
A Fitted Mesh Numerical Method for Solving Singularly

Perturbed Burger-Fisher Equation

COLLEGE OF NATURAL SCIENCES
DEPARTMENT OF MATHEMATICS

By

Nayilot Ejara

Under the supervision of

Prof. Gemechis File Duressa

Fasika Wondimu Gelu (MSc)

A Thesis Submitted to the Department of Mathematics, Jimma University in Partial Fulfillment

for the Requirements of the Degree of Master of Science in Mathematics

(Numerical Analysis)

September 20, 2021

Jimma, Ethiopia



A Fitted Mesh Numerical Method for Solving Singularly Perturbed

Burger-Fisher Equation

COLLEGE OF NATURAL SCIENCES

DEPARTMENT OF MATHEMATICS

By

Nayilot Ejara

Under the supervision of

Prof. Gemechis File Duressa

Fasika Wondimu Gelu (MSc)

A Thesis Submitted to the Department of Mathematics, Jimma University in Partial Fulfillment for the Requirements

of the Degree of Master of Science in Mathematics

(Numerical Analysis)

Approved by the Examiner Board

Chairman

Name: Sign: Date:

External Examiner

Name: Sign: Date:

Internal Examiner

Name: Sign: Date:



Contents

1 Introduction 1

1.1 Background of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Delimitation of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Review of Related Literatures 5

2.1 Singular Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Quasilinearzation Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Numerical versus Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Finite Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Research Methodology 9

3.1 Study Area and Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Source of Informations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Mathematical Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Formulation of the Method, Error Analysis and Numerical Computations 10

4.1 Formulation of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.1 Quasilinearization Technique . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.2 Time Semi-discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

i



4.1.3 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.4 Scheme I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.5 Scheme II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Numerical Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Conclusion and Future Scope 29

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Scope for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ii



Declaration

I undersigned declare that this thesis entitled ”A fitted mesh numerical method for solving singu-

larly perturbed Burger-Fisher equation ” is my own original work and it has not been submitted for

the award of any academic degree or the like in any other institution or university and that all the

sources I have used or quoted have been indicated and acknowledged as complete references.

Researcher

Name: Sign: Date:

The work has been done under the supervision and approval of the advisor

Supervisor

Name: Sign: Date:

Co-supervisor

Name: Sign: Date:

iii



Acknowledgment

First of all, I thank the Almighty God for giving me time to do this thesis. Next to this, with great

pleasure at the very first am very thankful to my research supervisor Prof. Gemechis File Duressa

for his constant encouragement, follow-up and guidance. I express my deep sense of gratitude

to my co-supervisor Fasika Wondimu Gelu (MSc) for giving me the opportunity to work on this

topic and his constant support. I gratefully acknowledge Jimma University for providing me with

financial assistance during my research work. Last but not least, I would like to express my heart-

felt thanks, gratitude and appreciation to my son Nathaniel and also my beloved family for their

generous assistance, moral support and helpful encouragement during my graduate study with all

their kindness and affection.

iv



List of Figures

4.1 Surface plot at M = N = 64, ε = 2−10, α = β = 0.01. . . . . . . . . . . . . . . . 26

4.2 Surface plot at M = N = 64, ε = 2−8, α = β = 0.001. . . . . . . . . . . . . . . . 26

4.3 Surface plot at M = N = 64, ε = 2−12, α = β = 0.01. . . . . . . . . . . . . . . . 27

4.4 Effect of the perturbation parameter ε at M = N = 64, α = 0.01 = β . . . . . . . . 27

4.5 Surface plot at M = N = 64, ε = 2−5, α = 0.4 = β . . . . . . . . . . . . . . . . . 28

4.6 Pointwise absolute errors at M = N = 64, α = 0.01 = β , ε = 2−10. . . . . . . . . 28

v



List of Tables

4.1 Maximum absolute errors for equal parameters α = β = 0.01. . . . . . . . . . . . 23

4.2 Maximum absolute errors for equal parameters α = β = 0.001. . . . . . . . . . . 23

4.3 Maximum absolute errors for different parameters α = 0.001 and β = 0.01. . . . . 24

4.4 Maximum absolute errors for equal parameters α = 0.01 and β = 0.001. . . . . . 24

4.5 Rate of convergences for equal parameters using Tables (4.1) and (4.2). . . . . . . 25

vi



Abstract

In this thesis, we presented a fitted mesh numerical method for solving singularly perturbed Burger-

Fisher equation. Since the problem is nonlinear, we apply quasi-linearizion technique on the non-

linear part of the equation. Then, the resulting linearized problem is discretized using an implicit

second-order finite difference approximation in the time direction on uniform mesh.The numerical

scheme formulated using both forward and backward finite difference methods are applied in the

space direction on a piecewise uniform Shishkin mesh.The error analysis has been established for

the method. As a perturbation parameter goes to small values, a boundary layer is produced in

the neighborhood of left lateral surface. Applicability of the proposed method is demonstrated by

numerical experiments.
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Chapter 1

Introduction

1.1 Background of the Study
Numerical analysis is a branch of mathematics concerned with theoretical foundations of numerical

algorithms for the solution of problems arising in science and engineering. In real life, we often

encounter many problems which are described by parameter dependent differential equations. The

behavior of the solutions of these types of differential equations depends on the magnitude of

the parameters. Nonlinear partial differential equations are important in most fields of science

and engineering. One of the nonlinear partial differential equations is Burger-Fisher equation.

Burgers-Fisher equation is a very important in fluid dynamic model and the study of this model has

been considered by many authors both for conceptual understanding of physical flows and testing

various numerical methods. Burgers- Fisher equation is a highly nonlinear equation because it is

a combination of reaction, convection and diffusion mechanisms, this equation is called Burgers-

Fisher because it has the properties of convective phenomenon from Burgers equation and having

diffusion transport as well as reactions kind of characteristics from Fisher equation.

Nonlinear partial differential equations are important in most fields of science and engineering.

One of the nonlinear partial differential equations is Burger-Fisher equation. To solve the Burger-

Fisher equation various classical numerical techniques were applied by different researchers, for

example, spectral collocation method by Javidi (2006), a compact finite difference method by Sari

(2010), collocation of cubic B-splines by Mittal (2015), direct discontinuous Galerkin method by
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Wei (2012), cubic B-spline quasi-interpolation by Zhu (2010), etc.

There exists a class of nonlinear partial differential equations in which the coefficient of the

highest order derivative term is very small. A member of this class is termed as singularly perturbed

nonlinear partial differential equation and the small coefficient specifying the problem is identified

as singular perturbation parameter ε(0 < ε << 1).

