

JIMMA UNIVERSITY JIMMA INSTITUTE OF TECHNOLOGY SCHOOL OF GRADUATES STUDIES FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING HIGHWAY ENGINEERING STREAM COMPARATIVE STUDY ON THE ENGINEERING PROPERTY OF GROUNDNUT SHELL ASH, COAL ASH AND BAMBOO FIBER STABILIZED EXPANSIVE SUBGRADE SOIL: A CASE OF GAMBELLA TOWN

A Thesis Submitted to the School of Graduate Studies of Jimma University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering (Highway Engineering)

By: DAWIT SAKATA

May, 2021 Jimma, Ethiopia

JIMMA UNIVERSITY JIMMA INSTITUTE OF TECHNOLOGY SCHOOL OF GRADUATES STUDIES FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING HIGHWAY ENGINEERING STREAM COMPARATIVE STUDY ON THE ENGINEERING PROPERTY OF GROUNDNUT SHELL ASH, COAL ASH AND BAMBOO FIBER STABILIZED EXPANSIVE SUBGRADE SOIL: A CASE OF GAMBELLA TOWN

A Thesis Submitted to the School of Graduate Studies of Jimma University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering (Highway Engineering)

By: DAWIT SAKATA

Advisor: Eng. Elmer C. Agon (Asso. Prof) Co- Advisor: Eng. Melka Amensa (MSc)

> May, 2021 Jimma, Ethiopia

DECLARATION

I, hereby declare that the work which is being presented in this Research Study entitles "COMPARATIVE STUDY ON THE ENGINEERING PROPERTY OF GROUNDNUT SHELL ASH, COAL ASH AND BAMBOO FIBER STABILIZED EXPANSIVE SUBGRADE SOIL" is original work of my own, and It has not been presented for a degree in any other university.

Dawit Sakata	pulles	March 28, 2021
Student	Signature	Date
This Research has been submitted supervisors.	l for examination with our ap	pproval as university
Eng. Elmer C. Agon (Asso. Prof)		March 28, 2021
Advisor	Signature	Date
Eng. Melka Amensa (MSc)	e P	March 28, 2021

Eng. Melka Amensa (MSc)

Co-advisor

Signature

Date

ACKNOWLEDGEMENTS

First of all, I would like to thank the Almighty God for giving me strength to endure the challenges in my quest to complete this research.

Next, I would like to thank my main advisor Eng. Elmer C. Agon (Asso. Prof) and coadvisor Eng. Melka Amensa (MSc) for their patience advises throughout the process of completing this research and thankful the Ethiopian Road Authority (ERA), for its kind support and sponsorship of my study program for MSc. and to all my lecturers who have taught me in Jimma University, Jimma Institute of Technology, thank you for all the knowledge you impart.

Also I would like to extend my sincere thanks to Mr. Oluma Gudina, Behailu Yigzaw, Dejene Dereje, Eyael Tessema, Sakata Abdeta, Eyuel Yosef and all other peoples for their guidance and great effort on showing the directions of the research and on shearing their idea on different problems and to all my friends who shares their ideas.

Last but not least, my heartfelt gratitude goes to those who assisted me this research work to reach final, particularly my beloved family for their unreserved thesis and encouragement throughout my journey

ABSTRACT

Construction and subsequent maintenance of pavements in good condition has become quite problematic especially in areas where soft or expansive soils are available along the selected route. To solve this problem, soil improvement is necessary because it not only lowers the construction cost (compares with lime, cement etc) but also minimize the risk of any damage of structure later on. The role of groundnut shell ash, coal ash and bamboo fiber in improving the characteristics of expansive sub grade material is analyzed. Generally stabilization of expansive soil using industrial and agricultural wastes is economical and safe for environment. To realize the desired objective a purposive sampling techniques which is non-probability method was adopted. Two expansive subgrade soils were taken for the study by observation and free swell index tests at depth of 1.5m to remove organic matters.

The general objective of this research is to compare the engineering properties of groundnut shell ash, coal ash and bamboo fiber stabilized expansive subgrade soil. The preliminary investigation of the soil shows that it belongs to A-7-5 class of soil in AASHTO and CH in USCS. The BD soil sample has plastic index 49.44 %, free swell index 80 %, linear shrinkage 12.33% and CBR value 2.2%. In addition, the MS soil sample has plastic index 55.86%, free swell index 85%, linear shrinkage 14.02% and CBR value 1.6%. Since both the given soil sample before any stabilizers are added was very high expansive according to their plasticity index and CBR value as comparing with standards and specifications. The soil sample stabilized with different percentages of coal ash ranging from 0%-50% at an interval of 10%, bamboo fiber (1%, 1.5%, 2%, 2.5%, 3%) and groundnut shell ash(2%, 4%, 6%, 8% & 10%).

The analysis of the result shows that (8% GSA, 40% CA and 2.5% BF) was an optimum ratio which achieved by most geotechnical parameters of the study. Comparatively it is observed that Coal ash is effectively improving the engineering property of expansive subgrade soil better than groundnut shell ash and bamboo fiber. The addition of those additives reduces LL, PI, CBR Swell and the optimum moisture content with an increase in PL, MDD & CBR with an increase of additives. A considerable amount of cost savings is also possible when the expansive subgrade soil is stabilized with GSA, CA and BF compares with common stabilizer (lime and cement). Additional parameter like PH value test, volumetric shrinkage and mineralogical tests should also be performed to have more realistic test results.

Keywords: bamboo fiber, black cotton soil, CBR, coal ash, cost, compaction, groundnut shell ash, stabilization.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	I
ABSTRACT	II
TABLE OF CONTENTS	III
LIST OF TABLES	VI
LIST OF FIGURES	VIII
ACRONYMS	IX
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background of the Study	1
1.2 Statement of the Problem	3
1.3. Research Questions	4
1.4. Objectives of the Study	5
1.4.1. General Objective	5
1.4.2. Specific Objectives	5
1.5 Significance of the Study	5
1.6 Scope of the Study	6
CHAPTER TWO	7
REVIEW OF RELATED LITERATURE	7
2.1 Expansive Soil	7
2.2 Stabilization	7
2.3 Uses of Stabilization	8
2.4 Mechanisms of Stabilization	8
2.5 Types of Soil Stabilization	9
2.5.1 Chemical Stabilization	9
2.5.2 Mechanical Stabilization	10
2.5.3 Lime Stabilization	11
2.5.4 Soil Stabilization with Bitumen	11
2.5.5 Cement Stabilization	11
2.6 Industrial and Agricultural Waste as a Soil Stabilizing Material	12
2.6.1 Groundnut	12

2.6.2 Bamboo	16
2.6.3 Coal	18
2.7 Identification and Classification of Expansive Soil	21
2.7.1 Field Identification	21
2.7.2 Laboratory Identification	22
2.8 Classification of Expansive Soil	26
2.8.1 Classification Using General Methods	26
CHAPTER THREE	
MATERIALS AND RESEARCH METHODOLOGY	
3.1 Study Area	
3.2 Population	
3.3 Materials	29
3.3.1 Sub Grade Soil	29
3.3.2 Groundnut Shell Ash	29
3.3.3 Bamboo Fiber	
3.3.4. Coal Ash	31
3.4 Methodology	
3.4.1 Sample Collection Methods	
3.4.2 Sources of Data	
3.4.3 Sampling Techniques	32
3.4.4 Sampling Size	32
3.4.5 Study design	33
3.5 Study Variables	35
3.5.1 Dependent Variable	35
3.5.2 Independent Variable	35
3.6 Methods and Standard testing procedure	35
3.7 Laboratory Testing and Analysis	36
3.7.1 Subgrade soil	36
3.8 Data quality Assurance	43
3.9 Plan for Dissemination of Findings	43
3.10 Ethical Considerations	43
CHAPTER FOUR	44

RESULTS AND DISCUSSIONS	44
4.1 Material Property used in this study	44
4.1.1 Laboratory test result for engineering properties of Stabilized soil sample	44
4.1.2 Geotechnical Properties of Soil Sample	45
4.1.3 Overall Characterization of the natural subgrade soil	55
4.1.4 Laboratory test results of stabilization of expansive soil	56
4.1.5 Cost Estimation	68
CHAPTER FIVE	71
CONCLUSIONS AND RECOMMENDATIONS	71
5.1 Conclusions	71
5.2 Recommendations	73
REFERENCES	74
APPENDAX	80
APPENDAX A: laboratory test result for BD soil sample	80
APPENDAX B: Laboratory test result for MS soil sample	86
APPENDAX C: Laboratory test result of stabilizing BD Soil Sample using soil-CA soil-GSA and soil-BF.	, 92
APPENDAX D: Laboratory test result of stabilizing MS Soil Sample using soil-CA soil-GSA and soil-BF.	, .139

LIST OF TABLES

Table 2. 1: Production and productivity of groundnut in Ethiopia. (Source: CSA 2004 –
2014)
Table 2. 2: Physical Properties of bamboo fiber (Lin D et al., 2010)
Table 2. 3: Proximate analysis and calorific value of coal deposits in different basins 19
Table 2. 4: chemical composition of Coal ash (Mulatu Tadesse, 2016)21
Table 2. 5: Relationship between the swelling potential of clays and the plasticity index:
(Chen, 1988)23
Table 2. 6: Classification of Soils based on free swell ratio (Sridharan and Prakash 2004).
Table 2. 7: Typical CEC values of basic clay minerals after Mitchell 1976 (Nelson &
Miller, 1992)
Table 2. 8: Unified Soil Classification System Table
Table 3. 1: Properties of bamboo fiber
Table 3. 2: Standards and Specification for this study
Table 4. 1: Summary of test result for stabilized soil sample with groundnut shell ash44
Table 4. 2: Summary of test result for stabilized soil sample with Coal ash
Table 4. 3: Summary of test result for stabilized soil sample with Bamboo Fiber45
Table 4. 4: General Geotechnical properties of both soil sample46
Table 4. 5: Atterberg test results of BD and MS sample soil
Table 4. 6: Classification of Soils based on AASHTO classification system
Table 4. 7: Soil Classification according to AASHTO and USCS for both soil samples50
Table 4. 8: Specific gravity for natural sub grade
Table 4. 9: Specific gravity for Groundnut shell ash, Coal ash
Table 4. 10: Free swell index test results for natural subgrade soil sample
Table 4. 11: Linear Shrinkage test results of the untreated soil
Table 4. 12: CBR test results of expansive soil 54
Table 4. 13: Atterberg limit test result of GSA-Soil and CA-Soil to stabilized BD soil
sample
Table 4. 14: Moisture density relation test results of the mix-ratio of GSA-Soil, CA-soil
and BF-Soil60
Table 4. 15: CBR test results of treated soil sample 63

Table 4. 16: Swell value from CBR test	66
Table 4. 17: Quantity cost for untreated expansive soil (Constructionethiopia.com, 2018)
	68
Table 4. 18: Quantitative Cost for Groundnut shell ash, Coal ash and Bamboo fiber	
stabilized Expansive soil	69
Table 4. 19: Quantitative cost of sub grade after stabilizing	70

LIST OF FIGURES

Figure 3. 1: Map of study area (Source: Google Earth)	28
Figure 3. 2: Photos of sample taking from BD and MS soil sample (Source: Abdi G.,	
6/02/2013)	29
Figure 3. 3: Process of Groundnut shell ash (GSA) preparation (Source: Dawit S.,	
1/3/2013)	30
Figure 3. 4 : Preparation of bamboo fiber preparation (Source: Eyuel M., 21/2/2013).	31
Figure 3. 5: Process of coal ash (CA) preparation (Source: Dawit S., 8/3/2013)	31
Figure 3. 6: Research Design flow chart	34
Figure 3. 7: Mixing of soil sample with additives (Source: Ayalew A., 12/3/2013)	36
Figure 3. 8: Atterberg limit Determination (Source: Mered H., 23/3/2013)	38
Figure 3. 9: Free Swell index test (Source: Dawit S., 13/2/2013)	39
Figure 3. 10: Specific gravity test (Source: Mered H., 1/4/2013)	39
Figure 3. 11: Compaction test (Source: Asbew A., 4/4/2013)	40
Figure 3. 12: CBR test procedures (Source: Mulukene G., 10/4/2013)	41
Figure 3. 13: Linear Shrinkage test (Source: Dawit S., 16/3/2013)	42
Figure 3.14 : Cone penetrometer test (Source: Ayalew A., 22/4/2013)	42
Figure 4. 1: Grain size distribution curve of BD soil sample	47
Figure 4. 2: Grain size distribution curve of MS soil sample	48
Figure 4. 3 : Plasticity chart of untreated soil samples according to AASHTO	50
Figure 4. 4: Plasticity chart of untreated soil according to Unified Soil Classification	
System	51
Figure 4. 5: Moisture Density Relation for natural sub grade soil	53
Figure 4. 6: Plasticity index chart for stabilize BD soil sample	58
Figure 4. 7: Plasticity index chart for stabilize MS soil sample	59
Figure 4. 8: SUMMARY Of OMC and MDD for treated soil sample of BD	62
Figure 4. 9: SUMMARY of OMC and MDD for treated soil sample of MS	62

