for its future inclusion in the 

forest reference level (FRL).   

However, the quantification and estimation of spatially explicit services for carbon stock 

potential may differ based on climate, management applications, ecosystem, species, and 

the local communities (Ndalowa, 2014). The amount and spatial distribution of carbon 

stored in forests is still uncertain. This is due to the difficulties in measuring AGB and 

carbon stock at the field scale that complement the national requirements. So far, three 

kinds of methods have been proposed to estimate the forest AGB, including national forest 

inventory (NFI)-based methods, process model-based methods, and remotely sensed data-

based methods. 

The field-based inventory methods can observe accurate parameters such as tree height and 

diameter at breast height (DBH) for AGB estimation. Though destructive sampling 

methods were initially used to estimate living tree biomass, several studies (Tesfaye et al., 

2016) have used allometric equations as an alternative method for biomass estimation 

(Adnan et al., 2017; Reiche, 2015). The most important AGB a tree predictor parameters 

as reported by Chave et al., (2005) in decreasing order of importance are tree trunk 

diameter, wood specific gravity, total height, and forest type (dry, moist, or wet) with an 

overestimate bias of 0.5- 6.5% when errors were averaged across all stands. However, these 

methods mostly focus on some of the representative wood rather than all forest biomass 
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and are always labor-intensive and time-consuming. This has called to the use of remote 

sensing satellite data for forest biomass estimations. 

Remote sensing thus offers an economic, efficient and robust mode of AGB monitoring 

and activity-data at different scales than field-based inventory methods (Adnan et al., 

2017). The use of band ratio vegetation indices derived from remote sensing satellite 

images such as enhanced vegetation index (EVI), normalized difference vegetation index 

(NDVI), and simple ratio vegetation index (SRVI) is essential to calculate the biomass 

density. Thus, the advancement of remote sensing technologies and methods to monitor 

forest cover across large extent landscapes these times has become a substantial priority.  

Yet, more continuous information has been available since the start of the more recent 

space programs, like the Sentinel program of the European Space Agency (ESA) to build 

observations based on time series of images (Udali, 2019). This helps for monitoring the 

state of forest carbon pools (Dick OB, 2015) in combating forest disturbances which is a 

big issue in the study area threatening the tree species diversity and value of the forests to 

the community.  Using large data sets, excellent progress has been made in detecting 

changes in AFOLU in the new big-data era (Wulder, et al., 2018). The best-known existing 

algorithms typically use most often calibrated optical satellites such as NASA’s Landsat 

imagery to compare bands or build robust indices that are differenced or otherwise 

interpreted through time for stability and change (Fortin et al., 2020). 

Though such optical satellites are incontrovertibly powerful, they cannot easily detect and 

sense forest areas especially in cloudy weather and night times. This could likely be made 

even more beneficial through image fusion which is less considered in previous studies. 

To capture current  and future changes in forest carbon stocks, satellite remote sensing at 

medium spatial resolution (10 - 30 m) supported by field observations is the appropriate 

tool for most tropical countries (Betru et al., 2019a; De Sy, et al., 2012). 

Therefore, the rapid and accurate estimation and monitoring of AGB over various scales 

of space and time are crucial for greatly reducing the uncertainty in carbon stock 

assessments, and for informing strategic forest management plans. This further enhances 

the operationalization of an integrated policy and strategy to increase adaptability to the 
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adverse impacts of climate change and foster climate resilience and low GHG emissions 

development in a manner that does not threaten food production. 

This paper is thus aimed at the use of Google Earth Engine (GEE) satellite timeseries 

images to extract forest carbon stocks. It basically uses data from multi-temporal Sentinel-

2 MSI and Sentinel-1 backscatter data and assesses its applicability in estimating AGC 

timeseries maps under different scenarios. The GEE makes available not only near real-

time data access but also a very powerful application programming interface (API) for 

processing and visualizing the data. The study was further intended to use generalized 

allometric equations developed for a similar biophysical environment as an alternative 

method for AGB and carbon stock estimation. The results of the analysis were validated 

with a field survey and compared to global a reference forest mask derived from global 

forest mosaics rescaled to local scale. 

1.2 Statement of the Problem 

Ethiopia is facing rapid deforestation and degradation of land resources and experiencing 

the effects of climate change (MEFCC, 2018). Illegal harvesting of important timber 

species such as Cordia africana, Hagenia abyssinica, and Afrocarpus falcatus has 

degraded the quality and altered the structure and the species composition of the forest over 

time (Abere et al., 2017). In general, large forested areas are cleared out every year due to 

different driving forces. This is thriving issue in the study area in particular where there is 

no information on the forest structure.  

These problems call for enhanced and continuous efforts to improve forest management 

information to enhance their productivity and production including for biodiversity and 

carbon stock. In addition, the forest carbon markets such as REDD+ require spatially 

explicit patterns of forest carbon stock timeseries values with high accuracy. Such markets 

need to identify where to be focused  to enhance the value of the forest to the community 

(Thapa et al., 2015).  However, the tools to extract such timeseries information for biomass 

estimation remain scarce and existing generalized models experience high uncertainty to 

represent biomass carbon stock in the actual forests of Ethiopia and the study area in 

particular where all these are lacked.  



 

8 
 

The use of optical satellite-based monitoring of forest biomass and carbon stock has been 

applied in similar studies but this also remains problematic due to cloud cover, seasonality, 

and the limited spatio-temporal resolution (Su et al., 2020). Earth observation data analyses 

also become more difficult and more expensive with smaller minimum mapping units 

(MMUs) that increase mapping efforts and usually decrease change mapping accuracy. The 

use of texture parameters is indicated as prominent for land cover and vegetation 

classification in previous research, but image texture and its relation with forest carbon 

stock have not yet been fully investigated. Moreover, Scientific research investigating the 

relation between specifically the Sentinel-1 backscatter and VIs was not found. 

Besides this, the sheer size and a large number of open satellite images make developing 

prototypes for monitoring the abrupt changes in a forest carbon stock status rather 

cumbersome at larger extent. To get from an idea to a prototype product oftentimes end up 

spending more time on downloading and pre-processing than the actual prototyping and 

geocomputation (Canty et al., 2019). The study thus took the advantages of the combined 

use of sentinel-1 and Sentinel-2 in GEE to fill the information gap in timeseries carbon 

stock monitoring. 

1.3 Objectives of the Study 

1.3.1 General Objective 

➢ The aim of this research is to estimate and model satellite-based timeseries forest 

carbon stock under different scenarios between 2016 and 2020 in Shiwshiwe forest. 

1.3.2 Specific Objectives 

➢ To estimate the total aboveground carbon stock of the forest areas  

➢ To develop a Google Earth Engine prototype model of timeseries forest 

aboveground carbon stock  

➢ To develop a predictive model of aboveground carbon stock estimation  
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1.4 Research Questions 

1. What is the total potential forest aboveground live tree biomass carbon stock in the 

study area?  

2. Can fusion of multisource sentinel-1 and sentinel-2 products be integrated to 

enhance the prototype models for forest carbon stock monitoring at a different 

frequency or with an optical data scenario?  

3. How can be predictive aboveground carbon model developed for improved 

aboveground carbon stock estimation? 

1.5 Significance of the Study 

Geocomputational modeling of the amount of tree carbon stock is important for the design 

and implementation of effective forest management plans and policies. The study can 

contribute to continuous timeseries monitoring of biomass & carbon stocks at an efficient 

time and optimized accuracy. It will further enhance the knowledge gap in estimating 

timeseries above ground carbon stock taking advantage of opensource geospatial tools and 

RADAR techniques. The automated satellite image time series analysis carried in this study 

as monitoring approach is crucial to detect and analyze the recurring changes. 

This provides the ability to constantly monitor and accumulate miscellaneous information 

from the available petabytes of data. The use of GEE in this regard reduces the processing 

of bigdata to derive patterns, determine trends, and identify deviations in vegetation status. 

The methodology adopted in this study can also be applied by researchers to assess land 

cover changes, bioenergy mapping and ecosystem services monitoring at larger extent. It 

will also allow planners, policy makers and practitioners with enhanced capacity to timely 

measures for integrated and reliable decisions for maximized community benefit.  

The study will also provides new insights to develop national-level technologies for the 

management of natural resources such as portals that provides various online GIS to its 

users without having any specific GIS software installed in the client’s machine. This is 

very important especially for resource limited sectors to share and disseminate information 

to end users. The protoype developed can be easly shared to established observational 
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network and remote sensing-based spatial databases for modeling and periodic assessment 

of carbon stock and balance at different tires. 

Thus, in general, reliable and continuous information on forest carbon content is crucial 

especially for the REDD+ readiness program (MRV) to mitigate climate change impacts. 

With this in the center, it goes in line with the advancement in the earth observation and 

geospatial technologies and current government policy and directions towards mitigating 

climate change impacts while the sustainable benefit of the ecosystem to the society is 

attained.  

1.6 Scope of the Study 

The study focuses on estimating and modeling forest above-ground biomass carbon using 

Sentinel-1 SAR GRD backscatters and Sentinel-2 optical MSI data in Shiwshiwe forest, 

Alle Special district, South-West of Ethiopia. It was carried between January 01, 2020 to 

December 30, 2020 by analyzing satellite data using opensource methods as a means of 

forest monitoring and assessment through developing a prototype model in GEE and a 

predictive model of timeseries of forest AGB carbon applying multisource satellite fusion 

of sentinel-1 SAR and Sentinel-2 as well as live tree inventory.  

It was also restricted to satellite-based timeseries forest aboveground carbon stock 

estimation and prediction under business as usual (BAU): using field inventory only and 

optical satellites only scenarios and combined multisensor fusion scenarios excluding other 

biomass carbon pools  and land cover type. The models developed were specific to extent 

of the study area because of the difference in information gained from satellite images of 

different landforms and forest types but the methodology developed through the research 

can be applied elsewhere with similar environmental setup.   

1.7 Limitation of the Study 

To come up with the best results, this study used forest inventory and sentinel-1 and 

sentinel-2 data as well as a literature review to automate the analysis method in GEE. 

However, the limitation of this study concerns with absence of unavailability of long 
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wavelength SAR imagery such as L band for free and laser scanners for detailed forest 

above ground biomass and carbon stock estimation.  

The study solely focuses on developing a point based timeseries prototype and predictive 

model and did not considered the area based timeseries loss and gain of forests over the 

period. There is also no continuously inventoried field data for AGC monitoring in the area 

to predict future potential changes in aboveground forest carbon stock. Furthermore, there 

are no high resolution satellite imageries at the spatial resolution specified in this study for 

historical monitoring of the carbon stocks.  

1.8 Organization of the Paper 

The research report comprises five chapters. Chapter 1 – Introduction: introduces the 

background, statement of the problem, the objective of the study, the significance of the 

study, the conceptual framework of the research as well as the scope of the study. Chapter 

2 – Literature review: reviews the concept of a forest, current and future information 

requirements for policy directions in the forestry sector, above-ground biomass, methods 

to estimate AGB, and application of synthetic aperture radar and optical sentinel-2 remote 

sensing data. Chapter 3 – Materials and methods: describes the characteristics of the study 

area, materials and methods to be used in the research to achieve the research objectives 

and intermediate result of analysis to be achieved. Chapter 4, Results and Discussion, 

presents the output of all the steps followed in chapter 3 from the selection of the datasets 

to the processing techniques and algorithms used for timeseries image analysis and 

classification of the satellite images. It discusses the result and development of the 

methodology. Finally, Chapter 5 presents conclusions and recommendations. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Forests Resources in Climate Change Perspective  

Human beings have become a component in the earth’s system, driving and accelerating 

global warming through the rapid release of greenhouse gases (GHGs) into the atmosphere 

(NAP, 2010). The composition of the atmosphere is being altered in such a way through 

increasing the concentration of greenhouse gases (GHGs) in the atmosphere by fossil fuel 

burning and by deforestation and land use changes. These are anthropogenic causes of 

climate change that has led to climate change discourse posing huge challenges to nations, 

organizations, enterprises, cities, communities and individuals. Developing countries will 

suffer most from adverse consequences of climate change, and the highly vulnerable 

regions and people are already being affected  (Plugge et al., 2016).  

The global climate change discourse recently has emphasized increased commitment and 

contribution inquiring individual partner counties to submit their national contribution 

regarding climate change mitigation and adaptation activities referred to as Nationally 

Determined Contributions (NDCs). In this context, there has been an increasing effort by 

nations to respond to climate change issues within the extent of the United Nations 

Framework Convention on Climate Change (UNFCCC) and protect their forest resources 

(Nations, 2016), (SERVIR, 2019). 

Forest resources gained attention in this regard as forest carbon stocks have a key role in 

mitigation and adaptation with climate change. The forest carbon is mainly stored in the 

above-ground biomass (AGB) covering 70-90%. Forests absorb large amounts of 

atmospheric carbon dioxide (CO2) in terrestrial land and soil. Forests play a crucial role in 

climate mitigation providing two-thirds of the cost-effective nature-based climate 

mitigation needed to hold warming to below 2°C. Despite this, deforestation and 

degradation processes continue. The quality of natural forests is considered poor and forest 

areas are fragmented or degraded, with poor natural biodiversity (Ma et al., 2021). 
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Hence, modeling of forest resource and status are very important economically, 

ecologically and for sustainable forest management. The sustainable forest management as 

mechanism to mitigate climate change is affected by several factors linked to global change 

such as deforestation. Accurate and reliable information is therefore required to reduce the 

impact of climate change. This is crucial in the MRV system to provide spatially explicit 

estimates that adhere to IPCC principles of transparency, comparability, consistency, 

completeness and accuracy (Mitchell et al., 2017). 

2.2 Policy Directions and Forestry Sector in Ethiopia 

The efforts under the IPCC have led to multilateral negotiations and the adoption of 

intermingling policies and measures to circumvent the dangerous interference of 

anthropogenic activities in the climate system. The policies and measures are principally 

aimed at improving resilience and reducing climate change impact risks. The Ethiopian 

Policy and Strategy on the development, conservation and use of forests, adopted in 2006, 

states that the strategy is developed to bring sustainable development through community 

participation. The policy strategies pursued include a systematic control of forest resources 

from possible threats of theft and misuse. The preamble of the Forest Development, 

Conservation and Utilization Proclamation No 542/2007 states that the sustainable 

utilization of the country’s forest resources is possible through ensuring the participation 

of, and benefit sharing by the concerned communities (FARM-AFRICA, 2010). 

Under the business-as-usual scenario (BAU) however, the forestry sector will remain the 

second largest contributor to land-based emissions, due to forest loss from other sectors 

such as agriculture, livestock, and energy. Under this scenario, the pressure on forests and 

related increased rate of deforestation and forest degradation will ultimately deplete the 

natural resource base and negatively affect the performance of the economy in the long-

term. Under the current practices, greenhouse gas (GHG) emissions would more than 

double from 150 Mt CO2e in 2010 to 400 Mt CO2e in 2030 (CRGE, 2011). 

Ratifying the Paris Agreement in 2017, the Ethiopian first NDC builds extensively on and 

is well aligned with the CRGE strategy. Ethiopia’s submitted its NDC, containing 

mitigation actions and goals based on the national strategy to achieve a climate-resilient 



 

14 
 

green economy (CRGE) (FDRE, 2015). In particular, the green economy strategy is set as 

a basis for determining Ethiopia’s proposed contribution to GHG emission reductions by 

sector. The forestry sector contributes to half of all emissions next to the agricultural sector. 

It accounts for about 37% of national GHG emissions (Melaku, et al., 2018).  

 

Figure 3: Share of GHG emissions of the different economic sectors in Ethiopia 

2.3 Forest Inventory and Biomass Estimation 

A forest is composed of five carbon pools stored in the living trees above and belowground, 

in dead matter including standing dead trees, down woody debris and litter, in non-tree 

understory vegetation and the soil organic matter. When trees are cut down there are three 

destinations for the stored carbon – dead wood, wood products or the atmosphere (GOFC-

GOLD, 2003).  

Table 1: Forest carbon pools 

 Pools Description 

Living 

biomass 

Above ground 

biomass (AGB) 

All living biomass above the soil including stem, stump, 

branches, bark, seeds and foliage 

Below ground 

biomass (BGB) 

All living biomass of live roots 

Dead 

organic 

matter 

Dead wood Includes all non-living woody biomass not contained in the 

litter either standing or lying on the ground 

Litter Includes all non-living biomass with a diameter less than a 

minimum diameter, lying dead, in various states of 

decompositions above the mineral or organic soil 

Soil Soil organic 

matter (SOM) 

Includes organic carbon in mineral and organic soils 

(including peat) to a specific depth  
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Among the five components, the AGB accounts the largest carbon stored in tropical region 

and it is directly affected by deforestation and degradation (Kumar and Sharma, 2015).The 

change in the forest areas and corresponding changes in forest biomass due to management 

and regrowth greatly influence the transfer of carbon between the terrestrial forest 

ecosystem and the atmosphere. Assessment of the AGB helps to quantify the carbon stocks, 

which in turn enables to analyse the current status and project the near future changes. 

Accordingly, several methods are being developed for AGB estimation with different 

demands and level of accuracy. The most accurate and straightforward method to quantify 

the forest biomass is establishing sampling sites on the field and harvesting all the trees, 

drying them (in particular, for carbon stock estimation) and weighting the biomass. This 

method is very expensive and has a destructive effect on the experimental site. It is 

precisely for that one location only, and impractical in other regions for country-level 

analysis (Chen et al., 2018; Huang et al., 2018).  

Such methods cannot be therefore applied across a landscape. Subsequently, many 

investments were put into the development of models that can extend the field 

measurement results over larger areas.   

Table 2: Main methods for forest AGB estimation 

Method  Benefits  Limitations   Uncertainty  

Biome 

averages  

• Accuracy could increase due to 

immediate availability  

• Data refinements could increase 

accuracy and consistent globally 

• Fairly generalized  

•Data sources not 

properly sampled to 

describe large areas  

High  

Forest 

inventory  

• Generic relationships readily 

available 

  

• Generic relationships 

widely understood  

• Relatively field-labor 

is costly  

Low  

Optical 

remote 

sensors  

• Satellite data routinely available 

at the global scale 

 • Globally consistent  

• Limited modeling 

ability for tropical  

• VIs saturates at low 

carbon stocks 

High  

Radar 

remote 

sensors  

• Satellite data are not always free  

• New systems launched are 

expected to provide improved data  

• accurate for young or sparse 

forest  

• Less accurate in 

mature forests and 

mountainous terrain 

because signal saturates 

also increases errors  

• Can be expensive  

Medium  
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Ethiopia in this context adopted a new forest definition in February 2015 stating 'A forest 

is land spanning at least 0.5 ha covered by trees and bamboo), attaining a height of at least 

2m and a canopy cover of at least 20% or trees with the potential to reach these thresholds 

in situ in due course‟ (MEFCC, 2015).   

There exist different forest definitions (Schwieder et al., 2018). The Ethiopian forest 

definition differs from the definition used for international reporting to the Global Forest 

Resources Assessment and from the forest definition used in the National Forest Inventory 

which both applied the FAO forest definition with the thresholds of 10% canopy cover, a 

0.5 ha area and a 5 m height.  The forest definition included Ethiopia’s dense woodlands 

which have a wider distribution through the country (see Figure 1). Commercial 

agriculture is expanding mainly on dense woodlands and Ethiopia desires to allow the FRL 

to create REDD+ incentives for the conservation of these important areas (FRL, 2016).   

 

Forest inventory is an activity of data collection that supports extraction of the required 

information base on the forest resource within an area of interest. Estimation of 

aboveground biomass and carbon stocks in the carbon pools requires conducting forest 

carbon inventory based on sampling. A sampling design defines the number and spatial 

distribution of sample elements drawn from the sample frame which consists of the set of 

all elements of interest to which the estimation relates. (UNFCCC, 2015). 

A full inventory of forest trees is thus practically not possible. Consequently, sampling has 

to have resorted to biomass and to carbon stock at a landscape level. Estimates based on 

data collected from the measured samples are then extrapolated to the entire population, 

the majority of which has not been measured. The method of selection of sampling units 

from the sampling frame should meet the twin requirements of randomness (equally being 

selected) and coverage (the sample should be spread over the entire sampling frame). A 

commonly used sampling design in forest inventory that aims to meet these requirements 

cost-effectively is stratified systematic sampling with a random start using fixed area 

sample plots (UNFCCC, 2015). 
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2.4 Forest Carbon Stock Estimation and Accounting Tools 

There exist multiple opensource to proprietary carbon accounting tools suitable for the 

AFOLU sector designed for different purposes. Many of these carbon models used to 

estimate forest carbon for reporting purposes use the same data that is used by forest 

management agencies. This includes forest inventory, land use land cover, ownership data, 

change and disturbance information, growth and yield estimates, biodiversity data, etc. 

These models have varying levels and types of ecological processes represented and range 

from simple statistical relationships, such as emission factors used in systems where few 

data are available to complex combinations of empirical models (equations), process 

models (deterministic equations), and assumptions that enable these models to be executed 

promptly (Boisvenue & White, 2019).  

Physical process-based ecological models such as the BEPS model, for instance, have been 

used to simulate key physiological processes including both carbon and water cycles at 

national or regional scales. The ‘best’ tool (model) depends on the use to which it is being 

put, the result needed and the accuracy required for that result. Ecosystem models such as 

CENTURY, DayCent, or DNDC use complex functions to describe the processes of an 

ecosystem. They attempt to represent the dynamic processes that occur within an 

ecosystem which result in changes in stocks and fluxes of carbon and nitrogen.  

However, the currently existing models do not provide sufficiently accurate or consistent 

carbon estimates across spatiotemporal scales. More often, these models are applicable at 

a specific project level and limited to get the advantage of the emerging remote sensing 

technologies and are not able to easily adapt to new data types or inputs. 

2.5 Potential Remote Sensing Contributions to Carbon Stock Modeling 

Increasing the frequency and extent of observations and developing inferences about forest 

attributes will in itself contribute to advancing our understanding of processes and their 

cross-scale interactions. Besides, remote sensing satellite sensed information has the 

potential for the scaling of various processes across spatiotemporal scales. Information 

about forest composition, structure, productivity, and disturbances are useful for the more 
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practical applications of carbon modeling, and are also useful for tracking changes in 

forests, and therefore for studying and understanding the forest system. With a proliferation 

of remote sensing satellites offering an increasing number and variety of observations, the 

potential for virtual constellations expands, further increasing the observation capacity for 

forests (Boisvenue & White, 2019). 

