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Abstract

This thesis presents fractional order sliding mode control (FOSMC) for fractional

order single-ended primary-inductor converters (FOSEPIC). Integer order single

ended primary-inductor converter is not accurate, has low flexibility, defined uni-

formly and has low degrees of freedom. Like the conventional SMC methods, the

proposed FOSMC method employs a sliding surface function based upon the input

current error only. We achieve output voltage control indirectly by controlling the

input inductor current. This investigation of a fractional order SMC on a fractional

order SEPIC highlights the merits of the fractional order systems and fractional

order controllers. The input current reference is generated by a proportional-

integral (PI) regulator. The performance of the proposed FOSMC approach is

investigated by using a MATLAB/SIMULINK program. The buck/boost modes

for voltage regulation are studied by varying the following parameters: the input

voltage, orders of the system, order of the controller and load resistance. Simula-

tion results are presented for fractional order SEPIC converter of fractional orders

(0.25, 0.35, 0.52, and 0.65) and FOSMC of fractional order 0.35.

Keyword:Fractional calculus ,Fractional order sliding mode control, Frac-

tional order SEPIC converter
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Chapter 1

Introduction

1.1 Background

The term “non-integer calculus” is sometimes used instead of “fractional calcu-

lus” in this study. However, the fractional calculus covers integer orders as well

as generalized functional orders such as fractional, irrational and complex[1]. For

this reason, the fractional calculus is often referred as the generalized calculus.

These names are used interchangeably in the current literature. The concept of

fractional calculus as an extension of ordinary calculus goes back to 1695 AD. In

the letter to L’Hospital, Leibniz proposed the possibility of generalizing the differ-

entiation to half order derivative. Though fractional calculus has a long history,

only in the recent years have the applications of fractional calculus to physics and

engineering become an important aspect of modern technology[2, 3]. Recently,

it has been widely used in modeling the dynamics of many natural phenomena,

which is attributed to its higher capability of providing accurate description than

integer order dynamic systems [3–6]. Applications of Fractional Calculus have

also been reported in areas such as control Engineering, Biology, Biomedical En-

gineering, Financial Market and Signal Processing. In Electrical Engineering, use

1
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of Fractional Calculus has also been growing[5, 6]. Modeling of electrical equip-

ment and wireless power transmission systems, design as well as Study of chaos

in fractional order dynamic systems and related phenomena is receiving growing

attention [6].Practical fractional designs of electrode-electrolyte polarization, vis-

coelastic fluids, chaotic systems, and power converters[2, 6] have also been made.

Concepts from fractional-order circuits and systems have recently attracted much

attention from the electrical engineering community. Many novel ideas have been

generated by exploiting concepts of fractional circuits. For example, fractional or-

der models of capacitors, inductors, memristors, and CMOS metamaterial trans-

mission lines [7] are built. Practical fractional-order elements are fabricated [7, 8].

In addition, new topologies of circuits based on fractional-order elements are con-

structed, though the underlying characteristics of these circuits continue being

studied[7]. In comparison with the classical calculus, the main advantage of frac-

tional calculus is that it can provide an elegant description for the memory and

hereditary properties of various real objects [9–11]. The kernel dynamics of most

real systems are actually fractional. IOM can describe the features of many sys-

tems which have less fractionalities but it will not be highly accurate. The main

reason for using the IOM was the absence of solution methods for fractional differ-

ential equations. However, the recent improvements in hardware implementation

has renewed the interest in the modeling and analysis of new class of fractional-

order systems[12]. Many systems can be described more accurately and more

conveniently by fractional differential equations (FDEs)[4, 9, 12, 13]. Fractional

order control is ubiquitous when the dynamic system has distributed parameter

nature [14].

1.1.1 Advantages of Fractional Calculus

Compared to the classical theory, fractional differential equations can more accu-

rately describe many systems in interdisciplinary fields and has higher capability

of providing accurate description than integer order dynamic systems. This has
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been true with the control theory of robotic systems. The integer-order models

currently in use to describe the characteristics of inductors and capacitors are

not accurate enough, even incorrect [8, 11, 15–20].Further, fractional calculus is

also a powerful method to describe data memory and heredity [17, 21, 22]. Frac-

tional order sliding mode has also been used to eliminate the chattering effect

caused by the switching control action and realize high-precision performance and

without deteriorating the robust tracking performance [20]. Unlike integer-order

systems, fractional-order systems do not permit fractional derivatives to be de-

fined uniformly [7]. In recent years, fractional-order capacitors or fractional order

inductors have been incorporated into DC-DC converters. Their results show that

the output voltage gain can be not only controlled by duty cycle, but also the

orders of the fractional-order components [8]. Additional attractive features of

fractional-orders over integer-order system occur in stability and differentiabil-

ity some functions which are not differentiable in classical sense are found to be

differentiable in fractional (RL) sense[1]. These properties of fractional calculus

motivate researchers to seek applications to other physical and natural phenomena.

1.1.2 Sliding Mode Control

Sliding Mode Control (SMC) is one of the most efficient control strategies to

deal with uncertainties. It is a widely used method with fast dynamic and good

transient response in linear and nonlinear systems, is robust against external dis-

turbances and parameter variations [18]. The main objective of SMC class of

controllers is to force the system states to stay in a predefined manifold (sliding

surface) and maintain it there in spite of the presence of uncertainties in the sys-

tem. Therefore, the sliding mode based design consists of two phases (i) Reaching

Phase and (ii) the sliding phase. In reaching phase, the system states are driven

from the initial state to reach the sliding manifold in finite time. The trajecto-

ries are sensitive to disturbances and parameter variations in the reaching phase.

For this reason, various methods have been suggested to eliminate or lessen the
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system sensitivity by minimizing or even removing the reaching phase. In Sliding

Phase, the closed-loop system is induced into sliding motion. The considerations

of robustness and order reduction, which are the most important aspects of the

sliding mode based design, come into picture. In addition, in the sliding phase, the

trajectories are insensitive to disturbances and parameter variations. This feature

makes SMC a robust control method. It is worth noting that during the reaching

phase, there is no guarantee of robustness [19]. When integer order SMC methods

is used to deal with fractional order system, they always reject the disturbances

in a robust way, but chattering is a serious problem that needs to be solved[23].

The most important property of SMC is that the sliding motion of the state on

the sliding surface is ensured. Conventional SMC usually chooses a predefined,

constant sliding surface. When the initial value of a system is far from the sliding

surface, a long reaching time occurs. Hence, the control performance reduces and

robustness cannot be ensured in the reaching phase. In conventional SMC, while

increasing discontinuous control gain there is possibility of shorten reaching phase,

however still it has problem of chattering [24].Fractional calculus has been shown

to be effective in eliminating chattering, realizing high precision performance [20].