ACRONYMS

AASHTO	American Association of State Highway and Transportation Office	
ASTM	American Society for Testing and Materials	
BA	Bagasse Ash	
BF	Bamboo Fiber	
BD	Baro Dare	
BCS	Black Cotton Soil	
САН	Calcium Aluminate Hydrate	
CBR	California bearing ratio	
CEC	Cation Exchange Capacity	
CSA	Central Statistical Agency	
CA	Coal ash	
ERA	Ethiopian Road Authority	
ETB	Ethiopian Birr	
FA	Fly Ash	
FSI	Free Swell Index	
GI	Group index	
GSA	Groundnut shell ash	
LL	Liquid Limit	
MSc	Master of Science	
MDD	Maximum Dry Density	
MS	Mikeal sefer	
NS	Natural subgrade soil	
OMC	Optimum Moisture Content	
PE	Potential expansively	
PI	Plasticity Index	
PL	Plastic Limit	
RHA	Rice Husk Ash	
RSA	Rice Straw Ash	
Gs	Specific Gravity	
UCS	Unconfined Compressive Strength	
USCS	Unified Soil Classification System	

CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Generally, lands with black cotton soils are fertile and very good for agriculture, horticulture, sericulture and aquaculture. Good irrigation systems exist, rainfall is high and people are affluent in these areas. Though black cotton soils are very good for agricultural purposes, they are not so good for laying durable roads. Good road network is a basic requirement for the all-round development of an area. Unfortunately, poor road network is hampering the full-fledged development of the otherwise prosperous areas (Bhavanna Rao, 2005). In Ethiopia like many other countries, lands which are fertile, suitable for agriculture and covered by forest are highly dominated with expansive soils. In areas with scarce resources of suitable construction materials, it is common to upgrade the available materials using appropriate stabilization technique, and utilize them for the intended construction. Gambella Town is also dominated by expansive soils especially in areas of forest and fertile lands.

Developing countries like Ethiopia focus their attention on the development of infrastructures like railways, roadways, airways and housing facilities. The stability of the structures built on the soil depends entirely on the balance of the land at which it rests so that soil is the basis for any construction. It supports the substructure of any structure, and it is the sub grade which endorses the sub-base/base in the pavement. There are several soils that pose a threat to the stability of the structures because of the existing land at a particular location may not be suitable for the construction due to inadequate bearing capacity and higher compressibility or even sometimes excessive swelling in case of expansive soils. This type of land pose severe problem on construction activities; which can lead to expensive design, construction cost, mitigation measure as well as repeated and costly maintenance cost (Fekerte, 2006).

Expansive clay soils are problematic soils because of their inherent potential to undergo volume changes corresponding to changes in the moisture variation. It starts swell or shrink excessively due to change in moisture content (Bhavsar *et al.*, 2014). Problematic soils such as expansive soils are normally encountered in foundation engineering designs

for highways, embankments, retaining walls, backfills etc. Expansive soils are normally found in semi – arid regions of tropical and temperate climate zones and are abundant, where the annual evaporation exceeds the precipitation and can be found anywhere in the world (Chen, 1975; Warren and Kirby; 2004).

Expansive soil is a problem in Ethiopia (Alemayehu & Mesfin, 1999) as in other countries. To treat this problem, stabilization should implement with different stabilizing additives to achieve the required specification of sub-soil materials.

Researchers attempted to stabilize this soil have reported that the stabilization of this soil with bitumen, lime or cement is effective. Unfortunately, the costs of these stabilizers are on the high side making them economically unattractive as stabilizing agents. So that, based on this many researches are going on for the utilization of waste products for soil stabilization purpose. Recent trend in research works in the field of geotechnical engineering and construction materials focuses more on the search for cheap and locally available materials such as industrial wastes as stabilizing agents for the purpose of full or partially replacement of traditional stabilizers. Industrial waste is increasingly becoming a focus of researchers because of the enhanced pozzolanic capabilities of such waste when oxidized by burning.

Coal ash is an industrial waste obtained from thermal power plants by burning of coal. Coal ash consists of bottom ash (5-15%) and fly ash (85-95%). Addition of coal ash to Expansive soil is one such attempt to understand the possible mechanism governing the behavior of expansive soils-Coal ash mixes. Bulk stabilization of Coal ash becomes very essential in view of huge producing and to reduce the disposal areas under Environmental concerns. Utilization in Geotechnical applications are Sub grades, Embankment Materials, Backfill and Structural Materials (Ahmad *et al*, 2009).

Bamboo fiber is a regenerated cellulosic fiber produced from bamboo. It is a common fact that bamboo can grow naturally without using any pesticide. The root rhizomes of bamboo are tremendous soil binders which can prevent erosion (Huang B *et al.*, 2010). Bamboo fiber is s a satisfactory fiber for incorporation into the cement (Coutts, 1995; Li X, 2004). Effect of bamboo fibers on local soil and based on the current investigation when bamboo fiber quantity is increases, un-soaked and soaked California Bearing Ratio

(CBR) value of soil are considerable increase and this increase is occurred up to 1.2% of bamboo fiber dosage. Usage of more than 1.2% of bamboo fiber dosage is not feasible and optimal proportion of bamboo fiber is found 1.2% by waterless weight of ordinary soil. The unsoaked and soaked CBR test value of soil increases with the increase in bamboo fiber length and diameter (Brahmachary and Rokonuzzaman, 2018).

Groundnut shell can be used to improve soil stabilization in the ground because it is good water proofer and its binding properties are adequate for stabilization (Osinubi, 1999). And also, because of its being usually rich in calcium carbonate, which is good binding agent and its other pozzolanic with good stabilization properties, it can be used in a cement based construction material to improve soil in the ground (Salahudeen, 2014). Groundnut shell ash is a wastes product which is difficult to dispose of; therefore ways of making it useful are derived by using it to solving engineering problems (Osinubi, 2000).

1.2 Statement of the Problem

Expansive soils are also referred to as "black cotton soil" in some parts of the world. This soil owes their expansive character mainly to the constituent clay mineral. The most important clay mineral, which is the cause for expansive nature is montmorillonite. When this mineral is exposed to moisture, water is absorbed between interlay ring lattice structures and exerts an upward pressure. This upward pressure, known as swelling pressure, causes most of the damages associated with expansive soils (Teklu, 2003). Clayey soil present in its natural state at construction site sometimes may not have the suitable strength. It may have swell and shrinkage distinctiveness and causes significant damage to pavement structures. This damage could be attributed to moisture fluctuations caused by seasonal discrepancies. Volumetric changes weaken the sub grade by inducing - cracking which meets out damage to the overlying structures. For imparting high amount of strength and stability soil thus needs to be stabilized (Somal *et al*, 2017).

Worldwide, the cost of constructing stabilized roads is financially high. This is apparently due to the over dependence on industrially manufactured soil improving additives (cement, lime etc). The high amount of money spent has continued to invalidate poor and underdeveloped nations of the world from making accessible roads available to meet the standard of their rural dwellers that constitute large percentage of their population. On the other hand, the safe disposal of waste products from industries and agriculture has been

hitherto a challenging issue demanding urgent solution because of the decline effect of these materials on the environment and the hazardous risk it pose to the health of humanity. Peanut (Groundnut shell ash) is generated and some private cultivators active in Gojjeb. After cultivation, they accumulate the residues in large volume and mostly they use it for household fuel and the rest residue they burnt as waste so that it affects the environment. According to the CSA report on area and production of crops, more than 352,077 private peasant holding households have grown groundnut in close to 80,000 hectares of land in the 2013/14 cropping season leading to a total production of well over 0.11 million tons (CSA, 2014). Thus, it is greatly required to consider the use of agricultural waste (such as Groundnut Shell Ash), Industrial waste (coal ash) and Bamboo Fibres in improving the engineering properties of the subgrade soil, in this case Black Cotton soil (BCS) when used in road construction will considerably reduce the cost of constructions compares with common stabilizers (cement, lime etc) and as well as eradicate or reduce the environmental and hazardous risk of wastes.

The above problems are extensively occurring in Ethiopia is estimated to be 23.7 million acres (Nebro, 2002). Especially the sub grade property of Gambella town is inferior which is commonly included with this expansive ground; it will pose several problems on in infrastructure that was going to be built on the city. In line with the foregoing, replacing proportions of the expansive soil with agricultural and industrial waste was going a long way in mitigating the harsh effects of increased in production and costs.

Since most soil which is found in Gambella Town have high plastic index and low CBR value. They are a consequence for expansive and unstable sub grade soil. As a result, they make pavement structure failure. The aim of this study is to compare engineering property of Groundnut shell ash, coal ash and bamboo fiber stabilized expansive subgrade soil.

1.3. Research Questions

- 1. What are the Engineering properties of stabilized expansive subgrade soil?
- 2. What is the feasibility effect of stabilizing agents on the stabilization of weak subgrade structures?
- 3. What are the potential effects of Groundnut shell ash, Coal ash and Bamboo fiber

On engineering properties of expansive subgrade soil treated with varying dosage of stabilizing agent?

4. What optimum amount of stabilizing agents will be needed to attain the required Properties of soils that can be used as sub grade material?

1.4. Objectives of the Study

1.4.1. General Objective

The general objective of this study is to compare the engineering properties of Groundnut shell ash, Coal ash and Bamboo fiber stabilized expansive subgrade soil in Gambella Town.

1.4.2. Specific Objectives

The specific objectives of this study are:

- > To identify the engineering properties of stabilized expansive subgrade soil.
- To determine the amount of cost saving for sub grade formation using stabilizer such as groundnut shell ash, coal ash and bamboo fiber.
- To investigate potential effects of groundnut shell ash, coal ash, and bamboo fiber on engineering properties of expansive subgrade soil treated with varying dosage of stabilizing agent.
- To determine optimum amount of stabilizing agent needed to attain the required properties of soil.

1.5 Significance of the Study

This study is to assess the comparative study on the engineering property of groundnut shell ash, coal ash and bamboo fiber stabilized expansive subgrade soil of Gambella Town. Benefits from the studies are cost saving because agricultural waste and other stabilizing agent is typically by far cheaper than traditional stabilizers such as cement and lime. The study will provide lessons that will help the concerned body to come up with appropriate measures to address problems resulting from loose sub grade soil with cost-effective. On the other hand, other researchers will use the findings as a reference for further research on stabilization of sub grade soil.

1.6 Scope of the Study

The Gambella town which is known to abundance of soft soil, experiencing many types of failures such as cracks, large surface deformation and structural deformation of pavement layers and the sub grade. Therefore, the scope of the study was cover stabilization of expansive subgrade soil treated with various percentages of Groundnut shell ash (2%, 4%, 6%, 8%, and 10%), Coal ash (10%, 20%, 30%, 40%, and 50%) and Bamboo fiber (1%, 1.5%, 2%, 2.5%, and 3%) in Gambella town. It has been supported by different source of literatures and a series of laboratory experiments. The stabilizer (groundnut shell ash, coal ash and bamboo fiber) use was limited and test procedures that have been adopted in the experimental work. Soil samples of expansive subgrade soil from two different localities of Gambella Town were collected for the investigation in the laboratory. A sample of soils from 2 test pit has been taken from 1.5m depth below the ground surface after clearing has been done. The relevant laboratory tests have been done by researcher was; grain size distribution (gradation), Natural Moisture Content, Modified Proctor Compaction, CBR, swelling potential (free swell trial), and Atterberg limit taste (includes Liquid Limit (LL), Plasticity Index (PI), Plastic limit(PL), linear shrinkage), Optimum Moisture Content (OMC), Maximum Dry Density, and Specific Gravity). The results were analyzed according to ERA, AASHTO and ASTM specification.