The rapid evolution of remotely sensed data products and methods provides at least two 

further opportunities: the use of machine learning algorithms, and the advancement of the 

cross-scale tracking of processes (Belgiu & Drăguţ, 2016). Remote sensing cannot measure 

AGB directly, therefore, algorithms for estimating AGB has been developed by linking 

ground truth data to the potential variables derived from remotely sensed images (Gasparri 

et al. 2010; Hansen et al. 2013). 

Expressing the relationship between AGB and remotely sensed data using a simple linear 

or non-linear regression model is often difficult yet. Many researchers have therefore used 

non-parametric algorithms such as  boosted trees, local kernel-weighted methods, k-nearest 

neighbors (k-NN), artificial neural networks (ANN), random forest (RF), and support 

vector machine (SVM)) to estimate AGB and improve AGB carbon stock estimation 

(Amani et al., 2019; Apley & Zhu, 2019; Chen et al., 2018; Khudinyan, 2019; Santi et al., 

2017). 

In the previous state of data scarcity, machine learning techniques were of little use in forest 

modeling. However, remote sensing provides an increasingly overwhelming observational 

capacity, permitting the use of these powerful tools, and with them, possibilities of 

increasing the available information and associated understanding of our forested 

landscapes.  Thus, there is an urgent need for more detailed observations to support the 

practical modeling of forest carbon. The selection of, the sensor type, quality, and accuracy, 

as well as spatial and temporal resolution for mapping and monitoring of the forested 

landscapes and the algorithm to be used in the extraction of useful information remain 

important (Romijn, et al., 2015).  

Thus, optical remote sensing products such as Landsat imagery for indirect forest AGB 

estimation has long historical data and has widely been used in forest biomass and carbon 
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stock monitoring. But the penetration possibility of an optical sensor remains weak as it 

records the information reflected from the forest canopy and is dependent on the leaf 

structure, pigmentation and moisture. The heterogeneity of forest stand structures may also 

be the major reason for data saturation in optical imageries (Zhao et al., 2016). This results 

in high uncertainty especially, in dense tropical forests with a big amount of biomass (Betru 

et al., 2019b; Chen et al., 2018).  

Earth observation technologies are also unceasingly emerging and protonated the 

development of new satellite and airborne sensors. This derived the emergence of new 

analysis and methods (de Sousa et al., 2020) with an increased resolution for better forest 

information extraction. Evolving satellite technologies include the use of light detection 

and ranging (LIDAR), Unmanned Aerial Vehicles (UAV) and Synthetic Aperture Radar 

(SAR) observations for forest characterization and biomass estimation. These techniques 

can help to overcome the challenge of cloud cover in tropical areas. New techniques for 

acquiring, processing and managing immense satellite remote sensing data include cloud-

based databases and data processing platforms that offer space for large datasets and 

computational resources for processing (Filipponi, 2019) (GOFC-GOLD, 2014).  

Sentinel-1 satellite mission is developed by ESA under the Copernicus initiative with a 

constellation of two satellites: Sentinel-1A and Sentinel-1B. The satellites are launched in 

April 3rd, 2014 and April 25th, 2016 respectively (ESA, 2013). Like sentinel-2, Sentinel-1 

satellites orbit in near-polar, sun-synchronized orbit at 693 km altitude and in the same 

orbital plane (Geudtner et al., 2014). It collects data in four modes: Stripmap mode (SM), 

Interferometric Wide Swath mode (IW), Extra Wide Swath mode (EW) and Wave mode 

(WV) (Niculescu, et al., 2018).  

Table 3: Wavelengths most frequently used in SAR 

Band Designation* Wavelength (λ), cm Frequency (v), GHz 

Ka (0.86 cm) 0.8 – 1.1 40.0 – 26.5 

K 1.1 – 1.7 26.5 – 18.0 

Ku 1.7 – 2.4 18.0 – 12.5 

X (3.0 cm, 3.2 cm) 2.4 – 3.8 12.5 – 8.0 

C (6.0) 3.8 – 7.5 8.0 – 4.0 

S 7.5 – 15.0 4.0 – 2.0 
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L (23.5 cm, 25 cm) 15.0 – 30.0 2.0 – 1.0 

P (68 cm) 30.0 – 100.0 1.0 – 0.3 

Unlike optical waves, Sentinel-1 is a radar sensor that uses radio waves that can penetrate 

clouds and detect the surface structure. The parameters to consider sentinel radar imagery 

for a land cover mapping study at wavelength level are polarization and incidence angle. 

At surface level, structure and dielectric properties which may cause layover or 

foreshortening in the images and a notable increase in backscatter are key parameters. The 

penetration capacity of the designated bands is thus a primary factor in wavelength 

selection for forest monitoring.   

 

Figure 4: Radar Backscattering in Forests 

The dominant backscattering sources in forests include (1) direct scattering from tree 

trunks, (2a) ground-crown scattering, (2b) crown-ground scattering, (3a) ground-trunk 

scattering, (3b) trunk-ground scattering, (4) crown volume scattering. Generally, the 

longer the wavelength, the greater the penetration into the target and the availability of the 

data also remains important. 
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Figure 5: Sentinel-1 data acquisition modes 

Interferometric Wide Swath (IW) allows taking measurements on a scan swath of 250 km 

with a resolution of 5m on 20m. This mode uses Terrain Observation with Progressive 

Scans SAR (TOPSAR) to create higher quality data. Polarimetric SAR sensors are capable 

to transmit and detect the vertical (V) and horizontal (H) components of the backscattered 

radiation. Hence, there are four possible polarization configurations viz: co-polarization- 

HH, VV, cross-polarization- HV, VH, and their combinations. Polarimetric SAR 

backscattered energy is directly dependent on the physical properties of the vegetation 

elements and influences on backscattering mechanism. The scale of the surface relative to 

the wavelength determine how rough or smooth they appear and how bright or dark they 

will appear on the image (Pohl C., 2017). 

The advantage of using Sentinel-1 images is its short revisit time favorable for forest 

change detection applications. However, SAR with longer wavelengths (e.g., ALOS 

PALSAR products) is more suitable for forest applications since it is more penetrating than 

shorter wavelengths. To compensate for this limitation, more information needs to be 

derived aside from the provided VV and VH polarization of Sentinel-1 (Argamosa et al., 

2018). Studies have shown that saturation remains a dominant issue when directly 

estimating AGC stock using SAR data in high biomass areas. A consideration of multi-

temporal SAR data with multiple polarizations and the use of rule-based algorithms can 

help to mitigate the saturation problem and improve AGC stock estimations (Thapa et al., 

2015). 
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2.6 Multisource Data Fusion for AGC Stock Monitoring  

Finding an optimum combination of accuracy of measurements and the cost of the 

technology is often a major challenge in remote sensing projects for estimating forest 

biomass and carbon stock. Using SAR data, biomass estimation and change detection can 

be best achieved. Studies have shown that SAR data can detect half of the tree trunks 

removed by selective logging. Modeling biomass production or carbon sequestration, 

however, needs both optical and SAR data to be combined (Scott et al., 2009).  

The synergistic use of SAR and optical remote sensing was applied in several studies for 

describing vegetation in diverse ecosystems, for example, forests, wetlands, agricultural 

areas, upland vegetation types and also to differentiate broad land cover classes (Braun & 

Hochschild, 2015; Christiansen et al., 2019; Lu et al., 2017; Mahdianpari et al., 2018; 

Martín, n.d.; Quang & Hoa, 2018; Tavares et al., 2019).  Moreover, the synergy of Sentinel 

1 SAR with optical data is important for it is much higher in Spatio-temporal resolution 

compared to other SAR data such as RADARSAT or ALOSPALSAR. The SAR side 

looking also makes it extremely sensitive to the relief, even under vegetation cover in 

tropical forests. However, the sensitivity of Sentinel-1 to forest timeseries has still not been 

assessed over larger undulating topography and in areas of difficult access and is urgent to 

use Sentinel-1 for estimating forest carbon monitoring.  

A study by (Tsai, et al., 2018) indicated that a combination of terrain ancillary data, spectral 

vegetation indices, and simple illumination transformation could predict vegetation 

classification with accuracy above 70%. A more refined and accurate 30 m NDVI 

composite of the past 30 years was developed for the United States of America (USA) 

using the Google Earth Engine filling the missing data due to clouds by using a climate-

driven modeling approach producing data at multiple scales (Robinson, et al., 2017) 
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CHAPTER THREE 

METHODS AND MATERIALS 

3.1 Description of the Study Area 

3.1.1 Location 

The research was conducted in Southern Nations, Nationalities and Peoples` Region 

(SNNPR) at Shiwshiwe forest of Alle Special Wereda. The study area is geographically 

located at the south-eastern escarpment of the Omo-Gibe watershed covering an area of 

3349.22ha. It is 650km far southwest of Addis Ababa and 415kms south of regional town 

Hawassa. It extends from 5° 38ˈ - 5° 50ˈ N latitude to 37° 21’ - 37° 40ˈ E longitude.  

 

Figure 6: Location Map of Study Area (source: Researcher) 

3.1.2 Climate Condition  

The study area attains hot to warm humid lowlands mountains tepid to cool humid mid 

highland agro-ecological zones with altitudinal range of 1600m to 2600m. The rainfall 
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pattern of the study area is a bimodal type with minimum annual precipitation of 1200mm 

and a maximum of 2600mm with major peak in April and a small peak in October. The 

temperature of the study area ranges from 14°c to 28°c (FAO, 2010). The average 

temperature distribution over time calculated from GEE CHIRPS satellite image is 

depicted in Figure 7 below. 

 

Figure 7: Timeseries temperature distribution overtime in 0c 

The local climatic conditions including growing seasons as computed from the local 

climate estimator of FAO from the FAO agroclimatic database with observations from 

nearly 30,000 stations worldwide have long-established. The seasons and climate of the 

study area is illustrated in Figure 8 below. 

 

Figure 8: Seasons and climate of the study area (source: Researcher) 

The dry season ranges from December to late-February with total length of 69 days. This 

season is important for the selection of optical satellite images due to lower precipitation 

exhibited. The details of the average vegetation periods seasons are presented in Table 4. 
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Table 4: Average climate and vegetation periods (source: Researcher) 

 

3.1.3 The livelihood and Landcover of the Area  

The northern and eastern part of the study area is characterized by a crop livelihood zone 

where sorghum, enset, maize & teff are dominant crops grown and mainly cattle & shoat 

livestock. The south and northeastern areas of the study area are dominated by agricultural 

livelihood zone with dominant maize, sorghum & teff growing (FAO, 2015).  The area is 

also well known by its bamboo coverage which is main source of income and as a 

construction material. The Shiwshiwe area is covered with natural forest with dominant 

tree species of Hagenia abyssinica, Arundinaria alpina (Highland Bamboo), Albizia 

schimperiana, Croton macrostachyus, and Trichilia dregeana. 

 

Figure 9: LULC Map of the study area (source: Researcher) 
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3.2 Materials  

3.2.1 Data Type and Source  

3.2.1.1 Optical Sentinel-2 MSI imagery Data 

The optical Sentinel-2 Multispectral Instrument (MSI) imagery available in Google Earth 

Engine (GEE) for big data analysis were used for the extraction of vegetation indices and 

forest cover extent mapping. In this study, the sentinel-2 Level-1C 10m bands (B2, B3, B4 

and B8) available in GEE were primarily used.  

Table 5: Sentinel-2(A and B sensors) Bands in GEE 

Name  Resolution  Wavelength (2A) Wavelength (2B) Description  

B2  10 meters  496.6nm 492.1nm   Blue  

B3  10 meters  560nm 559nm  Green  

B4  10 meters  664.5nm 665nm  Red  

B8  10 meters  835.1nm 833nm  NIR  
 

3.2.1.2 Radar Sentinel-1 GRD imagery Data 

The dual-polarization C-band Synthetic Aperture Radar (SAR) multi-looked and geocoded 

Level-1 Ground Range Detected (GRD) 10db products were used in this study.  To gain 

information about the conditions and status of vegetation, the topographically corrected 

VV band and VH polarizations were retrieved from GEE with 10m spatial resolution and 

a temporal resolution of six days (see ANNEX 6 Sentinel-1 GRD products spatial 

resolution). The polarizations were used as two independent input variables for estimating 

forest biomass and carbon stocks.  

3.2.1.3 Field Inventory Data 

For the survey of attributes of the vegetation and of the site characteristics, a circular 

sample unit is often used according to FAO standards. The circular plots used in this study 

were laid at 10m radius using a meter tape to compromise with the resolution of the 

satellite images used (see Figure 11). The field data inventoried mainly comprises of 

sampling plot coordinate locations, photographs of the sample plots, tree species, DBH 

and H. Other ancillary information about the forest area such as the boundary of the forest 

reserve is obtained from the local office of the Environment Forest Climate Change 

Control Authority in Alle Special Woreda.  
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Plot data were collected in summer 2019 (September to December). Plot centers were 

located using handheld GPS Map 78 units augmented with Wide Area Augmentation 

Systems. All live trees with a DBH > 5cm, species, diameter, and height were measured 

at each plot. Smaller trees with DBH < 5cm were also tallied for total stem number, but 

not used in biomass calculations. 

Table 6: Summary of Data Type and Sources 

Data Resolution Purpose Source 

Sentinel-1 GRD  

 

10m Extract timeseries texture 

characteristics and backscatter 

information using grey level co-

occurrence matrix and resampling the 

result 

GEE 

Sentinel-2 MSI  10m Drive multispectral band, biophysical 

variable and vegetation indices, and 

fractional cover 

GEE 

DBH and H   For calculating field AGB and AGC  Field 

survey  

ALOS DEM 25m For topographic correction  GEE  

 

3.2.2 Software and Tools   

Open Source software can be used to undertake spatial analysis of datasets in the context 

of REDD+ which is released under a license that allows the software to be freely used, 

modified, and shared (Grinand et al., 2013). Hence for this study, an opensource and free 

software such as QGIS, Notepad++, Zotero and GEE applications were used.  

Table 7: Software and application tools 

Software                                              Purpose  

GEE  For automation of satellite image processing using API. 

Zotero    For reference citations management 

Spreadsheet    For statistical analysis   

QGIS       For extracting pixel value and producing maps 
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3.2.3 Field Materials 

The materials used during field campaign for forest tree inventory in the study area are 

presented below in Table 8. For details see 0. 

Table 8: Field survey equipment 

Material  Purpose 

Measuring tape, Caliper* For forest tree measurement and outline the plot  

Clinometer* For tree height measurement  

GPS Map 78* To record tree and plot coordinates  

Ipad Tablet Computer To interactively record field data 

Sleeping Bag, Axes, first aid kit Camping and safety 

 * These field equipment were obtained from Alle Special Woreda Forest Environment and Climate 

Change Control office upon formal request.   

3.3 Methods 

3.3.1 Research Design 

The modeling frameworks for the satellite based aboveground carbon stock estimation 

followed a quantitative study approach. With hypothecation of the problem statement, a 

field observation was carried. A systematic random sampling-based field inventory data, 

sentinel-1 SAR backscatters, grey level co-occurrence matrix (GLCM), sentinel-2 

reflectance bands and sentinel-2 vegetation indices were exploited for the estimation and 

modeling of forest AGC.  

GEE java scripts were primarily developed for processing the satellite images to drive the 

necessary parameters for AGC predictive model development on opensource platforms. 

Different pixel-based methods were used to answer the research questions and achieve the 

objectives. The general framework is as in Figure 11 below. The thesis report writeup 

followed the guideline for report writing amended in the Jimma University’s Guidelines 

and Procedures for Research booklet, February 2013. 
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Figure 10: Research Design Framework 

3.3.2 Study variables 

Two types of variables are used in this paper. Those are dependent variables and 

independent variables.  

A. Dependent Variable 

The dependent variable of this study is a response variable that is output of the character 

that has been changed because of variations in the independent variables. This means that 

if the value of independent variable changes due to any factor, its effect may consequently 

observe on the output. The dependent variable of this study is aboveground carbon stock 

(AGC).  

B. Independent Variable 

The independent variables are factors or parameters those affect output of dependent 

variables. In this study the common factors affecting the performance of AGC estimation 

are:  

➢ Tree parameters (Height, DBH and Wood-specific-density) 

➢ Sentinel-1 backscatters (VV and VH polarizations) 

➢ Sentinel-1 GLCM textures (Entropy, Angular Second Moment, Contrast, 

Correlation, Difference entropy, Difference variance, Difference entropy, Energy, 

Homogeneity, Variance, Sum average, Sum variance, Sum entropy, and Maximum 

correlation)  

➢ Sentinel-2 Bands (B2, B3, B4, and B8) 

➢ Sentinel-2 Indices (NDVI, NDWI, EVI, and SAVI) 
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3.3.3 Sampling Procedures and Sample Size 

The sampling design protocol includes the specification of the sample size, sample 

locations, and the reference assessment units (i.e., pixels or image blocks). For the study, 

a systematic random sampling design was exploited. Hence, systematic sampling with a 

random starting point is generally more efficient than simple random sampling and is also 

more traceable. Sampling variability can be quantified with standard unbiased estimators 

in the form of statistical formulas (GOFC-GOLD, 2016).  

Field forest inventory data were gathered from systematically designed Collect-Earth 

Online (CEO) plots as ground truth data. Collect Earth Online is an opensource 

crowdsourcing product for earth science analysis within the Open Foris software suite. It 

is a user-friendly, online Java-based tool that draws upon a selection of other software such 

as Google Earth and Saiku to facilitate data collection and analysis. The Collect Earth also 

allows the interpretation of high and medium spatial resolution imagery in Google Earth, 

Bing Maps and Google Earth Engine. 

3.3.3.1 Plot Size selection  

A circular plot of 10m × 10m (see figure 10) was designed to collect sample data from the 

field. The circular-shaped plot type is chosen because it is easy to establish in the field.  

The sample size was selected for the study to increase the probability of selecting a median 

of a pixel in the imagery complementary to the spatial resolution of the images used.  

 

Figure 11: Circular plot of 10m radius used in the field. 
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3.3.3.2 Tree Sampling and inventory  

A field campaign was carried out in Shiwshiwe forest to obtain a robust set of calibration 

and validation measurements at a convenient time. The data were collected using a 

systematic randomly taken at-start stratified plot. The plot coordinate location was taken 

using handheld GPS Map 78 by considering the different zone of the forest viz; 

transitional, buffer and core zones and the center coordinates of each plot was recorded.  

 

Figure 12: Field inventory plots 

Trees were inventoried from circular plots with 10m radius () applying a systematic 

random sampling method for the estimation of above-ground biomass at the plot level 

along the topographical gradients. 

    

Figure 13: Tree caliper held at right angles to the tree trunk for DBH measure. 
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The minimum tree diameter often used in dbh is 5 cm but it can vary depending on the 

expected 

size of trees and agroecology. For this study, the minimum dbh is chosen as tree growth is 

faster in tropical areas and a minimum height of 5m based on FAO forest definition. All 

tree diameters in the plots were recorded at 1.3m aboveground level as distance at breast 

height (DBH) and at 30cm aboveground level as stump height (H) for bamboo species 

(Mac Dicken, 1997) except where trunk irregularities at that height occur (plank woods, 

tapping or other wounds) and necessitate measurement at a greater height. Furthermore, if 

tree branch is below the measurement height, an equivalent diameter is defined as 

SQRT(D2) on the basis of all D values. 

 

Figure 14: Measurement of tree diameter at breast height (DBH) 

Moreover, the tree heights were measured using Clinometer. The Clinometer determines 

the angle to the tip of the tree based on 15m to 20m fixed distance to the target tree. The 

tree height was then recorded according to the clinometer scale. To measure the tree height 

with the clinometer in the field, the tip of the target tree was sighted and read the scale. 

Next, the bottom of the tree was then sighted and read the scale to measure the angle of 

elevation. The tree height is then obtained by adding the two measurements. The DBH and 

tree height (H) were used to compute field-based forest AGB using allometric equations. 

In the plot, local names of trees species were recorded and later scientific names of each 

tree species were identified from a source as published by Bekele T., (2007). These forest 

stand parameters were measured in the field through systematic random sampling. The 

plots represent a statistical subsample of the measured trees within each forest stratum, 

which can be scaled to represent population-level estimates using standard allometric 

techniques. 
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3.3.4 Google Earth Engine (GEE) Data Processing  

The increasing availability of free time series data for large areas over the previous years 

has led to a shift from traditional bi-temporal change detection approaches, in which many 

changes are missing and the timing of changes is disregarded, to time series based methods 

(Reiche, 2015). This trend is expected to continue due to the availability of more open-

access RS datasets and daily advancement in sensor, image processing, and computer 

vision technologies. Cloud computing platforms are efficient ways of storing, accessing, 

and analyzing datasets on very powerful servers, which virtualize supercomputers for the 

user. These systems provide infrastructure, platform, storage services, and software 

packages in a variety of ways for the customers (Amani et al., 2020).  

Google Earth Engine (GEE) is thus a cloud-based automatic parallel processing and fast 

computational platform for processing of remote sensing data facilitating scientists to 

develop their own algorithms with less effort than before. It brings together the world's 

petabytes satellite imagery of scientific measurements. Earth Engine Code Editor is one 

of the web-based integrated development environments of GEE's tools which facilitates 

developing complex geospatial workflows. The Sentinel-1 SAR data and Sentinel-2 MSI 

image collections used in this research were retrieved and preprocessed in the Google 

Earth Engine cloud computing Code Editor platform. This platform efficiently runs 

computations using parallel computing, meaning that the workloads are distributed 

between many CPUs in the Google’s data centers. The most cloud-free image collections 

were composited at annual and per seasonal levels to minimize cloud pixels exploiting the 

power of GEE. To remove the impacts of cloud cover on sentinel-2 spectral signatures, a 

cloud mask based on the ‘QA60’ band in Sentinel-2, which uses a bitmask to mark the 

opaque clouds (B10) and cirrus clouds (B11) (ESA, 2015) was used. Then both the clouds 

were masked out by selecting only the clear pixels that have a ‘QA60’ band equals to 0. 

The preprocessed data were then converted into top of atmospheric reflectance (TOA) and 

were mosaiced as ImageCollections.  The sentinel 2 TOA images were further reduced 

using the median filter function.  
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3.3.5 Spectral Indices and Transformations                                            

 Landuse and landcover and Vegetation index algorithms such as Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference 

Water Index (NDWI) and Soil Adjusted Vegetation Index (SAVI) were extracted from 

sentinel-2 images for the years 2016 to 2020 in GEE using java API. Using a user-defined 

baseline period, they could monitor the degradation or improvement of vegetation and the 

impact of mitigation efforts. 