Considering the advantages of fractional order calculus, the fractional order is in-

corporated into the design of sliding mode control, which reduce the chattering

problem and speed up the response of the closed-loop system[6, 19, 23]. Fractional-

order controllers may further improve the closed loop system performance [17]. A

fractional-order SMC is advantageous due to its additional design parameters (i.e.,

adjustable non-integer differentiator/integrator order). Thus, the fractional order

can be tuned for the best dynamic response, with reference to the orders of the

differentiation, while the main benefits of the conventional SMC remain intact

[17, 25].
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1.1.3 SEPIC Converter

DC-DC converters is a power electronic circuit, which is used for DC voltage step-

up (boost) and step-down (buck). This system has a wide variety of applications,

including DC motor drives, active filters, computers, power supplies, and medi-

cal instrumentation[2]. Other related DC/DC converters, include the Cuk, Zeta,

and SEPIC [23]. The Fig.1.1 shows the SEPIC DC-to-DC converter circuit with

switches realized by means of semiconductor devices (Q, D). These operate in a

complementary fashion i.e., when the transistor Q is in the conducting mode then

the diode D is inversely polarized and vice versa. DC– DC SEPIC converters

are widely used in applications where low ripple current is desired at the input

and output terminals of the converter. These converters with both step-down

and step-up capability are suitable in the off-grid photovoltaic (PV) applications

due to their interconnection ability with different batteries and PV modules. The

inverse polarity at the output terminals of the Cuk converter is its major disad-

vantage. Furthermore, the low-power conversion efficiency resulting from the hard

switching condition can be considered as another drawback for the Cuk converter.

The SEPIC converter offers the similar features as Cuk converter without invert-

ing the polarity of the output voltage. Moreover, the SEPIC converter provides

great benefit for power conversion since it can generate a wide range of output

non-inverted voltage [26].

Figure 1.1: The SEPIC DC-to-DC Power Converter
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1.1.3.1 Variables in the Steady State

The steady-state variables of the system corresponding to a constant value of the

average control input u can be obtained. Assuming that the output voltage and

inductor current equal to their references (vout = vref and iL1 = i∗L1
) and this

means that the steady state values are obtained by equating the integer order

derivatives to zero. The differential equations can be written as

0 = vin − (1− uss)
(
vsC1

+ v∗out

)
0 = ussv

ss
C1
− (1− uss) v∗out

0 = (1− uss) i∗L1
− issL1

uss

0 = (1− uss)
(
i∗L1

+ issL2

)
− v∗out

RL

(1.1)

Solving for uss, i
ss
L2
, i∗L1

and vssc1 in terms of vref and vin yields

uss =
v∗out

vin + v∗out
(1.2)

issL2
=

v∗out
RL

i∗L1
=

(v∗out )
2

vin RL

vssC1
= vin

(1.3)

where uss, i
ss
L2

, and vssC1
denote the steady-state values of u, iL2 , and vC1 , respec-

tively. It is important to note that uss is the duty cycle of the converter which

should satisfy 0 < uss < 1. From equation (1.2) the voltage transfer ratio can be

deduced as
v∗out

vin

=
uss

1− uss
(1.4)

Converters consists of the passive power switch, the active power switch, and the

storage elements. All key components of power electronic converters are considered

as integer-order components in the traditional models of power electronic convert-

ers, which cannot actually reflect their operating characteristics. In this study we

incorporate a fractional inductor and a fractional capacitor in the SEPIC, making
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it a FOSEPIC. The fractional-order modeling of power electronic converters con-

sidering the fractional-orders of inductors and capacitors is considered in[8, 27].

The main objective of most closed-loop feedback controlled DC/DC converters is to

ensure that the converter operates with fast dynamic response, small steady-state

output error, and low overshoot, while maintaining high efficiency and low noise

emission in terms of rejection of input voltage changes, parameter uncertainties,

and load variations[2]. The modeling of fractional-order converters has important

significance in practice[15]. In fact, in addition to integer-order components, there

are also fractional-order components that are described by fractional-order calcu-

lus, such as fractional- order capacitors .The fractional-order components are not

yet standard market-oriented components, but various fractional-order capacitors

and fractional-order inductors have been manufactured in the laboratory, leading

to a practical application of fractional-order components. Some recent results sug-

gest that the output voltage gain can be not only controlled by duty cycle, but

also by the orders of the fractional-order components[8].The above studies demon-

strate that fractional-order components could bring in more flexibility and higher

performance than the integer-order components in circuit design and applications.

The non-uniformity of the fractional derivative renders ineffective, existing numer-

ical methods for computing fractional derivatives [5, 7, 28]. Therefore, taking the

fractional-order DC/DC SEPIC converter as an example, this thesis presents a

time-domain modeling and analysis scheme. In case of buck and buck-boost con-

verters significant harmonics are present at the input. This is due to the absence

of Inductor at the input side. In this configuration, very less number of capacitors

(C) and inductors (L) have been taken into consideration. However, the converter

experiences more ripple in current at input due to minimal number of L and C.

One way to minimize the ripple is to use a filter. But, filter requires large values of

L and C, this makes filter bulky and also increases the cost. The most important

advantage of using SEPIC over conventional converter is, non-inverting output and

it uses state space analysis [29]. The proposed study demonstrates that fractional

order components could bring in more flexibility and higher performance than the
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integer-order components in circuit design and applications [8] and the charac-

teristics of FOC(fractional order capacitor) of different orders [30].Therefore, by

interrelating the above all theoretical aspect of fractional calculus, sliding mode

control and SEPIC converter as a plant we are going to model fractional order

SEPIC converter with controller of FOSMC. The introduction part of this thesis

give the highlight of fractional calculus and its applications.

1.2 Statement of the Problem

Many natural phenomena may not be better described by a classical calculus for-

mulation, because they do not take into account the past behavior and are not

compact when expressing high-order dynamics. IOM can describe the features of

many systems but may not have good accuracy [12]. They may not represent an

accurate model or the characteristic response of systems[7]. Integer order systems

permit the derivative and integration to be defined uniformly. The main reason

for using the IOM was the absence of solution methods for fractional differential

equations [12]. In general, systems including energy storage components such as

the capacitor and the inductor could be described by integral or differential equa-

tions. On the other hand, fractional order systems come with further parameters,

such as differentiation orders and degrees of freedom which may be set as desired.

These further parameters are unavailable in the IOM. Fractional order systems

though, do not have simple analytical solutions because of their long memory

characteristic [12]. Hence, numerical algorithms are widely applied to the analysis

of fractional-order systems, which may cause an exponential increasing of compu-

tational efforts. In this thesis, we apply the principles of fractional order calculus

to the study and analysis of the SEPIC. The SEPIC itself is described through

fractional order and coupled differential equations (the FOSEPIC). The control

designed is a fractional order SMC, where a fractional version of a PI controller is

used to compute a fractional order SMC, leading to a FOSMC.
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1.3 Objectives of the Research

1.3.1 General Objective

The main objective of this thesis is to model and give comparative analysis of

fractional order and integer order systems with sliding mode controller for SEPIC

converter.

1.3.2 Specific Objectives

• To model FOSEPIC(Fractional Order SEPIC) converter using state variables

• To investigate fractional order model of SEPIC converter in terms of different

performances(steady state performance, performance under input voltage

variations ,performance underload variation)

• To compare and evaluate the performance of fractional SEPIC converter

under two different sliding controllers: fractional order sliding mode control

and integer order sliding mode control.

• To provide other modulating/regulating variable for DC/DC SEPIC con-

verter(duty cycle and order of the system)

1.4 Significance of the Study

The kernel dynamics of most real systems are actually fractional. IOM can describe

the features of many systems which have less fractionalities but it will not be

highly accurate. The main reason for using the IOM was the absence of solution

methods for fractional differential equations. However, the recent evolution in

hardware implementation has brought a renewed wave in the modeling and analysis
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of new class of fractional-order systems [12]. Many systems can be described

more accurately and more conveniently by fractional differential equation [4, 9,

12, 13]and fractional order control is ubiquitous when the dynamic system has

distributed parameter nature[14].

