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Abstract

In this thesis we considered the flatΛCDM cosmological model to constrain the density parame-

ters, the Hubble constant and the age of the universe. We did also estimate the mass of the uni-

verse setting some relevant boundary conditions. The analytical derivations were exploited by GR

field equations with the expanding coordinates where the cosmic equations were handled with the

Friedman-Lemaître equations. Mathematica 11.3 was used to generate numerical data to compare

with the observational data of WMAP. To our conclusion, the flatΛCDM well fits to the observa-

tions in the selected constraints. On the other hand, our derived analytical mass well agrees with

the result obtained through cosmic dimensional analysis. However, our estimated numerical value

is one order higher than obtained earlier which ism ∼ 1054kg..

Keywords: GR, FLRW-metric, EFE, FLE, Cosmology, Universe parameters, Mass of the universe
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Chapter 1

Introduction

1.1 Background

The universe is the spacetime and their contents and other forms of matter and energy[1]. Math-

ematical implication by Friedmann and others within Einstein’s general relativity tells us that the

universe is expanding. The evidence corresponding to the predictions of expansion is that the ob-

served objects in deep space are presifted. This means that these objects are receding from the

Earth. This phenomenon obeys a law known as Hubble’s law, which Hubble was found empiri-

cally in 1929 [2]. However, the law was first derived from general relativity by George Lemaître

in 1927 [3]. The simplest cosmological model assumes that the universe is filled with both matter

and radiation. Nowadays, it was found that radiation density is low and the universe today is matter

dominated. If matter can be treated as a pressureless fluid, then the universe will expand forever (if

the spatial geometry is Euclidean or hyperbolic) or eventually recollapse (if the spatial geometry is

of a 3-sphere)[4].

The discovery of the accelerating Universe revolutionized20th century cosmology by indicating

the presence of a qualitatively new component in the Universe that dominates the expansion in the

last several billion years. The nature of dark energy - the component that causes the accelerated

expansion is unknown, and understanding its properties and origin is one of the principal challenges

1
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in modern physics. Current measurements are consistent with an interpretation of dark energy as a

cosmological constant in general relativity.

The model of the hot expanding universe becomes scientific and philosophical debate to establish

reality. Explosive progress in the field of cosmology over the past decade allowed for something

that may well have been totally unanticipated in the previous decades: the high-precision determina-

tion of several cosmological parameters. Consequently, measuring dark energy properties requires

a combination of cosmological probes that are sensitive to both classes of effects to break these

parameter and model degeneracies[5][6]. In 1998, published observations of type Ia supernovae by

the high-z supernova search team [7], followed in 1999 by the supernova cosmology project [8],

suggested that the expansion of the universe is accelerating. The observational evidences indicate

that the universe can not be modeled in such a simple way. A hypothesis corresponding to the

observations is that the universe consist of some form of dark energy with negative-pressure. The

existence of dark energy is needed to reconcile the measured geometry of space by measurements

of the cosmic microwave background (CMB) anisotropies and the WMAP satellite. The CMB in-

dicates that the universe is very close to flatness [9][10]. The WMAP seven-year analysis gives an

estimate of 72.7% dark energy, 22.7% dark matter and 4.6% ordinary matter. The dust model of

cosmology is inconsistent with observation[11].

The mysterious dark energy content of the universe is not well known. There are a number of mod-

els proposed to explain it, including models with higher dimensional universe and new principles

of physics. Yet, most of the models need to pass observational constraints while others are wait-

ing for advanced tools to test. However, irrespective of the limitations raised on some theoretical

background issues, the standardΛCDM model is successfully passing all observational tests made

so far. Further researches on its developments and applications of theΛCDM model are necessary.

Thus, in this thesis we consider theΛCDM cosmological model to constrain some parameters of
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the universe where observations are used to predict. We also try to estimate the mass of the universe

employing appropriate boundary conditions.

1.2 Statement of the problem

Since the discovery of an accelerated expanding universe [7, 8] scenario, about 70% of the content

of the universe is considered with a mysterious dark energy whose origin is yet unknown. There

are a number of models proposed to explain it, including models with higher dimensional universe

and new principles of physics. Yet, most of the models need to pass observational constraints while

others are waiting for advanced tools to test. However, irrespective of the limitations raised on some

theoretical background issues, the standardΛCDM model is successfully passing all observational

tests made so far. Further researches on its developments and applications of theΛCDM model

are necessary. Thus, in this thesis we consider theΛCDM cosmological model to constrain some

parameters of the universe where observations are used to predict. We also try to estimate the mass

of the universe employing appropriate boundary conditions.

Research questions

1. How does the universe evolve in theΛCDM model?

2. How and in what way do some of the viable parameters of the universe constrain theΛCDM

model with respect to observation?

3. What is the mass of the universe estimated byΛCDM model?
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1.3 Objectives

1.3.1 General objective

To constrain cosmological parameters and estimate mass of the universe in

theΛCDM model.

1.3.2 Specific objectives

Specific objectives are:

1. To describe evolution of the universe in theΛCDM model.

2. To address the ways how viable parameters of the universe are being constrained with respect

to observation in theΛCDM model.

3. To estimate mass of the universe with theΛCDM model.

1.4 Methodology

General Relativity field equations in the presence of positive cosmological constant is used to derive

dynamical equations of the universe, where the expanding coordinate system is used. In particular,

the Friedmann-Lemaîre equations are exploited to develop relevant equations being addressed in

terms of observable dynamic parameters like: cosmic redshift, the Hubble parameter and density

parameters. Then, the resulting equations are used to constrain the parameters with respect to ob-

servation inΛCDM model. Furthermore, we estimate the mass of the observable universe where

the general relativistic volume element is used to integrate the mass.

The general scheme of the thesis is outlined as: Inchapter two we introduce the concept universe

and cosmological basics to study. Inchapter three we introduce General Relativity and the con-

ception of modern cosmology. Inchapter four we present fundamental principles and equations



5

of cosmology in GR framework with positive cosmological constant. Inchapter five results and

discussions follow while our summary and conclusion will be given inchapter 6.



Chapter 2

Introduction of basic cosmological
concepts of the universe

2.1 Historical overview of the universe

From the get-go in the twentieth century the universe was believed to be static: consistently the

equivalent size, neither growing nor contracting. In any case, in 1924 space expert Edwin Hubble

utilized a strategy spearheaded by Henrietta Leavitt to quantify distances to remote objects in the

sky. Hubble used spectroscopic red-shift data to measure the speeds these objects were travelling

then graphed their distance from Earth against their speed. He discovered that the speed at which

astronomical objects move apart is proportional to their distance from each other. The relation-

ship Hubble discovered was later used as evidence that the universe is expanding[12]. Today, the

consensus among scientists, astronomers and cosmologists is that the universe as we know it was

created in a massive explosion that not only created the majority of matter, but the physical laws

that govern our ever-expanding cosmos. This is what astronomers and cosmologists today called as

the big bang[13].

After the evidence of the expanding universe given by hubble, cosmologists and astronomers

rise the question what the universe was like in the past. Then Georges Lemiatre addressed this

question and in 1927 he showed that Einstein’s attempt to eliminate the prediction of an expanding

6
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or contracting space from his general theory of relativity did not work.

Lemaitre reasoned that if space is expanding, then the universe must have been denser in the

past than it is now. Using the physics of the general theory of relativity, he realized that there would

have been a time in the finite past when the universe would have been infinitely dense and, therefore,

he said that our universe must have had a beginning in time. This was contrary to the prevailing

opinion among Lemaitre’s contemporaries. Most scientists at time considered the universe was

infinitely old; that it had always existed and always would exist. Significant philosophical and

cosmological breakthrough, it was inadequate in terms of physics. There was little that could be

done with the model to see if it could, in fact, evolve into the present universe that would have

required a knowledge of nuclear physics that did not exist at the time. There was another reason why

scientists were opposing Lemaitre’s idea of a universe that had a beginning in time. They stated that

Lemaitre’s model was inadequate in terms of nuclear physics. George Gamow became interested

in Lemaitre’s ideas concerning the early universe. However, 1946 Gamow proposed that the high

temperatures of the early universe could provide the appropriate conditions for the creation of the

chemical elements in their proper ratios. Since the time Lemaitre had first addressed the problem,

significant advances in nuclear physics had occurred. In 1948, Gamow and Ralph Alpher developed

a model of an early universe consisting of neutrons at a very high temperature[14]. Cosmology is the

science about the origin, changes, structure and evolution of the Universe on the large scale, its past,

present and future[15][16]. The first era of relativistic cosmology, started in 1917 with the seminal

paper by Einstein in which he constructed, at the expense of the introduction of a cosmological

constant.

