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ABSTRACT 

Floods are one of the most common and destructive natural disasters, causing substantial 

loss of life and property all over the world. Assessment of predictive accuracy for regional 

flood frequency distribution estimation method has been the backbone of water resources 

project planning, design of any structures, and the economic analysis of flood control 

projects. The goal of this study was to test the predictive fit of probability distributions to 

yearly maximum flood data and to determine which distribution and estimation method 

provide the best match for the Upper Omo-Gibe River Basin. Using a river basin as a case 

study, the performance of nine probability distributions, three fitting tests, evaluation 

processes, and selection procedures was examined. To achieve this, data from eleven stream 

gauged sites, three hydrological homogeneous sub-regions were defined and delineated 

based on L-moment homogeneity tests, namely Region-A, Region-B, and Region-C. 

Delineation of homogeneous regions was accomplished using ArcGIS10.4.1. Discordancy of 

regional data of the L-moment statistics was identified using Matlab2018a. The R 

programming language was used in conjunction with a collection of the most recent 

computer statistical programs in an integrated development environment. The most relevant 

distribution models were identified using maximum likelihood estimation, goodness-of-fit 

tests-based analysis, and information criteria-based selection techniques. The performances 

of the distributions were evaluated using Kolmogorov Smirnov, Anderson-Darling, and Chi-

Squared goodness-of-tests. After three goodness of fit tests were carried out, the results 

showed that the lognormal and gamma distribution models were the best-fit functions for 

Region-A. Because they had the lowest Akaike Information Criterion (AIC) values of -

46.251 and -45.802, and Bayesian Information Criterion (BIC) values corresponding to -

43.320 and -42.870, respectively. Similarly, for both Region-B and Region-C the lognormal 

and gamma functions were the best-fit distribution functions and identified as suitable 

distributions for analyzing accurate annual maximum flows in the basin. Based on best-fit 

distributions for the three regions, regional flood frequency curves were constructed. In this 

study, the flood magnitude is estimated for 2, 5, 10, 15, 20, 25, 50, 75, 100, 200, 500, and 

1000 years return period, and their respective extreme event for Region-A became 427.65, 

547.24, 626.42, 671.1, 702.37, 726.46, 800.6, 800.68, 843.82, 874.35, 917.31, and 947.75. 

1044.59. The derived flood frequency curves at a given return period suggested that how 

important engineering decisions and actions such as design and operation of the water 

resources project have to be undertaken carefully.  

 

Keywords: Best-fit distribution, Flood frequency analysis, Homogeneity, Parameter estimati

on, and Regionalization. 
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1. INTRODUCTION 

1.1 Background 

Floods are one of the most devastating natural disasters that have serious ramifications for 

human society and result in enormous loss of life and property all over the world. It ruins 

properties, agricultural lands, causes economic losses, reduces drainage efficiency, and 

disrupts life (Yucel and Keskin, 2011). It is a natural occurrence, but human encroachment 

on natural streams, as well as the effects of land use and climate change, have the potential to 

alter catchment runoff responses, resulting in the occurrence of catastrophic floods, 

increasing susceptibility and risk (Hailegeorgis & Alfredsen, 2017).  

The calculation of flood quantiles corresponding to return periods (T) of interest is 

commonly done using statistical methods for flood frequency analysis based on systematic 

streamflow data. Prevalence of severe floods or increasing trends in one or more flood 

characteristics (e.g., flood frequency, magnitude, and timing) in different parts of the world 

substantiate the need for more reliable prediction of flood quantiles for design and 

management of water and transportation infrastructure such as spillways, culverts, bridges, 

sewers, etc. (Teklu & Knut, 2017). 

Estimating flood frequency is critical for flood management. It's used to map floodplain 

areas, develop hydraulic structures (dams, retaining basins, stormwater systems), and 

infrastructure (roads, bridges) for natural disaster assessments and alert mechanisms, as well 

as quantify the frequency of flood episodes (Javelle et al., 2010). The application of flood 

frequency analysis (FFA) in the assessment of hydrological hazards has led to the 

development of a variety of methods ranging from purely statistical approaches to simulation 

approaches. The availability of observation data and the objectives to be attained often 

influence the development of these methods (Castellarin, et al., 2011; Pathiraja et al., 2012). 
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The most important statistical tool for determining the nature and size of a river's discharge is 

flood frequency analysis. It aims to relate the magnitude of events to their frequency of 

occurrence through probability distribution (Bhagat, 2017; Ganamala & Kumar, 2017). If 

adequate records are available, the common methods give acceptably uniform results within 

the range of data. However, the location of the gauging station occasionally coincides with 

the sites of interest, or the available records become too short to make important statistical 

implications (Badreldin & Fengo, 2012). Hence, the estimation of design floods for a site has 

been a common problem particularly for ungagged basins or for sites of a short record length 

(Hailegeorgis & Alfredsen, 2017). 

Flood-prone damages are frequent in several locations of Ethiopia, owing to a lack of 

properly researched knowledge and prevention mechanisms. The frequency and magnitude 

of floods have increased, affecting large parts of the country and causing damage to property, 

loss of life, and the health of the population (Akirso, 2017). Using flood data from 

neighboring sites within a homogenous region, regional flood frequency analysis has been an 

effective technique for calculating flood quantiles at ungauged sites or with insufficient 

streamflow data (Dubey, 2014; Lu, 2016; Wu, et al., 2018). It is a data-driven approach, 

which attempts to transfer flood information from a group of gauged catchments to the 

catchment location of interest. This technique is expected to be simple so that design flood 

estimates can be obtained from readily available input data and the region is considered 

homogeneous (Rahmana, et al., 2015).  

The established flood versus return period curve is utilized in regional flood frequency 

analysis to estimate flood quantiles for every site within the region. These regional relations 

can alleviate the effects of outliers from time-series data (Mishra, et al., 2009). It is 

recommended to use observed time-series data to develop flood frequency estimates for a site 

with limited time-series data. Since they are the bases for regional information (Wilson, et 

al., 2011). Therefore, the use of regional information derived from data at gauged sites and 

regionalized for use at any location within the basin has practiced major setbacks due to the 

absence of tools and methods.  
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However, most catchments in impoverished nations such as Ethiopia are inadequately gauged 

or ungauged, making water supply management and flood prediction challenging (Rabba, et 

al., 2018). The low density of gauging stations, the complexity of operating and maintaining 

gauging networks, and the lack of infrastructure required to collect sufficient hydrologic data 

are all contributing factors (Gedefa & Seleshi, 2009). The availability of such technologies 

would help flood risk estimation, water management, and engineering decisions in the basin 

(Share Bale Eco-Region, 2017). As a result, the primary goal of this research is to use annual 

maximum series (AMF) estimation modeling of stream gauging data to undertake regional 

flood frequency analysis on the Upper Omo-Gibe River basin in Ethiopia. 

1.2 Statement of the problem  

Floods will continue to wreak havoc on the economy and the environment. Flood disasters 

are account for roughly one-third of all-natural disasters in terms of both number and 

economic losses. Flood and droughts are the world’s costliest natural disasters, causing an 

average of $6–$8 billion in global damages annually and collectively affecting more people 

than any other form of natural disaster (Lampros, 2009). For example, in 2006, a flood in the 

Omo basin overwhelmed the Dasenech and Nyangatom Weredas, killing 364 people and 

displacing 6000 to 10,000 people in Kuraz District, South Omo. More than 3000 livestock 

are also reported to have been claimed due to the flooding (OCHA UN office of the 

coordination of humanitarian affairs, 2006).  

The Omo-Gibe river basin is one of the flood-affected areas in Ethiopia flooding (OCHA UN 

office of the coordination of humanitarian affairs, 2006). It regularly floods settlements in the 

basin's lower reaches, reducing community benefits from flood and recession agriculture. 

The necessity to conduct this research is the frequent happening of floods in the area. Flood 

management bodies require information about flooding characteristics and their effects to 

make decisions about flood management strategies such as the construction of flood 

protection structures (engineering structures), the development of flood emergency plans, and 

human settlement planning. As the region is known as a crop productive area of the country, 

most of the crops may be suffered.  Aside from that, the Upper Omo-Gibe river basin is one 

of the country's water resource potential zones, suited for a variety of water resource projects 

such as hydropower projects, water supply, recreation, and small and large-scale irrigation 

projects.  
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Deferent researcher conducts a number of research on the study area by different tittle like, 

Surface water potential Assessment and demand scenarios analysis In Omo-Gibe River Basin 

by Dereje Atinafu(2016), The effects of land use land cover change on hydrological process 

of Gilgel Gibe, Omo Gibe river basin conducted by (Wakjira Takalaa, Tamene Adugna(PhD)

 DawudTamam), Hydro Meteorological Trends in the Upper Omo-Ghibe River Basin, 

Ethiopia by Dessalegn Jaweso, Application of a Satellite Based Rainfall-Runoff Estimation: 

in Upper Omo-Gibe Basin to simulate the extreme flood event at Omorate conducted by 

Samuel Bekele feb (2020), but there is research gap in flood frequency analysis in the Upper 

Omo- Gibe River basin which is very important for proper planning and design of water 

resources management options and flood risk management in the study area.  

The design and successful operation of hydraulic and drainage facilities such as dams, 

spillways, bridges, culverts channels, and flood protection schemes rely heavily on this data, 

both in quantity and quality (Saf, 2009). (Tanaka, et al., 2017). Unfortunately, these powerful 

inputs are frequently insufficient and, in the majority of situations, completely unavailable at 

points of interest (Rabba, et al., 2018). This is also true in this study area; there is insufficient 

data to do flood frequency analysis that is why regional flood frequency analysis was 

recommended. The project was providing regional growth curves to depict regional 

frequency curves, which is critical for estimating flood quantile magnitude Q (T) for the river 

system. 

1.3 Objective of the study  

1.3.1 General objective  

The general objective of this study is to assess the predictive accuracy of selected regional 

flood frequency distribution estimations on the Upper Omo River basin of Ethiopia.  

1.3.2 Specific objectives  

The specific objectives of the study are:  

i. To identify the best-fit parameter estimation approach and statistical distributions to 

the data of each gauge.  

ii. To develop a suitable parameter estimation method for each station in the study area. 

iii. To develop regional flood frequency curves for delineated homogeneous regions 

corresponding to the required return periods on the basin. 
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1.4 Research Questions 

i. What is the best-fit probability distributions for the prediction of hydrological events 

of gauging stations of the basin? 

ii. What is the suitable parameter estimation method for each station in the study area? 

and  

iii. How regionalization method is used for regional flood frequency analysis in the 

future? 

1.5 Significance of the study  

This research is expected to provide useful information for flood risk estimates, economic 

evaluation of flood control projects, effective planning, and design of water resource 

management alternatives in the study area. The study will also serve as a point of reference 

for policymakers and decision-makers, as well as any future research on the Upper Omo-

Gibe River watershed. This research addressed several issues, including the effects of 

underestimating flood quantiles, which can result in future flood risks and hazards, as well as 

the effects of overestimating design flood or flood quantiles during the design of various 

hydraulic structures, which will aid in analyzing and estimating the exact or appropriate 

budget determination for various water resource development. 

This research can be used as a foundation for future research in the Upper Omo-Gibe river 

basin. For example, effective design of various water resources development projects such as 

large and small-scale irrigation projects, water supply, recreation areas, and hydropower 

development projects. 

1.6 Scope of the study  

In general, the study addresses issues related to the likelihood of flooding and the magnitude 

of flooding that may occur depending on the hydrological response of the chosen basin. It is 

important to obtain an estimate of flood quantile magnitude Q (T) for locations on the river 

system for proper planning and design of water resources management options on the study 

area. The research is primarily focused on regionalizing stream flow data from the Upper 

Omo-Gibe river basin. 
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1.7. Limitation of the Study 

The problem faced through this study was lack of sufficient and reliable data regarding the 

evaluation of predictive accuracy of regional flood frequency estimations on the river basin. 
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2. LITERATURE REVIEW 

2.1 Flood Frequency Analysis  

When there is rarely observed flow data, extreme flow quantiles computed from stream flow 

data give crucial information for the design of any project and economic appraisal of a 

variety of engineering and water resources planning and development projects. Flood 

frequency analysis is used to estimate extreme flow quantiles from observed flow data. Flood 

frequency analysis is a hydrologic field concerned with estimating the magnitude of a flood 

matching to any specified return time of occurrence (Rao & Srinivas, 2008; Bhagat, 2017 

Kanti, et al., 2017). 

Professionals are interested in determining the appropriate estimation of extreme occurrences 

with defined return periods when planning and designing water resources projects (Rahmana, 

et al., 2015). These extreme events are required for the design of various flow control 

structures such as levees, culverts, bridges, barrages, and dams, reservoir management, 

economic evaluation of flood protection projects, land use planning and management, and 

flood risk assessment (Rao & Srinivas, 2008; Noto & Loggia, 2009; Bhagat, 2017; Kanti, et 

al., 2017). 

Design floods for places near a river are predicted using flood frequency studies. Statistical 

information such as mean values, standard deviations, skewness, and recurrence intervals are 

calculated using recorded yearly peak flow discharge data. These statistics have been used to 

create frequency distributions, which are graphs and tables that show the probability of 

particular discharges as a function of recurrence interval or exceedance probability (Jos, 

2017). Flood frequency analysis is a method of predicting future flooding behavior based on 

previous records of peak flows.  

Flood frequency assessments are primarily used to forecast prospective flood magnitudes 

throughout time and to determine the frequency with which floods of a given magnitude may 

occur (Sah & Prasad, 2017). The fitting of a probability model to a sample of yearly flood 

peaks observed during the observation for a catchment in a certain region is called flood 

frequency analysis. The developed model parameters can then be utilized to predict extreme 

events with long recurrence intervals (Pegram & d Parak, 2004). Floodplain management 

requires accurate flood frequency estimations to protect the public, minimize flood-related 
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costs to government and private enterprises, for designing and locating hydraulic structures, 

and assessing hazards related to the development of flood plains (Tumbare, 2000). 

Various research on the regionalization of basin hydrology has been conducted in Ethiopian 

River Basins. However, most studies (Gebeyehu, 1989; Sine & Ayalew, 2004; Demissie, 

2008); Gedefa & Seleshi, 2009; Mekoya & Seleshi, 2010; Hussein & Wagesho, 2016; 

Ketsela, et al., 2017). However, research was carried out by (Share Bale Eco-Region, 2017) 

argued different drivers of hydrological dynamics in the research area are vulnerable to 

flooding, according to the findings. To overcome this problem, the study recommended a 

regional flood frequency analysis by grouping stations into homogenous regions for the Omo 

gibe River Basin.  

Ethiopia's water resources are inadequately gauged or ungauged, making flood prediction 

and management difficult (Rabba, et al., 2018). This is due to the low density of gauging 

stations, the difficulty of operating and maintaining gauging networks, and the absence of 

infrastructure needed to collect acceptable hydrologic data (Gedefa & Seleshi, 2009). The 

design and successful operation of hydraulic and drainage facilities such as dams, spillways, 

bridges, culverts channels, and flood protection schemes rely heavily on this data, both in 

quantity and quality (Saf, 2009; Tanaka, et al., 2017). Unfortunately, these vigorous inputs 

are usually inadequate, in most cases incredibly unavailable at points of interest. 

2.2 Flood estimation techniques 

The evaluation of flood frequency is critical for flood management. It deals with flood risk 

assessment, which is required in flood zoning and spatial planning, as well as the 

arrangement of flow values for the design of flood mitigation and control works (Murphy, et 

al., 2014; Engeland, 2015). The accurate estimation of flood magnitude with the 

corresponding frequency of occurrence is a challenge for hydrologists because the frequency 

and magnitude of maximum floods (Chavoshi & Azmin, 2009; Saf, 2009; Javelle, et al., 

2010; Dubey, 2014; Alam, et al., 2016) on the sites of interest are dependent on the planning, 

management, and design of water resource projects. 

Statistical and derived methods for flood frequency analysis are identified in the literature. 

The modern approach of determining the frequency of peak stream flows is statistical flood 

frequency analysis. Fitting extreme value probability distribution functions to the historical 
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record of yearly maximum floods is a method of frequency analysis. This method relies on 

the availability of measured streamflow to fit appropriate probability distributions for gauged 

sites (Kumar & Chatterjee, 2011; Vivekanandan, 2015). 

The flood frequency analysis methodologies that have been developed entail the 

quantification of the factors that regulate flood behavior and are less reliant on historical data 

(Badreldin & Fengo, 2012). The computed peak flows are fitted to an extreme value 

probability distribution in flood statistical analysis. This method is data-driven and only 

applies to gauge stations. The choice of possibility distribution is frequently haphazard; there 

is no physical source available to limit the usage of any certain distribution (Wu, et al., 

2018). 

2.3 Flood frequency models 

The main goal of flood frequency analysis is to find a Q-T link at every critical location 

along a river. It is commonly thought that character offers an exclusive Q-T link and that Q is 

a monotonically rising function of T at any river point (Haberldin & Radtke, 2014). It is 

necessary to use a statistical or stochastic model of the continuous hydrograph to calculate 

this natural Q-T connection from a good quality constant hydrometric record of N years' 

duration, which keeps and discards information in the hydrograph relevant to the Q-T 

relation (Dessalegn, et al., 2016). For this idea, three distinct models are offered. Annual 

Maximum Series Model, Annual Maximum Partial Duration Series Model, PD or Peak over 

a threshold, (POT) Time Series Model and TS are a few examples. The challenges relating to 

the following points must be answered in flood frequency modeling (Dessalegn, et al., 2016). 

Selection of model type (AM or PD), distribution to be employed in the chosen model, and 

parameter and quintile estimation technique. The significance of two-part components of 

such an alternative is thought to be illustrious. The descriptive and predictive features of the 

chosen approach are as follows (Haberldin & Radtke, 2014). 

 The descriptive property' refers to the requirement that the chosen distribution form closely 

resembles the practical sample distribution of floods and that arbitrary samples drawn from 

the chosen model distribution must be statistically similar to the properties of actual flood 

series. The analytical property' refers to the requirement that quintiles estimates are strong 
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with low bias and standard deviation (Dessalegn, et al., 2016) and the following two models 

were available for this purpose. 

2.3.1. Annual maximum series model 

Only the peak flow in each year of the record is considered in the annual maximum flow 

(AMF) dataset. (Desalegn et al. 2016) proposed that a series of AMF floods is required to 

generate a random sample from a stationary population in which the accidental variable has a 

distribution. Only the peak flow in each year of data is used in the AMF flow series, which 

may result in some information loss (Chow et al.,1988). An AMF is a flood frequency 

analysis model that is universally employed by different investigators (Badreldin and Fengo, 

2012). 