1.5 Scope of the Thesis

The scope of this thesis is comparing the performance of SMC, FOSMC, FOS-

EPIC and IOSEPIC. The thesis conducts the comparisons of these dynamic sys-

tems through simulations performed in a MATLAB/SIMULINK environment. No

practical (hardware) implementation is done.

1.6 Methodology

Methodology used to solve the problem is as follows. The study begins with

gathering and studying literatures that related to this thesis.

• Modeling of SEPIC converter using state variables

• Investigate fractional order mathematical model of SEPIC converter.

• Design fractional order sliding mode controller and integer order sliding mode

controller (conventional sliding mode controller) for fractional order SEPIC.

• Performance evaluation and analysis.

Simulation of the control of fractional order SEPIC using fractional order and

integer order sliding mode methods is performed using a MATLAB/SIMULINK

program. Performance of the fractional control of the fractional system is described

through the following four variables: steady state performance, performance under
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input voltage variation, performance under load variation and performance under

order of controller variation. The overall schematic diagram of fractional order

sliding mode controller and fractional order system (SEPIC) is shown in Fig.1.2

[26].

Figure 1.2: Overall Schematic Diagram of SEPIC Converter with SMC

where x4d=v
∗
out denotes the reference of x4=vout state variable and x1d=i

∗
L1 de-

notes the reference of x1=iL1.

1.7 Organization of the thesis

The thesis has organized accordingly.The second chapter describes a literature

review and the current state of the art of the subject, chapter three describes

the Control design and Stability analysis Chapter four presents simulation results

obtained using MATLAB/SIMULINK and Chapter five talks about conclusion

and recommendations for future works.



Chapter 2

Literature Review

2.1 Fractional Calculus

Several research articles and monographs exist in the area of fractional calculus.

Articles of fractional order systems, relevant to the current study are referenced

here. Fractional calculus allows alleviating the limitations of conventional differ-

ential equations where only integer operator powers are used. This gives rise to

system models that take into account dynamics such as self-similarity (Self simi-

larity means that it is invariant under linear scale change in time [1] and system

state history dependence. Contemporary, industrial control systems are of con-

siderable complexity, therefore such systems are likely to exhibit such dynamism.

Hence, interest for fractional system has been witnessed in the area of identifica-

tion, control among others [31]. Many authors pointed out that, fractional-order

calculus is most suitable for the description of memory and generic properties

of various materials and processes [4, 9, 10], which are neglected in the classical

integer-order models . The order of differentiation is a key difference between IOM

and FOM. While the orders are integers in the IOM systems, they are fractions

in the FOM systems. The values of fractional orders are often used as tuning pa-

rameters [8]. This gives FOM more flexibility and higher degrees of freedom and

12
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hence possesses richer dynamics than IOM [1, 10, 12, 32–34]. The results show

that the fractional-order model has less root-mean-square error than the integer

order models[34]. Moreover, FOM is a good candidate to, accurately, explain sys-

tem with memory (The past is considered to explain the present) [23], since it has

a memory in the model [35]. Recently, fractional-order control, which is the gen-

eralization of integer-order control, has emerged as an attractive control strategy.

The existence of adjustable fractional order enables it to achieve the optimum dy-

namic responses over the variable fractional order. As mentioned in [36, 37], SMC

possesses robustness property and powerful ability to reject the plant uncertainties

and disturbances. Further, nonlinear dynamics can also be incorporated. Combin-

ing the merits of fractional-order control and SMC, fractional-order sliding mode

control (FOSMC) is proposed and investigated for various dynamic systems in re-

cent years [33, 37]. In fact, FOSMC is an improvement of traditional integer-order

SMC. By tuning the order of fractional order system appropriately, designers have

the opportunity to obtain satisfactory transient and steady state responses. In the

meantime, the advantages of traditional integer-order SMC can still be retained.

Hence, the merits of FOSMC are that it can achieve better control performances

(such as faster and smoother dynamic responses) than corresponding integer-order

SMC [37, 38]. The behavioral attractive relation of plant with fractional order con-

trollers would be an advantage, because the responses are not restricted to a sum

of exponential functions. Therefore a wide range of responses not occurring in

integer order calculus would be visible. Some recent research shows that the frac-

tional sliding surfaces have better control effects than integer ones. The fractional

sliding mode control has faster response and convergence speed in the initial stage

due to the fractional operator [38]. The input impedance of a FOSEPIC converter

can be changed by regulating the duty cycle[2, 8, 26] as well as by regulating the

order of differentiation of the system as well [8]. However, the controller design

for the SEPIC converter is very complicated due to its inherent fourth-order and

non-linear nature. Furthermore, its behavior depends on operating conditions and

load variations [26]. The SMC is a model-based variable structure control system

that was proposed and which has a number of advantages, including an inherent
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robustness to external disturbances and inherent insensitivity to system uncertain-

ties. The SMC is a powerful technique that can control both linear and nonlinear

systems [2]. Moreover, SMC is a popular control approach and some scholars pre-

sented fractional-order sliding mode control (FOSMC) that combined fractional

calculus theory and SMC to design for DC-DC buck converter. However, it is nec-

essary to design controllers based on fractional order model because capacitors and

inductors have been identified as having the nature of fractional-order differential

electronic components [8]. The thesis will contribute the following:

• To our knowledge, it is the first time to develop the fractional-order models

of a SEPIC converter. The fractional order models are the general expression

of a SEPIC converter, which can describe the operating characteristics more

accurately.

• The influence of the orders of the inductors and the capacitor on the op-

erating characteristics of a SEPIC converter has been analyzed. The study

found that the order of inductors affects both the dynamic characteristics

and static stability of a SEPIC converter significantly, while the capacitor

order mainly affects the dynamic characteristics.

• We discovered that the SEPIC converter which contain the fractional-order

inductors and the fractional-order capacitor can present better static and dy-

namic performance indexes (such as smaller overshoot and shorter regulation

time) than the traditional integer-order SEPIC converters, by appropriately

selecting the orders of the inductors and the capacitor

2.2 Review of Software Reference for Fractional

Order Systems

In recent years, as fractional calculus becomes more and more broadly used across

different academic disciplines, there are increasing demands for the numerical tools
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for the computation of fractional integration/differentiation, or the simulation of

fractional order systems. Time to time, being asked about which tool is suitable

for a specific application.

2.2.1 @FOTF

@fotf (fractional order transfer function) is a control toolbox for fractional order

systems developed. Most of the functions inside are extended from the Matlab

built-in functions. The code and usage of the @fotf toolbox are described in very

detail. In order to describe fo models, this toolbox adds further ovedrload to

certain built-in functions of matlab. The transfer function objects generated from

it can be interactive with those generated from the Matlab transfer function class.

