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Abstract: The reduction of traffic crashes, as well as their socio-economic consequences, has capti-
vated the attention of safety professionals and transportation agencies. The most important activity
for an effective road safety practice is to identify hazardous roadway areas based on a spatial pattern
analysis of crashes and an evaluation of crash spatial relations with neighboring areas and other
relevant factors. For decades, safety researchers have adopted several techniques to analyze historical
road traffic crash (RTC) information using the advanced GIS-based hot spot analysis. The objective of
this study is to present a GIS technique for identifying crash hot spots based on spatial autocorrelation
analysis using a four-year (2014–2017) crash data across Ethiopian regions, as well as zones and
towns in the Oromia region. The study considered the corresponding severity values of RTCs for
the analysis and ranking of crash hot spot areas. The spatial autocorrelation tool in ArcGIS 10.5 was
used to analyze the spatial patterns of RTCs and then the Getis Ord Gi* statistics tool was used to
identify high and low crash severity cluster zones. The results showed that the methods used in this
analysis, which incorporated Moran’s I spatial autocorrelation of crash incidents, Getis Ord Gi* and
crash severity index, proved to be a fruitful strategy for identifying and ranking crash hot spots. The
identified crash hot spot areas are along the entrance to and exit from Addis Ababa, Ethiopia’s capital
city, so the responsible bodies and traffic management agencies should give top priority attention
and conduct a thorough study to reduce the socio-economic effect of RTCs.

Keywords: crash severity; Getis Ord Gi*; road traffic crash (RTC); spatial autocorrelation

1. Introduction

Road traffic safety has become a major apprehension for human beings since the
emerging of roadway transport and motor vehicles. According to the World Health
Organization (WHO), RTC (road traffic crash) is the 8th most common means of death for
all age groups. Nowadays, it is the top reason for the death of children and young adults
aged 5–29 years [1]. Road traffic safety analysis has been employed to save the loss of
lives by understanding the cause of traffic crashes and coming up with safety mitigations.
The analysis aims to investigate pieces of information needed by decision makers to apply
suitable safety measures to eliminate and minimize the occurrence of traffic crashes [2].

Because of the presence of distance in the road networks, the spatial pattern of crashes
must be examined in traffic safety studies. Spatial analysis is the inspection of crash
occurrence patterns by considering their relative locations or zones. Traffic crashes meet the
main characteristics of spatial heterogeneity and spatial dependence of point data. Spatial
dependence belongs to the influence of events at a location by neighboring events, while
spatial heterogeneity happens when the spatial relationships among observed incidents
and random parameters in the developed model are not established spatially [3].
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The emergence of GIS has provided a vital tool for community health study [4–6].
Moellering used a Geographical Information System (GIS) to analyze traffic collisions for
the first time in 1976 in his work of “a computer-animated film in the analysis of geographi-
cal patterns of traffic crashes” [7]. Since then, the geographical information system has been
used extensively in road traffic safety studies over the past five decades [3,8]. Its application
varies from simple mapping and visualization roles to further advanced methods such as
spatial statistical models and the analysis of large data methods. Nowadays, the precise
and exact location of RTCs and their attributes are stored in the GIS database. GIS software
allows us to gather spatial data in which we can store, manipulate, analyze and visualize
it with ease [9,10]. Even though a comprehensive review and evaluation of analytical
approaches have been conducted [11], numerous research works have demonstrated that
spatially enriched crash analysis shows potential in establishing a better insight into road
safety by revealing areas with safety issues [12,13].

In terms of crash prevention programs, there are minimal indications regarding road
safety measures being implemented in low and middle-income countries [14], where the
majority of crashes occur. Ethiopia (a low-income country), along with Uganda, Bangladesh
and Vietnam, is among the four nations in the world with an exceptionally high health
concern, with more than 1000 fatalities per 100,000 motorized vehicles [15]. Therefore, it is
important to map crash hot spots by analyzing the severity and spatial pattern of crash
incidences in Ethiopia in order to provide information on where to invest a limited budget
to improve road safety efficiently.

In Ethiopia, the majority of road safety analysis methodologies employed by trans-
portation authorities and safety specialists are classic descriptive approaches focused on
quantifying and summarizing crash data. While crashes are random incidents that occur
in space and time [10], they also reflect spatial dependency and spatial autocorrelation,
which should be taken into account while analyzing them [16]. Furthermore, at present, in
Ethiopia, GIS is not used widely in crash data recording and identifying RTC hot spot loca-
tions. To identify RTC hot spots, a GIS-based spatial analysis has been a promising tool and
widely used [17,18]. The GIS-based hot spot analysis result is presented accurately on a sin-
gle map with the related attribute data of each RTC which may advance the understanding
of road safety researchers regarding the reasons for each crash occurrence [19].

With the most up-to-date analytical techniques of the GIS’s Getis Ord Gi* statistics,
this study aimed to analyze the severity and spatial pattern of crash incidents, as well
as map crash hot spots in Ethiopia. While some scholars have studied crash events in
Ethiopia [20–23], none have utilized spatially enriched and statistically integrated analyses
like Getis Ord Gi* statistics. Hence, the current study is significant in that it illustrates
the benefit of utilizing spatial autocorrelation and statistical techniques to identify crash-
intensive prone zones, as well as demonstrating its effectiveness in Ethiopia. Moreover,
the study will provide guidance to decision-makers on where to best invest or implement
safety measures.