The history of relativistic cosmology can be divided into 6 periods:

• The initial one (1917-1927), during which the first relativistic universe models were derived

in the absence of any cosmological observation.
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• A period of development (1927-1945), during which the cosmological redshifts were discov-

ered and interpreted in the framework of dynamical Friedmann-Lemaître solutions, whose

geometrical and mathematical aspects were investigated in more details.

• A period of consolidation (1945-1965), during which primordial nucleosynthesis of light

elements and fossil radiation were predicted.

• A period of acceptation (1965-1980), during which the big bang theory triumphed over the

steady state theory.

• A period of enlargement (1980-1998), when high energy physics and quantum effects were

introduced for describing the early universe.

• The present period of high precision experimental cosmology, where the fundamental cosmo-

logical parameters are now measured with a precision of a few %, and new problematic arise

(nature of the dark energy, topology of the universe, new cosmologies in quantum gravity

theories, etc.)[17].

2.2 Cosmological parameters

The term "cosmological parameters" is forever increasing in its scope, and nowadays often includes

the parameterization of some functions, as well as simple numbers describing properties of the uni-

verse. The original usage referred to the parameters describing the global dynamics of the Universe,

such as its expansion rate and curvature. Now we wish to know how the matter budget of the uni-

verse is built up from its constituents: baryons, photons, neutrinos, dark matter, and dark energy. We

also need to describe the nature of perturbations in the universe, through global statistical descrip-

tors such as the matter and radiation power spectra. There may be additional parameters describing

the physical state of the universe, such as the ionization fraction as a function of time during the
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era since recombination. Typical comparisons of cosmological models with observational data now

feature between five and ten parameters[18].

2.2.1 Choice of the parameters

Most of the recent work on cosmological parameters has chosen a particular parameter sets, and

investigated parameter constraints when faced with different observational data sets. However, the

information criteria ask how well different models fit the same data set. A useful division of param-

eters is into those that are definitely needed to give a reliable fit to the data, which Andrew R Liddle

will call the base parameter set, and those that have proved irrelevant, or of marginal significance, in

fits to the present data. Cosmological models are typically defined through base parameters mainly

through;Hubble parameter,matter density,dark matter density,and dark energy density.

The base parameter set is actually extraordinarily small, and given in Table 2.1.

Ωm dark matter density
Ωr radiation density
ΩΛ Dark energy density
h Hubble parameter
q Deceleration Parameter

Table 2.1: Base parameters for a successful of cosmological model

1. Hubble parameter

In 1929 Edwin Hubble published his landmark discovery that distant spiral nebulae are receding

from us at speeds proportional to their distances, implying that the Universe is expanding at a con-

stant rate. Recessional velocities were calculated from the doppler shift of spectral lines and dis-

tances estimated from luminosity measurements. Despite considerable scatter in the results, Hubble

concluded that the rate of expansion was constant, with a value of almost 500 km per second per

megaparsec. Hubble’s Law can be written as:

v = H0 ∗ d (2.2.1)
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where v is the radial velocity of the galaxy, d is the galaxy’s distance, andHo is a constant of pro-

portionality that was later coined Hubble’s constant. Over the decades, Hubble’s constant has been

refined by many new and improved probes in the cosmos. Hubble’s original diagram is reproduced

as2.1.

Figure 2.1: A reproduction of Hubble’s original diagram. Recessional velocities are plotted
against estimated distances.
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More recently, the WMAP mission’s detailed measurements of the cosmic microwave back-

ground radiation give the best current estimate of the Hubble constant as71 ± 3.5kms−1Mpc−1.

[19]

2. Density Parameter

The density parameter is the ratio of the average density of matter and energy in the Universe to the

critical density (the density at which the universe would stop expanding only after an infinite time).

The density parameter (Ω) is given by:

Ω =
ρ

ρc
(2.2.2)

where (ρ) is the actual density of the universe and (ρc) the critical density. In other words, it is the

sum of a number of different components including both normal and dark matter as well as the dark

energy suggested by recent observations. We can therefore write:

Ω = Ωm + Ωr + ΩΛ (2.2.3)

whereΩm is the density parameter for matter,Ωr is the density parameter for radation andΩΛ is

the density parameter for dark energy. Current observations suggest that we live in a dark energy

dominated universe withΩΛ = 0.73,Ωm = 0.27, andΩr = 8.24 ∗ 10−5. To the accuracy of current

cosmological observations, this means that we live in a flat universe(Ω = 1) [14]. By making ac-

curate measurements of the cosmic microwave background fluctuations, WMAP is able to measure

the basic parameters of the Big Bang model including the density and composition of the universe.

WMAP measures the relative density of baryonic and non-baryonic matter to an accuracy of better

than a few percent of the overall density. It is also able to determine some of the properties of the

non-baryonic matter: the interactions of the non-baryonic matter with itself, its mass and its inter-

actions with ordinary matter all affect the details of the cosmic microwave background fluctuation

spectrum. WMAP determined that the universe is flat, from which it follows that the mean energy
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density in the universe is equal to the critical density.

WMAP breakdown total density into:

• 4.6% atoms. More than 95% of the energy density in the universe is in a form that has never

been directly detected in the laboratory. The actual density of atoms is equivalent to roughly

1 proton per 4 cubic meters.

• 24% cold dark matter. Dark matter is likely to be composed of one or more species of sub-

atomic particles that interact very weakly with ordinary matter

• 71.4% dark energy. The first observational hints of dark energy in the universe date back

to the 1980’s when astronomers were trying to understand how clusters of galaxies were

formed. Their attempts to explain the observed distribution of galaxies were improved if

dark energy were present, but the evidence was highly uncertain. In the 1990’s, observations

of supernova were used to trace the expansion history of the universe (over relatively recent

times) and the big surprise was that the expansion appeared to be speeding up, rather than

slowing down. There was some concern that the supernova data were being misinterpreted,

but the result has held up to this day. In 2003, the first WMAP results came out indicating

that the universe was flat and that the dark matter made up only 24% of the density required

to produce a flat universe. If 71.4% of the energy density in the universe is in the form of

dark energy, which has a gravitationally repulsive effect, it is just the right amount to explain

both the flatness of the universe and the observed accelerated expansion. Thus dark energy

explains many cosmological observations at once[14].

3. Deceleration ParameterThe Hubble parameter H(t) measures the expansion rate at any partic-

ular time t for any model obeying the cosmological principle. It does, however, vary with time in a

way that depends upon the contents of the universe. One can express this by expanding the cosmic
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Figure 2.2: Content of the univese

scale factor for times t close tot0 in a power series:

a(t) = a0[1 + H0(t− t0)−
1
2
q0H

2
0 (t− t0)2 + ...] (2.2.4)

whereq0 = − ä(t0)a0

ȧ(t0)2
is is called the deceleration parameter; the suffix ’0’, as always, refers to the

fact thatq0 = q(t0). Note that while the Hubble parameter has the dimensions of inverse time, q is

actually dimensionless.

The deceleration parameter, q, indicates the rate at which the expansion of universe is slowing

due to self-gravitation. It is defined by:

q = − äa

ȧ2
(2.2.5)

wherea is the scale factor,a(t), of the universe by which all lengths scale,ȧ is the first time derivative

(rate of change) ofa, andä is the second time derivative ofa. Recent observations have suggested

that the rate of expansion of the universe is currently accelerating, perhaps due to the effects of dark

energy. This yields negative values for the deceleration parameter[18].