Yet, the overloading of associated functions such as impulse (), step (), etc. lost

the plotting functionality. As a work around, users can simply define a time vector

as the second input to these functions. Fotf toolbox supports time delay in the

TF, e.g. fotf (a, na, b, nb, delay). It does not directly support transfer function

matrix, hence, MIMO systems cannot be simulated directly. However, since it

provides Simulink block encapsulation of the involved function fotf (), multiple

input/output relationship can be established by manually adding loop interactions

in Simulink block diagrams. Therefore, the remark “could” is put in the “MIMO”

column in [39, 40] , (where the ‘Delay’ column denotes if the script/toolbox is

able to handle time delay in the FO model; and the ‘MIMO’ column denotes

if the script/toolbox is able to handle MIMO FO models). A small drawback

with @fotf is that the sampling time has relatively big impact on the accuracy,

which has been remarked in the validation comments. Encouragingly, an update

is upcoming according to the author.
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2.2.2 Ninteger

Ninteger, non-integer control toolbox for Matlab, is a toolbox intended to help

with developing fractional order controllers and assessing their performance[39,

40]. It uses integer order transfer functions to approximate the fractional order

integrator or differentiator,C(s) = ksν , ν ∈ R. It offers three frequency domain

approximation methods. The CRONE(Commande Robuste d’Ordre Non Entier)

methods, which uses a recursive distribution,

C(s) = k′
N∏
n=1

1 + s/ωzn
1 + s/ωpn

(2.1)

The Carlson’s method that solves Cα(s) using Newton’s iterative method,

Cn(s) = Cn−1(s)
(α− 1)Cα

n−1(s) + (α + 1)g(s)

(α + 1)Cα
n−1(s) + (α− 1)

g(s) (2.2)

The Matsuda’s methods, that approximates C(s) with a gain known at several

frequencies.

C(s) = [d0 (ω0) ; (s− ωk − 1) /dk (ωk)]
+∞
k−1

d0(ω) = |C(jω)|, dk+1(ω) = ω−ωk

dk

ω
(ω)−dk(ωk)

(2.3)

It offers three frequency domain approximation methods, it also provides Simulink

block encapsulation of the involved functions, such as ‘nid’ and ‘nipid’ blocks.

Moreover, it offers a user-friendly GUI for fractional order PID controller design.

There is a problem with ninteger toolbox in Matlab version 2013a or later[39].

Without additional editing, it has conflicts with some built-in functions due to

the overload editing of the Matlab built-in function isinteger (). For example,

calling the mean () function will prompt an error.

2.2.3 OoCrone Toolbox

The CRONE(Commande Robuste d’Ordre Non Entier) Toolbox, developed since

the nineties by the CRONE team, is a Matlab and Simulink toolbox dedicated
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to applications of non-integer derivatives in engineering and science. It evolved

from the original script version to the current object-oriented version[41]. A good

feature of the Crone toolbox is that some of the methods are implemented for

MIMO fractional transfer functions. For example, executing sys MIMO= [sys, sys;

sys2, sys2] generates a two-input-two-output TF matrix. Many simulation results

in the literature are obtained using the CRONE toolbox such as the design of

centralized CRONE controller with the combination of the MIMO-QFT approach.

Several other toolboxes are inspired by CRONE, e.g. ninteger and FOMCON. A

drawback of the CRONE toolbox is that time delay cannot be incorporated into

the generated FOTF. Manually multiplying the delay to the frac tf object does

not work either because the exp () operation is not overloaded by frac tf class.

CRONE is a toolbox much more powerful than merely simulating fractional order

systems[39, 40]. In spite of this basic functionality, it is also capable of fractional

order system identification and robust control analysis and design[42].

2.2.4 FOMCON

The FOMCON toolbox for MATLAB is a fractional-order calculus based toolbox

for system modeling and control design. The core of the toolbox is derived from an

existing toolbox FOTF (“Fractional-order Transfer Functions”), the source code

for which is provided in literature[31, 39, 40]. Consequently, the main object of

analysis in FOMCON is a fractional-order transfer function of the form

G(s) =
bms

βm + bm−1s
βm−1 + · · ·+ b0s

β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
(2.4)

FOMCON is related to other existing fractional-order calculus oriented MATLAB

toolboxes, such as CRONE and Ninteger through either system model conversion

features or shared code, and this relation is depicted in Fig.2.1initial motivation

for developing FOMCON was the desire to obtain a set of useful and convenient

tools to facilitate the research of fractional-order systems. This involved writing

convenience functions, e.g., the polynomial string parser, building graphical user
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interfaces to improve the general work flow. However, a full suite of tools was also

desired due to certain limitations in existing toolboxes. The basic functionality

Figure 2.1: Relation of FOMCON Toolbox for MATLAB/Simulink to Similar
Packages [31, 39, 40]

of the toolbox was then extended with advanced features, such as fractional-order

system identification and FOPID controller design[31]. With all previous consid-

erations, the motivations for developing the toolbox can now be established.

• It is a product suitable for both beginners and more demanding users to

availability of graphical user interfaces and advanced functionality.

• It focuses on extending conventional control schemes (PID and lead-lag com-

pensator loops) with concepts of fractional calculus;

• Tools for implementing fractional-order systems and controllers are available;

• With the Simulink block set the toolbox aims at a more sophisticated mod-

eling approach. Real-time control application support is provided through,

e.g., Real-time Windows Target toolbox for MATLAB/Simulink.

• It can be viewed as a “missing link” between CRONE and Ninteger;
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• Due to availability of the source code the toolbox can be ported to other

computational platforms such as Scilab or Octave (some limitations and/or

restrictions may apply).

Most of the research results discussed in this thesis are implemented in FOMCON

toolbox. Toolbox documentation is available on the official website.Structure of

the Toolbox has a modular structure depicted in Fig. 2.2 and currently consists

of the following modules:

• Main module (core-fractional system analysis);

• Identification module (system identification in both time and frequency do-

mains);

• Control module (FOPID controller design, tuning and optimization tools, as

well as some additional features);

• Implementation module (continuous and discrete time approximations, im-

plementation of corresponding analog and digital filters)

Figure 2.2: Modular Structure of the FOMCON Toolbox [31]

All the modules are interconnected. Most features are supported by graphical

user interfaces. A Simulink block set is also provided in the toolbox allowing more
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complex modeling tasks to be carried out. General approach to block construction

was used where applicable. The following blocks are currently realized:

• General fractional-order operators: fractional integrator and differentiator;

• Continuous and discrete time fractional transfer function;

• Continuous and discrete time FOPID controller. Several variants of these

blocks are provided for convenience.

Dependencies: The toolbox relies on the following MATLAB products:

• Control System toolbox—required for most features;

• Optimization toolbox—required for time domain identification and conven-

tional PID tuning, and also partially for fractional-order PID tuning.

Several other tools are used directly (without or with minor changes) per the

BSD(Berkeley Software Distribution)or(Berkeley Standard Distribution) license:

• Nelder-Mead algorithm based function for nonlinear optimization subject to

bounds and constraints;

• Ninteger toolbox frequency domain identification functions.

Identification Module: It is also possible to export fractional-order systems to

the CRONE toolbox format. This feature requires the object-oriented CRONE

toolbox to be installed.The module provides the following main features:

Time domain identification:

• Commensurate and noncommensurate order system identification;
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• Parametric identification, which is applicable to closed-loop identification

problems;

• Approximation of fractional systems by conventional process models.

Frequency domain identification:

• Commensurate transfer function identification based on algorithms by Hart-

ley, Levy and Vinagre;

• Best fit algorithm for choosing an optimal commensurate order and pseudo

orders of the fractional transfer function.

