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Abstract

In this thesis, we established common fixed point theorems and proved the exis-

tence and uniqueness of common fixed points for a pair of self-maps in the setting

of complete b-metric spaces and dislocated quasi b-metric spaces. We employed

analytical design and used secondary sources of data such as published articles

and related books. Our results provided extension as well as substantial improve-

ments and generalizations of (Faraji and Nourouzi, 2017 ; Sastry and Kumar, 2019).

Finally, we provided examples in support of our main findings.
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Chapter 1

Introduction

1.1 Background of the study

Let X be a nonempty set. A map T : X → X is said to be a self-map of X . An
element x in X is called a fixed point of T if T x = x.

Let (X ,d) be a metric space. A self-map T : X → X be a contraction, if there is a
real number k in [0,1) such that:

d(T x,Ty)≤ kd(x,y).

In this case k is called a contraction constant.
A theory of fixed point is one of the most powerful and popular tools of modern
mathematics. It has wide applications in different disciplines such as; economics,
chemistry, biology, computer science, engineering, and others. For more details one
can refer (Banach, 1922; Nieto and Rodrguez-Lopez, 2005; Beg et al. , 2013 ).
The first most significant result of metric fixed point theory was given by the polish
mathematician Stefan Banach, in 1922, which is known as Banach contraction prin-
ciple. The famous Banach contraction principle states that if (X ,d) is a complete
metric space and T : X → X is a contraction, then T has a unique fixed point.
Banach contraction principle is one of the cornerstones in the development of non-
linear analysis. There are a number of extensions and generalizations of Banach
contraction theorem by many researchers who have obtained fixed point and com-
mon fixed point results in metric spaces, b-metric spaces, dislocated quasi met-
ric spaces,dislocated quasi b-metric spaces, and other spaces. For more results in
this line of research we refer ( Czerwik, 1993; Zeyada et al., 2006; Klin-Eam and
Suanoom, 2015 ).
In 1968, Kannan gave a fixed point theorem for a self-map T : X → X which need
not be continuous and satisfying the following condition

d(T x,Ty)≤ k[d(x,T x)+d(y,Ty)]
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for all x,y ∈ X where 0≤ k < 1
2 .

Also in 1972, Chatterjea gave the dual of Kannan fixed point theorem as follows:

d(T x,Ty)≤ k[d(x,Ty)+d(y,T x)]

for all x,y ∈ X where 0≤ k < 1
2 .

The works of Banach, Kannan and Chatterjea are independent.
The concept of quasi-metric spaces was introduced by (Wilson, 1931) as a general-
ization of metric spaces, and (Hitzler and Seda, 2000) introduced dislocated metric
spaces as a generalization of metric spaces, (Zeyada et al., 2005) generalized the
result of Hitzler, Seda and Wilson and introduced the concept of dislocated quasi-
metric space.
In 1989, Bakhtin introduced b-metric space as a generalization of metric space.
Moreover, (Czerwik, 1998) made the results of Bakhtin known more. Finally, many
other generalized b-metric spaces such as quasi-b-metric spaces (Shah and Hussain,
2012), b-metric-like spaces (Alghamdi and Hussain, 2013), and quasi-b-metric like
spaces (Zhu et al., 2014).
Recently, Faraji and Nourouzi (2017) proved common fixed point theorem which
generalized Kannan and Chatterjea fixed point theorems in the setting of b-complete
metric spaces.
Very Recently, Sastry and Kumar (2019) established common fixed point theorems
in the setting of dislocated quasi b-metric spaces.
Inspired and motivated by the works of (Faraji and Nourouzi, 2017 ; Sastry and
Kumar, 2019) the purpose of this research work is to establish common fixed point
theorems for a pair of self-maps satisfying contractive conditions in the setting of
b-metric spaces and dislocated quasi b-metric spaces and prove the existence and
uniqueness of common fixed points. Illustrative examples which support the main
results of the study have been provided.

1.2 Statements of the problem

In this study we focused on establishing and proving common fixed point results for
a pair of self-maps in the setting of b-metric spaces and dislocated quasi b-metric
spaces.
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1.3 Objectives of the study

1.3.1 General objective

This study has the following general objective:

• To study common fixed point results for a pair of self-maps defined in the
setting of b-metric and dislocated quasi b-metric spaces.

1.3.2 Specific objectives

This study has the following specific objectives:

• To prove the existence of common fixed points for a pair of self-maps defined
in the setting of b-metric and dislocated quasi b-metric spaces .

• To prove the uniqueness of common fixed points for a pair of self-maps de-
fined in the setting of b-metric and dislocated quasi b-metric spaces.

• To provide examples in support our main results.

1.4 Significance of the study

The study may have the following importance:

• The outcome of this study may contribute to research activities on study area.

• It may provide basic research skills to the researcher.