CHAPTER TWO

REVIEW OF RELATED LITERATURE

2.1 Expansive Soil

The black cotton soil is a type of expansive soil with high plasticity and can retain moisture throughout the dry season which is why they are valuable for growing crops. It exhibits low bearing capacity, low permeability and high volume change due to presence of montmorillonite in its mineralogical content and these properties makes it unfit for construction of embankment and other engineering structures (Bowles, 1979; Das, 1998).

Engineering structures which construct on expansive soil will creates a problem due to swelling and shrinking behavior of sub-soil material. This type of soil becomes swells when it contacts with water and shrinks when it dry. In expansive soil areas, the soils are generally stiff and the chance of lightly loaded structures cracking due to settlement (Chen, 1988) and cause of damage for engineering structure like pavements, bridge and buildings.

For this reason, constructions could be sensitive for structural failure as a result of excessive consolidation settlement. For the expansive soils, because of change in moisture conditions, there could be a significant volume change problem at different seasons. This could affect the stability of lightweight structures as a result of cyclic swell-shrink process (Jemal, 2014). The improvement of problematic soil at a site is indispensable due to rising cost of the land, and there is a huge demand for road construction. There is a need to concentrate on improving properties of soils using cost-effective practices like treating it with low cost and readily available material. There are several treatment methods for improving properties of problematic soil; among this Stabilization is one of the most common ways.

2.2 Stabilization

Soil stabilization is the process of modification on one or more soil properties, by mechanical or chemical stabilization, to create an improved soil material possessing the desired engineering properties. The process may include blending of soils to achieve a desired gradation or mixing with easily accessible additives that can modify the

gradation, texture or plasticity, or act as a binder for cementation of the soil (Guyer, 2011).

2.3 Uses of Stabilization

Pavement design is based on the premise that minimum specified structural quality will be achieved for each layer of material in the pavement system. Each layer must resist shearing, avoid excessive deflections that cause fatigue cracking within the layer or in overlying layers, and prevent excessive permanent deformation. As the quality of a soil layer is increase, the ability of that layer to distribute the load over a greater area generally increases so that a reduction in the required thickness of the soil and surface layers may be permitted. Commonly, improvement attained from soil stabilization can be summarized as ;(Guyer, J. P., 2011; US Army, 1994)

- Quality improvement: the most common improvements achieved through stabilization include reduction of plasticity index or swelling potential, and increases in durability and strength with a better soil gradation. In wet weather, stabilization may also be used to provide a working platform for construction operations (Guyer, J. P., 2011; US Army, 1994).
- Thickness reduction: the strength and stiffness of a soil layer can be improved through the use of additives to permit a reduction in design thickness of the stabilized material compared with an un stabilized or unbound material. The design thickness can be reduced if the strength, stability and durability requirement of a base or sub base course is indicated to suitable by further analysis (Guyer, J. P., 2011; US Army, 1994).

2.4 Mechanisms of Stabilization

The stabilization mechanism could vary generally from the formation of new compounds binding the finer soil particles for coating particle surfaces by the additive to decease the moisture sensitivity. Then, the basic understanding of stabilization mechanisms involved with each additive is required before selecting an effective stabilizer suited for a specific application. Chemical stabilization involves mixing or inserting the soil with chemically active compounds such as Portland cement, lime, fly ash, calcium or sodium chloride or with viscoelastic materials such as bitumen. Chemical stabilizers can be broadly divided

in to three groups: Traditional stabilizers such as hydrated lime, Portland cement and Fly ash; Non-traditional stabilizers comprised of sulfated oils, ammonium chloride, enzymes, polymers, and potassium compounds; and By-product stabilizers which include cement kiln dust, lime kiln dust and others. Among these, the most widely used chemical additives are lime, Portland cement and fly ash (Petry & Little, 2002). Although stabilization with fly ash could be more economical as compared to the other two, the composition of fly ash can be highly variable.

2.5 Types of Soil Stabilization

2.5.1 Chemical Stabilization

Chemical stabilization refers to mixing of soil with one or a combination of admixtures of powder, slurry or liquid to improve or control its stability, strength, swelling, permeability and durability. Soil improvement by means of chemical stabilization can be grouped into three chemical reactions; Cation exchange, flocculation-agglomeration, and pozzolanic reactions (Mitchell and Soga, 2005).

A) Cation Exchange

The excess ions of opposite charge that of the surface of clay, over those of like charge Present in the diffuse double layer are called exchangeable ions. These ions can be replaced by a group of different ions having the same total charge, by altering the chemical composition of the equilibrium electrolyte solution.

Negatively charged clay particles adsorb cations of specific type and amount. The ease of replacement or exchange of cations depends on several factors, primarily the valence of the cation. Higher valence cations easily replace cations of lower valence. For ions of the same valence, the size of the hydrated ion becomes important; the larger the ion, the greater the replacement power. If other conditions are equal, trivalent cations are held more tightly than divalent and divalent cations are held more tightly than monovalent cations. A typical Replace ability series is:

 $NA^{+} < Li^{+} < K^{+} < Rb^{+} < Cs^{+} < Mg^{2+} < Ca^{2+} < Ba^{2+} < Cu^{2+} < Al3^{+} < Fe^{3+} < Th^{4+}$

The exchangeable cations may be present in the surrounding water or be gained from the Stabilizers.

An example of the cation exchange;

 $Ca^{2+} + Na^+$ -Clay $\longrightarrow Ca^{2+}$ -Clay + Na^+

The thickness of the diffused double layer decreases as replacing the divalent ions (Ca^{2+}) from stabilizers with monovalent ions (Na^{+}) of clay. Thus, swelling potential decreases.

B) Flocculation and Agglomeration

Cation exchange reactions result in the flocculation and agglomeration of the soil particles with consequent reduction in the amount of clay-size materials and hence the soil surface area, which inevitably accounts for the reduction in plasticity. Due to change in texture, a significant reduction in the swelling of the soil occurs.

C) Pozzolanic Reactions

Time dependent pozzolanic reactions play a major role in the stabilization of the soil, since they are responsible for the improvement in the various soil properties. Pozzolanic constituents produces calcium silicate hydrate (CSH) and calcium aluminate hydrate (CAH).

$$Ca^{2+} + 2(OH)^{-} + SiO2 (Clay Silica) \longrightarrow CSH$$

 $Ca^{2+} + 2(OH)^{-} + Al2O3 (Clay Alumina) \longrightarrow CAH$

The calcium silicate gel formed initially coats and binds lumps of clay together. The gel then crystallizes to form an interlocking structure which increases the soil strength (Meron, 2013).

2.5.2 Mechanical Stabilization

Under this category, soil stabilization can be achieved through physical process by altering the physical nature of native soil particles by either induced vibration or compaction or by incorporating other physical properties such as barriers and nailing. The main methods of mechanical stabilization can be categorized into compaction, mixing or blending of two or more gradations, applying geo-reinforcement and mechanical remediation (Makusa, 2012).

2.5.3 Lime Stabilization

When stabilization of soil is done by mixing soil with lime in proper proportion, the process is known as soil-lime stabilization. Lime is an excellent choice for short term modification of soil properties. Lime can modify almost all fine grained soils but the greater improvement occurs in clay soils of moderate to high plasticity (National lime association, 2004).

Lime is one of the most popular additives agent used to improve fine-grained soils. Lime, alone or combined with other materials, can be used to treat a variety of soil types. When soils treated with lime the construction activity becomes facilitate in three ways. First, a reduction in the liquid limit and an increase in the plastic limit results in a significant reduction in plasticity index. Decrease in plasticity index enables higher workability of the treated soil. Second, results from chemical reaction between soil and lime a decrease in water content occurs. This facilitates compaction of very wet soils. Additional, lime addition raises the optimum moisture content but reductions in maximum dry density and finally direct increase in strength and results in a stable platform that facilitates the mobility of equipment. (Meron, 2013)

2.5.4 Soil Stabilization with Bitumen

Asphalts and tars are bituminous materials which are used for stabilization of soil, generally for pavement construction. Bituminous materials when added to a soil, it imparts both cohesion and reduced water absorption. Depending upon the above actions and the nature of soils, bitumen stabilization is classified in following four types:

- > Sand bitumen stabilization
- Soil Bitumen stabilization
- > Water proofed mechanical stabilization, and
- > Oiled earth

2.5.5 Cement Stabilization

Portland cement stabilization, commonly referred to as soil cement, is a mixture of Portland cement, water and soil compacted to a high density. Soil cement is sometimes

referred to as a cement treated sub grade or cement stabilized sub base. Cement stabilization differs from other forms of chemical stabilization in such a way that structural strength is primarily obtained from the cementing action rather than from internal friction, cohesion, chemical ion exchange and/or waterproofing of the materials. Almost all types of soils can be used for cement stabilization except highly organic soils and heavy clay soils.

The four fundamental control factors for the design and construction of soil cement are moisture content, curing procedure and duration, compaction and cement content. Cement stabilization is generally considered to be too expensive for workability improvements alone (The Tensar Coporation, 1998).

2.6 Industrial and Agricultural Waste as a Soil Stabilizing Material

Recent research works in the field of geotechnical engineering and construction materials focuses more on the search for cheaper and locally available materials, agricultural and industrial wastes, for use in construction industry.

The use of different industrial and agricultural wastes has become a common practice in the construction industry. Fly ash, sugarcane bagasse ash, coconut husk ash, rice husk, groundnut shell ash and coal ash can be sited as an example. Those by-products are increasingly playing a part in road construction and concrete technology, hence minimizing the problem of resource depletion, environmental degradation and energy consumption.

2.6.1 Groundnut

Groundnut, or peanut, is commonly called the poor man's nut. Today it is an important oil seed and food crop. This plant is native to South America and has never been found uncultivated. The botanical name for groundnut, Arachis *hypogaea* Linn, is derived from two Greek words, *Arachis* meaning a legume and *hypogaea* meaning below ground, referring to the formation of pods in the soil. Groundnut is an upright or prostrate annual plant. It is generally distributed in the tropical, sub-tropical and warm temperate zones (Nautiyal, 2002). Groundnuts are not only rich in proteins which are easily digestible and consequently, a higher biological value, but are also rich in B-complex vitamins. It is an

important item in several confectionery products, and in supplementary feeding programs such as in weaning food formulations in combination with cereals and pulses in many developing countries.

2.6.1.1 Groundnut Shell Ash (GSA)

Groundnut Shell Ash (GSA) is an agricultural waste product obtained from the milling of groundnut. During and after the harvest of groundnut, the shells are regarded as waste which when accumulated in large quantities in a particular area will constitute an environmental hazard. Therefore, the utilization of GSA as a possible stabilizer will go a long way in reducing the cost of stabilization of the deficient soil and also alleviate the environmental problem associated with the accumulation of the GSA in a large quantity in a particular area. Meanwhile, the ash from groundnut shell has been categorized under pozzolana (Alabadan *et al*, 2006), with about 8.66% Calcium Oxide (CaO), 1.93% Iron Oxide (Fe₂O₃), 6.12% Magnesium Oxide (MgO), 15.92% Silicon Oxide (SiO₂), and 6.73% Aluminum Oxide (Al₂O₃). The utilization of this pozzolana as a replacement for traditional stabilizers will go a long way in actualizing the dreams of most developing countries of scouting for cheap and readily available construction materials. Groundnut shell ash has been used in concrete as a partial replacement material for cement with a measure of success achieved (Alabadan *et al.*, 2005).

2.6.1.2 Uses OF Groundnut Shell

Of the several million tonnes of groundnut produced each year, hulls form about 25 Per cent of the total mass produced and their utilization thus becomes very important. At present in the developing countries the majority of groundnut shells are either burned, dumped in forest areas or left to deteriorate naturally. Sufficient information is available to use groundnut shell in cattle feed, as carrier of insecticide, in the manufacture of logs and production of pulp and as a fibre component in human diet. Shell digestibility is quite low; research efforts are being directed to improve it as it contains more than 60 per cent fibre. Inoculation and biodegradation of shell have been tried but these efforts have not been successful (Kerr, *et al.*, 1986). The shell is also used for the production of alphacellulose. By adopting the neutral sulphate method about 40 to 42 per cent of unbleached

Pulp yield on an average 93 per cent of alpha-cellulose from groundnut shell. Finely ground groundnut shells are often used for polishing tin plate (Nautiyal, 2002).

2.6.1.3 Potential of Groundnut /Peanut in Ethiopia

Groundnut (Arachis hypogaea), is also known as peanuts or monkey nuts, are the edible seeds of a legume plant that grow to maturity in the ground. Groundnut was introduced in the early 1920s and is becoming increasingly important in Ethiopian agriculture and domestic demand has been on a steady increase. They can be consumed directly (roasted and salted), processed into oil or cake/meal, or further processed into confectionary products or snack food.