In addition, functions for manipulating the obtained model are provided, includ-

ing truncation, rounding and normalization of coefficients and orders, as well as

functions for validating the models and carry out residual analysis. In general

FOMCON toolbox for MATLAB/Simulink was presented. The main focus was

on MATLAB based features. The application of the tools available in the toolbox

to solving identification, control, and analog and digital implementation problems

for fractional systems[39, 40].
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Fractional Order Control Design

and Stability Analysis

3.1 GL Fractional-Order Derivative

Extrapolating the applicability of classical backward difference formula to deriva-

tive of non-integer order gives rise to the formation of the Grunwald-Letnikov (GL)

fractional-order derivative.GL is the first definition proposed for differentiation of

noninteger order[43, 44]. Let us consider a real function f(t)(t ∈ [0, b]). The func-

tion is said to be in the space Cµ, µ ∈ R if there exists a real number p(> µ),

such that f(t) = tpf1(t), where f1(t) ∈ C[a,∞), and it is said to be in the space

Cn
µ if and only if f (n) ∈ Cµ, n ∈ N We now express the nth order derivative (n is

an integer) of the casual function f(t) (i.e., f(t) = 0, t < 0) in terms of backward

difference formula: GL fractional-order derivative equations:

dnf(t)

dtn
∼=
∇nf(t)

hn
= h−n

N∑
i=0

(−1)i

 n

i

 f(t− ih)

 (3.1)

22
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where

 n

i

 = n!
i!(n−i)! , h = (b−a)/N,N is the total number of equidistant nodes

in the interval [0, b]. Equation (3.1) is the discretized form of nth order derivative

of the function, f(t). Because

 n

i

 becomes zero for all values of i greater than

n, the upper limit of summation in this definition can be increased to infinity.

Rewrite Equation the above equation as follows

GL
0 Dn

t f(t) ∼= h−n
∞∑
i=0

(−1)i

 n

i

 f(t− ih)

 , D =
d

dt
. (3.2)

The following definition for the Grunwald-Letnikov fractional-order derivative can

be obtained by putting α in place of n in Equation (3.2).

GL
0 Dα

t f(t) ∼= h−α
∞∑
i=0

(−1)i

 α

i

 f(t− ih)

 (3.3)

When the sign of α is negative, Equation above) turns out to be a fractional order

integral. The integral transform definition of GL fractional-order derivative is

GL
0 Da

t f(t) =
n−1∑
k=0

f (k)(0)t−α+k

Γ(−α + k + 1)
+

1

Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ)dτ (3.4)

where n− 1 ≤ α < n, n ∈ Z+, t > 0

The reason why the fractional-order derivative possesses nonlocal property is that

the term

 α

i

 in Equation (3.3) will never become zero; that is, determining the

fractional-order derivative of any function requires its entire history. Therefore, it

needs infinite memory and thus is more suitable to explain long memory processes

mathematically. It is worth mentioning here that classical calculus is a particular

case of the fractional calculus. The GL fractional-order derivative in Equation (3.4)

is the left fractional-order derivative, because the lower terminal of the fractional

integral is fixed at the left end of the interval [0, b] and the upper terminal moves

in the interval. If the upper terminal of the fractional integral in Equation (3.4)

is fixed at the right end of the interval [0, b] and the lower terminal is moving,
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then the GL fractional derivative is called the right fractional derivative. For the

current purpose, we may assume that, the independent variable t is time and the

function f(t) describes the dynamic behavior of a process. If τ < t(t is the current

instant), then the past of this process can be described by the state f(τ) . If τ > t,

then the state f(τ)belongs to the future of the process[43, 44].

3.2 Riemann-Liouville (RL) Fractional-Order In-

tegral

Cauchy’s formula for repeated integration, which reduces n-fold integration of

function f(t) to single integral, is:

f−n(t) = 0J
n
t f(t) =

1

(n− i)!

∫ t

0

(t− x)n−1f(x)dx (3.5)

where n is a positive integer.

0J
n
t f(t) =

1

Γ(n)

∫ t

0

(t− x)n−1f(x)dx (3.6)

where Γ(n) is a well-known Euler’s Gamma function: Γ(n) =
∫∞

0
e−xxn−1dx.

the above Equation permits us to replace n with α to obtain a fractional-order

integral:

0J
α
t f(t) =

1

Γ(α)

∫ t

0

(t− x)α−1f(x)dx (3.7)
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3.3 Riemann-Liouville (RL) Fractional-Order Deriva-

tive

The left Riemann-Liouville (RL) fractional-order derivative of function f(t) is

defined as

RL
0 Dα

t f(t) = DnJn−αf(t) =
1

Γ(m− α)

dn

dtn

∫ t

0

(t− τ)n−α−1f(τ)dτ, t > 0 (3.8)

where α is a noninteger that satisfies the relation n−1 < α ≤ n, n ∈ Z+ The right

Riemann-Liouville fractional-order derivative is

RL
0 Dα

t f(t) = DnJn−αf(t) =
1

Γ(n− α)

dn

dtn

∫ b

t

(t− τ)n−α−1f(τ)dτ, t < b (3.9)

3.4 Caputo Fractional Derivative

Riemann-Liouville fractional differential equations lack widespread physical ap-

plications because of the need for fractional-order initial conditions. To enable

fractional calculus concepts to be applied in different applied branches of science

and technology [43, 44], Caputo modified Equation (3.9) as shown in the following

definition. The left Caputo fractional-order derivative is

c
0D

a
t f(t) = Jn−αfn(t) =

1

Γ(n− α)

∫ t

0

(t− τ)n−α−1fn(τ)dτ, t > 0 (3.10)

and the right Caputo fractional derivative is

c
0D

a
t f(t) = Jn−αfn(t) =

1

Γ(n− α)

∫ b

t

(t− τ)n−α−1fn(τ)dτ, t < b (3.11)



Chapter 3. Fractional Calculus 26

3.5 Properties of GL,RL and Caputo Fractional

Order Derivative

Some useful properties of fractional-order operators that we shall use in the fol-

lowing chapters are provided here[43, 44].For

f(t) ∈ Cµ, µ > −1andn− 1 ≤ α < n, p− 1 ≤ β < p, p, n, q ∈ Z+, α, β ∈ R+ :

property 1 semi group and commutative property.

0J
α
t0J

β
t f(t) = 0J

β
t0J

a
t f(t) = 0J

α+β
t f(t) (3.12)

property 2 Consistency property with the integer order integral.

lim
a→n

(0J
a
t f(t)) = 0J

n
t f(t) (3.13)

property 3 C is a constant.

GL
0 Dα

t c = (ct−α) /Γ(1− α)

RL
0 Dα

t c = (ct−α) /Γ(1− α)

C
0 D

α
t c = 0.

(3.14)

property 4

c
0D

a
t f(t) = RL

0 Da
t

(
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

)
(3.15)

property 5
c
0D

α
t0J

α
t f(t) = RL

0 Da
t0J

α
t f(t) = f(t)

0J
αC
t0 Da

t f(t) = f(t)−
∑n−1

k=0
tk

k!
f (k)(0)

(3.16)

property 6
c
0D

α
t (0D

q
t f(t)) = 0D

q
t (c0D

α
t f(t)) = c

0D
a+q
t f(t)

f (s)(0) = 0, s = n, n+ 1, . . . , q
(3.17)
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3.6 Mittag-Leffler Function

The following one-parameter Mittag-Leffler function, introduced by Mittag Leffler

is an essential function used in modelling physical processes with the help of the

fractional calculus concepts:

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
. (3.18)

The classical exponential function can be acquired from Equation (3.18) if α = 1.

The two-parameter Mittag-Leffler function, which is equally important as Equa-

tion (3.18) in fractional calculus, is given in (3.19) equation[43, 44].