Table 9: Vegetation index variables used in GEE 

Name                       Equation  Description  

NDVI  (B8-B4) / (B8+B4)  Rouse Jr. et al., 1974 

NDWI (B8 - B3)/ (B8 + B3) Gao et.al. 1996 

EVI 2.5 * (B8 − B4) / (B8 + 6 * B4 − 7.5 * B2 + 1) Huete et al., 2002 

SAVI ((b8 – b4))/ ((b8 + b4 + 0.5))*0.5 Huete, 1988 
 

3.3.6 Variable Selection for Forest AGC Prediction 

The actual path of AGB carbon estimation and analysis consists of many decision points 

to minimize uncertainty in the output result. The most important decision is the proper 

prediction model selection. Forest biomass prediction as in Chen et al (2018) is defined as 

a mapping process for estimation of biomass values at the location without observation 

based on the points values at nearby observations and/or considering other factors at the 

site using various methods categorized mainly as parametric (various statistical regression 

methods) and non-parametric (machine learning algorithms). In parametric models, the 

expression relating to dependent and independent variables is easy to interpret and 

calculate. Two of the most often used methods are stepwise regression and multivariate 

linear regression. To handle high biomass variability and saturations of remote sensing 

imagery, Berninger et al. (2018) assume multivariate linear regression to be superior to 

other models. Different literature reviewed however declares that the parametric 

regression prediction models are preferable and commonly used models compared with 

the non-parametric ones (Khudinyan, 2019). 

In this study, a parametric regression was chosen and multi-year time series of SAR 

acquisitions were used to understand the backscattering behavior of different tree species. 
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Multiple SAR images of the same polarization grouped into a time series can reveal 

temporal signatures that monitor the phenology of the species as in (Udali, 2019). The field 

AGB and information gained from both sentinel-1 backscatters, GLCM textures, and 

sentinel-2 VIs were correlated statistically using regression analysis. The variable with a 

high coefficient of determination (r2) and low root mean square error (RMS) became the 

final predictor of AGC. A prediction model was then developed by considering the 

coefficient of selected variables and constant values from a multilinear regression analysis. 

3.3.7 Prototype Model Development  

The most important task in satellite image processing and pattern recognition is the 

classification of image textures. Over the years, extensive researches have been made for 

the classification of texture images. Image textural features, primarily developed by 

Haralic et al. (1973), measure the spatial homogeneity of the backscattering and contain 

information such as forest structure. To determine the more relevant SAR variables to this 

research, different modules of image analysis were developed. The modules were coded 

in GEE environment using Java API. These involve separate scripts for optical image 

preprocessing, VIs extraction, Sentinel-1 backscatters preprocessing, DSM topographic 

data extractor, and multisensor image fusion modules.    

Various approaches for fusing satellite-based time series data can be applied. However, 

attempts were made to combine time series at the signal level, normalizing optical and 

SAR signals to simulate similar trends in a fused time series. This attempt was carried to 

fill Sentinel-2 gaps with simulated VH and VV SAR backscatter assuming similar 

behaviors). The designated bands of the fusion image composite are B2, B3, B4, B8, 

NDVI, EVI, SAVI, MNDWI, VH, VV, elevation and slope band. 

3.4 Data Processing and Analysis  

3.4.1 Tree level Above Ground Biomass Estimation 

The first objective of this research was to geocompute forest biomass components using 

the regression models estimated from the sample plots to improve our understanding of the 

spatial distribution of each component for the whole site. To do so, tree species-specific 

regression models were used to predict the above-ground biomass (AGB). 
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For model training and statistical analysis, information was collected from 20 circular plots 

(Figure 10) in the Shiwshiwe forest. Forest aboveground biomass (AGB) is usually 

determined through a combination of forest inventories with allometric tree biomass 

regression equation models. This is usually based on plot inventories along the following 

three steps. 1) selection and application of an allometric biomass function for the estimation 

of individual tree biomass, 2) sum-up individual tree AGB to estimate plot AGB, and 3) 

computation of an across-plot average to full hectare-based conversion.  

The plot-level forest variables were computed based on the individual live tree data, 

including basal area (m2/ha). The DBH and height (H) as tree parameter measurements 

were loaded into excel database for the derivation of individual tree-based biomass 

components which was statistically linked with satellite data-derived proxies. To calculate 

plot-level biomass on a per hectare basis, all the recorded DBH of each tree in the plot were 

tallied by DBH to get biomass in kg per hectare. Species allometric equations for tropical 

forests developed from tree inventory data by (Chave et al., 2014) were selected for this 

research. 

The allometric equation is selected as it best-fits the bioclimatic conditions of the area; 

incorporating all the tree species in Shiwshiwe forest. It has the highest R2 compared to 

similar allometric equations and availability of wood-specific gravity, trunk diameter 

(DBH), and total tree height. 

Tb = 0.0673*(ρ *(DBH)^2* h) ^0.976 -------------- Equation 1 

Where Tb = the total biomass (kg), DBH = diameter at breast height (cm), ρ = wood density 

(g/cm3) and h = height (m) 

Based on the measurements of the diameter and height of tree stands on each sample plot, 

calculations of above ground biomass were carried out in Microsoft Excel using Equation 

1. The DBH and height measurements were converted into the same unit by converting 

tree height in meters to centimeters.  The values were then converted into tree-level 

biomass in kilograms (kg) by multiplying by 1000 for all the 20 plots as illustrated for P01 

in  Table 10: Tree level AGB calculations.  
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The AGB for each tree in the plots was then converted into full hectare (kg/ha). This was 

done by asking how many plots of 10mX10m exist in a full hectare. This was carried by 

multiplying the plot level AGB in kg by 10000 and then divided by the area of the 20 plots. 

Table 10: Tree level AGB calculations 

 
The plot level above ground biomass of the entire stands per hectare was then calculated 

using the following equation:  

𝐴𝐺𝐵𝑡/ℎ𝑎 =
∑ (𝑇𝐵𝑝𝑖)

𝑛

𝑖=1

𝐴
∗ 10000 ---------------------------- Equation 2 

Where AGBt/ha: Total Biomass (t/ha)  

            TBpi: Tree Biomass (t)  

            A: Plot size (m2)  

             n: number of trees 

Tree-based biomass estimates were summed by plot to determine total plot-level biomass 

components.  

3.4.2 Plot Based Carbon Stock Estimation  

The plot level full hectare (kg/ha) biomass summaries were converted into above ground 

carbon stock using default IPCC conversion factor of 0.47 as in Equation 3. 

  AGC(kg/ha) = AGBkg/ha * 0.47  --------------------------------------------------- Equation 3  

Where AGC(kg/ha)  = Aboveground carbon in "kg/ha" 

            AGB = Aboveground biomass in "kg/ha" 

Tcode Family Genus Species dbh 

(cm)

POM Height 

(m)

Height 

(cm)

Wood D. 

(g/cm3)

AGB (g) AGB(kg) AGB 

(kg/ha)

1T1 Rosaceae Hagenia abyssinica 36 1.3 10 1000 0.5905 37207.3012 37.2073012 186.036506

1T2 Poacae Arundinaria alpina 7 1.3 5 500 0.63 824.1334446 0.824133445 4.12066722

1T3 Poacae Arundinaria alpina 7 1.3 5.5 550 0.63 904.4754837 0.904475484 4.52237742

1T4 Euphorbiaceae Croton macrostachyus 54 1.3 17 1700 0.518 121269.5249 121.2695249 606.347625

1T5 Poacae Arundinaria alpina 6.5 1.3 8.5 850 0.63 1196.991824 1.196991824 5.98495912

1T6 Poacae Arundinaria alpina 6 1.3 7 700 0.63 847.1071907 0.847107191 4.23553595

1T7 Poacae Arundinaria alpina 6 1.3 8 800 0.63 965.024876 0.965024876 4.82512438

1T8 Poacae Arundinaria alpina 5 1.3 5 500 0.63 427.322355 0.427322355 2.13661178

1T9 Poacae Arundinaria alpina 5 1.3 7 700 0.63 593.4396721 0.593439672 2.96719836

1T10 Poacae Arundinaria alpina 9 1.3 8 800 0.63 2129.455879 2.129455879 10.6472794

1T11 Poacae Arundinaria alpina 8 1.3 9 900 0.63 1898.207934 1.898207934 9.49103967

1T12 Poacae Arundinaria alpina 7 1.3 8 800 0.63 1303.823012 1.303823012 6.51911506

1T13 Poacae Arundinaria alpina 7.5 1.3 9 900 0.63 1673.523117 1.673523117 8.36761559

1T14 Fabaceae Albizia grandibracteata 20 1.3 14 1400 0.534 14870.54363 14.87054363 74.3527181

1T15 Rubiaceae Rothmannia urcelliformis 12.1 1.3 9 900 0.642 4336.176822 4.336176822 21.6808841

1T16 Boraginaceae Cordia africana 27 1.6 13 1300 0.482 22485.35523 22.48535523 112.426776

P01AGB= 212932.4066 212.9324066 1064.662

P
lo

t 
0

1

Plot 01
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3.4.3 Satellite Based AGC Mapping prototype Development Scenarios 

The biomass estimation based on optical satellite data is revealed by the correlation 

between multispectral images’ spectral responses such as EVI and biomass. The following 

steps were followed to develop the satellite-based AGB and AGC mapping prototype tool 

in GEE. The prototype is designed at modular level each working on a specific task and 

named accordingly. The modules are described in the sub-topics below which when 

integrated yields the protype for aboveground carbon stock mapping. 

3.4.3.1 Optical Sentinel-2 data Preprocessing Prototype 

Sentinel-2 constellation is a European Space Agency’s (ESA) Copernicus Program earth 

observation mission which systematically acquires optical imagery over the earth’s surface 

at a high spatial resolution (10m to 60m). The other important objective of the Sentinel-2 

mission is its complementation with other global satellite programs such as the Landsat, 

SPOT, and other satellite programs for ensuring continuity in monitoring the dynamics on 

Earth’s surface. Sentinel-2 data have been used for different applications such as 

agricultural, forest monitoring, urban development, wetland monitoring.  

Further important examples of the Sentinel-2 application include the development of CCI-

S2 prototype Land Cover map of Africa at 20m resolution, the Copernicus Land cover 

services high spatial resolution maps, and the new pan-European high spatial resolution 

land cover/use maps (Phiri et al., 2020). For this study, the prototype development stages 

in the GEE code editor range from instantiating JavaScript to call for required Sentinel-2 

bands from petabytes of images to final export of the final parameters for carbon stock 

estimation. The optical sentinel-2 data preprocessing prototype involves the following 

submodules. 

A. Sentinel-2 Image Acquisition Query Module 

The atmospherically corrected Sentinel-2 surface reflectance data were used in this study. 

The images were retrieved by filtering the collection to images overlapping the study area 

and those within the study time range. This filtering involves defining sensor type, the 

desired time frame and the AOI for which cloud-free images were to be created by 

ee.ImageCollection.filterDate() function. 



 

39 
 

B. ImageCollection, Cloud removal and Median pixel value Retrieval Module 

To use the image collection in the analysis, cloud masking was applied to remove cloudy 

pixels from the analysis. It is fairly straightforward where functions are mapped (looped) 

to remove cloud and add NDVI bands and then filter it down to a date range and location. 

For this purpose, Sentinel-2 QA60 quality assurance band was used to conduct cloud 

masking. This study further presents an automatic workflow to aggregate Sentinel-2 cloud-

free images, by removing cloud areas for user defined areas of interest and periods as a 

multitemporal image aggregation approach. 

 

Figure 15: Example 2016 cloudy Sentinel-2 median raw image 

For this purpose, the 'QA60' band from the sentinel image collections was selected by using 

the ‘maskS2clouds’ JavaScript function over the image collections of the driest months of 

each year.  

function maskS2clouds(image) {var qa = image.select('QA60'); 
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Then ‘cirrusBitMask’ function was used to detect and mask clouds and cloud shadows 

using Bits 10 and 11 as they are clouds and cirrus, respectively. Both the flags were set to 

zero, indicating clear conditions. 

  

The masked and scaled data were then returned without the QA bands in the Google Earth 

Engine code editor environment using the ‘return’ function as in the script below.  

return image.updateMask(mask).select("B.*") 

                             .copyProperties(image, 

                             ["system:time_start"]);                  

In the next step, the cloud-masked Sentinel-2 data were loaded and converted into TOA 

reflectance data and reduce the collection into one image. The timeseries daily 10m bands 

available each year over the DOY’s were then averaged using the ‘median’ function to 

create a median ImageCollection band. Then the median imageCollections were reduced 

to multispectral reduced images that were later be used for random-forest classification and 

further analysis. With the loaded ImageCollections of Sentinel-2 imagery, a true color 

composite was set using bands B4, B3 and B2 that is adequate and pertinent for the training 

data sampling. 

var image = collection.median(); 
var image = image.clip(boundary).uint16(); 

C. Spectral Band Selection Module 

The sentinel-2 Red, Green and Blue bands were selected and examined to make the images 

discernible. Yet, it is hard to differentiate grass from vegetation, and once the RGB bands 
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are replaced with Red, Near-Infrared, and Shortwave-Infrared bands in the 

ImageCollections, features previously ambiguous or indiscernible became clear and 

prominent to extract the information in need for the model development.  

The distinguishing of a given land cover from other LULC categories like water, vegetation 

or bareland areas depends on the spectral reflectance pattern. This is basically due to their 

absorption and reflection of different kinds of light. These different combinations of 

reflectance values can be used to create spectral ‘signatures’ for different land-cover types. 

The bands were selected using artificial neural network (ANN) and GEE hence this is 

proved to provide the most suitable bands for further image classification.  The band 

selection was examined for each date while asynchronously updating the image 

information. 

  

To get results faster, the scaling of the bands' selection code was improved which allows 

improving the availability of computing resources for all users was improved. This was 

carried using the ‘reduceRegion()’ and ‘scale’ function. This was able to avoid scaling error 

over processes such as image stretching and vegetation indices enhancing the image 

computation time. Earth Engine has limits in place to prevent too many such aggregations 

from being run concurrently. Therefore, the "Too many concurrent aggregations" error was 

triggered by a reduction within a map function while creating the timeseries chart.  

3.4.3.2 Vegetation Indices Extraction as proxies 

A vegetation index derived from satellite image can be an indicator to describe vegetation 

greenness, density and health. The selection of vegetation indices to perform the AGC 
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spatial modeling was based on the performance in previous studies and the same procedure 

was followed as for sentinel-2 band selection using ANN. Three vegetation Indices were 

calculated from summer Sentinel-2 surface reflectance optical imagery as independent 

variables in this study. The timeseries vegetation indices generated through here were used 

as input data in later data fusion prototype. The vegetation indices extraction module 

involves the scripts to derive NDVI, EVI, SAVI and NDWI. 

Normalized Difference Vegetation Index (NDVI) 

The is an index of plant “greenness” or photosynthetic activity. It is the most commonly 

used vegetation ratio index which was calculated using the NIR (B8) and R(B4) of sentinel-

2 images. But it is known to be insensitive to small changes in areas with dense vegetation 

with higher biomass as the vegetation index values approximate to 1. This saturates the 

above-ground biomass and carbon stock estimation hence; the value of persistent cloud 

shadows also gains 1 because the red band reflectance values are close to zero. 

𝑁𝐷𝑉𝐼 =  
NIR-R

NIR+R
  ------------------------------------------------------------- Equation 4 

Enhanced Vegetation Index (EVI) 

EVI is designed to enhance the saturation problem of NDVI to high biomass vegetation 

signal with improved sensitivity. It separates the influences of atmospheric scattering and 

canopy background signal using suitable correction factors. The preprocessed Sentinel-2 

data of GEE was employed to derive EVI map using Equation 5 below.  

EVI = 2.5* 
NIR - R 

(NIR + 6 * R - 7.5* Blue + 1)
 ----------------------------------- Equation 5 

where NIR is B8, Red is B5, Blue is B2,  

            2.5 is gain factor, 

            1 is the canopy background adjustment, and  

            6 and 7.5 are coefficient factors to correct the influence of aerosol content. 

Normalized Difference Water Index (NDWI)  

In this study, the original NDWI index proposed by Mahdianpari et.al (2018) is used to 

obtain accurate results at the 10m target resolution. Moreover, NDWI is calculated using 

the green and NIR bands of Sentinel-2 data both of which are at a 10 m spatial resolution. 
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NDWI =  
NIR-G

NIR+G
 ------------------------------------------------------------ Equation 6 

Where NIR = Near Infrared (Band8) 

              G = Green (Band3) 

Soil Adjusted Vegetation Index (SAVI) 

The SAVI vegetation index is closely related to tree standing biomass and is calculated 

using the NIR and Red bands of sentinel-2 as in Equation 7 below.  

 SAVI =  
NIR-R

NIR+R+L
∗ (1 + 𝐿) -------------------------------------------------- Equation 7 

Where L = 0.5 as canopy adjustment factor to reduce soil brightness,  

          NIR = Band8 and  

          R = Band4 

3.4.3.3 Sentinel-1 RADAR data preprocessing 

The open availability of some of the previously restricted SAR datasets such as ALOS, 

PALSAR and Sentinel-1 is increasing. Sentinel-1 radar backscatter patterns are used across 

many domains of humanitarian aid, crisis response, agriculture, maritime activity and 

forest monitoring (Filipponi, 2019).  

The Google Earth Engine Sentinel-1 C-band image collections of Level-1 Ground Range 

Detected (GRD) scenes were filtered using the ‘.filter’ function for the study area. The 

filtering was carefully made based on the naming convention of Sentinel-1 products with 

extension of “.SAFE”. 

 

Figure 16: Sentinel-1 products naming convention (Source:  ESA, 2020) 
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To create a homogeneous subset of Sentinel-1 data, the following metadata property fields 

were used. These include the transmitterReceiverPolarisation, instrumentMode, 

orbitProperties_pass, resolution_meters, relativeOrbitNumber_start and resolution (as 'M' 

for medium) or 'H' for high) functions.  

 

The above code snippet filters all the possible bands as per the required parameters 

overlapping the study area. For the year 2016 for instance, 13 image collections were 

filtered. The number of all available image scenes and their respective bands were 

displayed using the ‘print(collection)’ code snippet. It prints the name of the scene with 

full information as printed below. 

COPERNICUS/S1_GRD/S1A_IW_GRDH_1SDV_20161029T031817_20161029T031853

_013699_015F9A_49E4 (3 bands)”. 

 The naming indicates the image provider, satellite name, sensor type, mode of acquisition, 

image type, date of acquisition and calibration, and image serial number and the bands 

included. 

The import of Sentinel-1 data from GEE was followed similar approach used to import 

sentinel-2 images before merging the layers for classification from these two collections. 

This is because Sentinel-1 images are microwave data and require specially designed 

algorithms unlike optical Sentinel-2 images to get imagery orthorectified and calibrated. 
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For this purpose, the following preprocessing steps were adopted in Google Earth Engine 

on the selected ImageCollections from 2016 to 2020 to derive the backscatter coefficient 

in each pixel (see Table 11 below). The IW mode GRD radiometric DN values of the VH 

and VV polarizations were converted to backscatter coefficient (σ°) in decibels (dB). The 

backscatter coefficient represents the target radar cross-section or backscattering area per 

unit ground area. Since it can vary by several orders of magnitude, it is converted to dB 

using Equation 8 below in the corresponding JavaScript. 

           10*log10*σ°  --------------------------------------------------------------- Equation 8 

It measures whether the radiated incident microwave radiation terrain scatters 

preferentially away from the SAR sensor dB < 0 or towards the SAR sensor dB > 0. This 

scattering behavior depends on the physical characteristics of the terrain, primarily the 

geometry of the terrain elements and their electromagnetic characteristics. Therefore, 

before the data analysis, a geometric correction image enhancement technique was applied 

including slant range to ground range conversion, multi looking and azimuth compression.  

Table 11: Sentinel-1 image preprocessing steps in GEE 

Step              Preprocessing 

steps 

Description 

1 Apply orbit file Updates orbit metadata with a restituted orbit file. 

2 GRD border noise removal Removes low intensity noise and invalid data on 

scene edges (since January 12, 2018) 

3 Thermal noise removal Removes additive noise in sub-swaths to help 

reduce discontinuities between sub-swaths for 

scenes in multi-swath acquisition modes. This 

operation, however, cannot be applied to images 

produced before July 2015. 

4 Radiometric calibration Computes backscatter intensity using sensor 

calibration parameters in the GRD metadata 

5 Terrain correction 

(orthorectification) 

Converts data from ground range geometry, which 

does not take terrain into account, to unitless 

backscatter coefficient σ° using the ALOS DEM 

The VV and VH dual polarization Sentinel-1 collections in IW mode were composited 

after initiating these steps for display and most importantly, for fusion with Sentinel-2 data 

to be used as a final classification composite for forest masking. 
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3.4.3.4 GLCM Extraction from Sentinel-1 Backscatter Polarizations 

Texture is the frequency of tonal change on an image produced by the aggregation of unit 

features that may be too small to be discerned individually within the image. An example 

would be the smooth texture of green wet-grass against the rough texture of green tree 

crowns on an aerial photo. Image texture measures are often used for the reduction of 

spatial heterogeneity of forest stand structures, especially when forest sites have complex 

forest stand structures. Grey level co-occurrence matrix (GLCM) based texture measures 

are the most common approach for textural image extractions. The GLCM image textural 

features, developed by (Haralick, et al., 1973) measure the spatial homogeneity of the 

backscattering. The spatial information in the form of these texture features can be useful 

for image classification and produce new images such as forest structure. 

Google Earth Engine has thus multiple ways to geocompute these satellite image textures. 