In Ethiopia, groundnut is the second important lowland oilseed of warm climate next to sesame. It is mainly grown in eastern Harerghe, with immense potential in Gamogofa, Illubabor, West Gojam, North Shoa, North and South Wello, East and West Wellega, and Western Tigray (CSA 2010) (Nega *et al*, 2015). According to the CSA report on area and production of crops, more than 352,077 private peasant holding households have grown groundnut in close to 80,000 hectares of land in the 2013/14 cropping season leading to a total production of well over 0.11 million tons (CSA, 2014). Table 2.1 shows trends in production, area cultivated and productivity of groundnut in Ethiopia. One of the significant features emerged from the data presented in the Table 2.1 is the increasing trend in area and productivity of groundnut.

Year	Area (ha)	Production(tons)	Yield (ton/ha)
2013/14	79947	112089	1.40
2012/13	90156	124419	1.38
2011/12	64477	103479	1.60
2010/11	49603	71607	1.44
2009/10	41579	46425	1.12
2008/09	41761	46887	1.12

Table 2. 1: Production and productivity of groundnut in Ethiopia. (Source: CSA 2004 – 2014)

2007/08	40198	44685	1.11
2006/07	37126	51080	1.38
2005/06	35462	34150	0.96
2004/05	27084	29053	1.07
Growth	12.8%	16.2%	3%

In our country, after harvesting the peanuts, they are transported to a processing facility where they are dried and stored. At this point, they are sent to a Sheller, where the shell or hull is separated from the nut. These peanut shells account for approximately 25–30% of the total weight of the dried peanut pod (Manzano-agugliaro, 2018), meaning there is a substantial amount of shell residual left after peanut processing.

2.6.1.4 Previous Study on Stabilization of Groundnut Shell Ash

Chittaranjan, M., et al., (2011) reported the 'Agricultural wastes as soil stabilizers'. In this study Agricultural wastes such as sugar cane bagasse ash, rice husk ash and groundnut shell ash are used to stabilize the weak sub grade soil. The weak sub grade soil is treated with the above three wastes separately at 0%, 3%, 6%, 9%, 12% and 15% and CBR test is carried out for each percent The results of these tests showed improvement in CBR value with the increase in percentage of waste.

Madhusudhan, P.V *et al.*, (2015) have been studied the stabilization of black cotton soil using groundnut shell ash. They reported a decrease in liquid limit, plastic limit and plasticity index with the decrease in the GSA content. There was a uniform change in the OMC value and MDD value increases with the increase in the GSA content. The UCS value and cohesion value decreases with the increase in the GSA content. They have been concluded that with the increment in the GSA content there was a gradual improvement in the geotechnical properties.

Adetoro, A *et al.*, (2015) have investigated some laboratory tests (i.e. particle size analysis, Atterberg limits, compaction and California bearing ratio tests were conducted on black cotton soil with 2% -10% (by proportion of soil) groundnut shell ash content.

The results indicated that the soil is silt- clayey with high plasticity and it belongs to A-7-6 soil group. It has general rating of fair to poor for sub grade materials. They have significant constituent materials of mainly clayey soils. The liquid limit and plastic limit did not meet the required specifications for sub grade. These properties however changed after stabilization as the soils Maximum Dry Density (MDD) value decreases while Optimum Moisture Content (OMC) and CBR values increasing with increase in the GSA content. The treatment with the GSA content showed increase in the coarse particles of the soil through cementation. There was also improved in the mechanical strength of the soil as CBR value increased to 18% after treatment.

2.6.2 Bamboo

Bamboo is recognized as a potential natural reinforcing material for improvement and stabilization of soil. Bamboo is a naturally occurring composite material which grows abundantly in most of the tropical countries. Bamboo has a very long history with human kind. Bamboo is also one of the oldest building materials used by human kind. It has been used widely for household products and extended to industrial applications due to advances in processing technology.

Bamboo, a perennial grass, is one of the rapid thriving grasses, which belongs to family of poaceae/graminae. About 43 species and 11 genera bamboo are found in Africa, covering an estimated area of 2.7 million hectare. About 93% of Africa bamboo species are found only in Madagascar (FAO, 2007). In terms of area coverage, 67 % of the African and more than 7% of the world bamboo resource is found in Ethiopia. This indicates that Ethiopia has the greatest bamboo resources in Africa representing a significant proportion of Africa's total bamboo resources. Ethiopia has two bamboo species namely, the highland bamboo, Yushania alpine, (k.Schum) and the lowland bamboo, Oxytenanthera abyssinica (A. rich). It covers one million hectares of highland and lowland bamboo resources, which accounts for about 15% and 85 % respectively (Kassahun E., 2000).

2.6.2.1 Bamboo Fiber

Bamboo fiber is natural fiber, acts as a strengthening material for ordinary soil. It binds the soil particles together and helps in reduction of rapid change in volumetric properties.

Bamboo fiber is thinner as compared to hair and has a round and smooth surface which makes it abrasion proof. Bamboo fiber is naturally anti- bacterial, UV protective, green & biodegradable, breathable & cool, strong, flexible, soft. Bamboo fibers are remarkably strong in tension but have low modulus of elasticity. The main advantage of these materials is that they are locally available with practically little cost. Its low cost makes it attractive for geotechnical applications. Cellulose and lignin are the major constituents and higher lignin content makes the fiber stiffer and tougher.

2.6.2.2 Previous Study on Stabilization of Bamboo Fiber

Effect of fly ash and bamboo fibers on expansive soil and it has been concluded that addition of 20% of fly ash and 1% of Bamboo fiber provides maximum strength in black cotton soil. Fly ash treated BC soil reinforced with 1% bamboo fiber increases the strength and reduces the brittle behavior of soil specimen, whereas the other percentages of fibers used shows a marginal increase (Paul V and Sneha M, 2016).

Shear strength parameters of a local soil without and with bamboo fiber reinforcement are studied and compared. The fibers are distributed randomly with 5 different percentages and 2 different lengths. The % of fiber considered is 1%, 2%, 3%, 4% and 5%. The lengths of the fibers considered are 20mm and 30mm. The results show that shear strength parameters of the fiber reinforced soils start rising till 4% of fiber for both the length of the fiber. The increase in the length of the fiber also causes an increase in the shear strength of the soil (Devi and Jempene, 2016).

2.6.2.3 Physical Properties of Bamboo Fiber

Parameter	Values
Density	0.6-1.1
Young's modulus (GPa)	11-17
Tensile strength (MPa)	140-230
Elongation (%)	16

Table 2. 2: Physical Properties of bamboo fiber (Lin D et al., 2010)

Uniformity index (%)	92.7
Moisture (%)	6.5

2.6.3 Coal

Coal, as a sedimentary rock, is a complex mixture of organic and inorganic matter, containing intimately mixed solid, liquid and gaseous phrase which have allothigenic and authigenic orgins. Each coal deposit has individual plant constituents and regional, deposition and paleo-environmental factors which cause a specification in predictable end products of a definite set of biological, chemical and physical conditions, which provided an environment in which the minerals could form. Hence the final chemical and mineral composition of a given coal is a very important unique genetic code, indicating the changes at different stages during material deposition and coalification. The mineral matter present in coal affects different aspects of coal mining and preparation. This inorganic constituent is responsible for various industrial, technological and environmental problems related to coal use.

2.6.3.1 Coal Ash

The ash yield of coal is the residue derived from the inorganic and organic matter during incineration and combustion of the coal. Yield, content and geochemical characterization were depended on coal quality, coal formation condition. Meanwhile, they are controlled by the temperature of coal combustion and the coal combustion manners. The chemical composition of coal ashes varies widely depending on the mineral and organic constituents associated with studied coal.

Coal is a combustible carbonaceous rock that contains varying amounts of carbon, hydrogen, nitrogen, oxygen, sulphur and mineral matter and nearly 8 gigatonnes per year of coal is produced globally. It is an important energy resource, an organic rock that is composed of minerals and its reserves are abundant fuels necessarily needed to meet the demands of electricity. The combustion of lignite, sub-bituminous, bituminous coal, and anthracite for power generation produces a range of coal combustion residues, also known as coal ash. The growing interest in mineral matter and trace elements in coal and

coal fly ash largely stems from environmental standards required for power generation (Odunayo *et al.*, 2016). Historically, the primary fuel used in cement industry is coal. Coal used to energy for firing cement-making kilns, either on their own or in various combinations consumed in cement plants worldwide because of its physiochemical characteristics.

2.6.3.2 Deposit of Coal in Ethiopia

Exploration of coal in Ethiopia was started in the year 1935 at Nejo and Wuchale (Ahmed 2008) Ethiopia is known to have some coal deposits in the Dilbi-Moye basin in the southwest of the country. Deposits are estimated about 14,016,730 tonnes (MME, 2009). Other areas with coal deposits include the Geba basin (250,000,000 tonnes), Chilga basin (19,000,000 tonnes) and Chida Waka (9.38 million tonnes) (MME, 2009). These coals classified under low-medium ash content, medium volatile matter, moderate calorific values lignite to bituminous coal (Ahmed, 2008).

Table 2. 3: Proximate analysis and calorific value of coal deposits in different basins

Resource	Moisture (%)	Volatile matter (%)	Ash content (%)	Calorific value (Kcal/Kg)
Delbi-Moye coal	4-8	25-29	11-25	2948-5190
Chilga coal	5-10	21-31	16-41	3072-4560
Mush valley	21	31-40	19-27	2824-3568
Nejo	14-16	30-35	19-23	3400-3987
Wuchale	10-12	18-29	35-48	3700-5445
Yayu coal	8-20	28-46	25-42	3795- 5930

(Ahmed, 2008)

The Yayu basins have the highest coal reserve in Ethiopia. This is the place where coal based fertilizer integrated with electric power generation plants are under establishment by the Ethiopian government. This coal based power generation plant will produce much

coal combustions products (ash). And this by products should be utilized by other factories for both economic and environmental reasons.

2.6.3.3 Previous Studies on Stabilization of Coal Ash

Many previous experimental studies reported that most trace and minor elements in coal except K, Mg, Na and halogens are thought not to vapor during coal combustion (Liu *et al* 2000). They constitute the matrix of ash in the form of a homogeneous melt and crystalline matter, formed through a series of physic-chemical processes including fusion or partial melting of discrete mineral matter, coalescence of melted mineral inclusions, agglomeration of droplets, vaporization of volatile elements (Na,K) followed by nucleation. The formation of ash particles in power plant greatly influences the heat and mass transfers in a coal-fired boiler and the particles emission from combustion is a serious hazard source to our health and environment (Liu *et al.*, 1999a, 1999b, Yan *et al.*, 1999).

Aditya Kumar A *et al.*, (2013) Used Industrial waste materials viz. fly ash (FA), rice husk ash (RHA) & bagasse ash (BA) and agricultural waste material rice straw ash (RSA) in the stabilization of soil. Shrinkage limit was improved in all admixture but highest 30 % improve in RHA. CBR value was improved in all admixtures but highest in 20% RSA content, which increased the CBR from 11.87 to 17.74%. Optimum moisture Content was improved and Dry Density was decreased for all admixtures.

2.6.3.4 Characterization of Coal ash

The performance of coal ash is strongly influenced by its physical, mineralogical and chemical properties. The mineralogical and chemical compositions are dependent to a large extent on the composition of the coal and burning conditions. The most widely used specification for coal ash especially fly ash in world is ASTM C618. This specification divides coal ash especially fly ash into two classes based on its source of origin and composition. These are class C and F with the sum of SiO2+Al2O3+Fe2O3 \geq 50% and \geq 70% respectively. Many fly ashes produced from lignite or sub-bituminous coals meet the chemical requirement of Class F fly ash.

Chemical composition	Coal ash	Class F	Class C
SiO ₂	59.83	-	-
Al ₂ O ₃	6.66	-	-
Fe ₂ O ₃	8.48	-	-
SiO ₂ + Al ₂ O ₃ + Fe ₂ O ₃	74.97	≥70	≥50
CaO	3.26	≤ 8	<u>≥</u> 8
MgO	2.26	-	-
SO ₃	3.82	≤ 5	≤ 5
Loss on ingestion	10.04	≤12	≤6

Tuble 2. 1. chemieur composition of Cour usir (Mulutu Tudesse, 2010)	Table 2. 4: chemical	composition	of Coal	ash (Mulatu	Tadesse,	2016)
--	----------------------	-------------	---------	-------------	----------	-------

As described on Table 2.6 the Yayu coal ash SiO2+ Al2O3+ Fe2O3 is 74.97% which is greater than 70%, CaO is 3.26% which is less than 8% and loss on ignition is 10.04% which is greater than 6% and less than 12%. These values indicate that the Ethiopian Yayu coal ash is classified as class F fly ash. They are predominantly non crystalline silica, which is the determinant factor for pozzolanic activities. Therefore, the Ethiopian Yayu coal ash is suitable for utilizing it as effective stabilizing agent.