2. Literature Review

There is no universally acknowledged definition of Road Traffic Crash (RTC) hot
spot identification [10]. Some safety researchers prioritize sites by crash rate (i.e., crashes
per vehicle-kilometers for segments and crashes per entering vehicles for intersections),
others use crash frequency (i.e., crashes per year), some use spatial analysis of crashes and
others adopt the integration of the above and the rest uses regression modeling (i.e., the
predictive approach of Crash Prediction Model, CPM) [24]. RTC hot spot analysis, in
general, attempted to identify and prioritize road segments in need of immediate safety
improvements to achieve valuable crash reduction through effective safety mitigation. In
addition to crash analysis, local expertise and expert judgment are used to identify RTC
hot spots. This work (road safety management) comprises the following tasks [25,26]:

1. Targeting or identifying crash hot spots on the road network;
2. Studying safety issues in each hot spot;
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3. Identifying contributing factors and design mitigations;
4. Evaluating the safety effects of the possible mitigations;
5. Prioritizing the hot spots to apply cost-effective safety mitigations; and
6. Evaluating the effectiveness of applied treatments.

This review has mainly focused on the first task of identifying crash hot spots on the
road network. Since RTC analysis is such an important activity for improving roadway
safety, it has been extensively researched in the academic press. Despite the lack of
consensus on crash hot spot analysis, researchers and experts have developed various
methods for crash event analysis. The simplest and most straightforward method for crash
hot spot analysis is detecting where the crash rate per unit exposure exceeds a given normal
threshold [27].

Although most of the traditional approaches of crash analysis focus on the time
dimension, nowadays, the spatial dimension of traffic crashes has got more attention from
researchers [16,28]. This facilitates the application of GIS into crash hot spot analysis. In
recent years, several RTC databases recorded the precise locations of crashes through the
application of GPS devices; hence, it is no longer necessary to identify the crash hot spot
section of a road from aggregated data [2,29]. By having these accurate locations of RTC,
road safety analysts can focus on the highly clustered crash locations.

Generally, the most frequently used methods of crash hot spot analysis can be catego-
rized into two. These are:

• Non-Spatial Model Analysis (NSMA): which uses the traditional approaches of statis-
tics such as regression models [30], Empirical Bayes [31], and full Bayesian [32];

• Geo-Statistical Analysis (GSA): by analyzing the spatial units of crashes (i.e., Density
Estimation, DE) [33,34] or spatial arrangement of each crash attribute value (i.e.,
Spatial-Autocorrelation, SA) [35–37].

As compared to NSMA, Geo-Statistical crash hot spot analysis needs fewer data and
is easier to apply due to the simplified mathematical calculations [38] and its integration
of crash incidence with spatial factors and, also, the presentation of clear visualization in
the result. The adoption of the spatial arrangement of attribute values from each unit is
more advantageous than using a spatial unit of crashes due to its consideration of spatial
dependence of attribute values and the geographical location of incident points [39]. For
a thorough understanding of the Geo-Statistical analysis of crashes, readers are recom-
mended to a review paper [40] dedicated to reviewing the scientific literature on spatial
approaches and spatial analysis in road safety.

GSA can be further divided into two groups such as Global Indexes (GI) for instance
Global Moran’s I (Spatial-Autocorrelation), Getis-Ord G statistic and Geary’s C; and Local
Indexes (LI) these are Local Anselin Moran’s I (Cluster and Outlier Analysis), planar Kernel
Density Estimation (KDE), Getis Ord Gi* and kriging. Except for kriging and KDE, the rest
incorporates a procedure for testing the statistical significance of clustered incidents. In the
global index analysis, the spatial pattern incidence of the entire network is assessed and it
analyzes whether data is clustered in a group, dispersed, or randomly distributed, whereas
the local indexes are used to study the microscopic pattern of incidents to determine the
spatial location and extension of these clusters [41,42].

Several studies have used planar KDE [17,33], which works by creating a continuous
surface of total event density within a search bandwidth and network space KDE [34,43],
which is generalized to calculate the crash density over a distance unit rather than an area
unit for crash hot spot identification. The major limitations of both planar and network
space KDE’s are the lack of statistical significance test in the analysis [17,34,44] and also,
there are no criteria for prioritizing crash hot spots [34]. Research has developed and used
KDE+ as an effective tool for crash hot spot identification and site prioritization to overcome
the limitation of the network and planar KDE approach [45,46]. The KDE+ analysis works
based on the standard KDE approach with the addition of statistical significance testing of
clustered points.
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Compared to KDE, for both Moran’s I and Geary’s C the statistical significance of clus-
tered crashes is determined using Z-Score [47,48]. Indeed, Moran’s I and Geary’s C follow
the global statistics approach which is the measure of the whole study network. The local
statistics approach (such as Getis-Ord Gi* statistics [37] and local Moran’s I [35]) is superior
to the global statistics system for studying spatial variance and spatial dependency. The
Getis-Ord Gi* statistic, in particular, has been validated to identify statistically significant
values of crash hot spots or cold spots and has proven to be useful [10,49].