One of these for instance is entropy, which provides a measure of the disorder within a 

space. The Entropy texture measures the randomness of intensity distribution yielding low 

values for smooth images than for a coarse image. In forested landscapes, these variations 

in image textures can result from changes in stem crown closure, density, or species type 

(Franklin et al., 2001) enhancing the accuracy of AGB carbon stock estimation. This 

dependence of texture on density and size of tree crown is obvious on high-resolution 

images. This means that if a pixel falls on a tree, its neighbor may also fall on the same 

tree, resulting in a low local variance. As the image resolution increases to comparable 

level to the dominant tree crown size, local variance increases, and this should be 

particularly true in tropical forests where the stands are heterogeneous and the species 

diversity is high.  
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In this research, to decrease the number of input variables for the regression analysis, the 

entropy, average, correlation, and variance textures with different window sizes were 

extracted from the time-series stacks of sentinel-1 VV and VH polarizations. GLCM 

analysis script was developed and executed in GEE with the input variables from time-

series fusion image for each VV and VH polarizations. The detailed steps followed to 

calculate the GLCM textures are: 

1. Defining study area and rectangular geometry extent encompassing the study area 

 

2. selecting Sentinel-1 polarizations and apply processing 

3. Removing ugly edges  

4. Convert sigma naught to gamma naught using equation 

5. Refine Lee speckle filter 

  // img must be in natural units, i.e. not in dB! 

// Set up 3x3 kernels  
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    // Use a sample of the 3x3 windows inside a 7x7 windows to determine gradients and 

directions 

  var sample_weights = ee.List([[0,0,0,0,0,0,0], [0,1,0,1,0,1,0],[0,0,0,0,0,0,0], 

[0,1,0,1,0,1,0], [0,0,0,0,0,0,0], [0,1,0,1,0,1,0],[0,0,0,0,0,0,0]]); 

  // Calculate mean and variance for the sampled windows and store as 9 bands 

  var sample_mean = mean3.neighborhoodToBands(sample_kernel);  

  var sample_var = variance3.neighborhoodToBands(sample_kernel); 

  // Determine the 4 gradients for the sampled windows and find the maximum gradient 

amongst gradient bands 

  // Determine the 8 directions and "collapse" the stack into a single band image (due to 

masking, each pixel has just one value (1-8) in its directional band, and is otherwise 

masked) 

  // Calculate localNoiseVariance 

  // Set up the 7*7 kernels for directional statistics 

  // Create stacks for mean and variance using the original kernels. Mask with relevant 

direction. 

  // "collapse" the stack into a single band image (due to masking, each pixel has just one 

value in its directional band, and is otherwise masked) 

  // A finally generate the filtered value 

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

6. // Combine 3 steps of speckle filtering into one simple function 

function preProcessing(image) { 

  var collection = toDB(RefinedLee(toNatural(image)));    

  return collection;       

} 

7. // Convert images values to Natural-->Apply Refined Lee filter-->convert to DB 

******************Time-series-2017-Sentinel1-VH *********************** 

// Time-series creating, stack averaging. Converting to gamma naught  

var stack1 = ee.ImageCollection(collectionVH.filterDate('2016-01-01', '2016-02-01')); 

var stack1_gamma = stack1.map(toGamma0); 

var stack1_Natural = stack1_gamma.map(toNatural); 
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var stack1_DB = toDB(stack1_Natural.map(RefinedLee).reduce('mean')); 

//Map.addLayer(stack1_DB.clip(table), { min: -25, max: 5}, 'stack1_avg', 0); 

var stack1_DB = stack1_DB.rename('stack1_VH') 

8. // For GLCM texture analysis, build a stack for all the images in the collection 

var VH_12_gamma = stack12_Natural.reduce('mean').rename('VH12'); 

print(VH_10_gamma, 'VH12') 

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

9. // /************** GLCM texture analysis ****** ********** 

//var textureMeasuresVH = ['VH_asm', 'VH_contrast', 'VH_corr', 'VH_var', 'VH_idm', 

'VH_savg',  

//                        'VH_ent', 'VH_sent', 'VH_dvar', 'VH_dent', 'VH_imcorr1'];  

var textureMeasuresVH10 = ['VH10_savg', 'VH10_ent','VH10_corr',  'VH10_var'];  

var textureMeasuresVH12 = ['VH12_savg', 'VH12_ent', 'VH12_corr', 'VH12_var'];  

var glcmVH_10 = 

VH_10_gamma.unitScale(0,1).multiply(255).toByte().glcmTexture({size: 

4}).select(textureMeasuresVH10); 

var glcmVH_12 = 

VH_12_gamma.unitScale(0,1).multiply(255).toByte().glcmTexture({size: 

4}).select(textureMeasuresVH12); 

var VH_final = 

(stack10_DB.addBands(stack12_DB).addBands(glcmVH_10).addBands(glcmVH_12)).cl

ip(table) 

10. Print the final GLCM textures into consl and visualize in Code Editor 

print(VH_final, 'glcm') 

Map.addLayer(VH_final/*.clip(table)*/, {}, 'glcmVH'); 

//Map.addLayer(VH_final, {bands: 'VH_ent'}, 'VH_ent'); 

3.4.3.5 DSM Data Preprocessing 

Topographic variation causes differences in reflectance for similar features with different 

terrain positions. To account for these effects, ALOS DSM was used. The ALOS Global 

Digital Surface Model in GEE was resampled to equivalent resolution of sentinel images 

using the nearest neighbor method. The DSM was used to generate elevation and slope as 
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forest ancillary data at 10m spatial resolution. The DSM was also used to apply the doppler 

terrain correction over the SAR GRD data. 

3.4.3.6 Optical and Radar Data Fusion  

Data availability and performance issues due to sensor failure or clouds and cloud shadows 

can be alleviated by filling the gaps in a multispectral time series with SAR data. The 

computing power of these new platforms, enables the application of complex algorithms 

to large amounts of data. These new satellite image information extraction methods are 

exploited in current studies to fill the gaps generated by the lack of high-resolution data for 

certain dates or by automated cloud detection and masking procedures. The gap-filling 

methods such as best-pixel selection, data fusion, data interpolation , or pixel unmixing 

have all been applied to timeseries data for the landuse landcover mapping of large areas 

(Carrasco et al., 2019). The combined use of Sentinel, Sentinel-2, and their derivatives as 

well as ALOS DSM enabled to create reliable aggregated measurements over a period of 

time with increased likelihood of obtaining cloud-free images.   

In this study, the optical and radar datasets from 2016 to 2020 were aggregated temporarily 

at pixel level over the whole year into one image for each respective time. The timeseries 

aggregated images were median images of all the available cloud masked images of each 

DOY. The aggregated metrics from the different sensor type and the bands used in the 

image fusion process are illustrated in Table 12 below. 

Table 12: Bands of the multispectral fusion image 

Sensor Type  Bands  Metric 

   Sentinel-2 

MSI  B2 median 

MSI  B3 median 

MSI  B4 median 

MSI  B8 median 

  Sentinel 2 Indices 

MSI NDVI  median 

MSI EVI median 

MSI NDWI median 

MSI SAVI median 

    Sentinel-1  GRD VV backscatter  

GRD VH backscatter  

GLCM entropy texture 

   ALOS  
DSM slope topography 

DSM elevation topography 
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3.4.3.7 Machine Learning using Random Forests 

Machine learning (ML) methods, also called artificial intelligence (AI) methods, use 

algorithmic models to analyse time series data. These methods treat the way in which the 

data were generated or relationships between the variables as unknown (Breiman, 2001). 

There exist many ML algorithms that perform different tasks. Some of the algorithms that 

are relevant to EO data are grouped according to four main analytic aims: classification, 

clustering, regression and dimension reduction.  

 In this study, the pixel-based Random Forest classification algorithm within GEE was used 

to model the land cover classes through supervised machine learning. The use of GEE 

automation in this case, enables the user to access information on any time scales at any 

location either input by country or by geometrical selection of a region. The RF was chosen 

as it is known to be resistant to noise and overfitting issues and its successful handling of 

high dimensional data attaining satisfactory results (Ghorbanian et al., 2020). The 

algorithm has several adjustable parameters that directly affect the final mapping accuracy 

of the image classification result. The number of trees and the number of variables in each 

node are the most critical parameters for RF-based satellite image classification. The 

algorithm constructs a decision tree for each sample based on the predictors (bands from 

the synergized bands). The trees then vote for each pixel to detect forest vs. non forest and 

then assigns the most supported value to each pixel. The example below illustrates tallies 

of Six 1s and three 0s which results a prediction of 1. 

 

Figure 17: Example of RandomForest prediction  
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Input training points for the RF classifier were developed from high resolution imagery 

through Google earth time slider using visual inspection and field data collection. For the 

shapefile containing the field data, separate attribute columns were created for the study 

image time frames of 2016, 2017, 2018, 2019, and 2020. Respective attributes of each year 

were field with the land type visually interpreted from the high resolution Google Earth 

images.  

 

Figure 18: Input training points for the RF classifier 

These training points were imported as geometry assets into GEE assets and were 

converted into FeatureCollection using the ‘merge’ function using the java script below.  

//merge all geometry imports for classification 

var tr_aoi = closedforest .merge(medforest)  

                                           .merge(openforest) 

                                           .merge(cropland)  

                                           .merge(grassland);  
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The input training FeatureCollection was then split into training and validation fractions at 

70 to 30 percentage ratios to create feature collection with spectral signatures from 

composite with 'label' property. The training signatures were further used to train the 

classifier algorithm to assign unknown pixels into the LULC categories of interest for the 

study periods. A total of 160 training points, minimum of 20 for each LULC were used as 

input into randomForest classifier algorithm. The training FeatureCollection asset of point 

geometries was assigned a numeric value attribute indicating the associated land cover 

class and a year that corresponds to the land cover label. The land cover attributes or labels 

were created as numeric so that it cannot be a string (such as “openforest”) or a numeric 

string. The binary classification scheme for training sample development and forest 

masking scheme for forest cover assessment is described in Table 13. 

Table 13: Binary classification scheme for forest masking 

Macro Class Description 

F
o
re

st
 

Closed 

Forest 

Formations where trees in the various storeys and the 

undergrowth cover a high proportion with tree canopy density 

of 70% and above. (adapted from FRA 2000 and ISFR, 2019)) 

moderately 

dense forest 

All lands with tree cover of canopy density between 40% and 

70% above (India State of Forest Report (ISFR), 2019) 

Open Forest Formations with discontinuous tree layer but with a coverage 

of at least 10 percent and less than 40 percent. With tree canopy 

density of 40% covered by primary or secondary, and more but 

less than 70%. (adapted from FRA 2000) 

Bamboo 

Forest 

Forest on which more than 75% of the crown cover consists of 

tree species other than coniferous or broadleaved species (e.g., 

tree-form species of the bamboo, palm and fern families) 

N
o
n

-F
o
re

st
 

Cropland Arable and fallow land that grows annual crops (e.g., wheat, 

maize, sorghum, teff, cotton) or perennial crops (e.g., sugar 

cane, coffee, enset) on the small scale or commercial level by 

rain fed or irrigation schemes (adapted from FDRE, 2017). 

Grassland Land covered with the natural growth of graminea and 

herbaceous vegetation or a land sown with introduced grass and 

leguminous for the grazing of livestock. This class also 

includes grasslands with scattered trees, also known as open 

woodlands (adapted from FDRE, 2017). 
 

To use and instantiate these training points to be coded in the JavaScript API, a dictionary 

was created to explain the class meanings and run the model easily.  
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//Create a dictionary explaining the class meanings   

var classes = [ 

  {'label':1,'description':'closedforest'}, 

  {'label':2,'description':'medforest'}, 

  {'label':3,'description':'openforest'}, 

  {'label':4,'description':'cropland'}, 

  {'label':5,'description':'grassland'} 

]; 

The dictionary labeled feature collections were then imported from the asset, which is 

already in the required format. For the forest masking analysis, Sentinel-2 MSI Surface 

Reflectance imagery archives available on GEE were used for the years 2016 and 2020. 

GEE’s cloud screening algorithm based on quality assessment bands (QA) was applied to 

remove cloud and cloud shadow contaminated pixels for each of the 10m resolution scenes 

covering the study area. Creating monthly and annual 10-m cloud-free imagery 

composition is a challenging task because of the constant clouds across the forested area 

most of the time. For this purpose, the surface reflectance bands of sentinel-2, sentinel-1 

VV and VH backscattering polarizations and ALOS DEM were concatenated to replace 

the cloud masked area pixels as a patch. Zone 48 North. 

A binary classification (Class/Non-Class) strategy was adopted where each land cover class 

(Table 13) was mapped individually. Non-forested areas were then masked out from the 

classified image. This was done by assigning “NULL” to all other landcover classes except 

the forested areas classified as open-forest, moderately dense forest, and closed-forest.  

The results of the binary classification were printed into the GEE console for visualization 

of their properties and then were exported to Google Drive in GeoTIFF format with a scale 

of 10m resolution. The forested areas were extracted to be further used to mask the optical-

microwave fusion data before estimating the AGB and AGC. The process applied to 

accomplish this task is presented in Figure 19 below.  
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Figure 19: Sentinel-2 image processing and Random Forest classification 

The ‘number of trees’ was set to 100 and the 10m resolution Sentinel-2 spectral bands, 

Sentinel-1 sigma naught backscatters and spectral indices described in Table 3 were used 

as predicting variables in the RF model depending on the category of each land cover class. 

The final classification was a binary output of forest and non-forest. 

Accuracy assessment in GEE 

Regardless of classified visualization, accuracy assessment is a quantification of results. 

This was done using the GEE code editor by partitioning the set of known sample data 

values for forested areas and non-forested areas to ratio 70 training to 30 validation. The 

validation samples (30% split of original training data) served as a testing and was used to 

deliver a confusion matrix. This confusion matrix is made by comparing the ‘label’ 

property with the newly created ‘classification’ property. From the confusion matrix, GEE 

can calculate overall accuracy, producer’s accuracy (omission error), consumer’s/user’s 

accuracy (commission error), and kappa – coefficient of agreement and order value. These 

results were printed into the GEE console and saved as a CSV file into Google Drive.           
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3.4.4 Predictive Model Development Scenario Analysis 

The estimation or prediction of a response (output) variable based on a set of covariates or 

explanatory (input) variables can be achieved by applying a regression. A time series 

regression is used to predict a future response based on the response history from relevant 

predictor values. The regression model is developed or trained based on set of input 

variables for which the response is known. The model can then be used to predict responses 

for test datasets (with input variables but no response variable), identifying which input 

variables are most important in providing good estimates or predictions, or inspecting the 

relationships between the input variables. Two common methods that are used for this 

purpose are parametric time series models and nonparametric convolutional neural 

networks. The parametric time series models capture temporal dynamics such as moving 

average while nonparametric convolutional neural networks which are an extension of 

static neural networks, are adapted to describe data over time. 

In this study, the relationship between dependent variable and one or more independent 

variables was quantified using a regression analysis. For this purpose, the spectral value of 

the optical and SAR bands and their derivatives were extracted using the zonal statistics 

tool at the 20 plot locations with an average of three interconnected pixels. To develop the 

relationship between the Sentinel-2 bands, VIs, GLCM, and backscatter values and the in 

situ AGC, the pixels centering the plot location were considered to predict the quantities 

of carbon stored from satellite data alone. In this study, multiple linear regression was 

applied using the Sentinel satellites data as independent variables and the field AGC as a 

dependent variable.  

Then, a carbon stock prediction equation was developed establishing a regression line 

between each independent variable and field-based carbon stocks. To select the best 

predictor variable, the coefficient of determination (R2) value in the regression analysis was 

used as a comparison parameter. The R2 is chosen to understand the relationship between 

the independent and dependent variables as it shows the percentage of the variability 

explained by the model.  
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The best-fitting variables’ values were then used to create the biomass and the carbon 

storage potential of the Shiwshiwe forest in QGIS (Annex 5). The AGB prediction 

accuracy was validated and tested using the R2 values. The continuous carbon stock map 

for the study area was then mapped by multiplying the predicted AGB map using the IPCC 

carbon fraction factor of 0.47. 

 

Figure 20. Overall Methodological Flow Chart 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Total Aboveground Biomass and Carbon Stock Estimation 

The field forest aboveground carbon stock from live tree biomass was estimated based on 

field inventory carried out to collect plot level data in 20 sample plots in 2019. The field-

biomass and carbon stock estimation were inferenced from a total of 175 tree species 

sampled from 20 circular plots of 0.1ha plot area. The tree DBH measured varied between 

5cm and 70 cm (see Figure 21). The measured tree height varied between 5m to 17.5m 

across the plots inventoried. The dominant species found in the study area were Hagenia 

abyssinica, Arundinaria alpina (Highland Bamboo), Albizia schimperiana, Croton 

macrostachyus and Trichilia dregeana. 

 

Figure 21: DBH distribution across plots 
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The AGB calculated based on the measured DBH(cm), H(cm), and species-specific 

wood-density was found between 0.42 t/ha (in plot P07) to 1.7 t/ha (in plot P17). 

 

Figure 22: Plot level AGB in tonnes per hectare 

The above ground biomass of the study area was found 18.91 t/ha or 18918.52 kg/ha. The 

above ground carbon was calculated by multiplying the AGB in t/ha by the conversion 

factor of 0.47 as dry-mass value of carbon. The results of the analysis of the average forest 

carbon stock in the above ground biomass (AGB) is plotted in Figure 22 below. 

 

Figure 23: Plot level AGC stock (kg C/ha) 

The measured tree height varied between 5m to 17.5m across the plots inventoried. The 

resulting calculated total AGC stock (kg C/ha) across the plots in the study area was found 

8.8917 t C/ha. This value is comparable with the range of mapped carbon values found in 

the literature. Depending on the regional focus and the methods used, Ribeiro et al. (2011), 

and da Rocha et.al (2010) as cited in (Schwieder et al., 2018) obtained a range between 3.3 

and 32.5 t/ha (mean 8.5 t/ha) or 5.0 -15.9 t/ha (mean 9.7 t/ha) respectively. 
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It is evident from the figures in the results section that the plot level and mean values of 

AGB density reflected variability within the forest areas. The variance of the amount of 

biomass and carbon stored in the forest is based on several factors including forest types, 

age, management practices, uncertainty in plot size and level of human and natural 

disturbances as indicated by (Chave et al., 2005; Dick OB, 2015; Saatchi et al., 2011). 

4.2 GEE Timeseries Prototype of Forest AGC Stock Development 

The prototype development process was carried in the planetary-scale image analysis GEE 

platform. This involved developing a JavaScript for processing the whole chain of filtering 

and making medians of satellite images, preprocessing, image fusion, random forest 

classification, accuracy assessment, forest area masking, to exporting the resulting outputs 

to google drive for a download (for details look at 0). The resulting prototype is a GEE 

graphical user interface (GUI) with underlining codes with the following main 

components. 

1. Expression to define study area and create year list variables 

2. Search all available sentinel-2 image pixels and filter based on the year list with 

<1% cloud  

3. Commands to mask clouds and create cloud free sentinel-2 band stacks 

(ImageCollections) 

4. Commands to extract vegetation indices 

5. Commands to create mosaics of sentinel-1 backscatters 

6. Commands to drive GLCM textures 

7. Commands to create fusion of the different senor images 

8. Commands for binary classification of the fused image and mask forest areas 
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The result of the commands for searching all available Sentinel-2 images was examined 

using the .size() function over the searched image collections in the dry season. This 

revealed 26 scenes for 2016 and when applied the .updateMaskcloud function to mask 

clouds, 6 scenes with cloud percentage less than one (<1%) was found. Similarly, for the 

year 2017, the search resulted 98 scenes and 12 cloud masked scenes. For the year 2018, 

11 cloud unfiltered and 10 cloud masked images were obtained. The cloud unfiltered and 

cloud masked images for 2019 were 26 and respectively. For the year 2020, 10 cloudy 

scenes and 5 cloudless scenes were found. 

The prototype has also the following processing chains for masking forest areas of the 

study site. The JavaScript prototype uses the filtered median satellite image data to add 

polygons of training data. With the next chain, input training data and predictors are 

defined via buffering field samples and drawing training polygons and merging them. This 

includes creating a variable called image to select the bands of interest and masking to the 

study area and assembling samples for the model using a class variable that holds labels 

from each sample geometry. The assemblage includes making each sample the same size 

as the satellite image pixel size. The next chains hold running the model, assessing 

accuracy, refining model, and final model result display.  

To test the actual accuracy of the model rather than the fit, 50 random sampling points per 

class were created and run as an independent accuracy assessment using the 

“.stratifiedSample” function in GEE. Each random point was buffered by a 10m-radius as 

shown in the code snippet below.  
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var modelActualAccuracy = classed.stratifiedSample({ 

numPts:200,  

label: 'classification', 

region:oytAOI, 

scale: 10, 

geometries:true }); 

var ptsBuff = function(feature) { 

var pts = feature.get('classification'); 

return feature.buffer(10).set('classification', pts); 

}; 

var stratPoints = ptsBuff.map(ptsBuff) 

 

Figure 24: Processing chain of the JavaScript prototype 

The resulting prototype model is a machine learning processing chain which is a “black 

box,” where we can only observe the inputs and outputs. It is a JavaScript in the GEE 

platform that can be used as a tool for retrieval of information over any landscape that will 

aid in biomass and carbon stock estimation from satellite images. The time series analysis 

prototype allowed to understand the potential forest biomass and carbon stock over time in 

the study area. It also allowed for timely processing of the big-data. The processing time 

of the whole chains of the algorithms applied over the sentinel-2 image for instance was 

found 67.138 seconds (see Annex9).  

Moreover, the Artificial Neural Network (ANN) prototype submodule developed was able 

to select Sentinel-2 image bands and the derived vegetation indices (VIs) in GEE for the 

years 2016 to 2020 for satellite-based biomass and carbon stock estimation. This was 

carried by examining the spectral reflectance and surface reflectance curves of the bands. 

The result of the script development was a graphical user interface that depicts the 

variability of the raw DN and reflectance values of Sentinel-2 bands across respective 

wavelengths. The resulting GUI (Figure 25: ANN-based Sentinel-2 band selection and 
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aggregation GUI) has a thumbnail for visualizing the raw satellite image and their ID, 

study area enhanced layer viewer, and charts to examine the variance of the DN and 

reflectance values of Sentinel-2 images. 

 

Figure 25: ANN-based Sentinel-2 band selection and aggregation GUI 

As a result, the summer Sentinel-2 surface reflectance band values showed high availability 

across respective wavelengths when examined using the Map.addLayer function in the 

code editor. Therefore, the resulting spectrally variable band combinations from the bands 

B2 (blue), B3 (Green), B4 (Red), and B8 (NIR) were used to create median composite 

images of each band per year.  