Burger-Fisher equation is singularly perturbation problem by multiplying the perturbation pa-

rameter ε(0 < ε << 1) in its highest spatial derivative. Due to the presence of boundary layer(s),

the above presented methods are in question and known to be inadequate to approximate the exact

solution. Therefore, the main purpose of this study is to formulate fitted mesh numerical method

for singularly perturbed Burger-Fisher equation.

1.2 Statement of the Problem
Kaushik (2007) and Kaushik (2008) presented the initial boundary value problem for the numer-

ical solution of singularly perturbed Burger-Huxley equation. Hybrid finite difference methods

for solving singularly perturbed modified Burgers and Burgers-Huxley equations was designed

(Kadalbajoo, 2010). Numerical study for the singularly perturbed generalized Burgers-Huxley

equation using a three-step Taylor-Galerkin finite element method was developed (Kumar, 2011).

Higher order numerical scheme for singularly perturbed Burger-Huxley equation was developed

(Jiwari, 2011). A singular perturbation approach to solve Burgers-Huxley equation via monotone

finite difference scheme on layer-adaptive mesh was developed (Gupta, 2011). Kamboj (2013)

and Liu (2020) presented the numerical solution for singularly perturbed Burger-Huxley equation.

All the aforementioned scholars proposed different numerical methods for singularly perturbed

Burgers-Huxley equation. The main purpose of this study is to develop fitted mesh numerical

method for solving singularly perturbed Burger-Fisher equation.

As a result, this study attempted to answer the following questions:

• How does the fitted mesh numerical method be described for solving singularly perturbed

Burger-Fisher equation?
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• To establish error analysis of the present schemes.

• How to check the accuracy of the proposed method using numerical example?

1.3 Objectives of the Study

1.3.1 General Objective

The general objective of this study is to formulate Fitted Mesh Numerical Method for Solving

Singularly Perturbed Burger-Fisher Equation.

1.3.2 Specific Objectives

The specific objectives of the present study are:

• To describe forward and backward finite difference methods for solving singularly perturbed

Burger-Fisher equation.

• To establish error analysis of the present schemes.

• To check the computational accuracy of the proposed methods using numerical experiments.

1.4 Significance of the Study
The outcomes of this study may have the following importance:

• Provide some background information for other researchers who work on this area.

• Help the graduate students to acquire research skills and scientific procedures.

• To provide the numerical methods in solving singularly perturbed Burger-Fisher equation.

1.5 Delimitation of the Study
This study is delimited to fitted mesh numerical method for solving singularly perturbed Burger-

Fisher equation (using forward and backward finite difference methods) of the form:

Lεu = ut +αuux− εuxx−β (1−u)u = 0, (x, t) ∈ D = Ωx×Ωt = (0,1)× (0,T ], (1.1)

3



subject to the initial-boundary conditions

u(x,0) = φ(x), x ∈Ω≡ (0,1),
u(0, t) = f (t), t ∈ (0,T ],

u(1, t) = g(t), t ∈ (0,T ],

(1.2)

where α, β ≥ 0 are small parameters and 0 < ε � 1 is the diffusion coefficient.

4



Chapter 2

Review of Related Literatures

2.1 Singular Perturbation Theory
Lundwing Prandtl was the first introduce the concept layer in 1904 at the Third International Con-

gruence of Mathematics in Heidelberg Germany. His hypothesis was in the setting of fluid dy-

namics, fluid adjacent to the boundary sticks to the edge in a thin boundary layer due friction but

this friction has no effect to the flow on the interior. The term singular perturbation appears to

have been first coined (Friedrichs and Wasow, 1946). Wasow continued to the contribute to the

area of asymptotic methods over many years and his book ” Asymptotic expansion for ordinary

differential equation ” Vasil’eva (1981), attracted much interest in the area of singular perturbed

boundary value problems. In Russia, mainly at Moscow State University, research activity on

singular perturbations for ordinary differential equations, originated and developed by Tikhonov

(1952) and his students, especially Vasil’eva (1981) continues to be vigorously pursued even today.

A brief survey for the historical development of singular perturbation problems is covered in the

recent book by (O’Malley, 1991) and (Roos et al., 2008). More precisely, a perturbation prob-

lem is problem that contains a small parameter ε , called perturbation parameter. If the solution

of the problem can be approximated by setting the value of the perturbation parameter equal to

zero, then the problem is called regular perturbation problem, otherwise it is called singular per-

turbation problem. That is, if it is impossible to approximate the solution by asymptotic expansion

as the perturbation parameter tends to zero, then the problem is called singular. Some numerical
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methods for solving singularly perturbed problems have been studied extensively in the literature.

Singularly perturbed differential equations are characterized by the presence of a small parameter

multiplying the highest-order derivatives. Such problems arise in many areas of applied mathemat-

ics and engineering. Among these are the Navier-Stokes equations of fluid flow at high Reynolds

number, mathematical models of liquid crystal materials and chemical reactions, control theory,

reaction-diffusion processes, quantum mechanics, and electrical networks. An overview of some

existence and uniqueness results and applications of singularly perturbed problems can be found

(Roos et al., 2008).

Very few researchers have proposed some numerical schemes to solve generalized Burger-

Fisher equation for ε = 1. Javidi (2011) gave numerical solution of generalized Burger-Fisher

equation for the case ε = 1 using spectral collocation method. Sari et al. (2010) proposed a com-

pact finite difference scheme for solving generalized Burger-Fisher equation. Zhu and Kang (2010)

used cubic B-splines quasi-interpolation to solve Burger-Fisher equation. Mittal et al. (2015)

proposed a numerical scheme based on cubic splines for solving generalized Burger-Fisher and

Burger-Huxley problems. Wei at al. (2012) proposed direct discontinuous Galerkin method to

solve singularly perturbed generalized Burger-Fisher equation for ε << 1. Since the problem un-

der consideration is singularly perturbed in nature, traditional finite element methods cannot be

relied to capture sharp boundary layers. Therefore, we need some special treatment to capture

these sharp boundary layers as ε → 0. Motivation of the present work is to propose an accurate

numerical method for capturing the boundary layers occurring in solution of singularly perturbed

Burger-Fisher equation.

