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Abstract

Cracks in shafts can be identified as a significant factor for limiting the safe and

reliable operation of machines. Engineers can predict faults using classical approaches.

However, when artificial intelligence approaches are used, the forecasting time for

crack diagnosis improves dramatically. The objective of this study is to detect the

location and depth of the crack in the shaft using a fuzzy logic algorithm. Literature

presents measurements of frequency, mode shape, and structural damping can be used

to assess cracks. However, evaluating mode shape and structural deformation is more

difficult than measuring frequency. Such criteria, however, are insufficiently sensitive

to detect early flaws. This study employs changes in phase angle and natural frequency

as crack indicators. To evaluate the natural frequencies and phase angles of the cracked

shaft utilizing the change in stiffness matrices of the cracked element, theoretical

calculations were performed using Matlab. To verify the theoretical values of natural

frequencies, modal analysis was performed using Ansys. Good agreement is observed

between the results. To detect the location and depth of the crack, the fuzzy logic

technique uses first and second mode natural frequencies and their corresponding phase

angles of the shaft as input parameters. The correlation coefficients for triangular,

trapezoidal, and Gaussian membership functions are all close to one. Also, the average

total errors of the three membership functions with the theoretical values are all less

than 5%. This indicates that results obtained from all membership functions are close

to the theoretical locations and depths of crack. So the proposed fuzzy logic technique

would constitute an efficient tool for real-time crack identification.

keywords: Crack identification, Natural frequency, Phase angle, Mode shape, Fuzzy

logic, Finite Element Analysis
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Chapter 1

Introduction

1.1 Background

For several decades, diagnosing cracks in rotating machinery has been a research

problem for industries. Such cracks can result in complete failure of the system,

resulting in significant downtime expenses. As a result, owners of important plant

machinery are especially interested in the early detection of symptoms that can lead to

machinery and equipment breakdown in the field [1].

Condition monitoring techniques are required for the safe and cost-effective operation

of rotor dynamic machinery. Because these techniques evaluate the health of machinery

on a regular or continuous basis to ensure that it continues to function properly [2, 3].

Condition monitoring in rotor dynamic systems is classified as either off-line or on-line

[4]. When the shaft has stopped rotating, offline condition monitoring is undertaken.

Visual examination, ultrasound procedures, static deflection testing, and other off-line

condition monitoring methods are all available. These off-line condition monitoring

approaches necessitate periodic inspection and repair, resulting in costly downtime.

On-line condition monitoring is carried out while the machine is in normal operation,

avoiding costly and time-consuming downtime [5]. On-line condition monitoring for

rotating machinery provides various advantages to the operator.

i. Rather than relying on regular periodic maintenance, repairs can be made as

needed. For large turbomachinery systems, such as power-generating steam tur-

1



1.1. Background 2

bines, the cost of periodic maintenance is frequently prohibitive.

ii. Online condition monitoring can give you a real-time diagnosis of the severity of

an issue. The operator can decide whether to continue operating the equipment or

fix it based on the severity of the malfunction.

iii. By giving a continuous evaluation of fault propagation, online condition monitor-

ing reduces the risk of abrupt failure.

In different engineering systems (steel structures, industrial machinery, aerospace

industry) rotary machines have several applications, such as engines and electrical

generators, hydraulic turbines, pumps, compressors, wellbore construction, and others.

Due to the loading, normal operations, accidents, and environmental effects they may

experience cracks, which drastically reduce the life cycle of the structural system [6].

In a typical facility, a variety of predictive maintenance approaches are employed to

monitor and analyze essential rotating machines and equipment. Visual inspection,

thermography, vibration analysis, tribology, process monitoring, ultrasonic, and others

are examples of non-destructive analysis techniques [7]. Because vibration analysis is

non-destructive and does not interfere with the machine’s normal operation, it is the

most popular predictive maintenance technique utilized with maintenance management

applications. Early crack detection plays an important role in the evaluation of rotary

machines that are driven by rotating shafts which constitute the main component (or

heart) of these high-performance rotating systems to ensure their safety.

Although shafts are carefully designed for fatigue loading and a high level of safety by

using high-quality materials and precise manufacturing techniques, disastrous failures

of rotors as a consequence of cracks still exist [6]. This is especially true in high-speed

rotating machinery where the shaft carries discs, blades, gears, and other components,

which are sources of generating mechanical stresses such as flexural, torsional, axial

radial, and shear forces during shaft rotation. As a result, the local stresses due to fa-

tigue cracks will increase and become more than the yield strength of the shaft material.

Therefore, it is important to constantly monitor the technical condition of a given ro-

tating machine and quickly react to possible changes resulting from developing failures.
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Over time, the depth of the crack propagates until it reaches a limiting value beyond

which the shaft cannot withstand the static and dynamic load anymore and a sudden

fracture of the shaft occurs. According to their orientation concerning the shaft axis,

there are three types of cracks. These are transverse cracks, longitudinal cracks, and

slant cracks. Transverse cracks are the most serious and most common defects in ro-

tating systems. They are perpendicular to the axis of a shaft. They reduce the cross-

sectional area of the shaft and produce serious damages to the shaft [8]. Cracks parallel

to the shaft’s axis are known as longitudinal cracks. They are relatively uncommon and

less serious. Slant cracks are cracks that appear at an angle to the axis of the shaft and

they occur less frequently compared to transverse cracks. This thesis aims to determine

the crack signature parameters and identify the location and depth of crack in shaft

using intelligent technique.

1.2 Statement of the Problem

Cracks in a shaft arise in different configurations and severity can be developed during

the operation of rotating machines. If a crack propagates continuously and is not de-

tected, abrupt failure may occur and finally lead to the plant shutdown with associated

various losses (enormous costs in downtime, equipment damage, and the risk of worker

injury). Hence, the presence of cracks should be identified well before it goes critical

and leads to an abrupt failure. Using classical methods, engineers can predict faults.

The visual inspection approach is the most commonly used way for collecting crack

details such as presence, position, and width, which can be used for maintenance. Even

though it is the most generally used method, it has several disadvantages, including

being costly, time-consuming, labor-intensive, and sometimes inaccurate due to a lack

of knowledge. So, there is a need for a very efficient and precise tool for identifying

crack locations that are extremely close to exact. Artificial intelligence techniques, as

opposed to other ways, are gaining a lot of traction in this respect due to their ease of

use, reliability, accuracy, and precision.
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1.3 Objectives of the Study

1.3.1 General objective

The general objective of this study is to detect the location and depth of crack in the

rotating shaft using the Fuzzy Logic (FL) technique.

1.3.2 Specific objectives

• To model the uncracked and cracked shaft theoretically. In all these theoretical

approaches transverse crack has been analyzed.

• To develop three-dimensional models of the shaft using Solidwork premium.

• To obtain modal natural frequencies and corresponding mode shapes using Mat-

lab and Ansys workbenches.

• To determine fuzzy sets and membership functions.

• The data obtained from the theoretical analysis have been trained to the fuzzy

controller for designing the rule base for the detection of crack depth and crack

location.

1.4 Motivation

Because of the frequent disaster of such rotors in engineering applications, vibration

analysis of the rotor has been given high importance in the field of vibration. To

avoid sudden and unexpected failure of the rotor systems, the development of health

monitoring tools is critical. Shafts with cracks, defects, or damage pose a major threat

to the system’s current and future performance. The presence of faults on structures

and rotating machine elements in case of cyclic loading may cause severe abrupt

failure and finally lead to the plant shutdown with associated various losses. So, to

overcome these losses and sustain structural stability, early diagnosing and localization

of defects is required. Researchers, engineers, and scientists have produced a variety of

procedures, analyses, and experiments that provide aspiration and support for new re-
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search. The existence of cracks in structures degrades their behaviour to a certain extent.

Various scholars have devised several ways for identifying structural faults. The ma-

jority of technologies (magnetic particle testing, gamma radiation, X-ray testing, ul-

trasonic testing, and so on) are confined to local damage detection, are less sensitive,

and are therefore more expensive. Vibration-based damage detection techniques, on the

other hand, are global in scope and extremely sensitive. One of the requirements for

fault diagnosis of structures is a change in dynamic behavior caused by a crack. Thus

an effort has been given to formulate some intelligent techniques for localization and

identification of cracks in rotor shafts, which is the FL algorithm.

1.5 Significance of the Study

The cracks are the main source of hazardous failure both in static and dynamic condi-

tions. As a result, early detection of a rotor crack could help to prevent serious damage

and costly repairs caused by rotating machinery failure, as well as ensure worker safety.

Thus it is very crucial to develop an online crack detection mechanism, like Artificial

Intelligence (AI) techniques by considering essential parameters. Because these tech-

niques are non-destructive.

1.6 Scope of the Study

The scope of this thesis is constructed to establish a new methodology that predicts

the crack location and the crack depth of the shaft with considerably less computa-

tional time and high precision. This study includes the theoretical and FE modelling

of both the cracked and the uncracked shafts, determining the responses of crack sig-

nature parameters using Matlab and Ansys simulation environments, and training the

crack signature parameters for identification of crack (knowing the location and depth

of crack) using FL technique.
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1.7 Contribution of the Thesis

The contributions that have been achieved in this study are listed below.

i. It is known that changes in a shaft’s natural frequencies caused by the presence of

a crack are quite minor. As a result, crack identification should not rely solely on

changes in natural frequency. This study, however, presents a method for overcom-

ing this challenge that employs changes in phase angle and natural frequency as

crack indicators. To identify and locate a crack, the method analyzes crack signa-

tures such as changes in natural frequency and phase angle.

ii. The idea of change in natural frequency and change in phase angle has been im-

plemented theoretically on turbine rotating shafts. The numerical simulations from

Ansys show that the dynamics of cracked shafts have an impact on change in nat-

ural frequency. The numerical simulations from Matlab show that the dynamics of

cracked shafts have a significant impact on change in phase angle and change in

natural frequency and all this enables the developed approach for identification of

cracks in shafts.

iii. The FL method using three different membership functions was developed for the

location and identification of cracks in rotating turbine shafts.

1.8 Organization of the Thesis

The entire research work is organized into seven chapters.

The theoretical background, statement of the problem, general and specific objectives,

motivation of the study, and scope of the study are clearly defined in chapter one.

Following Chapter one, the previous works related to this study, the historical outlooks

of crack identification methods, and their comparative advantage are reviewed in

Chapter two. In Chapter Three, the background of basic theoretical principles and

mathematical model of the uncracked and cracked turbine shaft is defined. Chapter

four deals with the Ansys based modal analysis of both cracked and intact shafts.
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In Chapter Five, the identification of the crack location and crack depth using the FL

algorithm is defined. Chapter six deals with results and discussion obtained from the

forward and backward methods. The forward methods are theoretical methods (using

Matlab and Ansys) used to determine the crack signature parameters, and backward

methods are methods used to identify the location and depth of crack using crack sig-

nature parameters. Also, the application of the fuzzy logic technique is defined in this

chapter. Lastly, Chapter seven deals with general conclusions as well as recommen-

dations for further research. Reference and Appendix are mentioned at the end of the

document.



Chapter 2

Literature Review

2.1 Introduction

Currently, crack detection is one of the most important areas of research. Many schol-

ars have conducted considerable researches throughout the years to create structural

integrity monitoring tools to avert failure caused by cracks. Most of the researchers are

doing their research work related to crack detection using various techniques.

2.2 Analysis of Different Methodologies for Crack Iden-

tification in Shaft

2.2.1 Vibration based methods for crack identification

The vibration-based method is included prominently in the published literature on

crack diagnosis and identification. These techniques can be further sub-classified into

signal-based and model-based approaches. Signal-based approaches use typical vibra-

tion monitoring equipment (such as proximity probes, phase reference, and spectrum

analyzers) with or without extra systems (such as torsional vibration measurement)

[9, 10]. Model-based methods simulate the behavior of cracked shafts during operation

by using analytical or numerical models. These methods attempt to correlate the

vibration signature with the occurrence of a crack at certain points on the shaft [11–13].