2.3.2. Partial duration series model 

The majority of the flow hydrograph is ignored in this paradigm, and the hydrograph is 

interpreted as a sequence of randomly spaced flood peaks of varying amplitude. Only the 

series of peaks exceeding an arbitrary threshold is evaluated in statistical modeling and 

identification of the values that make up the series. (Desalegn et al., 2016). All peaks over a 

particular base value are taken into account in partial duration series. The base is normally set 

low enough to accommodate at least one annual event (Rao and Hammed, 2000). As a result, 

the yearly maximum flow series model was chosen to overcome the problem of data 

dependency. Furthermore, the AMF series is a widely and globally utilized model for flood 

frequency analysis by various scholars (Desalegn et al., 2016). As a result, the AMF series 

model was adopted to avoid the worry about data requirements. 

2.4 Regionalization  

Regionalization refers to the identification of homogeneous regions through a homogeneity 

test and the selection of an appropriate frequency distribution for the identified region and 

stations in the context of evaluating the predictive accuracy of regional flood frequency 

distribution estimation methods. There is no objective method of regionalization that is 

universally acknowledged (Sine, 2004). A common major stage in any RFFA is the 

delineation of hydrologically homogenous regions or zones. The hydrologic characteristics of 

gauged basins are transferred to ungauged basins through regionalization. 
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There is no commonly acknowledged impartial way of regionalization because of the 

complexity of components that influence flood generation (Kachroo, et al., 2000); (Mishra, et 

al., 2000). (2009). Expectations in regionalization are based on the statistical similarity of the 

locations in an area. The values of the coefficient of variation and the site-to-site coefficient 

of variation must be employed in this analysis. The mean, standard deviation, and coefficient 

of variance of each site in a region must be computed for the homogeneity test (Nobert, et al., 

2014). Depending on the availability of gauging stations in the area, hydrologic data can be 

used in a variety of ways. 

Different writers have attempted to identify hydrologically similar locations based on 

geographical factors, flood data characteristics, or a mix of both (Kachroo, et al., 2000). 

After that, the collection of defined homogeneous catchments can be pooled and described 

using statistical features. As a result, regional flood approaches are extensively employed, 

and they give a realistic way to predict discharge in areas with limited data. (Zaman and 

colleagues, 2012). 

2.4.1 Identification and Delineation of Homogeneous Regions 

A basic stage in regional flood frequency analysis is the identification and definition of 

homogeneous regions (RFFA). In recent years, there has been a lot of interest in identifying 

flood-producing natures in data-poor areas (Smith, et al., 2015). The application usually 

entails assigning an ungauged watershed to a suitable homogeneous group and predicting 

flood quantiles with created models based on catchment features. To put it another way, an 

RFFA based on homogeneous areas can transfer information from similar gauged catchments 

to ungauged catchments, allowing for flood prediction (Haddad, 2013).  

(Hosking & Wallis, 1997) Mentioned all the stages in RFFA involving many sites. The 

authors pointed out that identifying homogenous areas (IHRs) is often the most challenging 

and demands the most subjective assessment. The identification of spatially contiguous 

regions can be used to divide the basin into homogeneous regions. Geographical proximity, 

on the other hand, does not imply hydrological similarities (Patil & Stieglitz, 2012). 

There are no clear rules for selecting homogeneous zones due to the complexity of 

comprehending the components that have a direct and indirect influence on flood formation 

(Kachroo, et al., 2000). Meanwhile, prior knowledge, experience, and personal judgments 
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might help to define regions with similar hydrological characteristics. Several authors 

attempted to identify hydrologically homogeneous locations, focusing on either geographical 

considerations or hydrological traits, or a mix of the two (Kachroo, et al., 2000). 

2.4.2. Statistical Homogeneity Tests  

The assumption behind regional flood estimating methods is that a standardized flood variate 

has the same distribution at every location in the designated region. The significance of 

homogeneity has been proven by (Demissie, 2008). Homogeneity means that the flood-

generating mechanisms in different areas are similar. A more precise definition of a 

homogenous zone is a group of locations that share the same standardized frequency 

distribution form and parameter. To see if the preliminary defined and demarcated region is 

homogeneous, homogeneity tests based on Cv and LCv are used. In this situation, 

hydrological data must be used, and the region is considered homogeneous if it meets both 

homogeneity test conditions (Nobert et al., 2014). The discordance metric is used to detect 

sites that are significantly out of sync with the rest of the group. It calculates how far a given 

location is from the group's center. It's also a good idea to filter out data from atypical 

locations when looking for relevant datasets for regionalization. These locations were chosen 

because of data flaws or other local factors (Rao and Hamed, 2000; Noto and Loggia, 2009; 

Guru and Jha, 2016; Kanti et al., 2017) The delineation of the homogeneous region is 

important for site characteristics to be truly representative of the observed discharge data 

used to estimate hydrologic design values (Irwin et al., 2014). 

 2.5 Statistical distributions for flood frequency analysis  

The fundamental goal of regional flood frequency analysis is to find a distribution that 

produces as precise quantile values for each site as possible. When numerous distributions fit 

the data well, the optimal distribution is the one that can give good quantile estimates 

(Hosking & Wallis, 1997). Because there is no sound physical foundation to explain the 

selection of a distribution for a certain application, it is usually made arbitrarily (Rahmana, et 

al., 2015). The distribution models were chosen based on past research, with the majority of 

them having been applied and recommended in various nations. Many factors influence this, 

including the methods used to discriminate across distributions, the methods used to estimate 

parameters, and the availability of data (Kumar & Chatterjee, 2011). 
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2.5.1 Best fit probability distributions 

The process of determining a suitable probability distribution for a given dataset is known as 

probability distribution fitting. Flood frequency analysis provides a precise estimate of the 

greatest flood by fitting a probability distribution for a given return time (Vivekanandan, 

2015). The goal is to anticipate the frequency of occurrence of the phenomenon's magnitude 

in a certain interval. This can lead to an accurate flood forecast. The most closely fitting 

probability distributions to the observed data are determined by the nature of the occurrence 

and the distribution (Athulya & James, 2012).  

As a result, the most critical component in frequency analysis is selecting the best statistical 

distribution. As a result, several distributions must be used, and then the most suited data 

distribution should be chosen (Amirataee, et al., 2014). In flood frequency analysis, the 

available data is fitted to an assumed probability distribution to estimate the flood amplitude 

for a certain return time. In this document, you'll find details on some of the most widely 

utilized distributions in flood data (Rao & Hamed, 2000). The first error is connected with 

the incorrect assumption of a particular distribution for the given data, which can be checked 

to some extent using goodness-of-fit tests (Millington, et al., 2011). To analyze the 

reasonability and check the appropriateness of best-fitting probability distributions to the 

recorded data, several goodness-of-fit tests were performed, including the Kolmogorov-

Smirnov test, the Anderson-Darling test, and the chi-square test at the significance level 

(0.05). 

In the section about flood data distributions, you'll find information on the most widely used 

distributions (Rao & Hamed, 2000). The first error, which is connected with the incorrect 

assumption of a specific distribution for the given data, can be checked to some extent using 

goodness-of-fit tests (Millington, et al., 2011). To analyze the reasonability and check the 

appropriateness of best-fitting probability distributions to the recorded data, a variety of 

goodness-of-fit tests were performed, including the Kolmogorov-Smirnov test, the Anderson-

Darling test, and the chi-square test at the significance level (=0.05). 

2.5.2 Goodness of fit tests 

The goodness of fit test is a statistical model that uses a theoretical probability distribution 

function to produce a well-matched random sample. To put it another way, these tests 
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demonstrate how well the chosen distribution matches the data. The goodness of fit test 

compares observed values to expected (fitted or predicted) values in the same way that linear 

regression does. Kolmogorov Smirnov, Anderson-Darling, and Chi-Squared goodness-of-fit 

tests were used to assess the distributions' performance (Rao & Hamed, 2000). 

2.5.3 Method of L-moment ratio diagram 

L-moment ratio diagrams can be used to evaluate the adequacy of a probability distribution. 

This strategy is effective in selecting a distribution for a region in regional frequency analysis 

(Das & Simonovic, 2012). The L-moment ratio diagrams (LMRD) are a trusted diagnostic 

tool for determining a probability distribution. For a goodness-of-fit test, this is always 

superior to a product-moment ratio diagram because it allows a visual comparison of the 

sample estimates with the population values of L-moments (Hosking & Wallis, 1997). 

(Amalina, et al., 2016). The ability to compare the fit of several distributions using a single 

graphical instrument is a benefit of LMRD (Chavoshi & Azmin, 2009). 

The L-moment ratio diagram is commonly used as the first visual examination tool for 

picking a regional frequency distribution from sample data. By plotting the sample L-

moment ratios and average sample L-moment ratios (3 and 4) or record length weighted 

average L-moment ratios as a scatterplot with theoretical curves of several candidate 

distributions in an L-Skewness-L-kurtosis space, the L-moment ratio diagram can provide an 

elementary visual judgment of a regional frequency distribution. The chosen distribution 

should be as near to the regional data as possible (Lu, 2016). (Hosking & Wallis, 1997). 

2.5.4 Parameter Estimation 

For parameter estimation, only the ordinary methods of moments (MOM) were previously 

described. MOM, PWM, and ML are the most efficient methods of parameter estimate 

known because of their lesser inaccuracy in quintile estimation, according to several 

parameters estimating approaches that have been suggested and researched (Badreldin & 

Fengo, 2012). The Maximum Likelihood (ML), Approach of the Moment (MOM), 

Probability Weighted Moments, and L-Moment method are all estimate methods. The L-

Moment approach is used to estimate the parameters for this study since it is less affected by 

outliers and severe data series. (1997, Hosking & Wallis). Some of the parameter estimation 
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methods may not yield good estimates. Hence, some guidance is needed for estimation 

methods. 

i. Method of maximum likelihood  

The maximum likelihood technique (MML) is regarded as the most accurate method, 

especially for big datasets. Because it leads to efficient parameter estimators with Gaussian 

asymptotic distributions, when compared to other approaches, it delivers the least variance in 

the estimated parameters, and hence the estimated quintiles. However, with small samples, 

the results may not converge. This method involves the choice of parameter estimates that 

produce a maximum probability of occurrence of the observations (Cunnane, 1989). In 

general, the PWM and MOM are better for estimating the parameters for three and two-

parameter distributions respectively of the underlying distribution from which the data are 

sampled. They are less susceptible to sampling variability (outliers) than others, resulting in 

more accurate and robust estimates of the underlying probability distribution's features or 

parameters (Rao and Srinivas, 2008). 

ii. Method of moment  

The method of moment (MOM) is a simple and widely used method of determining 

probability distribution parameters. It can also be used to get beginning values for numerical 

techniques used in ML estimates. MOM estimates, on the other hand, are generally less 

efficient than ML estimates. Higher-order moments are more likely to be utilized to establish 

starting values for numerical procedures involved in ML estimation and to be strongly biased 

for relatively small samples, especially for distributions with a large number of parameters. 

In recent years, the L-moment approach has become the most preferred method for frequency 

analysis established by (Hosking and Wallis, 1997) 

L-Moments (LMM) is a system of expressing the shapes of probability distributions that is 

similar to the method of moments and linear functions of the expectations of order statistics. 

It is a powerful and efficient way for computing statistical parameters because such methods 

can provide an unbiased estimate of sample parameters that is unaffected by outliers (Ghosh 

et al., 2016; Rao and Hamed, 2000). The L-moments technique illustrates reliable forecasts 

of all types of statistical analysis; therefore, it can be recommended for policies and decision-

making in hydrological catchment planning (Kanti et al., 2017). L-moments can characterize 
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a wide range of distributions when compared to the method of moments and maximum 

likelihood. L-moment sample estimates are sufficiently powerful that they may not be 

affected by the presence of an outlier in the dataset and are less prone to estimation bias. L-

moments can provide precise parameter estimates for a fitted distribution (Cunnane, 1989).  

iii. Probability-weighted moments 

Probability-Weighted Moments (PWMs) are useful in deriving expressions for distribution 

parameters that can be explicitly described. This approach obtains parameter estimation by 

equating the distribution's moment with the relevant sample moment of observed data. The 

initial sample moments are set equal to the corresponding population moments for a 

distribution with a parameter. The unknown parameters were then solved simultaneously 

using the equation that resulted. PWM parameter estimation is a relatively recent technique 

that is as simple to use as regular moments, is usually unbiased, and is nearly as efficient as 

MML. PWM may be equally efficient as MML in small samples; with larger sample size, 

however, MML may be more efficient. 

The data fitting procedure entails the application of statistical techniques that allow for the 

estimation of fitness parameters in line with the data sample. One advantage of utilizing 

software to fit data and understand probability data is that it can automatically fit data with 

many known distribution patterns at the same time. R studio programming Software is a data 

analyzer and simulation program capable of fitting and simulating statistical distributions 

with sample data, selecting the best model, and then using the analysis results to make better 

judgments. For several distributions, R studio used for the selection parameter estimation 

approach for fitting distribution to a dataset maximum likelihood method moment matching 

method, quantile matching approach, and maximizing goodness of fitting approach.  

R studio Software is an interactive software system to identify parameters, allows the most 

flexible input of the underlying model in form of FORTRAN code, and is executable 

independently from the interface. It consists of a database containing models, data, and 

results, and of underlying numerical algorithms for solving the parameter estimation problem 

depending on the mathematical structure (Schittkowski, 2002). The selections of the 

distribution models are based on the previous studies where most of these have been used 

and recommended in various countries. In this study selection of best-fit probability 
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distribution and its method of parameter estimation suitable for each distribution within the 

interface were conducted using R studio software due to the results of analysis leading to 

taking a better decision (Romani and Yusop, 2017). According to Irwin et al. (2014), 

watersheds are delineated using ArcGIS with DEM data and subsequently, several flood 

generation characteristics are assigned to each watershed. The outcome of this procedure can 

be directly applied in regionalization to group watersheds into hydrologically homogeneous 

regions based on the similarity of their attributes, and hydrologic variables are estimated 

from the regions. Hence, to delineate and characterize watersheds for regionalization 

ArcGIS10.4.1 environment was used for this study using the procedure of (Abdulla, 2011) 

and (Irwin et al., 2014) 

2.6 Quantile Estimation and Derivation of the Flood Frequency Curve 

After estimating the parameters of a distribution, quintile estimates (XT) for different return 

periods T can be derived. The chance of non-exceedance (F) is related to the return period by 

the relation F=1-1/T, where F= F (XT) is the likelihood of having a flood of magnitude XT or 

smaller. There are two types of distribution functions that are found in practice. The first is 

that which may be represented in the inverse form XT= υ (F). In this situation, XT is 

calculated by substituting its value from the above equation for υ (F). The distribution of the 

second kind cannot be directly represented in the inverse form XT = (F). Frequency analysis 

and is estimated by applying a distribution function once the parameters of distribution have 

been estimated.  

The chosen quantile of under or over design criterion for hydraulic structures is at risk since 

the return period is dictated by the structure's cost and economic-strategic importance. After 

estimating the parameters of a distribution, selecting a reliable design quantile is required for 

the delineation of floodplains, the development of floodplain management, and flood 

warning systems. The effects of statistical methods used in parameter estimation belonging to 

the probability distribution on the design, operation, and management of a hydraulic structure 

are highly dependent on statistical methods used in parameter estimation belonging to the 

probability distribution. (Amalina and colleagues, 2016) The parameter estimates that 

maximize the likelihood function are generated by partial differentiation for each parameter, 

setting the partial derivatives to zero, and then solving the resulting set of equations all at 

once. As a result of this problem, the equations are frequently complex, and the solution set 
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may not be properly determined (Cunnane, 1989). Although using these parameters provides 

less skewed estimates than using two, there is no broad consensus on the ones to employ 

(Parida, et al., 1998).  

When quantiles must be computed for sites where no observations have been recorded or 

where observations have been obtained for only a short length of time, frequency analysis 

estimates are neither possible nor accurate. RFFA is one of the methods for overcoming these 

issues while accurately quantifying flood forecasts at appropriate frequencies for series inside 

a more or less hydrologically homogeneous region (Dubey, 2014). 

2.7 Derivation of Flood Frequency Curves  

The peak annual flow of a given stream is plotted on a flood frequency curve at a specified 

point in the recurrence interval or return period. The annual likelihood of exceeding a certain 

flood flow is calculated using flood frequency curves. Regional flood frequency curves can 

be used to estimate flood quantiles at an ungauged site within the region by taking into 

account the spatial pattern of change of hydrologic phenomena over numerous gauging sites 

(Ergish, 2010).  

The relationship between the amplitude of river peak flows and the recurrence interval or 

return time is described by flood frequency curves (FFC). When calculating flood risk, a 

flood frequency curve and flood estimation for various return times are required. The 

development of FFC for various return durations aids in the estimation of flood quantiles 

(Das & Simonovic, 2012). The primary purpose of every RFFA is to create a regional curve 

that can represent the averagely weighted distribution of homogeneous regions. The 

normalized regional quantile floods (XT); FFC for a specific return period are estimated 

using the final phase of flood frequency analysis (Tadesse, et al., 2011). 

The model parameters produced from the best-fitted distribution to the observed data are 

used for a given region. This aids in the calculation of standardized quantile estimates, which 

are then utilized to create a regional flood frequency curve for the homogenous region. These 

graphs are quantile plots that depict all locations in a homogeneous region (Hailegeorgis & 

Alfredsen, 2017). 
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2.8. Previous Studies on Regional flood frequency analysis in Ethiopian River Basins 

Gebeyehu (1989) investigated regional flood frequency analysis based on monthly rainfall 

patterns and geographical closeness for the Blue Nile River Basin. Because the responses of 

the statistical technique in similar rainfall regions are diverse outcomes of changes in basin 

topography, the study has some limitations in that it does not correctly designate 

homogeneous regions. (Gebeyehu, 1989) points out the following information in his 

conclusion. The regionalization approach provides useful information about the flood 

frequency of gauged and ungauged catchments; a small amount of site data greatly improves 

the estimate of the mean annual flood that can be used with a regionally based estimate of the 

XT relationship, and the results of regional flood frequency analysis should be updated as 

more relevant information becomes available.  