2.2 Quasilinearzation Technique
The nonlinear partial differential equation is linearized around a nominal solution of the nonlinear

partial differential equation which satisfies the boundary conditions. Suppose u(k)(x) is the nominal

solution of the nonlinear partial differential equation. The quasilinearization process yields a se-

quence < u(k) > of linear equations. Bellman and Kalaba (1965) developed the quasilinearzation

technique which is used to reduce the given nonlinear boundary value problem into the corre-
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sponding sequence of linear boundary value problem. The quasilinearzation technique of reducing

nonlinear boundary value problem into a sequence of linear boundary value problem involves some

steps. First, we linearize the semi-linear ordinary differential equation around a nominal solution,

which satisfies the specified boundary conditions. Second, we solve a sequence of boundary value

problems in which the solution of the linear boundary value problem satisfies the specified bound-

ary conditions and is taken as the nominal profile for the linear boundary value problem. Quasilin-

earzation technique is used to linearize the original semi-linear singular perturbation problem into

a sequence of linear singular perturbation problems.

2.3 Numerical versus Analytical Methods
Suppose we have a differential equation and we want to find a solution of the differential equa-

tion. The best is when we can find out the exact solution using calculus, trigonometry and other

techniques. The techniques used for calculating the exact solution are known as analytic methods

because we used the analysis to figure it out. Analytical solution is continuous. The exact solution

is also referred to as a closed form solution or analytical solution. But this tends to work only for

simple differential equations with simple coefficients, but for higher order or non-linear differen-

tial equations with complex coefficient, it becomes very difficult to find exact solution. Therefore,

we need numerical methods for solving the equations. Numerical methods are commonly used for

solving mathematical problems that are formulated in science and engineering where it is difficult

or even impossible to obtain exact solutions. Numerical solution is discrete. Numerical methods,

on the other hand, can give an approximate solution to any equation.

2.4 Finite Difference Methods
Most problems cannot be solved analytically, henceforth finding good approximation solutions

using numerical methods will be very useful. From different classification of numerical methods

such as finite difference method, spectral method, finite element method, finite volume method,

spline method, finite difference method seems to be the simplest approach for the numerical solu-

tion of boundary value problems (Roos et al., 2008). Finite difference methods are widely used by

7



the scientific community and it is always a convenient choice for solving boundary value problems

because of their simplicity. In finite difference methods, derivatives appearing in the differential

equations are replaced by finite difference approximations obtained by Taylor series expansions at

the grid points. This gives a large algebraic system of equations to be solved by Thomas Algo-

rithm in place of the differential equation to give the solution value at the grid points and hence

the solution is obtained at grid points. Some of the finite difference methods include forward

approximation, backward approximation, central difference approximation.
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Chapter 3

Research Methodology

3.1 Study Area and Period
This study is conducted at Jimma University department of Mathematics from September 2020 to

August 2021.

3.2 Study Design
This study employed both documentary review design and experimental design.

3.3 Source of Informations
The relevant source of information for this study are books and published articles.

3.4 Mathematical Procedures
This study was conducted based on the following mathematical procedures

1. Defining the problem.

2. Applying the quasilinearization technique to linearize the equation.

3. Discretizing the problem with implicit second-order in time & fitted mesh methods in space.

4. Establishing error analysis for the developed schemes.

5. Writing MATLAB code for the developed schemes.

6. Validation of the schemes using numerical computations.

9



Chapter 4

Formulation of the Method, Error Analysis

and Numerical Computations

4.1 Formulation of the Method
In this chapter, we deal first with the quasilinearization technique and then time semi-discretization

was made and finally we derive the numerical scheme. In this study, we consider the following

singularly perturbed nonlinear Burger-Fisher equation with the initial-boundary conditions

Lεu(x, t)≡ut− εuxx +αuux−β (1−u)u = 0, (x, t) ∈ D = Ωx×Ωt = (0,1)× (0,T ], (4.1)


u(x,0) = ϕ(x), 0≤ x≤ 1,

u(0, t) = f (t), u(1, t) = g(t), 0≤ t ≤ T,
(4.2)

where ε is the perturbation parameter and the initial-boundary functions ϕ(x), f (t), g(t) are

smooth and bounded.

Re-writing Eq. (4.1) we obtain:

Lεu(x, t)≡ ut− εuxx = F(x, t,u,ux), (x, t) ∈ D = (0,1)× (0,T ], (4.3)

where F(x, t,u,ux) =−αuux +β (1−u)u is the nonlinear function of x, t, u and ux.

10



4.1.1 Quasilinearization Technique

The quasilinearization technique is the generalized Newton-Raphson-Kantorovich technique for

the nonlinear differential equation (Bellman and Kalaba, 1965). On expanding the nonlinear term

F(x, t,u,ux) using Taylor series up to first order, we have

F
(
x, t,u(i+1),u(i+1)

x
)∼=F

(
x, t,u(i),u(i)x

)
+
(
u(i+1)−u(i)

)
Fu

(x,t,u(i),u(i)x )

+
(
u(i+1)

x −u(i)x
)
Fux


(x,t,u(i),u(i)x )

+ · · ·
(4.4)

Substituting Eq. (4.4) into (4.3), we have

Lεu(i+1) ≡u(i+1)
t − εu(i+1)

xx = F
(
x, t,u(i),u(i)x

)
+
(
u(i+1)−u(i)

)
Fu

(x,t,u(i),u(i)x )

+
(
u(i+1)

x −u(i)x
)
Fux


(x,t,u(i),u(i)x )

+ · · · .
(4.5)

Simplifying Eq. (4.5), we have the following linearized differential equation of the form

Lεu(i+1) ≡
(
u(i+1)

t − εu(i+1)
xx +a(i)u(i+1)

x +b(i)u(i+1))(x, t) = f (i)(x, t), (4.6)

with the following initial-boundary conditions, respectively


u(i+1)(x,0) = ϕ(x), 0≤ x≤ 1,

u(i+1)(0, t) = f (t), u(i+1)(1, t) = g(t), 0≤ t ≤ T,
(4.7)

where f (i)(x, t)=F
(
x, t,u(i),u(i)x

)
−u(i)Fu


(x,t,u(i),u(i)x )

−u(i)x Fux


(x,t,u(i),u(i)x )

, a(i)(x, t)=−Fux


(x,t,u(i),u(i)x )

,

b(i)(x, t) =−Fu|(x,t,u(i),u(i)x )
. Hence Eq. (4.6)-(4.7) is linear for each u(i+1)(x, t). Starting with initial

approximation u(0)(x, t) = ϕ(x)exp(−ct) which satisfies the given initial condition and the con-

stant c is the combinations of the coefficients of boundary conditions, we solve problem (4.6)-(4.7)

for i = 0, that is, taking the first iteration. Therefore, Eq. (4.6)-(4.7) becomes

Lεu(1) ≡
(
u(1)t − εu(1)xx +a(0)u(1)x +b(0)u(1)

)
(x, t) = f (0)(x, t), (4.8)
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with the following the initial-boundary conditions


u(1)(x,0) = ϕ(x), 0≤ x≤ 1,

u(1)(0, t) = f (t), u(1)(1, t) = g(t), 0≤ t ≤ T,
(4.9)

where the coefficients and source functions are give as follows

a(0)(x, t) =−Fux


(x,t,u(0),u(0)x )

, b(0)(x, t) =−Fu|(x,t,u(0),u(0)x )
,

f (0)(x, t) = F
(
x, t,u(0),u(0)x

)
−u(0)Fu


(x,t,u(0),u(0)x )

−u(0)x Fux


(x,t,u(0),u(0)x )

.