To create a damage detection method, Cerri et al. [14] offered a theoretical study for

the vibration-based examination of a circular arch in both faulty and non-faulty models.

8
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For validation, they compared the theoretical analysis results with the results of the ex-

perimental analysis. They developed a damage detection model based on mode shapes

and natural frequencies, assuming that the arch acts as a torsion spring on the fractured

part. Wang et al. [12] investigated the vibration and stability analysis of a bearing-rotor

system with transverse breathing crack and initial bending. They showed how early

bending causes changes in breathing functions for the transverse breathing crack, and

how replacing the approximate crack segment with an accurate region improves the

calculation of the time-varying Finite Element (FE) stiffness matrix of the cracked shaft.

The diagnostic value of orbit shape analysis and its use to improve machine problem

detection were investigated by Bachschmid et al. [9]. In their study, the full-spectrum

analysis of rotating machine vibrations is a diagnostic instrument that may detect the

signs of certain faults. The Shape and Directivity Index (SDI) of journal filtered orbits

is a diagnostic measure that can be used in conjunction with full-spectrum analysis.

Prasad et al. [10] proposed the principal component analysis method for detection

and localization of fatigue-induced transverse crack in shaft. Accelerated fatigue

experiments using a customized setup are used to accomplish their research. Different

vibration and strain sensor data were used in this investigation to extract time- and

frequency-domain statistical characteristics. The vibration-based statistical features,

which are sensitive to shaft transverse cracks, are presented in their article for various

sensor kinds and mounting locations.

Abu-Mahfouz and Banerjee [15] demonstrated a novel procedure for crack detection

and identification in a beam by using vibration signals and fuzzy clustering with an

experimental setup. An electromagnetic shaker operated by an arbitrary function

generator introduces excitation to the beam near its fixed end. Statistical moments,

frequency spectra, and wavelet coefficients are used to examine the vibration signals for

beam dynamic characteristics. These are then used as features in the fuzzy relational

clustering process to split the data.

Both theoretically and experimentally, Douka and Hadjileontiadis [16] examined the
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dynamic behavior of a cantilever beam with a breathing crack. Their primary goal is

to use time-frequency approaches instead of Fourier analysis to reveal the system’s

nonlinear behavior. The instantaneous frequency is calculated using empirical mode

decomposition and the Hilbert transform on both simulated and experimental response

data. The instantaneous frequency variation follows specific patterns and can thus be

used as a crack size indicator.

El-Mongy et al. [17] have presented the vibration analysis of a multi-fault transient

rotor passing through sub-critical resonances. This research investigates the vibrational

transient response of a cracked rotor in the presence of unbalance and coupling

misalignment. The goal of this research is to look into the possibilities, benefits, and

drawbacks of employing the sub-critical startup response to solve the fault identi-

fication problem. For different individual and multi-fault circumstances, numerical

simulations employing finite element modelling and experimental studies are carried

out.

By considering vibrations in the cross-section, Bovsunovskii [18] investigated the effect

of crack depth and position on the vibration behavior of the cantilever beam. The first

mode frequency of a cantilever beam with breathing crack (i.e. open and close crack)

owing to longitudinal and bending force is calculated using the Rayleigh method.

2.2.2 Finite Element Method used for crack detection

Finite Element Analysis (FEA) is a sort of numerical examination approach that

could be used to evaluate natural frequencies and mode shapes in 1D, 2D, and 3D

examinations. Different researchers have employed different finite element analysis

methodologies and software packages.

The dynamic behavior of a geared rotor-bearing system with a breathing crack was

studied by Han et al. [19]. They employed the Finite Element Method (FEM) to build

the slanted crack geared-rotor model, as well as the stress intensity factor based on

fracture mechanics to calculate the slant crack’s flexibility matrix. Hossain et al. [20]

designed an experimental test rig for the vibration study of a cantilever beam partially
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immersed in air and fluid medium, using a Polytech scanning vibrometer to quantify

the vibration response. They’ve also forecasted the dynamic response of the same

beam using the FEA method. The rheological properties of the viscous fluid are used to

compare changes in the vibration response of the beam, such as frequency, amplitude,

and resonance frequency.

The development of a FE approach and code for stability analysis of cracked function-

ally graded rotor-bearing systems in a thermal environment was presented by Gayen et

al. [21]. In their study, translational and rotating inertia, gyroscopic moments, bending

deformation, and material damping are all taken into account while modeling the

functionally graded shaft with two-noded Timoshenko beam components. Their result

shows that while the depth, locations, and orientation of cracks, as well as the material

damping and thermal gradient, all affect the stability threshold speed, the material

gradient index should be chosen carefully.

Using the finite element modeling of a rotor-bearing system, Sekhar [22] examined the

dynamic behavior of the rotor carrying a double transverse crack. He’s worked out how

fracture factors like the slenderness ratio affect stability and eigen-frequencies. Silania

et al. [23] investigated the dynamic behavior of a rotating shaft system with a breathing

crack using the vibration analysis method. The stiffness matrix of the cracked element

is computed using a modified integration approach. They used a FE formulation to

describe the breathing crack, and frequency or time-domain methods to determine the

rotor’s vibration characteristics with the breathing crack.

Using a Kriging surrogate model, Lu et al. [24] suggested a super-harmonic feature-

based updating technique for fracture detection in rotors. In their study for more

sensitive and accurate breathing crack diagnosis, the nonlinear characteristics of

breathing cracks from two places of the rotors are used instead of standard linear

damage parameters. A FEM of a two-disc rotor-bearing system with a response-

dependent breathing crack is also constructed, and experiments are partially confirmed.

The relation between cracks and dynamic property changes was used by Abdo and

Hori [25] to carry out numerical formulation fault detection in a structure. In this
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research, the damaged region was discovered using the rotational features of mode

shape. All of these investigations are conducted in the domain of finite element analysis.

Song et al. [26] created a new finite element model for three-dimensional FEA to

investigate the behavior of a structure exposed to high-speed trains. Their goal was to

improve FE models for use in railway bridge structural elements. Numerical samples

of a simply supported steel concrete and a box-girder bridge structure were used to

validate the derived finite element model.

Kim and Stubbs [27] developed a unique algorithm for fracture identification and

quantification in structures based on changes in modal properties. With the information

of pre and post-crack modal parameters, their technique was used to detect the crack

in a two-span continuous structure. Chondros et al. [28] investigated the transverse

vibration of a damaged beam with single and double edge open cracks using a

continuously damaged beam vibration theory.

Using the FEM, Fotouhi [29] investigated the vibration analysis of a uniform cantilever

beam with considerable deflection. For this investigation, he has established three goals.

The first goal was to describe the problem’s behavior as it transitioned from a linear to

a nonlinear problem, and the second goal was to develop the finite element code for

the problem. The third goal was to use a nonlinear dynamic analysis to explore the

stability of a specific evenness position. They calculated the forces, stresses, strains,

and time-varying displacements in the flexible beam as a result of different excitation

loads.

2.2.3 Wavelet and Finite Element Methods for crack identification

In addition to the classical approaches, wavelet and FEA have been used to detect

faults in cracked structures. This section describes a few of the research publications

from this domain. The sensitivity of the wavelet technique in the identification of

fractures in beam structures was researched and published by Quek et al. [30], taking

into consideration the effects of various crack kinds, boundary conditions, and wavelet

functions. Suh et al. [31] used a wavelet-based technique to investigate the non-linear
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dynamic behavior of a model-based rotor with a transverse crack, which is effective in

finding the mechanical chaotic response.

Loutridis et al. [32] developed a wavelet-based technique for detecting rapid changes

in the spatial variations of the dynamic response of cracked structures, which was

confirmed both analytically and experimentally. Using the FE approach of the B-spline

wavelet on the interval, Xiang et al. [33] suggested a novel way for identifying the

fracture size and position in the rotor using FEM of B-spline wavelet on the interval

(BSWI). They used the BSWI Rayleigh-Timosinko beam element and the BSWI

Rayleigh–Euler beam element to create the disc and slender shaft models, respectively.

Qian et al. [34] used stress intensity factors in a finite element model to locate cracks

in a damaged beam. This approach can also be used on complex structures that have

cracks.

Ma et al. [35] developed a new wavelet-based beam element approach for analyzing

difficult beams with irregular cross-sections and local loads. Using the Daubechies

scaling element functions, they devised a Wavelet-based beam element approach.

Gentile and Messina [36] suggested a continuous wavelet transform-based technique

for determining the position of open cracks in damaged beams by minimizing the

measurement data and the structure’s baseline information.

To recognize crack location and size in beams, Li et al. [37] presented a wavelet FEM.

They discretized the beam into a set of wavelet finite elements to accurately measure

the vibration response (i.e. natural frequency) of the beam with various fracture sizes

and locations.

2.2.4 Other approaches used for identification of crack

Sino et al. [38] investigated the dynamic behavior of a spinning composite shaft with

internal damping using vibration analysis. They calculated the natural frequency and

instability thresholds using a homogenized FE beam model that included internal

damping, as well as comparing the urbanized simplified homogenized beam theory to

the equivalent beam modulus theory. Stoisser and Audebert [39] proposed a theoretical
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three-dimensional beam model with transverse crack, as well as a numerical and

experimental method for crack identification in power plant rotational machinery.

The effect of a transverse crack in an orbital position of a cracked rotating shaft was

investigated by Gomez et al. [40]. Shulzhenko and Ovcharova [41] gave a numerical

investigation of the vibrational effects of a rotor’s elastic axis braking with a transverse

crack. Wang et al. [42] used the thin-walled structure theory to analyze the vibrations

of a horizontal axis wind turbine. The forced response analysis is used to evaluate the

stress-displacement field, dynamic displacement, and stress distribution of the wind

tower blade rotor.

For identifying the crack depth and location in a rotor carrying a transverse crack,

Dong et al. [43] suggested a wavelet finite element model and a high precision model

parameter identification approach. Simultaneously, a novel method based on Laplace

wavelets and empirical mode decomposition is being developed to get high precision

model parameters, which will be used to improve crack recognition accuracy.

Experimental measurements of the natural frequencies and mode morphologies of re-

volving disk-blades-disk assemblies from a stationary frame were carried out by Presas

et al. [44]. Experiments were carried out in this study to change the rotating speed of

a disk-blade-disk assembly and to excite the spinning frame’s first natural frequencies.

Piezoelectric (PZT) patches from the revolving frame and a Laser Doppler Vibrometer

are used to excite and measure the rotating structure (LDV). To explain the experimen-

tal results acquired from the stationary frame, a method to break down the structure’s

diametrical mode shapes into simple diametrical components (which determine the di-

ametral mode shapes) was developed.

2.2.5 Artificial intelligence techniques based methods for crack de-

tection

AI is defined as a machine’s ability to mimic intelligent human behavior, to approximate

traditionally defiant problems using human-inspired algorithms. AI techniques are an

attempt to develop computer-based methods that could act like humans. They can have
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the ability to execute tasks, learn languages, and imitate human expertise and decision-

making.

Genetic Algorithm based identification of crack

A Genetic Algorithm (GA) is a type of evolutionary algorithm that falls into a larger

category. It’s a method of locating a rough solution to optimization and search

problems.

Chou and Ghaboussi [45] developed a GA to solve an optimization issue for structural

deterioration detection. To avoid structure analysis in fitness estimates, GA calculated

deflections at unmeasured degrees of freedom. Peimani et al. [46] suggested a method

for fault diagnostics based on GA and a cracked structural model. An analytical model

of a cracked cantilever beam is used to represent the cracked-beam structure, and

natural frequencies are produced using numerical methods. The location and depth of

cracks in the cantilever beam are determined as an optimization problem, and genetic

algorithms are utilized to minimize the cost function to determine the best location and

depth. The experimental findings are also presented to validate the suggested approach

and explore the modelling and measurement errors.