3. Methods and Materials
3.1. Study Area and Data Collection

This research was carried out in Ethiopia to identify and prioritize Road Traffic Crash
(RTC) hotspot regions, with a particular emphasis on the Oromia region (see Figure 1). RTC
data of Ethiopia was obtained from the Ethiopian federal police commission, traffic police
division. The commission records crash data for all regions and federal territories. Crash
data of four consecutive years (from 2014 to 2017) were used for crash severity analysis
and hot spot identification. All collision types acquired from the police commission (i.e.,
single-vehicle collision, multiple vehicle collision, collision with pedestrians, collision
with animals and so on) were utilized for analysis. The Ethiopian Geospatial Information
Agency (EGIA) provided a map of Ethiopia divided into regions and federal territories, as
well as a map of the Oromia region, divided into zones and towns. In these maps, roadway
networks and other important features were included as a shapefile.

Figure 1. Map of the study area in Ethiopia.

3.2. Methods

For RTC hot spot identification, this study used the spatial statistics toolbox of Ar-
cGIS 10.5. Supporting tools such as Google Earth and Google Maps were also utilized.
For RTC hot spot identification, the procedure used in this study can be divided into the
following steps: (i) projecting the map, (ii) computing the severity value of each crash,
(iii) analyzing the spatial pattern of RTCs to measure the fluctuating threshold distance
of RTC clustering by using Moran’s I index of incremental spatial autocorrelation tool and
(iv) identifying and prioritizing highly clustered RTCs or hot spot zones. The detailed steps
and the theoretical basis are discussed as follows.
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Instead of using a geographical coordinate system, the map used to identify crash
hot spots was a projected coordinate system. The map dataset obtained from Ethiopian
Geospatial Information Agency (EGIA) was in a geographic coordinate system. Since
distance is among parameters to be considered in crash hot spot analysis [50], the analyzed
maps were projected using the UTM (Universal Transverse Mercator) coordinate system in
World Geodetic System WGS84.

3.2.1. Crash Severity

In addition to crash rates, crash hot spot zones are classified based on their severity
index. The crash severity index determines the weight of a single crash. So, to accurately
identify high or low clustered zones, it is important to incorporate crash severity index in
hot spot analysis. The concept of crash severity index is accrediting the higher values to
severer crashes based on the expenditures. Many past studies associated crash severity
weights in crash hot spot analysis, for instance, Geurts et al. [51] used severity index
developed by the Belgian government by giving values of 5, 3 and 1 for fatal, serious
injury and slight injury, respectively. Because Ethiopia lacks a traffic crash costing platform
for particular crash severity levels, the crash severity index developed by the Roads and
Traffic Authority of New South Wales [52] was utilized in this study. In this system, each
crash incident is provided a value of 3.0 for fatal, 1.8 for serious injury, 1.3 for slight injury
and 1.0 for property damage only crashes. The crash severity index of each zone can be
computed by Equation (1) [52].

SI = 3.0 · X1 + 1.8 · X2 + 1.3 · X3 + 1.0 · X4 (1)

where X1 is fatal crashes, X2 is serious injury crashes, X3 is slight injury crashes, X4 is
Property-damage-only crashes.

3.2.2. Getis Ord Gi*

For RTC hot spot identification, spatial analysis using local spatial autocorrelation is
preferable. Local Moran’s I is among the well-known local spatial autocorrelation approach
used commonly in motor vehicle crash hot spot analysis [53]. However, the family of
Moran indices does not differentiate between hot or cold spots. Getis Ord Gi* is, therefore,
more appropriate since it distinguishes clusters with high and low feature attribute values
among local events. In this study, Getis Ord Gi* statistics method was used to identify RTC
hot spots.

Gi* statistics aims to investigate the presence of a spatial pattern for an arbitrary
variable X, where a selected event (with a value of xi) is autonomously connected to the
field. As a result, if xi is analogous to adjacent regions, it can be seen that variable X has
spatial autocorrelation over area i. A simple form of Gi* statistics is defined as Equation (2),
which is derived by dividing the study zone into n indefinite extent of regions, each with
accurate Cartesian coordinates and a central point i (i = 1, 2, 3, . . . n) [37].

G∗
i =

∑n
j=n wijxi

∑n
j=1 xj

(2)

where Gi* is a statistic that describes the spatial dependency of feature i, xj is the value of
variable X at feature location j. wij is the spatial weight between feature i and j.

The conceptualized-spatial relationship around distance d (for instance Cartesian
distance) is used to calculate wij. The result of Gi* statistics may vary based on the choice
of d. The value of d is a user-defined threshold. The most straightforward way to think
about wij is in binary form, with 1 indicating inclusion and 0 indicating exclusion of the
association between i and j events. However, in practice, wij can have non-binary values
and the total weights (Wi) are expressed in Equation (3).

Wi = ∑n
j=1 wij (3)
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Readers are referred to a paper on Getis Ord Gi* statistics [54] to learn more about the
statistical elements such as Gi* expectation, Gi* variance and sample mean and variance for
the variable X. Finally, as shown in Equation (4), Gi* statistics are typically standardized
using the sample mean and variance for a normal asymptotical condition.