• It may help to show existence and uniqueness of solutions for problems in-
volving integral and differential equations.

1.5 Delimitation of the Study

This study was delimited to establish and prove common fixed point results for a
pair of self-maps defined on b-metric and dislocated quasi b-metric spaces.
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Chapter 2

Review of Related Literature
The applications of fixed point theory are very important in diverse disciplines of
mathematics since they can be applied for solving various problems, for instance,
equilibrium problems, variation problems, and optimization problems. The Ba-
nachs contraction mapping principle is one of the cornerstones in the development
of fixed point theory. In particular, this principle is used to demonstrate the ex-
istence and uniqueness of a solution of differential equations, integral equations,
functional equations, partial differential equations and others. Due to the impor-
tance, generalizations of Banachs contraction mapping principle have been investi-
gated heavily by many authors.
Many researchers have obtained fixed point, common fixed point and other fixed
point results in metric spaces, cone- metric spaces, partially ordered metric spaces,
dislocated b-metric spaces and other spaces.
Fixed point theory is one of the famous and traditional theories in mathematics and
has a broad set of applications. In this theory, contraction is one of the main tools to
prove the existence and uniqueness of a fixed point. Banachs contraction principle,
which gives an answer on the existence and uniqueness of a solution of an operator
equation, is the most widely used fixed point theorem in all areas of analysis. This
principle is constructive in nature and is one of the most useful tools in the study of
nonlinear equations.
Throughout this manuscript, R+ = [0,∞) and N is the set of positive integers.

Definition 2.1 (Czerwik, 1993 ) Let X be a non-empty set and k≥ 1 be a given real

number. A function d : X ×X −→ R+ is a b-metric if and only if for all x,y,z ∈ X,

the following conditions are satisfied:

a) d(x,y) = 0 iff x = y;
b) d(x,y) = d(y,x);

c) d(x,z)≤ k[d(x,y)+d(y,z)].

The pair (X ,d) is called a b-metric space.
Example 2.1.( Dubey et al., 2014). The space Lp (0 < p < 1) of all real functions
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x(t), t ∈ [0,1] such that
∫ 1

0 |x(t)|pdt < ∞, is b-metric space if we take

d(x,y) = [
∫ 1

0
|x(t)− y(t)|pdt]1/p

for each x,y ∈ Lp.

Definition 2.2 (Klin-eam and Suanoom, 2015) Let X be a nonempty set and k ≥ 1
be a real number. Suppose that the mapping

d : X×X −→ R+ satisfies the following conditions:

a) d(x,y) = d(y,x) = 0 implies x = y for all x,y ∈ X ;
b) d(x,y)≤ k[d(x,z)+d(z,y)] for all x,y,z ∈ X .

The pair (X ,d) is called a dislocated quasi-b-metric space (or simply dqb-metric).
The number k is called the coefficient of (X ,d).

Remark. It is obvious that b-metric spaces, quasi-b-metric spaces are dislo-
cated quasi-b-metric spaces, but the converse is not true.
Example 2.2. (Sastry and Kumar, 2019) Let X = R+ and for p > 1, d : X×X→ R+

defined by
d(x,y) = |x− y|p + |x|p, for all x,y ∈ X .

Then the pair (X ,d) is dqb-metric space with k = 2p > 1. But (X ,d) is not dislo-
cated quasi metric spaces.

Definition 2.3 (Klin-eam and Suanoom, 2015) A sequence {xn} in dqb-metric spaces

(X ,d) is a dqb-conveges to x ∈ X if

lim
n→∞

d(xn,x) = 0 = lim
n→∞

d(x,xn).

In this case x is called a dqb-limit of {xn} and write (xn→ x).

Definition 2.4 (Klin-eam and Suanoom, 2015) A sequence {xn} in dqb-metric spaces

(X ,d) is Cauchy sequence if

lim
(n,m)→∞

d(xn,xm) = 0 = lim
(n,m)→∞

d(xm,xn).

Definition 2.5 (Klin-eam and Suanoom, 2015) A dqb-metric spaces (X ,d) is com-

plete if every Cauchy sequence in it is dqb-convergent in X .
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Chapter 3

Methodology
3.1 Study area and period

The study was conducted at Jimma University under the department of mathematics
from October 2018 G.C to October 2021 G.C.

3.2 Study Design

In this study we followed analytical design method.

3.3 Source of Information

The relevant sources for this research work were books and published articles re-
lated to the area of the study.

3.4 Mathematical Procedure of the Study

In this study we followed the procedures stated below:

• Establishing theorems.

• Constructing sequences.

• Showing the constructed sequences are Cauchy sequences.

• Proving the existence of common fixed points.

• Showing uniqueness of common fixed points.