2.7 Identification and Classification of Expansive Soil

Generally, it has two way of identification mechanism for expansive soil.

2.7.1 Field Identification

It is easy to recognize expansive soils in the field during either dry or wet seasons. Their color varies from dark grey to black. During dry seasons, shrinkage cracks are visible on the ground surface with the maximum width of these cracks reaching up to 20 mm or more and they travel deep into the ground.

The soils which have high swelling potential can be identified through field observations without any laboratory test by simply observe the physical behavior of the soil. Those behaviors include (Nelson & Miller, 1992)

- > The color was black or gray.
- ➢ Wide or deep shrinkage cracks.
- > The strength was high when it dry and low during wet.
- Stickiness and low traffic ability when wet.
- > Appearance of cracks in nearby structures.
- Cut surfaces have a shiny appearance.

Arid and semi-arid areas are particular trouble spots because of large variations in rainfall and temperature.

2.7.2 Laboratory Identification

There are three different methods of classifying potentially expansive soils. Such as:

2.7.2.1 Mineralogical Identification

This method is used for identifying the mineralogy of clay particles such as characteristic crystal dimensions, characteristic reaction to heat treatment, size and shape of clay particles and charge deficiency and surface activity of clay particle. These properties are a fundamental factor controlling expansive soil behaviour (Nelson & Miller, 1992):

The various techniques under these methods are

- ➢ X-ray diffraction
- Differential thermal analysis
- Dye adsorption
- Chemical analysis
- Electron microscope resolution

Using combinations of these methods, the different types of clay minerals present can be evaluated quantitatively.

But these methods are not suitable for routine tests because of the following reason;

- > They are time consuming
- > They require expensive test equipment; and
- > The results are interpreted by specially trained technicians.

2.7.2.2 Indirect method (index properties)

In this method, the simple soil property tests can be used to evaluation of swelling potential of expansive soils. Such tests are easy to perform and should be included as routine tests in the investigation of expansive soils. It is advisable not to use the indirect tests directly, instead direct tests are also important to avoid an error in conclusions. These methods are related to laboratory soil identification and are vital for the intended purposes. Such tests may include (Chen, F.H., 1988; Nelson, D.J., and Miller, J.D., 1992):

A. Atterberg Limits

Atterberg limits define the moisture content boundaries between states of consistency of fine grained soils. In this method, measurements of the Atterberg limits of the soil are conducted for identification of all soils and provide a wide acceptable means of rating. Especially when they are combined with other tests they can be used to classify expansive soils. Clay soil can exist in four distinct state of consistency depending on its water content. The water content at the boundaries between the different states is defined as the shrinkage, plastic and liquid limits. Two useful indices may be computed from the Atterberg limits and the natural moisture content. These are the Plasticity Index and Liquidity Index. (Chen, F.H., 1988; Nelson, D.J., and Miller, J.D., 1992): The relation between the swelling potential of clays and the plasticity index is shown in Table 2.5.

Swelling Potential	Plasticity Index	Liquid Limit
Low	0-15	<30
Medium	10-35	30-40
High	19-55	40-60
Very High	55 and above	>60

Table 2. 5: Relationship between the swelling potential of clays and the plasticity index: (Chen, 1988).

While it may be true that high swelling soil will manifest high index property, the converse is Not true (Nebro, 2002).

B. Free Swell Tests

This test may be considered as amount of volume change in clay upon saturation and this is one of the mostly used easy tests to estimate the swelling potential of expansive clay. Experiments indicated that a good grade of high swelling commercial betonies would have a free swell of from 1190 to 1900 percent. Soils that having a free swell value as low as 100 percent can cause considerable damage to lightly loaded structures, and soils having a free swell value below 50 percent rarely exhibit considerable volume change even under very light loadings. The free swell percentage can be computed using Equation (2.1) below from the relationship between initial and swelled volume (Nelson & Miller, 1992).

Free swell (%) = ((Vf - Vi)/Vi) * 100....(2.1)

Where: Vi = initial volume

Vf = final volume

C. Free Swell Index

The free swell index is also one of the most commonly used simple tests to estimate the swelling Potential of expansive clay. The procedure involves in taking two ovens dried soil samples Passing through the 424µm sieve, 10cc each was placed separately in two 100ml graduated soil Sample. Distilled water was filled with one cylinder and kerosene in the other cylinder up to 100ml mark. The final volume of soil is computed after 23 hours to calculate the free swell index. The free swell index is then calculated using Equation below (Guyer, 2011).

Free Swell Index (%) = $(Vw - vk/Vk)^*100....(2.2)$

Where;

Vw = final volume in water

Vk = final volume in kerosene
D. Free Swell Ratio test

To determine the swell property, Sridharan and Prakash are proposed the free swell ratio method of characterizing the soil swelling. Free swell ratio is defined as the ratio of sediments volume of 10cc oven dried soil passing through the $424\mu m$ sieve in distilled water to that of Kerosene Equation.

Free swell ratio =Vw/ (Vk*100)..... (2.3)

The relation between the degree of expansion and differential free swell ratio is given in Table 2.6.

Free Swell Ratio	Soil Expansively	Clay Type
<1	Negligible	Non Swelling
1.0-1.5	Low	Mixture of Non Swelling and Swelling
1.5-2.0	Moderate	Swelling
2.0-4.0	High	High
>4	Very High	Swelling

Table 2. 6: Classification of Soils based on free swell ratio (Sridharan and Prakash 2004).

E. Cation Exchange Capacity (CEC)

The CEC is the quantity of exchangeable cations required to balance the negative charge on the surface of the clay particles. CEC is expressed in milli equivalents per 100 grams of dry clay. CEC is related to clay mineralogy. High CEC values indicate a high surface activity. In general, swell potential increases as the CEC increases. Typical values of CEC for the three basic clay minerals are given in Table 2.7.

Table 2. 7: Typical CEC values of basic clay minerals after Mitchell 1976 (Nelson & Miller, 1992).

Clay Mineral	CEC (meq/100gm)
Kaolinite	3-15
Illite	10-40
Montmrllonite	80-150

2.7.2.3 Direct Methods

The swelling pressure and volume changes of soils are measured directly using representative undisturbed samples. These methods offer the most useful data by direct measurement; and tests are simple to perform and do not require complicated equipment. Testing should be performed on a number of samples to avoid erroneous conclusions. Direct measurement of expansive soils can be achieved by the use of conventional one-dimensional consolidometer. The methods provide quantitative information, which are very useful for design engineers.

2.8 Classification of Expansive Soil

Parameters determined from expansive soil identification tests have been combined in a number of different classification schemes. The classification system used for expansive soils are based on indirect and direct prediction of swell potential as well as combinations to arrive at a rating. There are a number of classification systems. The following are some of the common methods.

2.8.1 Classification Using General Methods

The most widely used soil classification systems are AASHTO and USCS systems According to index properties.

2.8.1.1 Unified Soil Classification Systems

This classification is based on plasticity chart and a correlation is made between swell potential and unified soil classification as follows

Category	Soil Classification Unified System
Little or no expansion	GW, GP, GM, SW, SP, SM
Moderate expansion	GW, SC, ML, MH
High volume change	CL, OL, CH, OH
No Rating	РТ

 Table 2. 8: Unified Soil Classification System Table

The above classification system can be summarized as follow:

- a. All clay soil and organic soils exhibit high volume change.
- b. All clayey gravels and sands and all silts exhibit moderate volume changes.
- c. All sands and gravels exhibit little or no expansion.

In the above classification soils rated as CL or OH may be considered as potentially expansive.

2.8.1.2 AASHTO Classification System

The AASHTO soil classification system is used to determine the suitability of soils for earthworks, embankments, and road bed materials such as sub grade, sub-base and base course. The AASHTO Classification system is useful for classifying soils for high way. On this research each Soil will be classified using the AASHTO Soil Classification System using particle size distribution and Atterberg limits. According to this classification system, granular soils are soils in which 35% or less are finer than the No. 200 sieve (75 μ m). Silt-clay soils are soils in which more than 35% are finer than the No. 200 sieve (75 μ m). The system classifies soils into seven major groups, A-1 through A-7. The first three groups, A-1 through A-3 are granular (coarse-grained) soils, while the last four groups, A-4 through A-7 are silt-clay (fine-grained) soils. As shown from AASHTO chart soils rated A-6 or A-7 by AASHTO can be considered potentially expansive (Nelson & Miller, 1992).

CHAPTER THREE

MATERIALS AND RESEARCH METHODOLOGY

3.1 Study Area

The study area is located in western part of Ethiopia, in Gambella National Regional State, at a distance of 770 Km from Addis Ababa. Its geographical Coordinates are approximately 8° 13'-8°16' North Latitude and 34° 34'- 34° 36'50" East Longitude. The town is found in an area of average altitude, of about 480 m above sea level (ASL). According to the Central Statistical Agency of Ethiopia (CSA, 2012), this Zone has a total population of 240,000. It lies in the climatic zone locally known as Kola which is considered ideal for agriculture as well as human settlement. Most part of the state is covered with dense forests and fertile lands.

The expansive subgrade soils for this research were taken from Baro dare around at Gambella University and Mikeal sefer along abobo road (Baro Mado).

Figure 3. 1: Map of study area (Source: Google Earth)

3.2 Population

The population of this research is the soil of the selected study area of Gambella town. In addition to this the collection of stabilizers such as groundnut shell ash in Gojjeb town, Keffa zone, coal ash in Yayo Coal Factory, Yayo and Bamboo Fiber in Dedo kebele.

3.3 Materials

3.3.1 Sub Grade Soil

The weak soil sample is collected from Gambella town, Mikeal Sefer and Baro Dare. The soil is black in color for both sites. The pebbles and vegetative matter is removed in the site itself by hand. The Disturbed soils Sample were collected at 1.5m below the natural ground level. It was air dried and pulverized and sieved through (from sieve 19mm to sieve 0.0075mm) to eliminate the gravel fraction (large particles), if any. The dried and pulverized fraction is stored in air tight containers for further analysis. The collected soil was taken to the Jimma University Institute of Technology Laboratory room by a large polythene bag and dried in air for about 7 days.

Figure 3. 2: Photos of sample taking from BD and MS soil sample (*Source: Abdi G., 6/02/2013*)

3.3.2 Groundnut Shell Ash

Groundnut shell is obtained from Keffa zone, Gojjeb town. The shells were burned on a metal sheet and the resulting ash is collected. Groundnut shell ash is produced by burning groundnut shell to ash; and groundnut shell is produced by milling of groundnut. The converted ash is sieved through No. 200(0.075mm). The groundnut shell ash treated soil

samples were prepared for determination of Atterberg's limits, Compaction behavior, CBR and Specific gravity.

Figure 3. 3: Process of Groundnut shell ash (GSA) preparation (*Source: Dawit S., 1/3/2013*)

3.3.3 Bamboo Fiber

The bamboo fiber is making from the starchy pulp of bamboo plants. Bamboo fiber is natural fiber, acts as a strengthening material for ordinary soil. It binds the soil particles together and helps in reduction of rapid change in volumetric properties. Bamboo Fiber is obtained from Dido kebele.

Table 3. 1: Properties of bamboo fiber

Parameter	Values
Color	Light Brown
Average Diameter(mm)	3
Average Length(mm)	20

Figure 3. 4 : Preparation of bamboo fiber preparation (*Source: Eyuel M., 21/2/2013*)**3.3.4. Coal Ash**

Industrial wastes such as Coal ash is the materials collected for this study. The collected samples were then burnt until it turned to ash by open burning on a metal sheet to protect the ash from mixing of dusts. The burnt coal ash Grounded after cooling using manual method and the burnt ashes were sieved through No. 200(0.075mm). A coal ash is collected from Oromiya region, Yayu Coal Factory. Yayu Coal Field is located in Illubabor province, which is in the southwestern Ethiopia highland. The exploration district is part of Wittete block in Yayu Coal Field.