14

2.3 Probes for the expansion of the universe

A lot of independent probes witnessed the accelerated expansion of the universe as a stronghold

of modern cosmology. However, cosmologist and astrophysicist proposed that the real physical

mechanism driving such accelerated expansion is still unknown; one possible explanation is that it is

due to an unknown form of energy, dark energy, which in its simplest embodiment is a cosmological

constant, but other possibilities could include a breakdown of general relativity on large scales or

an effect of interpreting the observation using a metric which is not correct for our inhomogeneous

universe. TheΛCDM model is able to describe the evolution of the universe with a minimal number

of cosmological parameters; current data constrain these parameters at the% level. The universe

can be taken as spatially flat, with the dark matter, baryon, and radiation densities requiring to be

specified as independent parameters[20]. Several different probes have been used to set constraints

on cosmological parameters, and especially on dark energy parameters.

Most of these probes are:

• Cosmic microwave background ( CMB)

• Baryonic acoustic oscillation(BAO)

• Supernovae type Ia(SNe)

• Probes of the growth of structure via weak lensing studies and cluster of galaxies abundance

WMAP team gives an overview of combining different probes to obtain a good reference of cosmo-

logical parameters[21]. According to the cold dark matter paradigm, dark matter makes up about

27 percent of the universe, but the particles that constitute dark matter are yet to be discovered.
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2.3.1 Cosmic microwave background radiation

One of the firm predictions of standard big bang model is the existence of relic radiation from the

hot phase the universe has experienced at early times. The cosmic microwave background (CMB)

was first serendipitously detected in 1965 by Arno Penzias and Robert Wilson, working on long-

distance radio communications at the bell laboratories. This radiation is a relic of the initial hot

and dense state of the universe; hence it provided the first compelling evidence for the hot big bang

model proposed by George Gamow in 1948. The presence of the radiation at earlier time has never

been proven directly[22]. T

2.3.2 Baryon acoustic oscilations

The baryon acoustic oscillations is a phenomenon ocurred at the early times of universe, before

the decoupling of matter and radiation, where the perturbation of baryonic matter propagated as a

wave. Time of decoupling is placed at years after big-bang. Before that, the universe temperature

was around making the photons to be very energetic. Photons interacted with baryons, which, in the

cosmology context, refer not only protons but also electrons, via compton scattering. This strong

interaction is known as tight coupled limit and it caused that photons and baryons moved together

like an unique fluid, the photon-baryon fluid. Because of, the model to describe this behavior is

known as fluid approximation. Energetic photons were able to scatter baryons and they avoid that

proton and electrons to join into neutral atoms. The previous described conditions finished when the

Hubble rate becomes higher than scatter rate. Photons are not energetic enough to scatter baryons,

occurring the decoupling of matter and radiation. Protons and electrons to join in neutral atoms and

photons follow free ways, being possible to be observed currently in the CMB[23]. The current

standard cosmological model, cold dark matter (CDM), assumes that the initial fluctuations in the
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distribution of matter were seeded by quantum fluctuations pushed to cosmological scales by infla-

tion. Directly after inflation, the universe is radiation-dominated and the baryonic matter is ionized

and coupled to radiation through Thomson scattering. The radiation pressure drives sound waves

originating from overdensities in the matter distribution. At the time of recombination, the pho-

tons decouple from the baryons and shortly after that the sound wave stalls. Through this process,

each overdensity of the original density perturbation field has evolved to become a centrally peaked

perturbation surrounded by a spherical shell. The radius of these shells is called the sound horizon

rs. Both overdense regions attract baryons and dark matter and will be preferred regions of galaxy

formation[24].

2.4 Model of the universe

2.4.1 Einstein static models of universe

A static universe is a cosmological model in which the universe is both spatially infinite, and space is

neither expanding nor contracting. Einstein proposed a static model in 1917 as a static solution of his

field equations [25]. Modern cosmology began in 1917 with Einstein’s cosmological considerations

on the general theory of relativity. He applied general relativity to the entire universe. To him

it must have been a matter of common sense that we lived in an immutable cosmos; thus, theory

had to describe a static universe. However,his original field equations did not give such results. If

matter was homogenously distributed and gravitation was the only active force, his universe would

collapse. He therefore introduced the famous cosmological term,λ, today usually designed byΛ,

so that his fundamental equations took the form

Rµν −
1
2
Rgµν + Λgµν = κTµν (2.4.1)

Λ is Einstein ’s constant of gravity. The left hand side describes the geometrical structure of the

universe, the right hand side represents the energy-momentum tensor due to the action of matter;
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theΛ term acts as a repulsive force. This additional term gave Einstein a static, spherical, spatially

closed universe. He emphasised that the known laws of gravitation did not justify the introduction

of Λ, its inclusion was motivated by the quest for a static solution of the differential equations[26].

Einstein’s universe is constructed on the basis that the universe is static, isotropic and homogeneous.

This solution is marked as the birth of modern cosmology. The model is based on the following

assumptions:

• The universe is static, i.e., in a proper coordinate system matter is at rest, and the proper

pressurePo and proper densityρo are the same everywhere.

• The universe is isotropic, i.e., all the spatial directions are equivalent.

• The universe is homogeneous, i.e., no part of the universe can be distinguished from the other.

• For small values of r the line element takes the form of special relativity of flat space−time,

since local gravitational field can be neglected for small space−time [27].

2.4.2 De Sitter’s static models of universe

Willem De Sitter was a Dutch mathematician and astronomer who made major contributions to the

field of physical cosmology. He co-authored a paper with Einstein in 1932 in which they discussed

the implications of cosmological data for the curvature of the universe. De Sitter also came up

with the concept of the de Sitter space, another static solution for Einstein’s field equation. The

De Sitter universe is the second model of the universe just after the publications of the Einstein’s

static and closed model. In 1917, Wilhelm De Sitter has developed this model which is a maximally

symmetric solution of the Einstein field equation with zero density. The geometry of the de Sitter

universe is theoretically more complicated than that of the Einstein universe. The model does not

contain matter or radiation. But, it predicts that there is a redshift[28].
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2.4.3 Standard cosmological model

The standard model of cosmology, often called lambda cold dark matter (ΛCDM), consists of a

spatially flat, homogeneous and isotropic universe on large scales. Initially hot and dense, the uni-

verse features four principal energy components: photons (relativistic species), baryonic matter,

dark matter, and dark energy in the form of a cosmological constantΛ . The latter dominates the

energy content of the universe at late times and is responsible for the current accelerated expansion.

Inflation provides a mechanism to seed the structures we see today, which are originated from the

hierarchical gravitational collapse of small overdensities generated in the early universe[29]. The

past few years has seen the emergence of a "concordant" cosmological model that is consistent both

with observational constraints from the background evolution of the universe as well that from the

formation of large-scale structures. It is certainly fair to say that the present edifice of the standard

cosmological models is robust. A set of foundation and pillars of cosmology have emerged and are

each supported by a number of distinct observations. The community is now looking beyond the

estimation of parameters of a working standard model of cosmology[30]. Rapid advances in ob-

servational cosmology have led to the establishment of a precision cosmological model, with many

of the key cosmological parameters determined to one or two significant figure accuracy. Particu-

larly prominent are measurements of cosmic microwave background (CMB) anisotropies, with the

highest precision observations being those of the Planck Satellite which supersede the landmark

WMAP results. However the most accurate model of the Universe requires consideration of a range

of observations, with complementary probes providing consistency checks, lifting parameter de-

generacies, and enabling the strongest constraints to be placed. The simpleΛCDM model is based

on six parameters: physical baryon density parameter; physical dark matter density parameter; the

age of the universe; scalar spectral index; curvature fluctuation amplitude; and reionization optical

depth[31].



Chapter 3

Introduction to General Relativity and
the conception of modern cosmology

3.1 Introduction to General relativity

In 1905 Einstein introduced special relativity theory, then in 1907 he proposed general relativity

theory by including non-inertial reference frames; that is, to include acceleration and gravity[32].