• Providing examples in support of our main results.
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Chapter 4

Preliminaries and Main Result

4.1 Preliminaries

Definition 4.1 (Khan, et al. 1984) A function φ : R+ → R+ is called an altering

distance function if the following properties are satisfied:

a) φ(t) = 0, iff t = 0.
b) φ is a monotonically non-decreasing function.

c) φ is a continuous function.

Φ denote the set of all altering distance functions.

Definition 4.2 (Jungck and Rhoades, 1998) Let f and g be self-maps of a nonempty

set X . If w = f x = gx for some x ∈ X , then x is called a coincidence point of f and

g, and w is called point of coincidence f and g.

Definition 4.3 (Jungck and Rhoades, 1998) Let f and g be self-maps of a nonempty

set X . Then f and g are said to be weakly compatible if they commute at their

coincidence point.

Lemma 4.1.1 (Abbas and Jungck, 2008) Let f and g are weakly compatible self-
maps of a nonempty set X . If f and g have unique point of coincidence w= f x= gx,

then w is the unique common fixed point of f and g.

Theorem 4.1.1 (Faraji and Nourouzi, 2017) Let (X ,d) be a complete b-metric

space with parameter k ≥ 1 and T,S be self-mappings on X which satisfy

d(Sx,Ty) ≤ a1d(x,Sx)+a2d(y,Ty)+a3d(x,Ty)

+a4d(y,Sx)+a5d(x,y),

for all x,y ∈ X , where a1,a2,a3,a4,a5 are nonnegative real numbers satisfying:

(i) k2a1 + k2a2 + k3a3 + k3a4 + k2a5 < 1,
(ii) a1 = a2 or a3 = a4.
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Then T and S have a unique common fixed point.
Very recently, Sastry and Kumar, (2019) proved the following fixed point theorem
in the setting of dqb-complete metric space.

Theorem 4.1.2 Let (X ,d) be a dqb-complete metric space with coefficients k ≥ 1.
Let f : X → X be self-mapping satisfying:

d( f x, f y)≤ φ(max{d(x,y),d( f x,x),d(y, f y)}),

for all x,y ∈ X where φ is altering distance function and φ(t)< t
k for t > 0.Then f

has unique fixed point in X .

4.2 Main Result

In this section, we established and proved common fixed point results in the setting
of complete b-metric spaces and dislocated quasi-b-metric spaces.

Theorem 4.2.1 Let (X ,d) be a complete b-metric space with s ≥ 1 and T,S be

self-mappings on X which satisfy

d(Sx,Ty) ≤ a1d(x,Sx)+a2d(y,Ty)+a3d(x,Ty)+a4d(y,Sx)

+a5d(x,y)+a6[d(x,Sx)+d(x,Ty)], (4.1)

for all x,y ∈ X , where a1,a2,a3,a4,a5 and a6 are non-negative real numbers satis-

fying

(i) s2a1 + s2a2 + s3a3 + s3a4 + s2a5 + s2a6 +2s3a6 < 1,
(ii) a1 = a2 or a3 = a4.

Then T and S have a unique common fixed point.

Proof: Let x0 be any arbitrary point in X . We can choose x1 ∈ X such that x1 = Sx0.

Again we can choose x2 ∈ X such that x2 = T x1 and repeating in the same manner
for x2n ∈X we can choose x2n+1 ∈X such that x2n+1 = Sx2n and x2n+2 = T x2n+1,n=

0,1,2, . . .

8



By (4.1), we have,

d(x1,x2) = d(Sx0,T x1)

≤ a1d(x0,Sx0)+a2d(x1,T x1)+a3d(x0,T x1)+a4d(x1,Sx0)

+a5d(x0,x1)+a6[d(x0,Sx0)+d(x0,T x1)]

= a1d(x0,x1)+a2d(x1,x2)+a3d(x0,x2)+a4d(x1,x1)

+a5d(x0,x1)+a6[d(x0,x1)+d(x0,x2)]

≤ a1d(x0,x1)+a2d(x1,x2)+ sa3d(x0,x1)+ sa3d(x1,x2)+a5d(x0,x1)

+a6d(x0,x1)+ sa6d(x0,x1)+ sa6d(x1,x2)

Therefore,

d(x1,x2) ≤
(a1 + sa3 +a5 +a6 + sa6)

(1−a2− sa3− sa6)
d(x0,x1).

So,

d(x2,x3) ≤
(a2 + sa4 +a5 +a6 + sa6)

(1−a1− sa4− sa6)
d(x1,x2).

By repeating this procedure, we obtain:

d(x2n−1,x2n)≤ (rn)(hn−1)d(x0,x1),n = 1,2,3, . . . , (4.2)

and
d(x2n,x2n+1)≤ (rn)(hn)d(x0,x1),n = 1,2,3, . . . , (4.3)

where

(a1 + sa3 +a5 +a6 + sa6)

(1−a2− sa3− sa6)
= r and

(a2 + sa4 +a5 +(1+ s)a6

(1−a1− sa4− sa6)
= h.