Figure 3. 5: Process of coal ash (CA) preparation (Source: Dawit S., 8/3/2013)

3.4 Methodology

3.4.1 Sample Collection Methods

In order to have sufficient and reliable data for the target analysis, laboratory tests is conducted on soil samples obtained from different localities of Gambella Town. The representative disturbed sample is collected by manual excavation from the selected study area on the basis of visual identification & free swell index.

3.4.2 Sources of Data

Both primary data and secondary data sources were used. Primary data for this study were a laboratory experiment output. Secondary data needed for this research were being collected from different journals, book, website and manuals.

3.4.3 Sampling Techniques

Sampling procedures used for this research were be Purposive sampling techniques and non-probability method, because the experimental investigation of the study was executed particularly on the most weak/soft soil samples, since this study pick out the samples in relation to some criterion, which are considered important for the particular study.

A disturbed soil sample was to be collected from this representative sampling area. The expansive soil was to be identified by observation and free swelling index. Samples are reduced with a sample splitter or by quartering and weighting were used as sampling technique. From this, quartering sampling technique were be used for sample preparation. After retrieving samples, laboratory testing were undertaken to assess the material suitability. Initially material classification tests such as grain size analysis, liquid limit, plastic limit, plasticity Index was undertake, followed by assessment of strength parameters such as compaction, and California bearing ratio. All the tests are performed in accordance to AASHTO, ASTM, and ERA Standards.

3.4.4 Sampling Size

After gathering information and field investigations, 3 subgrade soils were taken from different Gambella town. From those two most weak soils were selected by observations and free swell index tests, Because of time constraint and intension of study is to mix

expansive subgrade soil with groundnut shell ash, coal ash and bamboo fiber as subgrade stabilizers, therefor the weakest sample is representing other populations by observations and free swell index tests. Therefore the weakest soil from the population are Baro dare approximately around at Gambella University $8^{0}14'16"$ N latitude and $34^{0}35'47"$ E longitude and Mikeal sefer approximately along abobo road $8^{0}14'09"$ N latitude and $34^{0}34'29"$ E longitude. The excavation was made manually using the shovel. The collected samples for this study were disturbed samples at a depth of below 1.5 m to remove organic matter.

3.4.5 Study design

Experimental study designs is used in this study which designed to answer the research questions and achieve its objectives based on experimental findings through quantitative, qualitative and comparative analysis approach.

It was attempt to conducted laboratory tests sieve analysis, Atterberg limits, Specific gravity, CBR test and Proctor compaction tests on expansive sub grade soil samples treated with different proportion of groundnut shell ash, coal ash and bamboo fiber checking to standard specification.

The research followed the experimental type of study which began collecting samples. The stages involved in the study include: -

- > Information gathering and Investigating the study area
- > collecting expansive subgrade soil and stabilizers
- > Preparation of sample for each laboratory tests based on AASHTO and ASTM.
- Process of mixing untreated soil sample blended with (groundnut shell ash alone, coal ash alone and bamboo fiber alone) in appropriate d/t proportion were tested in laboratory.
- Conducting laboratory tests to determine engineering properties of stabilized soil sample.
- Find out maximum replacement amount that satisfies requirement of the standard specification
- ➤ the results obtained were compared

Figure 3. 6: Research Design flow chart

3.5 Study Variables

3.5.1 Dependent Variable:-

> Performance of expansive sub grade soil with stabilizing agents.

3.5.2 Independent Variable:-

- Maximum dry density(MDD)
- Optimum moisture content(OMC)
- Particle Size Distribution
- ➢ Free Swell Index
- > Atterberg Limits,
- Specific Gravity

3.6 Methods and Standard testing procedure

The standards and specification for this study were adapted from AASHTO, ASTM and IS

No	Laboratory test		Standards			
			AASHTO	ASTM		
1	Moisture content		AASHTO T-80			
2	Grain size analysis		T-88			
3	Atterberg Limits		T089-96			
4	Soil Classifications		M-145	D2487-98		
5	Specific gravity			D854-83		
6	Modified pr compaction	roctor	AASHTOT-99	ASTM D698		
7	CBR		T193-93			

Table 3. 2: Standards and Specification for this study

3.7 Laboratory Testing and Analysis

Tests for soil classification which included grain size analysis, free swell, specific gravity and Atterberg limits. These are indicative tests that are usually used to identifying wither the soil is expansive or not. The conducted tests however included Atterberg limit, wet sieve analysis, specific gravity, moisture density relation, free swell, CBR and percent swell of CBR to fully characterize and attain the objective of the research

3.7.1 Subgrade soil

3.7.1.1 Sample Preparation

Before treating the samples the soils were classified according to the AASHTO and ASTM soil classification system, the samples air dried properly and the stabilizer mixed with the prepared soil sample. The air dried sample mixed with the groundnut shell ash, coal ash and bamboo fiber based on the different proportion required. Comparative analyses were performed. This proper mixed soil used for Atterberg limit, Free swell index, compaction, Californian bearing ratio. This test was done by adding water to the proper mixed soil sample. Finally, wet mixing was done by sprinkling water uniformly and thorough blending the whole soil matrix.

Figure 3. 7: Mixing of soil sample with additives (Source: Ayalew A., 12/3/2013)

3.7.1.2 Natural Moisture Content (AASHTO T-80)

The Natural moisture content of the soil which is defined as the ratio between mass of water to mass of soil solid was determine immediately after the sample was taken from the site.

The samples were kept in plastic bag to prevent moisture loss during transportation from site to laboratory. The method employed for determining the moisture content was oven drying method. The measured amount of wet soil was put in an oven of thermo statically controlled oven at $110 \pm 5^{\circ}$ Cdegree centigrade and kept for 24 hours and examined for weight loss.

3.7.1.3 Grain size analysis (AASHTO T-88)

This test is conducted to determine the percentage of different grain sizes contained within a soil. Sieve analysis was carried out to determine the grain size distribution of soil and used to soil classification. Accordingly, wet sieve analysis was employed to determine the grain size distribution of soil sample in accordance with AASHTO T-88 test method for particle size analysis of soil. The grain size distributions for soil sample are presented at appendix A and appendix B. Lastly the analysis was combined particle size distribution curve was plotted as Figure 4.1 and 4.2.

3.7.1.4 Atterberg limits (AASHTO T 089-96)

This test is performed to determine the liquid and plastic limit of a fine grain soils. **Liquid Limit**: The liquid limit (LL) is subjectively defined as the water content, expressed in percent, at which the soil changes from a plastic to liquid and principally it is defined as the water content at which the soil pat cut using standard groove closes for about a distance of 13mm (1/2 in.) when subjected at 25 blows from the cup being dropped 10mm of the liquid limit machine (Casagrande Apparatus) run at rate of two drops per second. The liquid limit of a soil highly depends upon the clay mineral present. A soil containing with high water content is in the liquid state and it offers no shearing resistance.

Plastic Limit: The plastic limit (PL) is the water content, expressed in percentage, below which the soil stops behaving as a plastic material and it begin to crumble when rolled into a thread of soil of 3.0mm (1/2 in.) diameter. The soil in the plastic state can be remolded into several forms. When the water content is reduced the plasticity of the soil decreases changing into semisolid state and it cracks when remolded. The results of Atterberg limit test computed for the collected samples were written in Table 4.5.

Figure 3. 8: Atterberg limit Determination (*Source: Mered H., 23/3/2013*)
3.7.1.5 Soil Classifications (AASHTO M-145 and ASTM D2487-98)

The most widely used soil classification systems for engineering purposes are American Association of State High Way and Transportation Officials (AASHTO) and Unified soil classification system (USCS). The AASHTO system of soil classification comprises seven groups of inorganic soils from A-1 to A-7 with 12 subgroups in all. The system is based on particle-size distribution, liquid limit and plasticity index. On the other hand, the Unified Soil classification system is based on the recognition of the type and predominance of the constituents considering grain – size (gradation), plasticity and compressibility. It divides soil in to three major divisions: coarse grained soils, fine grained soils and highly organic soils. The classification of soil samples was determined using AASHTO M-145 and D2487-98 and the classification is shown at Table 4.6.

3.7.1.6 Free Swell Index

The free swell index is also one of the most commonly used simple tests to estimate the swelling potential of expansive clay soil. The procedure involves in taking two oven dried soil samples passing through the $425\mu m$ sieve, 10g each was placed separately in two 100ml graduated soil sample. Distilled water was filled with one cylinder and kerosene in

the other cylinder up to 100ml mark. The final volume of soil is computed after 24 hours to calculate the free swell index.

FSI = ((Vw - Vk)/Vk)*100....(3.1)

Where FSI = Free Swell Index

Vw = Final volume in water

Vk= Final volume in kerosene

The free swell Index of the study area soil was presented on Table 4.10.

Figure 3. 9: Free Swell index test (Source: Dawit S., 13/2/2013)

3.7.1.7 Specific Gravity (ASTM D-854)

Specific gravity which is the measure of heaviness of the soil particles were determined by the method of small pycnometer method using a soil sample passing 2mm sieve and oven dried at $110\pm5^{\circ}$ c degrees centigrade. Specific gravity is the ratio of the mass of the unit volume of soil at a stated temperature to the mass of the same volume of gas-free distilled water at a stated temperature.

Figure 3. 10: Specific gravity test (Source: Mered H., 1/4/2013)

HIGHWAY ENGINEERING STREAM, JIT

3.7.1.8 Compaction (AASHTO T-99)

Modified Proctor compaction tests were conducted on the soil to determine the relationship between the moisture content and dry density for specific compaction effort according to AASHTO T99. The soil was compacted with different moisture content in five layers each suffering 56 blows. After obtaining the density and moisture of each compacted soil sample, the relationships for dry density and moisture content are obtained as tabulated at Table 4.14.

Figure 3. 11: Compaction test (*Source: Asbew A., 4/4/2013*)3.7.1.9 California Bearing Ratio (CBR) (AASHTO T 193-93)

The CBR is expressed by force exerted by the plunger and the depth of its penetration into the specimen; it is aimed at determining the relationship between force (load) and penetration. 4.5kg of the natural soil and the soil with GSA, soil with CA and soil with BF mixture are mixed at their respective (optimum moisture contents obtained from compaction mines natural moisture content divided by one hundred and multiplied with the mass of soil sample in gram) moisture contents in 2124 cubic centimeters molds. А three point CBR test at 10, 30 and 65 blows were conducted and the CBR values at 95% MDD was determined. The samples are compacted in five layers with 65blows, 30blows and 10blows from the Automatic compactor. The compacted soil samples of the CBR molds are soaked for 96 hours in a water bath to get the soaked CBR value of the soil. The test consisted of causing a cylindrical plunger of 60 mm diameter to penetrate a pavement component material at 1.25 mm/minute. The loads for 2.54 mm and 5.08 mm were recorded. The greatest value calculated for penetrations at 2.54mm and 5.08mm was having been recorded as the CBR value. However, if the greater recorded value was obtained first for penetration at 5.08mm the laboratory test was repeated again and result

were taken as it is for the next penetration result. The equation to be computing the CBR value is as follows.

 $CBR(\%) = 100^{*}(x/y)....(3.2)$

Where: 'X' = material resistance or the unit load on the piston (pressure) for 2.5 or 5.0 mm of penetration, y = standard unit load (pressure) for well graded crushed stone. For 2.5 mm Penetration = 13.2KN and for 5.0mm penetration = 20KN. The determined laboratory results are tabulated at Table 4.15.

Figure 3. 12: CBR test procedures (Source: Mulukene G., 10/4/2013)

3.7.1.10 CBR swell of the soil

The CBR swell of the soil is measured by placing the tripod with the dial indicator on the top of soaked CBR mold. The compacted soil samples of the CBR mold are soaked for 96 hours in a water bath to get the CBR swell of the soil. The initial dial reading of the soil of the dial indicator on the soaked CBR of mold is taken just after soaking the sample. At the end of 96 hours the final dial reading of the dial indicator is taken hence the swell percentage of the initial sample length is 116.43mm, see Table 4.16. Then CBR swell is given by:

CBR Swell = (Change in Length in mm during soaking /116.43) *100(3.3)

3.7.1.11 Linear Shrinkage

Linear shrinkage test followed a British standard (BS1377: Part 2:1990), and covers the determination of total linear shrinkage from linear measurement on a standard bar of length 140 mm with a semicircular section of diameter 25 mm, the grove filled by a soil

of the fraction passing 0.425 mm test sieve, originally having the moisture content of the liquid limit.