The fundamental physical postulate of GR is that the presence of matter causes curvature in the

space time in which it exists. This curvature is taken to be the gravitational field produced by the

matter. Einstein′s field equation gives the mathematical description of how the matter and curvature

are related. Moreover, once this curvature is given, GR describes how other objects (such as planets

and light beams) move in this gravitational field via the geodesic equation. In addition, general

relativity states that clocks run slower in strong gravitational fields (or highly accelerated frames),

predicting a gravitational redshift. It also predicts the existence of gravitational lensing, gravitational

waves, gravitomagnetism, the lense-thirring effect, and relativistic precession of orbiting bodies[33].

General relativity models the physical universe as a 4-dimensional space-time manifold. Albert

Einstein used tensor as an essential tool to present his general theory of relativity[28].
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3.1.1 Einstein field equations

In a weak static field produced by a non-relativistic mass densityρ, the time component of metric

tensor is approximately given by

g00 = −(1 + 2φ) (3.1.1)

Hereφ is newtonian potential determined by poisson’s equation

∇2φ = 4πGρ (3.1.2)

Furthermore, the energy density for non-relativistic matter is just equal to its mass density

T00 = ρ (3.1.3)

Combaning equation(3.1.1,3.1.2 and 3.1.3

∇2g00 = −8πGT00 (3.1.4)

This field equation is only supposed to hold for weak static fields generated by non-relativistic

matter. However, 3.1.4 leads us to guess that the weak-field equations for a general distributionTij

of energy and momentum take the form

Gij = −8πGTij (3.1.5)

WhereGij is linear combination of the metric and its first and second derivatives. It follows

then from principle of equivalence that the equations which govern gravitational fields of arbitrary

strength must take the form

Gµν = −8πGTµν (3.1.6)

WhereGµν is a tensor which reduces toGij for weak fields. The properties need to findGµν are:
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(A) By definitionGµν is a tensor

(B) By assumption,Gµν consists only of term with the total number N=2 of derivative of the metric;

that is,Gµν contains only terms that are either linear in the second derivatives or quadratic in

the first derivatives of the metric.

(C) SinceTµν is symmetric, so isGµν

(D) SinceTµν is conserved, so isGµν :

Gµ
ν;µ = 0 (3.1.7)

(E) For a weak stationary field produced by non-relativistic matter the 00 component of equation

3.1.6 must reduce to 3.1.4, so in this limit

G00 ' ∇2g00 (3.1.8)

The most general way of constructing a field satisfying (A) and (B) is by contraction of the curvature

tensorRλ
µνκ. The anti-symmetry property ofRµνκλ shows that there are only two tensors that can be

formed by contractingRµνκλ ; that is, the Ricci tensorRµκ ≡ Rλ
µλκ, and curvature scalarR = Rµ

µ.

Hence (A) and (B) requireGµν to take the form:

Gµν = C1Rµν + C2gµνR (3.1.9)

WhereC1 andC2 are constants.

Using the Bianchi identity gives the covariant divergence ofGµν as

Gµ
ν;µ = (

C1

2
+ C2)R;ν (3.1.10)

(D)allows two possibilities:eitherC2 = −C1
2 or R;ν vanishes everywhere. One can reject the second

possibility, because 3.1.10 and 3.1.6 give

Gµ
µ = (C1 + 4C2)R = −8πGTµ

µ (3.1.11)
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Thus if R;ν ≡ ∂R
∂xν vanishes, then so must∂T µ

µ

∂xν , and this is not the case in the presence of inhomo-

geneous non-relativistic matter. ThenC2 = −C1
2 ,so 3.1.8 becomes

Gµν = C1(Rµν −
1
2
gµνR) (3.1.12)

Finally, we use the property(E)to fix the constantC1. A non-relativistic system always has|Tij | �

|T00|, so we are concerned here with a case where|Gij | � |G00|, or using 3.1.12

Rij '
1
2
gijR (3.1.13)

Furthermore, we deal here with a weak field, sogij ' ηij . The curvature scalar is therefore given

by

R ' Rkk −R00 '
3
2
R−R00 (3.1.14)

R ' 2R00

At any point X in an arbitrarily strong gravitational field, we can define a locally inertial coordinate

system such that

gij(X) = ηij (3.1.15)(
∂gij(x)

∂xν

)
x=X

= 0 (3.1.16)

Using 3.1.14 and 3.1.15 in 3.1.12 we find

G00 ' 2C1R00 (3.1.17)

To calculateR00 for a weak field we use the linear part ofRλµνκ,given as

Rλµνκ =
1
2

[
∂2gλν

∂xκ∂xµ
− ∂2gµν

∂xκ∂xλ
+

∂2gµκ

∂xν∂xλ

]
(3.1.18)

When the field is static all time derivatives vanish, and the components we need become

R0000 ' 0 , R0i0j ' 1
2

∂2g00

∂xi∂xi
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Hence 3.1.17 gives

G00 ' 2C1 (Ri0i0 −R0000) ' C1∇2g00 (3.1.19)

Comparing 3.1.19 and 3.1.8 we find that (E)is satisfied if and only ifC1 = 1, so equation 3.1.12

becomes

Gµν = (Rµν −
1
2
gµνR) (3.1.20)

With equation 3.1.6, this gives the Einstein field equations

Rµν −
1
2
gµνR = −8πGTµν (3.1.21)

Einstein introduced a termλgµν to these field equations for cosmological reasons and the equations

become:

Rµν −
1
2
gµνR− λgµν = −8πGTµν (3.1.22)

For this reason,λ is called the cosmological constant[34].

3.2 The beginning of modern cosmology

Our present understanding of the universe is based upon the successful hot big bang theory, which

explains its evolution from the first fraction of a second to our present age.

This theory rests upon four robust pillars.

• A theoretical framework based on general relativity.

• The expansion of the universe.

• The relative abundance of light elements.

• The cosmic microwave background (CMB), the afterglow of the big bang.
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Modern cosmology begun with the advent of Einstein’s general relativity and the realization that

the geometry of spacetime, and thus the general attraction of matter, is determined by the energy

content of the universe. Einstein field equations are non-linear, so these non-linear equations are

simply too difficult to solve without invoking some symmetries of the problem at hand: the universe

itself. Although at small scales the universe looks very inhomogeneous and anisotropic, the universe

on large scales is very homogeneous and isotropic. Moreover, the cosmic microwave background,

which contains information about the early universe, indicates that the deviations from homogene-

ity and isotropy were just a few parts per million at the time of photon decoupling. Therefore, we

can safely impose those symmetries to the universe at large and determine the corresponding evo-

lution equations. The most general metric satisfying homogeneity and isotropy is the Friedmann-

Robertson-Walker (FRW) metric. This metric is characterized by just two quantities: a scale factor

a(t), which determines the physical size of the universe, and a constant K, which characterizes

the spatial curvature of the universe, Spatially open, flat and closed universes have different three-

geometries. Light geodesics on these universes behave differently, and thus could in principle be

distinguished observationally.

3.2.1 The matter and energy content of the universe

The most general matter fluid consistent with the assumption of homogeneity and isotropy is a

perfect fluid, one in which an observer comoving with the fluid would see the universe around it as

isotropic. The energy momentum tensor associated with such a fluid can be written as:

Tµν = pgµν(p + ρ)UµUν (3.2.1)

where p(t) andρ(t) are the pressure and energy density of the fluid at a given time in the expansion,

as measured by this comoving observer, andUµ is the comoving four-velocity, satisfyingUµUµ =
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−1. For such a comoving observer, the matter content looks isotropic,

Tµ
ν = diag(ρ(t), p(t), p(t), p(t)) (3.2.2)

The conservation of energy (Tµ
ν ; ν = 0), a direct consequence of the general covariance of the

theory (Gµ
ν ; ν = 0), can be written in terms of the FRW metric and the perfect fluid tensor 3.2.1 as

ρ̇ + 3
ȧ

a
(p + ρ) = 0 (3.2.3)

In order to find explicit solutions, one has to supplement the conservation equation with an equation

of state relating the pressure and the density of the fluid,p = p(ρ). The most relevant fluids in

cosmology are barotropic, i.e. fluids whose pressure is linearly proportional to the density,p = wρ,

and therefore the speed of sound is constant in those fluids[35].