9



Let m,n ∈ N and m > n. Then by (4.2) and (4.3) we have the following

d(x2n,x2m) ≤ sd(x2n,x2n+1)+ s2d(x2n+1,x2n+2)+ · · ·+ s2m−2n−1d(x2m−2,x2m−1)

+s2m−2nd(x2m−1,x2m)

≤ srnhn
λ + · · ·+ s2m−2n−1rm−1hm−1

λ + s2m−2nrmhm−1
λ

= sα
n
λ + · · ·+ s2m−2n−1

α
m−1

λ + s2m−2nrα
m−1

λ

= sα
n
λ (1+ sr)+ · · ·+ s2m−2n−1

α
m−1

λ (1+ sr)

= sα
n
λ (1+ sr)[1+ s2

α +(s2
α)2 + · · ·+(s2

α)m−n−1],

where α = rh and λ = d(x0,x1). Since s2α < 1, we get

d(x2n,x2m)≤ s(1+ sr)λ
αn

1− s2α
.

Therefore {x2n} is a Cauchy sequence.
Since X is complete there exists x ∈ X such x2n→ x. Using (4.3), we have:

d(x,x2n+1) ≤ sd(x,x2n)+ sd(x2n,x2n+1)

≤ sd(x,x2n)+λα
n,n = 0,1,2, . . .

So limn→∞x2n+1 = x and therefore limn→∞x2n = x.

Now, we show that x is the unique fixed point of T and S. Using (4.9) we have

d(x,Sx) ≤ s[d(x,x2n)+d(x2n,Sx)]

= sd(x,x2n)+ sd(T x2n−1,Sx)

≤ sd(x,x2n)+ sa1d(x,Sx)+ sa2d(x2n−1,T x2n−1)+ sa3d(x,T x2n−1)

+sa4d(x2n−1,Sx)+ sa5d(x,x2n−1)+ sa6[d(x,Sx)+d(x,T x2n−1)]

≤ sd(x,x2n)+ sa1d(x,Sx)+ sa2d(x2n−1,T x2n−1)+ sa3d(x,T x2n−1)

+sa4[s(d(x2n−1,x)+d(x,Sx))]+ sa5d(x,x2n−1)

+sa6d(x,Sx)+ sa6d(x,T x2n−1)

≤ (sa1 + s2a4 + sa6)d(x,Sx).
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This implies that Sx = x. Again using (4.9) we have

d(x,T x) ≤ s[d(x,x2n−1)+d(x2n−1,T x)]

= sd(x,x2n−1)+ sd(Sx2n−2,T x)

≤ sd(x,x2n−1)+ sa1d(x2n−2,Sx2n−2)+ sa2d(x,T x)+ sa3d(x2n−2,T x)

+sa4d(x,Sx2n−2)+ sa5d(x2n−2,x)+ sa6[d(x2n−2,Sx2n−2)+d(x2n−2,T x)]

≤ sd(x,x2n−1)+ sa1d(x2n−2,Sx2n−2)+ sa2d(x,T x)+ s2a3d(x2n−2,x)

+s2a3d(x,T x)+ sa4d(x,Sx2n−2)+ sa5d(x2n−2,x)

+sa6d(x2n−2,Sx2n−2)+ s2a6d(x2n−2,x)+ s2a6d(x,T x)

≤ (sa2 + s2a3 + s2a6)d(x,T x).

This implies that T x = x. To see the uniqueness of the common fixed point of T and
S, assume on the contrary that T x = Sx = x and Ty = Sy = y but x 6= y. By (4.9) we
have

d(x,y) = d(Sx,Ty)

≤ a1d(x,Sx)+a2d(y,Ty)+a3d(x,Ty)+a4d(y,Sx)+a5d(x,y)

+a6[d(x,Sx)+d(x,Ty)]

= [a3 +a4 +a5 +a6]d(x,y).

Which is a contradiction. Hence, x = y and this implies that the common fixed point
of T and S is unique.

Theorem 4.2.2 Let (X ,d) be a dqb-complete metric space. Let f ,g : X→ X be self

mappings satisfying the inequality

d( f x, f y)≤ φ [max{d(gx,gy),d( f x,gx),d(gy, f y)}], (4.4)

for all x,y ∈ X , where φ is altering distance function and φ(t) < t
k for t > 0 and

k > 1. If f (X)⊆ g(X) and g(X) is dqb-complete subspace of X , then f and g have

unique point of coincidence in X . In addition if f and g are weakly compatible, then

f and g have unique common fixed point in X .