4.1.2 Time Semi-discretization

We divide the time interval [0,T ] with uniform step length ∆t. Hence, the interval [0,T ] is parti-

tioned into N equal sub-intervals with each nodal points satisfying 0 = t0 < t1 < · · ·< tN−1 < tN =

T. The time nodal points are generated by tn = n∆t, ∆t = T
N , n = 0, · · · ,N, where N denotes the

number of mesh intervals. Re-writing Eq. (4.8) at the nodal point (x, tn+ 1
2
), we have

LN
ε un+ 1

2 (x)≡u
n+ 1

2
t (x)− εu

n+ 1
2

xx (x)+ pn+ 1
2 (x)u

n+ 1
2

x (x)+qn+ 1
2 (x)un+ 1

2 (x) = rn+ 1
2 (x), (4.10)

where pn+ 1
2 (x) = a(0)(x, tn+ 1

2
), qn+ 1

2 (x) = b(0)(x, tn+ 1
2
), rn+ 1

2 (x) = f (0)(x, tn+ 1
2
) and u = u(1).

From Taylor series expansion, we have

un+1(x) = un+ 1
2 (x)+

∆t
2

u
n+ 1

2
t +

∆t2

8
u

n+ 1
2

tt +O(∆t3) (4.11)

un(x) = un+ 1
2 (x)− ∆t

2
u

n+ 1
2

t +
∆t2

8
u

n+ 1
2

tt +O(∆t3) (4.12)

From Eqs. (4.11) and (4.12), we obtain

u
n+ 1

2
t (x) =

un+1(x)−un(x)
∆t

+T E, (4.13)
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where T E = −∆t2

24 u
n+ 1

2
ttt . This truncation error shows that the time semi-discretization is bounded

and the global error estimate is given by

‖E‖∞ ≤C∆t2, (4.14)

for the arbitrary constant C = 1
24 |u

n+ 1
2

ttt |. We conclude that time semi-discretization is second-order

uniformly convergent. Taking the averages of all the terms in Eq. (4.10) except the time derivative

term, we have

−εu
n+ 1

2
xx (x)+ pn+ 1

2 (x)u
n+ 1

2
x (x)+qn+ 1

2 (x)un+ 1
2 (x)− rn+ 1

2 (x) =
1
2

[
Ln+1

ε +Ln
ε − (rn+1(x)+ rn(x))

]
(4.15)

where Ln+1
ε =−εun+1

xx (x)+ pn+1(x)un+1
x (x)+qn+1(x)un+1(x) and Ln

ε =−εun
xx(x)+ pn(x)un

x(x)+

qn(x)un(x). Putting Eqs. (4.13) and (4.15) into Eq. (4.10) and rearranging gives

L∆t
ε un+1(x)≡−εun+1

xx (x)+ pn+1(x)un+1
x (x)+ cn+1(x)un+1(x) = zn+1(x), (4.16)

subject to the initial-boundary conditions, respectively


u(x,0) = ϕ(x), 0≤ x≤ 1,

u(0, tn+1) = f (t), u(1, tn+1) = g(t), 0≤ t ≤ T,
(4.17)

where cn+1(x) = qn+1(x)+ 2
∆t , zn+1(x) = εun

xx(x)− pn(x)un
x(x)− (qn(x)− 2

∆t )u
n(x)+ rn+1(x)+

rn(x). We assume that the functions pn+1(x) and cn+1(x) are sufficiently smooth functions satis-

fying the conditions pn+1(x) ≤ α < 0, cn+1(x) ≥ c0 > 0. The differential operator in Eq. (4.16)

satisfies the following continuous maximum principle.

Lemma 4.1 Assume Φn+1(x) ∈C2(D̄) be a smooth function such that Φn+1(0)≥ 0, Φn+1(1)≥ 0.

Then, L∆t
ε Φn+1(x)≤ 0, ∀x implies that Φn+1(x)≥ 0, ∀x.
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Proof: Let x∗ be such that Φn+1(x∗) = min
x∈Ω̄

Φn+1(x) and assume that Φn+1(x∗)< 0. It is clear that

x∗ /∈ {0,1}. Therefore, we have (Φn+1)x = 0 and (Φn+1)xx ≥ 0. Then,

L∆t
ε Φ

n+1(x∗) =−εΦ
n+1
xx (x∗)+ pn+1(x∗)Φn+1

x (x∗)+ cn+1(x∗)Φn+1(x∗)> 0,

which contradicts. It follows that Φn+1(x∗)≥ 0 and thus Φn+1(x)≥ 0, ∀x ∈ D̄. 2

Bounds for the solution of the semi-discretized problem in Eq. (4.7) and its derivatives are estab-

lished in the following theorem.

Theorem 4.2 The bounds of the solution un+1(x) and its derivatives satisfy

∥∥∥∥∂ jun+1(x)
∂x j

∥∥∥∥
D̄
≤C

(
1+ ε

− j exp(
−αx

ε
)

)
, j = 1,2,3,

where the constant C is independent of ε .

Proof: For the proof see (Stynes, 1988). 2

We decompose the solution as the sum un+1(x) = vn+1(x)+wn+1(x), where vn+1(x) is the solution

of the regular component and wn+1(x) is the singular component solution.

Theorem 4.3 The bound of the regular component vn+1(x) and its derivatives satisfies

|vn+1
( j) (x)|D̄ ≤C

(
1+ ε

2− j), j = 0,1,2,3,

and the bound of the singular component satisfies and its derivatives are given, respectively

|wn+1(x)|D̄ ≤Ce−αx/ε , ∀x ∈ D̄,

|wn+1
( j) (x)|D̄ ≤Cε

− je−αx/ε , j = 1,2,3,

where C is a constant independent of ε and mesh points.