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α, β > 0 (3.19)

3.7 Fractional Order Controller Design

Fractional order systems have no state variables, but it is possible to obtain for

them representations similar to those that use the state variables of integer sys-

tems. This section addresses first the general case of multiple input, multiple-

output (MIMO) systems , and then the particular case of single-input, single-

output (SISO) systems. This represent the fractional-order SEPIC converter

model by fractional calculus.Where α is the fractional order with 0 < α < 1

,x1(t)), x2(t)),x3(t)) and x4(t)) are the state variables of the fractional-order sys-

tem (3.21), a, b, d, f and g are system parameters[44]. The conventional SEPIC

converter describe by

0Dtx1(t) = avin − a(1− u)(x3 + x4)

0Dtx2(t) = bx3u− b(1− u)(x4)

0Dtx3(t) = f(1− u)x1 − fu(x2)

0Dtx4(t) = d(1− u)(x1 + x2)− g(x4)

(3.20)
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Table 3.1: Description for Variables

No. Variables Definitions

1 x1(t) input current

2 x2(t) second inductor current

3 x3(t) first capacitor voltage

4 x4(t) output voltage

5 x1r difference of x4 and x4d

6 xr input current reference

7 x4d output voltage reference

8 xrd derivative of input current reference

9 u(t) Controller

Figure 3.1: General Bock diagram for Proposed System

The SEPIC converter fractional-order system is defined as (3.21) with the simulink

model in (3.2)

0D
α
t x1(t) = avin − a(1− u)(x3 + x4)

0D
α
t x2(t) = bx3u− b(1− u)(x4)

0D
α
t x3(t) = f(1− u)x1 − fu(x2)

0D
α
t x4(t) = d(1− u)(x1 + x2)− g(x4)

(3.21)

The pseudo state space equation in (3.21) is modeled after the different aspects
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Figure 3.2: The Model FOSEPIC

mentioned in [44, 45]. The output voltage is controlled indirectly by controlling

the input inductor current through x1 state variable. In order to achieve such

control, the sliding surface function given in (3.22)

s(t) = x1 − xr (3.22)

where xr denotes the reference of x1 state variable and use the method presented

in [26], the inductor current reference can be generated by using a proportional-

integral (PI) controller without employing compensation term (3.23)

xr = −λx1r − ε
∫ t

0

x1rdt (3.23)

where λ and ε are the proportional and integral gains, respectively. The derivative

of equation (3.23)can be written as

Dxr = −λDx1r − εx1r (3.24)

Change equation (3.24) into equation (3.25) by using properties of fractional cal-

culus in (3.16)

DαD−αDxr = −λDx1r − εx1r (3.25)
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where D = D1

DαD1−αxr = −λDx1r − εx1r (3.26)

Apply the Dα−1 operator on both sides to obtain equation (3.27)

Dαxr = λDα−1Dx1r − εDα−1x1r (3.27)

Now using properties defined in equation(3.15) of fractional calculus we obtain the

following result

Dαxr = λDαx1r − εDα−1x1r (3.28)

Substitute equation (3.29) into the equation (3.28) and to obtain equation (3.30)

x1r = x4 − x4d (3.29)

where x4d denotes the reference of x4 state variable and x1r denotes the difference

between x4 state variable and x4d denotes the reference [26].

Dαxr = −λDαx4 + λDαx4d − εDα−1x4 + εDα−1x4d (3.30)

Apply the Dα operator to both sides of equation (3.22)

Dαs = Dαx1 −Dαxr (3.31)

Substitute equation (3.30) into the equation (3.31)

Dαs = Dαx1 + λDαx4 − λDαx4d + εDα−1x4 − εDα−1x4d (3.32)

Equation (3.32) represent the sliding surface on which the controller slide according

to predefined definition of sliding surface. In the following section we will check

the stability of this sliding surface.
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3.7.1 Check Stability of the Sliding Dynamics

Theorem 3.1 [1] If x = 0 is the equilibrium point of the system t0
CDα

t x(t) =

f(t, x), f is Lipschitz by a constant L and is piecewise continuous with respect to

t, then the solution of the system satisfies ‖x(t)‖≤ ‖x (t0)‖Eα (L (t− t0)α),(3.18)

where α ∈ (0, 1).

Definition 3.1 [1] The solution of t0D
α
t x(t) = f(t, x) is said to be Mittag-Leffler

stable if

‖x(t)‖≤ {m [x (t0)]Eα (−λ (t− t0)α)}b

where Eα(z) =
∑∞

k=0
zk

Γ(kα+1)
, t0 is the initial time α ∈ (0, 1), λ > 0, b > 0,m(0) =

0,m(x) ≥ 0, and m(x) is locally Lipschitz on x ∈ B ∈ Rn with Lipschitz constant

m0. The system output is forced to track this surface with the help of a reaching

law. The reaching law designed in such a way that it guarantees the stability of the

closed loop system. Generally, four reaching laws are widely used and have been

reported in the literature namely exponential, constant rate,general and power

rate laws[46]. In the present work, exponential law as given in equation (3.33) is

utilized. According to this law,

0D
α
t s = −γ sign(s)− ρs (3.33)

where s ∈ R, ρ > 0, γ > 0. For proving the stability of (3.33), choose a Lyapunov

candidate function V = s2. According to the Leibniz rule of fractional differen-

tiation in equation (3.34), the α th-order time derivative of V can be given in

equation (3.35).

aD
α
t (φ(t)f(t)) =

∞∑
r=0

 α

r

φ(r)(t)aD
α−r
t f(t) (3.34)
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if φ(t) and f(t) and all their derivatives are continuous in the interval [a, t]

V α = s(−γ sgn(s)− ρs) + ∆

= −γs(sgn(s))− ρs2 + β|s|2

= −γs(sgn(s))− (ρ− β)|s|2
(3.35)

where ∆ [1] is given by

∆ :=
∞∑
r=1

Γ(1 + α)

Γ(1 + r)Γ(1− r + α)
0D

α
t s0D

α−r
t s (3.36)

|∆|:=

∣∣∣∣∣
∞∑
r=1

Γ(1 + α)

Γ(1 + r)Γ(1− r + α)
0D

α
t s0D

α−r
t s

∣∣∣∣∣ ≤ β|s|2 (3.37)

0D
α
t V = s(−γ sign(s)− ρs) + ∆ = −γ|s|−ρs+ ∆. (3.38)

According to equation (3.35),0D
α
t V ≤ 0,Where ρ ≥ β and this proves that the

system given by (3.33) is Mittag-Leffler stable, which implies that the trajectories

in the phase space are attracted by the subspace (manifold) described by s = 0.

Depends on all the concept we dealt at the top now ,in the following we are going

to find controller for fractional order SEPIC converter in equation(3.21). Equate

equation (3.21) with the equation (3.33) we obtain equation (3.39)

Dαx1 + λDαx4 − λDαx4d + εDα−1x4 − εDα−1x4d = −γsign(s(t))− ρs(t) (3.39)

From equation (3.21) the fractional order state space the 0D
α
t x1(t)

Dα
t x1(t) = avin − a(1− u(t))(x3 + x4) (3.40)

By substituting equation (3.40) into (3.39) and solve for u(t) which means the

control law of fractional order sliding mode control obtained (3.41) [46].

u(t) = 1−[
avin + λDα

t x4(t) + εDα−1
t x4(t) + γsign(s(t)) + ρs(t)− λ0D

α
t x4d(t)− ε0Dα−1

t x4d(t)

a(x3(t) + x4(t))
]

(3.41)

The controller work for both fractional order SEPIC coverter and conventional
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Figure 3.3: Controller Model.