These median bands per year were used in the geocomputation of NDVI, EVI, SAVI, and 

NDWI indices. The corresponding visualization parameters were then later used in the 

further processing of the satellite images such as multispectral image fusion, random-forest 

classifications, and predictive model development. 
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Results of Multispectral Image Fusion Module 

The fusion of the median sentinel-2 bands with Sentinel-1 and ALOS DSM has increased 

the separability of the image bands. This allowed to visualize the image with a better 

appearance and increased the visual classification of the images. The histogram of the 

stacked raw bands (A) and the fused median band histograms (B) in depict the removal of 

redundant information from the bands and increased separability for better information 

extraction. 

 

Figure 26: Comparison of raw Sentinel2 bands (A) with Fusion image bands (B)  

The fusion of the temporal multispectral bands from Sentinel-2, Sentinel-1, and ALOS 

DSM was carried at a pixel level in GEE automation environment. This was carried over 

the median images of the sentinel images filtered at a yearly basis using the JavaScript 

prototype developed. The resulting image is a natural look multi-sensor image that is easy 

to interpret as shown in figure 27 below.  

A B 
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Figure 27: Timeseries of multispectral pixel level data fusion result 

This study revealed that the variables used in the fusion of the Sentinel-2 reflectance bands, 

vegetation indices, Sentinel-1 backscatters, GLCM textures and topographical parameters 

varied by their attribute importance when run the following code of the RF model of the 

prototype.  
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The code snippet above yielded the importance of each random forest algorithm trees as in 

the graph below. 

 

Figure 28: Graph of  Variable Importance  

VV_Entropy and VH_SumAV were the most important variables among the S1 variables 

for explaining the observed spatial patterns of forest AGC in the linear regression, and this 

was also shown in the RF models. The texture features were helpful to note that the texture 

characteristics of the Sentinel SAR backscatters with a larger window size achieved a 

greater potential for mapping forest AGB, based on the correlation analysis. It can be 

understood in this study that direct use of the backscatter coefficients from the SAR C band 

alone might not be appropriate. The nonexistence of penetrability could affect biomass 

carbon stock information extraction. 

Result of Random Forest Classification and Accuracy Assessment in GEE 

Forest cover area mapping is important to extract reliable input data for biomass estimation 

and a step-wise approach to national FRL development. The forest cover mapping for the 

area was based on a comparative analysis of three scenarios. For each scenario, a JavaScript 

code was developed to run the Random Forest classification and respective accuracy 

assessment in GEE to further mask the forest areas.  

Table 14: Random Forest Classification Scenarios 

Scenario Description 

Scenario 1 using only optical bands (B2, B3, B4, B8) 

Scenario 2 using only SAR backscatters (VH and VV) 

Scenario 3 using multispectral fusion (Optical bands, SAR backscatters, VIs and 

ALOS DSM) 
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Figure 29: Scenario-1 and Scenario-2 Forest cover Maps 

As a result, scenario-3 yielded a detailed timeseries of high accuracy binary classes of 

forest and non-forest images (Figure 30: Scenario-3 based forest cover maps). The output 

of the prototype developed based on this scenario has increased the details of the forest 

cover map and a highest accuracy of 95% was attained.  
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Figure 30: Scenario-3 based forest cover maps  

The final forest cover map of the study area was thus produced using the combined 

composite of 10m sentinel-2 bands, Sentinel-1-backscatters, NDVI, NDWI, and ALOS 

DSM. The resulting JavaScript code and run-output for the compositing and random forest 

as well as GLCM texture extraction is shown below. 
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Accuracy Assessment of the Scenarios Module 

Classification accuracy assessment verifies the accuracy of the classified image with 

reference data that is typically generated either through interpretation of imagery with 

higher spatial resolution or ground data collection (Lillesand et al. 2015). A complete and 

meaningful accuracy assessment framework should consider various components of map 

accuracy beyond traditional pixel-based approaches to paint a complete picture (Klotz et 

al., 2016). The prototype model accuracy assessment was based on the evaluation of the 

ee.Classifier.smileRandomForest() classifier with array of 40 number of trees. This was 

done using 75 to 25 ratios of training and validation samples for each scenario within the 

variant number of trees while processing the smileRandomForest algorithm. However, the 

results of Scenario-3 are presented here as a showcase as it yielded 0.98 overall accuracy 

with kappa statistics of 0.97. To overcome the computational timing out or “memory limit 

is being exceeded” error, the accuracy assessment results of confusion matrix and accuracy 
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were exported as a CSV. This needed to create a 'feature collection' to be able to use the 

Export tools in GEE. 

The pre-classified imagery was used for the train accuracy assessment that examines the 

accuracy of the classifier applying the ‘.confusionMatrix().accuracy()’ function. The 

confusion matrix was computed using “validationFc.classify(classifier).errorMatrix” 

expression. The results were then printed into the GEE console as depicted in the code 

below. 

 

The final summary of the different types of accuracy assessment method in GEE 

environment is summarized for the scenario-3 in below. 

 

Table 15: Accuracy Assessment in GEE for Scenario-3 

Accuracy Assessment type Resulting Accuracy 

Train Accuracy 0.999 

Test Accuracy 0.985 

Overall Accuracy 0.98 

Consumers Accuracy (Kappa) 0.983 

Producers Accuracy 0.964 

The fusion of the remote sensing sensors image data were used to drive the forest cover of 

the area in GEE and the resulting LULC was compared to existing global landcover such 
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as the Global Copernicus Land Service (Buchhorn, Smets, et al., 2020) to examine the 

potential reliability of the prototype model. The combination between the satellite data 

helped to distinguish complex vegetation arrangements and improved forest cover 

estimates. It is hence an important output as suggested by (Isbaex & Coelho, 2021) that the 

fusion of vegetation indices with image texture measurements contribute more to 

improvements in classification accuracy than when they are used separately. This is clearly 

shown from the result from scenario-3 (see Table 15).   

The prototype developed here as per the objective of the study, maximized the possibility 

to choose a specific period and create image mosaics, with the best cloudless pixel, solve 

terrain effects problems, and identify any changes in forest ecosystem in the world through 

classified images. Besides this, it can use several input parameters such as slope, aspect, 

radar textures and vegetation indices from multisensor bands at the same time when image 

classification is performed.  

Therefore, this prototype provides a new baseline forest cover AGC product at 10 m 

resolution that is developed and validated in almost near-real time and at the same time 

maximizes the impact and uptake for the end users. The Sentinel-2 satellites experience 

high revisit time of five days. Sentinel-1 satellites penetrate areas that remain cloudy for a 

long time, while they also provide complementary information on the structural 

characteristics of the observed forest land cover. The research prototype model is thus 

capable to update the AGC map almost in real time when the two satellites data are jointly 

used with some ancillary data such as ALOS DEM. This research work is also a tremendous 

step forward towards the synergetic use of Sentinel-1 and Sentinel-2 data for worldwide 

land cover (Buchhorn, Lesiv, et al., 2020) and emerging AGC monitoring initiatives. 

The statistical evaluation of the final AGC map product was 95% overall accuracy. Several 

studies in the biomass estimate indicate errors that can range from 5 to 30% ( MEFCC, 

2018) which arise from the different spatial and temporal resolutions, sensor type, scale, 

field data errors, and uncertainty. The study lies in the  recommended accuracy for planning 

and management decision of forest which is recommended that in forest research, 
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accuracy reaches values greater than 90% for a regional scale and 80% for a national or 

global scale according to (Isbaex & Coelho, 2021; MEFCC et al., 2018) 

4.3 The aboveground carbon stock predictive model development. 

4.3.1 Correlation of Sentinel-2 satellite variables with Observed AGC 

The sentinel products for predictive variable selection were resampled to the plot center 

points using the “Sample raster values” tool in QGIS. This algorithm creates a new vector 

layer with the same attributes of the input layer and the raster values corresponding to the 

point location. This means that if the raster layer has more than one band, all the band 

values are sampled. The sampled values from respective satellite products such as NDVI 

for the year 2019 were then used as input values in the correlation against the field AGC 

values inventoried. In this study, simple linear regression was first applied to understand 

the predictive power of each of the independent variables on the dependent variable once 

a causal relationship has been confirmed. Results obtained for the different Sentinel-2 

based vegetation indexes are shown in Table 16 below. 

Table 16: Summary of Regression Statistics between AGC and Vegetation Indices 

Regression Statistics NDVI NDWI EVI SAVI 

Multiple R 0.90 0.30 0.87 0.76 

R Square 0.81 0.09 0.76 0.58 

Adjusted R Square 0.80 0.04 0.75 0.55 

Standard Error 0.08 0.18 0.09 0.12 

Observations 20 20 20 20 
 

4.3.2 Correlation of Sentinel-1 satellite variables with Observed AGC 

A. Filtering GRD backscatter polarizations and GLCM textures 

The availability of Sentinel-1 GRD SAR collections at full ‘spatial resolution’ via GEE 

potentially saves everyone’s time and hassle. The grey level co-occurrence matrix or 

GLCM textures are arrays of values that determines the varying combinations of pixel 

brightness values (grey levels) present in an image (Beyer, 2017). The GRD VV and VH 

backscatter polarizations and GLCM textures were extracted using the Java API in GEE. 

The final terrain corrected values are converted to decibels via log scaling (10*log10(x)) 

and quantized to 16-bits.  
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To determine the spatial co-occurrence of the pixel grey levels, 10 textures were computed 

for each sigma naught VV(𝜎˚𝑉𝑉) and sigma naught VH (𝜎˚𝑉𝐻) polarizations. These 

matrices of textures were angular second moment, contrast, dissimilarity, energy, entropy, 

correlation, mean, variance, homogeneity, and max. The textures were first composited at 

monthly level and then were stacked as median for each respective study years (2016-

2020). However, to decrease the number of input variables for the regression analysis, 

entropy, Sum average, correlation, and variance textures with 3x3 and 7x7 moving window 

sizes were extracted from the time-series stacks of sentinel-1 VV and VH polarizations 

computed through the GEE. Only the 7x7 textures were used in this study. The variables 

were selected based on calculation of random-forest variable importance. The following 

code snippet of the prototype shows the procedure to extract the grey level cooccurrence 

matrix textures.   

 

B. Correlation of Sentinel-1 Variables with Observed AGC 

Table 17: Summary of Regression Statistics between AGC and Sentinel-1 variables  

Regression Statistics VH VV Entropy SAvg Correlation Variance 

Multiple R 0.84 0.64 0.78 0.45 0.46 0.28 

R Square 0.70 0.40 0.61 0.20 0.21 0.08 

Adjusted R Square 0.68 0.37 0.59 0.16 0.17 0.03 

Standard Error 0.10 0.15 0.12 0.17 0.17 0.18 

Observations 20 20 20 20 20 20 
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The correlation result found among AGC and the VV and VH backscatters were 

comparable with (Huang et al 2018). VH is shown to be more useful for the AGC 

estimation than the VV polarization backscatters due to less influence by soil moisture. 

Similar studies in the tropical forests have been made on the use of shorter wavelengths 

(e.g., C-band, 3.75 cm to 7.5 cm) by examining the features of GLCM textures that were 

derived from 𝜎˚𝑉𝐻. Therefore, forest live biomass carbon stock is sensitive to 𝜎˚𝑉𝐻 due 

to the occurring depolarization.  

The correlation (r2 = 0.7) observed in this research also agree with the findings of Thiel 

(2016) where the r2 is 0.65. However there exist no comparable research in the study area. 

The grey level co-occurrence matrix texture (GLCM) analysis responds significant but 

relatively moderate relationship to AGC in the study area.  

In general, a good relationship between grey level co-occurrence matrix and field above 

ground biomass was also observed with correlation coefficient (r2 = between 0.08 - 0.61). 

The 𝜎˚𝑉𝐻 Entropy texture performed better with the highest correlation value of 0.61 and 

has contributed to the accuracy of the carbon stock mapped.   

4.3.3 Correlation Summary of the Independent Variables with Observed AGC 

To the linear regression predictive model, the R2 values were compared to assess the 

variability explained by each of the independent parameters as backscatter in glcm textures 

and selected Sentinel-2 VIs. The model validation result of the input independent variables 

in the regression model are depicted in Figure 31 below.  

 

Figure 31: R2 of independent variables based on simple linear regression 
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The correlation result depicted that the highest coefficient of determination value NDVI 

(R2= 0.81) and a comparatively lower R2 for VH_variance texture (0.08). The Sentinel-1 

gray level cooccurrence matrix textures, in general, showed less correlation with the above-

ground biomass carbon stock but are very significant in the geocomputation of the AGC. 

The entropy texture resulted in a higher correlation with the plot biomass compared to the 

rest GLCM textures (see Table17). 

 

Figure 32: The correlation between AGC and NDVI and the predictive model 

4.3.4 Selection of the Best Variable to develop predictive equation  

The straight-line relationships between the dependent variable and the independent 

variables (predictors) were studied using multiple regression analysis as in Equation 9.  

Y = mx1 + mx2 + mx3 + … + mXn + b …………………………………… Equation 9 

Where   Y= the dependent variable  

             m= slope of the regression 

            x1, x2, x3, …, xn= independent variables of the regression 

            b = constant 

The resulting summary of the multiple regression analysis is depicted below. 
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Table 18: Results of multiple regression 

 

When fitting a multiple linear regression model, it is likely to eliminate independent 

variables that are not important in predicting the dependent variable Y from the final 

equation. The objective in finding the “best equation” is to find the simplest model that 

adequately fits the data. The prediction equation is the equation with all of the independent 

variables in the equation but with the least number of variables that still explain a 

percentage of variance in the dependent variable that is comparable to the percentage 

explained with all the variables in the equation. The reason to develop the best Regression 

equation is not necessarily the equation that explains most of the variance in Y (the highest 

R2) but the one that fulfills the following best model selection techniques as published in 

http://web.csulb.edu/~msaintg/ppa696/696regmx.htm.  

Regression Statistics

Multiple R 0.968960289

R Square 0.938884043

Adjusted R Square 0.870977423

Standard Error 0.066197009

Observations 20

ANOVA

df SS MS F Significance F

Regression 10 0.60587 0.06059 13.8261 0.000267

Residual 9 0.03944 0.00438

Total 19 0.6453

Coefficients Std Error t Stat P-value Lower 95%Upper 95%

Intercept 0.300550796 1.31343 0.22883 0.82412 -2.67063 3.27173

NDVI2019 2.238629598 2.41582 0.92666 0.37829 -3.22633 7.70359

NDWI2019 2.418137101 0.78207 3.09196 0.01289 0.648967 4.18731

EVI2019 0.299892967 1.07071 0.28009 0.78574 -2.12223 2.72201

SAVI2019 -0.167091382 0.80442 -0.2077 0.84007 -1.98682 1.65264

glcm_Savg -0.001713668 0.00193 -0.8892 0.39706 -0.00607 0.00265

glcm_ent 0.091130511 0.13454 0.67737 0.5152 -0.21321 0.39547

glcm_corr -0.250478126 0.19597 -1.2782 0.23317 -0.69379 0.19283

glcm_var 0.000174455 0.00051 0.34046 0.74132 -0.00098 0.00133

VV -0.015658079 0.00984 -1.5913 0.14601 -0.03792 0.0066

VH -0.003401657 0.01365 -0.2492 0.80878 -0.03428 0.02747
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➢ This equation will be the one with all the variables included.  

➢ The best equation should also be simple and interpretable. (i.e., contain a small 

number of variables).  

➢ Simple (interpretable) & Reliable - opposing criteria.  

➢ The best equation is a compromise between these two. 

The predictive equation for AGC estimation was thus finally developed using variables 

with positive relationship. The equation developed Equation 10 below explains 93.4% a 

significant amount of the variation in the dependent variable of the AGC estimation with 

the selected variables. 

AGCp = (2.238 * NDVI) + (2.418 * NDWI) – (0.299 * EVI) +  (0.09 * Entropy) - 0.3 ) ∗
0.47 …………………………………………………………………..……. Equation 10 

Based on the resulting R2 value of the multiple regression, the NDVI, NDWI, EVI of 

sentinel-2 and Entropy texture of sentinel-1 were selected to compute the above-ground 

carbon stock of the Shiwshiwe forest as there is a significant linear correlation between 

AGC and the selected independent variables. The R2 value of ~0.9388 indicates that the 

model accounts for about 94% of the variance in the dependent variable. It here interpreted 

as R2 value closer to zero indicates no linear relationship, while a value close to one 

indicates a perfect linear fit. 

4.3.5 Comparison Vegetation Indices and Backscatter 

To investigate the relationship between Sentinel-2 VIs and Sentinel-1 polarization 

backscatters, in estimation of the plot-based AGC, Sentinel-1 Backscatters were examined 

by plotting the NDVI values against the VV and VH backscatter values. The NDVI 

vegetation index is selected as it has strong linear relationship with and it alone describes 

81% of the variations in AGC. The resulting scatterplots trend-lines were fitted and the 

possible linear, exponential, or polynomial relation was examined. As a result, NDVI has 

positive linear relationship with VH. 
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The relationship between the NDVI and VV backscatter is also positive but the weaker 

than the relationship with VH. 

 

Overall, this indicates that the backscatters can be used in vegetation mapping and 

monitoring their status. However, direct use of these backscatters might not be good 

estimators of AGB and AGC as depicted in Figure 31. 

4.3.6 Aboveground Carbon Stock Estimation Based on Best Variable  

The AGC map of the Shiwshiwe forest was geocomputed based on the equation derived 

from the multiple linear regression analysis (see Table 18) between AGC and the selected 

four-independent variables using Equation 10. This results annual timeseries AGC maps 

for the years 2016 to 2020.  The resulting map shows the estimated tree biomass carbon 

content in a raster form for the study area. The map was then masked to the forest areas 

derived from randomforest classification for each respective year and then multiplied by 

the IPCC default conversion factor of 0.47. The final predictive equation developed for the 
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AGC estimation was used to produce continuous raster maps. As a result, the higher AGC 

was exhibited by the natural forest areas than other landcovers.  

 

Figure 33: Aboveground Carbon Maps 

The per-pixel AGC for the study area ranged from 0.538 – 1.6153, 0.353 -1.518, 0.319-

1.480, 0.517 – 1.614 tons for the years 2016 to 2020 respectively. The total plot level per 

pixel AGC was found between 6 and 7.4 tons. Plot 17 generally showed lower predicted 

AGC across the study years than the other plots. It is clear from the map of AGC that the 

amount of AGC is lower in parts of the area which are close to road and other landuse 

types, especially near the agricultural lands. The inaccessible forest areas and dense forests 

showed the largest carbon stocks with the amount higher than 1.5 ton per pixel (176.25 

t/ha). 
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Figure 34: Plot level Predicted AGC 

The estimation of the AGC map was based on a JavaScript developed for the predictive 

equation in GEE. The JavaScript allowed automating the annual timeseries AGC coverage 

mapping for the study area at a time less than a minute (see 8.2). The satellite based 

timeseries used in this study is a point-based timeseries. The plot centres were used as 

points for which the timeseries values for AGC is extracted from the maps produced based 

on the predictive equation. The total plot level per pixel AGC was 28.043, 26.804, 25.621, 

28.076, and 28.551 for the years 2016, 2017, 2018, 2019 and 2020 respectively. 

The timeseries AGC derived from Equation 10 across the study area at a single plot for 

instance is shown below.  
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The yearly satellite based point timeseries of AGB converted to AGC per plot can be 

separately generated using the prototype developed as shown below for plot17 for instance. 
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The above graphs depict the power of the prototype to derive timeseries above ground 

variability of the biomass carbon gC/m2 per each plot across the study area. The aggregated 

annual above ground timeseries carbon stock was also derived using the FAO WAPOR 

data as Net primary production (NPP). NPP is a fundamental characteristic of an 

ecosystem, expressing the conversion of carbon dioxide into biomass driven by 

photosynthesis. The pixel value represents the mean daily NPP for that specific year from 

2016 to 2020. This evaluates the performance of the forest areas. 

 

The methodology for deriving the NPP was based on the framework of FAO that 

incorporates biome-specific light-use efficiencies (LUEs). The following data is used to 

calculate NPP: Daily: incoming solar radiation and temperature data (Tmin/Tmax); 

Dekadal: fAPAR and soil moisture stress; Seasonal: Land Cover. The NPP data deployed 

in GEE was used to compare the field-based carbon stock to globally available dataset. The 

resulting timeseries values are comparable. However, the global NPP values are derived at 
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low resolution of 250m and hence exaggerates the per pixel carbon stock values. The peak 

mean daily per pixel NPP in kgC/m2 observed was: 

• Jan 1, 2016 2.223 

• Jan 1, 2017 2.224 

• Nov 21, 2018 2.599 

• Jan 1, 2019 2.477 

• Feb 21, 2020 2.687 

 

The peak NPP from 2016 to 2020 carbon stored in the forest per square meter showed a 

linear increment in carbon stock. This is feasibly due to increased management and 

awareness creation by the respective government authority in the society as reported by the 

community during reconnaissance survey and literature reviews. 

 

Figure 35: Peak NPP from 2016 to 2020 (kgC/m2) 

The net primary productivity as a function of the carbon stock due to the conversion of 

carbon dioxide into biomass driven by photosynthesis per pixel showed the highest peak 

in the year 2020 with 2. 687 kgC/m2.  
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The aboveground carbon stock variability over the study area from 2016 to 2017 generally 

showed higher separability than from 2018 to 2020. The geocomputation of the plot level 

point based timeseries can run through entering the plot center coordinate of the plot in 

GEE. The GEE prototype code developed plots the timeseries charts within 0.67seconds 

and postulates the seasonal trends in AGC. For sample visualization, plot17 timeseries of 

the predicted aboveground carbon stock is presented in the following figures. Thus, the 

prototype developed here in this research allowed to automatically monitor the state of 

AGC both at short-term (yearly basis) and at long-term (half a decade) that fits the REDD+ 

monitoring mechanism as adopted in the Ethiopian CRGE documents. 

4.3.7 Correlation between Observed and predicted AGC 

The prediction model was validated through observing the correlation between the 

observed and predicted AGC. An exponential trend was found with R2 of 0.96. 

 

The biomass estimates based on LULC classification with Sentinel images is still recent, 

but promising. For reliable information extraction, the current study used the fusion of 

radar (Sentinel 1) and optical data from (Sentinel 2), as well as incorporating models and 

algorithms, vegetation indices, textures, biophysical variables, and forest inventory data. 