Chapter 4

Fundamental principles and
cosmological equations in GR
framework with positive Λ

4.1 The Cosmological Principle

After the introduction of GR scientist were able to study the universe in a more mathematical way

than ever before. The study of the evolution of the universe, as well as the properties and the

dynamics of it is known today as cosmology. The Einstein field equations describe the dynamics of

the universe, but to do that an appropriate form of the energy-momentum tensor is needed, which is

connected to the composition of the universe, and the metric, that is related to the Ricci curvature

tensor and the Ricci curvature scalar. To construct those object scientists set up axioms. This is

named as the cosmological principle. The cosmological principle states that in macroscopic scales

the universe can be seen as homogeneous and isotropic[36].

4.2 Spacetime geometry

Geometry is encoded in a metricgij(x) (with i and j running over the three coordinate directions), or

equivalently in a line elementdS2 = gijdXidXj , with summation over repeated indices understood.

26
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dS is the proper distance between X and X + dX, meaning that it is the distance measured by a

surveyor who uses a coordinate system that is cartesian in a small neighborhood of the point X.

Obvious homogeneous isotropic dimensional spaces are:

• Flat space of three-dimensional space with positive definite lengths,with line element

dS2 = dX2 (4.2.1)

• A spherical surface in four-dimensional Euclidean space with some radius a, with line ele-

ment

dS2 = dX2 + dz2, z2 + X2 = a2 (4.2.2)

• A hyperspherical surface in four-dimensional pseudo-Euclidean space, with line element

dS2 = dX2 − dz2, z2 −X2 = a2 (4.2.3)

wherea2 is an arbitrary positive constant with z instead of time.

By rescale coordinates

X
′

= a ∗X, z
′
= a ∗ z (4.2.4)

Dropping primes, the line elements in the spherical and hyperspherical cases are

dS2 = a2
[
dX2 ± dz2

]
, z2 ±X2 = a2 (4.2.5)

The differential of the equationz2 ±X2 = 1 giveszdz = ∓X · dX so

dS2 = a2

[
dX2 ± (X · dX)2

1∓X2

]
(4.2.6)

Extending this to the case of Euclidean space by writing it as

dS2 = a2

[
dX2 + k

(X · dX)2

1− kX2

]
(4.2.7)
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Where

k =


1, spherical;

−1, hyperspherical;

0, Euclidean.

(4.2.8)

There is an obvious way to extend this to the geometry of spacetime: just include a term 4.2.7 in

the spacetime line element, witha now an arbitrary function of time known as the Robertson-Walker

scale factor:

dτ2 = −gµν(x)dxµdxν = dt2 − a2(t)
[
dX2 + k

(X · dX)2

1− kX2

]
(4.2.9)

The components of the metric in these coordinates are:

gij = a2(t)
[
δij + k

xixj

1− kX2

]
, gi0 = 0, g00 = −1, (4.2.10)

with i and j running over the values 1, 2, and 3, and withx0 = t the time coordinate in units, with the

speed of light equal to unity. Instead of the quasi−Cartesian coordinatesxi, we can use spherical

polar coordinates, for which

dx2 = dr2 + r2dΩ, dΩ = dθ2 + sin θ2dφ2 So

dτ2 = dt2 − a2(t)
[

dr2

1− kr2
+ r2dΩ

]
(4.2.11)

in which case the metric becomes diagonal.

4.3 The Friedmann-Lemaître-Robertson-Walker metric

The idea of the cosmological principle leads to construct models of the universe in which this

principle holds. General relativity is a geometrical theory that regard the universe as a continuous

fluid and assign to each fluid element the three spatial coordinatesxα(α = 1, 2, 3). Thus, any point

in spacetime can be labeled by the coordinatesxα, corresponding to the fluid element which is
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passing through the point, and a time parameter which we take to be the proper time t measured by

a clock moving with the fluid element. The coordinatesxα are called comoving coordinates. The

geometrical properties of spacetime are described by a metric. It is possible to choose coordinates

r,θ,φ,t,for which the metric takes the form given in(4.2.11):

dτ2 = dt2 − a2(t)[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2] (4.3.1)

Where a(t) is unknown function of time ,and k is a constant ,which by suitable choice of units for r

can be chosen to have the value +1,-1 or 0.

The metric in equation(4.3.1) is known in cosmology as the Friedmann-Lemaître- Robertson-Walker

metric (FLRW) [37]. These metric are:

grr =
a2(t)

1− kr2
, gθθ = a2(t)r2, gφφ = a2r2 sin2 θ, gtt = −1 (4.3.2)

4.4 Friedmann equations

In order to find how the scale factor a(t) evolves, we need to consider the equations of motion,

given by the Einstein equation. The Friedmann-Lemaître-Robertson-Walker metric of 4.3.2 has the

components

gµν =


−1 0 0 0

0 a2(t)
1−kr2 0 0

0 0 a2(t)r2 0

0 0 0 a2r2 sin2 θ

 (4.4.1)

Calculating the Einstein tensor from this metric gives

G0
0 = −3

ȧ2

a2
− 3

k

a2
(4.4.2)

Gi
j = −

[
2
ä

a
+

ȧ2

a2
+

k

a2

]
(4.4.3)

Gi
0 = 0 (4.4.4)
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In cosmology, the energy-momentum tensor which is of greatest relevance is that of a perfect fluid:

Tij = (p + ρc2)UiUj − pgij

Tµ
ν =


−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 (4.4.5)

whereUk is the fluid four-velocity,ρ is the energy density and p is the pressure. Homogeneity

implies that they only depend on time,ρ = ρ(t), p = p(t). In general, the Einstein equationGαβ +

Λgαβ = 8πGTαβ is a non-linear system of ten partial differential equations. In the case of the FRW

universe, it reduces to two ordinary non-linear differential equations:

3
ȧ2

a2
+ 3

k

a2
= 8πGρ + Λ (4.4.6)

− 2
ä

a
− ȧ2

a2
− k

a2
= 8πGp+ Λ (4.4.7)

These are called the Friedmann equations[33].

4.5 Cosmological redshift

The information whether the scale factor a(t) is increasing, decreasing, or constant in the Friedmann-

Lemaître-Robertson-Walker metric comes to us from the observation of a shift in the frequencies of

spectral lines from distant galaxies as compared with their values observed in terrestrial laboratories.

For light world lines (paths through spacetime),ds2 = 0. For a radial trajectory (one withdφ =

dθ = 0 ) we thus havec2dt2 = a2(t)dr2

(1−kr2) . Taking the square root, and choosing the sign so that the

photon is headed toward the origin (dr
dt < 0 ) we have:

cdt = − a(t)dr√
1− kr2

(4.5.1)
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∫ t0

t1

dt

a(t)
=

∫ r1

0

dr√
1− kr2

(4.5.2)

Taking the differential of this relation, and recalling that the radial coordinater1 of co-moving

sources is time-independent, we see that the intervalδt1 between departure of subsequent light

signals is related to the intervalδt0 between arrivals of these light signals by

δt1
a(t1)

=
δt0

a(t0)
(4.5.3)

The emitted frequency isν1 = 1
δt1

, and the observed frequency isν0 = 1
δt0

, so

ν0

ν1
=

a(t1)
a(t0)

(4.5.4)

If a(t) is increasing, then this is a redshift, a decrease in frequency by a factora(t1)
a(t0

), equivalent to

an increase in wavelength by a factor conventionally called 1 + z:

1 + z =
a(t0)
a(t1)

(4.5.5)

Alternatively, if a(t) is decreasing then we have a blueshift.

4.6 Solution of Friedmann equation

For K = 0 we get very simple solutions to Eq. 4.4.6 in the three special cases by using equation of

statep = wρ.

4.6.1 Non-relativistic matter

Here pressure is zero. So fluid equation becomes:

ρ̇ + 3ρ
ȧ

a
= 0 (4.6.1)

From this equationρ can be written as

ρ = ρ0

(
a

a0

)−3

(4.6.2)
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So the solution of Eq. 4.4.6)by using 4.6.2 with K = 0 is

a(t) ∝ t
2
3 (4.6.3)

This givesq0 ≡ −a ä
ȧ2 = 1

2 and a simple relation between the age of the universe and the Hubble

constant

t0 =
2

3H0
= 6.5 ? 109h−1yr (4.6.4)

Equations 4.6.3 and 4.4.7 show that for k=0, the energy density at time is.