SEPIC , depends on the value of α. This means , when 0 < α < 1 use equation

(3.41) as fractional order slide mode and if α = 1, it works as conventional slide

mode controller and the SIMULINK mode of this controller in (3.3)



Chapter 4

Result and Discussion

4.1 Simulation Results and Discussion

In this section, simulation results of modeled system is presented to illustrate

the effectiveness of the proposed fractional-order SMC-based sliding-mode control

scheme for the fractional-order nonlinear system. The theoretical considerations

are verified by simulations. The proposed fractional order sliding mode control

strategy simulated using MATLAB/SIMULINK program in fig.4.1. The perfor-

Figure 4.1: Overall System Model

mance of the proposed control method is tested in terms of voltage regulation

34
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ability for four parameters. These are: variable input voltage, variable controller

order, variable system orders and different load conditions. The system and con-

trol parameters used in [26] are used here, the simulation parameters are given in

Table 4.1

Table 4.1: Parameters Used to Evaluate the Model

No. Parameters values used

1 input voltage(vin) 30V and 60V

2 Capacitors(C1, C2) 330µF

3 Inductors(L1, L2) 800µH

4 (vref ) 48V

5 Proportional and integral gains(λ, ε) .25 and 10

6 load1 (RL1) 50Ω

7 load2 (RL2) 33.33Ω

8 input voltages 30V,60V

4.1.1 Steady-State Performance

Fig.4.2 show the steady-state results of input voltage (vin), output voltage (vout),

and inductor currents (iL1 and iL2) under RL = 50Ω in the buck and boost modes.

It is clear from Fig.4.2 (a) and (c) that the output voltage is 48V which means

that the controller regulates the output voltage at its reference and the inductors

current in Fig.4.2 (b) and (d), for boost and buck mode of operation respectively.

In addition, the converter with the proposed control method successfully operates

both in buck and in boost modes as shown in Fig.4.2. Fractional order sliding

mode controller for FOSEPIC converter at steady-state responses of the input

voltage, output voltage, and inductor currents under RL = 50Ω.
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Figure 4.2: Steady-State Performance for FOSEPIC Converter

(a) Output voltage for boost mode (c) Output voltage for buck mode,
(b)Inductors current for boost mode (d) Inductors current buck mode

Figure 4.3: FOSEPIC Converter Sliding Surface and FOSMC

(a)FOSMC for boost mode (b) Sliding surface for boost mode, (c)FOSMC for
buck mode (d) sliding surface buck mode
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4.1.2 Performance Under Input Voltage Variations

Fig.4.4 show the dynamic responses of iL1 and iout currents for a change in (vin)

under Vref = 48V and RL = 50Ω. The results presented correspond to the input

voltage variation from 60V to 30V and from 30V to 60V. Initially, the converter

operates in the buck mode for (vin)=60V. However, when the input voltage is

changed from 60V to 30V, the operation mode of the converter is changed from

buck mode to boost mode. Similarly, when the input voltage is changed from 30V

to 60V, the converter’s operation is changed from boost mode to buck mode. In

these operating mode changes, the input current is also changed accordingly so

that the power delivered to the load is unchanged as seen on Fig.4.5 for boost

and buck mode operation. It can be noticed that the output voltage regulate its

reference successfully at 48V in both operating modes. Fig. 4.4 there exist small

Figure 4.4: Input and Output Current for FOSEPIC Converter

(a)Input and Output Current for Boost Mode of Operation (b) Input and
Output Current for Buck Mode of Operation

undesired ripples on the output current which occur due to the noise disturbance

in the system. Clearly, the output voltage is regulated at 48V in both operat-

ing modes.Again, in order to maintain the load power against this input voltage



Chapter 5. Result and Discussion 38

Figure 4.5: Input and Output Current for FOSEPIC Converter

(a)Output and Input Power for Boost Mode of Operation (b)Output and Input
Power for Buck Mode of Operation

variations, the input power should also be changed which is possible if the input

current is changed.

4.1.3 Performance under Load Variations

The performance of the proposed control strategy is also tested under 50 to 70

percent load variations. Fig.4.6 show the dynamic responses of output voltage for

an abrupt change in the load resistance when Vref= 48V. The load change was from

50Ω to 33.33Ω and from 33.33Ω to 50Ω . Fig.4.6 and Fig.4.7 show the dynamic

responses due these load changes when the converter operates in both boost mode

and buck mode respectively. As can be seen clearly, the output voltage is almost

not affected from these load changes. This means that the proposed controller

is able to regulate the output voltage under load variations. Again, it can be

seen that, except for the small overshoot and undershoot occurring during the

transient period, the output voltage is not affected from the load changes. Under

load variation the two operating modes act different with reference to peak to
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Figure 4.6: FOSEPIC Converter Under Load Variations for Boost Mode of
Operation

Figure 4.7: FOSEPIC Converter Under Load Variations for Buck Mode of
Operation
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peak voltage output. The boost mode has lower peak to peak values and the buck

mode has higher peak to peak values. Further, the response has high peak to

peak values for the output voltage as well as the output current. This is evident

from tables 4.2 and 4.3 for boost and buck mode of operation respectively . Load

variation for the boost mode for load resistance in the range 1Ω to 3kΩ and for

buck mode in the range 1Ω to 58Ω showed consistent result for the FOSEPIC of

orders (0.25, 0.35, 0.52, 0.65) for regulation around a Vref= 48V. variation of load

Table 4.2: Relationship between load variation and Peak to Peak Output Voltage
for FOSEPIC Converter (Boost Mode Operation)

Load(R) 10 16 25 50 100 120 140 160

Vmax 48.09 48.11 48.16 48.45 48.2 48.23 48.23 48.24

Vmin 47.93 47.71 47.88 47.83 47.79 47.78 47.77 46.97

Vpp 0.1595 0.2053 0.3042 0.3524 0.4313 0.4485 0.46 0.4677

Where V ∗max =maximum output voltage V ∗∗min=minimum output voltage
V ∗∗∗pp =peak to peak voltage

Table 4.3: Relationship between load variation and Peak to Peak Out-
put Voltage for FOSEPIC Converter (Buck Mode Operation)

Load(R) 1 10 16 25 50 55 58

Vmax 48.11 48.41 48.5 48.59 48.58 48.6 48.67

Vmin 47.96 47.71 47.52 47.42 47.25 47.24 47.16

Vpp 0.1561 0.7002 0.9776 1.169 1.333 1.36 1.512

Where V ∗max =maximum output voltage V ∗∗min=minimum output
voltage V ∗∗∗pp =peak to peak voltage

by using order of the Fractional SEPIC converter (0.25, 0.35, 0.52, 0.65) on voltage

regulation and tracking the reference voltage Vref = 48V



Chapter 5. Result and Discussion 41

4.1.4 Output Voltage Variation under Orders Variation of

the plant and the Controller

4.1.4.1 Under Orders Variation of the Plant

Under variation of plant orders, for FOSMC order given by (0.35), with the refer-

ence voltage Vref = 48V and it regulates the output voltage successfully as shown

in fig.4.8

Figure 4.8: Output Voltage under Variation of FOSEPIC Orders

(a)[Yellow] (0.6, 0.28, 0.4, 0.9) Combination1 (b)[Magenta] (0.9, 0.5, 0.4, 0.9)
Combination2 (c)[Green] (0.17, 0.25, 0.35, 0.69) Combination3 (d)[Red]

(0.75, 0.5, 0.2, 0.85) Combination4

4.1.4.2 Under Variation of Controller Order

Under variation of controller order, for FOSEPIC converter orders given by (0.25, 0.35, 0.52, 0.65),

with the reference voltage Vref = 48V the peak to peak values increase as the order
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of controller increases. This is shown in tables 4.4 and 4.5, respectively for boost

and buck mode of operation.