Proof: Let x0 be any arbitrary point in X . As f (X) ⊆ g(X) we can choose x1 ∈ X

such that f x0 = gx1, and x2 ∈ X such that f x1 = gx2, . . . continuing in the same way
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for xn ∈ X , we can choose xn+1 ∈ X such that f xn = gxn+1, where n = 0,1,2, . . .
By (4.4), we have:

d(gx1,gx2) = d( f x0, f x1)

≤ φ [max{d(gx0,gx1),d( f x0,gx0),d(gx1, f x1)}]

= φ [max{d(gx0,gx1),d(gx1,gx0),d(gx1,gx2)}]

≤ φ [max{d(gx0,gx1),d(gx1,gx0)}] = φ(α1).

wehre, α1 = max{d(gx0,gx1),d(gx1,gx0)}.
And

d(gx2,gx1) = d( f x1, f x0)

≤ φ [max{d(gx1,gx0),d( f x1,gx1),d(gx0, f x0)}]

= φ [max{d(gx1,gx0),d(gx2,gx1),d(gx0,gx1)}]

≤ φ [max{d(gx0,gx1),d(gx1,gx0)}] = φ(α1).

wehre, α1 = max{d(gx0,gx1),d(gx1,gx0)}.
Similarly,

d(gx2,gx3) = d( f x1, f x2)

≤ φ [max{d(gx1,gx2),d( f x1,gx1),d(gx2, f x2)}]

= φ [max{d(gx1,gx2),d(gx2,gx1),d(gx2,gx3)}]

≤ φ [max{d(gx1,gx2),d(gx2,gx1)] = φ(α2).

wehre, α2 = max{d(gx1,gx2),d(gx2,gx1)}.
And

d(gx3,gx2) = d( f x2, f x1)

≤ φ [max{d(gx2,gx1),d( f x2,gx2),d(gx1, f x1)}]

= φ [max{d(gx2,gx1),d(gx3,gx2),d(gx1,gx2)}]

≤ φ [max{d(gx1,gx2),d(gx2,gx1)] = φ(α2).
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wehre, α2 = max{d(gx1,gx2),d(gx2,gx1)}.
Therefore, α2 ≤ φ(α1).

Similarly, α3 ≤ φ(α2).

Hence, α3 ≤ φ(α2)≤ φ(φ(α1)) = φ 2(α1).

In general αn ≤ φ n−1(α1) and φ n−1(α1)→ 0 as n→ ∞.

max{d(gxn−1,gxn),d(gxn,gxn−1)}→ 0 as n→ ∞.

Hence, d(gxn−1,gxn)→ 0 as n→ ∞ and d(gxn,gxn−1)→ 0 as n→ ∞.

Now, we show {gxn} is a dqb-cauchy sequence.
Consider for m,n ∈ N,m > n,m = n+ s.

d(gxn+1,gxn) = d( f xn, f xn−1)

≤ φ [max{d(gxn,gxn−1),d( f xn,gxn),d(gxn−1, f xn−1)}]

= φ [max{d(gxn,gxn−1),d(gxn+1,gxn),d(gxn−1,gxn)}]

≤ φ [max{d(gxn,gxn−1),d(gxn−1,gxn)}].

And

d(gxn,gxn+1) = d( f xn−1, f xn)

≤ φ [max{d(gxn−1,gxn),d( f xn−1,gxn−1),d(gxn, f xn)}]

= φ [max{d(gxn−1,gxn),d(gxn+1,gxn−1),d(gxn,gxn+1)}]

≤ φ [max{d(gxn−1,gxn),d(gxn,gxn−1)}].

Similarly,

d(gxn+2,gxn) ≤ kd(gxn+2,gxn+1)+ kd(gxn+1,gxn)

≤ kαn+1 + kαn

≤ kφ
n
α1 + kφ

n−1
α1.

And

d(gxn,gxn+2) ≤ kd(gxn,gxn+1)+ kd(gxn+1,gxn+2)

≤ kαn + kαn+1

≤ kφ
n−1

α1 + kφ
n
α1.
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Similarly,

d(gxn+3,gxn) ≤ kd(gxn+3,gxn+2)+ kd(gxn+2,gxn)

≤ kαn+2 + k[kφ
n
α1 + kφ

n−1
α1]

< k2
φ

n+1
α1 + k2

φ
n
α1 + k2

φ
n−1

α1.

And

d(gxn,gxn+3) ≤ kd(gxn,gxn+2)+ kd(gxn+2,gxn+3)

≤ k[kφ
n−1

α1 + kφ
n
α1]+ kαn+2

< k2
φ

n−1
α1 + k2

φ
n
α1 + k2

φ
n+1

α1

< k2 α1

kn−1 + k2 α1

kn + k2 α1

kn+1

= α1[
1

kn−3 +
1

kn−2 +
1

kn−1 ].