Shopova et al. [47] used GA to tackle a variety of problems. The number of selection,

reproduction, and mutation parameters in the correspondence, genetic operators were

introduced in a common genetic algorithm problem. Identification of a crack in

beam using the frequency-based method and GA was studied by Mungla et al. [48].

Using single-input multi-output (SIMO) and Experimental Modal Analysis (EMA),

the natural frequencies of the cracked and uncracked beams are measured. The

frequency-based technique, as well as GA-based intelligent search for the same test

locations, are used to detect the fracture position and severity using the measured

frequencies of the beam with crack. The GA is used to locate the global minima of

a fitness function that is a function of the cracked beam’s measured and theoretical

frequencies.

Pawar and Ganguli [49] developed a structural health monitoring mechanism for online
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damage identification based on a genetic fuzzy system. For the fuzzy and genetic sys-

tems, they employed displacement and force-based measurement differences between

damaged and undamaged conditions to generate the rules and data pool, respectively.

The suggested technology was tested on composite rotor blades, with encouraging re-

sults.

Fuzzy Logic Method of crack identification

Fuzzy logic is a precise way to deal with uncertainty. Fuzzy inference is a method for

interpreting values in an input vector and assigning them to an output vector based on

a set of rules. To construct a fuzzy inference, rules must be used as inputs.

Based on FL and a Sugeno-style inference engine, Boutros and Liang [50] proposed

a simple, effective, and robust fuzzy index fusion solution. This method has been

successfully tested and validated in two different applications: milling tool condition

monitoring and bearing condition assessment. According to their testing findings, the

fused fuzzy index approach is sensitive to fault severity, capable of discriminating

damages generated by a similar failure at various bearing components, but not subject

to load variations.

According to Chandrashekhar and Ganguli [51], geometric and measurement uncer-

tainty causes significant problems in damage assessment, which can be mitigated by

utilizing FL-based technique for damage identification. Damage indicators are the

curvature damage factor of a tapered cantilever beam and the damage indicator changes

due to uncertainty in the geometric properties of the beam are studied using Monte

Carlo simulation (MCS). According to their result, the approach can accurately identify

both single and multiple cracks in the structure.

For model-based fault detection applications, Miguel and Blazquez [52] provide a

fuzzy logic-based decision-making module. Fuzzy rules rely on the concept of fault

possibility as well as knowledge of the residual equations’ sensitivity and the fault size

can be approximated with adequate accuracy using the experimental sensitivity values

of the residual equations.
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Sugumaran and Ramachandran [53] presented a method for diagnosing roller bearing

faults utilizing a fuzzy classifier and histogram characteristics, with an emphasis on au-

tomatic rule learning. Their research discusses how to utilize a decision tree to pick the

best few histogram features generated from vibration signals (bin ranges) to distinguish

bearing fault scenarios from train samples. The results of building and testing a fuzzy

classifier with representative data are positive and encouraging.

Artificial Neural Network-based identification of crack

In a variety of scenarios, neural networks have been successfully used to detect errors.

An artificial neural network (ANN) is a network of interconnected natural or artificial

neurons that processes data using a mathematical or computational model based on

a connection approach to computation. It is made up of a vast number of nodes or

neurons, which are simple processing elements. Each neuron simply computes a

non-linear weighted sum of its inputs and sends the result to other neurons through its

outgoing connections.

Kao and Hung [54] looked at a neural network based damage detection method that

relied on changes in unknown structural systems’ properties. This approach uses two

systems: system identification and structural damage detection. System identification

determines the uncracked and cracked states of structural systems. The dynamic

response of a full-scale rotating shaft with three distinct crack depths was measured

by Mohammed et al. [55]. The development and description of a revolutionary

non-destructive system are presented. The system characterizes the system’s behavior

using parts of the Power Spectral Density (PSD) obtained from a rapid Fourier

transform of the time history. The PSDs were fed into an ANN that exploited variations

in the spectral content of the system’s vibration to detect the presence of cracks. Chen

et al. [56] developed a neural network-based structure fault isolation method that

uses response data and transmissibility function as inputs to train the proposed network.

Saravanan et al. [57] used an ANN and Proximal Support Vector Machines (PSVM) to

demonstrate the efficiency of wavelet-based features for fault diagnostics of a gearbox.
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The J48 algorithm is used to classify statistical feature vectors derived from Morlet

wavelet coefficients. From these, the dominating features were used to train and test

ANN and PSVM, and their relative efficiency in classifying bevel gearbox problems

was compared.

A method for identifying faults in the form of cracks and shaft misalignments has been

proposed [58], which uses Variation Mode Decomposition (VMD) and probabilistic

principal component analysis to denoise the vibration signals collected from a test

rig, and then uses Convolutional Neural Networks (CNN) to extract signal features

and classify the faults. To find cracks in the structure, Liu et al. [59] used a Back

Propagation Neural Network (BPNN) along with computational mechanics. The

method BPPN is used to assess the types of cracks present, their extent, location, and

severity.

Mehrjoo et al. [60] presented their research on using a BPNN to estimate the damage

intensities of joints for truss bridge systems. The neural network for crack identification

was fed natural frequencies and mode shapes as input parameters. To demonstrate the

correctness and efficiency of the proposed method, numerical example analyses on truss

bridges are presented.

Hybrid techniques of crack identification

Various AI approaches, like fuzzy inference, neural networks, and genetic algorithms,

have been hybridized in the development of crack detection approaches [49, 61, 62].

For problem identification of a spinning machine part, Firpi and Vachtsevanos [63]

developed a genetically programmed artificial feature method. Using the genetically

programmed artificial feature algorithm and vibration data as a source of information,

they extracted artificial features. Agarwalla and Kumar [64] have applied a genetic

fuzzy system for damage identification in cantilever beam structures. The proposed

technique can reliably identify the crack positions and severity levels, according to the

results obtained from the genetic fuzzy controller and experimental analysis.
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2.3 Literature Summary

Several publications deal with the problem of detection, localization, and sizing of

cracks. Using variations in natural frequencies, FRF amplitudes, and mode shapes,

several researchers attempted to discover cracks in the structures, with varying degrees

of success. Some researchers have described vibration-based methods that are neces-

sary to understand the dynamics of the cracked structures which can be used for damage

identification more efficiently. Most of the works are on a beam-like static structures.

Because the coherence is generally good, modal analysis can be performed with a high

degree of acceptance. AI approaches are a very efficient and precise tool for identifying

crack locations that are extremely close to exact. AI can be used as a powerful device

for online damage detection.

2.4 Research Gap

From the literature survey, it has been observed that damage can be assessed visually

or by measuring frequency, mode shape, and structural damping. Visual inspection

is a time-consuming method for detecting damage, and evaluating mode shape and

structural deformation is more difficult than measuring frequency. Such metrics, on the

other hand, are insufficiently sensitive to detect early flaws. As a result, other assisting

parameters are required to improve the chances of detecting any minor flaw. Several

researchers have developed several vibration-based methodologies that are required to

understand the dynamics of cracked structures and can be utilized for more efficient

damage identification, but not for damage localization. As a result, vibration-based

damage detection methods urgently require some crack localization assisting strategies.

Some methodologies are used in this work and have been carefully formulated for the

problem definition to get at the desired solution. A single transverse crack was analyzed

using theoretical and finite element analysis to obtain vibration parameters using various

theories. The fuzzy logic algorithm is then constructed and developed utilizing these

parameters as input while keeping the problem definition and variables in mind. The

location and depth of a crack in a rotating shaft can be determined using this method.



Chapter 3

Vibration Analysis and Mathematical

Modelling of Rotating Turbine Shaft

3.1 Introduction

Numerous techniques are available in the literature to detect the presence of a crack.

In this chapter, the equation of motion and modelling of the rotor system and its com-

ponents with and without the presence of crack is performed. Also, a logical approach

has been adopted to develop the expression to calculate the natural frequency and phase

shift of the turbine rotor shaft with the presence of a transverse crack. The developed

expression or model is programmed in Matlab for the determination of vibration param-

eters. Finally, various crack locations and crack depths are taken to notice the change

in natural frequency and phase shift of the shaft.

3.2 Vibration Differential Equations of Rotor Shaft

Rotor dynamics is a branch of applied mechanics which is used to analyze the diagnosis

and behaviour of rotating machinery. Depending on the motion of the rotating structure,

rotor dynamics are divided into; lateral (bending), longitudinal (axial), and torsional

vibrations. Longitudinal vibration occurs if there is a compression and extension of the

rotor. When the rotor oscillation motion twists the rotor, there is torsional vibration.

A turbine shaft is a rotor-bearing system that consists the elements like; impeller,

shaft, and linear stiffness bearings. Most hydro-turbines are bearing to bearing fixed

configurations. So, in this study shafts with bearings at each end are considered. The

20
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steps for the formulation of the equations of motion for rotating shaft using FEM are

shown in Figure 3.1.

Thus, the overall differential equation will contain the bearing damping and stiffness,

gyroscopic moments, rotary inertia effect, and transverse crack. For the turbine shaft,

the loadings are in the transversal direction and most vibrations are in transverse

and rotational directions. So in this study, only vibrations in the lateral direction

(transverse and rotational displacements) are considered. Axial and torsional vibrations

are omitted. This implies each node in an element has four degrees of freedom.

Divide the disc-rotor-bearing
assembly into three components

Disc Shaft Bearing

Divide the shaft into simple elements

Develop the equation of each element of shaft

including cracked element

Assemble the equations for each element of
shaft to develop a set of equations

Assemble the algebric equations of
disc, shaft and bearing components to get
complete equation of a disc-rotor-bearing

Develop the
linear algebric

equation of disc

Develop the
linear algebric

equation of bearing

Figure 3.1: Steps for utilizing FEM to formulate the equations of motion for a rotating
shaft



3.2. Vibration Differential Equations of Rotor Shaft 22

3.2.1 Bearings

Assume the bearings of the turbine shaft are linear and obey the following governing

equation [65, 66]. The forces acting on the shaft as a result of the bearings are

correlated with shaft displacements and velocities in this equation. The arrangement of

the bearing-shaft-disc system is shown in Figure 3.2 below.

 fx

fy

 = −

 kuu kuv

kvu kvv


 u

v

−
 cuu cuv
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
 u̇

v̇

 (3.1)

The vector notation of this equation is Qs = −Kbq−Cbq̇

where, Qs =

 fx

fy

 is the f orce vector, Kb=

 kuu kuv

kvu kvv

 is the bearing stiffness and

Cb =

 cuu cuv

cvu cvv

 is the bearing damping.

3.2.2 Impeller (Disc) Elements

The energy method is used to drive the element equation of motion of a typical rigid

disc. Thus by considering the translational and rotational kinetic energy of the impeller

(disc), the total kinetic energy of the disc is determined as follows [67].

kvv
kvv

cvv cvv

kuu cuu

xx

y yCrack

cuu
kuu

Figure 3.2: Arrangement of the disc-shaft-bearing system
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In matrix form, it is expressed in the following way.
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Where, u̇ and v̇ are the linear velocities in x and y directions and ˙̌θ, ˙̌ψ and ˙̌
∅ are the

instantaneous angular velocities about the x̌, y̌, and ž directions respectively. md is

the mass of the impeller or disc. Transformation matrix T is used to transform the

displacements in a fixed frame of reference to rotating frames of reference and vice

versa.

{q} = [T ] {p} (3.4)

{q} =



u

v

θ

ψ


, [T ] =



cos∅ −sin∅ 0 0

sin∅ cos∅ 0 0

0 0 cos∅ −sin∅

0 0 sin∅ cos∅


, {p} =



ǔ

v̌

θ̌

ψ̌


If the rotations are applied in new axes with the order of; ψ about y-axes, θ about x-axes

and ∅ z-axes, So, the above angular velocities in equation (3.3) are expressed as;


˙̌θ
˙̌ψ
˙̌
∅

 =


0

0

∅̇

+


cos∅ −sin∅ 0

sin∅ cos∅ 0

0 0 1



θ̇

0

0

+


cos∅ −sin∅ 0

sin∅ cos∅ 0

0 0 1




1 0 0

0 cos∅ sin∅

0 −sin∅ cos∅




0

ψ̇

0


(3.5)

From this, the angle of rotation about the shaft is ∅. Assume the angular rotational speed

of the disc is Ω. So the instantaneous angular velocity about the z-axes is ∅̇ = Ω.