ρ =
1

6πGt2
(4.6.5)

This is known as the Einstein-de Sitter model.

4.6.2 Relativistic matter

Here pressure isρ3 . So fluid equation becomes:

ρ̇ + 4ρ
ȧ

a
= 0 (4.6.6)

From this equationρ can be written as

ρ = ρ0

(
a

a0

)−4

(4.6.7)

So the solution of Eq. 4.4.6, using 4.6.7 with K = 0 is

a(t) ∝ t
1
2 (4.6.8)

This givesq0 ≡ −a ä
ȧ2 = 1 and a simple relation between the age of the universe and the Hubble

constant

t0 =
1

2H0
(4.6.9)

Equations 4.6.8 and 4.4.7 show that for k=0, the energy density at time is.

ρ =
3

32πGt2
(4.6.10)
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4.6.3 Vacuum energy

In vacuum we havep = −ρ. Thus fluid equation becomes

ρ̇ = 0 (4.6.11)

so our energy density is constant.

ρ = β (4.6.12)

whereβ is some constant Inserting the value ofρ into equation 4.4.6 with k=0, scale factor can be

written as the following

a(t) ∝ eHt (4.6.13)

where H is the Hubble constant, now really a constant, given by

H =

√
8πGρ

3
(4.6.14)

Hereq0 = −1, and the age of the universe in this case is infinite.

More generally, for arbitrary K and a mixture of vacuum energy and relativistic and non-

relativistic matter, making up fractionsΩΛ, ΩM , andΩR of the critical energy density, we have

ρ =
3H2

0

8πG

[
ΩΛ + ΩM

(a0

a

)
3 + ΩR

(a0

a

)
4
]

(4.6.15)

where the present energy densities in the vacuum, non-relativistic matter, and relativistic matter

(i.e., radiation) are, respectively,

ρV0 =
3H2

0

8πG
ΩΛ, ρM0 =

3H2
0

8πG
ΩM , ρR0 =

3H2
0

8πG
ΩR (4.6.16)

Using this in Equation 4.4.6 gives

dt =
dx

H0x
√

ΩΛ + Ωkx−2 + ΩMx−3 + ΩRx−4
(4.6.17)
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dt =
-dz

H0(1 + z)
√

ΩΛ + Ωk(1 + z)2 + ΩM (1 + z)3 + ΩR(1 + z)4
(4.6.18)

wherex ≡ a/a0 = 1
(1+z) . Therefore, if we define the zero of time as corresponding to an infinite

redshift, then the time at which light was emitted that reaches us with redshift z is given by

t(z) =
∫ 1

1+z

0

dx

H0x
√

ΩΛ + Ωkx−2 + ΩMx−3 + ΩRx−4
(4.6.19)

In a flat Universe,ρm = ρm,0( a
a0

)−3 .

So that we can write the Friedmann equation as:(
ȧ

a

)2

=
8πG

3
ρm,0a

−3 +
Λ
3

orȧ2 = H2
0Ωm,0a

−1 + H2
0ΩΛ,0a

2 (4.6.20)

Thus this becomes (
H(z)
H0

)2

= Ωm,0(1 + z)3 + ΩΛ,0 (4.6.21)

The right-hand side is often referred to as E(z), so thatH(z) = H0 (E(z))1/2. We can derive a

relationship between time t and redshift z by differentiating equation 4.5.5 with respect to z. Thus

this becomes

da = − a0

(1 + z)2
dz (4.6.22)

Hubble parameter in terms of z can be written as:

H(z) =
ȧ

a
=

da

dz

dz

dt

(1 + z)
a0

(4.6.23)

So that ∫ t2

t1
dt =

−1
H0

∫ z2

z1

1

(1 + z) (E(z))
1
2

dz (4.6.24)

The age of the Universe is∫ to

0
dt =

1
H0

∫ ∞

0

1

(1 + z) (E(z))
1
2

dz (4.6.25)
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4.7 Cosmological distances

The comoving coordinate system relates to proper distance in spaces described by the Friedmann-

Lemaître- Robertson-Walker metric. Obviously, however, we cannot measure proper distances to

astronomical objects in any direct way. Distant objects are observed only through the light they emit

which takes a finite time to travel to us; we cannot therefore make measurements along a surface

of constant proper time, but only along the set of light paths traveling to us from the past. One

can, however, define operationally other kinds of distance which are, at least in principle, directly

measurable. One such distance is the luminosity distancedL or the angular-diameter distancedA.

4.7.1 Proper distances

We define a proper distance, as the distance between two events, A and B, in a reference frame

for which they occur simultaneously. We must be clearer about the difference between the radial

coordinate and the distance. They are equal only whendΩ = 0. The comoving square infinitesimal

distance is indeed, from FLRW metric 4.3.1 the following:

dχ2(t) =
dr2

1− kr2
+ r2dΩ2 (4.7.1)

i.e. it has indeed a radial part, but also has a transversal part. So, ifχ is the comoving distance

between two points, the proper distance at a certain time t is

dp(χ, t) = a(t)χ (4.7.2)

The comoving distance is a notion of distance which does not include the expansion of the universe

and thus does not depend on time. Suppose thatdΩ = 0. Then the comoving distance to an object

with radial coordinate r is the following:

χ =
∫ r

0

dr√
1− kr2

(4.7.3)
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χ =


1

k1/2 sin−1(k1/2r), k>0;

r, k=0;
1

|k|1/2 sinh−1(| k |1/2 r), k<0.

(4.7.4)

In a flat universe, the proper distance to an object is just its coordinate distance,dp(t) = a(t)r.Because

of sin−1(x) > x, in a closed universe (k> 0) the proper distance to an object is greater than its

coordinate distance, while in an open universe (k< 0) the proper distance to an object is less than

its coordinate distance because ofsinh−1(x) < x. From the FLRW metric, by puttingdS2 = 0, we

can relate the lookback time with the comoving distance as follows:

cdt = a(t)dχ (4.7.5)

This seems quite similar to the proper distance, but careful: the proper distance is defined asa(t)χ

and evidentlya(t)dχ 6= d(a(t)χ). The lookback time is the photon time of flight and thus it includes

cumulatively the expansion of the universe. On the other hand, the proper distance is the distance

considered between two simultaneous events and therefore the expansion of the universe is not taken

into account cumulatively. By integrating 4.7.5) fromtem to t0 we get the comoving distance from

the source to us

χ =
∫ t0

tem

cdt

a(t)
=
∫ 1

a

cda

H(a)a(t)2
(4.7.6)

For the dust-dominated case one hasH = H0/a3/2 and the comoving distance as a function of the

scale factor and of the redshift is:

χ =
c

H0

∫ 1

a

da√
a

=
2c

H0
(
1−

√
a
)

(4.7.7)

χ(z) =
2c

H0

(
1− 1√

1 + z

)
(4.7.8)

Inserting equation 4.7.8 into 4.7.2 we can write proper distance in terms of redshift as follows
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dp = a(t)
2c

H0

(
1− 1√

1 + z

)
(4.7.9)

This equation is equivalent to

dp =
2ca0

H0

(
1

1 + z
− 1

(1 + z)
3
2

)
(4.7.10)

4.7.2 Luminosity distance

This is defined in such a way as to preserve the Euclidean inverse-square law for the diminution of

light with distance from a point source. Let L denote the power emitted by a source at a point P,

which is at a coordinate distance r at time t. Let l be the power received per unit area at timet0 by

an observer placed atP0. We then define

dL =
(

L

4πl

) 1
2

(4.7.11)

The area of a spherical surface centred on P and passing throughP0 at timet0 is just4pa2
0r

2. The

photons emitted by the source arrive at this surface having been redshifted by the expansion of the

universe by a factoraa0
. Also, as we have seen, photons emitted by the source in a small intervalδt

arrive atP0 in an intervalδt0 = (a0
a )δt due to a time-dilation effect. We therefore find

l =
L

4πa0
2r2

(
a

a0

)
2 (4.7.12)