Linear shrinkage =Initial length-oven dried length of specimen *100.....(3.4)

Initial length

Figure 3. 13: Linear Shrinkage test (Source: Dawit S., 16/3/2013)

3.7.1.12 Cone Penetrometer Method

The cone penetrometer method is the preferred method to the Casagrande test as it is essentially a static test depending on soil shear strength. This method covers the determination of liquid limit of a sample in its natural state, or a sample from which material passing on 0.425mm test sieve has been used for test. It is based on the measurement of penetration in to the soil of a standardized cone. The liquid limit of the soil sample is the moisture content corresponding to a cone penetration of 20mm and shall be expressed to the nearest whole number.

Figure 3.14 : Cone penetrometer test (Source: Ayalew A., 22/4/2013)

HIGHWAY ENGINEERING STREAM, JIT

3.8 Data quality Assurance

Pre –test of the available instrument was to be done before the main data collection period begins and the data was to be collecting after gaining awareness on how to collect relevant data by principal investigators. A sample was to be collected from appropriate locations and at appropriate depth to avoid organic and weathered materials. A standard format was to be used for recording test results to prevent loss of data.

- Laboratory test and field work manual was to be preparing in order to avoid error of data
- > The training was to be given for data collectors to handle the data carefully.

3.9 Plan for Dissemination of Findings

Dissemination of findings is important so that results can be used to improve engineering and technological industries. The findings of the study is presented for Faculty of Civil and Environmental Engineering and School of Graduate Studies as part of evaluation and publically defended in the presence of examiners.

Dissemination plans were designed by implementing the following points effectively.

- Orient toward the needs of the audience, using Amharic, English, and other appropriate languages and information levels.
- Apply various dissemination methods: written text including illustrations, graphs and figures; electronic and web-based tools; and oral presentations at community meetings and scientific conferences.

3.10 Ethical Considerations

- Prior to data collection an official letter had been written by Jimma University to different required office to perform the relevant tests, which were not available in the university that help to take the representative soil samples.
- Before the collection of the data the purpose of the data collection was to be clearly described to the organizations by the data collectors and the principal investigator.
- > The data was collected based on the willingness of the organizations.

CHAPTER FOUR

RESULTS AND DISCUSSIONS

This chapter presents test results, discussion and analysis of all experimental work that were performed on untreated and treated soil samples with Groundnut shell ash, Coal ash and Bamboo fiber. Primarily, properties of materials (untreated soil, Groundnut shell ash and coal ash) were examined, then the effect of stabilizers on Atterberg limits, Natural moisture content, moisture-density relationship (compaction), CBR, and CBR swell values were investigated by varying percentage of stabilizers and compared with native soil/untreated soil engineering properties. Then effect of stabilizers on the properties of treated soil was compared and contrasted with standard specification and manuals.

4.1 Material Property used in this study

4.1.1 Laboratory test result for engineering properties of Stabilized soil sample

GSA	Test Result, %											
(70)			BI)			MS					
	MDD,	OMC	CB	CB	LL,%	PI,%	MDD	OMC	CB	Swe	LL,%	PI, %
	g/cm3	,%	R,	R,			,	, %	R,%	11,%		
			%	Swe			g/cm					
				11,%			3					
2	1.62	20.89	3.8	1.23	82.50	43.98	1.62	21.29	3.2	1.75	83.88	47.63
4	1.63	18.37	5.2	0.89	74.03	33.05	1.60	24.91	3.9	1.19	79.02	38.57
6	1.64	16.89	5.9	1.09	63.35	17.85	1.51	25.70	5.1	1.16	65.79	21.45
8	1.59	20.83	7.5	0.55	57.83	8.71	1.49	31.25	5.9	1.02	59.23	12.67
10	1.58	18.4	6.4	0.64	54.49	4.23	1.47	26.54	5.2	1.80	57.36	8.47

Table 4. 1: Summary of test result for stabilized soil sample with groundnut shell ash

CA	Test Result, %											
(%)	BD							M	S			
	MDD,	OMC	CB	CB	LL,%	PI,%	MDD	OMC	CB	Swe	LL,%	PI, %
	g/cm3	,%	R,	R,			,	, %	R,%	11,%		
			%	Swe			g/cm					
				11,%			3					
10	1.62	18.58	4.3	1.73	77.71	39.05	1.63	20.55	4.1	1.92	86.23	48.93
20	1.57	20.39	5.3	1.69	69.68	24.95	1.54	24.56	5	1.71	76.03	34.29
30	1.48	21.81	6.90	1	61.16	14.59	1.49	25.86	6.5	0.77	67.05	21.58
40	1.47	25.48	7.8	0.75	58.22	8.09	1.47	29.83	7.5	1.07	60.52	11.45
50	1.56	17.24	6.4	1.30	56.83	3.60	1.44	27.35	6.2	1.49	57.43	7.17

Table 4. 2: Summary	of test result for s	stabilized soil samp	le with Coal ash
---------------------	----------------------	----------------------	------------------

Table 4. 3: Summary of test result for stabilized soil sample with Bamboo Fiber

BF	Test Result, %									
(%)		BD			MS					
	MDD,	OMC,	CBR,%	CBR	MDD,	OMC,	CBR,	CBR		
	g/cm3	%		Swell,	g/cm3	%	%	Swell,		
				%				%		
1	1.6	20.79	3.7	1.87	1.59	28.55	3.4	2.30		
1.5	1.57	18.28	4.9	1.43	1.77	15.22	3.9	1.87		
2	1.59	19.05	5.3	1.66	1.69	31.16	4.7	1.31		
2.5	1.61	16.2	6.4	0.97	1.52	20.18	6.4	1.14		
3	1.56	13.74	4.3	1.86	1.47	19.74	5.1	1.86		

4.1.2 Geotechnical Properties of Soil Sample

In order to determine the quality of the materials, laboratory tests were carried out on both BD and MS untreated soil samples. The results of the tests conducted for identification

and/or determination of properties of the natural soil before applying Groundnut shell ash, coal ash and bamboo fiber are presented in Table 4.4.

	Test Result, %			
Parameters	BD	MS		
Natural moisture content	35.59	40.82		
Percentage of passing No.200sieve, %	94.41	92.92		
liquid limit (LL)	81.84	89.16		
Plastic limit (PL)	32.4	33.3		
Plasticity index (PI)	49.44	55.86		
AASHTO	A-7-5	A-7-5		
USCS	СН	СН		
Specific gravity	2.72	2.79		
Free swell index	80	85		
Linear shrinkage	12.33	14.02		
Maximum dry density, g/cm3	1.6	1.59		
Optimum moisture content (OMC)	18.99	21.46		
Soaked CBR value	2.2	1.6		
CBR swell	5.57	6.90		
Color	Black	Black		

 Table 4. 4: General Geotechnical properties of both soil sample

Generally Liquid limit less than 35% is low plasticity, between 35% and 50% intermediate plasticity, between 50% and 70% high plasticity and between 70% and 90%

very high plasticity (Whitlow, 1995). As a result, these values indicate both the soil sample is very high plastic clay. Therefore, the subgrade shrink and swell easily and does not resist internal and external load. Finally, the structure make crack and easily demolished. To protect this failure stabilization using different additives should be required.

4.1.2.1 Particle size distribution

A basic element of a soil classification system is the determination of the amount and distribution of the particle sizes in the soil. Distribution of particle sizes greater than 0.075 mm is determined by sieving, while a sedimentation process (hydrometer test) is used to determine the distribution of particle sizes smaller than 0.075 mm. To determine the distribution of coarser particles, 1200gm of the natural subgrade soil is taken and washed on sieve size of 75 μ m. The tabular experimental results are presented in appendix A and B, and the particle size distribution curves are shown in Figure 4.1 and Figure 4.2 The soil for sample BD soil sample is black, and almost 94.41% of the soil are passing through No.200 sieve as shown in Figure 4.1.

According to AASHTO soil classification soils 35% minimum percent pass sieve no.200 sieve (75 μ m) are classified as silty-clay materials. The minimum percent pass sieve no.200 for the BD soil Sample under study is 94.41% and the soil is categorized as poor clay subgrade soil.

Figure 4. 2: Grain size distribution curve of MS soil sample

The soil for sample MS is Black and almost 92.92 % of the soil is passing through No.200 (75 μ m) sieve as shown in Figure 4.2. Almost the given soil sample were a fine clay (silty clay) soil.

4.1.2.2 Atterberg's Limits

The nature and response of soil up on change to moisture content is determined by Atterberg limit tests. Following the AASHTO procedure, designation AASHTO T89-96 and T90-00 standard test method, the soil samples obtained from BD and MS were subjected to varying water content and as a result the liquid limit, plastic limit and plastic index of the untreated sample as recorded in Table 4.5 were determined. The laboratory data analysis was attached in Appendix A and B.

Table 4 5.	Atterberg test	results of BD	and MS	sample soil
. Tuble 4. 5.	microerg test	icsuits of DD	and MD	sumple som

	100 % Natural subgrade soil						
Sample Name	Liquid limit (%)	Plastic limit (%)	Plasticity index (PI)				
BD	81.84	32.4	49.44				
MS	89.16	33.3	55.86				

According to Atterberg limit test result as shown by Table 4.5. The BD and MS soil sample changed from liquid state to plastic state and got an average liquid limit of 81.84% and 89.16% respectively. The given soil sample translate from plastic state to semisolid state and got an average plastic limit of 32.4% and 33.3% for BD and MS soil sample respectively. At this state the soil rolled into threads. The difference between the liquid limit and plastic limit is called Plastic Index. The soil sample also has Plastic Index of 49.44% and 55.86% for both soil samples respectively. As result of Plastic Index indicates both the native subgrade soil samples have poor for sub grade material unless it treated.

4.1.2.3 Soil Classifications

4.1.2.3.1 AASHTO Classification system (AASHTO M-145)

The AASHTO system uses similar techniques as that of USCS but the dividing line has an equation of the form PI= LL-30. It generally classifies a soil broadly into granular material and silt-clay material. The granular material is further divided into three groups which are called A-1, A-2 and A-3. The silt-clay material is in turn divided into four groups namely, A-4, A-5, A-6 and A-7. As it can be observed from AASHTO Classification system plasticity chart is as Follows in Figure 4.3.

Sample	Sieve analysis of			LL	PI	LL-	Group	Soil	Material
Name	percentage of passing			(%)	(%)	30	Index	Group	Туре
	No.10	No.40	No.200						
BD	98.81	97.42	94.41	81.84	49.44	51.84	167	A-7-5	Clay
									soil
MS	98.37	96.63	92.92	89.16	55.86	59.16	189	A-7-5	Clay
									soil

 Table 4. 6: Classification of Soils based on AASHTO classification system

Figure 4.3 : Plasticity chart of untreated soil samples according to AASHTO

From AASHTO Classification system results shown in Table 4.6 and Figure 4.3 it can be concluded that both BD and MS soil samples fall under A-7-5, which were clayey soils with group index of 167 and 189 respectively. The group index results indicate that generally the soils of the study area were very poor for subgrade material. Thus, the natural subgrade material is unsuitable to be used as subgrade material without employing some improvement methods.

4.1.2.3.2 Unified Soil Classification (USCS) system

This system describes a system for classifying minerals and organo-mineral soils for engineering purposes based on laboratory determination of particle-size characteristics, liquid limit and plasticity index and shall be used when precise classification is required (ASTM). The classification of the soils is presented in Figure 4.4.

Sample	Liquid	Plastic	Plastic	Group	AASHTO	USCS
Name	limit (%)	limit (%)	Index (%)	Index		
BD	81.84	32.4	49.44	167	A-7-5	СН
MS	89.16	33.3	55.86	189	A-7-5	CH

Table 4. 7: Soil Classification according to AASHTO and USCS for both soil samples

Figure 4. 4: Plasticity chart of untreated soil according to Unified Soil Classification System

According to USCS, if the Liquid limit are greater or equal to 50% the soil can be clay, silt, or organic depends on whether the soil coordinates plot above or below the A line. Based on the lab result the liquid limit soil sample BD and MS are 81.84% and 89.16% respectively since the results are greater than 50% so that the soils are high plasticity (H). to identify the soil is high silt(MH) or high clay (CH) observe the plastic index vs. liquid limit chart to check the point above A line or below A line since both soil samples are above A line so that the soil type is high plastic clay(CH), a ccording to ASTM D2487 - 11.