Then equation (3.5) becomes;


˙̌θ
˙̌ψ
˙̌
∅

 =


cosθ sin∅cosθ 0

−sin∅ cos∅cosθ 0

0 −sinθ 1



θ̇

ψ̇

Ω

 (3.6)
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Thus, the total kinetic energy of the disc described in equation (3.2) above is rewritten

as follows.

Td =
1
2

md
(
u̇2 + v̇2

)
+

1
2

Id

(
˙̌θ
2
+ ˙̌ψ

2)
+

1
2

Ip(Ω2−2Ωψ̇) (3.7)

By using Lagrange‘s Equation the element mass and gyroscopic matrices are obtained.

me
d =



m 0 0 0

0 m 0 0

0 0 Id 0

0 0 0 Id


,and Ge

d =



0 0 0 0

0 0 0 0

0 0 0 Ip

0 0 −Ip 0


(3.8)

3.2.3 Shaft Elements

The turbine shaft is a rotating mechanical device with a central impeller that absorbs

energy from fluid flow and converts it to useful work. The shaft will contribute stiffness,

mass, and gyroscopic effects. In this study, the Bernoulli-Euler beam element theory is

used to derive the elemental mass and stiffness matrices [68].

Bernoulli-Euler Beam Element Theory

The kinetic and strain energies in a beam are used to calculate the elemental stiffness

matrices. Assuming the element translation is a cubic polynomial and satisfies the

conditions at the nodes as:

ue (0) = ue1,
∂ue

∂ξ
(0) = ψe1,ue (le) = ue2,

∂ue

∂ξ
(le) = ψe2 (3.9)

Then the deflection of the element is approximated as follows.

ue (ξ, t) = [Ne1 (ξ) Ne2 (ξ) Ne3 (ξ) Ne4 (ξ)]



ue1 (t)

ψe1 (t)

ue2 (t)

ψe2 (t)


(3.10)

where, Nei (ξ) are the shape functions and expressed as follows.

Ne1 (ξ) = 1−3
ξ2

le2 + 2
ξ3

le3 ,Ne2 (ξ) = le(
ξ

le
−2

ξ2

le2 +
ξ3

le3 )
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Ne3 (ξ) = 3
ξ2

le2 −2
ξ3

le3 ,Ne4 (ξ) = le(−
ξ2

le2 +
ξ3

le3 ) (3.11)

The beam element strain energy is given by [65];

Ue =
1
2

EeIe

∫ le

0

(
∂2ue (ξ, t)

∂ξ2

)2

dξ (3.12)

Where, Ee is the material Young’s modulus and Ie is the cross section’s second area of

the moment. When substituting the above equations, the strain energy of the element

due to lateral displacement is;

Ue =
1
2



ue1 (t)

ψe1 (t)

ue2 (t)

ψe2 (t)



T 

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44





ue1 (t)

ψe1 (t)

ue2 (t)

ψe2 (t)


(3.13)

Where ki j are the stiffness matrix elements described as shown.

ki j =
1
2

EeIe

∫ le

0
N
′′

ei(ξ)N
′′

e j(ξ)dξ (3.14)

Where the second derivatives of shape functions N
′′

ei and N
′′

e j are described as;

N
′′

e1 =
−6
le2 (1−2

ξ

le
),N

′′

e2 =
2
le

(−2 + 3
ξ

le
)

N
′′

e3 =
6
le

(1−2
ξ

le
),N

′′

e4 =
2
le

(−1 + 3
ξ

le
) (3.15)

Thus by substituting the above equations the stiffness matrix elements are developed.

This implies the stiffness matrix of the element in a single bending plane is,

Ke =



k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44


=

EeIe

le3



12 6le −12 6le

6le 4le2 −6le 2le2

−12 −6le 12 −6le

6le 2le2 −6le 4le2


(3.16)

Using kinetic energy, the mass matrix is obtained similarly with the elemental stiffness

matrix with Ae denoting the cross-sectional area of the beam and ρe denoting material
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density.

Te =
1
2

∫ le

0
ρeAeu̇2

e(ξ, t)dξ (3.17)

By substituting the above shape functions, the kinetic energy becomes,

Te =
1
2



u̇e1 (t)

ψ̇e1 (t)

u̇e2 (t)

ψ̇e2 (t)



T 

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44





u̇e1 (t)

ψ̇e1 (t)

u̇e2 (t)

ψ̇e2 (t)


(3.18)

For a uniform cross-section, the above elements of the mass matrix are,

mi j = ρeAe

∫ le

0
Nei(ξ)Ne j(ξ)dξ (3.19)

Me =



m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44


=
ρeAele

420



156 22le 54 −13le

22le 4le2 13le −3le2

54 13le 156 −22le

−13le −3le2 −22le 4le2


(3.20)

Mass and Stiffness Matrices for Shaft Elements in Two Bending Planes

The stiffness and mass matrices in the two bending planes are;

Ke =
EeIe

le3



12 0 0 6le −12 0 0 6le

0 −12 −6le 0 0 −12 −6le 0

0 −6le 4le2 0 0 6le 2le2 0

6le 0 0 4le2 −6le 0 0 2le2

−12 0 0 −6le 12 0 0 −6le

0 −12 6le 0 0 12 6le 0

0 −6le 2le2 0 0 6le 4le2 0

6le 0 0 2le2 −6le 0 0 4le2



(3.21)
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Me =
ρeAele

420



156 0 0 22le 54 0 0 −13le

0 156 −22le 0 0 54 −13le 0

0 −22le 4le2 0 0 −13le −3le2 0

22le 0 0 4le2 13le 0 0 −3le2

54 0 0 13le 156 0 0 −22le

0 54 −13le 0 0 156 22le 0

0 13le −3le2 0 0 22le 4le2 0

−13le 0 0 −3le2 −22le 0 0 4le2



(3.22)

Gyroscopic Effects

The influence of the gyroscopic stiffening effect is one of the effects that separate

the vibration of the rotor from other vibrations. Like disks, gyroscopic effects are

generated in a shaft due to its high rotational speed and large polar moment of inertia

[65].

TGe = ρeIeΩ

∫ le

0
ψ̇e(ξ, t)θe(ξ, t)dξ (3.23)

From the above equation, the two bending planes are coupled with each other due to

gyroscopic effects. The shape functions are determined as follows [66, 69];

θe (ξ, t) =
−dve

dξ
,ψe (ξ, t) =

due

dξ
(3.24)

And thus,

 θe (ξ, t)

ψe (ξ, t)

 =

 0 −N
′

1 N
′

2 0 0 −N
′

3 N
′

4 0

N
′

1 0 0 N
′

2 N
′

3 0 0 N
′

4

qe

 θe (ξ, t)

ψe (ξ, t)

 =

B11 B12 B13 B14 B15 B16 B17 B18

B21 B22 B23 B24 B25 B26 B27 B28

qe (3.25)

Where, qe =

[
u1 v1 θ1 ψ1 u2 v2 θ2 ψ2

]T
is the vector local node coordinates

of the two bending planes. Thus by applying equation (3.25) into equation (3.23), the
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above elemental kinetic energy due to gyroscopic effects becomes;

TGe = q̇T
e Aqe (3.26)

Where, Ai j = −ρeIeΩ
∫ le

0 B2i(ξ)B1 j(ξ)dξ

q̇e =

[
u̇1 v̇1 θ̇1 ψ̇1 u̇2 v̇2 θ̇2 ψ̇2

]T
is the local coordinate’s first derivative. Then,

from Lagrange’s equations


d
dt

(
∂TGe
∂q̇1

)
−
∂TGe
∂q1

...

d
dt

(
∂TGe
∂q̇8

)
−
∂TGe
∂q8

 =
(
A−AT

)
q̇ = ΩGeq̇ (3.27)

Thus the gyroscopic matrix elements are computed as follows.

Gi j = −2ρeIe

∫ le

0
(B2i (ξ) B1 j (ξ)− (B2 j (ξ) B1i (ξ))dξ (3.28)

By integrating the above equation, the elemental gyroscopic matrix in the two bending

planes becomes;

Ge =
ρeIe

15le



0 36 3le 0 0 36 −3le 0

−36 0 0 −3le 36 0 0 −3le

3le 0 0 4le2 −3le 0 0 −le2

0 3le −4le2 0 0 −3le le2 0

0 −36 3le 0 0 36 3le 0

36 0 0 3le −36 0 0 3le

3le 0 0 −le2 −3le 0 0 4e
2

0 3le le2 0 0 3le −4e
2 0



(3.29)

3.3 Assembly of Elemental Matrices and Boundary

Conditions

The assembly of turbine elements is obtained by adding the elemental effects in their

corresponding position. This means that the bearing effects are added at the two ends
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Figure 3.3: Assembly of matrices and boundary conditions

and disc effects are added at the middle of the shaft respectively. The global stiffness,

mass, and gyroscopic matrices are obtained by overlapping their elemental matrices as

shown in Figure 3.3 above. After completing the assembly of elemental matrices the

equation constraints or boundary conditions are applied. The bearing flexibility is used

to specify the boundary conditions. Since the supports are considered to be very stiff,

the rotor cannot displace in the vertical and horizontal directions at the first node and

the (N+1) node. As a result, the rows and columns in the global matrix that correspond

to those nodes in the vertical and horizontal displacement must be deleted.

3.4 System Equations of Motion

By assembling the component equations, the full equation of motion becomes;

Mq̈ (t) + (C +ΩG) q̇ + Kq (t) = Qu (3.30)

Where, q (t) =
[
qT

1 . . . q
T
2 . . . q

T
i . . . q

T
N+1

]T
and Qu are a 4(N+1) x 1 dimensioned nodal

displacement vector and force vectors respectively. M, C, G, and K are the global mass,

global damping, global gyroscopic, and global stiffness matrices of the rotor system

respectively. Each matrix has dimensions of 4(N+1) x 4(N+1).
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3.5 Finite Element Model of Cracked Rotor Shaft Sys-

tems

Basic Principle

The existence of a crack in a rotating shaft diminishes the structure’s stiffness, hence

lowering the natural frequencies and increasing the phase angle of the shaft’s initial

uncracked values. The reduction in stiffness is due to the reduction in area moment of

inertia of cracked element. The area moment of inertia is a cross-sectional property that

can be used to predict the bending and deflection resistance of beams. Beams having a

large second moment of area are stiffer than those with a small second moment of area

because they are more bending resistant.

The crack is assumed to be an initial angle φ concerning the fixed negative Y-axes at

t=0. The hatched part in Figure 3.4 below defines the area of the crack segment [70–72].