Blue Nile River Basin has also been regionalized into similar flood-producing characteristics 

based on statistics of at-site data (Sine and Ayalew, 2004). The author defined a 

homogeneous region found to have to be with geographical proximity and it performs mainly 

for carrying out regional frequency analysis for estimation of flood magnitude for water 

resources project planning and design. Identification and delineation of homogeneous regions 

for all stations of the respective regions satisfy homogeneity criteria. The types of 

distribution most likely to fit data of each region were identified from the regional average 

statistical value of the L-Moment ratio. The study recommended that the selection of best-fit 

single distribution and dynamic parameter estimation methods require further investigation. 

(Demissie and Michael, 2008, Mekoya and Seleshi, 2010) established RFFA for the Upper 

Awash sub-basin using the application of the index flood method. The former regionalizes 

the sub-basin into two upper and lower regions and the latter delineated the sub-basin into 

five homogeneous regions and log Pearson type-III as the best fit distribution for quantile 

estimations. The former recommended that additional testing of stations for homogeneity 

should be done considering geographical factors are a good method in RFFA of the basin and 

the latter to extend the method of RFFA for the other Ethiopian river basins.  

According to (Hussein and Wagesho 2016), the regionalization of the Abaya-Chamo sub-

basin was performed based on site characteristics such as elevation, soil type, soil texture, 

slope, land use land cover, and mean annual rainfall. Site statistics were used for testing of 
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homogeneity of the proposed region. The authors concluded that to get a reliable quantile 

estimate more gauging stations should be installed in the basin to infer something for 

ungagged sites. (Ketsela et al. 2017) performed FFA on Awash River Basin using statistical 

distribution technique. The Easy Fit Software was employed for the selection of best-fit 

distributions and estimation of parameters for stations. Kolmogorov–Smirnov test was used 

for the choice of a suitable distribution for estimation of maximum flood discharge. 

According to this study, the awash basin was delineated into five satisfactory homogeneous 

regions and recommended software-based techniques like Easy Fit and other alternative 

statistical software packages to get accurate and reliable flood estimation results. 
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3. MATERIALS AND METHODS 

3.1 Study area Discretion 

3.1.1 Location 

The Upper Omo-Gibe basin is one of the major river basins in Ethiopia and is situated in the 

south western part of the country covering parts of SNNPR and Oromia region. The basin 

lies between 5°40' to 9°40'N latitude and 35°40' to 38°20'E longitude. The basin is 

characterized by diverse topographic features with elevations ranging from 746 m asl in the 

southern part to 3522 m asl in the northern highlands. The rainfall in the basin has a mono-

modal pattern. The mean annual rainfall during the study area is 1425 mm and 92% of the 

annual rainfall occurred during the wet season (March–October), while the dry season 

(November–February) receives only 8% of the annual rainfall (Adnew and Woldeamlak, 

2013). The mean annual temperature is 19.2 ◦C. The area is drained by some of the major 

rivers of the country, such as the Omo, Gilgel Gibe, Gojeb, and their numerous tributaries. 

These have created the dissected terrain. Nearly half of the country’s remaining natural 

forests are found in this region. 

 

Figure 3. 1 Study area map 
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3.1.2 Climate 

The Upper Omo-Gibe River Basin's climate ranges from a hot, arid environment in the 

floodplain's southern reaches to a tropical, humid climate in the highlands of the Basin's 

extreme north and north-western reaches. The climate is tropical sub-humid for most of the 

basin, which lies halfway between these extremes. In the study area, annual rainfall ranges 

from over 1900 mm in the north-central parts to less than 300 mm in the south. Furthermore, 

the rainfall regime in the northern and central regions of the basin is unimodal. The average 

annual temperature in the Upper Omo-Gibe Basin ranges from 160°C in the northern 

highlands to over 290°C in the southern lowlands. (Richard Woodroof and Associates, 1996). 

3.1.3 Topography  

Physical variation characterizes the terrain of the Omo-Gibe basin as a whole. The Omo, 

Gojeb, and Gilgel-Gibe Rivers gorges pass through mountainous to hilly terrain in the 

northern two-thirds of the basin, while the southern one-third is a flat alluvial plain broken by 

steep sections. The northern and central halves of the basin are over 1500 m a.s.l., with a 

maximum elevation of 3522 m a.s.l. (between the Gilgel-Gibe and Gojeb rivers), and the 

lower Omo plains are between 400 and 500 m a.s.l. 

The Great-Gibe River's headwaters are around 2200 meters above sea level. The Gibe River 

flows southwards, towards the Omo River and subsequently to Lake Turkana, a fault feature 

filled with alluvial and lacustrine materials of recent origin connected with the Great Rift 

Valley, despite the presence of some significant tributaries from various directions. In its 

lower sections, southwest of the confluence with the Gojeb River, the Gibe River is known as 

the Omo River. This is how the Omo-Gibe River Basin got its name. (Richard Woodroof and 

Associates, 1996). 

3.1.4 Land Use  

In a general sense, much of the Omo-Gibe Basin's northern catchments are under intensive 

cultivation with increased land pressure, which means that cultivated areas are expanding 

into increasingly marginal regions at the expense of forest lands. Deforested regions are 

currently restricted to places that are too steep and difficult to agriculture. The northern 

catchments' flatter, poorer-drained bottomlands are normally not cultivated but are used for 

dry-season grazing and eucalyptus tree plantations. The main gorges of the basin are 
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relatively unpopulated and support a cover of open woodland and bush land with grasses, the 

eastern part of the basin has some of the most densely populated and intensively farmed areas 

in the country, let alone the basin. The south of the basin is more sparsely populated with a 

greater population of natural vegetation, though even here the forest is decimated at an 

alarming rate. (Richard Woodroof and Associates, 1996) 

3.2 Materials and Tools/Software’s used 

The materials indispensably used in conducting this study were; kinds of literature, the 

internet, etc. In addition, the tools used to undertake the research were software. The general 

descriptions of the Tools/Software’s are described herein Table 3-1. 

Table 3. 1 Description of Tools/Software’s used 

NO Tools used Function 

1 

 

 

2 

Microsoft excel 

spreadsheet and 

XLSTAT2018 

SPSS Software 

For data arrangement, filling missed data and calculate 

the statistical parameters of hydrological data. 

Used to fill in missing streamflow data of stations 

Used for data quality control.ie for F-tests, and T-tests 

3 Arc-GIS For the delineation of the study area map, delineation of 

the hydrologically homogeneous region. 

4 R studio software For the selection of suitable probability distribution for 

each selected station, selection of parameter estimation 

methods and estimation of the goodness of fit.  

5 Origin plot 2019 Plot curves and graphs that are huge, create and share 

diagrams and templates and resize shapes curves and 

diagrams 

6 Matlab2018a For the measures of discordancy of the site from 

identified regions. 

3.3 Data Collection and Analysis  

It is critical to define a clear and efficient approach for the study's findings to be of high 

quality. The data analysis processes in this work range from preliminary data screening to 

developing a regional flood frequency curve based on AMF series data. The data were 

screened to look for major errors and to ensure that the data was consistent. After identifying 
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pertinent data from the study basin that would be beneficial for the regional analysis, the data 

was checked for quality. The goal of identifying homogenous regions was to determine 

whether sub-basins may be grouped based on their flood-producing nature. This was done 

using the L-moment ratio diagram and station site parameters. The regional frequency 

distribution was calculated using average L-moment ratios, and the goodness of fit test was 

performed using R studio software to ensure that the chosen distribution fits the data in the 

region. The flood quantiles for specified return periods at ungauged locations are then 

computed using the estimated frequency distribution derived from the regional growth curve. 

The following approaches were used in general to assess the predictive accuracy of regional 

flood frequency estimation in this study. A homogeneous region is defined, and standardized 

data from various sites within the region can be pooled together to produce a single 

frequency curve appropriate to the region. It is difficult for hydrologists and engineers to 

generate credible flood estimates directly when enough rainfall or river flow records are not 

available at or near the place of interest, thus regional studies might be valuable. 

3.3.1 Sources and Availability of Data 

To estimate flood magnitude, flood frequency estimation generally uses recorded yearly 

maximum flood data at gauging stations. The Ministry of Water, Irrigation, and Electricity's 

department of hydrology and GIS provided hydrological and DEM (digital elevation model) 

data for the Omo-Gibe River Basin. DEM data was used as a starting point for defining the 

basin's boundaries and pinpointing the locations of the gauging stations. There are around 

twenty gauging stations in the research area, but only eleven gauging stations were chosen 

for adequate regional flood frequency calculation. The chosen stations do not have fully 

recorded data on their own; they have several years of records with missing data that must be 

filled in before analysis. As a result, eleven gauging stations were chosen. The site 

characteristics of stations for this study include the code of the stations, the name of the river 

and their gauging sites, the locations (latitude and longitude), and the catchment area in km
2
. 
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Table 3. 2 The site characteristics of stations used in detail analysis 

 

River 

name 

Location 

of gauging 

station 

Latitude Longitude 

Area 

(km2)  

Record 

period 

Recor

d 

length Code 
   

111111 Ghibe Tollay 8'25"10.9'N 37:2:58E  2,572 2000-2019 20 

61015 Gibe Abelt 8'13.47"N  37:34:44E  15,746 1985-2017 33 

91004 Wabi Wolkite 8'14"53.7N   37:45:34E 1,866 1975-2009 35 

91010 Walga Wolkite 8'19"32.1N  37:35:25E 1,792 1975-2005 31 

91007 Gogob Endeber  7°50′0N  37°40′0″ 109 1990-2014 25 

91008 Gilgelghbe Asendabo 7:45: 0 N 37:11: 0 E 2,966 1982-2016 35 

91032 Bulbul Serbo 7:34: 0 N 37: 5: 0 E 526 2000-2017 18 

91023 Kito Jimma 7:42: 0 N 36:50: 0 E 85 1990-2013 24 

92002 Gecha Bonga 7:17: 0 N 36:13: 0 E 175 1991-2019 29 

91012 Gojeb Shebe 7:25: 0 N 36:23: 0 E 3,577 1974-2008 35 

92004 Guma Andaracha 7: 9: 0 N 36:15: 0 E 231.3 1990-2015 26 

3.3.2 Data Screening 

Data screening is the initial task in which procedures are used to filter out undesired 

observations from the data series as well as analysis sites. It is used to ensure that the data 

used in the regional flood frequency calculation are correct (Kumar and Chatterjee, 2011; 

Kachroo et al., 2000). This allows for visual assessment of whether observations have been 

routinely or unintentionally ascribed to the wrong day, or if decimal points have been 

misplaced. Visual inspection of daily flow data revealed problems such as inflated numbers, 

missed decimal points, and extremely high and/or extremely low flow records during dry 

months and/or rainy months. Streamflow data from gauging stations in the Upper Omo-Gibe 

River Basin was used in this investigation. 

The at-site AMF records have a minimum and maximum length of 18 and 35 years, 

respectively. The AMF data were selected and afterward submitted to investigative data 

analysis for all of the stations indicated in Table 3.2 and presented in figure 3.3 to choose 

representative stations for the study area.  
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Figure 3. 2 The spatial distribution of gauging stations in Upper Omo-Gibe River Basin 

3.3.2 Missed data filling 

When analyzing runoff data from gauges that take monthly observations, it's common to find 

months where no observations are taken at one or more gauges. The record's stability can be 

harmed by missing data for a variety of reasons, including the absence of a recorder, the 

observer's carelessness, and the break or failure of instruments. It's common to have to make 

educated guesses about these missing records. Data from nearby stations can be used to 

estimate missing data (Sine, 2004).  For a given gauging station, different methods are 

employed to fill in missing flow data. Arithmetic Average Method, Graphical Correlation 

Method, Normal Ratio Method, and Linear Regression Method are a few examples. 

In this study, any missing data were filled in using the linear regression method by using the 

excel state software. Using adjacent flow gauging station observations, simple linear 
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regression was used to fill in missing streamflow estimates. The following are the reasons 

why this strategy was chosen: i) It is the most extensively utilized method for massive data 

when compared to other methods. ii) As accurate estimation of significant missing 

observations as possible. iii). It is used by establishing a link with a nearby station. 

The equation for linear regression is given as:  

Y = ax + b………......…....……………..……………………………....……….…….…3.1 

3.4 Data quality control 

In some circumstances, errors in the streamflow observation to be collected may exist, such 

as misplaced decimal values, extremely large unrealistic numbers, and negative flow records. 

A critical step is to test observation quality before employing it. To check the quality of 

streamflow data for this investigation, the following procedures were examined. 

3.4.1 Test for randomness and independence  

Flood frequency analysis FFA is known to be carried out in principle when the at-site data 

are independent and identically distributed requirements are met (Hosking & Wallis, 1997). 

This implies that extreme occurrences could occur at any time and have the same frequency 

distribution. Independence is one of the most important assumptions in frequency analysis, 

and the interstice correlation has a significant impact on the variance of regional parameters 

and flood quantiles, as well as reducing the effective length of records. The randomness test 

is required to determine independent annual maximum (AM) series from all data set values at 

each station, according to (Guru & Jha, 2016). It is assumed that all the peak magnitudes in 

the AM series are mutually independent in the statistical sense. 

The AMF at multiple sites in a homogenous region must be spatially independent, according 

to the criteria of regional flood frequency analysis (RFFA) (Hailegeorgis & Alfredsen, 2017). 

It should be noted that the correlation coefficient was used in this study to validate the 

independent data from the chosen hydrological stations. The lag-1 serial correction 

coefficient R is defined as follows by Dahmenand Hall (1990)   
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  ∑
 (    ̅)(      ̅)

(    ̅)
 
   …………………………………………...………….…………3.2 

                                                Where   Xi is an observation, 

                                                              Xi+1 is the following observation and      

                                                              n is the amount of data. 

After computing R1, the test hypothesis is H0: R1= 0 (no connection between two 

consecutive observations) against H1: R1> 0. At the 5% level of significance,  

Anderson (1942) defines the crucial area, R1, as (-1, (LCL) R1 (UCL), 1), and equation 3.2 

gives: R1's upper confidence limit (UCL) is calculated as follows: 

UCL(R1) =  
 (       (   )    )

    
………………………………….…………………….......3.3  

The lower confidence limits, LCL, for R1 as:  

LCL(R1) = 
 (       (   )    )

    
…………….….………………….………………...………3.4  

To accept the hypothesis Ho: R1=0, the value of R1 should fall between the UCL and LCL. 

Applying this condition to the time series, the condition: LCL (R1) <R1< UCL (R1) is 

satisfied for all stations. 

Table 3. 3 Result of test for independence of stations time-series data 

Station  
LCL 

(R1) 
R1 

UCL 

(R1) 
Station  

 LCL 

(R1) 
R1 

UCL 

(R1) 

Tollay -0.556 -0.251 0.422 Serbo -0.52 0.402 0.456 

Abelti -0.361 0.309 0.302 Jimma -0.537 0.016 0.412 

Wolkite -0.361 0.042 0.302 Bonga -0.385 0.290 0.318 

Wolkite -0.372 -0.174 0.309 Shebe -0.372 0.242 0.309 

Endeber -0.052 0..012 0.456 Andaracha -0.477 0.344 0.377 

Asendabo -0.361 0.126 0.32     

As a result, there is no correlation between successive observations. The data are unrelated, 

and the time series has no consistency. The summarized result of the test for annual 

maximum flow series for example for Tollay station -0.556<R1< 0.422 
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3.4.2 Test for Consistency and Stationary  

If the periodic data are proportional to an adequate contemporaneous time series, a time 

series of hydrological data is relatively consistent (Dahmen & Hall, 1990). The F-test for 

variance stability and the t-test for mean stability, according to (Dahmen & Hall, 1990), 

evaluate not only the stationary of time series but also their absolute consistency and 

homogeneity. If the F-test reveals stable variance and the t-test shows a stable mean, then the 

time series is steady, consistent, and homogeneous, according to this. The following are the 

two criteria used to ensure the consistency and stationary of streamflow observations: 

a. F-test for Stability of Variance 

The ratio of the variances of two split, non-overlapping subsets of the series is the test 

statistic (Dahmen and Hall, 1990). The annual maximum streamflow observations are 

separated into time series that are equal or nearly equivalent. Then, for each gauging station, 

the variation of each time series is determined. 

The test statistic (Ft) is calculated as: 

    
                      
                     

……………………………………….......………….…………3.5 

According to this method, the variance of the time series is stable if and only if: 

F (V1, V2, 2.5%) < Ft<F (V1, V2, 97.5%) 

                                      Where, V1 = n1 – 1 and V2 = n2 − 2, and 

                                                  n1 and n2 -the number of observation points in each subset. 

b. Test for the Stability of Mean 

The mean stability test entails calculating and comparing the mean of non-overlapping 

subsets of the time series (Dahmen and Hall, 1990). The t-test values are calculated using the 

same subgroups as the F-test.  

The statistic t-test (Tt) is given as: 
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 (    )  
 
 (    )  

 
   

         (  
  
  
  

)

      
….……………………...……...…3.6 

                                      Where X : is the mean of the series 

                                                 n: is the number of monthly streamflow records  

                                                 S: is the standard deviation of the two series 

The mean of the time series is stable according to the Stability of Mean test if and only if: t 

(V, 2.5 percent) < Tt < (V, 97.5 percent). The value of V varies per station, and the values are 

taken from Appendix-D using percentile columns (2.5 percent and 97.5 percent). 

Noting that both F {V1, V2, 2.5%}, and F {V1, V2, 97.5%} values for 5% significance level 

as Appendix-B. For the station having years are listed using V1, V2 and percentile row 2.5 % 

or 97.5 % Appendix-C.  

For this research, the T-test and F-test were conducted by using SPSS statistical software. 

SPSS is software for editing and analyzing all sorts of data. These data may come from 

basically any source: scientific research, a customer database, Google Analytics, or even the 

server log files of a website. SPSS can open all file formats that are commonly used for 

structured data such as spreadsheets from MS Excel or Open Office, plain text files (.txt or 

.csv), relational (SQL) databases, Stata and SAS. An SPSS data file always has a second 

sheet called variable view. It shows the metadata associated with the data. Metadata is 

information about the meaning of variables and data values. This is generally known as the 

―codebook‖ but in SPSS it's called the dictionary. 

The results of observations of data of gauging stations T-test and F-test, are presented in 

Appendix-E, and show that mean and variance of the time series was stable. The reason why 

SPSS software is selected, i) Quick and easy to learn ii) Can handle large amounts of data iii) 

Great user interface iv) SPSS can take data from almost any type of file and use them to 

generate tabulated reports, charts, and plots of distributions and trends, descriptive statistics 

and conduct complex statistical analyses. 

https://www.openoffice.org/
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3.4.3 Check for data adequacy and reliability  

The sample size affects the accuracy of statistical the mean. The data used for analysis was 

double-checked for accuracy and consistency. The data's accuracy and sufficiency were 

evaluated and specified. 