Again,

d(gxn+4,gxn) ≤ kd(gxn+4,gxn+3)+ kd(gxn+3,gxn)

≤ kαn+3 + k[k2
φ

n+1
α1 + k2

φ
n
α1 + k2

φ
n−1

α1]

< k3
φ

n+2
α1 + k3

φ
n+1

α1 + k3
φ

n
α1 + k3

φ
n−1

α1

< k3 α1

kn+2 + k3 α1

kn+1 + k3 α1

kn + k3 α1

kn−1

= α1[
1

kn−1 +
1

kn−2 +
1

kn−3 +
1

kn−4 ].

And

d(gxn,gxn+4) ≤ kd(gxn, ,gxn+3)+ kd(gxn+3,gxn+4)

≤ k[k2
φ

n−1
α1 + k2

φ
n
α1 + k2

φ
n+1

α1]+ kαn+3

< k3
φ

n−1
α1 + k3

φ
n
α1 + k3

φ
n+1

α1 + k3
φ

n+2
α1

< k3 α1

kn−1 + k3 α1

kn + k3 α1

kn+1 + k3 α1

kn+2

= α1[
1

kn−4 +
1

kn−3 +
1

kn−2 +
1

kn−1 ].
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Similarly,

d(gxn+s,gxn) ≤ kn−s
φ

n−1
α1 + kn−s

φ
n
α1 + · · ·+ kn−s

φ
n+s−2

α1

< ks−1[
α1

kn−1 +
α1

kn + · · ·+ α1

kn+s−2 ]

= α1[
1

kn−s +
1

kn−s+1 + · · ·+
1

kn−1 ].

And

d(gxn,gxn+s) ≤ kn−s
φ

n+s−2
α1 + kn−s

φ
n
α1 + · · ·+ kn−s

φ
n−1

α1

< ks−1[
α1

kn+s−2 +
α1

kn + · · ·+ α1

kn−1 ]

= α1[
1

kn−1 +
1

kn−s+1 + · · ·+
1

kn−s ].

Hence,
d(gxn,gxn+s)→ 0, as n→ ∞.

Therefore, {gxn} is a dqb-cauchy sequence.
Now we prove that common fixed point of f and g is unique.
Since, g(X) is dqb-complete, there exists v ∈ g(X) such that gxn → v as n→ ∞.

Since v ∈ g(X), we can find u ∈ X such that gu = v.

Now,

d(gxn, f u) = d( f xn−1, f u)

≤ φ [max{d(gxn−1,gu),d( f xn−1,gxn−1),d(gu, f u)}]

= φ [max{d(gxn−1,gu),d(gu,gxn−1),d(gu, f u)}].

As n→ ∞, we have

d(v, f u) ≤ φ [max{d(v,v),d(v,v),d(v, f u)}]

≤ φ [max{d(gu, f u)}]

=
d(v, f u)

k
.

Therefore, the above inequality is possible if

d(v, f u) = 0. (4.5)

15



Similarly, we can show that
d( f u,v) = 0. (4.6)

Using (4.5), (4.6) and condition of dislocated quas b-metric we get, v = f u = gu is
a point of coincidence of f and g in X .

Assume that w ∈ X is another coincidence point of f and g in X , such that f w =

gw 6= f u = gu.

d(gu,gw) = d( f u, f w) ≤ φ [max{d(gu,gw),d( f u,gu),d(gw, f w)}]

= φ [max{d(gu,gw),d(gu,gu),d(gw,gw)}]

= φ [d(gu,gw)]

≤ d(gu,gw)
k

.

Therefore, the above inequality is possible if

d(gu,gw) = 0. (4.7)

Similarly, we can show that
d(gw,gu) = 0. (4.8)

Using (4.7), (4.8) and condition of dislocated quas b-metric we get, gw= gu. Which
is a contradiction hence, the point of coincidence in X is unique. By Lemma 4.1.1
the self-maps f and g have unique common fixed point in X .

Corollary 4.2.1 Let (X ,d) be a complete b-metric space with s ≥ 1 and T,S be
self-mappings on X which satisfy

d(Sx,Ty) ≤ a1d(x,Sx)+a2d(y,Ty)+a3d(x,Ty)+a4d(y,Sx)

+a5d(x,y),

for all x,y ∈ X , where a1,a2,a3,a4,a5 are non-negative real numbers satisfying

(i) s2a1 + s2a2 + s3a3 + s3a4 + s2a5 < 1,
(ii) a1 = a2 or a3 = a4.

Then T and S have a unique common fixed point.

Proof: The result follows by taking a6 = 0 in Theorem 4.2.1.
Corollary 4.2.2 Let (X ,d) be a dqb-complete metric space with coefficients k > 1.
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Let f : X → X be self-maps satisfying the inequality

d( f x, f y)≤ φ [max{d(x,y),d( f x,x),d(y, f y)}],

for all x,y ∈ X , where φ is altering distance function and φ(t) < t
k for t > 0. Then

f has unique fixed point in X .