Z(G∗
i ) =

∑n
j=1 wijxj − x∑n

j=1 w2
ij

s

√
n∑n

j=1 w2
ij−
(

∑n
j=1 wij

)2

n−1

(4)

This standardized Gi* statistics is a Z-score, which is associated with the statistical
significance of each target region. The null hypothesis for the Getis Ord Gi* hot spot
analysis tool is that crashes are caused by Complete Spatial Randomness (CSR) or are
randomly distributed. The null hypothesis would be rejected or accepted based on the
Z-score and p-values obtained from the Getis Ord Gi* analysis tool. The p-value for the
spatial pattern analysis is the probability that the observed crash incidents occurred in
some arbitrary manner. When the returned p-value from the hot spot analysis tool is very
small, it is very unlikely that the observed crash incident is to be distributed randomly;
thus, the null hypothesis can be rejected. The tails of the standard normal distribution
curve have very small p-values and very high absolute values of Z-scores. When the value
of the Z-score is closer to zero it implies that there is a random distribution of spatial events
in the region. The maximum absolute values of Gi* statistics, on the other hand, represent
clusters of low-valued events for negative or high-valued events for positive.

ArcGIS’ Getis Ord Gi* hot spot analysis tool uses the Gi* statistics index to identify a
significant hot/cold spot based on neighboring attribute values. Regions with statistically
significant positive Z-scores (hot spots) are surrounded by neighbors with high feature
values, whereas regions with statistically significant negative Z-scores (cold spots) are
surrounded by neighbors with low feature values. If the local aggregate of the target area
and its neighboring values differ significantly from the likely local value to be random
distribution, a statistically significant Z-score is produced.

The final statistical significance for hot spot identification has been adjusted by taking
multiple testing and spatial dependency into account and has taken the form of Equation (5).
This final equation is incorporated in ArcGIS’ Getis Ord Gi* hot spot analysis tool to identify
and prioritize crash hot spots. Thus, the final form of statistical significance for hot spot
identification (in Equation (5)) was used in this study by running ArcGIS’ Getis Ord Gi*
hot spot analysis tool.

G∗
i =

∑n
j=1 wijxj −

(
∑n

j=1 xj
n

)
∗ ∑n

j=1 wij√
∑n

j=1 x2
j −∑n

j=1 xj

n ∗

√
n∑n

j=1 w2
ij−
(

∑n
j=1 wij

)2

n−1

(5)

3.2.3. Spatial Autocorrelation

In the spatial planar analysis, the distance methods used are Manhattan or Euclidean.
In the analysis of spatial autocorrelation, the choice of conceptualization of the spatial
association among crash events could be based on knowledge of the interactions among
the features to be analyzed. There are several ways to conceptualize the spatial association
between events, including fixed distance, inverse distance, inverse squared distance, K-
nearest neighbors, the zone of indifference, the space-time window method and contiguity
edges and corners. The result of the crash hot spot from global spatial autocorrelation
and Getis Ord Gi* can be improved by applying Anselin Local Moran’s I to the aggregated
traffic crashes [55]. The selection of appropriate spatial relationships among features for
the use of local spatial autocorrelation analysis may help to reflect the distributional and
spatial situation of definite target features [56]. The fixed distance approach was used in
this study to conceptualize the spatial association among events.
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In this study, the incremental spatial autocorrelation tool of ArcGIS 10.5 was used to
estimate the fluctuating value of spatial autocorrelation as a distance threshold. In this
tool, Global Moran’s I index approach is employed to quantify the distance bandwidth
(i.e., a distance in which maximum crash events are clustered [57]) across the entire area.
The equations of Moran’s I index (I), the expected value (E[I]), variance (V[I]) and Z-score
(Z_Score) are presented in Equation (6) to Equation (9) respectively:

I =
n

∑n
i=1 ∑n

i=1 wi,j
∗

∑n
i=1 ∑n

i=1 wi,j
(
xi − X

)(
xj − X

)
∑n

i=1
(
xi − X

)2 (6)

E[I] =
−1

(n − 1)
(7)

V[I] = E
[

I2
]
− E[I]2 (8)

Z_Score =
I − E[I]√

V[I]
(9)

where xi is an attribute value of target feature at location i, xj is an attribute value of
neighboring feature at location j, wij is the spatial weight between features at location
i and j.

A statistically significant Z-score (peaked) shows a critical distance threshold at which
spatial autocorrelations are highly clustered. The first peak was used as the distance
threshold in this study because it tends to best describe the spatial variation analysis and is
recommended for use when there are multiple peaks [58].

4. Results and Discussions

This section presents statistical trends of crash fatalities as well as the findings of crash
hot spot analyses for Ethiopian regions and federal territories, as well as Oromia zones and
special towns, followed by discussions.