Using equation 3.7, the accuracy and appropriateness of data were assessed and defined in 

(McCuen, 1998). 

   
  

     
…………………...……...………………………………….……………........3.7  

                                                             Where, De- Standard error 

                                                Cv-Coefficient of variation and 

                                                        N-number of yearly data in the series 

Table 3. 4 Results of test for adequacy and reliability of AMF data 

Station  Cv N De Station  Cv N De 

Tollay 0.291 16 0.073 Serbo 0.556 18 0.093 

Abelti 0.173 35 0.029 Jimma 0.488 17 0.077 

Wolkite 0.615 35 0.09 Bonga 0.598 31 0.091 

Wolkite 0.626 33 0.087 Shebe 0.353 33 0.061 

Endeber 0.708 18 0.067 Andaracha 0.796 21 0.099 

Asendabo 0.305 35 0.052         

If De is less than the 10% significance threshold, the data series can be considered 

dependable and acceptable. As a result, the data from the stations are judged to be accurate, 

adequate, and dependable, as the Devalue for most of the stations is less than 10% 

significant. (McCuen, 1998). 

3.4.4 Check for Outliers of the data series  

An outlier is a data point that deviates significantly from the rest of the data. This could be 

due to data entry errors, decimal point losses, abnormally high and/or extremely low flow 

records during dry months and/or extremely low flow records during rainy months, or natural 

causes. For statistical tests of outlying observations, it is usually recommended that a 

moderate significance level, such as 1%, be employed, and that significance values greater 

than 5% should not be standard practice. (Grubbs, 14969) as quoted in (Dahmen & Hall, 
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1990; Ketsela, et al., 2017) However, L-Moment will apply an effective parameter estimate 

technique to minimize or eliminate the impact of outliers in this study. 

3.5 Regionalization of Upper Omo-Gibe River basin 

The index flood L-moment approach of regionalization was utilized in this study based on 

the data homogeneity of the stations. The statistical values for the stations must be examined 

to determine whether they may be grouped into one or more categories. Flood statistics for 

Upper Omo-Gibe River basin stations were calculated using L-moment methods. These 

approaches are widely utilized because they give a balanced estimation of sample parameters 

and are not easily altered by the presence of outliers (Rao & Hamed, 2000). 

3.5.1 Identification of homogeneous regions 

The first stage in regional frequency analysis is to identify homogeneous regions. The 

specification of variables indicating this similarity has been made to identify homogeneous 

zones. The most challenging stage is frequently identifying homogeneous zones, which 

necessitates the most personal judgment (Amalina et al., 2016). To determine the degree of 

heterogeneity within the pool, discordant measures and homogeneity tests are used to 

statistically verify the regionalization process. This is demonstrated by comparing the scale 

and dispersion values of the L-moment (LCv) and conventional moment (Cv) of gauging 

stations from various regions. LCv and Cv best explain the statistical character of yearly 

maximum flow variation among a collection of stations. 

The stream gauging stations were grouped into spatially continuous sites to ensure those 

stream responses to physiographic variables were comparable. The basin was utilized to 

identify site characteristics using a DEM with a size of 30mx30m. This allows for the 

transfer of streamflow records from gauged basins to ungauged basins within a region (Sine 

et al., 2013). Check for station and region homogeneity 

3.5.1.1. Site Characteristics  

Preliminary IHRs of stations into a specific group are determined in this study by examining 

station site features. As a preliminary IHR, the following site variables were used: latitude 

and longitude, AMF, station area, and flow gauging station altitude. Stations with nearly 

identical site features are then clustered together in the same region. 
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3.5.1.2. Method of L-Moment Ratio Diagram 

The L-moments ration diagram developed by Hosking (1990) is a graphical plot between L-

skewness and L-kurtosis by comparing visually sample L-moment ratios to theoretical 

values. LMRD can be used as a guide tool in selecting an appropriate distribution (Vogel and 

Wilson, 1996; Peel et al., 2001). The distribution with theoretical value visually close to 

sample values can be considered as the most suitable PDF that can represent the sample data 

well. This evaluation test is used as a supportive visual evaluation to ensure that the selected 

overall best distribution fits the observed data well. 

3.5.2. Test for Homogeneity of Stations and Regions 

Various homogeneity tests must be performed on the initially selected regions. Because L-

moments are a linear combination of data, they are less influenced by outliers, and the bias of 

their small sample estimates is kept to a minimum. (Hosking and Wallis, 1997). provided 

unbiased sample estimators for the first four PWMs and proposed a homogeneity test based 

on L-moments, which proved to be effective. Discordance measure tests, a measure of scale, 

dispersion-based tests (Cv-based homogeneity test and LCv-based homogeneity test), and 

statistical comparison were employed in this work. 

3.5.2.1. Discordancy Measure of Regions 

The discordance metric is used to detect sites that are significantly out of sync with the rest 

of the group. Based on statistical features, the discordance measure Di calculates how far a 

specific location is from the group's center (Rao and Hamed, 2000). When Di is larger than 

or equal to 3, it is a good criterion to define a station as discordant (Hosking and Wallis, 

1993). If a vector Ui = I 2, I 3, I 4,) T is the transpose of the vector Ui (Hosking and Wallis, 

1997), then the discordancy measure can be defined as 

Di =  
 

 
(Ui−U i) S

−1
(Ui−U i)

 T.
……….……...…………...……………………...…………….3.8  

U I =  
 

 
 ∑    

   ….….…………………………………………………………….…………3.9 

S =  
 

   
 ∑ (   

   −U i) (Ui−U i)
 T..
…………...…………...……………….......………........3.10  

                     Where, N -is the total number of stations, Di -discordancy measure 

                                 Ui -is defined as a vector containing the L-moment ratios for station i,  
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                                 U i -is the group averages Ui and S -sample covariance matrix of Ui.  

At a significance level of 10%, Hosking and Wallis (1997) tabulated critical values of the 

discordancy statistic Di for varying numbers of sites in an area. These were used to evaluate 

each of the study locations and determine whether they needed to be further investigated to 

assure homogeneity. Equation 3.8 was used to check for discordancy in the selected 

locations. However, calculating Di's value using simple matrix multiplication was 

complicated and time-consuming. 

As a result, (Hosking and Wallis (997) advocated for the use of Fortran, Matlab, and other 

computer tools to streamline the process and achieve acceptable accuracy. Following this 

guideline, the Matlab2018a programming code was used to ease the numerical calculations 

of the discordancy index in this work (Di). Appendix-F contains the programming code for 

calculating the covariance matrix and Di. 

Table 3. 5 Critical values of discordancy measure with N sites. 

Number of sites in a region Critical value 
Number of sites in a     

region 
Critical value 

5 1.333 6 1.648 

7 1.917 8 2.14 

9 2.329 10 2.491 

11 2.632 12 2.757 

13 2.869 14 2.971 

>15 3 
  

 (Source: Hosking and Wallis, 1997) 

3.5.2.2. Adjustment of regions 

If the generated zones aren't statistically homogeneous, they're tweaked to make them more 

so. This step is necessary because, based on the homogeneity assessment, regions are 

unlikely to be homogeneous and discordant sites may exist. (Rao and Srinivas, 2008), 

provide the following strategies for amending regions that are significantly discordant with 

other sites in the region. I) removing one or more sites from the data set; ii) transferring (or 

moving) one or more sites from a region to another region; iii) dividing a region to form two 

or more new regions; iv) allowing a site to be shared by two or more regions; v) dissolving 

regions by transferring their sites to other regions; vi) merging two or more regions and 
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redefining groups; and vii) obtaining more data and redefining regions. The first three 

options help in lowering the values of a region's heterogeneity measures; whereas options 

(iv) to (vii) assist in ensuring that each region is large enough. 

3.5.2.3. Conventional homogeneity test 

The value of CC was employed as a criterion for determining regional homogeneity. 

According to some studies, the larger the value of Cv and CC, the worse the index-flood 

approach will perform for the region in question. This is owing to the at-site sample mean-

variance dominating the flood quantile estimation variance. As a result, CC should be kept 

low to improve the index flood method's performance. The processes for calculating CC 

values using this method are outlined below. For each site in the delineated regions; the mean 

𝑄  , standard deviation (σ) and coefficient of variation (Cv) were given and calculated by (Sine 

and Ayalew, 2004; Nobert et al., 2014; Guru and Jha, 2016)  

The mean of AMF of the summation:  

   
 

 
 ∑ 𝑄  

   ………………….………….………….…………...……...………...3.11  

The standard deviation of AMF of the station; values, the procedures are described 

below. For each site in the delineated regions; the mean 𝑄  , standard deviation (σ) and 

coefficient of variation (Cv) were given and calculated by Sine and (Ayale, 2004; Nobert et 

al., 2014; Guru and Jha, 2016) equation (3.12-3.16). 

The standard deviation of AMF of the station; 

    
√∑ (      )

  
   

 
…………….……………………..….………….………...………...3.12 

     
   

  
………………….………...….………...…..…...…………………….….…......3.13  

                                 Where: Qi= the flow rate of the station in the region (m3 /s), at site i  

                                               Qi =the mean flow rate for the region (m3 /s), at site i 

                                                 i = Standard deviation for the region, at site i  

                                                    n = number of a record year  
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                                           Cvi = Coefficient of variation of a region, at site i  

For each region, using the statistic calculated Cv above, the regional mean, Cvi, and finally 

the corresponding CC value using the following relation: 

Regional mean;       
 

 
 ∑    

   ….…….....…...........................….....….………..……3.14  

Regional standard deviation,      
√∑ (        )

  
   

 
……………………...……………3.15  

The weighted regional Cvi of all the sites, Cc is defined as follows:  

    
    

   
      …………………………………………………...……………...……..3.16  

                                Where: N=number of the site in a region 

                                            Cvi = the mean coefficient of at site Cvi values  

                                            δCv = Standard deviation of at site Cvi values 

3.5.2.4. L-moment based homogeneity test 

LCV-based homogeneity test is a more accurate and effective way of testing the 

homogeneity of the site when compared with that of the Cv-based homogeneity test. The 

procedural calculation is the same as that of the Cv. The following are an advantage of LCv 

(Cunnane, 1989), Compared to Cv, LCv can characterize a wide range of distribution, sample 

estimates are so strong that they are not affected by the presence of outliers in the data set, 

they are less matter to bias in estimation, yields more accurate estimate of the parameter of a 

fitted distribution.  

According to the (Central Water Commission 2010), L-moments have the following 

advantages: i). Characterize most of the probability distributions than conventional moments, 

ii). Less sensitive to outliers in the data, iii). Approximate their asymptotic normal 

distribution more closely, iv). Nearly unbiased for all combinations of sample sizes and 

populations. (Hosking and Wallis, 1993) gave the unbiased estimators of β0, β1, β2and β3as: 

defined as 

β0 = 
 

 
 ∑    

   …………….…...……..………………....…………….…………..……..3.17  
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β1 =
√∑ (   )(  ) 

   

 (   )
……….…….………..……….……...………..……..…..…….……....3.18 

β2 = 
√∑ (  )(   )(  ) 

   

 (   )(   )
.……………………………. …..…...…...……………………….3.19  

β3 =  
√∑ (   )(   )(   )(  ) 

   

 (   )(   )(   )
…………………………………….……………………...3.20  

                      Where      Qi - annual maximum flow (m3 /s) from stations dataset 

                                        n - the number of years, j-rank 

                                       βo, β1, β2, and β3- are L-moments estimator.  

The first few moments are:  

λ1= βO; λ2 = 2β1 βO; λ3 = 6β2 6β1+ βO; λ4 = 20β3 30β2 + 12β1 βO……...………..……...….3.21 

 In specific, λ1 is the mean of the distribution or measure of location; λ2 is a measure of scale; 

τ3 is a measure of skewness, and τ4 is a measure of kurtosis. L-skewness and L-kurtosis are 

both defined relative to the L-scale, λ2; and sample estimates of L-moment ratios can be 

written as L-Cv, L-Cs, and L-Ck. 

L-moment ratios are independent of units of measurement and are given by Hosking and 

Wallis (1997) as follows:  

τ2= 
  

  
 τ3  

  

  
 τ4= 

  

  
………………………………....…………………..………………3.22  

Using the above procedural formula, 

 cv I = 
 

 
 ∑      

   …..…..………….…….....….………………...………………....…3.23 

Δcv  
√∑ (          )  

  

   
………...………………….………………...…………....……..3.24  

The weighted regional LCvi, of all the sites, CC is defined as follows:  

CC  
     

   
   0.3…………..…………………….………..……………………....……..…3.25  
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A region that confidently satisfies all criteria for being hydrologically homogeneous can be 

derived. 

3.5.3. Delineation of Homogeneous Regions 

The performance of any regional estimation method highly depends on the grouping of sites 

into homogeneous regions (Karchroo et al., 2000). In this study, the geographical proximity 

and LMRD were used to cluster preliminary regions which then tested for hydrologic 

similarity. The delineation of homogeneous regions is closely related to the identification of 

the common regional distributions that apply within each region. A region can only be 

considered homogeneous if sufficient evidence can be established that different sites in the 

region are drawn from the same parent distribution. 

In this study, the Digital Elevation Model (DEM) size of 30m×30m Omo-Gibe river basin 

was used, and the delineation of homogeneous regions was performed by taking into account 

the drainage boundaries of the sub-basin with ArcGIS 10.4.1 environment. The preliminarily 

identified regions have to be checked by various homogeneity tests. All sample stations are 

located on a digitized map by latitude and longitude. For each station, the statistical values 

(LCs, LCk) were computed. It was assumed that the LCs and LCk values of one station vary 

linearly with the neighboring stations.  

According to Abdulla (2011) and Irwin et al. (2014), the procedures in the delineation of the 

boundary of the region are as follows: i). Compute the (LCs, LCk) value of each station, ii). 

Identify the location of stations along with the distributions of LMRD for the defined regions 

statistical comparison of observed flood data, iii). Identify the group based on steps iv). Each 

region that was identified in step-i was checked for statistical homogeneity using the 

proposed test. Finally, the drainage boundaries of each sub-region the delineation was carried 

out using ArcGIS10.4.1 environment 

3.6. Selection of Regional Frequency Distribution. 

The Selection of regional frequency distribution is one of the important elements of the 

regional flood frequency analysis (RFFA). The Presence of adequate hydrometric stations is 

essential in each of the hydrologic regions for reliable selection of regional frequency 

distributions. The choice of frequency distributions is determined based on goodness-of-fit 

measures, which indicate how much the considered distributions fit the available data 
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(Hailegeorgis and Alfredsen, 2017); (Mishra et al., 2009). In flood frequency analysis, the 

annual maximum flow corresponding to a given T can be estimated from the annual flood 

series using various theoretical distributions. 

3.6.1. The Cullen and Frey graph 

The Cullen and Frey diagram is a graphical tool that may be used to determine the goodness 

of fit of a distribution. It's a graph that compares the fit of multiple distributions on the same 

graph and indicates possible model distribution candidates using the L-skewness and L-

kurtosis. The Cullen and Frey diagram can be used to help you choose the right distribution. 

The distribution with theoretical values that are visually similar to sample values can be 

deemed the best appropriate PDF for accurately representing sample data. To choose a model 

that reduces uncertainty, several accepted design approaches are generally required. Among 

the distributions used in this study are the generalized extreme value (GEV), generalized 

logistic (GLO), Generalized Pareto (GPA), Logistic, Log-Normal (LN), Log-Pearson type 3 

(LPIII), and Normal, Gamma, Weibull, Cauchy and beta distributions are among the 

employed distributions in this study. A family of continuous probability distributions is 

known as the GEV distribution. GEV relies on three variables: location, scale, and shape. 

The location parameter describes the shift of a distribution on the horizontal axis in a certain 

direction. The scale parameter determines how spread out the distribution is and where the 

majority of it is located. The distribution will get more spread out if the scale parameter is 

increased. The shape parameter, which determines the shape of the distribution and governs 

the tail of each distribution, is the third parameter in the GEV family. 

The shape parameter is obtained from skewness since it represents where the majority of the 

data is located, resulting in the distribution's tail(s). When quantifying AM series river flow, 

the GEV is perhaps the most often employed distribution. 

3.6.2. R studio Software for Distribution Fitting 

R Studio is an Integrated Development Environment (IDE) for R, a programming language 

for statistical computing and graphics. It is available in two formats: R Studio Desktop is a 

regular desktop application while R Studio Server runs on a remote server and allows 

accessing R Studio using a web browser. It includes a console, syntax-highlighting editor that 

supports direct code execution, as well as tools for plotting, history, and debugging, and 



 

40 
 

workspace management. R Studio is a data analyzer and simulation software that allows to fit 

probabilistic distributions to given data samples, simulate them, choose the best fitting 

sample, and implement the results of the analysis to make better decisions. To determine 

whether the distribution model could fit the data properly, goodness-of-fit tests were used. In 

this study R Studio is (version 4.1.1.2021) Statistical Software was used to find the best-fit 

distribution and its estimation parameters (Pakgohar, 2014). 

3.6.3. Goodness of Fit Tests 

The goodness fit measure involves identifying a distribution that fits the observed data. When 

computing the magnitudes of extreme events, such as flood flows, it is required that the 

probability distribution function be invertible, so that a given value of recurrence interval (T) 

and the corresponding value of frequency factor (K) can be determined. In this study, to test 

the statistical hypothesis of whether a particular distribution provides an adequate fit to the 

observed AMF series data three goodness of fit tests were applied. The reason for selecting 

three different tests is that there is no single test that can give conclusive results and a 

particular test emphasizes a particular aspect of the goodness-of-fit. All test statistics were 

defined and carried out at a 5% significance level (Ashraful et al., 2018). 

i. Kolmogorov-Smirnov Test (KS)  

The test statistic in the Kolmogorov-Smirnov test is extremely simple. The KS test was used 

to check whether the sample came from a hypothesized continuous distribution. It was based 

on the empirical distribution function (Di Baldassarre et al, 2009). In this method, the 

hypotheses take dependability of a specified distributions data of stations. Kolmogorov-

Smirnov (KS) test is a different and commonly used goodness-of-fit moreover Chi-square’s 

test. A statistic based on the deviations of the sample distribution function FN (X) is used in 

this test. The test statistic DN is defined in equation 3.26. 