Proof: The result follows by taking g = I(I is an identity map in X) in Theorem
4.2.2.
The following example is in support of Theorem 4.2.1
Example 4.1 Let X = {4,5,6} and define d : X ×X → R+ by d(4,4) = d(5,5) =
d(6,6) = 0,d(4,5) = d(5,4) = 1,d(4,6) = d(6,4) = 1/12 and d(5,6) = d(6,5) =
5/6. It is easy to check that (X,d) is a b-metric space with parameter s=4/3.
Define the maps T,S : X → X by T 4 = T 6 = 4, T 5 = 6 and S4 = S5 = S6 = 4. Let
a1 = a2 = a3 = a5 = 0, a4 = 1/14 and a6 = 1/7. Then the conditions of Theorem
4.2.1 are satisfied. The first two conditions of b-metric are clear and the b-triangular
inequality is given by

1 = d(4,5)≤ 4/3[d(4,6)+d(6,5)] = 11/9,

1/12 = d(4,6)≤ 4/3[d(4,5)+d(5,6)] = 22/9,

5/6 = d(5,6)≤ 4/3[d(5,4)+d(4,6)] = 13/9.

Therefore (X ,d) is a b-metric space.
Now we show that the inequality (4.9) holds:

d(Sx,Ty) ≤ a1d(x,Sx)+a2d(y,Ty)+a3d(x,Ty)+a4d(y,Sx)

+a5d(x,y)+a6[d(x,Sx)+d(x,Ty)]

=
1
14

d(y,Sx)+
1
7
[d(x,Sx)+d(x,Ty)],

using this we consider the following cases:

(i) 0 = d(S4,T 4)≤ 1
14

d(4,S4)+
1
7
[d(4,S4)+d(4,T 4)] = 0,

(ii) 1/12 = d(S5,T 5)≤ 1
14

d(5,S5)+
1
7
[d(5,S5)+d(5,T 5)] = 1/3,
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(iii) 0 = d(S6,T 6)≤ 1
14

d(6,S6)+
1
7
[d(6,S6)+d(6,T 6)] = 5/168,

(iv) 1/12 = d(S4,T 5)≤ 1
14

d(5,S4)+
1
7
[d(4,S4)+d(4,T 5)] = 1/12,

(v) 0 = d(S5,T 4)≤ 1
14

d(4,S5)+
1
7
[d(5,S5)+d(5,T 4)] = 2/7,

(vi) 0 = d(S4,T 6)≤ 1
14

d(6,S4)+
1
7
[d(4,S4)+d(4,T 6)] = 1/168,

(vii) 0 = d(S6,T 4)≤ 1
14

d(4,S6)+
1
7
[d(6,S6)+d(6,T 4)] = 1/12,

(viii) 0 = d(S5,T 6)≤ 1
14

d(6,S5)+
1
7
[d(5,S5)+d(5,T 6)] = 49/168,

(ix) 1/12 = d(S6,T 5)≤ 1
14

d(5,S6)+
1
7
[d(6,S6)+d(6,T 5)] = 1/12

and s2a1 + s2a2 + s3a3 + s3a4 + s2a5 + s2a6 +2s3a6 = 160/189 < 1.
Hence, all the conditions of Theorem 4.2.1 are satisfied. Therefore, 4 is a common
fixed point of T and S .
The following example is in support of Theorem 4.2.2
Example 4.2 Let X = [0,2], define d : X ×X → R+ by d(x,y) = |x− y|2 + |x|2 and
f ,g : X → X by

f (x) =

0, if 0≤ x≤ 1,

1/2, if 1 < x≤ 2

and

g(x) =

x/2, if 0≤ x≤ 1,

2, if 1 < x≤ 2.

If φ(t) = t
3 for all t ≥ 0 with k = 2, then (X ,d) is a dislocated quas b-metric space.

But (X ,d) is not a quasi b-metric space and not b-metric space. Indeed suppose
x,y,z ∈ X .