Proof: The detailed and descriptive proof of this theorem is established (Cai, 2007). 2
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4.1.3 Spatial Discretization

To discretize in the spatial direction, we use Shishkin mesh which will condense large number of

mesh points in the boundary layer region as ε→ 0. Then, our main target is to make fine mesh in the

layer region and coarse everywhere else. Let M be a positive integer such that M = 2r with r≥ 3.

On Shishkin mesh, the spatial interval x ∈ [0,1] is partitioned into two sub-intervals [0,τ] and [τ,1]

with uniform mesh elements of M
2 . The transition parameter τ is defined as τ = min

{1
2 ,2ε lnM

}
.

The spatial mesh points is given by

xm =


mh, if m = 0, · · · ,M/2,

τ +(m− M
2 )H, if m = M/2+1, · · · ,M,

where the spatial mesh widths for m = 0,1,2, · · · ,M is given by hm = xm+1− xm. Here h = 2τ

M , for

m = 1, · · · ,M/2 and H = 2(1− τ)/M, for m = M/2+ 1, · · · ,M are the spatial step size in [0,τ]

and [τ,1], respectively. We use ĥm = hm +hm+1 for m = 1,2, · · · ,M−1. When τ = 1
2 , the mesh is

uniform and the analysis proceed in the classical way. Throughout the error analysis, we assume

τ = 2ε lnM, in which case the mesh is non-uniform.

4.1.4 Scheme I

To develop the upwind finite difference schemes, we use the following finite difference operators

D+un+1
m =

un+1
m+1−un+1

m

hm+1
, D−un+1

m =
un+1

m −un+1
m−1

hm

We fully discretize Eqs. (4.16)-(4.17) using the forward finite difference operator for first derivative

for m = 1,2, · · · ,M−1 and n = 0,1, · · · ,N as follows

LM,∆t
ε un+1

m ≡ −2ε

ĥm
(D+

x un+1
m −D−x un+1

m )+ pn+1
m D+

x un+1
m + cn+1

m un+1
m

=
2ε

ĥm
(D+

x un
m−D−x un

m)− pn
mD+

x un
m− (qn

m−
2
∆t

)un
m + rn+1

m + rn
m,

(4.18)
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with the following fully discrete intitial-boundary conditions


u0

m = ϕ(xm), xm ∈ [0,1],

un+1
0 = f (tn+1), un+1

M = g(tn+1), tn+1 ∈ [0,T ],
(4.19)

where pn+1(xm) = pn+1
m , qn+1(xm) = qn+1

m , rn+1
m = rn+1(xm).

Now, using D+un+1
m =

un+1
m+1−un+1

m
hm+1

for the first derivative term, we have

−2ε

ĥm

(
un+1

m+1−un+1
m

hm+1
−

un+1
m −un+1

m−1

hm

)
+ pn+1

m
un+1

m+1−un+1
m

hm+1
+ cn+1

m un+1
m

=
2ε

ĥm

(
un

m+1−un
m

hm+1
−

un
m−un

m−1

hm

)
− pn

m
un

m+1−un
m

hm+1
− (qn

m−
2
∆t

)un
m + rn+1

m + rn
m,

(4.20)

Equivalently, Eq. (4.20) can be re-written as the three term recurrence relation of the form

u0
m = ϕ(xm), m = 0,1, · · · ,M,

Emun+1
m−1 +Fmun+1

m +Gmun+1
m+1 = Hn

m, m = 1,2, · · · ,M−1, n = 1, · · · ,N−1,

un+1
0 = f (tn+1), un+1

M = g(tn+1), tn+1 ∈ [0,T ],

(4.21)

where the coefficients are given by

Em =
−2ε

hmĥm
, Fm =

2ε

hmhm+1
− pn+1

m
hm+1

+qn+1
m +

2
∆t

, Gm =
−2ε

hm+1ĥm
+

pn+1
m

hm+1
,

Hn
m =rn+1

m + rn
m +

2ε

ĥm

(
un

m+1−un
m

hm+1
−

un
m−un

m−1

hm

)
− pn

m
un

m+1−un
m

hm+1
− (qn

m−
2
∆t

)un
m.
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4.1.5 Scheme II

We fully discretize Eqs. (4.16)-(4.17) using the backward finite difference operator for first deriva-

tive for m = 1,2, · · · ,M−1 and n = 0,1, · · · ,N as follows

LM,∆t
ε un+1

m ≡ −2ε

ĥm
(D+

x un+1
m −D−x un+1

m )+ pn+1
m D−x un+1

m + cn+1
m un+1

m

=
2ε

ĥm
(D+

x un
m−D−x un

m)− pn
mD−x un

m− (qn
m−

2
∆t

)un
m + rn+1

m + rn
m,

(4.22)

where pn+1(xm) = pn+1
m , qn+1(xm) = qn+1

m , rn+1
m = rn+1(xm). Now, using D−un+1

m =
un+1

m −un+1
m−1

hm
for

the first derivative term, we have

−2ε

ĥm

(
un+1

m+1−un+1
m

hm+1
−

un+1
m −un+1

m−1

hm

)
+ pn+1

m
un+1

m −un+1
m−1

hm
+ cn+1

m un+1
m

=
2ε

ĥm

(
un

m+1−un
m

hm+1
−

un
m−un

m−1

hm

)
− pn

m
un

m−un
m−1

hm
− (qn

m−
2
∆t

)un
m + rn+1

m + rn
m,

(4.23)

Similarly, Eq. (4.23) can be re-written as the three term recurrence relation of the form

u0
m = ϕ(xm), m = 0,1, · · · ,M,

Emun+1
m−1 +Fmun+1

m +Gmun+1
m+1 = Hn

m, m = 1,2, · · · ,M−1, n = 1, · · · ,N−1,

un+1
0 = f (tn+1), un+1

M = g(tn+1), tn+1 ∈ [0,T ],

(4.24)

where the coefficients are given by

Em =
−2ε

hmĥm
− pn+1

m
hm

, Fm =
2ε

hmhm+1
+

pn+1
m
hm

+qn+1
m +

2
∆t

, Gm =
−2ε

hm+1ĥm
,

Hn
m =rn+1

m + rn
m +

2ε

ĥm

(
un

m+1−un
m

hm+1
−

un
m−un

m−1

hm

)
− pn

m
un

m−un
m−1

hm
− (qn

m−
2
∆t

)un
m.