       
          

(   (   )     (   ))  ………………………………………………………….2.26 

The values of FN (x) are predictable as Nj/N where Nj is the cumulative number of sample 

events in class j. Fo(x) is then 1/K, 2/k…...etc., Similar to the chi-square test. The value of 

DN must be less than a tabulated value of DN at the specified confidence level for the 

distribution to be received. 
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ii. Chi-Squared Test (𝑿 
2
)  

The chi-square goodness of fit test is one of the most commonly used tests for testing the 

goodness of fit of probability distribution functions to empirical frequency distribution. In the 

X 
2
 goodness of fit test, sample data is separated into intervals. Then the numbers of points 

that drop into the interval are compared, with the predictable numbers of points in every 

interval. The null hypothesis assumes that there is no notable variation between the observed 

and the expected value. The degree of freedom depends on the distribution of the data sample 

(Ghosh et al., 2016). In the Chi-Square goodness of fit test, the alternative hypothesis 

assumes that there is an essential variation between the observed and the expected value.  

X
2
 = √

   

 
……………...………………….………...……………..…………………….3.27  

Where, X 
2
 =chi-Square goodness of fit test 

             O = observed value 

                                     E = expected value 

The considered value of the Chi-Square goodness of fit test is compared with the critical 

value. If the considered value of Chi-Square goodness of fit test is less than the critical value, 

will admit the null hypothesis and conclude that there is no important differentiation between 

the observed and expected value 

iii. Anderson-Darling Test (AD)  

The AD test was used to check whether the given sample came from a particular probability 

distribution at hand. The null hypothesis at the chosen level of significance would be rejected 

if the calculated value of the above statistic exceeds the critical value given in the table 

(Onoz and Bayazit, 2001; Ahmad et al, 2015). AD test can be used in RFFA studies to assess 

the fitness of the candidate regional frequency distributions. This method is based on the 

statistical frequency distribution behavior of the observed value (Viglione et al, 2007). 

3.6.4. Evaluation of the Performance of Frequency Distributions  

The results obtained from the statistical analysis can be uncertain, and to be trustful methods 

of uncertainty assessments should be applied (Hosking and Wallis, 1997). Assessment of the 
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accuracy of the estimates should, therefore, take into account the possibility of heterogeneity 

in the region, misspecification of the frequency distribution, and statistical dependence 

between observations at different sites, to an existent that is consistent with the data. 

Analytical goodness-to-fit criteria are helpful as approval for whether a particular elimination 

of the data from the model is statistically significant or not. 

The distribution that has the greatest number of points nearby to the line signifies the best-

fitted distribution model. This implies that the frequency distributions that were chosen as the 

best distribution could be fitting regional flood models for the basin. Hence, for this analysis, 

two methods of uncertainty assessments were achieved. Thus, are probability-probability (P-

P) and quantile-quantile (Q-Q) plots. The performance of the best distribution model 

identified for the respective regions was evaluated by comparing observed with simulated 

values by employing the P-P and Q-Q plot techniques with R studio software 

i. Probability-Probability (P-P) Plots  

Probability plots are generally used to decide whether the distribution of a variable matches a 

given distribution. P-P Plots are the variable’s cumulative magnitude in opposition to the 

cumulative magnitude of any of several trial distributions. If the selected variable matches 

the test distribution, the points come together approximately a straight line. The following 

fundamental issues should arise when selecting a distribution: (1). It is true and reliable with 

the distribution for which the observations are drawn, (2). It should be used to obtain 

reasonably perfect and strong estimations of design quantiles and hydrologic risk (Desalegn 

et al., 2016). 

ii. Quantile-Quantile (Q-Q) Plots 

The Quantile- Quantile plot is a graphical technique for determining if two data sets come 

from populations with a common distribution. Quantile-quantile (Q-Q) plots are plots of two 

quantiles against each other. A quantile is a small part where certain values fall below that 

quantile. The purpose of Q-Q plots is to get out if two sets of data come from the same 

distribution. It is the graph of the input observed and analysis data values plotted against their 

theoretical or fitted distribution. These are produced by plotting the data values against the x-

axis, and the following values against the y-axis. Q-Q plots were used to compare the 

estimated quantiles and the observed flood values and to check the validity of the estimates 
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provided by a fitted theoretical distribution. The best frequency distribution was subjected to 

randomly simulate the same size as the observed series (Desalegn et al., 2016). 

3.6.5 Selection of best fit probability distribution approach to a data set  

The analysis involves the estimation of the parameter values’ distribution or distributions 

selected and the identification of the best distribution model suited for the estimation of 

extreme hydrological events. There are many methods for the selection of best-fit probability 

distribution to a data set to the estimation of time-dependent hydro-climatic flood parameters. 

This research only discusses the most common and major ones.  

3.6.5.1 The method of moments (MOM) 

The method of moments estimates population parameters by taking known facts about the 

population sample as the first-moment condition and extending the same concepts to derive 

higher moments. Moments such as the skewness (s), coefficient of variations (σ 2), kurtosis 

(k), expected moment (µ), and the parameters (θ) are presumed to be related to a distribution 

function—ó = g (µ, α 2, s, k)—and are considered members of the underlying distribution (û, 

s, ˆ k, ˇ ᾅ) for providing parameters ô = g (û, s, ˆ k, ˇ ᾅ) (21). This method has the advantages 

of being simple to derive, consistent in providing estimators for continuous function, and 

providing starting estimates in search of maximum likelihood values. However, the 

estimators may not be unique in a given dataset, and thus can provide multiple solutions to a 

set of equations; furthermore, sometimes parameter estimates may suffer from inaccurate and 

insufficient statistics, especially for smaller population sizes. 

Moment matching estimation consists of equalizing theoretical and empirical moments. 

Estimated values of the distribution parameters are computed in R studio software by a 

closed-form formula for the following distributions: "norm", "lnorm", "pois", "exp", 

"gamma", "nbinom", "geom", "beta", "unif" and "logis". Otherwise, the theoretical and the 

empirical moments are matched numerically, by minimization of the sum of squared 

differences between observed and theoretical moments. In this last case, further arguments 

are needed in the call to fitdist. 

3.6.5.2 Quantile matching estimation 

Quantile matching estimation consists of equalizing theoretical and empirical quantile. 

Numerical optimization is carried out in qmedist via optim to minimize the sum of squared 
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differences between observed and theoretical quantiles. The use of this method requires 

additional argument probs, defined as the numeric vector of the probabilities for which the 

quantile(s) is(are) to be matched. 

3.6.5.3 Maximum goodness-of-fit estimation  

Maximum goodness-of-fit estimation consists in maximizing goodness-of-fit statistics. 

Numerical optimization is carried out in mgedist via optim to minimize the goodness-of-fit 

distance. The use of this method requires an additional argument GoF coding for the 

goodness-of-fit distance chosen. One can use the classical Cramer-von Mises distance 

("CvM"), the classical Kolmogorov-Smirnov distance ("KS"), the classical Anderson-Darling 

distance ("AD") which gives more weight to the tails of the distribution, or one of the 

variants of this last distance proposed by Luceno (2006). This method is not suitable for 

discrete distributions. 

3.6.5.4 Maximum Likelihood Estimation  

The MLE method is an approach that is used to determine values for the parameters of a 

model, the maximum likelihood Estimation Theory. The MLE method is an approach that is 

used to determine values for the parameters of a model, which are calculated in such a way 

that they maximize the likelihood that the model process description produces the data that 

were observed. In an observed sample series, the probability of any random variable to occur 

can be obtained by the multiplication of the probability density functions of each observed 

data of that series by each other with the assumption that the events of the random variable 

are independent of each other, which results in what is known as the likelihood function 

(LF). The parameter values that give the maximum likelihood function among so many other 

possible sample series of the population are considered the most suitable ones for that sample 

series. It is analytically convenient to use the derivative of the logarithm of the likelihood 

function (LLF) (summation of logarithms of the probability density function (PDF)), which 

is also called the cumulative distribution function (CDF), because the maximum values of the 

likelihood function and the logarithm of the likelihood function result in the same 

magnitudes of the distribution parameters. In this study, the selection of the best-fit 

probability distribution to the data set was done by using a programing language of R studio 

software. 
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The method used for the selection of the best-fit probability distribution was R Studio (2014 

version), which is an integrated development environment for the R programming language. 

Flood flow extreme value analysis was done by fitting a parametric distribution to the 

extremal data using fitdistrplus, which is the freely available packages. It of univariate 

distributions to non-censored data by maximum likelihood (MLE), moment matching (mme), 

quantile matching (qme), or maximizing goodness-of-fit estimation (mge). The latter is also 

known as minimizing distance estimation.  

A character string "name" naming a distribution for which the corresponding density function 

dname, the corresponding distribution function pname, and the corresponding quantile 

function qname must be defined, or directly the density function. A character string coding 

for the fitting method: "mle" for 'maximum likelihood estimation, "mme" for 'moment 

matching estimation', "qme" for 'quantile matching estimation', "mge" for 'maximum 

goodness-of-fit estimation, and "mse" for 'maximum spacing estimation. A named list gives 

the initial values of parameters of the named distribution or a function of data computing 

initial values and returning a named list.  

In this study, the best-fit probability distribution approach for the data set was selected by 

checking the likelihood values (LL), the Akaike information criteria values (AIC), and the 

Bayesian information criteria (BIC) values for several distributions in each method. 

likelihood values show the strength or accuracy of the model and the AIC and BIC values 

shows the measure of the error of the model. 

3.6.6. Parameter and Quantile Estimation 

In flood frequency analysis, the probability distribution is fitted to the available data to 

estimate the flood magnitude for a specified return period. The choice of an appropriate 

probability distribution is quite arbitrary, as no physical basis is available to rationalize the 

use of any particular distribution (Saf, 2009; Rao and Hamed, 2000). In the present study, the 

parameter estimation was done by using the R studio statistical software. Based on the 

selected distributions for each station, the quantile can be calculated according to the formula 

of the selected distributions. For regions with a computed value of scale, location, and shape 

parameter, then it is possible to determine the quantile with different return periods using 

different equations for different distributions. 
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For GEV distribution the flow quantile can be estimated as;  

XT = µ + σ/K (1 − (−ln (1 − 1/T) 
K
), fork≠0 …………………………….….…………....3.28  

XT = µ + σ (ln (−ln (1 − 1/T)), for k=0 …………………………………….…………......3.29 

 For GPA distribution the flow quantile can be estimated as;  

XT = µ + σ K (1 − (1/T) 
K
), fork≠0……………………...………………….……….…….3.30  

XT= µ +σ (ln (1/T)), for k=0 ………………………….……...........................…………...3.31  

Where, σ = scale parameter, T= return period, μ= location parameter and k = shape parameter 

3.6.7. Standard Error of Parameter Estimation 

The standard error of the estimate is a metric for determining how accurate predictions are. 

The creation of a link between the mean annual flood or index flood and watershed 

parameters was an essential step in predicting flood magnitudes at any point in a region 

where the frequency curve had been developed and inaccuracy in quantitative terms was 

quantified. Various measurements of error are used by different researchers. Standard errors 

are the most frequent metric. Only sampling error may be evaluated from the numerous 

sources of error. Theoretically, a consensus appears to be forming that at the very least, 

sampling error should be stated quantitatively. In most cases, errors in flood frequency 

estimations should be indicated numerically or graphically. In most cases, the standard error 

of a particular quantile attributable to sampling error should be calculated (Rao and Hammed, 

2000). 

    
∑     

   
………………………………………..……………………………………….3.32  

SEE  
∑(     )   

    
]
0.5
…………...…………..……...……………..……...…...…...............3.33  

                         Where; SEE – standard error of estimate 

                                        T - is the estimated value of standard quantile 

                                          - is the mean annual flood (m3 /s) is the index flood 

                                       QT - is the quantile (m3 /s) function of fitted distribution at site i 
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3.7. Derivation of the Regional Flood Frequency Curves  

The basic purpose of any regional flood frequency analysis is to create a regional frequency 

curve that can represent the average weighted distribution of homogeneous regions. For a 

given return period, T is the final step of flood frequency analysis to determine normalized 

regional quantile floods (XT); flood frequency curve (XT vs. T); and at-site flood quantiles. 

The model parameters produced from the best fitting distribution to the observed data are the 

most important for a given region. Because these values are used to produce standardized 

quantile estimates, XT, for the return times T, which are then utilized to create regional 

frequency curves for the homogeneous region. (a curve showing XT against return period, T) 

(Kachroo et al., 2000; Mkhandi et al., 2000; Rosbjerg, 2007; Yang et al., 2010). 

3.7.1. Estimation of Index-Flood  

The index flood approach is based on the premise that data from different locations in a 

region follow the same distribution. It involves identifying homogenous regions, determining 

the best-fit distribution, and deriving the regional flood frequency curve. The index flood L-

moment strategy of regionalization is used in this study, which is based on the homogeneity 

of the stations, which is tested using various techniques. The mean annual flood (Q) for each 

station was calculated by multiplying the annual flood data (Qi) from each station by the 

number of record years.  

In flood frequency analysis, the estimated flood quantiles corresponded to the needed return 

periods. The standardized flow estimates for the return periods 2, 5, 10, 15, 20, 25, 50, 75, 

100, 200, 500, and 1000 years were computed using the model parameters for the 

distributions determined for each station. For each station, growth curves (Q/Qm plotted 

against the Gumble reduced variate (-ln(-ln(1-1/T)) were generated and used in the 

construction of the regional growth curves. The stages below were used to accomplish this. 

The model parameters calculated for a given region were utilized to construct the 

standardized quintiles estimates for the return periods, the growth curves for each station 

were generated, and the parameter values such as shape (k), location (), and scale () were 

estimated using R studio software. Following the determination of the regional frequency 

distribution, the flood quantiles with a return period of T year within a homogeneous region 

can be approximated using Hosking and Wallis' equation (3.34). (1997). XT was estimated 
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using dimensionless regional growth curves. The dimensionless data is often obtained by 

dividing the values by an estimate of the at-site mean. 

   
  

  
 ……………………..………………………….………………………………3.34  

 Where;    - is the mean annual flood (m3 /s) is the index flood  

              QT - is the quantile (m3 /s) function of fitted distribution at site i 

          XT - Regional quantile of which can be obtained from regional growth curve;  

 this defines the frequency distribution common to all the sites in a homogenous region. 
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Figure 3. 3 Flow chart of the methodology 
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4. RESULT AND DISCUSSION 

4.1 Identification of Homogeneous Region 

The identification of homogenous regions is usually the most difficult stage and requires the 

greatest amount of subjective judgment. The aim is to form a group of sites that 

approximately satisfy the homogeneity conditions that the site’s frequency distributions are 

identical. The homogeneity of the region is evaluated using homogeneity measures, which 

are based on site characteristics, and the L-moment ratio diagram (LMRD) of flood statistics. 

This method considers the geographically continuous stations (the spatial proximity of 

network of gauging stations as indicated in Figure 3.3) and in clustering, the annual 

maximum flow of sites in the region should satisfy the homogeneity test criteria (Hosking 

and Wallis, 1997; Tallaksen et al., 2004).  

 

Figure 4. 1: L-moment ratio diagram for identification of homogeneous regions 

The LMRD shown on Figure 4.1 was used to identify homogeneous regions with site 

characteristics of gauging stations described in Table 3.2. As indicated in Table 4.1, the 
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accentuated distributions were designated to the same group since stations lie close to the 

identical distribution. Hence, based on L-moment statistics and suitability of gauging site 

networks, for further homogeneity tests three Preliminary identified homogeneous sub 

regions were identified. Namely Region-A, Region-B and Region-C as shown in Table 4.1. 

Table 4. 1: Preliminary identified homogeneous regions 

Group name Station name 

Possible distributions from R-

 Studio  

Region-A Tollay  Weibull 

  Abelt  Gamma 

  Wolkite  Lognormal 

  Wolkite  Beta 

  Endeber  Lognormal 

Region-B Asendabo  Lognormal 

  Serbo  beta 

  Jimma  Lognormal 

Region-C Bonga  Lognormal 

  Shebe  Gamma 

  Andaracha  Gamma 

Table 4. 2: Classical descriptive statistics for the primarily delineated homogeneous region 

located Upper Omo river basin 

 

 

 

 

Statistic 
Extreme Streamflow Datasets 

Region-A Region-B Region-C 

Minimum (m3 /s) 235.4 51.75 101.9 

Maximum (m3 /s) 779.8 269.54 295.3 

Median (m3 /s) 434.5 96.30 158.3 

Mean (m3 /s) 449.3 123.15 169.2 

Estimated standard deviation (m3 /s) 118.45 64.61 41.805 

Estimated skewness 0.982 0.966 1.1373 

Estimated kurtosis 1.5889 -0.393 2.0266 

Coefficient of variance 0.2657 0.53221 0.2603 

1st Quartile 370.5 73.72 131.0 

3rd Quartile 504.6 175.37 169.24 
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4.1.1 Test for Regional Homogeneity  

The identified homogeneous regions from statistical values have to be statistically 

homogenous to verify the acceptability of regions. 

4.1.1.1 Discordancy Measure of Regions 

Hosking and Wallis (1993) proposed the discordancy measure (Di) to distinguish odd sites 

from other sites in a group by comparing their L-moment ratios. Values of discordancy of L-

moment statistics have been calculated for all the eleven gauging sites of the basin. Using 

Equation (3.8) with Matlab program code presented in Appendix-F, the values of discordance 

index (Di) measure for different sites within the regions were presented in Table 4.3, 4.4, and 

4.5 for Region-A, Region-B, and Region-C respectively. The critical values of the 

discordancy index Di for various numbers of sites in a region at a significance level of 10% 

were obtained from Table 3.5. It was observed that the Di values for all eleven sites vary 

from 0.6682 to 1.4216. 

According to (Hussen and Wagesho, 2016; Kanti et al., 2017; Lim, 2007; Nobert et al., 

2014), and the region on their study under investigation, has been declared homogeneous if 

Di is less than 3. If Di is large, a place is termed exceptional in this scenario. This would be 

considered as grossly discordant and would justify elimination from the defined regions and 

can be redefined as a single site or merged into other regions. Hence, all of the stations 

grouped as homogeneous in Region-A, Region-B, and Region-C were satisfied the 

discordance test criteria. As shown in Table 4.3, 4.4, and 4.5, the result of the entire Di was 

below the critical value which implies that all the regions are homogeneous. So, none of the 

identified regions was found to reveal Di greater than the critical value. This indicated that all 

sites do not reflect any outlier and discordancy. Thus, data of all gauging sites could be 

considered for further regional flood frequency analysis. 