The best variable selected was based on examining its correlation coefficient with field 

aboveground carbon values as used by (Chave et al., 2014; Dick OB, 2015; Tesfaye et al., 

2016) and using the variable importance built-in module within the SmileRandomForest 

algorithm as used by (Apley & Zhu, 2019). The later method was applied on the fusion of 

images and the model performed the whole chain of processing within 0.6 to 5 seconds in 

GEE.  

y = 0.0997x + 1.3595
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The predictive equation model was developed with SmileRandomForest algorithm. It can 

be noticed that most textures derived from 𝜎˚𝑉𝑉 polarizations are correlated with each 

other. This finding is in line with a study by (Ghosh & Behera, 2018). Establishing a linear 

relationship using these features will not provide new information and could lead to over 

fitting the model. However, the capability of the RF algorithm to randomly select features 

assigned for each node takes care of this information redundancy.  

Although the regression model performances vary between the sentinel satellite products 

and the observed AGC, the values are still comparable to results from studies dealing with 

the mapping of carbon in similar ecosystems. For example, González-Roglich and 

Swenson (2016) used spatially explicit predictions based on field samples ranging around 

a mean of 27 t/ha, had a mean prediction error of 9.6 t/ha at 60 m spatial resolution. Karlson 

et al. (2015) reported model performances with an r2 of 0.57 when mapping aboveground 

biomass in Sudano-Sahelian woodlands using multi-temporal (7 observations) Landsat 

OLI products. 

The performance of the model was also evaluated using net primary productivity to 

estimate the function and importance of the forests in mitigating climate change in the area. 

As a result, the NPP values linearly indicated the increased carbon storage in the forests in 

the year 2020 with the highest peak in 21st of February. This is indicator for good forest 

management in the area though it depends on climatic variables such as rainfall which 

would alter the value of carbon intake by forests. 

Overall, the prediction model had exponential trend with r2 of 0.96. This prediction power 

of the model was estimated through observing the correlation between the observed and 

predicted AGC. Given the lack of data on biomass, the current study provided valuable 

estimates of AGB and AGC storage and fills the data gap in an area under-represented by 

existing literature.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

This research is carried to estimate and model the timeseries forest aboveground carbon 

stock using GEE Java API. In this paper, a methodological prototype and predictive model 

for forest aboveground carbon stock monitoring using the fusion of Sentinel-2, ALOS 

DSM, and Sentinel-1 SAR data time series is introduced. To evaluate spectrally derived 

VIs and fusing Synthetic Aperture Radar (SAR) imagery for improving forest area 

masking and AGC monitoring, the freely available advanced Sentinel-1 radar (VV and 

VH backscatters) and Sentinel-2 optical imagery were utilized. This study contributes to 

the evaluation of economically viable, efficient prototype model development for scalable 

monitoring of AGC. The predictive equation developed for the AGC estimation can also 

contribute to the mapping of landscape-level forest aboveground biomass and carbon stock 

in the study area. Hence, the R2 value of ~0.9388 indicates that the model accounts for 

about 94% of the variance in the dependent variable. 

The results portrayed in the ‘Results’ section illustrate the general feasibility of the 

proposed approach for the study area where there exists recurrent cloud cover over time. 

In these cases, often already the least cloudy image provides a clean and artifact-free 

solution. The mean pixel value, which was used as the plot value of plot biomass carbon 

stock for the 20 plots prevented intrusion to the surrounding area where the tree canopy 

cover is different.  

The conventional timeseries Sentinel-2 optical imagery was used as a benchmark for 

comparison with results achieved using Sentinel-2 VIs and fused use of Sentinel-2 VIs, 

ALOS DSM, Sentinel-1 SAR backscatters, and GLCM textures. The three scenarios as 

case studies showed the different accuracies that can be achieved based on different inputs 

and the relative importance of the different types of sensors in the generation of the AGB 

maps. The fusion of the satellite images and their derivatives increased overall 

classification accuracies when compared to traditional optical imagery results, while the 

fusion of Sentinel-2 VIs and Sentinel-1 backscatters decreased the overall accuracies. 
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Hence, this study demonstrated that fusion of multitemporal Sentinel satellite images have 

the potential to increase the monitoring and mapping of forest AGC stock.  

The study provides that the use of automated prototyping and cloud-based infrastructures 

such as GEE overcomes the analysis of the current difficult and expensive remote sensing 

data with smaller MMUs. The use of such methods decreases the mapping efforts and 

usually increase mapping accuracy. The use of texture parameters is also indicated as 

prominent for forest cover and vegetation classification. Moreover, the use of C-band 

satellite backscatter signal based information with optical sentinel-2 bands and vegetation 

index values tackles the cloud cover problem. 

Thus, the prototype model developed for processing the fusion of the Sentinel satellite, 

with optical and radar capabilities, holds great promise in the delineation of forests for 

enhanced timeseries monitoring of forest biomass and carbon stock. Hence the tasks of 

land cover classification and activity-data mapping for REDD+ and MRV missions can 

take advantage of fusion of the two data types leading generally to increased forest carbon 

stock mapping and estimation accuracy (Bagan, et al, 2012).  

A study by Chen et al. (2018) indicated that texture characteristics of Sentinel-1 and the 

Sentinel-2 derivative VIs variables were the most relative and important predictors for 

explaining the observed variability of AGC. Although SAR C band and optical 

multispectral techniques have few advantages for detecting the sensibility of forest AGC 

compared to SAR P band or LiDAR, the high spatial resolution of sentinel satellite series 

with wider coverage is indeed useful information for applications in forest AGB estimation. 

It is noticed that the outputs of this study have promising results for multi-temporal 

monitoring for long-term AGC mapping-based multispectral image analysis. The 

possibility to apply this approach to different types of sensors while generating 

complementary outputs is among its several advantages. These methods may prove 

important in supporting management and polices addressing carbon stocks in Ethiopia and 

elsewhere. Overall, the comparison assessment of this study provided a reference for the 

selection of combinations of predictors and algorithms for detailed forest AGB estimation 

and modeling. This study therefore, drives that the detailed forest AGC estimation can be 

enhanced by the use of allometric equations and synergetic use of multispectral satellite 
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timeseries data. Thus, it can be considered vital in alleviating climate change mitigation 

through supporting sustainable forest resource management. 

5.2 Recommendation 

• To take advantage of the massive open availability of satellite images, it is 

recommended to develop cloud based prototypes for monitoring the abrupt changes 

in forests that will help scientists and researchers to easily get from an idea to the 

actual prototyping and geocomputation towards mitigating climate change. 

• The geospatial industry in Ethiopia is highly dependent on desktop software 

resources and existing geospatial data are locked within various sectors which leads 

to resource and time constraints and incompatible data. Therefore, the major 

stakeholder’s have to turn their face towards effective cross-sectoral data sharing 

that will contribute to national MRV systems and forest policy amendments.  

• Coding with JavaScript or Python APIs in GEE requires good bundle of knowledge 

on programming language which is not a primary objective of most of the Institutes 

offering GIS and Remote Sensing courses in Ethiopia and this needs to be addressed 

very soon integrating advanced programming languages in their curricula following 

"fit-for-purpose approach" that will meet the needs of society today and that can be 

incrementally improved over time. 

• Though the result of the analysis for is crucial for making decisions in carbon stock 

modeling, intensive socio-economic data and increased number of plots need to 

increase its efficiency and accuracy. 

• There is an urgent need to build cost-effective and sustainable MRV systems for 

flexibly designing a monitoring plan that can adapt remote sensing data to different 

forest definitions that holds consistent forest classifications for all REDD+ 

activities for critically integrating different types of information. 

• The EFCCC and the regional government should promote carbon trading for 

additional financial incentive to the local community who are depending on the 

forest resource based on accurate spatial estimation of their forest carbon stocks. 

It has been indicated that the forest sector in Ethiopia is the second largest contributor of 

GHG emissions in the country after agriculture (CRGE, 2011). Under the BAU scenario, 



 

89 
 

the pressure on forests however will ultimately deplete the natural resource base and 

negatively affect the performance of the economy in the long-term. The use of complex 

GIS, satellite imagery interpretation software and the treatment of large amount of data in 

this regard, can only be effective if coupled with new algorithms and cloud-based 

optimizations. Therefore, other researchers can use the findings of this study as a reference 

in order to improve and dig out methods to extract information from multisource satellite 

images perspective. Hence, below are some of the focus areas for future study. 

➢ The present study, did not attempt to model and estimate the carbon gain and loss 

as a function of each carbon pool nor each LULC, so further study is required to 

map the carbon stock potential of the study area 

➢ It is recommended to further examine sentinel-1 GLCM features in terms of kernel 

size and shift, and analyze how their explanatory power changes. 

➢ Study on various challenges, including accurate co-registration and dealing with 

spectral variation in the time series have to be addressed when designing a SAR-

optical time series approach for forest carbon stock monitoring 

➢ Further investigation on effects of timeseries multisensor image fusion model on 

the estimation of the forest aboveground carbon due to deforestation and 

degradation activities. 

➢ A study needs to be conducted that examines the estimation of emission factors at 

landuse-landcover level including all carbon pools. 

➢ The model developed here might be modified in the future by using radar longer 

wavelength bands such as L and P bands which have strong relationship to forest 

stand parameter.  
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Annex 1.3 Field site Photos 
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Annex 1.4 Forest Resources Management and use related Selected photos 
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Annex 1.5 Tree species names cleansing 
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ANNEX 2 Field Based AGB and AGC Stock Calculations 

Table 19: Field Survey and Plot (Tree) Level AGB Estimations  

 

 

Tcode Family Genus Species dbh (cm) POM Height (m) Height(cm) WD(g/cm3)AGB (g) AGB(kg) AGB (kg/ha)

7T1 Myrsinaceae Maesa lanceolata 37.6 1.3 13 1300 0.676 59706.06 59.71 298.53

7T2 Fabaceae Millettia ferruginea 23.8 1.3 8 800 0.738 16585.64 16.59 82.93

7T3 Poacae Arundinaria alpina 5.6 1.3 7 700 0.63 740.37 0.74 3.70

7T4 Poacae Arundinaria alpina 6 1.3 5 500 0.63 609.98 0.61 3.05

7T5 Poacae Arundinaria alpina 9 1.3 8 800 0.63 2129.46 2.13 10.65

7T6 Poacae Arundinaria alpina 10 1.3 6 600 0.63 1975.36 1.98 9.88

7T7 Poacae Arundinaria alpina 6 1.3 6 600 0.63 728.78 0.73 3.64

7T8 Poacae Arundinaria alpina 8 1.3 6 600 0.63 1277.85 1.28 6.39

AGB= 83753.5 83.75 418.77

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB (kg) AGB (kg/ha)

10T1 Anacardiaceae Rhus ruspolii 17 1.3 7 700 0.62 6368.56 6.37 31.84

10T2 Euphorbiaceae Croton macrostachyus 15 1.3 8 800 0.518 4768.12 4.77 23.84

10T3 Euphorbiaceae Croton macrostachyus 18 1.3 11 1100 0.518 9287.36 9.29 46.44

10T4 Fabaceae Albizia schimperiana 20 1.3 7.2 720 0.534 7770.74 7.77 38.85

10T5 Fabaceae Albizia schimperiana 14 1.3 6.8 680 0.534 3663.24 3.66 18.32

10T6 Fabaceae Albizia schimperiana 28 1.3 5.8 580 0.534 12135.38 12.14 60.68

10T7 Rosaceae Hagenia abyssinica 24 1.3 8 800 0.5905 13561.69 13.56 67.81

10T8 Rosaceae Hagenia abyssinica 9 1.3 9 900 0.5905 2242.58 2.24 11.21

10T9 Rosaceae Hagenia abyssinica 30 1.3 11.5 1150 0.5905 29874.97 29.87 149.37

10T10 Fabaceae Albizia schimperiana 20 1.3 9.5 950 0.534 10185.07 10.19 50.93

AGB= 99857.72 99.86 499.29

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB(kg) AGB (kg/ha)

8T1 Flacourtiaceae Oncoba spinosa 34 1.3 10 1000 0.647 36383.50 36.38 181.92

8T2 Euphorbiaceae Croton macrostachyus 15.8 1.3 8 800 0.518 5277.10 5.28 26.39

8T3 Fabaceae Albizia schimperiana 11.5 1.3 6 600 0.53 2192.13 2.19 10.96

8T4 Flacourtiaceae Oncoba spinosa 10.5 1.3 8 800 0.647 2952.81 2.95 14.76

8T5 Melianthaceae Bersama abyssinica 28 1.3 8 800 0.671 20757.00 20.76 103.78

8T6 Euphorbiaceae Croton macrostachyus 17.7 1.3 9 900 0.518 7389.00 7.39 36.94

8T7 Fabaceae Albizia schimperiana 20 1.3 12 1200 0.53 12699.88 12.70 63.50

8T8 Euphorbiaceae Croton macrostachyus 20.3 1.3 8.5 850 0.518 9131.58 9.13 45.66

8T9 Flacourtiaceae Oncoba spinosa 11.6 1.3 8 800 0.647 3586.70 3.59 17.93

AGB= 100369.7 100.37 501.85

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB (kg) AGB (kg/ha)

16T1 Rutaceae Clausena anisata 13.4 1.3 8 800 0.482 3566.10 3.57 17.83

16T2 Moraceae Ficus exasperata 54.9 1.8 14.6 1460 0.377 79173.13 79.17 395.87

16T3 Meliaceae Trichilia dregeana 10.3 1.3 6 600 0.482 1611.40 1.61 8.06

16T4 Boraginaceae Ehretia cymosa 16 1.3 6 600 0.56 4407.22 4.41 22.04

16T5 Meliaceae Trichilia dregeana 17 1.3 8 800 0.482 5674.42 5.67 28.37

16T6 Meliaceae Trichilia dregeana 20 1.3 7 700 0.482 6840.62 6.84 34.20

16T7 Meliaceae Trichilia dregeana 18.7 1.3 11 1100 0.482 9326.16 9.33 46.63

AGB= 110599.0 110.60 553.00
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Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB (kg) AGB (kg/ha)

13T1 Poacae Arundinaria alpina 5.5 1.3 8 800 0.63 814.28 0.81 4.07

13T2 Poacae Arundinaria alpina 6 1.3 5 500 0.63 609.98 0.61 3.05

13T3 Poacae Arundinaria alpina 6.5 1.3 5 500 0.63 713.14 0.71 3.57

13T4 Poacae Arundinaria alpina 7 1.3 6.6 660 0.63 1080.63 1.08 5.40

13T5 Poacae Arundinaria alpina 7.5 1.3 8.2 820 0.63 1528.18 1.53 7.64

13T6 Poacae Arundinaria alpina 8 1.3 10 1000 0.63 2103.79 2.10 10.52

13T7 Boraginaceae Ehretia cymosa 17.4 1.3 10 1000 0.56 8546.70 8.55 42.73

13T8 Fabaceae Albizia grandbracteata 50 1.3 16.5 1650 0.534 104411.69 104.41 522.06

AGB= 119808.39 119.81 599.04

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB (kg) AGB (kg/ha)

19T1 Rutaceae Vepris dainellii 23 1.3 10.5 1050 0.7 19213.40 19.21 96.07

19T2 Asteracceae Vernonia amygdalina 14 1.3 9 900 0.413 3747.70 3.75 18.74

19T3 Asteracceae Vernonia amygdalina 25 1.3 9 900 0.413 11622.56 11.62 58.11

19T4 Euphorbiaceae Sapium ellipticum 43 1.3 13 1300 0.576 66363.08 66.36 331.82

19T5 Poacae Arundinaria alpina 6 1.3 9 900 0.63 1082.59 1.08 5.41

19T6 Euphorbiaceae Sapium ellipticum 16.2 1.3 7 700 0.576 5394.81 5.39 26.97

19T7 Poacae Arundinaria alpina 7 1.3 6 600 0.63 984.64 0.98 4.92

19T8 Myrtaceae Syzygium guineense 24 1.3 8.5 850 0.712 17271.13 17.27 86.36

AGB= 125679.92 125.68 628.40

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB(kg) AGB(kg/ha)

3T1 Fabaceae Albizia schimperiana 33 1.3 16 1600 0.53 44696.00 44.70 223.48

3T2 Rutaceae Vepris dainellii 16.6 1.3 11 1100 0.7 10638.51 10.64 53.19

3T3 Rosaceae Hagenia abyssinica 20 1.3 12 1200 0.5905 14112.93 14.11 70.56

3T4 Fabaceae Millettia ferruginea 11 1.3 6 600 0.738 2776.59 2.78 13.88

3T5 Fabaceae Albizia grandibracteata 13 1.3 8 800 0.534 3714.74 3.71 18.57

3T6 Rubiaceae Rothmannia urcelliformis 13 1.3 10 1000 0.642 5528.24 5.53 27.64

3T7 Rubiaceae Rothmannia urcelliformis 9 1.3 5 500 0.642 1371.02 1.37 6.86

3T8 Fabaceae Millettia ferruginea 32.1 1.3 12 1200 0.738 44179.09 44.18 220.90

AGB= 127017.13 127.02 635.09

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB(kg) AGB (kg/ha)

4T1 Euphorbiaceae Sapium ellipticum 24.7 1.3 10 1000 0.576 17407.32 17.41 87.04

4T2 Fabaceae Millettia ferruginea 29.9 1.3 12 1200 0.738 38461.76 38.46 192.31

4T3 Fabaceae Millettia ferruginea 29.9 1.3 11 1100 0.738 35330.31 35.33 176.65

4T4 Euphorbiaceae Sapium ellipticum 16.9 1.3 8 800 0.576 6674.80 6.67 33.37

4T5 Euphorbiaceae Sapium ellipticum 18.8 1.3 5 500 0.576 5194.43 5.19 25.97

4T6 Fabaceae Millettia ferruginea 11 1.3 6 600 0.738 2776.59 2.78 13.88

4T7 Boraginaceae Ehretia cymosa 14 1.3 8 800 0.56 4496.81 4.50 22.48

4T8 Fabaceae Millettia ferruginea 31 1.3 10 1000 0.738 34544.28 34.54 172.72

4T9 Fabaceae Millettia ferruginea 24.6 1.3 9 900 0.738 19846.51 19.85 99.23

4T10 Fabaceae Millettia ferruginea 28 1.3 9 900 0.738 25552.37 25.55 127.76

AGB= 134416.1 190.29 672.08
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Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB(kg) AGB (kg/ha)

6T1 Araliaceae Polyscias fulva 11.4 1.3 6 600 0.44 1797.13 1.80 8.99

6T2 Euphorbiaceae Sapium ellipticum 34 2.9 12 1200 0.576 38807.45 38.81 194.04

6T3 Rubiaceae Rothmannia urcelliformis 13.5 1.3 7 700 0.642 4201.42 4.20 21.01

6T4 Euphorbiaceae Croton  macrostachyus 29 1.3 14 1400 0.518 29814.17 29.81 149.07

6T5 Myrsinaceae Maesa lanceolata 20 1.3 8 800 0.676 10841.00 10.84 54.21

6T6 Myrsinaceae Maesa lanceolata 18.4 1.3 8 800 0.676 9212.62 9.21 46.06

6T7 Boraginaceae Cordia africana 18.9 1.3 10 1000 0.482 8676.06 8.68 43.38

6T8 Flacourtiaceae Oncoba spinosa 11.9 1.3 6 600 0.647 2847.09 2.85 14.24

6T9 Rosaceae Hagenia abyssinica 32 1.3 12 1200 0.5905 35323.14 35.32 176.62

AGB= 141520.09 141.52 707.6004

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB(kg) AGB (kg/ha)

9T1 Anacardiaceae Rhus ruspolii 12.5 1.3 6 600 0.62 3006.31 3.01 15.03

9T2 Myrsinaceae Maesa lanceolata 15 1.3 6 600 0.676 4669.27 4.67 23.35

9T3 Rosaceae Hagenia abyssinica 46 1.3 13 1300 0.5905 77559.98 77.56 387.80

9T4 Euphorbiaceae Croton macrostachyus 16.2 1.3 8 800 0.518 5541.02 5.54 27.71

9T5 Rosaceae Hagenia abyssinica 46 1.3 14 1400 0.5905 83377.71 83.38 416.89

9T6 Anacardiaceae Rhus ruspolii 12.6 1.3 5.5 550 0.62 2804.83 2.80 14.02

AGB= 176959.11 176.96 884.80

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB (kg) AGB (kg/ha)

12T1 Boraginaceae Ehretia cymosa 14.1 1.3 10 1000 0.56 5669.21 5.67 28.35

12T2 Boraginaceae Ehretia cymosa 14.3 1.3 9 900 0.56 5257.79 5.26 26.29

12T3 Rosaceae Hagenia abyssinica 29 1.3 12 1200 0.5905 29147.91 29.15 145.74

12T4 Rosaceae Hagenia abyssinica 32 1.3 13 1300 1.5905 100455.43 100.46 502.28

12T5 Euphorbiaceae Croton macrostachyus 14.6 1.3 8 800 0.518 4523.07 4.52 22.62

12T6 Boraginaceae Ehretia cymosa 12.6 1.3 9 900 0.56 4106.87 4.11 20.53

12T7 Anacardiaceae Rhus ruspolii 22.2 1.3 9 900 0.62 13702.85 13.70 68.51

12T8 Euphorbiaceae Croton macrostachyus 14.8 1.3 9.5 950 0.518 5493.01 5.49 27.47

12T9 Oleaceae Chionanthusmildbraedii 27 1.3 10.2 1020 0.705 25719.56 25.72 128.60

12T10 Myrsinaceae Maesa lanceolata 12.5 1.3 7 700 0.676 3802.13 3.80 19.01

AGB= 197877.82 197.88 989.39

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)Wood D. (g/cm3)AGB (g) AGB (kg) AGB (kg/ha)

1T1 Rosaceae Hagenia abyssinica 36 1.3 10 1000 0.5905 37207.30 37.21 186.04

1T2 Poacae Arundinaria alpina 7 1.3 5 500 0.63 824.13 0.82 4.12

1T3 Poacae Arundinaria alpina 7 1.3 5.5 550 0.63 904.48 0.90 4.52

1T4 Euphorbiaceae Croton macrostachyus 54 1.3 17 1700 0.518 121269.52 121.27 606.35