4.2 Error Analysis
In this section, we establish error estimate for the discrete forward scheme by decomposing the

numerical solution un
m. We have the following discrete maximum principle.
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Lemma 4.4 Assume that for any mesh function Z(xm, tn) defined on D̄M,∆t such that if Z(x0, tn)≥ 0,

Z(xM, tn)≥ 0 and LM,∆t
ε Z(xm, tn)≥ 0, ∀(xm, tn) ∈ D, then Z(xm, tn)≥ 0, (xm, tn) ∈ D̄.

The numerical solution has the following decomposition

uM,∆t(xm, tn) = vM,∆t(xm, tn)+wM,∆t(xm, tn), ∀(xm, tn) ∈ D̄,

where the regular component vM,∆t(xm, tn) and singular part wM,∆t(xm, tn) satisfies

LM,∆t
ε vM,∆t(xm, tn) = H(xm, tn), ∀(xm, tn) ∈ D,

vM,∆t(xm, tn) = v(xm, tn),

LM,∆t
ε wM,∆t(xm, tn) = 0, ∀(xm, tn) ∈ D,

wM,∆t(xm, tn) = w(xm, tn).

Therefore, we have

(uM,∆t−u)(xm, tn) = (vM,∆t− v)(xm, tn)+(wM,∆t−w)(xm, tn), ∀(xm, tn) ∈ D̄.

Now, we estimate the error bound in the regular and singular components separately.

Theorem 4.5 The error in the regular component vM,∆t(xm, tn) satisfies

|(vM,∆t− v)(xm, tn)| ≤C(M−1 +∆t2), m = 0,1, · · · ,M, n∆t ≤ T.

Proof: The estimate of local truncation error is obtained from the differential and difference equa-

tions as follows

LM,∆t
ε (vM,∆t− v)(xm, tn) = f −LM,∆t

ε

= (Lε −LM,∆t
ε )v(xm, tn)

=

[
− ε

(
∂ 2

∂x2 −δ
2
x

)
+ pn+1

m

(
∂

∂x
−D+

x

)
−
(

∂

∂ t
−D−t

)]
v(xm, tn).
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It follows that the truncation error associated with the regular component v of the solution ū satisfies

the following estimate

|LM,∆t
ε (vM,∆t− v)(xm, tn)| ≤

ε

3
(xm+1− xm−1)

∥∥∥∥∂ 3v
∂x3

∥∥∥∥
D̄
+

pn+1
m
2

(xm+1− xm)

∥∥∥∥∂ 2v
∂x2

∥∥∥∥
D̄
+

∆t2

24

∥∥∥∥∂ 3v
∂ t3

∥∥∥∥
D̄
.

Since xm+1−xm−1 ≤ 2M−1, xm+1−xm ≤M−1, ∆t = T
N and using the bounds on the derivatives of

v given in Theorem 4.3, we get

|LM,∆t
ε (vM,∆t− v)(xm, tn)| ≤C(M−1 +∆t2)≤C(εM−1(1+ ε

−1)+M−1 +∆t2),

≤C(M−1(ε +1)+M−1 +∆t2),

≤C(M−1 +∆t2), since ε << 1,

Application of the discrete maximum principle to the mesh function (vM,∆t − v)(xm, tn) yields to

the estimate

|(vM,∆t− v)(xm, tn)| ≤C(M−1 +∆t2), (xm, tn) ∈ D,

2

The following technical results will be used to prove ε-uniform convergence for singular compo-

nent.

Lemma 4.6 Let ψ be a smooth function defined on [0,1]. Then the following estimates for the

truncation error hold true

|LM,N
ε ψ−Lεψ| ≤C

[
ε

∫ xm+1

xm−1

|ψ ′′′(x)|dx+
∫ xm

xm−1

|ψ ′′(x)|dx
]
,

for 0 < m < M.

Lemma 4.7 For m = 0,1, · · · ,M, define the mesh function

Sm =
m

∏
j=1

(
1+

αh j

ε

)−1

, m = 1,2, · · · ,M,
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with the usual convection that S0 = 1 for m = 0. Then, the following estimate hold

LM,∆t
ε Sm ≥

CSm

max{ε,hm+1}
, for 1≤ m≤M−1.

Lemma 4.8 For each m and 0 < α < m
2 , the mesh function Sn

m(α) satisfies the following inequality

exp
(
−αxm

ε

)
≤ Sn

m(α), for all 0≤ m≤M,

and on Shishkin mesh, mesh function Sn
m(α) also satisfies the following inequality

Sn
m(α)≤CM−α ln2 M, 1≤ i≤M−1.

Theorem 4.9 Let wM,∆t be the numerical solution of the homogeneous problem and w be the bound

in Theorem (4.3). The error estimate in the singular component wM,∆t(xm, tn) satisfies

|(wM,∆t−w)(xm, tn)| ≤C(M−1 ln2 M+∆t2), m = 1, · · · ,M, n∆t ≤ T.

Proof: To prove this theorem, consider the error in outer region [σ ,1]× (0,T ]. In this case, we

consider the following mesh functions

Ψ
±(xm, tn) =CSn

m(α)±wM,∆t(xm, tn), ∀(xm, tn) ∈Ω
M,∆t ,

where C = |w(x0, tn)|. We have Ψ±(x0, tn) =CSn
0(α)±w(x0, tn) =C±w(x0, tn)≥ 0, Ψ±(xm, t0) =

CS0
m(α)≥ 0, Ψ±(xM, tn) =CSn

M(α)≥ 0,

LM,∆t
ε Ψ±(xm, tn) = CLM,∆t

ε Sn
m(α)± LM,∆t

ε w(xm, tn) = CLM,∆t
ε Sn

m(α) ≥ 0. Now, using the discrete

minimum principle, we have

|wM,∆t(xm, tn)| ≤CSn
m(α) =C

M

∏
j=m+1

(
1+

αh j

ε

)−1

, m = 0, · · · ,M,n∆t ≤ T,
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Using triangle inequality and the bound of singular component, we have

|(wM,∆t−w)(xm, tn)| ≤ |wM,∆t(xm, tn)|+ |w(xm, tn)|,

≤C
M

∏
j=m+1

(
1+

αh j

ε

)−1

+Ce−
αxm

ε ,

≤C
M

∏
j=m+1

(
1+

αh j

ε

)−1

=CSn
m(α).