Table 4. 3 Results of major statistics and discordant measures in Region-A 

Station Name  LCv  LCs  LCk  Di  Remark 

Tollay 0.79097 -0.6442 0.47234 0.6770 Homogeneous 

Abelt -0.0595 -0.5855 0.4833 0.6682 Homogeneous 

Wolkite -0.3196 -0.3239 0.1506 1.3216 Homogeneous 

Wolkite -0.3571 -0.1845 0.1244 0.8565 Homogeneous 

Endeber -0.2662 -0.3923 0.3671 0.6961 Homogeneous 
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Table 4. 4 Results of major statistics and discordant measures in Region-B 

Station Name  LCv  LCs  LCk  Di  Remark 

Asendabo  -0.1714  -0.1469  0.2983  0.9999  Homogeneous 

Serbo  -0.2708  -0.4920  0.2938  0.9999  Homogeneous 

Jimma  -0.1792  -0.2914  0.2743  0.9999  Homogeneous 

Table 4. 5 Results of major statistics and discordant measures in Region-C 

Station Name  LCv  LCs  LCk  Di  Remark 

Shebe -0.1877 -0.4705 0.2798  0.9999  Homogeneous 

Bonga  -0.4971  -0.6223  0.0817  0.9999  Homogeneous 

Andaracha  -0.1877  -0.2637  0.0755  0.9999  Homogeneous 

4.1.1.2. CC-based Regional Homogeneity Test 

In this test, the site-to-site coefficient of variation of the coefficient of variation (CC) of both 

conventional and L-moments of the proposed regions are used. The (L-Cs, L-Ck) of 

standardized flow values at each station have been plotted on the LMRD together with 

various theoretical distribution functions. Those stations close to a particular theoretical 

distribution linear considered to be homogeneous stations and grouped together. The 

combined coefficients of variation for the region (CC) values were calculated, and the results 

in sites of each region were summarized as shown in Table 4.6, 4.7, and 4.8. 

The value of CC varies from region to region depending on L-moment statistics of flow data. 

From Cv-based homogeneity test, the CC values were 0.1806, 0.0837and 0.11231for Region-

A, Region-B and Region-C respectively. On the other way, from the LCv-based homogeneity 

test, the CC values were 0.2358, -0.2179, and -0.5015 for Region-A, Region-B, and Region-

C respectively. According to (Sine and Ayalew, 2004; Guru and Jha, 2016; Nobert et al. 

2014) noted that for the study regions under their consideration, a region is recognized to be 

homogeneous if CC values were less than 0.3. Therefore, from the results in Table 4.6, 4.7, 

and 4.8, it can be concluded that all regions were hydrologically homogeneous for both Cv 

and LCv based homogeneity tests since the CC values were less than 0.3. The results 

obtained below; all stations grouped as homogeneous were satisfied the stated homogeneity 

test criteria. As a result, it can be concluded that all regions were reasonably homogeneous. 
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Table 4. 6 Results of Cv and LCv-based homogeneity test for Region-A 

Station Name  LCv  LCs  LCk  Cv Cs Ck 

Tollay 0.79097 -0.6442 0.47234  0.1733  -1.3832  1.7213 

Abelt 0.6595 -0.5855 0.4833  0.6148  -0.5431  8.6065 

Wolkite 0.3619 -0.3239 0.4506  0.6263  1.6885  3.6899 

Wolkite 0.6571 -0.4845 0.3244  0.6495  0.5649  -0.9714 

Endeber 0.7662 -0.3923 0.3671  0.3053  1.9776  4.2283 

Mean 0.6471 -0.4861 0.41955 0.4128 0.4609 3.4549 

Std.dev 0.1526 0.11831 0.06264 0.0745 
  

CC 0.2358 
  

0.1806     

Table 4. 7 Results of Cv and LCv-based homogeneity test for Region-B 

Station Name  LCv  LCs  LCk  Cv  Cs Ck 

Asendabo -0.1714 -0.1469 0.2983 0.5562 0.8269 0.772 

Serbo -0.2708 -0.492 0.2938 0.4875 1.4905 0.6580 

Jimma -0.1792 -0.2914 0.2743 0.5988 1.0511 0.4259 

Mean -0.2071 -0.3101 0.2888 0.5475 1.1228 0.6186 

Std.dev 0.0451 0.1415 0.0104 0.0458 0.2756 0.1440 

CC -0.2179 
  

0.0837 
  

Table 4. 8 Results of Cv and LCv-based homogeneity test for Region-C 

Station Name  LCv  LCs  LCk  Cv Cs Ck 

Shebe -0.1877 -0.4705 0.2798 0.6528 0.7519 1.9502 

Bonga -0.4971 -0.3223 0.2817 0.8593 1.0528 1.3838 

Andaracha -0.1877 -0.2637 0.1755 0.7965 0.7373 2.6724 

Mean -0.2908 -0.3521 0.2456 0.76953 0.8473 2.0021 

Std.dev 0.1458 0.0870 0.0496 0.08643 0.1454 0.5273 

CC -0.5015 
  

0.11231 
  

4.2 Delineation of Homogeneous Regions 

The delineation of homogeneous regions is highly related to the identification of the similar 

regional distributions that apply within each region. The preliminarily identified regions have 

to be checked by various homogeneity tests. The tests used in this study are dispersion-based 

tests (Cv-based homogeneity test and L-Cv-based homogeneity test) and statistical 

comparison. The regions have covered an area of 22,085, 3,577, and 3,983.3 km
2
, for 

Region-A, Region-B, and Region-C respectively. 

Accordingly, the first region which includes Five gauging stations in the Upper Omo-Gibe 

sub-river basins including Tollay, Abelt, Endeber, and two gauging stations at Wolkite were 
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delineated under Region-A. The second region, which includes the gauging stations in 

Asendabo, Serbo, and Jimma stations were delineated under Region-B. The third region, 

which is the rest of the gauging stations selected for this study including Shebe, Bonga, and 

Andaracha stations were delineated under Region-C. Having proven to be statistically 

homogeneous, the delineated homogenous regions shown in Figure 4.2 could be used to 

generate a regional growth curve at any site located in the study area. 

 

Figure. 2: Spatial distribution of delineated homogeneous regions 

4.3 Determination of Suitable Regional Probability Distribution 

In this research, the annual maximum series model was adopted where only the maximum 

flow in each year is considered. 

4.4 Preliminary Assessment and Visualization  

The best-fit probability distribution was calculated using R-Studio (Version4.1.1, 2021), an 

integrated development environment for the R programming language. Flood flow extreme 

value analysis was performed by fitting a parametric distribution to the extreme data with 

fitdistrplus, freely available packages. The package uses the maximum likelihood estimation, 
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moment matching (Flunn, et al., 2006), quantile matching (QME), and maximum goodness-

of-fit estimation (MGE) methods. 

There are different methods for selecting an appropriate regional frequency distribution that 

describes the features of the sample data. The Cullen and Frey graph show a possible model 

distribution candidate for a given data set. Figure 4.3 illustrates an initial skewness-kurtosis 

graph of the unbiased distribution of the extreme data to aid in visualization and model 

selection. For the skewness, and kurtosis, uniform, exponential, normal, and logistic models 

have only one potential distribution value, whereas the possible lognormal, Weibull and 

gamma areas are depicted bylines, and the possible Beta areas are represented by larger 

areas. In the Cullen and Frey graph, the kurtosis and squared skewness of extreme datasets 

are represented as a blue point denoting "observation." The empirical distribution has zero 

skewness, indicating that it has symmetry, but the kurtosis measures the weight of tails in 

comparison to the normal distribution. A kurtosis value of three indicates normal distribution. 

From figure 4.3, lognormal, gamma, normal, and Weibull being common right-skewed 

distributions, are indicated as possible model distribution candidates because of the positive 

skewness and a kurtosis value that is close to three. However, the skewness and kurtosis 

exhibited high variations for all the distributions, and therefore, this inference can only be 

taken as indicative 
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(a) Region-A                        

 

(b) Region-B 
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(c) Region-C 

Figure 4. 3: Description of regional streamflow samples from a normal distribution with 

uncertainty on skewness and kurtosis estimated by bootstrap. 

The MLE approach optimizes the scale and shape parameters and offers parameter estimates 

for the fitted distribution. The standard errors were determined using the Hessian matrix 

estimate and the correlation matrix between parameter estimations from the maximum 

likelihood simulation solution. The standard error (Std error) reflects the consistency of a 

sample dataset's mean, and that the sample mean is a more accurate representation of the 

actual dataset. A small standard error indicates that the sample dataset's mean is reasonably 

close to the true mean of the entire dataset. Table 4.9, Table 4.10, Table 4.11 and Appendix- 

G show the probability plots simulated related with the parameter estimations.  
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Table 4.9 Distribution Sample Estimates Shape and Scale values estimated using the Moment 

Matching Estimation (MME) Method 

(Est: Estimate) 

 

 

 

 

 

 

 

 

 

 

 

  

 

Region-A Region-B Region-C 

Distribution   parameter    Sample Est Sample Est Sample Est 

Normal Mean 0.41 0.123 1.862 

  Sd 0.117 0.0637 0.256 

Lognormal mean log 0.833 0.832 1.862 

  sg log 0.255 0.255 0.256 

Gamma Shape 14.799 14.799 14.745 

  Rate 32.94 32.94 91.860 

Beta Shape 7.7 7.701 12.217 

  Scale 9.44 9.43 63.897 

Cauchy Shape - - - 

  Scale - - -  

Weibull Shape - - -  

  Scale - - -  

Exponential  Shape - -  - 

  Scale 2.226 2.225 6.229  

Uniform Min 0.246 0.012  0.088 

  Max 0.651 0.233  0.232 

Logistic Shape 0.45 0.449  0.160 

  Scale 0.064  0.064  0.02 
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Table 4. 10 Distribution Sample Estimates Shape and Scale values estimated using the 

Quantile Matching Estimation (QME) Method. 

(Est: Estimate) 

 

 

 

 

 

 

 

 

 

 

  

 

Region-A Region-B Region-C 

Distribution   parameter    Sample Est Sample Est Sample Est 

Normal mean 0.48 0.152  0.189 

  sd 0.113 0.056  0.037 

Lognormal mean log 0.807 -2.174  1.84 

  sg log 0.247 0.642  0.233 

Gamma Shape 16.379 2.712  18.755 

  rate 35.794 20.37  113.568 

Beta Shape 8.916 2.424  15.755 

  Scale 9.568 16.009  79.083 

Cauchy Shape 0.483 0.1245  0.170 

  Scale 0.0295 0.0508  0.0098 

Weibull Shape 4.994 1.814  5.293 

  Scale -0.537 0.146  0.188 

Exponential  Shape - - -  

  Scale - - - 

Uniform min 0.276 0.022  0.100 

  max 0.69 0.226  0.239 

Logistic Shape 0.483 0.1245  0.170 

  Scale 0.063  0.0462  0.021 
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Table 4. 11 Distribution Sample Estimates Shape and Scale values estimated using the 

Maximizing Goodness of fit Estimation (MGE) Method. 

(Est: Estimate) 

4.4.1 Selection of best fit probability distribution approach 

In this study, the Maximum Likelihood, Moment Matching, Quantile Matching, and 

Maximizing Goodness of fit techniques or models were tested by considering nine different 

distributions, namely Normal, Lognormal, Gamma, Beta, Weibull, Cauchy, Exponential, 

Uniform, and Logistic). According to the Likelihood value (LL), Akaike information 

criterion (AIC), and Bayesian information criterion (BIC), the Maximum Likelihood 

technique provides a better parameter estimation procedure, since it provides greater LL 

values, and lower AIC and BIC values in all regions, Region-A, Region-B, and Region-C as 

shown in Table 4.12 up to Table 4.20. Because the LL value indicates the model's strength or 

correctness, while the AIC and BIC values indicate the model's measure of error. Now is the 

time the second and third best parameter estimation procedures are maximizing goodness of 

  

 

Region-A Region-B Region-C 

Distribution  parameter    Sample Est Sample Est Sample Est 

Normal Mean 0.436 0.122 -1.866 

 

sd 0.061 0.066 0.252 

Lognormal  mean log 0.833 2.237 1.866 

 

sg log 0.255 0.556 0.252 

Gamma Shape 19.8 3.759 15.65 

 

Rate 37.69 32.862 83.761 

Beta Shape 10.265 3.359 13.361 

 

Scale 13.158 26.214 70.874 

Cauchy Shape 0.436 0.0996 0.156 

 

Scale 0.0611 0.288 0.018 

Weibull Shape 4.27 1.869 4.164 

 

Scale 0.483 0.137 0.172 

Exponential Shape 1.652 

 

4.623 

 

Scale 2.226 

  Uniform Min 0.246 0.0184 

 

 

Max 0.651 0.217 

 Logistic Shape 0.45 0.11 0.157 

 

Scale 0.064 0.038 0.022 
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fit and moment matching, respectively, while the quantile matching estimation process is the 

last. 

Table 4.12 Region-A Goodness-of-fit information criterion. Likelihood (LL). 

Table 4. 13 Region-A Maximizing Goodness-of-fit information (MGFE). LL: Likelihood 

Criterion 

 

 

 

 

 

  
Maximum likeliho

od estimation (ML

E) method. 

Moment matching esti

mation (MME) method. 

 

Quantile matchin

g estimation 

(QME) method 

Distribution 
 

Statistic Rank   Statistic Rank   Statistic Rank   

Normal LL 23.310 4 23.318 4 21.81 4 

Lognormal LL 25.126 1 25.123 1 24.944 1 

Gamma LL 24.901 2 24.876 2 24.438 2 

Beta LL 23.208 5 23.201 5 21.914 5 

Cauchy LL 20.489 7 - 7 10.353 7 

Weibull LL 22.183 6 - 6 18.968 6 

Exponential  LL -6.396 8 -6.396 8 - 8 

Uniform LL 19.457 9 -Inf 9 -Inf 9 

Logistic LL 24.236 3 24.166 3 21.745 3 

 

 

 
Kolmogorov–Smirnov  Cramer–von Mises  Anderson–Darling  

Distribution 
 

Statistic Rank   Statistic Rank   Statistic Rank   

Normal 
 

22.414 4 22.316 4 23.071 4 

Lognormal 
 

25.035 1 24.884 1 25.089 1 

Gamma 
 

24.769 2 24.562 2 24.842 2 

Beta 
 

21.967 5 21.714 5 22.831 5 

Cauchy 
 

20.443 7 20.438 7 20.362 7 

Weibull 
 

16.100 6 16.973 6 21.479 6 

Exponential  
 

-8.328 8 -7.758 8 -7.684 8 

Uniform 
 

  Inf                         9 -Inf 9     Inf                            9 

Logistic 
 

24.213 3 24.214 3 24.235 3 
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Table 4. 14 Region-A Goodness-of-fit information criterion. AIC: Akaike Information 

Criterion, BIC: Bayesian Information Criterion 

Distribution 

Maximum likelihood 

estimation (MLE) 

Method. 

Moment matching 

 estimation (MME)  

Method. 

Quantile matching 

estimation(MME) 

Method 

Statistic Rank   Statistic Rank   Statistic Rank   

Normal AIC -42.622 4 -42.62 3 -39.66 3 

  BIC -39.69   -39.69   -36.728   

Lognormal AIC -46.251 1 -46.24 1 -45.887 1 

  BIC -43.32   -43.31   -42.956   

Gamma AIC -45.802 2 -45.75 2 -44.876 2 

  BIC -42.87   -42.819   -41.945   

Beta AIC -42.415 5 -42.402 4 -39.82 4 

  BIC -39.484   -39.47   -36.898   

Cauchy AIC -36.979 7 -   -16.707 7 

  BIC -34.048   -   -13.775   

Weibull AIC -40.366 6 -   -33.936 6 

  BIC -37.434   -   -31.005   

Exponential AIC 14.792 9 14.79 6 -   

  BIC 16.258   16.258   -   

Uniform AIC -34.915 8 Inf   Inf   

 BIC -37.983  Inf  Inf  

Logistic AIC -44.437 3 -44.23 5 -39.49 5 

 BIC -41.54  -41.3  -36.558  

Table 4. 15 Region-B Goodness-of-fit information criteria. Likelihood (LL) 

Distribution 

Maximum likelihood 

estimation (MLE)  

Method 

Moment matching 

estimation (MME) 

Method. 

Quantile matching 

estimation (MME)  

Method 

Statistic Rank   Statistic Rank   Statistic Rank   

Normal LL 45.34 5 24.13 4 39.997 6 

Lognormal LL 51.8 1 25.123 1 49.447 1 

Gamma LL 50.394 2 24.875 2 48.499 2 

Beta LL 50.053 3 23.201 3 48.37 3 

Cauchy LL 43.236 7 - 
 

35.967 7 

Weibull LL 48.599 4 - 
 

47.738 4 

Exponential  LL 37.206 8 -6.393 6 - 
 

Uniform LL 31.823 9 -Inf 
 

-Inf 
 

Logistic LL 44.69 6 24.116 5 43.343 5 
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Table 4. 16 Region-B Maximizing Goodness-of-fit information criteria (MGFE). LL: 

Likelihood Criterion 

Distribution 
Kolmogorov–Smirnov 

 

Cramer–von Mises 

 

Anderson–Darling 

 

 Statistic Rank   Statistic Rank   Statistic Rank   

Normal 44.825 5 43.707 5 44.688 5 

Lognormal 51.073 1 51.305 1 51.26 1 

Gamma 49.75 2 49.903 2 49.8 2 

Beta 49.451 3 49.512 3 49.468 3 

Cauchy 41.52 7 39.978 7 - 
 

Weibull 48.212 4 47.633 4 48.246 4 

Exponential  - 
 

- 
 

- 
 

Uniform -Inf 
 

-Inf 
 

--Inf 
 

Logistic 44.541 6 44.353 6 44.169 6 

Table 4. 17 Region-B Goodness-of-fit information criterion. AIC: Akaike Information 

Criterion, BIC: Bayesian Information Criterion 

Distribution 

Maximum likelihood 

estimation (MLE) 

method. 

Moment matching 

Estimation (MME)  

method. 