From which

dL = a0
2 r

a
(4.7.13)

For objects withz � 1, we can usefully write the relation between luminosity distance and redshift

as a power series. Using equation 4.5.5, 2.2.4,and 2.2.5 the redshift is related to the look-back time

t0 − t by
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z = H0(t0 − t) +
1
2
(q0 + z)H2

0 (t0 − t)2 + ... (4.7.14)

This can be inverted, to give the look-back time as a power series in the redshift

H0(t0 − t) = z − 1
2

(q0 + z) z2 (4.7.15)

The coordinate distance r1 of the luminous object is given by Eq. (4.5.2) as

(t0 − t1)
a (to)

+ H0
(t0 − t1) 2

2a (t0)
+ ... = r1 + ... (4.7.16)

with the dots on the right-hand side denoting terms of third and higher order inr1. Using Eq. (4.6.5),

the solution is

r1a (t0) H0 = z − 1
2

(1 + q0) z2 + . . . (4.7.17)

This gives the luminosity distance (4.7.13) as a power series

dL = H0
−1

[
z +

1
2

(1− q0) z2 + . . .

]
(4.7.18)

4.7.3 Angular-diameter distance

Again, this is constructed in such a way as to preserve a geometrical property of Euclidean space,

namely the variation of the angular size of an object with its distance from an observer. LetdP (t)

be the (proper) diameter of a source placed at coordinate r at time t. If the angle subtended bydP is

denoted4θ. In Special Relativity, the invariant interval between two events at coordinates (t, x, y,

z) and (t + dt, x + dx, y + dy, z + dz) is defined by

dS2 = c2t2 − (dx2 + dy2 + dz2) (4.7.19)

where dS is invariant under a change of coordinate system and the path of a light ray is given by dS

= 0. Equation (4.7.19) implies

dP = ar∆θ (4.7.20)
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We definedA to be the distance

dA =
dP

∆θ
= ar (4.7.21)

Comparison of equation 4.7.21 with equation 4.7.13 shows that the ratio of the luminosity and

angulardiameter distances is simply a function of redshift:

dA

dL
= (1 + z)−2 (4.7.22)

Thus, angular diamter distances can be written as[38]:

dA = (1 + z)−2H0
−1

[
z +

1
2

(1− q0) z2 + . . .

]
(4.7.23)

More generally, for arbitrary K and a mixture of vacuum energy and relativistic and non-relativistic

matter, making up fractionsΩΛ,ΩM , andΩR of the critical energy density, we have

ρ =
3H2

0

8πG

[
ΩΛ + ΩM

(a0

a

)3
+ ΩR

(a0

a

)4
]

(4.7.24)

where the present energy densities in the vacuum, non-relativistic matter, and and relativistic matter

(i.e., radiation) are, respectively.

ρV0 =
3H0

2ΩΛ

8πG
, ρM0 =

3H0
2ΩM

8πG
, ρR0 =

3H0
2ΩR

8πG
(4.7.25)

according to Eq. 4.4.6,

ΩΛ + ΩM + ΩR + ΩK = 1,ΩK = − K

a2
0H

2
0

(4.7.26)

Using this in Eq. 4.4.6 gives

dt =
dx

H0x
√

(ΩΛ + ΩKx−2 + ΩMx−3 + ΩRx−4)
(4.7.27)

=
-dz

H0(1 + z)
√

(ΩΛ + ΩK(1 + z)2 + ΩM (1 + z)3 + ΩR(1 + z)4)



wherex ≡ a
a0

= 1
(1+z) . Therefore, if we define the zero of time as corresponding to an infinite

redshift, then the time at which light was emitted that reaches us with redshift z is given by:

t(z) =
1

H0

∫ 1
1+z

0

dx

x
√

ΩΛ + ΩKx−2 + ΩMx−3 + ΩRx−4
(4.7.28)

In particular, by settingz = 0, one can find the present age of the universe:

t0 =
1

H0

∫ 1

0

dx

x
√

ΩΛ + ΩKx−2 + ΩMx−3 + ΩRx−4
(4.7.29)

In order to calculate luminosity or angular diameter distances, we also need to know the radial

coordinate r of a source that is observed now with redshift z. According to Eqs 4.5.2 and 4.7.28,

this is

r(z) = S

[∫ t0

t(z)

dt
a(t)

]
(4.7.30)

= S

[
1

a0H0

∫ 1

1
1+z

dx

x2
√

ΩΛ + ΩKx−2 + ΩMx−3 + ΩRx−4

]
Where

S(y) =


siny, K=+1;

y, K=0;

sinhy, K=-1.

This can be written more conveniently by using Eq. 4.7.26 to expressa0H0 in terms ofΩK . We

then have a single formula

a0r(z) =
1

H0ΩK
1
2

× sinh

(
ΩK

1
2

∫ 1

1
1+z

dx

x2
√

ΩΛ + ΩKx−2 + ΩMx−3 + ΩRx−4

)
(4.7.31)

which can be used for any curvature. (Eq. 4.7.29 has a smooth limit forΩK = 0, which gives the

result for zero curvature. Also, forΩK < 0, the argument of the hyperbolic sine is imaginary, and

we can usesinh(ix) = isin(x). Using Eq. 4.7.31 in Eq. 4.7.13 gives the luminosity distance of a

source observed with redshift z as follows.

dL(z) = a0r(z)(1 + z) (4.7.32)

=
1 + z

H0ΩK
1
2

× sinh

(
ΩK

1
2

∫ 1

1
1+z

dx

x2
√

ΩΛ + ΩKx−2 + ΩMx−3 + ΩRx−4

)
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Chapter 5

Result and discussion

5.1 Observable cosmological distances

We have given formulas for distance measures and have described more detail in chapter three.

Distance measures are used to tie some observable quantity to another quantity that is not directly

observable. The distance measures we have discussed all are reduced to the euclidian distance at low

redshift. At low redshift all are asymptotic to each other. In accord with our present understanding

of cosmology, distance measures are calculated within the context of general relativity, where the

freidmann-Lemaitre-Robertson-Walker solution is used to describe the universe. Distance measures

we have described are which cosmologist more commonly used for measures of distances from

observer to an object at redshift z. These are proper distance(dp), luminosity distance(dL), angular

distance(dA) and comoving distance(χ). Their equations are given as follows:

χ =
∫ r

0

dr2

√
1− kr2

(5.1.1)

dL = H0
−1

[
z +

1
2

(1− q0) z2 + . . .

]
(5.1.2)

dp = a(t)
∫ r

0

dr2

√
1− kr2

(5.1.3)

dA = (1 + z)−2H0
−1

[
z +

1
2

(1− q0) z2 + . . .

]
(5.1.4)
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5.2 Lookback time and age of the universe

The lookback timetL to an object is the difference between the aget0 of the universe now (at

observation) and the agete of the universe at the time the photons were emitted [39]. Quantitatively,

we can calculate the age of the universe from Friedmann equation. To be completely explicit about

the time-dependence of each term, we write

ρm(t) =
(

a(t0)
a(t)

)3

ρm,0

ρr(t) =
(

a(t0)
a(t)

)4

ρr,0 (5.2.1)

ρvac(t) = ρvac,0

Here we are using the convention that a subscript 0 denotes the present value of any quantity. Each

of the above equations reflects the known dependence on a(t) for each contribution to the mass

density, with the constant of proportionality written so thatρX(t0) = ρX,0, for each type of matter

X. Mass densities are usually tabulated as fractions of the critical density.

ρc =
3H2

8πG
(5.2.2)

using the convention that for each type of mass density X,

ΩX =
ρX

ρc
(5.2.3)

So, we rewrite Eqs. 5.2.1 by replacing eachρX,0 by ΩX,0 ∗ ρc,0:

ρm(t) =
3H2

8πG

(
a(t0)
a(t)

)3

Ωm,0

ρr(t) =
3H2

8πG

(
a(t0)
a(t)

)4

Ωr,0 (5.2.4)