4.1. Death Rate and Trend of Road Safety in Ethiopia

The analysis to figure out the trends of fatalities that occurred due to road traffic
crashes (RTCs) in Ethiopia was done based on eight consecutive years (2010–2017). The
crash history from Ethiopian Traffic Police Commission has shown that in 2010, 2541 fa-
talities occurred as a result of traffic collisions (see Figure 2). There was a slight increase
in fatalities until 2013, then a significant increase in 2014, when the number of people
killed in crashes shockingly reached 4883. Even if a slight decrease was seen in 2015, it
increased again and finally, 5118 deaths were recorded in 2017. According to the data from
the Ethiopian Roads Authority (ERA) [59], from 2009 to 2017, 77,980 kilometers of road
networks were newly constructed total highways (asphalt and gravel), with an annual
growth rate of 13.08%. Despite the Ethiopian government’s efforts to improve access and
mobility for road users, the significant growth of motor vehicles was a contributing factor
to the increase in traffic fatalities. The motor vehicle registration record of the Ethiopian
Federal Transport Authority disclosed that in 2009 the number of vehicles in Ethiopia
was about 276,794 in which had exceeded 831,000 motor vehicles in 2017 with an annual
average growth rate of 15.28% [60]. The Ethiopian Police Commission-Department of
Traffic Police reported that the day-to-day increase of RTC fatalities caused by alcohol
use has become their main concern. As previously stated, the reasons for the increase of
fatalities may be attributed to a significant growth rate of motor vehicles relative to road
networks (the road network’s growth rate is 13.08%, while motor vehicles’ growth rate
is 15.28%) and alcohol consumptions of drivers. The detail of these trends is presented
in Figure 2.
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Figure 2. Number of deaths recorded in Ethiopia from 2010–2017.

4.2. Crash Hot Spot Analysis of Ethiopian Regions and Towns

Crash hot spot analysis was done at a regional level as a polygon feature dataset by
applying the computed crash severity values of each region in the attribute table. The
incremental spatial autocorrelation toolbox of ArcGIS was used to choose the distance band-
width and the results are shown in Figure 3. The maximum and first peak distance obtained
from incremental spatial autocorrelation analysis was 352.441 kilometers, indicating that
RTC incidents are highly clustered at a distance band of 352.441 kilometers with a statistical
significance of 0.01 (the p-value obtained is 0.402% < 1%; thus, the confidence level is 99%).
The bigger threshold distance values can be explained by the fact that the polygons in
the analysis (i.e., the regions and administrative cities) have larger area coverages. For
example, Oromia, Ethiopia’s largest region, has an area of around 355,423 km2. In distance
computations for polygon features, feature centroids are considered. The weighted mean
center of all feature components is used to compute the centroid for various portions of
the polygon feature. The weighted mean center for point features is 1, length for line
features and area for polygon features [61]. Thus, in the case of this analysis, features
such as polygons with wider regions were expected to have a larger threshold distance.
Furthermore, the default Beginning Distance was applied in this study while executing the
incremental spatial autocorrelation. The minimum distance for which each feature in the
dataset has at least one neighbor is set as the default value for Beginning Distance. As a
result, the beginning distance for incremental spatial autocorrelation analysis increases
since larger regions (polygons) demands longer distances to reach at least one neighbor
from their centroids. In fact, the higher beginning distance used to determine the first peak
has a direct influence on the value of the threshold distance. This value was used as the
threshold distance in Getis Ord Gi* crash hot spot identification. Accordingly, crash hot
spot identification and ranking of Ethiopian regions and federal territories were performed
by considering the spatial patterns and spatial dependence of crashes. The result obtained
from Getis Ord Gi* crash hot spot analysis is presented in Figure 4 and Table 1.

Table 1. Crash Hot Spot Result of Getis Ord Gi*.

OBJ_ID Crash Severity Shape_L. (m) Shape_A. (m2) GiZScore GiPValue NNeighbors Region_Names

1 109,518 106,098 525,638,401 2.87230 0.00407 3 Addis Ababa
8 30,661 6,403,850 355,423,484,208 2.55848 0.01051 3 Oromia
9 11,192 2,806,015 117,263,152,867 0.85676 0.39158 3 SNNP
2 19,831 2,689,742 153,443,579,103 0.49482 0.62073 5 Amhara
11 8201 1,580,725 56,451,528,629 −0.07804 0.93780 3 Tigrai
4 1477 1,630,480 48,889,173,519 −0.54855 0.58331 3 B_Gumuz
6 845 908,665 25,649,364,273 −0.86238 0.38848 3 Gambella
3 1693 1,920,341 95,242,894,663 −0.94792 0.34317 5 Afar
10 2179 3,677,531 278,073,581,426 −1.40998 0.15855 3 Somali R.
5 2780 215,410 1,507,085,646 −1.77287 0.07625 4 Dire-Dawa
7 8201 93,895 394,011,903 −1.77287 0.07625 4 Harari
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Figure 3. (a) Result of spatial autocorrelation; (b) Attribute table result of spatial autocorrelation.

Figure 4. RTC Hot spot map of Ethiopia regions and federal territories.

With confidence intervals of 99% and 95%, Addis Ababa and the Oromia region were
identified as crash hotspots. Furthermore, with a 90% confidence interval, two federal
territories, ‘Dire-Dawa’ and ‘Harari,’ were revealed as low clusters of crash severity areas
or cold spots. Crash hot spot zones are primarily characterized as highly densified areas
that are associated with the presence of numerous activities that result in a large number
of pedestrians, traffic volumes, populations and intersections. Addis Ababa, the capital
city of Ethiopia was revealed as the first crash hot spot. The city is the home of AU
(African Union), the Economic Commission for Africa (ECA) and over one hundred (100)
embassies of several countries. The financial and administrative capital city of Ethiopia,
Addis Ababa, is facing persistent growth and change. The city is transforming from its
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current administrative center to the central business district and an industrial center. Due to
this change and rapid growth, there is an excessive transportation demand for the mobility
of goods and people and, also, there is a higher attraction of people to the city in which a
population of 3.6 million in 2013 is forecasted to be nearly 10 million in 2037 [62]. Whereas
the city’s efficient share of roadway infrastructures in land use requires 20% to 25%, the
current share is 7%, indicating that the city’s road transport system is inadequate [63].