Quantile matching 

 estimation (MME) 

method 

 
 

Statistic Rank   Statistic Rank   Statistic Rank   

Normal AIC -86.34 5 -86.68 1 -75.99 6 

 
BIC -83.68 

 
-83.628 

 
-72.94 

 
Lognormal AIC -99.61 1 -46.247 2 -94.86 1 

 
BIC -96.56 

 
-43.315 

 
-91.84 

 
Gamma AIC -96.78 2 -45.875 3 -92.99 2 

 
BIC -93.73 

 
-42.819 

 
-89.94 

 
Beta AIC -96.11 3 -42.201 5 -92.74 3 

 
BIC -93.05 

 
-39.47 

 
-89.68 

 
Cauchy AIC -82.24 7 - 

 
-67.93 7 

 
BIC -79.42 

 
- 

 
-64.88 

 
Weibull AIC -93.2 4 - 

 
-91.48 4 

 
BIC -90.15 

 
- 

 
-88.42 

 
Exponential AIC -72.41 9 14.792 6 - 

 
 

BIC -70 
 

16.25 
 

Inf 
 

Uniform AIC -79.64 8 Inf 
 

Inf 
 

 
BIC -71.59 

 
Inf 

 
-82.69 5 

Logistic AIC -85.3 6 -44.23 4 -79.63 
 

 
BIC -82.3 

 
-41.3 

 
- 
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Table 4. 18 Region-C Goodness-of-fit information criterion. Likelihood 

 Distribution 

Maximum Likelihood 

Estimation (MLE)  

Method. 

Moment Matching 

Estimation (MME) 

Method 

Quantile Matching 

Estimation (MME) 

Method 

  Statistic Rank   Statistic Rank   Statistic Rank   

Normal LL 59.699 5 60.528 5 58.25 5 

Lognormal LL 62.64 1 62.589 1 62.445 1 

Gamma LL 61.998 2 61.925 2 61.546 2 

Beta LL 61.641 3 61.575 3 61.045 3 

Cauchy LL 58.491 6 - 
 

47.447 7 

Weibull LL 58.35 7 -Inf 
 

53.685 6 

Exponential  LL 28.197 9 28.197 6 - - 

Uniform LL 55.849 8 -Inf 
 

-Inf - 

Logistic LL 60.72 4 60.545 4 58.352 4 

Table 4. 19 Region-C Maximizing Goodness-of-fit information criteria (MGFE). LL: 

Likelihood Criterion 

Distribution 
Kolmogorov–Smirnov Cramer–von Mises Anderson–Darling  

Statistic Rank   Statistic Rank   Statistic Rank   

Normal 55.752 5 59.51 5 62.613 5 

Lognormal 61.291 1 62.598 1 62.613 1 

Gamma 59.811 2 61.779 2 61.968 2 

Beta 59.613 3 61.267 3 61.597 3 

Cauchy 39.978 6 58.49 6 39.978 6 

Weibull 47.547 7 47.772 7 57.708 7 

Exponential  25.704 9 26.739 9 26.825 9 

Uniform - 8 - 8 - 8 

Logistic 59.541 4 60.563 4 60.716 4 
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Table 4. 20 Region-C Goodness-of-fit information criterion. AIC: Akaike Information 

Criterion, BIC: Bayesian Information Criterion 

  
Maximum Likelihood 

Estimation (MLE) Method. 

Moment Matching 

Estimation (MME)  

Method. 

Quantile Matching 

Estimation (MME) 

Method 

Distribution   Statistic Rank   Statistic Rank   Statistic Rank   

Normal AIC -115.4 5 -151.18 5 -112.51 5 

  BIC -112.35   -112.13   -109.45   

Lognormal AIC -121.28 1 -121.18 1 -120.89 1 

  BIC -118.23   -118.13   -117.83   

Gamma AIC -120 2 -119.85 2 -119.09 2 

  BIC -116.95   -116.8   -116.04   

Beta AIC -119.28 3 -119.15 3 -118.09 3 

  BIC -116.23   -116.1   -115.03   

Cauchy AIC -112.98 6 -   -90.822 6 

  BIC -109.93   -   -87.776   

Weibull AIC -112 7 -   -103.37 7 

  BIC -109   -   100.317   

Exponential AIC -54.39 9 -54.395 6 -   

  BIC -52.869   -52.869   -   

Uniform AIC -107.7 8 Ibf   Inf   

  BIC -104.64   Inf   Inf   

Logistic AIC -117.45 4 -117 4 -112.7 4 

  BIC -114.39   -114.03   -109.65   

Sample Parameter Estimation using R-Studio 

R version 4.1.1 (2021-08-10) -- "Kick Things" 

 [Workspace loaded from ~/.RData] 

> region_one_r_data <- read.csv("C:/Users/Amane/Desktop/r regional data/region one r 

data.csv") 

> View(region_one_r_data) 

> summary(region_one_r_data) 

X335.758 

Min.   :235.4 

1st Qu.:370.5 

Median :434.5 

Mean   :449.3 



 

67 
 

3rd Qu.:504.6 

Max.   :779.8 

> View(region_one_r_data) 

> x<-region_one_r_data$X335.758/1000 

> summary(x) 

Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

0.2354  0.3705  0.4345  0.4493  0.5046  0.7798 

> norMLE<-fitdist(x,"norm",method = "mle") 

> summary(norMLE) 

Fitting of the distribution ' norm ' by maximum likelihood 

Parameters : 

   estimate        Std. Error 

mean 0.4492776             0.02064522 

sd   0.1167870                0.01459356 

Loglikelihood:  23.31088   AIC:  -42.62176   BIC:  -39.69028 

Correlation matrix: 

mean               sd 

mean  1.000000e+00    -2.675968e-13 

sd   -2.675968e-13       1.000000e+00 

> plot(norMLE) 
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> lnorMLE<-fitdist(x,"lnorm",method = "mle") 

> summary(lnorMLE) 

Fitting of the distribution ' lnorm ' by maximum likelihood 

Parameters : 

estimate       Std. Error 

meanlog 0.8323966       0.04484289 

sdlog    0.2536697          0.03170649 

Loglikelihood:  25.12577   AIC:  -46.25154   BIC:  -43.32007 

Correlation matrix: 

meanlog   sdlog 

meanlog       1     0 

sdlog            0     1 

> plot(lnorMLE) 

 

4.4.2 Goodness of Fit Using Assessment-Based Graphs  

Various graphical functions can be used to investigate the goodness-of-fit of fitted 

distributions. For selecting the best-fit parameter estimation methods utilizing the MLE 

approaches illustrated above the MLE approach was the best parameter estimation approach 
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for the regions. Figure 4.4 shows the output for the best and worst fitted distributions to the 

regions by the MLE approach. It shows the histogram of the empirical distribution (data) 

generated according to (Blom, 1958) superimposed on the PDF of the theoretically suited 

distributions. The results of fitting the chosen distribution functions to the streamflow 

datasets are shown. The plots of the lognormal, gamma, and logistic models appear to fit the 

region-A flow dataset series, and may thus be the recommended models for this dataset. The 

log-likelihood values of the lognormal and gamma models are substantially skewed to the 

left for Region-B, therefore models lognormal, and gamma models appear to be best suited 

for this dataset series. For Region-C, the lognormal, gamma, beta, and logistic models are the 

best options. 

Quantile–quantile (Q–Q) plots were created to analyze and visualize the goodness of fit of 

the selected model distributions graphically, as well as to determine if the dataset series were 

generated from the nine theoretical distributions. A probability–probability (P–P) plot is a 

simple graphical approach for evaluating the quality of forecast prediction and forecast 

uncertainty. It compares the observed stream-flow probability values in the 0 to 1.0 range 

against a uniform distribution within the stream-flow ensemble. The P–P plot would be 1:1 if 

the data set series were perfectly regularly distributed. This holds true for the Q as well. The 

P–P and Q–Q charts for the data series related to the Region-A, Region-B, and Region-C for 

the best and the worst theoretical distributions are shown in fig.4. 5.  The P–P plots for 

Region-A data series are regularly distributed for lognormal, gamma, and logistic distribution 

whereas both regions are unfairly distributed for exponential and uniform distribution. Both 

Region-B and Region-C data series are regularly distributed for lognormal, gamma, and beta 

distribution. Similarly, those two regions are unfairly distributed for Exponential, Weibull, 

and uniform distribution, as seen in Figure 4.6. As a result, the observed data series were 

presumed to be the real distribution, and the quantiles computed from the observed data were 

thought to be the theoretical distribution's true quantiles as well. From the chosen distribution 

models lognormal, gamma, logistic, normal, Weibull, and beta fit the data well in region-one 

and region-two however, for region-three lognormal, gamma, beta and logistic fit the data 

well during the computation process.  
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(a) Region one   

 

 

                           (b) Region two                                  (c) Region three 

Figure 4. 4: Fitted Cumulative distribution functions (CDF) of the nine selected distribution 

models: 
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(a) Region one 

 

(b) Region two 
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(c) Region three 

Figure 4. 5: Quantile–quantile (Q–Q) plots for region one, region two, and region three. 

 

(a) region one 
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(b) region two 

 

(c) region three 

Figure 4. 6: Probability–probability (P–P) plots for region one, region two, and region three 
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4.4.3 Best-Fit Distribution Model  

In the selection of models for comparing the multiple probability distributions, AIC employs 

the same response variables for all of the candidate distributions while keeping all of the 

components of each likelihood and does not mix null hypothesis testing with information 

criterion models. The best model is chosen based on the determined minimal AIC value. The 

BIC, like the AIC, is a model selection criterion based on the likelihood function. Lower BIC 

values indicate that there are fewer explanatory variables and that the model fits better. The 

best-fit distribution for extreme datasets is the one that best matches the goodness-of-fit 

statistics and information criteria-based model selection criteria. Table 12 and Table 14 

shows the findings of the best-fit distribution model for region-A based on LL, AIC, and BIC 

inside the extreme type of distribution. Because they had the higher LL values and lowest 

AIC and BIC values, the lognormal, gamma, and logistic distribution models were chosen as 

the best-fitting functions for the region-A streamflow, as shown in Table 15, Table 17, Table 

18, and Table 20, because both the AIC and BIC returned low values and higher LL values, 

the lognormal, gamma, and beta functions were the best-fit functions for the both Region-B 

and Region-C stream flows at the location located in the upper Omo river basin.  

4.4.4 Goodness of fit Test-Based Analysis  

The Kolmogorov–Smirnov test, chi-square test, and Anderson–Darling tests were used to 

examine the nine probability distributions at a 95% significance level (α = 0.05). All except 

exponential and uniform distribution, the classical goodness-of-fit test statistics for the 

Kolmogorov–Smirnov, chi-square test, and Anderson–Darling tests were acceptable at this 

stage for the estimation of Region-A streamflow based on the test hypothesis at a 95% 

significance level. The computed values of test statistics are lower than the critical values for 

the seven probability distributions at the chosen significance level. Each distribution was 

assigned a rank between one and nine as indicated on Table 20, with one indicating the best-

fitting distribution, and nine indicating the worst fitting distribution. The goodness-of-fit tests 

indicated the lognormal model as the best quality of fit for the region-A dataset for the upper 

Omo River basin, followed by the gamma and logistic distribution models in the ranking 

order based upon the goodness-of-fit results at the site. The beta, Weibull and Cauchy 

distribution models respectively had the least quality of performance for streamflow at this 

site. As for the Region-B and Region-C streamflow datasets, lognormal, gamma, beta and 
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logistic showed the best goodness-of-fit statistics for all the test statistics. The purpose of the 

goodness-of-fit test is to determine the best fitting frequency distribution by computing the 

difference of the L-kurtosis between the sample data and using R studio software. 

In this study, the goodness of fit tests was performed for all distributions using Kolmogorov 

Smirnov, Anderson-Darling, and Chi-Squared methods for the data of gauging stations. They 

were applied to determine whether the distribution to be fitted to the data or not. The best-fit 

result of each station was taken as the nine different distributions with the lowest sum of the 

rank orders from each of the three test statistics. The GOFs at a5% level of significance was 

used to define the best-fit ranking using R studio statistical software. The probability 

distribution having the accepted along with their test statistic was presented in Table 4.21 for 

Region-A, form the nine distribution the exponential and uniform distribution were not 

accepted distribution because their values of GOFs at 5% level of significance were greater 

than the critical value. The same is true for Region-B based on Table 22. Whereas the 

Weibull, exponential and uniform distributions were not accepted distribution due to their 

higher values of the test result for Region-C as presented in Table 23. 

Table 4. 21 Region-A Goodness-of-fit information Kolmogorov–Smirnov, Chi-squared and 

Anderson–Darling criteria 

  Kolmogorov–

Smirnov (Critical Value 

at 0.05 = 0.20517) 

Chi-squared test 

(Critical Value at  

0.05 = 14.067) 

Anderson–Darling 

(Critical Value at 0.05 

= 2.5018) 

Distribution Statistic Remark   Statistic Remark   Statistic Remark 

Normal 0.07223 Accepted 0.23988 accepted 1.62899 Accepted 

Lognormal 0.10945 Accepted 0.2116 accepted 0.46318 Accepted 

Gamma 0.09057 Accepted 0.65489 accepted 0.81632 Accepted 

Beta 0.0761 Accepted 1.6239 accepted 0.26539 Accepted 

Cauchy 0.11714 Accepted 2.3704 accepted 0.66346 Accepted 

Weibull 0.12003 Accepted 0.27273 accepted 2.455 Accepted 

L2ogistic 0.10358 Accepted 0.60733 accepted 0.96873 Accepted 

Exponential  0.45545 Unaccepted 60.631 unaccepted 8.7586 Unaccepted 

Uniform 0.15549 Accepted   N/A                       unaccepted 8.521 Unaccepted 

 

 



 

76 
 

Table 4. 22 Region-B Goodness-of-fit information Kolmogorov–Smirnov, Chi-squared and 

Anderson–Darling criteria 

  Kolmogorov–

Smirnov (Critical Value 

at 0.05 = 0.20517) 

Chi-squared test 

(Critical Value  

at 0.05 = 14.067) 

Anderson–Darling 

(Critical Value  

at 0.05 = 2.5018) 

Distribution Statistic Remark   Statistic Remark  Statistic Remark  

Normal 0.13832 Accepted 1.6634 accepted 0.69392 Accepted 

Lognormal 0.1084 Accepted 0.72721 accepted 0.33539 Accepted 

Gamma 0.08385 Accepted 1.6293 accepted 0.34973 Accepted 

Beta 0.10903 Accepted 0.37143 accepted 2.21213 Accepted 

Cauchy 0.14301 Accepted 1.2269 accepted 0.92233 Accepted 

0.76709 0.10074 Accepted 0.87016 accepted 2.455 Accepted 

Logistic 0.13952 Accepted 3.2856 accepted 0.64159 Accepted 

Exponential  0.40991 Unaccepted 32.036 unaccepted 7.3859 Unaccepted 

Uniform 0.15533 Accepted   N/A                       unaccepted 11.655 Unaccepted 

Table 4. 23 Region-C Goodness-of-fit information Kolmogorov–Smirnov, Chi-squared and 

Anderson–Darling criteria 

  Kolmogorov–

Smirnov (Critical Value 

at 0.05 = 0.20517) 

Chi squared test 

(Critical Value  

at 0.05 = 14.067) 

Anderson–Darling 

(Critical Value at 0.05 

= 2.5018) 

Distribution Statistic Remark   Statistic Remark   Statistic Remark   

Normal 0.20297 accepted 13.201 accepted 2.1767 Accepted 

Lognormal 0.10547 accepted 0.473 accepted 0.44467 Accepted 

Gamma 0.17761 accepted 2.9342 accepted 1.2396 Accepted 

Beta 0.19647 accepted 4.8571 accepted 2.0871 Accepted 

Cauchy 0.20403 accepted 3.4518 accepted 2.4763 Accepted 

Logistic 0.25452 unaccepted 8.7703 accepted 0.96873 Accepted 

Weibull 0.1978 accepted 1.8303 accepted 13.185 Unaccepted 

Exponential  0.34709 unaccepted 15.725 unaccepted 4.5967 Unaccepted 

Uniform 0.21677 accepted   N/A                       unaccepted 12.607 Unaccepted 

4.4.5 The Cullen and Frey graph 

Figure 4.3 illustrates an initial skewness-kurtosis graph of the unbiased distribution of the 

extreme data to aid in visualization and model selection. For the skewness and kurtosis, 

uniform, exponential, normal, and logistic models have only one potential distribution value, 

whereas the possible lognormal, Weibull, and gamma areas are depicted bylines, and the 

possible Beta areas are represented by larger areas. In the Cullen and Frey graph, the kurtosis 

and squared skewness of extreme datasets is represented as a blue point denoting 
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"observation‖. Lognormal, gamma, normal, and Weibull, being common right-skewed 

distributions, are indicated as possible model distribution candidates because of the positive 

skewness, and a kurtosis value that is close to three, while the GEV, Gumbel, and GP 

distributions should not be considered. As a result, this justified that the lognormal, gamma 

and normal distributions would be acceptable and the dominant probability distributions in 

the upper Omo-River Basin for estimation of regional flood frequency. 

4.5 Estimation of Regional Flood Frequency Curves 

Following the acceptance of areas as homogeneous, appropriate distributions for the regions 

were found. For each region, flood frequency curves were created based on an appropriate 

distribution to calculate the variances in the standardized flow of various return periods. 

4.5.1. Parameter and Quantile Estimations 

According to the Likelihood value (LL), Akaike information criterion (AIC), and Bayesian 

information criterion (BIC), the maximum likelihood technique provides a better parameter 

estimation procedure since it provides greater LL values and lower AIC and BIC values in all 

regions, Region-A, Region-B, and Region-C. The results obtained from maximum 

streamflow data series analysis by MLE for the Upper Omo-Gibe river basin and its vicinity 

indicate that, based on most credible functions of probability distribution by LL, AIC, and 

BIC, lognormal, and gamma, which are both two-parameter distributions, are the most suited 

models for maximum flood prediction studies. The MLE approach has been used in this 

regional flood frequency distribution analysis and recommendations of distribution functions 

made for extreme streamflow data series. The MLE estimates are consistent, and the 

maximum likelihood estimators are asymptotically unbiased and efficient; thus, the MLE is 

generally preferred over the method-of-moments (MoM) approach, the Quantile matching 

approach, and the maximizing goodness of fit approach. Therefore, the recommended 

distributions for the frequency regimes in this study may be used to estimate the regional 

flood frequency distribution (return periods for various flood extremes). These findings 

largely agree with other recommendations elsewhere in Ethiopia RFFA conducted on the 

upper awash river basin, Kenya, and the world. The Gamma distributions have been 

extensively used in the study of floods in the United States and Australia (Beard, 1992) since 

their adoption and recommendation in Bulletin 17B. Recent work recommended lognormal 
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annual maximum flood analysis in the Tel Basin of the Mahanadi River System, India using 

MLE (Guru and Jah, 2015). 