1T5 Poacae Arundinaria alpina 6.5 1.3 8.5 850 0.63 1196.99 1.20 5.98

1T6 Poacae Arundinaria alpina 6 1.3 7 700 0.63 847.11 0.85 4.24

1T7 Poacae Arundinaria alpina 6 1.3 8 800 0.63 965.02 0.97 4.83

1T8 Poacae Arundinaria alpina 5 1.3 5 500 0.63 427.32 0.43 2.14

1T9 Poacae Arundinaria alpina 5 1.3 7 700 0.63 593.44 0.59 2.97

1T10 Poacae Arundinaria alpina 9 1.3 8 800 0.63 2129.46 2.13 10.65

1T11 Poacae Arundinaria alpina 8 1.3 6 600 0.63 1277.85 1.28 6.39

1T12 Poacae Arundinaria alpina 7 1.3 8 800 0.63 1303.82 1.30 6.52

1T13 Poacae Arundinaria alpina 7.5 1.3 6 600 0.63 1126.59 1.13 5.63

1T14 Fabaceae Albizia grandibracteata 20 1.3 14 1400 0.534 14870.54 14.87 74.35

1T15 Rubiaceae Rothmannia urcelliformis 12.1 1.3 9 900 0.642 4336.18 4.34 21.68

1T16 Boraginaceae Cordia africana 27 1.6 13 1300 0.482 22485.36 22.49 112.43

AGB= 211765.1 211.77 1058.83
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Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB (kg) AGB (kg/ha)

15T1 Boraginaceae Ehretia cymosa 30 1.3 10.3 1030 0.56 25475.13 25.48 127.38

15T2 Fabaceae Albizia schimperiana 27.6 1.3 9.8 980 0.53 19543.37 19.54 97.72

15T3 Fabaceae Albizia schimperiana 27.9 1.3 11 1100 0.53 22342.25 22.34 111.71

15T4 Boraginaceae Ehretia cymosa 21.6 1.3 9.5 950 0.56 12398.20 12.40 61.99

15T5 Boraginaceae Cordia africana 56 1.5 16 1600 0.482 114380.79 114.38 571.90

15T6 Euphorbiaceae Sapium ellipticum 29 1.3 8 800 0.576 19151.56 19.15 95.76

15T7 Moraceae Trilepisium madagascariense 19.7 1.3 8 800 0.499 7826.64 7.83 39.13

15T8 Euphorbiaceae Sapium ellipticum 10 1.3 5.5 550 0.576 1662.58 1.66 8.31

AGB= 222780.5 222.781 1113.903

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB (kg) AGB (kg/ha)

18T1 Euphorbiaceae Sapium ellipticum 32 1.7 12 1200 0.576 34476.33 34.48 172.38

18T2 Euphorbiaceae Sapium ellipticum 43 2.1 14.5 1450 0.576 73826.62 73.83 369.13

18T3 Melianthaceae Bersama abyssinica 36 1.3 12.5 1250 0.671 52406.23 52.41 262.03

18T4 Fabaceae Millettia ferruginea 21 1.7 14 1400 0.738 22430.09 22.43 112.15

18T5 Meliaceae Trichilia dregeana 40 1.3 13 1300 0.482 48428.25 48.43 242.14

AGB= 231567.53 231.57 1157.84

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB (kg) AGB (kg/ha)

20T1 Balanitaceae   Balanites aegyptica 9 1.3 5 500 0.6839 1458.29 1.46 7.29

20T2 Balanitaceae   Balanites aegyptica 30 1.3 9 900 0.6839 27142.46 27.14 135.71

20T3 Euphorbiaceae Bridelia grandis 14 1.3 6.5 650 0.523 3434.93 3.43 17.17

20T4 Euphorbiaceae Bridelia grandis 14 1.3 8 800 0.523 4206.59 4.21 21.03

20T5 Moraceae Ficus  elastica 36 1.3 11.7 1170 0.6071 44558.33 44.56 222.79

20T6 Ulmaceae Celtis zenkeri 9 1.3 7 700 0.59 1753.33 1.75 8.77

20T7 Araliaceae Schefflera abyssinica 16 1.3 8 800 0.4052 4255.58 4.26 21.28

20T8 Araliaceae Schefflera abyssinica 16 1.3 8 800 0.4052 4255.58 4.26 21.28

20T9 Meliaceae Trichilia dregeana 28 1.3 9 900 0.482 16860.18 16.86 84.30

20T10 Anacardiaceae Rhus ruspolii 19 1.3 9 900 0.62 10112.47 10.11 50.56

20T11 Euphorbiaceae Croton macrostachyus 51 1.3 13 1300 0.518 83480.80 83.48 417.40

20T12 Araliaceae Schefflera abyssinica 21 1.3 8.5 850 0.4052 7676.89 7.68 38.38

20T13 Euphorbiaceae Croton macrostachyus 30.7 1.3 11 1100 0.518 26332.63 26.33 131.66
AGB= 235528.06 235.53 1177.64

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB(kg) AGB (kg/ha)

5T1 Fabaceae Millettia ferruginea 17.3 1.3 9 900 0.738 9982.62 9.98 49.91

5T2 Fabaceae Acacia abyssinica 41 1.3 14 1400 0.826 92419.29 92.42 462.10

5T3 Flacourtiaceae Oncoba spinosa 32 1.3 14 1400 0.647 44888.11 44.89 224.44

5T4 Rubiaceae Rothmannia urcelliformis 14.5 1.3 7 700 0.642 4830.31 4.83 24.15

5T5 Fabaceae Millettia ferruginea 18 1.4 9 900 0.738 10786.26 10.79 53.93

5T6 Fabaceae Millettia ferruginea 9 1.4 7 700 0.738 2181.40 2.18 10.91

5T7 Moraceae Trilepisium madagascariense 21 1.3 8 800 0.499 8866.44 8.87 44.33

5T8 Euphorbiaceae Sapium ellipticum 26 4 16 1600 0.576 30439.43 30.44 152.20

5T9 Boraginaceae Cordia africana 30.1 1.3 13 1300 0.482 27799.66 27.80 139.00

5T10 Melianthaceae Bersama abyssinica 15 1.3 8 800 0.671 6138.22 6.14 30.69

5T11 Fabaceae Albizia  schimperiana 19.1 1.3 9 900 0.53 8766.50 8.77 43.83

AGB= 247098.24 247.10 1235.49
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Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB(kg) AGB(kg/ha)

2T1 Boraginaceae Cordia africana 37.6 1.6 13 1300 0.482 42918.48 42.92 214.59

2T2 Fabaceae Albizia grandibracteata 17.1 1.3 9 900 0.534 7116.14 7.12 35.58

2T3 Balanitaceae   Balanites aegyptica 22 1.3 9 900 0.6839 14815.54 14.82 74.08

2T4 Balanitaceae   Balanites aegyptica 16 1.3 9 900 0.6839 7957.03 7.96 39.79

2T5 Balanitaceae   Balanites aegyptica 28 1.3 13 1300 0.6839 33964.80 33.96 169.82

2T6 Fabaceae Jacaranda mimosifolia mimosifolia 32 1.3 15 1500 0.4933 36847.61 36.85 184.24

2T7 Fabaceae Albizia schimperiana 22.3 1.3 9.5 950 0.53 12504.25 12.50 62.52

2T8 Fabaceae Albizia schimperiana 20 1.3 7.8 780 0.53 8340.71 8.34 41.70

2T9 Rosaceae Hagenia abyssinica 26 1.3 8.3 830 0.5905 16435.16 16.44 82.18

2T10 Euphorbiaceae Croton macrostachyus 38 1.3 16 1600 0.56 62116.25 62.12 310.58

2T11 Asteraceae Vernonia amygdalina 13 1.3 7 700 0.413 2537.55 2.54 12.69

2T12 Fabaceae Albizia schimperiana 29 1.3 13 1300 0.53 28360.76 28.36 141.80

AGB= 273914.29 273.91 1369.57

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB (kg) AGB (kg/ha)

11T1 Fabaceae Albizia schimperiana 12.8 1.3 7.5 750 0.534 3383.99 3.38 16.92

11T2 Euphorbiaceae Croton macrostachyus 48 1.3 14 1400 0.518 79726.88 79.73 398.63

11T3 Meliaceae Trichilia dregeana 11.8 1.5 5 500 0.482 1758.64 1.76 8.79

11T4 Meliaceae Trichilia dregeana 15 1.5 6 600 0.482 3356.41 3.36 16.78

11T5 Meliaceae Trichilia dregeana 11.8 1.5 7 700 0.482 2442.30 2.44 12.21

11T6 Fabaceae Albizia schimperiana 17 1.3 7 700 0.466 4819.61 4.82 24.10

11T7 Fabaceae Albizia schimperiana 46 1.3 16.5 1650 0.534 88728.46 88.73 443.64

11T8 Anacardiaceae Rhus ruspolii 22.2 1.3 9 900 0.62 13702.85 13.70 68.51

11T9 Fabaceae Albizia schimperiana 14 1.3 5.6 560 0.534 3030.88 3.03 15.15

11T10 Fabaceae Albizia schimperiana 16 1.3 7 700 0.534 4890.50 4.89 24.45

11T11 Fabaceae Albizia schimperiana 21 1.3 6.5 650 0.534 7735.19 7.74 38.68

11T12 Euphorbiaceae Croton macrostachyus 24.2 1.3 11.5 1150 0.518 17284.21 17.28 86.42

11T13 Euphorbiaceae Croton macrostachyus 38 1.3 12.5 1250 0.518 45240.01 45.24 226.20

AGB= 276099.92 276.10 1380.50

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB (kg) AGB (kg/ha)

14T1 Fabaceae Albizia grandbracteata 19.4 1.3 10 1000 0.534 10089.84 10.09 50.45

14T2 Moraceae Ficus sur 53.7 2 17 1700 0.441 102521.53 102.52 512.61

14T3 Euphorbiaceae Croton  macrostachyus 29 1.3 11.5 1150 0.518 24606.11 24.61 123.03

14T4 Moraceae Ficus sycomorus 16.3 1.3 10 1000 0.422 5708.35 5.71 28.54

14T5 Moraceae Ficus sycomorus 70.2 2.7 17.5 1750 0.422 170441.44 170.44 852.21

14T6 Meliaceae Trichilia dregeana 11.8 1.5 10 1000 0.482 3459.26 3.46 17.30

14T7 Myrsinaceae Maesa lanceolata 17.7 1.3 8 800 0.676 8540.88 8.54 42.70

AGB= 325367.40 325.37 1626.84

Tcode Family Genus Species dbh (cm) POM Height (m) Height (cm)WD(g/cm3)AGB (g) AGB (kg) AGB (kg/ha)

17T1 Fabaceae Albizia grandbracteata 22 1.3 13 1300 0.534 16661.46 16.66 83.31

17T2 Fabaceae Albizia grandbracteata 31 1.3 10 1000 0.534 25190.30 25.19 125.95

17T4 Fabaceae Albizia grandibracteata 62 1.3 13.8 1380 0.534 133464.54 133.46 667.32

17T5 Euphorbiaceae Sapium ellipticum 39 1.3 15 1500 0.576 63068.22 63.07 315.34

17T6 Ulmaceae Celtis zenkeri 21 1.3 6.9 690 0.59 9037.65 9.04 45.19

17T7 Boraginaceae Cordia africana 55 1.3 13 1300 0.482 90170.74 90.17 450.85

17T8 Boraginaceae Ehretia cymosa 13 1.3 6 600 0.56 2938.59 2.94 14.69

17T9 Pinaceae Pinus patula 7 1.3 10 1000 0.46 1192.61 1.19 5.96

AGB= 341724.12 341.72 1708.62
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Table 20: Plot level Field AGC stock Estimations 

 

ANNEX 3 Satellite variables extracted for field plots  

Table 21: Satellite variables used as input in regression analysis 

 

plot# AGB (kg/ha) AGB (t/ha) AGC (kg C/ha) AGC (t C/ha) 

P01 418.77 0.419 196.82 0.19682 

P02 499.29 0.499 234.67 0.23467 

P03 501.85 0.502 235.87 0.23587 

P04 553 0.553 259.91 0.25991 

P05 599.04 0.599 281.55 0.28155 

P06 628.4 0.628 295.35 0.29535 

P07 635.09 0.635 298.49 0.29849 

P08 672.08 0.672 315.88 0.31588 

P09 707.6 0.708 332.57 0.33257 

P10 884.8 0.885 415.85 0.41585 

P11 989.39 0.989 465.01 0.46501 

P12 1058.83 1.059 497.65 0.49765 

P13 1113.9 1.114 523.53 0.52353 

P14 1157.84 1.158 544.18 0.54418 

P15 1177.64 1.178 553.49 0.55349 

P16 1235.49 1.235 580.68 0.58068 

P17 1369.57 1.37 643.7 0.6437 

P18 1380.5 1.38 648.83 0.64883 

P19 1626.84 1.627 764.61 0.76461 

P20 1708.62 1.709 803.05 0.80305 

 

Plot_codeX Y AGB_t/haAGC t/ha NDVI2019NDWI2019EVI2019 SAVI2019glcm_Savgglcm_ent glcm_corrglcm_var

P01 306599.8 615666.8 0.418768 0.196821 0.634467 -0.58128 0.396522 0.967568 8.676649 3.593232 0.298767 4.500644

P02 307005.3 614971.9 0.499289 0.234666 0.685393 -0.6063 0.418022 1.04161 9.876302 3.656427 0.609881 26.34131

P03 305982.3 615861.5 0.501849 0.235869 0.694826 -0.61183 0.428575 0.984855 35.93576 3.823574 0.548068 9.499192

P04 307887.1 611808.1 0.552995 0.259908 0.670825 -0.61364 0.430671 0.997253 19.01302 3.867884 0.372703 51.27409

P05 307921.6 613947.1 0.599042 0.28155 0.700069 -0.61665 0.48115 1.027855 19.75174 3.8953 0.407235 4.361611

P06 308270.3 614903.4 0.6284 0.295348 0.704413 -0.61938 0.484949 1.040914 24.41623 4.071869 0.45252 166.3799

P07 305103.4 615118 0.635086 0.29849 0.706064 -0.62292 0.518671 0.977059 14.03863 4.093315 0.482964 95.42049

P08 305647.1 614762.3 0.672081 0.315878 0.715167 -0.60636 0.522961 1.057543 20.20703 4.136587 0.483626 7.248757

P09 306174.7 615089.9 0.7076 0.332572 0.726479 -0.58469 0.522969 1.101702 45.10677 4.30908 0.601451 43.54327

P10 307219.6 615670.7 0.884796 0.415854 0.728201 -0.60293 0.528283 1.083552 31.92969 4.378065 0.623402 67.38863

P11 307292.9 613924 0.989389 0.465013 0.732612 -0.5984 0.535313 1.062029 29.97656 4.390553 0.652754 19.44257

P12 304696.3 615503.6 1.058826 0.497648 0.73569 -0.581 0.552077 1.059739 25.61241 4.398037 0.660918 5.972337

P13 307108.8 613109.9 1.113903 0.523534 0.740816 -0.57978 0.558535 1.09087 10.78733 4.4119 0.662947 31.81863

P14 308618.2 614239.8 1.157838 0.544184 0.745993 -0.57631 0.559857 1.091379 21.66753 4.431054 0.665695 48.93126

P15 308801.8 616074 1.17764 0.553491 0.747061 -0.53577 0.572397 1.092892 16.55208 4.587198 0.694453 8.293212

P16 306018 614199.7 1.235491 0.580681 0.748242 -0.54451 0.572771 1.098487 12.38194 4.617275 0.706753 13.04612

P17 304695.7 614255.1 1.369571 0.643699 0.74885 -0.58128 0.574674 1.099474 13.28733 4.771993 0.72302 9.259674

P18 306667.4 614275.9 1.3805 0.648835 0.753209 -0.60524 0.575468 1.101347 37.70009 4.640176 0.538301 11.29342

P19 307705.2 613748.8 1.626837 0.764613 0.757274 -0.52102 0.577895 1.069981 42.42101 4.037561 0.667916 30.72315

P20 306701.8 611067 1.708621 0.803052 0.779586 -0.5285 0.579264 1.109129 63.7704 4.694063 0.378275 5.053087
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ANNEX 4 Summary of AGC and Satellite derivatives regression analysis 

Table 22: AGC and NDVI regression analysis 

 

NDVI SUMMARY OUTPUT

Regression Statistics

Multiple R 0.900271972

R Square 0.81048962

Adjusted R Square 0.799961269

Standard Error 0.082425683

Observations 20

ANOVA

df SS MS F Significance F

Regression 1 0.523012517 0.523013 76.98161 6.42166E-08

Residual 18 0.122291879 0.006794

Total 19 0.645304397

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%

Intercept -3.055745918 0.399372921 -7.65136 4.6E-07 -3.894797291 -2.216695 -3.89479729 -2.21669455

X Variable 1 4.842993538 0.551976267 8.773916 6.42E-08 3.683334433 6.002653 3.683334433 6.002652643

EVI SUMMARY OUTPUT

Regression Statistics

Multiple R 0.872761807

R Square 0.76171317

Adjusted R Square 0.748475014

Standard Error 0.092426409

Observations 20

ANOVA

df SS MS F Significance F

Regression 1 0.491536858 0.491537 57.53922 5.18453E-07

Residual 18 0.153767538 0.008543

Total 19 0.645304397

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%

Intercept -0.956364667 0.185841586 -5.14613 6.77E-05 -1.34680335 -0.565926 -1.34680335 -0.56592598

X Variable 1 2.6964617 0.355477641 7.585461 5.18E-07 1.94963089 3.443293 1.94963089 3.443292511
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Table 23: AGC and SAVI and NDWI regression analysis 

 

NDWI SUMMARY OUTPUT

Regression Statistics

Multiple R 0.759713085

R Square 0.57716397

Adjusted R Square 0.553673081

Standard Error 0.123120977

Observations 20

ANOVA

df SS MS F Significance F

Regression 1 0.372446448 0.372446 24.56969 0.000101953

Residual 18 0.272857948 0.015159

Total 19 0.645304397

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%

Intercept 3.076052909 0.531595589 5.786453 1.75E-05 1.95921202 4.192894 1.95921202 4.192893798

X Variable 1 4.491398363 0.906111641 4.956783 0.000102 2.587728446 6.395068 2.587728446 6.39506828

SAVI SUMMARY OUTPUT

Regression Statistics

Multiple R 0.758804424

R Square 0.57578415

Adjusted R Square 0.552216607

Standard Error 0.1233217

Observations 20

ANOVA

df SS MS F Significance F

Regression 1 0.371556046 0.371556 24.43123 0.000105094

Residual 18 0.27374835 0.015208

Total 19 0.645304397

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%

Intercept -2.810778106 0.659184727 -4.26402 0.000467 -4.195673828 -1.425882 -4.19567383 -1.42588238

X Variable 1 3.077595317 0.622642626 4.942796 0.000105 1.769471701 4.385719 1.769471701 4.385718932



 

110 
 

Table 24: Results of GLCM Sum-Average texture and AGC regression analysis 

 

Table 25: Results of GLCM Entropy texture and AGC regression analysis 

 

'SUM AVERAGE'' SUMMARY OUTPUT

Regression Statistics

Multiple R 0.452161278

R Square 0.204449821

Adjusted R Square 0.160252589

Standard Error 0.168880633

Observations 20

ANOVA

df SS MS F Significance F

Regression 1 0.131932369 0.131932 4.625851 0.045327071

Residual 18 0.513372028 0.028521

Total 19 0.645304397

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0.29727781 0.078210907 3.800976 0.001309 0.132962791 0.461593 0.132962791 0.461592828

X Variable 1 0.005855889 0.002722683 2.150779 0.045327 0.000135745 0.011576 0.000135745 0.011576033

ENTROPY SUMMARY OUTPUT

Regression Statistics

Multiple R 0.782385674

R Square 0.612127344

Adjusted R Square 0.590578863

Standard Error 0.117920861

Observations 20

ANOVA

df SS MS F Significance F

Regression 1 0.395008466 0.395008 28.40698 4.57259E-05

Residual 18 0.250295931 0.013905

Total 19 0.645304397

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -1.297287944 0.327878459 -3.95661 0.000925 -1.986135025 -0.608441 -1.98613503 -0.60844086

X Variable 1 0.410794219 0.077074686 5.32982 4.57E-05 0.248866313 0.572722 0.248866313 0.572722125
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Table 26: Results of GLCM correlation texture and AGC regression analysis 

 

Table 27: Results of GLCM Variance texture and AGC regression analysis 

 

ANNEX 5 Regression Analysis Equations for Predictive Model Development 

5.1 Correlation between NDVI and Aboveground Carbon Stock of Plot Stands 

 

CORRELATION TEXTURE SUMMARY OUTPUT

Regression Statistics

Multiple R 0.457847705

R Square 0.209624521

Adjusted R Square 0.165714772

Standard Error 0.16833049

Observations 20

ANOVA

df SS MS F Significance F

Regression 1 0.135271625 0.135272 4.773986 0.042358986

Residual 18 0.510032772 0.028335

Total 19 0.645304397

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0.07372865 0.173856056 0.424079 0.676533 -0.291529369 0.438987 -0.29152937 0.438986668

X Variable 1 0.660377672 0.302239913 2.184945 0.042359 0.025395176 1.29536 0.025395176 1.295360167

GLCM VARIANCE SUMMARY OUTPUT

Regression Statistics

Multiple R 0.277570303

R Square 0.077045273

Adjusted R Square 0.025770011

Standard Error 0.181901491

Observations 20

ANOVA

df SS MS F Significance F

Regression 1 0.049717653 0.049718 1.502582 0.236071143

Residual 18 0.595586743 0.033088

Total 19 0.645304397

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0.486909484 0.05335341 9.126117 3.58E-08 0.374818129 0.599001 0.374818129 0.599000839

X Variable 1 -0.00128296 0.001046632 -1.2258 0.236071 -0.003481853 0.000916 -0.00348185 0.000915933
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5.2 Correlation between EVI and Aboveground Carbon Stock of Plot Stands 

 

5.3 Correlation between SAVI and Aboveground Carbon Stock of Plot Stands 

 

5.4 Correlation between NDWI and Aboveground Carbon Stock of Plot Stands 
 

  

            
            
5.5 Correlation between GLCM Sum-Average and Aboveground Carbon Stock of Plot Stands 

 

R² = 0.5772

y = 4.4914x + 3.0761
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5.6 Correlation between Sentinel-1 Entropy and Aboveground Carbon Stock of Plots 

 

 

 

 

 

 

 
 

5.7 Correlation between Sentinel-1 backscatters and Aboveground Carbon Stock of Plots 

 

 

 

 

  

     

 

 

 

 

  

ANNEX 6 Sentinel-1 GRD products spatial resolution 

Table 28: Modes and Spatial resolution of Sentinel-1 GRD Products 

Full resolution Level-1 GRD 

Mode Resolution 

range x azimuth 

Pixel spacing 

rg x az 

Number of 

looks 

ENL 

SM 9x9 m 3.5x3.5 m 2x2 3.7 

High resolution Level-1 GRD 

Mode Resolution 

range x azimuth 

Pixel spacing 

rg x az 

Number of 

looks 

ENL 

SM 23x23 m 10x10 m 6x6 29.7 

IW 20x22 m 10x10 m 5x1 4.4 

EW 50x50 m 25x25 m 3x1 2.7 

Medium resolution Level-1 GRD 

Mode Resolution 

rg x az 

Pixel spacing 

rg x az 

Number of 

looks 

ENL 

SM 84x84 m 40x40 m 22x22 398.4 

IW 88x87 m 40x40 m 22x5 81.8 

EW 93x87 m 40x40 m 6x2 10.7 

WV 52x51 m 25x25 m 13x13 123.7 

 

R² = 0.6121
y = 0.4108x - 1.2973
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ANNEX 7 Sentinel-2 Spatial Resolution Spectral Bands 

A. 10m Spatial Resolution Bands 

B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm) 

 

Figure 36: Sentinel-2 10m spatial resolution bands 

B. 20m spatial resolution bands 

B5 (705nm), B6 (740nm), B7 (783nm), B8a (865nm), B11 (1610nm) and B12 

(2190nm) 

 

Figure 37: Sentinel-2 20m spatial resolution bands  

 

C. 60m spatial resolution bands 

B1 (443 nm), B9 (940 nm) and B10 (1375 nm) 
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Figure 38: Sentinel-2 60m spatial resolution bands 

 

ANNEX 8 Prototype Modules Codes 
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

///  

JavaScript Codes for Sentinel-1, Sentinel-2 and ALOS DEM Data Processing and  

Model Input Variable Derivation // 

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/// 

Annex 8. 1 Developed JavaScript Codes 

------------------------------------ ---------------------------------- 

//call DefineStudyArea code 

var studyArea = require('users/oytisa/FinalThesisMSc:DefineStudyArea'); 

var aoi = var studyArea; 

// Expression to create cloudless Sentinel-2. 

function maskS2clouds(image) { 

  var qa = image.select('QA60'); 

var mask = qa.bitwiseAnd(cloudBitMask).eq(0) 

    .and(qa.bitwiseAnd(cirrusBitMask).eq(0)); 

 return image.updateMask(mask); 

} 

//------------ create year list variables --------- 

var year_list = ['2016','2017','2018','2019', '2020']; 

var month_list = ['01','02','03','04', 

                  '05','06','07','08', 

                  '09','10','11','12','year_median'] 

var collection20 = ee.ImageCollection('COPERNICUS/S2') .. 