The city’s modernization, combined with an increase in motor vehicle ownership,
increases the number of vehicles in the city; for example, of all registered motor vehicles in
Ethiopia, 77% are found in Addis Ababa, with a yearly growth rate of 5.8% [64]. Walking
(pedestrians) is a substantial portion of Addis Ababa’s transportation modes, accounting
for even more than 60% of daily journeys [65]. This high proportion of pedestrian road
users in the city, combined with limited sidewalk facilities (such as crowded sidewalks,
unpaved or inaccessible sidewalks), increases the number of pedestrian-related crashes.
This is demonstrated by the fact that about 89% of the city’s recorded crash causalities were
pedestrian-related [66].

Addis Ababa City, the first-ranked crash hot spot zone, has a radial-shaped road
network with five major roadways radiating in and out of the city’s central business
and administrative district. All traffic flows entering and leaving the city via these five
roadways pass through the Oromia region, which was prioritized as the second crash
hot spot area. High traffic volumes entering and leaving Addis Ababa have an impact
on the Oromia region, which shares a common periphery on all sides with Addis Ababa
(Finfinnee). Oromia was prioritized as the second hot spot due to higher traffic volumes,
spatial dependence with Addis Ababa, larger size (inland coverage, roadway length and
population number) and unsustainable traffic management in the region.

4.3. Crash Analysis of Oromia Region
4.3.1. Number of Deaths Due to RTCs in the Oromia Region

According to the Oromia traffic police bureau’s eight-year (2010–2017) crash database
record, fatalities that occurred due to RTCs had shown an increasing trend. Despite
population growth, the number of crash fatalities increased by more than double from
906 in 2010 to 1882 in 2017 (see Figure 5a). The Ethiopian Federal Transport Authority has
stated that there has been significant motor vehicle growth in the Oromia region, which
has a strong correlation with the increased fatalities [60]. According to the Oromia Traffic
Police Bureau crash data, denying priority for pedestrians pass, unsafe vehicle passing,
driver’s alcohol and drug consumptions, over-speeding, driver workload, insufficient
vehicle following time and vehicle problems are the recognized significant factors for
the increasing number of deaths in Oromia [67]. This increase in fatalities in the region
demonstrates the impact of road traffic crashes on the socio-economic well-being of the
country as a whole and the Oromia region in particular. To minimize road traffic crashes
and their consequences, the Oromia transport bureau, traffic management, traffic police,
road authority and concerned governmental and non-governmental organizations should
all work together to address this serious problem. Figure 5a depicts the number of RTC
fatalities in the Oromia region over eight consecutive years.

Male fatalities were 2.7 times higher than females (Figure 5). According to the popu-
lation census commission’s 2007 survey, the percentage of males and females in Oromia
was roughly equal; moreover, males accounted for 73% of the region’s road traffic crash
victims. This can be explained by the fact that, in comparison to females, males have greater
exposure to road transportation as drivers and passengers for a variety of reasons. For
example, males are over-represented in professional driving careers (i.e., jobs in remote
areas, operators, taxi, nighttime driving and so on) and females are under-represented in
self/paid employment or outdoor activities in Ethiopia [68], which could reduce female
vulnerability to RTCs. Furthermore, males are more likely than females to engage in risky
driving behaviors such as careless overtaking, the use of alcohol, impatience, exceeding
posted speed limits and having a lower risk perception [69,70]. As compared to females,
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males’ higher use of two-wheeled motor vehicles and bicycles for transport can also affect
their susceptibility to traffic crashes [71].

Figure 5. (a) Total lives lost due to RTCs; (b) Percentage deaths (Female versus Male).

4.3.2. Crash Severity

Table 2 shows that there were 17,259 traffic crashes in the Oromia region during the
last four years, from 2014 to 2017.

Table 2. A four-year number of traffic crashes reported in their respective severity type.

Year Fatal Serious Injury Slight Injury PDO Total

2014 1310 901 1100 1722 5033
2015 1356 623 515 1446 3940
2016 1188 568 518 1626 3900
2017 1319 729 532 1806 4386

Percentage (%) 29.97 16.35 15.44 38.24 100
PDO: Property damage only.

4.3.3. Crashes in the Day of Week and Time of Day

RTCs occur more frequently on Thursday and then on Sunday in a week and from
12:00 to 13:00, 18:00 to 19:00 and 09:00 to 10:00 in a day. We recommend that the Oromia
region’s traffic management, transportation authority and traffic police bureau intervene
and monitor traffic flows during peak crash days and times when a higher number of
crashes are likely to occur. The details are demonstrated in Figure 6. Thursday is more
likely associated with a market day in the Oromia region, when a large number of people
may travel from place to place and Sunday is an off-day, but most of the society and
road users may prefer to consume alcohol, resulting in more traffic crashes. Crash rates
were higher from 12:00 to 13:00 and 09:00 to 10:00 during the day and these are the times
when higher traffic flows are observed (peak hours), so the risk of RTC could be increased.
Another critical time revealed was 18:00 to 19:00. This was most often associated with
overnight collisions when there would be insufficient visibility for vision.