The MLE's estimation entails selecting parameter estimates that produce the highest chance 

of the observations occurring. Table 4.24 shows the best parameter estimates from R studio 

software for a selection of distribution models. The remark and descriptive statistics of the 

goodness fit tests presented in Table 4.21, Table 4.22, and Table 4.23 were used to create 

these results. As a result, those distributions could be accepted as the most appropriate and 

dominant distributions in the upper Omo-Gibe River Basin for accurate evaluation and 

estimation of floods. 

Table 4. 24 Results of Estimation parameters for fitted distributions in the region 

Name of 

Regions 

The Best Parameter 

Estimation Model 
Best-fitted distribution 

Value of parameters 

shape Scale 

Region-A 
Maximum likelihood 

Estimation 

1- Lognormal  0.833  0.255 

2- Gamma  15.654  34.843 

3- Logistic  0.44 0.064  

Region-B 
Maximum likelihood 

Estimation 

1- Lognormal  2.216  0.483 

2- Gamma  4.251  34.519 

3- Beta  3.685  26.152 

Region-C 
Maximum likelihood 

Estimation 

1- Lognormal  1.86  0.2464 

2- Gamma  16.1887  100.84 

3- Beta  13.346 69.712  

4.5.2 Estimation of Index-Flood for Standardization  

The average of the growth curves was used to illustrate the flood frequency curves of regions 

in this scenario. The standardized quantiles for regions using the given distribution and 

parameters with their corresponding return periods are shown in Table 4.25. For specified 

parameter estimation, the amount of flood rises as the return period increases for all stations. 

This could be related to the varying flood regimes of the meteorological phenomena that 

cause flood this can significantly help in risk assessment works, water resources 

management, and engineering decisions and actions in the study area. 
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Table 4. 25 Estimated standardized flood quantiles of regions 

Gumbel reduced variant RGC-A RGC-B RGC-C 

0.366512921 -3.25 -0.15254 -0.154 

1.499939987 -0.15347 0.866361 0.850368 

2.250367327 0.856173 1.540963 1.515345 

2.673752092 1.524646 1.921568 1.89052 

2.970195249 1.901792 2.188058 2.153208 

3.198534261 2.165861 2.393325 2.355547 

3.901938658 2.369263 3.025655 2.978856 

3.901938658 2.995848 3.025655 2.978856 

4.310784111 2.995848 3.39319 3.341147 

4.600149227 3.360043 3.653316 3.597562 

5.007292664 3.617806 4.019321 3.958345 

5.295812143 3.980485 4.278688 4.214012 

6.213607264 4.237495 5.103746 5.027299 

6.907255071 5.055057 5.727306 5.641963 

9.21029037 5.672951 7.797636 7.682756 

(RGC: Regional Growth Curve) 
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Figure 4. 8: Regional growth curves for delineated homogeneous regions 

The three generated regional frequency curves show that each curve has different flood 

characteristics. This could be because flood statistics vary depending on the location. For the 

identical return periods, as shown in Figure 4.8, the estimated regional growth curve of 

Region-B and Region-C yielded greater quantile estimates than Region-A. This large-scale 

flood in the region could inflict significant damage and disruption to nearby residents. This 

could be because that their flood regimes and contributing areas are both variables. Higher 

variances in regional curves may be owing to significant spatial fluctuations in altitudes, as 

well as the spatially undulating mountainous topography of regional boundaries, which 

generates flood forecast uncertainty. 

4.5.3 Estimation of flood quantiles 

Estimation of flood quantiles was applied for 2, 5, 10, 15, 20, 25, 30, 50, 75,100,150, 200, 

500, and 1000 years return periods are shown in Table 4.26, and flood frequency curves for 

regions were developed as shown in Figure 4.9. Flood frequency curves were estimated using 
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lognormal distribution flood estimation equations. This estimation of the flood can be 

utilized in the designing of vital hydraulic structures in the river reach. 

Table 4. 26 Estimated flood quantiles of regions 

T(year) Region-A Region-B Region-C 

2 0 111.4490342 154.1639675 

5 427.6593441 176.3407042 196.1514292 

10 547.2488022 219.3046362 223.9507822 

15 626.4274293 243.5445235 239.6349423 

20 671.0993416 260.5166712 250.6165891 

25 702.3774693 273.5896781 259.0753385 

50 726.4698345 313.8614232 285.1327409 

50 800.6870057 313.8614232 285.1327409 

75 800.6870057 337.2688969 300.2782966 

100 843.8248551 353.8358081 310.9977395 

150 874.3561689 377.145837 326.0802446 

200 917.3144364 393.6643332 336.7683611 

500 947.7565258 446.2105093 370.7678028 

1000 1044.594359 485.9236641 396.4637752 
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Figure 4. 9: Flood frequency curves of regions 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

In this study, regional flood frequency analysis was performed using the data of eleven 

stream gauging stations to ensure reliable estimation of flood in the Upper Omo-Gibe River 

Basin. The basin has been defined and delineated into three hydrologically homogeneous 

regions using the AMF frequency model. The regions were named Region-A, Region-B, and 

Region-C comprising five, three, and three gauging sites respectively. The delineation of the 

regions was done using ArcGIS10.4.1. L-moment ratio diagram and R programming 

software wse used to check whether all stations in the same region are found to lie on the 

same type of distribution. Further, a discordance measure using Matlab2018a and CC test 

was conducted to check their homogeneity. A case study is also presented where long-term 

flood discharge magnitudes and frequencies were extracted from streamflow data for the 

study area to give an annual maximum time series for this hydrological frequency analysis. 

Nine probability distribution models were assessed using the MLE approach, GoF tests-based 

analysis, and information criteria-based selection procedures to identify the most suitable 

distribution model for RFFA for the study. Lognormal and Gamma distribution models were 

selected as the best-fit functions for all the three regions stream flows respectively. The GoF 

tests-based analysis and procedures are useful in the selection of suitable distribution model 

functions for the site. Regional average values of LCs and LCk were used to select the best 

fit statistical distribution of each region and the goodness of fit test by using the R 

programming software was used to approve the best fit distribution.  Different distribution 

functions may be suitable for the flood frequency estimations at the same site; therefore, the 

choice of a suitable model for flood frequency analysis with the same climatic, catchment, 

and hydrological characteristics depends on the frequency regime of the data series. Flood 

data are stochastic in nature and often assumed to be spatially and temporally independent. 

Practically, a true probability distribution of the data at a given site or region remains 

uncertain. However, to date, distributions are often used to characterize the relationship 

between flood magnitudes, and their frequencies are evaluated to assess their performance 

and selected by using statistical tests. For all the three regions in the study area, the 

lognormal and gamma distribution functions were selected as the best-fit distribution 

function since they provide greater LL values and lower AIC and BIC values in all regions, 
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Region-A, Region-B, and Region-C. In addition, these distributions with the method of 

parameter estimations are finally used to develop a regional growth curve of each 

homogeneous region. The regional growth curve can be used to safely and feasibly design 

hydrologic projects under-prediction in both gauged and ungauged catchments. The derived 

results can be useful as a reference in any hydrological considerations like flood risk 

management, proper planning, and designing of pivotal hydraulic structures such as dams, 

spillways, bridges, culverts, and urban drainage systems in the study area. 
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5.2. Recommendations 

The study's findings are used to show the directions in which extra effort should be made. 

The following suggestions are offered for further research in this area. According to the 

findings, defining hydrologically homogeneous regions based on statistical parameters of 

gauged sites is a suitable way of regional analysis. R-Studio Statistical Software can be used 

for other relevant investigations due to the adequacy of best-fit distributions and 

the acceptability of results.  

Further analyses should incorporate the influence of climatic variables such as precipitation 

on the variability of L-moments of AMFs in the research area, given the evidence of climate 

change scenarios. Estimated floods should be used as an input to create hydraulic models 

such as flood danger, risk, and inundation mapping of delineated homogeneous regions 

separately for proper land and watershed management. To compare the results and acquire a 

more appropriate flood estimation for ungauged, flood frequency curves should be produced 

utilizing several types of catchment variables such as elevation, slope, area, precipitation, soil 

type, land use land cover, and form factor. More hydrologic stations should be established in 

the basin to acquire an accurate estimate of regional flood quantile. This study's 

methodological framework could be used to develop comparable research in other river 

basins. 
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 APPENDIX 

Appendix-A:  Results for correlation of gauging stations used for analysis  

Code 

Gauging station 

(Y) 

Nearby station 

(X) Regression equation R² Remark 

111111 Tollay  Abelti Y=12905X+146792 0.66542 WC 

61015 Abelti  Tollay Y=65311X-29831 0.97993 WC 

91004 Wolkite  Wolkite Y=11673X-8448.2 0.98291 WC 

91010 Wolkite  Endeber Y=4133.9X-3459.8 0.96229 WC 

91007 Endeber  Wolkite Y=239.63X+25048 0.71648 WC 

91008 Asendabo  Serbo Y=14966X-12104 0.99225 WC 

91032 Serbo  Jimma Y=1854.1X+14818 0.99225 WC 

91023 Jimma  Asendabo Y=125.3X+2310.8 0.75612 WC 

92002 Bonga  Shebe Y=2010.3X+12793 0.87247 WC 

91012 Shebe  Andaracha Y=21439X-13236 0.99649 WC 

92004 Andaracha  Bonga  Y=121.82X+625.77  0.88277 WC 

Appendix-B: Critical values of the Grubbs T Test Statistic as a function of the number of 

Observations and Significance level 

N 5% 2.50% 1% N 5% 2.50% 1% 

3 1.15 1.15 1.15 20 2.56 2.71 2.88 

4 1.46 1.48 1.49 21 2.58 2.73 2.91 

5 1.67 1.71 1.75 22 2.6 2.76 2.94 

6 1.82 1.89 1.94 23 2.62 2.78 2.96 

7 1.94 2.02 2.1 24 2.64 2.8 2.99 

8 2.03 2.13 2.22 25 2.66 2.82 3.01 

9 2.11 2.21 2.32 30 2.75 2.91   

10 2.18 2.29 2.41 35 2.82 2.98   

11 2.23 2.36 2.48 40 2.87 3.04   

12 2.29 2.41 2.55 45 2.92 3.09   

13 2.33 2.46 2.61 50 2.96 3.13   

14 2.37 2.51 2.66 60 3.03 3.2   

15 2.41 2.55 2.71 70 3.09 3.26   

16 2.44 2.59 2.75 80 3.14 3.31   

17 2.47 2.62 2.79 90 3.18 3.35   

18 2.5 2.65 2.82 100 3.21 3.38   

19 2.53 2.68 2.85         

(Source: Grubbs,1969) 
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Appendix-C: Percentile Points of the F-Distribution F {V1, V2, P} for the 5 % level of 

Significance (Two-Tailed) 

P=P(F<FP) V1:4 5 6 7 8 9 10 11 12 14 16 

0.025 

0.975 
V2:5  

.107 

.739  

.140 

7.15  

.169 

6.98  
                

0.025 

0.975 
6   

.143 

5.99  

.172 

5.82  

.195 

5.70  
              

0.025 

0.975 
7     
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4.99  

.221 

4.90  
            

0.025 
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9         
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10           
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0.025 
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11             
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3.43  
    

0.025 

0.975 
12               
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.328 

3.21  
  

0.025 
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14                 
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0.975 
                      

1.00 

1.00  
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Appendix-D: Percentile Points of the t-distribution t {V, p for the 5% level of Significance 

(Two-Tailed)} 

P = P (t < = tp) 0.025 0.975 P = P (t < = tp) 0.025 0.975 

4 -2.78 2.78 16 -2.12 2.12 

5 -2.57 2.57 18 -2.1 2.1 

6 -2.54 2.54 20 -2.09 2.09 

7 -2.36 2.36 24 -2.06 2.06 

8 -2.31 2.31 30 -2.04 2.04 

9 -2.26 2.26 40 -2.02 2.02 

10 -2.23 2.23 60 -2 2 

11 -2.2 2.2 100 -1.98 1.98 

12 -2.18 2.18 160 -1.97 1.97 

14 -2.14 2.14 ∞ -1.96 1.96 

Appendix-E: Result of hydrological data quality test for stationary of stations time series 

data. 

Station 

name 
Subset-1 Subset-2 V1, v2 

Ft2.5

% 
Ft Ft97.5% v Tt Tt2.5% 

Tt97.5

% 

Tollay 2000-2010 2010-2019 10,10 0.269  0.14 3.72 20 -0.725 -2.1 2.1 

Abelti 1985-2001 2002-2017 17,16 0.358  0.253 2.735 33 -0.473 -2.036 2.036 

Wolkite 1975-1991 1992-2007 17,16 0.358  2.665 2.735 33 -1.934 -2.036 2.036 

Wolkite 1975-1990 1991-2005 16,15 0.348  0.140 2.87 31 0.21 -2.038 2.038 

Endeber 1990-2002 2003-2014 13,12 0.308  1.070 3.165 25 0.577 -2.056 2.056 

Asendabo 1982-1999 2000-2016 18.17 0.382  0.279 2.655 35 0.528 -2.03 2.03 

Serbo 2000-2008 2009-2017 9,9 0.248  4.225 2.056 18 2.055 -2.1 2.1 

Jimma 1990-2001 2002-2013 12.12 0.305  1.387 3.28 24 1.178 -2.06 2.06 

Bonga 1991-2006 2006-2019 15,14 0.335  44.5 2.95 29 7.842 -2.043 2.043 

Shebe 1974-1991 1992-2008 18,17 0.382  1.477 2.655 35 1.215 -2.03 2.03 

Andracha 1990-2002 2003-2015 13.13 0.315  2.684 3.245 26 1.638 -2.053 2.053 
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Appendix-F: (Translated Matlab code for Discordancy Measure as provided by Hosking and 

Wallis, 1997)  

U=xls. read ('c:\users\name of groups\desktop\U.xls'); % File 

% ratios (𝜏2  , 𝜏3  , 𝜏4  ,) of the gauging sites in the region 

U= number of gauging sites in the region (Enter the matrix of test statistics); 

n=; % input ('enter the number of gauging sites in the group:'); 

Ubar= [0;0;0]; 

for i=1: n 

Ubar=Ubar+1/n*(U(i,1:3)'); 

end 

S=zeros (3); 

for i=1: n 

S=S+(U(i,1:3)'-Ubar) *(U(i,1:3)'-Ubar)'; 

End 

for i=1: n 

Di(i)=1/3*(U(i,1:3)'-Ubar)'*inv(S)*(U(i,1:3)'-Ubar); 

End 

disp ('The Di of U Statistics'); 

disp ('Di, Di+1, Dn'); 
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Appendix-G: Distribution sample estimates, standard errors, and correlation matrix of 

parameter, shape and scale values estimated using the Maximum Likelihood Estimation 

(MLE) Method. 

  Sample estimates 

Region-A Region-B  Region-C 

  
Correlation 

Matrix 
Standard Error 

Correlation 

Matrix 
Standard Error 

Correlation 

Matrix 

Distribution 

  

   Sample 

Est 

Sd 

Error                           
mean sd 

Sample 

Est 

Sd 

Error 
Shape Scale 

Sample 

Est 

Sd 

Error 
Shape Scale 

Normal 
mean 0.449 0.021 1 

-

2.7 
0.123 0.011 1 0 0.16 0.01 0 

  

1 

Sd 0.116 0.015 -2.65 1 0.064 0.007 0 1 0.041 0.01 0 1 

Lognormal 
mean  0.833 0.045 1 0 2.22 0.083 1 8.64 1.86 0.42 1 0 

sg log 0.255 0.032 0 1 0.483 0.058 8.64 1 0.246 0.03 0 1 

Gamma 
Shape 15.654 3.872 1 1 4.251 0.993 1 0.94 16.19 3.89 1 0.98 

Rate 34.843 8.759 0.99 1 34.52 8.569 0.94 1 100.8 24.6 0.984 1 

Beta 
Shape 7.64 1.877 1 0.9 3.685 0.856 1 0.92 13.35 3.2 1 0.97 

Scale 9.284 2.295 0.94 1 26.15 6.449 0.92 1 69.71 17 0.972 1 

Cauchy 
Shape 0.432 0.019 1 0 0.086 0.006 1 0.26 0.157 0 1 -0.23 

Scale 0.064 0.014 0.04 1 0.024 0.006 0.26 1 0.018 0 0.234 1 

Weibull 
Shape 1 0.336 1 0.3 2.089 0.27 1 0.34 3.825 0.18 1 0.34 

Scale 0.333 1 0.34 1 0.14 0.012 0.34 1 0.176 0.01 0.338 1 

Exponential Scale 2.226 0.393 
    

8.199 1.392 
    

6.229 1.07 
    

Uniform 
Min 0.235       NA       0.101 NA     

Max 0.779       NA       0.295 NA     

Logistic 
Shape 0.44 0.019 1 0 0.114 0.011 1 0.15 0.157 0.01     

Scale 0.064 0.009 0.04 1 0.036 0.005 0.15 1 0.022 0     
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Appendix-H: lognormal distribution using MLE approach 
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Appendix-I: time series flow of stations 
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(a) time series flow of station one                  (b) time series flow of station two 
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(c) Time series flow of station three                               (d) time series flow of station four 

6/18/19706/18/19766/18/19826/18/19886/18/19946/18/20006/18/2006

0

100

200

300

400

500

fl
o

w
 r

a
te

(m
3
/s

)

Date

 time series flow 5

6/13/19886/13/19916/13/19946/13/19976/13/20006/13/20036/13/20066/13/2009

-10

0

10

20

30

40

50

60

70

80

fl
o

e
 r

a
te

(m
3
/s

)

Date

Time series station 6

 

(e) Time series flow of station five              (f) time series flow of station six 
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(g) Time series flow of station seven                       (h) time series flow of station eight 
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(i) Time series flow of station nine                         (j) time series flow of station ten 
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(k) Time series flow of station eleven 
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Appendix-J: Linear fit of stations 
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Plot M
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Intercept -81059.63046 ± 46881
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Pearson's r 0.81573
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Adj. R-Square 0.65528

 

(a) station one                                                               (b) station two 
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(C) station three                                  (d) station four 
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(e) Station five                                         (f) Station six 

 

(g) Station seven                                        (h) Station eight 
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        (i) Station nine                                           (j) station ten 
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(k) Station eleven 
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