ρvac(t) =
3H2

8πG
Ωvac,0

Defining

x =
a(t)
a(t0)

(5.2.5)

so that x varies from 0 to 1 as the universe evolves from the big bang to the present,Friedmann

equation can be rewritten as(
ȧ

a

)2

= H2
0

(
Ωm,0

x3
+

Ωrad,0

x4
+ Ωvac

)
− kc2

a2
(5.2.6)
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It is convenient to rewrite the curvature term in the same form as the other terms, by defining

Ωk,0 = − kc2

H2
0a2

(5.2.7)

So (
ȧ

a

)2

=
H2

0

x4

(
Ωm,0x + Ωrad,0 + Ωvac,0x

4 + Ωk,0x
2
)

(5.2.8)

The present age of the universe can then be found by taking the square root of Eq. 5.2.8.

x
dx

dt
=

H0

x2

√
Ωm,0x + Ωrad,0 + Ωvac,0x4 + Ωk,0x2 (5.2.9)

This equation can be rearranged as

dt =
1

H0

xdx√
Ωm,0x + Ωrad,0 + Ωvac,0x4 + Ωk,0x2

(5.2.10)

which can be integrated over the range of x from the big bang to the present to give

t0 =
1

H0

∫ 1

0

xdx√
Ωm,0x + Ωrad,0 + Ωvac,0x4 + Ωk,0x2

(5.2.11)

The above form is probably the easiest to integrate, but for some purposes it is useful to rewrite it

by changing variables of integration to z, where

1 + z =
a(t0)
a(t)

=
1
x

(5.2.12)

The integral then becomes

t0 =
1

H0

∫ ∞

0

dz

(1 + z)
√

Ωm,0(1 + z)3 + Ωrad,0(1 + z)4 + Ωvac,0 + Ωk,0(1 + z)2
(5.2.13)

In this form one could also find the "look-back time" to any particular redshift z by stopping the

integration at that point.

tL =
1

H0

∫ z

0

dz
′

(1 + z′)
√

Ωm,0(1 + z′)3 + Ωrad,0(1 + z′)4 + Ωvac,0 + Ωk,0(1 + z′)2
(5.2.14)

5.3 Age of the universe constraining Hubble and density

parameters of the universe

According to the dust model cosmology, the universe is filled with matter whose equation of state

is given as
ä

a
=
−4πG

3
ρ(1 + 3w) (5.3.1)
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Accelerating universe needs̈a > 0, so thatw < −1/3 in the Friedmann equation. This implies

that the universe has some sort of negative energy which is considerably different from matter filled

universe with positive energy.

Another problem of the dust model is the age of the universe, where in the FRW universe its solution

is given by

a =
(

t

t0

) 2
3

. (5.3.2)

By settinga0 = 1 at present, and using the Hubble parameter equation

H =
ȧ

a
=

2
3t

, (5.3.3)

the age of the universe is estimated to

t0 =
2
3
H−1

0 = 6.51h−1 billion years (5.3.4)

Observational data from WMAP7 gives h = 0.702 [9], thus the age of the universe is estimated to

be 9.27 Gyr. Carretta et al. [40] estimated the age of globular cluster in the Milky Way galaxy to

be 12.9± 2.9 Gyr, whereas Jimenez et al. [41] found the value 13.5± 2 Gyr. We see that the

age of globular clusters are larger than 11 Gyr. Therefore the age of the universe estimated by Eq.

5.3.4 is inconsistent with the age of globular clusters mentioned above. As stated before,the age of

the universe in lambda cold dark matter model is given by equation 5.2.13 and 5.2.14. The general

case of the integrals in Eqs. 5.2.13 and 5.2.14 can be computed only by numerical integration, but

various special cases can be carried out analytically. The case of a flat universe composed of non-

relativistic matter and vacuum energy (i.e.,Ωrad = Ωk = 0,Ωm + Ωvac = 1) can also be integrated

analytically, yielding

tL =
1

H0

∫ z

0

dz
′

(1 + z′)
√

Ωm,0(1 + z′)3 + Ωvac,0

(5.3.5)

SubstitutingΩm,0 = 1− ΩΛ,0 andx = (1 + z
′
)−

3
2 reduces equation 5.3.5 to

tL =
2

3Ω
1
2
vac,0H0

∫ 1

(1+z)−
3
2

dx√
1−ΩΛ,0

ΩΛ,0
+ x2

(5.3.6)

The indefinite integral ∫
dx√

a2 + x2
= ln(x +

√
a2 + x2) + C (5.3.7)

44



can be found in integral tables or evaluated via the trigonometric substitutionx = a tan(u). Thus

tL =
2

3Ω
1
2
vac,0H0

ln

 1 + Ω
−1
2

Λ,0

(1 + z)
−3
2 +

√
(1 + z)−3 + 1−ΩΛ,0

ΩΛ,0

 (5.3.8)

In the limit z →∞, tL becomes the present age of the universet0:

t0 =
2

3Ω
1
2
vac,0H0

ln

 1 + Ω
1
2
Λ,0

(1− ΩΛ,0)
1
2

 (5.3.9)

TheΩm − ΩΛ contour plots of eq. 5.3.9 for the scaled Hubble parameter:h = 55, 60, 65, 70, 75

are shown as in Fig. 5.1. In the plots, the right hand diagonal line represents the total density of

Figure 5.1: Age, densities and Hubble parameter constraints of the universe

the universe (Ωrad = Ωk = 0,Ωm + ΩΛ = 1). To fit this line, as we observe from the contours

relatively low h prefers matter dominant universe while higherh prefers dark energy dominant
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universe. Comparing to the present observational constrain of cosmic age13.7 ≤ t0 ≤ 13.9 Gyrs

by WMAP 7-year data [9], the numerical result of our work fits to0.265 ≤ Ωm0 ≤ 0.281. This

means that dark energy contributed in our universe amounts to about 72% of the cosmic components

of the universe.

5.4 Estimating mass of the universe in the flatΛCDM model

Using the constant critical densityρc of the universe and the general relativistic volume element

with spherical symmetry, we can estimate the mass of the universe given by:

m =
∫

ρc
√
−g r2 sin2 θdrdθdφ, (5.4.1)

whereg is the determinant of the FLRW metric given as:

g = −a(t)6r4 sin2 θ (5.4.2)

Now integrating eq. 5.4.1, with appropriate dimensions restored from Hubble flow and the metric

element equation, we obtain

m =
4πρcH0

2a3

15 c2
r5 (5.4.3)

Herer is the physical distance given by eq. 4.7.10. Asz →∞, r → 2ca
H0

. Using this approximation,

the critical density given by eq. 5.2.2 and the present value ofa = 1, the mass of the universe is

estimated to be given as:

m =
32 c3

5G H0
∼ 1054kg; h = 72 (5.4.4)

Using the current observational data by WMAP where h = 72, the mass of the universe is

m ∼ 1054kg. (5.4.5)

Our result well agrees with the one obtained from dimensional analysis [42] within a difference of

the order of factor10 pertaining to boundary conditions setup.
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Chapter 6

Summary and Conclusion

In this thesis we were using the equation of the freidmann and observations from Wilkinson Mi-

crowave Anisotropy Probe(WMAP) to constraining the present density parameters of the universe.

One of the key features of this work is that we used different value of H(z) with age of the globu-

lar clusters from Wilkinson Microwave Anisotropy Probe (WMAP)data to constraining age of the

universe and density parameters of the universe. General theory of relativity and principle of cos-

mology are used to derive the appropriate Friedmann equations. The resulting Freidmann equations

and boundary conditions are used to develop equations of cosmological distances and equation for

calculate age of the universe. At larger values of time the matter density becomes less and the dark

energy becomes dominant. The domination of dark energy causing an accelerating expansion. Be-

cause at the current time both the matter density and dark energy densities are playing the largest

role in the evolution and acceleration of the universe.The more matter density of the universe is the

younger than the more dark energy density of the universe.This implies that the present universe is

dominated by dark energy density. The solution of friedmann also shows this result. The density of

the universe and physical distance of the universe are used to estimate the mass of the universe to

1053kg in general relativity.
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