From the figure, the centroidal coordinates are;

X1 (t) = −esin(Ωt +φ)

Y1 (t) = ecos(Ωt +φ) (3.31)

X

Y

e

X1

Y1

O

C

x

ϕ

Ωt

X, X

Y, Y, , yӯ

e

O

C
x, x

h

b

Crack edge

A1

X

x
Y

(a) Before rotation (b) After shaft rotation

Figure 3.4: Modelling diagrams of the cracked element cross-section
[70–72]
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The stiffness matrix of the cracked element ki
ce is described as [73];

ki
ce =

Ee

lce
3



12Ix̃(t) 0 0 6lceIx̃(t) −12Ix̃(t) 0 0 6lceIx̃(t)

0 −12Iỹ(t) −6lceIỹ(t) 0 0 −12Iỹ(t) −6lceIỹ(t) 0

0 −6lceIỹ(t) 4lce
2Iỹ(t) 0 0 6lceIỹ(t) 2lce

2Iỹ(t) 0

6lceIx̃(t) 0 0 4lce
2Ix̃(t) −6lceIx̃(t) 0 0 2lce

2Ix̃(t)

−12Ix̃(t) 0 0 −6lceIx̃(t) 12Ix̃(t) 0 0 −6lceIx̃(t)

0 −12Iỹ(t) 6lceIỹ(t) 0 0 12Iỹ(t) 6lceIỹ(t) 0

0 −6lceIỹ(t) 2lce
2Iỹ(t) 0 0 6lceIỹ(t) 4lce

2Iỹ(t) 0

6lceIx̃(t) 0 0 2lce
2Ix̃(t) −6lceIx̃(t) 0 0 4lce

2Ix̃(t)


(3.32)

where, Ix̃ and Iỹ are the cracked element time-varying second moment of area about

centroidal axes X̌ and Y̌ respectively.

Then, Ix̃ and Iỹ are computed as;

Ix̃ (t) = Ix (t)−A1Y2
1 (t), then substitute the above equation and simplify.

Ix̃ (t) = Ix (t)−
1
2

A1e2[1 + cos(2(Ωt +φ)) ] (3.33)

Iỹ (t) = Iy (t)−A1X2
1(t), then substitute the above equation and simplify.

Ix̃ (t) = Iy (t)−
1
2

A1e2[1− cos(2(Ωt +φ)) ] (3.34)

Where, A1 is the cracked element left the uncracked area and e is the centroidal location

of Y axes. Ix and Iy are the second moment of area of the cracked elements about X and

Y axes.

A1 = πR2−Ac = πR2−R2cos−1 (1−µ)−R2(1−µ)
√
µ(2−µ)

= R2
(
π− cos−1 (1−µ)− (1−µ)

√
µ(2−µ)

)
(3.35)

e = 2R3

3Ace

( √
µ(2−µ)

)3
, Ace is the cracked element cross-sectional area and µ is crack

depth ratio (µ = h
R ). R is the shaft radius and h is the crack depth.

Then,Ix and Iy are derived for 0 ≤ µ ≤ 1 as follows [71].

Ix = I− Ic
x =

πR4

4
−

(
πR4

8
−

R4

4

(
(1−µ)

(
2µ2−4µ+ 1

) √
µ(2−µ) + sin−1 (1−µ)

))
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=
πR4

8
+

R4

4

(
(1−µ)

(
2µ2−4µ+ 1

) √
µ(2−µ) + sin−1 (1−µ)

)
(3.36)

Iy = I− Ic
y

=
πR4

4
−

R4

12

(
(1−µ)

(
2µ2−4µ−3

) √
µ(2−µ) + 3sin−1

√
µ(2−µ)

)
(3.37)

Without any crack, I = πR4

4 .

Thus, the time-varying moments Ix(t) and Iy(t) are defined as follows [73].

Ix (t) =
Ix+Iy

2
+

Ix−Iy

2
cos(2(Ωt +φ)) − Ixysin(2(Ωt +φ)) (3.38)

Iy (t) =
Ix+Iy

2
−

Ix−Iy

2
cos(2(Ωt +φ)) + Ixysin(2(Ωt +φ)) (3.39)

For the symmetrical cross-sectional area of a cracked element Ixy = 0. Thus, the cracked

element time-varying second moments of area Ix̃ and Ix̃are determined.

Ix̃ = I1 + I2cos(2(Ωt +φ)) (3.40)

Iỹ = I1− I2cos(2(Ωt +φ)) (3.41)

where, I1 and I2 are constants with I1 =
Ix+Iy−A1e2

2 and I2 =
Ix−Iy−A1e2

2 .

Thus the finite element stiffness matrix of the cracked element given in Equation 3.32

can be rewritten as follows.

ki
ce = ki

1 + ki
2cos(2(Ωt +φ)) (3.42)

where;

ki
1 =

Ee

lce
3



12I1 0 0 6lceI1 −12I1 0 0 6lceI1

0 −12I1 −6lceI1 0 0 −12I1 −6lceI1 0

0 −6lceI1 4lce
2I1 0 0 6lceI1 2lce

2I1 0

6lceI1 0 0 4lce
2I1 −6lceI1 0 0 2lce

2I1

−12I1 0 0 −6lceI1 12I1 0 0 −6lceI1

0 −12I1 6lceI1 0 0 12I1 6lceI1 0

0 −6lceI1 2lce
2I1 0 0 6lceI1 4lce

2I1 0

6lceI1 0 0 2lce
2I1 −6lceI1 0 0 4lce

2I1



(3.43)
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ki
2 =

Ee

lce
3



12I2 0 0 6lceI2 −12I2 0 0 6lceI2

0 −12I2 −6lceI2 0 0 −12I2 −6lceI2 0

0 −6lceI2 4lce
2I2 0 0 6lceI2 2lce

2I2 0

6lceI2 0 0 4lce
2I2 −6lceI2 0 0 2lce

2I2

−12I2 0 0 −6lceI2 12I2 0 0 −6lceI2

0 −12I2 6lceI2 0 0 12I2 6lceI2 0

0 −6lceI2 2lce
2I2 0 0 6lceI2 4lce

2I2 0

6lceI2 0 0 2lce
2I2 −6lceI2 0 0 4lce

2I2



(3.44)

Therefore, the FE equation of motion of the rotor bearing-system with transverse open

crack is written as;

Mq̈ (t) + (C +ΩG) ˙q(t) + (K̃ + K1cos(2(Ωt +φ)) )q (t) = Qu (3.45)

where K̃ is a stiffness matrix obtained by replacing the uncracked element stiffness

matrix of the uncracked shaft by the cracked element stiffness matrix Ki
1. K1 is another

stiffness matrix; it has zero elements at all locations except at the cracked element

location where the elements are equal to Ki
2.

3.6 Dynamic Analysis and Response of the System

To determine the eigenvectors and eigenvalues of the rotor system, the second order

differential equations of cracked and intact rotor shafts are changed into first order dif-

ferential equations.

 C +ΩG M

M 0

 d
dt

 q

q̇

+

 K 0

0 −M


 q

q̇

 =

 0

0

 (3.46)

Substitute, X =

 q

q̇

 andẊ = d
dt

 q

q̇

. Then this equation becomes; AẊ + BX = 0,

where, A =

 C +ΩG M

M 0

 and B =

 K 0

0 −M

.
The solution is assumed in the form x (t) = x0est then ẋ (t) = sx0est. Then substitute into
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equation (3.46) [74].

sAx0 = −Bx0 (3.47)

To determine the eigenvalues and corresponding eigenvectors of the rotor shaft, this

equation is solved numerically in Matlab.

Using the rotational frequency in the shaft [75];

mq̈ + cq̇ + kq = mεΩ2e jΩt

q̈ + 2ζωnq̇ +ωn
2q = εΩ2e jΩt (3.48)

Where; ζ = c
2mωn

, ωn =

√
k
m , which is an undamped system natural frequency.

The harmonic response vector of the shaft is expressed as; q = q0e jΩt.

Then the above equation becomes;

(−Ω2 + j2Ωζωn +ωn
2)q0e jΩt = εΩ2e jΩt

q0 =
εΩ2(

ωn2−Ω2)+ j2Ωζωn
=

[
(
ωn

2−Ω2
)
− j2Ωζωn]εΩ2(

ωn2−Ω2)2
+ (2Ωζωn)2

(3.49)

From this, it finds the magnitude of q0

q0 =

√√ (
ωn2−Ω2)εΩ2(

ωn2−Ω2)2
+ (2Ωζωn)2

2

+

 −2ΩζωnεΩ2(
ωn2−Ω2)2

+ (2Ωζωn)2

2

(3.50)

when simplifying

q0 =
εΩ2√(

ωn2−Ω2)2
+ (2Ωζωn)2

(3.51)

From this, the phase angle φp is given by:

φp = tan−1
(

2Ωζωn(
ωn2−Ω2)) (3.52)
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3.7 Numerical Result and Analysis

In this study, the FEM is used as a theoretical analysis method for the determination of

crack signature parameters. For the determination of natural frequency and phase angle,

the differential equation of the cracked and uncracked shaft has been programmed in

Matlab. This method is the forward method. Table 3.1 below, shows the geometries and

material parameters of the components of the turbine rotor. From the modal analysis of

the rotor-disc-bearing system in Matlab, the following results are extracted.

Table 3.1: Geometry and material parameters of turbine shaft and its components

Parameters Shaft Disk
Parameters

Material Stainless steel Stainless steel
Young’s Modulus, E (Gpa) 200 200
Poisson’s ratio, v 0.3 0.3
Density, ρ(Kg/m3) 7800 7800

Geometry
Total length, L (m) 0.715 ——–
Outer diameter, Do (m) 0.06 0.14
Inner Diameter, Di (m) ——– 0.06
Thickness, td (m) ——– 0.055
Mass, m (Kg) 15.621 26.314

• As illustrated in Figures 3.5, 3.6, 3.7 and 3.8, due to the formation of crack in the

uncracked shaft, the natural frequency of the shaft decreases and corresponding

phase angle increases. In addition, at the crack location, the mode shapes show

distortions or sharp shifts.

• At the same location of the crack, as crack depth increases the natural frequency

of the shaft decrease and corresponding phase angle increases, shown in Figures

3.9 and 3.10.

• Crack signature parameter values (frequency and phase angle) from the left and

right sides of the impeller are symmetric with each other (see Figures 3.9 and

3.10).

The first mode natural frequency and first mode phase angle of the uncracked shaft

are 18.0403 Hz and 58.0006 degree respectively (depicted in Figure 3.5). By the

formation of crack at the location of 268.2 mm with a dimensionless depth ratio
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of 0.5, the first natural frequency decreased to 17.9365 Hz and the corresponding

phase angle is increased to 58.2812 degree as illustrated in Figure 3.6. Similarly,

as shown in Figures 3.7 and 3.8, the second mode natural frequency decreases, and

the corresponding phase angle of shaft increases due to the formation of crack at the

length of 268.2mm and dimensionless depth ratio of 0.5. This is due to the reduction

in stiffness of the cracked element. Also Figures 3.6 and 3.8 illustrate that the mode

shapes have distorted or exhibited abrupt alterations at crack locations. These distor-

tions or alterations are due to the coupling of vertical and horizontal bending vibrations.

The effect of crack depth on change in natural frequency and change in phase angle

was also analyzed as shown in Figures 3.9 and 3.10 below. From the analysis, it can

be observed that while keeping the crack location constant when the crack depths are

increased, the natural frequency of the shaft decreases. At the same condition, the cor-

responding phase angle of the cracked shaft increases. This is because of the reduction

in stiffness of the cracked element. Also, it can be observed that while keeping the crack

depth constant when the crack location varies from shaft end to middle span of the shaft,

the natural frequency reduces and phase angle increases. This is due to shaft deflection

and the gyroscopic effect of shaft and disk. The natural frequencies and phase angles

of the shaft are changing with crack depth and crack location. Since there is no unbal-

anced force and misalignment in the shaft, the values of natural frequency and phase

angle from the left and right sides of the mid-span of the shaft are symmetric. The half

section natural frequency and phase angle data of the shaft are thus used to train the

fuzzy logic algorithm for crack diagnosis.
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Figure 3.5: First mode results of the uncracked shaft
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Figure 3.6: First mode results of the cracked shaft
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Figure 3.7: Second mode results of the uncracked shaft
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Figure 3.8: Second mode results of the cracked shaft
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Chapter 4

Finite Element Analysis of Turbine

Rotor Shaft

4.1 Introduction

Finite element analysis is a powerful computational technique that allows simulating

the physical behaviour of any structure by decomposing its domain into a finite number

of subdivisions and converting it into a mathematical model [76]. These sub-domains,

called elements, are connected by nodes, which specify the location in space where

degrees of freedom and interaction between the elements exist. Modal analysis is a

technique for describing a system’s dynamic response in terms of its vibration modes.