  .filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE"))  

  .filterDate('2020-01-01' ,'2020-12-31')  

  .sort('system:time_start', true) 

    ); 

var median20 = merged20.reduce(ee.Reducer.median()).clip(aoi);   

var visParams = {bands: ['B04_median', 

                         'B03_median', 

                         'B02_median'],  

                         min: 300, max: 3700, 

                         gamma: [1.5, 1.5, 1.5] 

                         };  

Map.addLayer(median20, visParams, 's2cloud_masked')  
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print(median20) 

//Create geometry object encompassing area of interest 

var geometry = ee.FeatureCollection("users/oytisa/shiwshiwe_bound") 

Map.centerObject(geometry,11) 

//******************O3+B*********************** 

//CONSTANTS 

//------------------------------------------------------------------- 

var clipgeometry = geometry 

//------------------------------------------------------------------- 

     ////*********Sentinel-2 EVI function******//// 

// Add an EVI function for the Sentinel-2 (s2) collections. 

function addEVI(s2){ 

return s2.addBands(s2.expression( 

‘2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))’, 

{ 

‘NIR’: s2.select(‘B8’), 

‘RED’: s2.select(‘B4’), 

‘BLUE’: s2.select(‘B2’) 

}).rename(‘S2EVI’)).float() 

.clip(geometry); 

}; 

var S2_EVI = ee.ImageCollection(s2.select("S2EVI")) 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

// calculate vegetation indices 

var oytS2md = median20.clip(aoi); 

var ndwi_s2 = oytS2md.expression( 

    '(green-mir)/(green+mir+0.0000001)', { 

      'green': oytS2md.select('B03_median'), 

      'mir': oytS2md.select('B08_median'), 

}); 

//print(mndwi_l8,'NDWI S2'); 

Map.addLayer(mndwi_s2,{},'MNDWI_S2'); 

var thresholds2 = mndwi_s2.gte(0.6); 

Map.addLayer(thresholds2.clip(aoi),{},'Threshold_s2'); 

 

var evi =oytS2md.expression( 

    '2.5 * ((NIR-RED) / (NIR +6 * RED -7.5* BLUE))', { 

      'NIR':oytS2md.select('B08_median'), 

      'RED':oytS2md.select('B04_median'), 

      'BLUE':oytS2md.select('B02_median') 

    }); 

var palette = [ 

  'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', 

  '74A901', '66A000', '529400', '3E8601', '207401', '056201', 

  '004C00', '023B01', '012E01', '011D01', '011301']; 

print(evi); 

Map.addLayer(evi,{min: -1, max: 1, palette: palette},'S2 evi') 

var s1 = ee.ImageCollection('COPERNICUS/S1_GRD'); 

var s2 = ee.ImageCollection('COPERNICUS/S2'); 

var alos = ee.Image('JAXA/ALOS/AW3D30_V1_1'); 

var oytAOI = ee.FeatureCollection('users/oytisa/shiwshiwe_bound'); 

var s1 = s1.filterBounds(oytAOI) 

          .filterDate("2016-01-01", "2016-12-31") 
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          .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')) 

          .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 

          .filter(ee.Filter.eq('instrumentMode', 'IW')) 

          .median()  

var collection = ee.ImageCollection('COPERNICUS/S1_GRD') 

          .filter(ee.Filter.eq('instrumentMode', 'IW')) 

          .filter(ee.Filter.eq('resolution', 'H')) 

          .filter(ee.Filter.eq('resolution_meters', 10)) 

          .filter(ee.Filter.eq('relativeOrbitNumber_start', 152)) 

          .filter(ee.Filter.date('2016-01-01', '2016-12-31')) 

          .filterBounds(oytAOI) 

          .map(function(image) { 

          var maskedImage = image.mask().and(edge.not()); 

          return image.updateMask(maskedImage); 

          }); 

          // Remove ugly edges  

function maskEdge(img) { 

  var mask = img.select(1).unitScale(-30, -

5).multiply(255).toByte().connectedComponents(ee.Kernel.rectangle(1,1), 100); 

  return img.updateMask(mask.select(1));   

} 

 

var collectionVH = collection.map(maskEdge); 

 

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// Convert sigma naught to gamma naught 

function toGamma0(image) { 

  return 

image.select(1).subtract(image.select('angle').multiply(Math.PI/180.0).cos().log10().multiply(10.0)); 

} 

 

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// Functions to convert from/to dB 

function toNatural(img) { 

  return ee.Image(10.0).pow(img.select(0).divide(10.0)); 

} 

 

function toDB(img) { 

  return ee.Image(img).log10().multiply(10.0); 

} 

// The Refined Lee speckle filter 

function RefinedLee(img) { 

  // img must be in natural units, i.e. not in dB! 

  var weights3 = ee.List.repeat(ee.List.repeat(1,3),3); 

  var kernel3 = ee.Kernel.fixed(3,3, weights3, 1, 1, false); 

  var mean3 = img.reduceNeighborhood(ee.Reducer.mean(), kernel3); 

  var variance3 = img.reduceNeighborhood(ee.Reducer.variance(), kernel3); 

 

  // Use a sample of the 3x3 windows inside a 7x7 windows to determine gradients and directions 

  var sample_weights = ee.List([[0,0,0,0,0,0,0], [0,1,0,1,0,1,0],[0,0,0,0,0,0,0], [0,1,0,1,0,1,0], 

[0,0,0,0,0,0,0], [0,1,0,1,0,1,0],[0,0,0,0,0,0,0]]); 

 

  var sample_kernel = ee.Kernel.fixed(7,7, sample_weights, 3,3, false); 
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  var gradients = sample_mean.select(1).subtract(sample_mean.select(7)).abs(); 

  // Create a mask for band pixels that are the maximum gradient 

  var gradmask = gradients.eq(max_gradient); 

 

  // duplicate gradmask bands: each gradient represents 2 directions 

  gradmask = gradmask.addBands(gradmask); 

 

  // Determine the 8 directions 

  var directions = 

sample_mean.select(1).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_m

ean.select(7))).multiply(1); 

  directions = 

directions.addBands(sample_mean.select(6).subtract(sample_mean.select(4)).gt(sample_mean.select(

4).subtract(sample_mean.select(2)).multiply(2)); 

  directions = 

directions.addBands(sample_mean.select(3).subtract(sample_mean.select(4)).gt(sample_mean.select(

4).subtract(sample_mean.select(5)).multiply(3)); 

  directions = 

directions.addBands(sample_mean.select(0).subtract(sample_mean.select(4)).gt(sample_mean.select(

4).subtract(sample_mean.select(8).multiply(4)); 

  // The next 4 are the not() of the previous 4 

  directions = directions.addBands(directions.select(0).not().multiply(5)); 

  directions = directions.addBands(directions.select(1).not().multiply(6)); 

  directions = directions.addBands(directions.select(2).not().multiply(7)); 

  directions = directions.addBands(directions.select(3).not().multiply(8)); 

 

  // Mask all values that are not 1-8 

  directions = directions.updateMask(gradmask); 

  directions = directions.reduce(ee.Reducer.sum());   

  //var pal = ['ffffff','ff0000','ffff00', '00ff00', '00ffff', '0000ff', 'ff00ff', '000000']; 

  //Map.addLayer(directions.reduce(ee.Reducer.sum()), {min:1, max:8, palette: pal}, 'Directions', 

false); 

 

  var sample_stats = sample_var.divide(sample_mean.multiply(sample_mean)); 

 

  // Calculate localNoiseVariance 

  var sigmaV = sample_stats.toArray().arraySort().arraySlice(0,0,5).arrayReduce(ee.Reducer.mean(), 

[0]); 

 

  // Set up the 7*7 kernels for directional statistics 

  var rect_weights = ee.List.repeat(ee.List.repeat(0,7),3).cat(ee.List.repeat(ee.List.repeat(1,7),4)); 

 

  var diag_weights = ee.List([[1,0,0,0,0,0,0], [1,1,0,0,0,0,0], [1,1,1,0,0,0,0],  

    [1,1,1,1,0,0,0], [,1,1,1,1,0,0], [1,1,1,1,1,0], [1,1,1,1,1,1,1]]); 

 

  var rect_kernel = ee.Kernel.fixed(7,7, rect_weights, 3, 3, false); 

  var diag_kernel = ee.Kernel.fixed(7,7, diag_weights, 3, 3, false); 

 

  // Create stacks for mean and variance using the original kernels. Mask with relevant direction. 

  var dir_mean = img.reduceNeighborhood(ee.Reducer.mean(), 

rect_kernel).updateMask(directions.eq(1)); 

  rect_kernel).updateMask(directions.eq(1)); 
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  dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer.mean(), 

diag_kernel).updateMask(directions.eq(2))); 

  dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer.variance(), 

diag_kernel).updateMask(directions.eq(2))); 

  } 

  // "collapse" the stack into a single band image (due to masking, each pixel has just one value in it's 

directional band, and is otherwise masked) 

  dir_mean = dir_mean.reduce(ee.Reducer.sum()); 

  dir_var = dir_var.reduce(ee.Reducer.sum()); 

 

  // A finally generate the filtered value 

  var varX = 

dir_var.subtract(dir_mean.multiply(dir_mean).multiply(sigmaV)).divide(sigmaV.add(1.0)); 

 

  var b = varX.divide(dir_var); 

  var result = dir_mean.add(b.multiply(img.subtract(dir_mean))); 

  return(result.arrayFlatten([['sum']])); 

} 

///***************************************************************/ 

// Combine 3 steps of speckle filtering into one simple function 

function preProcessing(image) { 

  var collection = toDB(RefinedLee(toNatural(image))); 

  return collection;        

} 

/*****Shiwshiwe Time-series-Sentinel1-VH and VV 

***********************************************/ 

// Time-series creating, stack averaging. Converting to gamma_naught  

var stack1 = ee.ImageCollection(collectionVH.filterDate('2016-01-01', '2016-02-01')); 

var stack1_gamma = stack1.map(toGamma0); 

 

var stack5 = ee.ImageCollection(collectionVH.filterDate('2016-05-01', '2016-06-01')); 

var stack5_gamma = stack5.map(toGamma0); 

var stack5_Natural = stack5_gamma.map(toNatural); 

var stack5_DB = toDB(stack5_Natural.map(RefinedLee).reduce('mean')); 

//Map.addLayer(stack5_DB.clip(oytAOI), { min: -25, max: 5}, 'stack5_avg', 0); 

var stack5_DB = stack5_DB.rename('stack5_VH') 

var stack12_DB = stack12_DB.rename('stack12_VH') 

 

var VH_12_gamma = stack12_Natural.reduce('mean').rename('VH12'); 

print(VH_12_gamma, 'VH12') 

// Build a stack for all the images in the collection// 

var stackedVH =stack1_DB.addBands(stack2_DB).addBands(stack3_DB).addBands(stack4_DB) 

              .addBands(stack5_DB).addBands(stack6_DB).addBands(stack7_DB).addBands(stack8_DB) 

              

.addBands(stack9_DB).addBands(stack10_DB).addBands(stack11_DB).addBands(stack12_DB); 

//Map.addLayer(stackedVH.clip(oytAOI), {}, 'stack_all_year', 0) 

     ////// output GLCM Textures ******************************* 

    /////////////////////////////////////////////////////////////////////// 

var textureMeasuresVH = ['VH_asm', 'VH_contrast', 'VH_corr', 'VH_var', 'VH_idm', 'VH_savg',  

                        'VH_ent', 'VH_sent', 'VH_dvar', 'VH_dent', 'VH_imcorr1'];  

 

var textureMeasuresVH10 = ['VH10_savg', 'VH10_ent','VH10_corr',  'VH10_var'];  

var textureMeasuresVH12 = ['VH12_savg', 'VH12_ent', 'VH12_corr', 'VH12_var'];  
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var glcmVH_10 = VH_10_gamma.unitScale(0,1).multiply(255).toByte().glcmTexture({size: 

4}).select(textureMeasuresVH10); 

var glcmVH_12 = VH_12_gamma.unitScale(0,1).multiply(255).toByte().glcmTexture({size: 

4}).select(textureMeasuresVH12); 

 

var VH_final 

=(stack10_DB.addBands(stack12_DB).addBands(glcmVH_10).addBands(glcmVH_12)).float().clip(o

ytAOI) 

print(VH_final, 'glcm') 

Map.addLayer(VH_final/*.clip(oytAOI)*/, {}, 'glcmVH'); 

//Map.addLayer(VH_final, { 'VH_ent'}, 'VH_ent'); 

var alos = alos.addBands(ee.Terrain.slope(alos), ['slope']) 

var composite = s2.addBands(s1).addBands(alos).addBands(VH_final).float()//.aside(print) 

                  .reproject("EPSG:4326", null, 10) 

//oytisa below 

var visParams = {bands: ['B4','B3','B2'], min: 150, max: 2000}  

//Map.addLayer(s2.clip(vlp_table), visParams, 'clouds masked') 

Map.addLayer(composite.clip(oytAOI), visParams, 'clouds masked') 

// Show the training area. 

Map.addLayer(ee.Image().paint(oytAOI, 1, 2), null, 'AOI'); 

      //**************************************** 

     //go next for RF classification   * 

    //****************************************** 

//2016 classification 

//Oytisa training points 

var opf = ee.FeatureCollection ("users/oytisa/openForest2016") 

var cf = ee.FeatureCollection ("users/oytisa/closedForest2016") 

var bamboo = ee.FeatureCollection ("users/oytisa/bambooForest2016") 

// separate into training and validation fractions 

var training2016 = vlp_tr16.filter(ee.Filter.lt('random', 0.75)); 

var validation16 = vlp_tr16.filter(ee.Filter.gte('random', 0.75)); 

// 3. Create feature collection with spectral signatures from composite 

var vlp_train = composite.sampleRegions({ 

  collection: training2016, 

  properties: ['aoi2016'], 

  scale: 10, 

  tileScale: 16 

}); 

// 4. Train a classifier 

var rf2016 = ee.Classifier.randomForest(40) 

    .train({ 

      features: vlp_train,  

      classProperty: 'aoi2016',  

      inputProperties: composite.bandNames() 

    }); 

//Run the Classifier 

var lulc2016 = composite.classify(rf2020); 

var lulc2016vis = lulc2016.visualize(imageVisParam); 

//Display the Classification 

Map.addLayer(lulc2016.clip(oytAOI),  

{min: 1, palette:'00b300', '006600', '33ff33', 'dfff80', 'e6e600','80ff80', 'e6ffe6', 'b3b300'] 

/*['004d00','00b300','00ff00', 'fee08b', 'f46d43']*/}, 
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'lulc2016_fusion'); 

//End 2016 classification 

 

// 3. Create feature collection with spectral signatures from composite 

var vlp_train = composite.sampleRegions({ 

  collection: training, 

  properties: ['label'], 

  scale: 10, 

  }); 

 

// 5. Apply classifier and generate classified image 

var classified = composite.classify(classifier); 

 

// 6. Assess accuracy of classification 

var trainAccuracy = classifier.confusionMatrix().accuracy); 

print('trainAccuracy', trainAccuracy);  

 

// Use pre-classified imagery for accuracy assessment 

var validationFc = composite.sampleRegions({ 

  collection: validation, 

    scale: 10, 

}) 

var confusionMatrix = validationFc.classify(classifier).errorMatrix('label', 'classification') 

print(confusionMatrix) 

print('testAccuracy', confusionMatrix () 

var accuracyAssessment = ee.FeatureCollection( 

    [ee.Feature( 

            'accuracy': confusionMatrix.accuracy() 

      }) 

    ] 

); 

Export.table.toDrive({ 

  collection: accuracyAssessment, 

  fileNamePrefix: 'accuracyAssessment', 

  fileFormat: 'CSV' 

}) 

 

Map.centerObject(oytAOI, 13) 

Map.addLayer(composite, min: 600, max: 3500}, 's1s2Alos_composite', true) 

Map.addLayer(classified.clip(oytAOI.geometry()), imageVisParam, 'finalclassified', true) 

 

//export image to google drive 

Export.image.toDrive({ 

  image: composite.clip(oytAOI), 

  description: 'shw2016_VIs1s2ALOS', 

  folder:'OytisaThesisGEE', 

  crs: 'EPSG: 32637', 

  scale: 10, 

  region: oytAOI, 

}); 
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8.2 GEE computational time, memory usage and algorithms used during processing 

Table 29: GEE Sentinel-2 Image Computational Time, Memory and Algorithms  

Compute 

(Sec) 

Peak 

Mem 

Count Description 

36.618 1.7M 90 Algorithm ImageCollection.reduce with reducer 

Reducer.median 

13.929 4.8M 1026 Algorithm Image.and computing pixels 

8.265 1.3M 10686 Loading assets: COPERNICUS/S2/(...) 

3.69 5.4M 35620 (plumbing) 

1.252 1.4M 36 Encoding pixels to image 

0.578 398k 4737 Algorithm Image.select 

0.566 1.0M 18 Reprojection precalculation between EPSG:32637 and 

SR-ORG:6627 

0.479 1.1M 57 Table query 

0.359 816 4104 Reprojecting pixels from EPSG:32637 to SR-

ORG:6627 

0.349 1.2M 1579 Algorithm Image.updateMask 

0.284 976k 273 Algorithm (user-defined function) 

0.212 724k 72 Algorithm Image.paint computing pixels 

0.077 648 3078 Algorithm Image.updateMask computing pixels 

0.072 656k 300 no description available 

0.066 2.4k 2052 Algorithm Image.bitwiseAnd computing pixels 

0.058 1.5k 2052 Algorithm Image.eq computing pixels 

0.05 127k 3158 Algorithm Image.bitwiseAnd 

0.046 124k 3158 Algorithm Image.eq 

0.034 40k 57 Table metadata 

0.03 10k 288 Algorithm Image.clip computing pixels 

0.024 65k 1579 Algorithm Image.and 

0.023 544 432 Algorithm Image.visualize computing pixels 

0.017 12k 226 Algorithm Image.visualize 

0.015 464 144 Algorithm Image.constant computing pixels 

0.01 5.2k 390 Algorithm Image.constant 

0.009 14k 57 GeoTables transform 

0.006 345k 111 Algorithm ImageCollection.reduce 

0.004 9.4k 114 Algorithm Image.clip 

0.004 7.1k 57 Algorithm Image.paint 

0.003 800 22 Listing collection 

0.002 5.5k 57 Algorithm Image.mask 

0.002 5.4k 57 Algorithm Image.byte 

0.002 69k 12 Algorithm Collection.geometry 

0.001 200 36 Algorithm Image.byte computing pixels 
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0.001 240 36 Algorithm Image.mask computing pixels 

0.001 6.8k 3 Algorithm Geometry.centroid 

- 1.7M 126 Algorithm ImageCollection.reduce computing pixels 

- 168k 244 Loading assets: COPERNICUS/S2 

- 24k 333 Algorithm Collection.map 

- 15k 120 Algorithm Collection.loadTable 

- 14k 240 Loading assets: users/oytisa/shiwshiwe_bound 

- 13k 111 Algorithm ImageCollection.load 

- 7.6k 160 Loading assets: users/oytisa 

- 7.4k 76 Loading assets: COPERNICUS 

- 6.6k 108 Algorithm TypedImageCollection.Constructor 

- 5.6k 111 Algorithm Filter.dateRangeContains 

- 5.5k 108 Algorithm Filter.gt 

- 5.5k 3 Algorithm Filter.lt 

- 5.4k 111 Algorithm ErrorMargin 

- 5.3k 3 Algorithm Feature 

- 2.3k 37 Algorithm DateRange 

- 1.2k 37 Algorithm Reducer.median 

- 256 111 Expression evaluation 

- 64 4104 Algorithm Image.load computing pixels 

67.138 
   

 