With the choice of ρ = 1 and using Eq. (4.12), we get the following error bound in the outer layer

region:

|(wM,∆t−w)(xm, tn)| ≤C(M−1 ln2 M+∆t2), 1≤ m≤M−1,n∆t ≤ T. (4.25)

Considering the inner region (0,σ ]× (0,T ], the truncation error becomes

|LM,∆t
ε (wM,∆t−w)(xm, tn)| ≤C

[
ε

∫ xm+1

xm−1

|w′′′(x)|dx+
∫ xm

xm−1

|w′′(x)|dx+∆t2
]
,

≤C
[hm

ε3

∫ xm+1

xm−1

exp
(
− αx

ε

)
dx+∆t2],

≤C
[ h

mε
exp
(−αxm

ε

){
exp
(αh

ε

)
− exp

(−α

ε

)}
+∆t2],

≤C
[ h

αε
exp
(−αxm

ε

)
sinh

(αh
ε

)
+∆t2],

We assume sinh(ξ )≤Cξ , for 0≤ ξ ≤ 1. So, sinh
(

αh
ε

)
≤ Cαh

ε
. Thus, error estimate reduces to

|LM,∆t
ε (wM,∆t−w)(xm, tn)≤C

[h2

ε2 exp
(−αxm

ε

))
+∆t2],

≤C
(
(M−2 ln2 M)Sn

m(α)+∆t2)
≤C

(
M−1 ln2 M+∆t2).

(4.26)

From equation 4.26 and the discrete maximum principle, we obtain the error estimate at the singu-

lar component

|(wM,∆t−w)(xm, tn)| ≤C(M−1 ln2 M+∆t2). 2

Theorem 4.10 Let u(x, t) be the continuous solution of problem in Eq. (4.1) and uM,∆t(xm, tn) be
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the solution of the totally discrete problem in Eq. (4.21). Then, we have the following error bound

‖(uM,∆t−u)(xm, tn)‖D̄M,∆t ≤C
(
M−1 ln2 M+∆t2), m = 1, · · · ,M, n∆t ≤ T,

where C is a constant independent of ε and the mesh parameters.

Proof: The proof follows from Theorem (4.5) and Theorem (4.9). 2

A very similar techniques establish the error estimate for the discrete backward scheme.

4.3 Numerical Computations
To check the applicability of the proposed method, numerical experiments were made for our

problem. Since the test example has the exact solution, absolute errors and rate of convergences

are computed at the point (xm, tn) for different parameter values α and β by

eM,∆t
ε = max

0≤m≤M; t∈[0,T ]

∣∣u(x, t)−u(xm, tn)
∣∣, rM,∆t

ε = log2
( eM,∆t

ε

e2M,∆t/2
ε

)
.

where u(x, t) is the exact solution and u(xm, tn) is the numerical solution.

Example 4.1 Consider the following singularly perturbed Burger-Fisher equation



ut− εuxx +αuux−β (1−u)u = 0, (x, t) ∈ (0,1)× (0,1],

u(x,0) = 1
2 +

1
2 tanh(θ1x), x ∈ [0,1],

u(0, t) = 1
2 +

1
2 tanh(−θ1θ2t), t ∈ [0,1],

u(1, t) = 1
2 +

1
2 tanh(θ1−θ1θ2t), t ∈ [0,1].

where θ1 =− α

4ε
and θ2 =

α

2 + 2εβ

α
, the exact solution is given by

u(x, t) =
1
2
+

1
2

tanh(θ1x−θ1θ2t).
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Table 4.1: Maximum absolute errors for equal parameters α = β = 0.01.

ε ↓ M = N = 16 32 64 128 256
Forward

2−4 4.4040e-09 2.1449e-09 1.0512e-09 5.0731e-10 2.3788e-10
2−6 7.1593e-07 3.4246e-07 1.6507e-07 7.9576e-08 3.8294e-08
2−8 2.7655e-05 1.3121e-05 6.3625e-06 3.1224e-06 1.5403e-06
2−10 5.4252e-04 2.3595e-04 1.1028e-04 5.2468e-05 2.5522e-05
2−12 8.7337e-04 3.7502e-03 1.9697e-03 8.9009e-04 4.0935e-04

Backward
2−4 9.7359e-09 2.6592e-09 1.0850e-09 5.6110e-10 2.9664e-10
2−6 6.2790e-07 3.2227e-07 1.6115e-07 7.9636e-08 3.9295e-08
2−8 2.2361e-05 1.1843e-05 6.0578e-06 3.0537e-06 1.5305e-06
2−10 2.3502e-04 1.5836e-04 8.8981e-05 4.7287e-05 2.4305e-05
2−12 1.2545e-03 9.0584e-04 8.9662e-04 5.8946e-04 2.4322e-04

Table 4.2: Maximum absolute errors for equal parameters α = β = 0.001.

ε ↓ M = N = 16 32 64 128 256
Forward

2−4 6.6357e-12 5.8453e-13 1.1213e-13 5.5678e-14 2.8422e-14
2−6 4.7729e-10 1.2204e-10 2.9069e-11 9.1598e-12 4.4463e-12
2−8 1.1379e-08 3.2471e-09 1.5432e-09 7.6424e-10 3.7898e-10
2−10 3.4355e-07 1.7010e-07 8.4676e-08 4.2158e-08 2.0994e-08
2−12 7.6718e-06 3.5673e-06 1.7148e-06 8.4045e-07 4.1589e-07

Backward
2−4 7.2666e-12 9.4219e-13 1.0719e-13 5.4567e-14 2.6756e-14
2−6 4.9269e-10 1.3152e-10 3.4603e-11 9.3154e-12 4.4351e-12
2−8 1.1661e-08 3.4261e-09 1.5026e-09 7.5439e-10 3.7676e-10
2−10 3.0012e-07 1.5911e-07 8.1954e-08 4.1480e-08 2.0828e-08
2−12 5.4210e-06 3.0166e-06 1.5783e-06 8.0629e-07 3.9612e-07
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Table 4.3: Maximum absolute errors for different parameters α = 0.001 and β = 0.01.