Table 4.4: Relationship between Order of the Controller and Peak to Peak Output
Voltage for FOSEPIC Converter (Boost Mode Operation)

Order (α) 0.07 0.08 0.1 0.2 0.3 0.4 0.5 0.52

Vmax 48.08 48.08 48.08 48.08 48.09 48.09 48.09 48.12

Vmin 47.91 47.92 47.92 47.93 47.93 47.93 47.93 47.95

Vpp 0.1547 0.1582 0.1585 0.1585 0.1591 0.159 0.1642 0.1691

Where V ∗max =maximum output voltage V ∗∗min=minimum output voltage
V ∗∗∗pp =peak to peak voltage

Figure 4.9: Relationship between Order of the Controller and Peak to Peak
Output Voltage for FOSEPIC Converter (Boost Mode Operation)

(a) Variation of Order Effect on Peak to Peak output Voltage (b)Sensitivity of
the Variation of Order Effect on Peak to Peak output Voltage
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Table 4.5: Relationship between Order of the Controller and Peak to
Peak Output Voltage for FOSEPIC Converter (Buck Mode Operation)

Order(α) 0.07 0.08 0.1 0.2 0.3 0.4 0.5

Vmax 48.4 48.41 48.4 48.41 48.41 48.41 48.41

Vmin 47.71 47.71 47.71 47.71 47.71 47.71 47.7

Vpp 0.6956 0.695 0.6958 0.696 0.699 0.7042 0.7092

Where V ∗max =maximum output voltage V ∗∗min=minimum output
voltage V ∗∗∗pp =peak to peak voltage

4.1.5 Comparison of FOSMC and SMC for FOSEPIC con-

verter

Under FOSEPIC orders of (0.25, 0.35, 0.52, 0.65) with two different controllers, as

show in fig 4.12 (boost mode), the oscillation effect is removed with FOSMC for

FOSEPIC and SMC for SEPIC. The same is true for buck mode operation as

shown in fig.4.13. fig 4.12(a) and 4.13(a) show that FOSMC and SMC can track

the reference voltage well for boost and buck modes respectively.
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Figure 4.10: Comparison Output Voltage of SEPIC and FOSEPIC converter
with FOMSC and IOSMC for Buck Mode Operation

(a)[Red] FOSMC with FOM (b)[Blue] IOSMC with IOM(c)[Black] FOSMC with
IOM (d)[Magenta] IOSMC with FOM

Figure 4.11: Comparison Output Voltage of SEPIC and FOSEPIC converter
with FOMSC and IOSMC for Boost Mode Operation

(a)[Red] FOSMC with FOM (b)[Blue] IOSMC with IOM(c)[Black] FOSMC with

IOM (d)[Magenta] IOSMC with FOM
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In Fig 4.12 , one can see that there are some oscillations in the output voltage

which occur during comparison between FOSMC and SMC.

Figure 4.12: Comparison of Fractional and Integer SMC’s for FOSEPIC Con-
verter Under Boost Mode

(a) Output Voltage FOSMC and SMC.(b) Input current for FOSMC and
SMC.(c) Output inductor current for FOSMC and SMC.(d) Output Current for

FOSMC and SMC

Figure 4.13: Comparison of Fractional and Integer SMC’s for FOSEPIC Con-
verter Under Buck Mode

(a) Output Voltage FOSMC and SMC.(b) Input current for FOSMC and

SMC.(c) Output inductor current for FOSMC and SMC.(d) Output Current for

FOSMC and SMC
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Such undesired oscillations do not occur in the output voltage obtained by the

proposed control method as shown Fig 4.12. Fig 4.12 shows the dynamic responses

of output voltage, input and output currents obtained with the SMC method.
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Conclusion and Recommendation

5.1 Conclusions

Fractional order sliding mode control with simplified (single state variable) sliding

surface function is proposed for DC-DC FOSEPIC converters. It is shown that

the output voltage control can be achieved indirectly by using the sliding surface

function based on the input inductor current error. The use of such sliding surface

function not only simplifies the simulation of the system, but also the mathemat-

ical modeling of fractional order sliding mode control. The performance of the

proposed strategy is cross checked under different mechanisms. The performance

of the proposed FOSMC method is tested using MATLAB/SIMULINK for two dif-

ferent operations, buck and boost modes, in terms of the voltage regulation ability

under two values of input voltage and different load resistances. The theoretical

considerations are validated by the simulation results. These results show that the

proposed FOSMC method offers advantages in terms of flexibility of design and

degrees of freedom.

47
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5.2 Recommendations

As recommendations for the future the following points:

• The sliding surface could be time varying

• Change sliding surface regulator from PI to PD to PID

• Build adaptive fractional order slide mode controller for more accuracy

• Conduct an experiment on the modeled system for validation and to imple-

ment it

• Automate the orders tuning process to identify the best combination



References

[1] B. Bandyopadhyay and S. Kamal, Stabilization and control of fractional order

systems: A sliding mode approach, vol. 317. 2015.

[2] N. Yang, C. Wu, R. Jia, and C. Liu, “Fractional-Order Terminal Sliding-Mode

Control for Buck DC/DC Converter,” Math. Probl. Eng., vol. 2016, 2016.

[3] O. Access, “Nyquist-Like Stability Criteria for Fractional-Order Linear Dy-

namical Systems,” .

[4] J. Qiu and Y. Ji, “Observer-Based Robust Controller Design for Nonlinear

Fractional-Order Uncertain Systems via LMI,” Math. Probl. Eng., vol. 2017,

2017.

[5] L. Liu and S. Zhang, “Robust fractional-order PID controller tuning based

on bode’s optimal loop shaping,” Complexity, vol. 2018, 2018.

[6] G. Liang and J. Hao, “Passive Synthesis of Immittance for Fractional-Order

Three-Element-Kind Circuit,” IEEE Access, vol. 7, pp. 58307–58313, 2019.

[7] X. Chen, Y. Chen, B. Zhang, and D. Qiu, “A Modeling and Analysis Method

for Fractional-Order DC-DC Converters,” IEEE Trans. Power Electron., vol.

32, no. 9, pp. 7034–7044, 2017.

[8] Y. Jiang, B. Zhang, and J. Zhou, “A fractional-order resonant wireless power

transfer system with inherently constant current output,” IEEE Access, vol.

8, pp. 23317–23323, 2020.

[9] R. I. Parovik, “Mathematical Models of Oscillators with Memory.”

49



References 50

[10] S. Damodaran, T. K. S. Kumar, and A. P. Sudheer, “Model-Matching

Fractional-Order Controller Design Using AGTM/AGMP Matching Tech-

nique for SISO/MIMO Linear Systems,” IEEE Access, vol. 7, no. c, pp.

41715–41728, 2019.

[11] H. Komijani, M. Masoumnezhad, M. M. Zanjireh, and M. Mir, “Robust Hy-

brid Fractional Order Proportional Derivative Sliding Mode Controller for

Robot Manipulator Based on Extended Grey Wolf Optimizer,” Robotica, pp.

1–12, 2019.

[12] R. Shalaby, M. El-Hossainy, and B. Abo-Zalam, “Fractional order modeling

and control for under-actuated inverted pendulum,” Commun. Nonlinear Sci.

Numer. Simul., vol. 74, pp. 97–121, 2019.

[13] A. Razminia and D. Baleanu, “Fractional order models of industrial pneu-

matic controllers,” Abstr. Appl. Anal., vol. 2014, 2014.
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