In a complex structure excitation signals and corresponding responses are difficult to

measure or perceive. So, modal analysis converts these signals into modal parameters

(natural frequency and mode shape) which can be straightforward to foresee. This

implies that it extracts modal parameters from measured vibration data. In this chapter,

modal analysis of cracked and uncracked turbine shafts is performed. For the cracked

shaft, various crack locations and crack depths are taken to notice the change in the first

two natural frequencies.

4.2 Finite Element Method using Ansys

The FEM simulates physical parts behaviour by dividing the geometry into many small

parts (elements) of standard shapes. The analysis is carried out in Ansys software. This

commercial software provides a wide range of modules, suitable to perform different
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kinds of structural analysis. Corovic and Miljavec [77] used modal analysis and rotor

dynamic theory to examine the mechanical vibrations of an interior permanent magnet

synchronous electric motor intended for a wide range of speeds. Mechanical vibrations

of the case study interior permanent magnet motor components were discovered and

studied in their research using numerical, analytical, and experimental methods. Ansys

Mechanical software, which is based on the FE approach, was used to do the numerical

modal analysis and the rotor dynamic analysis (FEM).

For the current study, the modal analysis module was used to obtain the natural fre-

quencies and mode shapes of the turbine shaft. The geometry of the turbine shaft was

modelled in Solidwork premium and imported to the Ansys workbench. In this analysis,

crack is formed at different locations of the shaft with different depths, and correspond-

ing modal results are extracted.

4.3 Finite Element Analysis of Cracked and Intact Tur-

bine Shaft in Ansys

To find change in behaviours of vibration parameters, the analysis of both cracked and

intact shafts are performed in the frequency domain using Ansys software. The ob-

jective of this analysis is to evaluate the natural frequencies and mode shapes of both

healthy and cracked turbine shafts.

4.3.1 Geometric modelling of shaft

The assessment for the modal analysis begins with the creation of a 3D solid model

of the turbine shaft. The overall dimensions of the shaft and other components of the

turbine are described in Table 3.1 of chapter three. Based on these dimensions the shaft

is modelled in Solidwork premium with a diameter of 60mm and a length of 715mm.



4.3. Finite Element Analysis of Cracked and Intact Turbine Shaft in Ansys 42

4.3.2 Mesh generation and boundary conditions

The first step when performing the FEA is to discretize the domain of the structure

into a finite number of elements. Such a procedure is known as meshing and largely

defines the quality of the results of the simulation. Increasing the number of elements

and nodes (what is known as a refined mesh) usually improves the accuracy of the

simulation. After meshing the geometry, the boundary conditions of the body must be

determined. The shaft has been fixed at both x and y directions (X=0, Y=0) and rotated

at z-direction those are the parallel direction of the axis of the rotor. Rotor speed has

been set to be constant, which is 600 rpm. For structural analysis, this usually means

fixing one or more areas of the body. For meshing of the turbine shaft, a triangular

element is used as shown in Figure 4.1 below. There are around 28,344 nodes and

14,480 elements.

Figure 4.1: Meshed turbine shaft
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4.4 Numerical Result and Analysis

The turbine shaft with and without crack has been simulated in the modal analysis of

the Ansys workbench. Both shafts have rotated at 600rpm (10 Hz). From the modal

analysis of the rotor-disc-bearing system in Ansys, the following results are extracted.

• At the same location of the crack, as crack depth increases the natural frequency

of the shaft decrease.

• At the same depth ratio of crack, the first and second mode natural frequency of

the shaft are symmetric at shaft mid-span.

As depicted in Figures 4.2 and 4.4, the first and second mode natural frequency values

of the uncracked shaft are 22.979 Hz and 32.849 Hz respectively. By the formation

of crack at a length of 268.2 mm (from the left bearing) with a dimensionless depth

ratio of 0.5; the first natural frequency decreased to 17.017 Hz and the second mode

natural frequency decreased to 32.686 Hz (see Figures 4.3 and 4.5). This is due to the

reduction of the stiffness of the shaft’s cracked element.

The characteristic curve of frequency versus the location of crack for different depth

ratios is illustrated in Figure 4.6 below. This figure depicts that while keeping the crack

location constant when the crack depths are increased, the natural frequency of the

cracked shaft decreases. This is due to a decrease in the stiffness of cracked elements.

22.979 Hz

Figure 4.2: First mode results of the uncracked shaft
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17.017 Hz

Figure 4.3: First mode results of the cracked shaft

32.849 Hz

Figure 4.4: Second mode results of the uncracked shaft
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32.686 Hz

Figure 4.5: Second mode results of the cracked shaft

Also, it can be observed that while keeping the crack depth constant when the crack

location varies from shaft end to middle span of the shaft, the natural frequency

reduces. This is due to shaft deflection and the gyroscopic effect of the impeller or

disk. The values of the natural frequency with equal distance from the left and the

right side of the disk location are equal or symmetric. This is because of the absence of

unbalance force and misalignment in the shaft. The half section natural frequency data

of the shaft are thus used to train the fuzzy logic algorithm for crack diagnosis.
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Chapter 5

Fuzzy Logic Analysis for Crack

Identification

5.1 Introduction

The presence of a crack in structures and machine components is a serious threat to

the integrity of the system, which leads to reducing the life and may cause the failure

of the system. Hence, an online method of crack detection is very essential. As seen

in the previous two chapters, the change in vibration parameters are indicators of

the presence of a crack in structures. In this chapter, an intelligent technique (fuzzy

logic algorithm) is proposed to detect the location and depth of the crack in the shaft.

The vibration parameters are used as input in this method, which is an inverse technique.

Fuzzy set concepts were first originated and proposed by Zadeh around 1965 [78, 79].

A membership function transfers the members of the universe into the unit interval,

assigning degrees of belongingness to universe elements with regard to a set, and

thereby characterizes a fuzzy set. Around 1975 Mamdani and Assilan [80] developed

the Fuzzy Logic System (FLS) for the first time, which is a multi-value logic, which

permits interval qualities to be characterized by linguistic expressions like true/false,

high/low, yes/no. To use a more human-like way of thinking in computer programming,

these evaluations can be mathematically expressed and processed by computers.

FL is a method of reasoning intended to model logical reasoning with vague or

imprecise statements that resemble human reasoning. As explained and defined by

47
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Zadeh [78, 79], FL provides a means of using approximate, inexact nature present

in the real world problems and produce acceptable but definite output in response to

incomplete, ambiguous, distorted, or inaccurate (fuzzy) input. The important part

of the fuzzy logic FL is a set of linguistic control rules connected by the concept of

fuzzy implication and fuzzy associative rules. The theory of fuzzy logic provides a

mathematical foundation for reflecting the inherent ambiguities in human cognitive

processes such as thinking and reasoning. The data is gathered from several partial

facts in FL, and the consequences are predicted when it surpasses a certain threshold.

Based on the concept of fuzzy set theory, FL theory is a popular computing system and

has been emerged as the most active area of research for several years. Time series

prediction, pattern recognition, automatic control, expert systems, decision analysis,

business, robotics, bioinformatics, and data classification are just some of the fields

where this method is used. In literatures, Yu and Li [81], Azeem [82], Abdelazim

and Malik [83], Trabelsi [84], and others have shown examples of fuzzy systems

applications in identification, modelling, control, clustering, and filtering.

A FL controller works by applying fuzzy if-then rules and making decisions based on

non-linear mapping of input data to a scalar output. As a result, any sensible number of

inputs and outputs can be used. However, if more inputs and outputs are added, the rules

may get more complicated. It is, therefore, preferable to divide the control system into

smaller control units. The FLS can be used for uncertain or imprecise thinking, as well

as non-linear systems that are difficult to model mathematically. FL is a set of linguistic

control rules linked by the concepts of fuzzy implication and fuzzy associative rules,

and it is an important aspect of FL. The terms utilized to design the fuzzy inference

engine in the current work are listed in the following sections.

5.2 Concept of Fuzzy Sets and Membership Functions

The concept of a fuzzy set is an extension of the concept of a crisp set, in which

it is specifically designed to mathematically represent the problem’s uncertainty

and vagueness. In 1993, Suzuki [85] attempted to give an analytical foundation for
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the idea of fuzzy sets. A membership (characteristic) function is used to describe

a fuzzy set, and it assigns a membership grade to each item that ranges from zero to one.

The membership function is a function that determines how much of a given input

is part of a set. All operations on fuzzy sets are defined based on their membership

functions because the membership function is the crucial component of a fuzzy set. A

broad overview of many strategies for creating membership functions for fuzzy pattern

recognition applications was provided by Medasani et al. [86].

Consider U to be a universal set and a fuzzy set on U is defined as;

µF(x) : U→ [0,1]

µF is the membership f unction

µF (x) is membership grade o f x

The fuzzy set’s nonzero degree membership elements are referred to as support, while

the one-degree membership elements are referred to as a core. The fuzzy rules are used

to determine the influence of the input membership functions on the fuzzy output sets of

the final output conclusion. Membership functions are used to translate non-fuzzy input

data to fuzzy linguistic terms and vice versa in the fuzzification and defuzzification

procedures of a fuzzy logic system. Each input and output response has a different

type of membership function. The trapezoidal, triangular, and Gaussian membership

functions are mostly used in a FL analysis [87].

5.2.1 Triangular membership function

Let p, q, and r represents the x coordinates of the three vertices of µF (x) in fuzzy set

F, as shown in Figure 5.1(a) below. The degree of membership is equivalent to zero at

point ‘p’ and ‘r’ is equal to one at point ‘q’. The mathematical exemplification of the
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fuzzy triangular membership function µF (x) can be described below.

µF (x)=



0; i f x ≤ p
x−p
q−p ; i f p ≤ x ≤ q
r−x
r−q ; i f q ≤ x ≤ r

0; i f x > r


(5.1)

5.2.2 Gaussian membership function

The Gaussian membership function is determined by the centre of membership

functions (c) and width of the membership function (α) shown in Figure 5.1(b). The

mathematical exemplification of the Gaussian fuzzy membership function can be

described as below.

µF (x : c,α) = exp
[
−

1
2

( x− c
α

)2
]

(5.2)

5.2.3 Trapezoidal membership function

The trapezoidal membership function has the shape of a truncated triangular member-

ship function. Let e, f, g, and h represent the x coordinates of the membership function.

And then it has two base points (e, h) and two shoulder points (f, g) as shown in figure

5.1(c) below. The trapezoidal membership function is represented mathematically as

follows.

µF (x)=



0; i f x ≤ e
x−e
f−e ; i f e ≤ x ≤ f

1; i f f ≤ x ≤ g
h−x
h−g ; i f c ≤ x ≤ d

0; i f x ≥ h

(5.3)

5.3 Fuzzy Inference System

A fuzzy inference system (FIS) is a framework or approach for mapping a set of fuzzy

rules to an output. The mapping then serves as a foundation for making decisions and

identifying patterns. FIS evaluates imprecision and ambiguity by employing appropri-
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Figure 5.1: Membership functions used in FLS analysis
(a) Triangular (b) Gaussian and (c) Trapezoidal

ate rule bases to characterize the fuzziness of real-world data. For FIS, membership

functions, fuzzification, and defuzzification are the main building blocks. There are

two types of FIS. These are Mamdani type FIS and Sugeno type FIS.

Mamdani inference system

The output membership functions of a Mamdani-type inference system are often fuzzy

sets. Each output variable has a fuzzy set that must be defuzzified after the aggregation

procedure is completed.

Sugeno inference system

In many ways, Sugeno FIS is comparable to the Mamdani approach. Fuzzifying the

inputs and applying the fuzzy operator are the first two steps of the fuzzy inference

process. Sugeno output membership functions are either linear or constant, which is the

fundamental distinction between Mamdani and Sugeno.