4.3.4. Crashes by Collision Type

In Oromia, crashes were more likely to occur with a collision type of ‘Ran-Off-Road
(ROR)’ see Figure 7. A run-off-road (ROR) collision happens when a moving car overturns
on impassable ground or goes out of the roadway and strikes an object. From the critical
reasons for ROR collisions, over 95% were driver-related factors [72]. Among the significant
driver-related factors that contribute to ROR collisions were the internal problem (i.e., heart
attack or other health deficiency), too fast for over-compensation, speeding on curves
and sleeping or ‘fatigued driving’, respectively, in a descending manner [72]. However,
a thorough investigation into the factors that contribute to the frequency of higher ROR
collisions in the Oromia region is needed.
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Figure 6. (a) Crashes occurred in a day of the week: from 2014–2017; (b) Crashes occurred in the time of the day: from
2014–2017.

Figure 7. Crashes analyzed by collision types: 2014–2017.

4.3.5. Crash Hot Spot Analysis

The threshold distance for identifying crash hot spots was determined using the
results of Moran’s I spatial autocorrelation analysis, which is shown in Figure 8. The
threshold distance used in Getis Ord Gi* crash hot spot analysis is the distance at which
crashes are highly clustered. As a result, the incremental spatial autocorrelation analysis
of the Oromia region yielded a threshold distance of 161.764 kilometers with a statistical
significance level of 0.10 (such that the p-value obtained is 5.14% < 10% thus, the confidence
level is 90%). Even though the current analysis’s first peak has been cut by more than
half due to the reduced analysis coverage from regions to zones within a single region
(Oromia), the threshold distance remains higher. As explained earlier (in Section 4.2), larger
zones (e.g., Borena with 45,463 km2 area coverage and Bale with 44,912 km2 area coverage)
necessitate longer distances to reach at least one neighbor from their centroids, resulting
in a higher default Beginning Distance and threshold distance. Figure 9 and Table 3 show
the results of Getis Ord Gi* statistics for identifying crash hot spots in the Oromia region.
Getis Ord Gi* statistics’ crash hot spot analysis identified six hot spot areas, which are
listed in the attribute table’s result (see Table 3). The rankings were based on each zona’s
computed Z-score.
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Figure 8. The spatial autocorrelation of Oromia in (a) Graph and (b) Attribute table.

Figure 9. Crash hot spot map of Getis Ord Gi* statistics of Oromia region.
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Table 3. The Attribute of Crash Hot Spot Result of Getis Ord Gi*.

OBJ_ID Crash Severity Shape L. (m) Shape_A. (m2) GiZScore GiPValue NNeighbors Zone_Names

7 1520 1,269,948 9,892,678,054 2.90573 0.00366 8 E.Shewa
20 429 60,226 85,906,978 2.80042 0.00510 7 Burayu T.
6 1501 913,429 11,530,834,348 2.13166 0.03303 7 N.Shewa
5 1488 1,577,743 14,806,415,071 2.01316 0.04410 7 W.Shewa

15 712 25,993 29,858,260 2.01316 0.04410 7 Adama T.
13 1154 681,347 6,508,288,032 2.00548 0.04491 8 S-W.Shewa
19 149 756,608 8,097,272,756 1.59692 0.11028 5 H.G.Wellega
17 885 1,080,199 11,776,723,820 1.31245 0.18937 4 W.Arsi
10 1155 1,390,038 18,239,926,953 0.80006 0.42367 2 E.Hararge
9 724 768,631 16,523,003,204 0.73969 0.45949 4 W.Hararge
8 798 909,816 20,696,957,154 0.41390 0.67895 7 Arsi
4 634 1,009,026 18,075,624,315 −0.19253 0.84733 5 Jimma_Zone
2 597 980,901 13,830,420,375 −0.19309 0.84689 6 E.Wellega

14 649 985,714 18,577,054,735 −0.43489 0.66364 3 Guji
16 303 38,118 50,520,944 −0.72780 0.46674 3 Jimma_City
12 246 3,121,707 45,463,584,611 −0.82827 0.40752 2 Borena
18 352 642,890 9,851,170,119 −0.83608 0.40311 3 Kelem_Wellega
1 507 892,523 12,744,967,754 −0.86970 0.38446 4 W.Wellega
3 632 999,481 16,516,931,736 −1.24901 0.21166 6 I.A.Bora