Now,
(i) d(x,y) = |x− y|2 + |x|2 = |y− x|2 + |y|2 = d(y,x) = 0 implies that x = y = 0.
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(ii)

d(x,y) = |x− y|2 + |x|2

≤ [|x− z|+ |z− y|]2 + |x|2

= |x− z|2 +2|x− z|.|z− y|+ |z− y|2 + |x|2

≤ |x− z|2 + |x− z|2 + |z− y|2 + |z− y|2 + |x|2

≤ 2[|x− z|2 + |z− y|2]+ |x|2 + |z|2

≤ 2[d(x,z)+d(z,y)],

where k = 2 and x,y,z ∈ X . We conclude that (X ,d) is a dqb-metric space and
f 0 = g0 = 0. Which implies that 0 is a coincidence point of f and g. Moreover,
g(x) = 2∪ [0,1/2] and f (x) = {0,1/2}, hence this implies that f (X)⊆ g(X). And
f 0 = f g0 = g f 0 = g0 = 0, which implies that f and g are weakly compatible.
To show that the inequality in Theorem (4.2.2) holds true, we consider the following
four cases.
Case(i) Suppose x,y ∈ [0,1]
d( f x, f y) = d(0,0) = |0−0|2 + |0|2 = 0,
d(gx,gy) = d(x/2,y/2) = |x/2− y/2|+ |x/2|2 = (x− y)2/4+ x2/4,
d( f x,gx) = d(0,x/2) = |0− x/2|2 + |0|2 = x2/4,
d(gy, f y) = d(y/2,0) = |y/2−0|2 + |y/2|2 = y2/2.
Therefore,

d( f x, f y) ≤ φ [max{d(gx,gy),d( f x,gx),d(gy, f y)}]

0 ≤ φ [max{((x− y)2 + x2)/4,x2/4,y2/2}].

Which is true for all x,y ∈ [0,1].
Case (ii) Suppose x,y ∈ (1,2]
d( f x, f y) = d(1/2,1/2) = |1/2−1/2|2 + |1/2|2 = 0+1/4 = 1/4,
d(gx,gy) = d(2,2) = |2−2|+ |2|2 = 0+4 = 4,
d( f x.gx) = d(1/2,2) = |1/2−2|+ |1/2|2 = 9/4+1/4 = 10/4,
d(gy, f y) = d(2,1/2) = |2−1/2|+ |2|2 = 9/4+4 = 25/4.
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Therefore,

d( f x, f y) ≤ φ [max{d(gx,gy),d( f x,gx),d(gy, f y)}]

1/4 ≤ φ [max{4,10/4,25/4}].

Which is true for all x,y ∈ (1,2].
Case (iii) Suppose x ∈ [0,1] and y ∈ (1,2]
d( f x, f y) = d(0,1/2) = |0−1/2|2 + |1/2|2 = 1/4+1/4 = 1/2,
d(gx,gy) = d(x(2,)2) = |x/2−2|2 + |x/2|2 = ((x−4)2 + x2)/4,
d( f x,gx) = d(0,x/2) = |0− x/2|2 + |0|2 = x2/4,
d(gy, f y) = d(2,1/2) = |2−1/2|2 + |2|2 = 9/4+4 = 25/4.
Therefore,

d( f x, f y) ≤ φ [max{d(gx,gy),d( f x,gx),d(gy, f y)}]

1/2 ≤ φ [max{((x−4)2 + x2)/4,x2/4,25/4}].

Which is true for all x ∈ [0,1] and y ∈ (1,2].
Case (iv) Suppose x ∈ (1,2] and y ∈ [0,1]
d( f x, f y) = d(1/2,0) = |1/2−0|2 + |1/2|2 = 1/4+1/4 = 1/2,
d(gx,gy) = d(2,y/2) = |2− y/2|2 + |2|2 = ((4− y)2/4)+4,
d( f x,gx) = d(1/2,2) = |1/2−2|2 + |1/2|2 = 9/4+1/4 = 10/4,
d(gy, f y) = d(y/2,0) = |y/2−0|2 +(y/2)2 = y/42 + y/42 = y2/2.
Therefore,

d( f x, f y) ≤ φ [max{d(gx,gy),d( f x,gx),d(gy, f y)}]

1/2 ≤ φ [max{((4− y)2 +16)/4,10/4,y2/2}].

Which is true for all x ∈ (1,2] and y ∈ [0,1].
From Case (i)-(iv) all the conditions of Theorem 4.2.2 are satisfied and 0 is the
unique common fixed point of f and g.
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Chapter 5

Conclusion and Future scope
5.1 Conclusion

In this study we established new common fixed point theorems in complete b-metric
spaces and dislocated quasi b-metric spaces, and proved the existence and unique-
ness of common fixed points .
Our results generalize and extend the work of (Faraji and Nourouzi, 2017) in b-
metric spaces and (Sastry and Kumar, 2019) in dislocated quasi b-metric spaces.
Finally we have supported the main results of this research work by applicable ex-
amples.

5.2 Future scope

There are some published results related to the existence of common fixed point
theorems of mappings defined on b-metric spaces and dislocated quasi b-metric
spaces. The researcher believes the search for the existence and uniqueness of com-
mon fixed points of self-maps satisfying conditions in the setting of b-metric spaces
and dislocated quasi b-metric spaces are active areas of study. So, other interested
researchers can use this opportunity and conduct their research work in this areas.
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