5.3.1 Fuzzy linguistic variables

A linguistic variable is a variable in a natural or artificial language that is made up of

words or sentences rather than numbers and has related degrees of membership. Zadeh

[88] proposed the concept of linguistic and fuzzy variables in 1965. These variables are

the objectives that try to define the variable range. For instance, Speed is a linguistic

variable with values such as slow, fast, very fast, and so on.
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5.3.2 Fuzzy controller/ Fuzzy If-then rules

FL controllers employ fuzzy rules instead of equations to control systems. In FL,

fuzzy rules are a set of linguistic statements that have been supported as a fundamental

instrument for articulating pieces of knowledge. As described by Zadeh [88], fuzzy

controllers use terms of linguistic variables to link the input variables with outcome

variables. Hence, the antecedents and consequences of fuzzy if/then rules are fuzzy

rather than crisp. As a result, the most important prerequisite for the FL foundation is a

collection of fuzzy if/then rules.

The fuzzy mechanism’s rules are usually written in this format: If (input 1 is member-

ship function 1) and/or (input 2 is membership function 2) and/or . . . . Then (output n is

output membership function n).

For example; if the distance from the obstacle is near and the angle from the obstacle

is small, then turns very sharply. This is a rule used to control the steering system of

the robot in the robot navigation system for obstacle avoidance. There would have

to be membership functions that define what we mean by the obstacle is near (input

1), small-angle (input 2) and turn very sharply (output 1). For the particular control

system, the output is controlled by the If-Then rules on the input. The development

of fuzzy logic controller consists of Fuzzification, Rule evaluation and Defuzzification

[89]. Simple architecture for a fuzzy logic controller is shown in Figure 5.2 below.

Fuzzification

Fuzzification is defined as the process of converting precise data into imprecise data or

transforming a crisp set to a fuzzy set. This procedure essentially converts precise crisp

Rule-base

Computational
Unit

Fuzzification Defuzzification

OutputInput

Figure 5.2: Fuzzy controller architecture
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input values into linguistic variables [90]. The crisp value is fuzzified by using if-then

rules. As an illustration, consider the following: ( If the distance from the obstacle is

near and the angle from the obstacle is small, then turn very sharply ). The process of

taking an input such as distance and processing it through a membership function to

determine what we mean by distance is "near" is called fuzzification.

Rule base

Rule base or rule evaluation is the main computational unit that processes the input

fuzzy values and computes the output fuzzy values [89].

Defuzzification

Defuzzification is the process of converting imprecise data into precise data or the

process of reducing a fuzzy set into a crisp set or converting a fuzzy member into a

crisp member. It is the inverse of fuzzification. There are two common methods for

defuzzification [91].

i. Centroid method: this method is also known as the centre of gravity or the centre

of area method. It is the most commonly used method and it obtains the centre

of the area (x*) occupied by the fuzzy set. It is computationally difficult for so-

phisticated membership functions. The centroid defuzzification technique can be

expressed as;

x∗ =

∫
µF(x)xdx∫
µF(x)dx

; f or continues membership f unction

x∗ =

∑n
i=1 xiµF(xi)∑n
i=1µF(xi)

; f or discrete membership f unction (5.4)

where; n is the number of elements,xi‘s are the elements and µF (xi) is the mem-

bership function.

ii. Mean of maxima (MOM) method: this is one approach to difuzzify the output

, which involves taking the crisp value with the highest degree of membership.

Several elements are having the maximum value, the mean value of the maxima is
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taken. This difuzzification method is expressed as;

x∗ =

∑
xi∈M xi

|M|
(5.5)

Where; M =
{
xi

∣∣∣µF (xi) is equal to height o f f uzzy set

|M| is the cardinality o f set M

M =
{
xi ∈ [−c,c]

∣∣∣µF (xi) is equal to height o f f uzzy set

5.4 Fuzzy Logic Mechanism for Crack Identification in

a Shaft

5.4.1 Training methodology

Different methods have been used to construct fuzzy systems from data automatically.

In this thesis cluster analysis is used. Cluster analysis is a data classification approach

that divides data into groups or clusters. Each data must be assigned to one of the

classes in this analysis. It’s feasible to learn fuzzy if-then rules from data by applying

fuzzy clustering methods. To train the fuzzy logic algorithm for identification purposes

first and second mode results are proposed. The input parameters for identifying

the location and depth of the crack are the first and second natural frequency and

corresponding phase angle of the shaft. These crack signature parameters are obtained

from previous theoretical analyses. Thus, the proposed FIS has four input and two

output parameters. Then to assign the membership functions and linguistic variables,

the obtained data’s are arranged in different classes or ranges. The following are the

natural linguistic representations used for the inputs and the outputs.

First natural frequency = ’fnf’

First phase angle =’fpa’

Second natural frequency =’snf’

Second phase angle =’spa’

Crack location =’cl’
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Crack depth ratio=’cdr’

Then the fuzzy rules are defined in the following general form: If (fnf is Fi and fpa is

PA j and snf is fk and spa is pal) then (cdr is CDi jk and cl is CLi jk). Where, i, j, k, and l

are a number of membership functions with i= 1 to 26, j=1 to 26, k=1 to 26, l=1 to 26.

This is because of ’fnf’, ’fpa’, ’snf’, and ’spa’ have 26 membership functions each.

The crisp values of relative crack location and relative crack depth are determined using

the center of gravity approach, as described by Das and Parhi [92].

Wi jk = µ f n fi( f reqi)∧µ f pa j(phan j)∧µsn f = k( f reqk)∧µspa(phanl) (5.6)

Where freqi, phanj, freqk, and phanl are the first natural frequency, first phase angle,

second natural frequency and second phase angle respectively. The membership val-

ues of the crack location and crack depth are calculated using the composition rule of

inference proposed by Das and Parhi [92].

µcli jkl (location) = Wi jkl ∧µcli jkl (location) length CL (5.7)

µcdi jkl (depth) = Wi jkl ∧µcdi jkl (depth)depth CD (5.8)

The following is the general conclusion that may be written by merging the output of

all the fuzzy:

µcli jkl (location) = µcl1111 ∨ · · ·∨µcli jkl (location)∨ · · ·∨µcl26262626 (location) (5.9)

µcdi jkl (depth) = µcd1111 ∨ · · ·∨µcdi jkl (depth)∨ · · ·∨µcd26262626 (depth) (5.10)

The crisp values of crack location and crack depth are determined using the center of

gravity approach, as described by Das and Parhi [92].

Crack location =

∫
location.µcl (location) .d(location)∫

µcl (location) .d(location)
(5.11)
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Crack depth =

∫
depth.µcd (depth) .d(depth)∫

µcd (depth) .d(depth)
(5.12)

5.4.2 Fuzzy Logic controller for crack identification

As shown in Figure 5.3 below, the first natural frequency, first phase angle, second

natural frequency, and second phase angle of the shaft are input data for the fuzzy

controller, whereas crack location and crack depth are output parameters. To train the

fuzzy controller, many hundred fuzzy rules are outlined. Figure 1 of Appendix A lists

some of the fuzzy rules from a total of several hundred fuzzy rules. The rule base and

the input data were used to generate the output data. The fuzzy logic controller in

this work was constructed utilizing three types of membership functions: triangular,

trapezoidal, and Gaussian membership functions. Figure 2 of Appendix A illustrates

the operation and method of fuzzy cluster analysis for crack identification.

There are a total of twenty-six membership functions for each input parameter, seven

membership functions for crack location, and six membership functions for crack

depth. Comparison of the results obtained from theoretical and fuzzy controllers using

triangular membership functions, trapezoidal membership functions, and Gaussian

membership functions are described in chapter seven.
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Figure 5.3: Schematic diagram of fuzzy inference system for crack identification
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5.4.3 Simulink model for crack identification

As described above the fuzzy logic controller with three different membership functions

has four input and two output parameters. So, for the easiness of the determination of

output parameters Simulink model is designed. This model shows the values of output

parameters from the three different fuzzy controller membership functions at a time.

Figure 5.4 below shows the proposed Simulink model for the identification of crack.

5.4.4 Why Fuzzy Logic is used

• Does not require mathematical formulation.

• Powerful tool for dealing with imprecision, uncertainty.

• Precision in FL is exchanged for tractability, resilience, and a low-cost solution.

• Provides the ability to use FL when appropriate with other control techniques.

• Offers a fuzzy inference engine that can run the fuzzy system on its own.
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Figure 5.4: Simulink model for identification of crack



Chapter 6

Results and Discussions

6.1 Introduction

The problem definition, objective, and significance of the thesis work have been de-

scribed in chapter one. In this work, the strategy used for detecting crack is identifying

crack signature parameters using different theoretical analysis tools. An analytical

model for both cracked and uncracked shafts is developed using finite element

analysis. The mathematical model is programmed in Matlab for the determination

of crack signature parameters. Also, corresponding shafts with the same dimension

are modelled in Solidwork and simulated in Ansys for the same purpose. So, in this

chapter, various crack locations and crack depths are taken to notice the change in the

first two natural frequencies.

Using different types of membership functions, such as triangular, trapezoidal, and

Gaussian, a fuzzy inference system has been built for the identification of cracks (crack

depth and crack location). The developed fuzzy inference system uses first natural fre-

quency, second natural frequency, first phase angle, and second phase angle as inputs

and the crack depth and the crack location as output. For the design of a fuzzy inference

system, several linguistic terms and fuzzy rules have been developed. The analysis of

the results is described below.
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6.2 Correlation Coefficient and Average Total Error

The degree and direction for the relation between two variables are called correlation.

The correlation coefficient is the quantification or the measure of the degree of asso-

ciation between statistical variables, mathematical variables, phenomena, or between

different things. It’s denoted by ‘r’ and mostly quantified with a number between

-1 and +1. But, the interpretation of these numbers is significantly different among

scientific research areas [93, 94].

In this work, the correlation coefficient is used to know the closeness between results

from Ansys and Matlab. Also, it is used to verify the outputs from the triangular,

trapezoidal, and Gaussian membership functions with the theoretical proposed values.

So using Taylor [93] and Schober et al. [95] Interpretations as a guide, in this study,

the 0 value shows there is no closeness between the results of software’s or between

different fuzzy membership functions and theoretical proposed values. The value 1

shows there is a strong or perfect closeness between the results of software or between

different fuzzy membership functions and theoretical proposed values. This implies

as the correlation coefficient increases from 0 to +1 the strength of values closeness is

increased.

The average total error is the method of determining the closeness of values between

different parameters. In this study, this method is used for a similar purpose to the cor-

relation coefficient. The equations for the mathematical determination of the correlation

coefficient and the average total error are described in Appendix B.

6.3 Comparison of Matlab and Ansys Results

For numerical analysis, the turbine shaft and corresponding impeller (disc) were dimen-

sioned similarly for both analysis tools. Also, their operational condition is uniform.

Ansys is used as a reference to verify the Matlab results that were developed from the-

oretical equations. Consider there is a crack in a shaft at a length of 208.6 mm (from

left bearing) with a dimensionless depth ratio of 0.5. The crack is formed at a specified

location of the shaft with specified depths in Solidwork premium. Then modal analysis
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has been performed in Ansys by importing the IGES file. In the same way, the dif-

ferential equation of the cracked shaft has been simulated at the specified location and

depth of crack in Matlab. Figures 6.1 to 6.4 show the modal results from Matlab and

Ansys. The first mode natural frequency value from Matlab is 17.9733 Hz (see Figure

6.1) and 17.798 Hz (see Figure 6.2) from Ansys. Also as depicted in Figures 6.3 and

6.4, the second mode natural frequency value from Matlab and Ansys are 30.2226 Hz

and 32.558 Hz respectively.
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Figure 6.1: First mode results from Matlab modal analysis
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Figure 6.2: First mode results from Ansys modal analysis
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This shows that at the same location and same depth ratio of crack, the Matlab and

Ansys modal results are close to each other. Table 6.1 below shows the comparison be-

tween Ansys and Matlab modal analysis results for different depths of crack at different

locations.