11 218 1,434,621 44,912,392,310 −1.49546 0.13479 3 Bale

According to the findings, the East ‘Shewa’ (E. Shewa) zone and ‘Burayu’ town
(Burayu T.) have the highest values of crash severity clusters and are ranked as priority
crash hot spot areas across the Oromia region with a confidence interval of 99%. According
to Section 3.1 of this document, Addis Ababa is encircled by five major roadways. These
are locally named as; (1) ‘Ambo-Ber’, (2) ‘Tarma-ber’ (3), ‘Jimma-Ber’, (4) ‘Gojjam-Ber’
and, (5) ‘Kality-Ber’ or ‘Bishoftu-Ber’. The AADT for freight vehicles entering and leaving
Addis Ababa is estimated to be 10,725 and 12,890, respectively [73]. More than 70% of these
entering and exiting freight vehicle shares have gone through Gate-5 (Kality/Bishoftu-
Ber) [73], which is located in the East Shewa zone, Oromia’s first-ranked crash hot spot.
‘Bishoftu-Ber’ is also the key entry point for import and export freight vehicles between
Addis Ababa and the port of Djibouti. As a result, the East ‘Shewa’ zone was expected to
experience higher traffic volumes and freight vehicles, which are directly related to the
increased crash frequencies. When compared to others, issues related to the second crash
hot spot zone, ‘Burayu town,’ were primarily associated with poor roadway facilities (such
as narrow lane width, deteriorated pavement, lack of pedestrian walkway and so on).

5. Limitation of the Study

The availability of crash data recorded with precise incident locations in coordinates
(using Global Coordinate System, GPS) or mileposts that could be linked to roadway
geometric characteristics drives a well-organized RTC analysis as well as results for specific
roadway segments and intersections. The Ethiopian ministry of transport, regional trans-
port authorities and federal police commission-traffic police departments are in charge of
collecting and reporting the essential crash data to safety researchers in need of it. However,
crash locations that occur along a road alignment (milepost) are not recorded in Ethiopia.
This study was unable to investigate the spatial dependence of crashes with roadway
parameters (such as road length, degree of curvature, AADT, gradient, stopping sight
distance and others) as a contributing factor to crash occurrences due to a lack of crash
locations in the given data. Moreover, the crash severity index of each severity level is
derived from the respective crash costs in which these costs vary from region to region.
However, due to the lack of an agreed-upon or defined crash costing platform for specific
crash severity levels in Ethiopia, the severity index developed by the Roads and Traffic
Authority of New South Wales [52] was used in this study.
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6. Conclusions

The primary goal of crash hot spot analysis is to answer a critical question in road
safety practice: where are the hazardous street areas located? This inquiry is addressed
scientifically by studying the spatial pattern of crashes. The advantage of using advanced
GIS-based hot spot analysis is not limited to the simple presentation of hot spot roadway
areas; it also provides the ability to investigate the spatial dependency of crash incidents
and spatial connections with other factors. For the past five decades, a GIS application
in the field of traffic safety has aided in the advanced realization of crash characteristics,
which is then used as a piece of information to improve traffic safety.

This study aimed to present a GIS application to identify and quantify statistically
significant spatial patterns based on crash numbers and severity. Based on the severity of
the crashes, crash hot spots were identified using the integration of spatial autocorrelation of
crashes and Getis Ord Gi*. The use of spatial autocorrelation has the advantage of allowing
statistical analysis of crash spatial patterns. The ability of Gi* statistics to differentiate high
crash clusters from low crash clusters makes it a better approach for identifying crash hot
spots than Moran’s I index. In this study, rather than the total number of collisions, crash
counts and severity values were used.

Following the analysis of spatial autocorrelation of crashes, Gi* statistics were used
to identify high and low crash severity clusters. The first analysis result of crash hot spot
identification for all Ethiopian regions and federal territories identified Addis Ababa and
Oromia region as high crash severity clusters with confidence intervals of 99 percent and
95 percent, respectively. Second, six statistically significant crash hot spots in Oromia
were detected through the integration of spatial autocorrelation and Gi* statistics. With a
confidence level of 99%, the quantitative results of Z-Scores prioritized East ‘Shewa’ zone
and ‘Burayu’ town as the most crash hot spots. All of the six identified crash hot spot zones
and towns are near the entrance to Addis Ababa, Ethiopia’s capital city. Addis Ababa is
linked to other towns, zones and regions by five major roads and all of these connecting
roads pass through the identified crash hot spots in Oromia. It can be concluded that the
identified crash hot spot locations are along the entrance and exit of Addis Ababa city;
therefore, the concerned bodies and traffic management agencies should give these areas
top priority and conduct a thorough study in order to reduce the socio-economic impact of
traffic collisions.

The results of the study acknowledged that the applied method of crash hot spot
identification (such as the integration of spatial autocorrelation of crashes and Getis Ord
Gi*) has the ability to analyze spatial patterns of crashes and identify highly clustered
crash severity with a statistical significance. The study demonstrated that using GIS in
Ethiopia has a significant benefit when it comes to prioritizing a promising site for safety
improvements. Thus, the application of GIS in crash hot spot analysis must have to be
considered and need to be used as a tool for road safety study in Ethiopia in the future.
The recommendations for future road safety improvements include the development
of a national crash hot spot (blackspot) identification manual, the frequent spatial and
temporal mapping of crash patterns and the provision of training for safety engineers
on the methodologies for identifying crash hot spots, as well as on the advancements of
GIS technology to be implemented in the field of road safety. Furthermore, the Ethiopian
Ministry of Transport (MoT) must support the crash recording and data-sharing platform
with advanced technologies such as developing a computerized crash database system and
centralized mobile applications that enable GPS, which improves the identification and
analysis of the crash spatial pattern to apply effective safety measures.
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