ε ↓ M = N = 16 32 64 128 256
Forward

2−4 3.2477e-11 8.3912e-12 2.2081e-12 5.3324e-13 1.1824e-13
2−6 4.6181e-10 1.1956e-10 2.9387e-11 6.8362e-12 2.0253e-12
2−8 1.1500e-08 3.3037e-09 1.4273e-09 6.7683e-10 3.0627e-10
2−10 3.4113e-07 1.6851e-07 8.3527e-08 4.1220e-08 2.0163e-08
2−12 7.6776e-06 3.5680e-06 1.7152e-06 8.3970e-07 4.1469e-07

Backward
2−4 3.2687e-11 8.5130e-12 2.2827e-12 5.7176e-13 1.3989e-13
2−6 4.6406e-10 1.2166e-10 3.0926e-11 9.3012e-12 6.0622e-12
2−8 1.1619e-08 3.3961e-09 1.4971e-09 7.8225e-10 4.2054e-10
2−10 2.9889e-07 1.5886e-07 8.2236e-08 4.1984e-08 2.1442e-08
2−12 5.4328e-06 3.0217e-06 1.5810e-06 8.0851e-07 4.0923e-07

Table 4.4: Maximum absolute errors for equal parameters α = 0.01 and β = 0.001.

ε ↓ M = N = 16 32 64 128 256
Forward

2−4 4.9495e-09 2.4182e-09 1.1985e-09 5.9630e-10 2.9727e-10
2−6 7.2752e-07 3.4847e-07 1.6840e-07 8.1515e-08 3.9561e-08
2−8 2.7630e-05 1.3114e-05 6.3620e-06 3.1238e-06 1.5433e-06
2−10 5.4241e-04 2.3609e-04 1.1019e-04 5.2449e-05 2.5529e-05
2−12 8.5624e-04 3.7280e-03 1.9704e-03 8.8832e-04 4.0883e-04

Backward
2−4 1.0220e-08 2.9091e-09 1.1768e-09 5.9145e-10 2.9662e-10
2−6 6.3836e-07 3.2704e-07 1.6323e-07 8.0321e-08 3.9307e-08
2−8 2.2357e-05 1.1825e-05 6.0478e-06 3.0469e-06 1.5248e-06
2−10 2.3455e-04 1.5820e-04 8.8814e-05 4.7205e-05 2.4255e-05
2−12 1.2558e-03 9.1016e-04 8.9533e-04 5.8916e-04 3.3412e-04

4.3.1 Discussions

Computational results in Tables (4.1) and Table (4.2) confirms that the present method gives more

accurate results for the Example (4.1). From these table of values, we observe that when the value

of parameters is small, we obtain small errors as demonstrated in Table (4.2) with the comparison

in Table (4.1). As demonstrated in Tables (4.3) and (4.4), when α < β and α > β , we compared the

maximum absolute errors using the proposed schemes. Table (4.5) shows the rate of convergences

for different parameter values using Table values (4.1) and (4.2). Numerical solution using surface
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Table 4.5: Rate of convergences for equal parameters using Tables (4.1) and (4.2).

α = β = 0.01 α = β = 0.001

ε ↓ 16 32 64 128 16 32 64 128

Forward
2−4 1.0379 1.0289 1.0511 1.0926 3.5049 2.3821 1.0391 0.9701
2−6 1.0639 1.0529 1.0527 1.0552 1.9675 2.0698 1.6661 1.0427
2−8 1.0757 1.0442 1.0269 1.0194 1.7671 1.1891 0.9941 1.0017
2−10 1.2012 1.0973 1.0717 1.0397 1.0141 1.0064 1.0061 1.0058
2−12 2.1023 0.9290 1.1460 1.1206 1.1047 1.0568 1.0288 1.0150

Backward
2−4 1.8723 1.2933 0.9514 0.9195 2.9472 3.1358 0.9741 1.0282
2−6 0.9623 0.9999 1.0169 1.0191 1.9054 1.9263 1.8932 1.0707
2−8 0.9170 0.9672 0.9882 0.9966 1.7671 1.1891 0.9941 1.0017
2−10 0.5696 0.8316 0.9121 0.9602 0.9155 0.9571 0.9824 0.9939
2−12 0.4698 0.0148 0.6051 1.2771 0.8456 0.9346 0.9690 1.0254

plot for Example (4.1) is plotted in Figure (4.1)-Figure (4.3). From the graphs plotted in Figures

(4.1)-(4.5) for Example (4.1), we conclude that the problem (4.1) has boundary layer near x = 0.

In Figure (4.4), the behavior of singular perturbation parameter ε has been depicted as ε→ 0. The

solution plots have been drawn for various values of ε . In this plot, it is very clear that as singular

perturbation parameter gets smaller and smaller, sharper boundary layers appear in the solution and

the proposed numerical scheme is efficient enough to capture the boundary layer near the boundary

x = 0. Figure (4.5) depicts the comparison of exact and numerical solution profile for reasonable

values of parameters. Figure (4.6) shows that the stated problem has the left boundary layer so that

maximum absolute errors exists in the layer region. From all the Figures, we can easily see that

the problem has left boundary layer which confirms the theoretical findings.
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Figure 4.1: Surface plot at M = N = 64, ε = 2−10, α = β = 0.01.
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Figure 4.2: Surface plot at M = N = 64, ε = 2−8, α = β = 0.001.
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Figure 4.3: Surface plot at M = N = 64, ε = 2−12, α = β = 0.01.
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(a) ε = 2−9, ε = 2−11 and ε = 2−13.
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(b) ε = 2−10, ε = 2−12 and ε = 2−14.

Figure 4.4: Effect of the perturbation parameter ε at M = N = 64, α = 0.01 = β .
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Figure 4.5: Surface plot at M = N = 64, ε = 2−5, α = 0.4 = β .
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Figure 4.6: Pointwise absolute errors at M = N = 64, α = 0.01 = β , ε = 2−10.
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Chapter 5

Conclusion and Future Scope

5.1 Conclusion
In this thesis, we proposed more accurate numerical scheme for solving singularly perturbed

Burger-Fisher equation based on Shishkin mesh in the finite difference framework. Since Burger-

Fisher equation is a non-linear problem, quasilinearization process has been used to tackle the

nonlinearity occurring in the problem. Time discretization has been performed using implicit

second-order finite difference approximation. Then spatial discretization has been carried out us-

ing forward and backward finite difference methods based on a piecewise uniform Shishkin mesh.

The convergence analysis of the proposed numerical scheme has been discussed. At the end, it has

been shown numerically that the proposed method is effective for capturing sharp boundary layers

arising in the solution as singular perturbation parameter ε → 0.

5.2 Scope for Future Work
In the present thesis, the forward and backward finite difference methods are developed for solving

singularly perturbed nonlinear Burger-Fisher equation. With the help of the techniques presented

in this thesis, we may construct other more accurate numerical methods for Burger-Fisher equation

and other non-linear problems.
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