Table 6.1: Comparison of Ansys and Matlab modal analyses for mode one

Crack
location
(mm)

Crack
depth
ratio

First
mode
Ansys

First
mode
Matlab

Second
mode
Ansys

Second
mode
Matlab

0.1 18.766 18.0294 32.831 30.2252
89.4 0.25 18.251 18.0291 32.815 30.2251

0.5 18.101 18.0273 32.796 30.2248
0.1 18.421 17.9831 32.698 30.2233

208.6 0.25 18.202 17.9816 32.681 30.2232
0.5 17.789 17.9733 32.558 30.2226
0.1 18.268 17.9515 32.713 30.2238

268.2 0.25 18.065 17.9493 32.691 30.2237
0.5 17.017 17.9365 32.686 30.2232
0.1 18.005 17.9167 32.836 30.2247

327.8 0.25 17.672 17.9137 32.817 30.2246
0.5 16.997 17.896 32.786 30.2242

Correlation coeffi-
cient factor

0.706 0.965

Average total error
(%)

2.091 7.737

When the results obtained from the analysis of the cracked turbine shaft in Matlab

are compared with the results from the Ansys, the correlation coefficients were found

to be within 0.706 for the first mode and 0.965 for the second mode. These values

are above zero and almost have much closer to one, which indicates good agreement

between results. Also, the average total errors between the two software’s are 2.091%

and 7.737% for mode one and mode two respectively. Since the average total errors

are below 10%, the results from Ansys and Matlab are close to each other. So for

crack identification, results obtained from both modes are used as inputs for the fuzzy

controller.
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6.4 Results of Fuzzy Logic Method for Crack Identifi-

cation

Crack signature parameters (first natural frequency, first phase angle, second natural

frequency, and second phase angle) obtained from previous theoretical analysis tools

are great indicators for the presence of a crack. Determining these parameters is the

forward method. On the other hand, identifying the location and depth of the crack

using these parameters is called the backward method. So these parameters are inputs

for the fuzzy inference system. In response, crack location and crack depth are output

parameters. So, the first two modal results are trained for crack identification in the

fuzzy logic algorithm.

In section 6.3 above, the crack signature parameters are determined at the crack location

of 208.6 mm and a dimensionless depth ratio of 0.5. The first and second modes natural

frequencies of the shaft were 17.9733 Hz and 30.2226 Hz respectively. Also, the cor-

responding first and second mode phase angles of the shaft were 58.1815 degrees and

36.6165 degrees respectively. So this section intends to identify the location and depth

of the crack using these results as input to the fuzzy controller. As illustrated in Figure

6.5, the Simulink model from the three different membership functions forecasts the

location and depth ratio of crack around 209 mm and 0.5 respectively. This indicates

that the fuzzy controller predicts the location and depth of the crack almost accurately.

6.4.1 Comparison of theoretical and fuzzy logic results

Tables 1, 2 and 3 in Appendix C shows the comparison of the results obtained from

theoretical and fuzzy controllers using triangle, trapezoidal, and Gaussian membership

functions. By the consideration of the triangular membership function, the correlation

coefficients are 0.9993 for identifying both crack location and crack depth. When

applying the trapezoidal membership function, the correlation coefficients in detecting

crack location and crack depth are 0.999 and 0.9878 respectively. Similarly, the

correlation coefficients for identifying the crack location and determining the crack

depth using the Gaussian membership function are 0.9998 and 0.9997, respectively.

Since these numbers are so close to one, it means that the FL results and the theoretical
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Figure 6.5: Result from Simulink model

crack locations and depths are in very good agreement.

Similarly as depicted in Table 1 of Appendix C, by the consideration of the triangular

membership function, the average total error for detecting crack location is 0.31%,

and crack depth is 0.78%. When applying the trapezoidal membership function, the

average total errors for detecting crack location and crack depth are 0.34% and 4.82%

respectively (illustrated in Table 2 of Appendix C). In the same way, the average total

errors for identifying the crack location and determining the crack depth using the

Gaussian membership function are 0.29% and 0.58%, respectively (see Table 3 of

Appendix C). From these results, the average total errors of all membership functions

are very small. Therefore, it is possible to use all these membership functions for the

identification of cracks.

However, when compared to the other two membership functions, the average total er-

rors of the Gaussian membership function are lower. Also, as compared to other mem-

bership functions, the values of the correlation coefficient in the Gaussian membership
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function are significantly closer to one. As a result, the Gaussian membership function

is preferred over the triangular and trapezoidal membership functions in this study.

6.4.2 Characteristic curves

The following different characteristic curves show the closeness of the outputs from

the fuzzy controller membership functions with the theoretical values. Figures 6.6, 6.7,

and 6.8 are for crack depth ratio and Figures 6.9 and 6.10 are for crack location. All

characteristic curves show that results from the three membership functions have good

agreement with the theoretical values. Even though the results of the three membership

functions are close to the theoretical values, the Gaussian membership function has the

best agreement.
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Figure 6.6: Characteristic curve for first mode natural frequency versus crack depth
ratio
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6.5 Applications

i. Because the fuzzy logic method of crack identification is non-destructive in na-

ture, it can be employed efficiently for online condition monitoring of engineering

systems.

ii. The crack detection algorithm developed can be used to forecast cracks in hydro-

electric generations, turbo equipment, nuclear plants and ship structures, as well as

biomedical engineering systems, and other areas.



Chapter 7

Conclusion and Recommendations

7.1 Conclusion

This thesis discusses the impact of transverse cracks on a vibrating uniform circular

shaft. The main purpose of this study has been to come up with a quick and efficient

method for detecting cracks in vibrating structures. The vibration analysis has been

carried out using theoretical and intelligent methodology using fuzzy logic. Natural

frequency and phase angle were used to identify cracks in this investigation, and the

crack depth and crack location were determined. The following findings are drawn

from the results of the analyses performed on the cracked shaft.

i. The presence of a transverse crack was investigated, and it was discovered that

the presence of the crack has an impact on the natural frequency and phase angle

of the shaft. As crack depth increases, the natural frequency decreases, and the

corresponding phase angle increases. As a result, it is concluded that the analysis

of natural frequency and phase angle change is effective for crack prediction in

shafts.

ii. The crack depth and crack location were determined by comparing the vibration

analysis results of the uncracked and cracked shafts.

iii. For the investigation of crack detection, a fuzzy inference system was constructed

utilizing different membership functions, and it was discovered that the fuzzy con-

troller predicts the crack depth and crack location as close to the theoretical analy-

sis results. The fuzzy inference system’s most important feature is that it predicts

results with less computational time.

69
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iv. The training data for the fuzzy inference system are the first two natural frequen-

cies and their corresponding phase angles obtained from the theoretical study. The

results of the theoretical and fuzzy logic analysis are in good agreement.

7.2 Recommendation and Future work

i. The fuzzy inference system’s analysis can be extended for localization and identi-

fication of multiple cracks in turbine-generator shaft lines.

ii. The change in vibration characteristics will be studied by the consideration of shaft

misalignment and bearing tilt.

iii. The current research work’s entire analysis is based on an Euler Bernoulli beam-

like structure, which can be extended to include a Timoshenko beam-like structure.

iv. Fuzzy logic and other artificial intelligence approaches can be hybridized to pro-

vide a new method for detecting cracks in turbine shafts.
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Appendix A

Some fuzzy rules for fuzzy inference system

Figure 1: Fuzzy Logic rules
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Figure 2: Fuzzy cluster analysis used for crack identification

Appendix B

Equations of Correlation coefficient and Average total error

1. Correlation coefficient r;

r = S XY/
√

S XXS YY

where;S XX, S YY , and S XY are sum o f the squares about the mean.

S XX =
∑

wi(xi− x)2

S YY =
∑

wi(yi− y)2

S XY =
∑

wi(xi− x)(yi− y)

where; wi is the weight and the means of x and y are explained as follows;

x =
∑

wixi/
∑

wi
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y =
∑

wiyi/
∑

wi

2. Average Total Error EAV;

EAV =

n∑
i=1

Ei/
∑

n

where; E is the error =

∣∣∣∣∣Known value−Proposed value
Known value

∣∣∣∣∣∗100

and n is the number of samples

Appendix C

Correlation coefficient factor and average total error of different fuzzy controller

membership functions with the theoretical location and crack depth ratio.

Table 1: Results from triangular membership functions

Theoretical crack location, crack depth ratio
and Vibration parameters obtained from Mat-
lab

Crack location and
depth obtained from
triangular MF

cl cdr fnf fpa snf spa cl cdr
89.4 0.2 18.0292 58.0303 30.2251 36.6136 89.93 0.1983
89.4 0.3 18.0289 58.0313 30.2251 36.6137 89.93 0.2984
149 0.3 18.0083 58.0867 30.2236 36.6154 149.9 0.2984
149 0.4 18.0068 58.0909 30.2234 36.6156 149.9 0.3983
208.6 0.4 17.9779 58.1691 30.2229 36.6161 209 0.3982
208.6 0.5 17.9733 58.1815 30.2226 36.6165 209 0.5079
268.2 0.2 17.9504 58.2436 30.2237 36.6153 268.5 0.1982
268.2 0.3 17.9479 58.2503 30.2236 36.6154 268.5 0.2984
327.8 0.4 17.9057 58.3651 30.2244 36.6145 327.9 0.3983
327.8 0.5 17.896 58.3916 30.2242 36.6147 327.9 0.5076
Correlation coefficient 0.9993 0.9993
Average total error (%) 0.3058 0.7749
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Table 2: Results from trapezoidal membership functions

Theoretical crack location, crack depth ratio
and Vibration parameters obtained from Mat-
lab

Crack location and
depth obtained from
trapezoidal MF

cl cdr fnf fpa snf spa cl cdr
89.4 0.2 18.0292 58.0303 30.2251 36.6136 90.22 0.1237
89.4 0.3 18.0289 58.0313 30.2251 36.6137 90.22 0.2976
149 0.3 18.0083 58.0867 30.2236 36.6154 149.5 0.2976
149 0.4 18.0068 58.0909 30.2234 36.6156 149.5 0.3975
208.6 0.4 17.9779 58.1691 30.2229 36.6161 209.2 0.3975
208.6 0.5 17.9733 58.1815 30.2226 36.6165 209.2 0.5112
268.2 0.2 17.9504 58.2436 30.2237 36.6153 268.4 0.1974
268.2 0.3 17.9479 58.2503 30.2236 36.6154 268.4 0.2976
327.8 0.4 17.9057 58.3651 30.2244 36.6145 328 0.3975
327.8 0.5 17.896 58.3916 30.2242 36.6147 328 0.5112
Correlation coefficient 0.9990 0.9878
Average total error (%) 0.3354 4.8205

Table 3: Results from Gaussian membership functions

Theoretical crack location, crack depth ratio
and Vibration parameters obtained from Mat-
lab

Crack location and
depth obtained from
Gaussian MF

cl cdr fnf fpa snf spa cl cdr
89.4 0.2 18.0292 58.0303 30.2251 36.6136 90 0.2
89.4 0.3 18.0289 58.0313 30.2251 36.6137 90 0.3002
149 0.3 18.0083 58.0867 30.2236 36.6154 149.6 0.3003
149 0.4 18.0068 58.0909 30.2234 36.6156 149.6 0.4121
208.6 0.4 17.9779 58.1691 30.2229 36.6161 209 0.4028
208.6 0.5 17.9733 58.1815 30.2226 36.6165 209 0.5
268.2 0.2 17.9504 58.2436 30.2237 36.6153 268 0.2001
268.2 0.3 17.9479 58.2503 30.2236 36.6154 268 0.3003
327.8 0.4 17.9057 58.3651 30.2244 36.6145 328.2 0.407
327.8 0.5 17.896 58.3916 30.2242 36.6147 328.2 0.5
Correlation coefficient 0.9998 0.9997
Average total error (%) 0.2926 0.5792
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