4.1.2.4 Specific gravity of Natural Subgrade Soil, Groundnut shell ash, Coal ash

Specific gravity which is the measuring of the heaviness of soil particle is determined by the method of pycnometer method using the soil sample passing sieve number 10(2mm) and oven dried 105^{0} c. The test includes the determination the specific gravity for the natural soil. The test was conducted in accordance with ASTM-854 testing procedure.

Soil Sample	BD	MS
Specific gravity	2.72	2.79

Table 4.	8:	Specific	gravity	for	natural	sub	grade
----------	----	----------	---------	-----	---------	-----	-------

Sample	Groundnut shell ash	Coal ash
Specific gravity	2.05	1.97

Table 4. 9: Specific gravity for Groundnut shell ash, Coal ash

At a Table 4.8 the specific gravity of the soil sample BD and MS are 2.72 and 2.79 respectively. The specific gravity of solid particles most soils vary from 2.5-2.9. For the most of calculation the specific gravity can be assumed as 2.65 for cohesion less soils and 2.70 for clay soils. Therefore at a Table 4.8 the test result indicates that both soil samples are under clay soil.

4.1.2.5 Free swell index

The Free swell test is one of the most commonly used simple tests for estimating soil swelling potential. A result of the free swell tests of the soil was given in Table 4.10.

Table 4. 10: Free swell index test results for natural subgrade soil sample

Sample Name	Free swell Index (%)
BD	80
MS	85

The free swell test value of for sample BD and MS indicates that 80% and 85% respectively. Soils having the free swell value above 100% can cause damage whereas free swell as low as 100% can cause considerable damage to light loaded structures and soils having a free swell value less than 50% seldom exhibits appreciable volume change even under light loads. Hence the free swell value of the soil under study exceeds 50% such soils undergo volumetric changes loading to pavement distortion, cracking and general unevenness due to seasonal wetting and drying (Ranjan and Rao, 2002).

4.1.2.6 Linear Shrinkage Test

This test was conducted to determine the linear shrinkage of the drying soil. Linear shrinkage is the reduction in the length of the sample when completely dries. The linear

shrinkage test was conducted on the treated and untreated soil. A result of the Linear Shrinkage Test of the untreated soil sample was given in Table 4.11 and a tabular laboratory test result was given in appendix A and appendix B.

Sample Location	Linear shrinkage (%)
BD	12.33
MS	14.02

Table 4. 11: Linear Shrinkage test results of the untreated soil

4.1.2.7 Compaction test results of natural subgrade soil

Modified proctor test was done to determine the maximum dry density (MDD) and optimum moisture content (OMC) natural subgrade soil according to AASHTO T-99. Prepared a sufficient quantity of air dry soil were passing through sieve number 19mm and measured 4500gm of soil sample and compact in Five layers for each proctor compaction test. The BD soil sample has optimum moisture content 18.99% and maximum dry density 1.60gm/cm3. Also, MS soil sample has optimum moisture content 21.46% and maximum dry density 1.59gm/cm3 as shown in Figure 4.5

Figure 4. 5: Moisture Density Relation for natural sub grade soil

4.1.2.8 CBR test result of natural subgrade soil (AASHTO T-193)

Three point (65, 30, and 10) bellows in five layer CBR tests were done according to AASHTO T193 to determine the strength of soil sample and how it will behave when subjected to loading. About 4.5kg quantity of air dried soil and passing through sieve size 19mm were mixed at optimum moisture content in large mixing pan. Then compacted in 5 layer with 65, 30, 10 number of bellows for each layer. Compacted soil samples of CBR mold are soaked for 96hrs in water bath to get the soaked CBR value and the CBR swell of the soil.

The CBR swell of the soil is placing the tripod with the dial indicator on the top of soaked CBR mold. The initial dial reading of the dial indicator on the soaked CBR mold is taken just after soaking of the sample. At the end of 96hrs the final dial reading of dial indicator is taken hence the swell percentage of initial sample length is given by

The Summary of the CBR result for natural subgrade soil shows at Table 4.12

Sample	Sample Number		Load(KN)		CBR (%)		OMC	DD(g	MDD(g/
Name	of					in		/cc)	cm^{3})
	bellows	2.54	5.08	2.54	5.08	(%)	(%)	,	,
	o eno ws					(/0)			
BD	65	0.331	0.391	2.48	1.96	5.57	18.9	1.520	1.60
	30	0.305	0.372	2.29	1.86				
	10	0.269	0.318	2.02	1.59				
	CBR at MI	DD (%)				2.2			
		1	r			1		r	
MS	65	0.284	0.324	2.13	1.62	6.90	21.5	1.511	1.590
	30	0.243	0.298	1.82	1.49				
	10	0.217	0.267	1.63	1.34				
	CBR at MI	DD (%)		1.6					

Table 4. 12: CBR test results of expansive soil

According to the laboratory results as presented Table 4.12 the BD soil sample had 2.2% soaked CBR value with 5.57 % CBR swell and MS soil sample had 1.6 % soaked CBR

value with 6.90 % CBR Swell. From the soaked CBR test, it was found that the natural subgrade soil has low CBR value as compared to ERA manual 2013 both subgrade soil samples does not satisfy the minimum requirements as subgrade material. Also CBR swell values are above the specified maximum value of 2% hence this soil needs to be treated before use.

4.1.3 Overall Characterization of the natural subgrade soil

According to the laboratory test results of the natural subgrade soil sample obtained during the present study, the proportion of fines passing no 200 sieve 94.41%, 92.92%, liquid limit 81.84%, 89.16%, and plasticity index 49.44%, 55.86%, for BD and MS soil sample respectively, both soils samples are classified in to A-7-5 as per the AASHTO and CH as per the USCS classification system. As far as the engineering performance of soils of this class is concerned, such soils are expansive soils which have high volume changing properties with variation in moisture content (Chen, 1988). The liquid limit and plasticity index values are very much greater than the Ethiopian Roads Authorities requirements as stated by (Alemayehu, 2015), i.e., liquid limit less than 60% and plasticity index less than 30%. Accordingly, both samples show excess values in each parameter and the soil in general thus had expansive property. The free swell index of 80%, and 85% for BD and MS soil sample respectively, also revealed that the soils are expansive soil, since its free swell index is greater than 50%.

Furthermore, the CBR and percent swell of 2.2%, 1.6% and 5.57%, 6.90% for BD and MS soil samples respectively indicate that the soils has a low load bearing capacity and high swelling potential when compared to ERA's specifications of CBR \geq 5% and percent swell of less than 2% which makes it unsuitable for construction without any suitable treatment measure. However, the comparisons above between ERA design manual and laboratory results of the soil shows that, the soil sample do not full fill the requirements as a sub-grade and are determined to be unsuitable for sub-grade in road construction. Therefore, the sub-grade soil should be treated with appropriate improving methods before use as road sub grade.

4.1.4 Laboratory test results of stabilization of expansive soil

4.1.4.1Atterberg limits

One of the important and principal aims of the present study was to evaluate the changes of liquid limits, plastic limits and plasticity index with addition of Groundnut shell ash and coal ash to the selected soil samples. To achieve this objective, liquid limit and plastic limit tests were conducted on Groundnut shell ash-soil mixtures and Coal ash-soil mixture. A ccording to consistency test of AASHTO T89 and T90, Soil samples were first air dried and pulverized and then sieved with no 40(0.425) sieve. Soil passing no 40 sieve was mixed with different proportion of Groundnut shell ash and coal ash at optimum water content and sealed with plastic for 24 hours in order to give sufficient time for chemical reaction before test. From Table 4.13 Groundnut shell ash (GSA)-soil mixtures and Coal ash-soil mixtures, the following observations have been made and/are illustrated in Figure 4.6 and Figure 4.7 for BD and MS samples respectively.

Sample Name	Additives	LL (%)	PL (%)	PI (%)	ERA(2013)	
	GSA				Requirement	Remark
	(%)				01 P1	
					In (%)	
	0	81.84	32.4	49.44		Poor
	2	82.50	38.52	43.98		Poor
	4	74.03	40.98	33.05		Poor
	6	63.35	45.50	17.85	<30	Satisfied
	8	57.83	49.12	8.71		Satisfied
	10	54.49	50.26	4.23		Satisfied
	CA (%)					

Table 4. 13	3: Atterberg limit test result of GSA-Soil and CA-Soil to stabilized B	BD soil
sample		

	0	81.84	32.4	49.44		Poor
	10	77.71	38.66	39.05		Poor
BD	20	69.68	44.73	24.95	<30	Satisfied
	30	61.16	46.57	14.59		Satisfied
	40	58.22	50.13	8.09		Satisfied
	50	56.83	53.23	3.60		Satisfied
	GSA (%)	LL (%)	PL (%)	PI (%)	ERA(2013) Requirement of PI in (%)	Remark
	0	89.16	33.3	55.86		Poor
	2	83.88	36.25	47.63		Poor
	4	79.02	40.45	38.57		Poor
	6	65.79	44.34	21.45		Satisfied
MS	8	59.23	46.56	12.67	<30	Satisfied
	10	57.36	48.89	8.47		Satisfied
	CA (%)					
	0	89.16	33.3	55.86		Poor
	10	86.23	37.30	48.93		Poor
	20	76.03	41.74	34.29	<30	Poor
	30	67.05	45.47	21.58		Satisfied
	40	60.52	49.07	11.45		Satisfied
	50	57.43	50.26	7.17		Satisfied

According to the results observed from the laboratory test, one can judge that the behavior of soil sample was changed from high plasticity soil to low plasticity soil. As a result, when the percentage of GSA & CA increased plasticity index of the treated soil samples are significantly decreased whereas it becomes increase when the percentage of GSA & CA increased, this is the reason due to deficiency of Ca2+ which is required to replace the weakly bonded ions in the clay structure and hence, flocculation did not occur. Instead, there was an increase in the fine fraction which absorbed more water and became more plastic.

Figure 4. 6: Plasticity index chart for stabilize BD soil sample

The liquid limit decreases for both soil samples from 81.84% to 54.49% (GSA) and 81.84% to 56.83% (CA) for BD Soil sample and 89.18% to 57.36%(GSA) and 89.18% to 57.43%(CA) for MS soil sample. However the additive shows significant change on Liquid limit of the soil because of pozzolanic property of the ash. It has been recognized that the type of mineral present in a soil type determines Cation exchange capacity and hence, the effect the addition of soil stabilizers will have on the Atterberg limits (Dainti, al..., 2005).

From the test data it is observed that addition of GSA and CA decreases Liquid Limit, Plastic Index and increase in Plasticity Limit values. After modification PI reduced from a value of 49.44% to 4.23% (GSA) and 49.44% to 3.60% (CA) for BD soil sample and

55.86% to 8.47% (GSA) and 55.86% to 7.17% (CA) for MS soil sample. Hence GSA and CA have great impact in reduction of PI.

The plasticity index decrease with stabilization of additives for all mix-ratio however the percentage of reduction was significantly decreased when the percentages of coal ash increase rather than Groundnut shell ash. Generally the stabilization of weak soil with Coal ash and Groundnut shell ash have brought very appreciable result in decreasing plasticity index of both soil samples.

4.1.2.2 Compaction characteristics of treated soil

The Modified proctor compaction test was carried out according to AASTHO T-99. The moisture density relations are determined based on AASTHTO T-99. Tests were conducted with different percentages of additives. The percentages of additives shown at Table 4.14

Moisture content versus dry density graph is plotted and the optimum Moisture Content (OMC) and Maximum Dry Density (MDD) are determined from the graph. Summarized results are tabulated in Table 4.14. The details of the test results are attached in Appendix C and D.

Table 4. 14: Moisture density relation test results of the mix-ratio of GSA-Soil, CA-soil and BF-Soil.

Sample Name	GSA (%)	MDD (g/cm ³)	% decrease /Increase	OMC (%)	% decrease /Increase
	0	1.6	0	18.99	0
	2	1.62	1.25	20.89	10.005
	4	1.63	1.875	18.37	-3.26
	6	1.64	2.5	16.89	-11.058
	8	1.59	-0.625	20.83	9.689
	10	1.58	-1.25	18.4	-3.10
	CA (%)				
	10	1.62	1.25	18.58	-2.159
	20	1.57	-1.875	20.39	7.37
BD	30	1.48	-7.5	21.81	14.85
	40	1.47	-8.125	25.48	34.175
	50	1.56	-2.5	17.24	-9.215
	BF (%)				
	1	1.6	0	20.79	9.478
	1.5	1.57	-1.875	18.28	-3.738
	2	1.59	-0.625	19.05	0.316
	2.5	1.61	0.625	16.2	-14.69
	3	1.56	-2.5	13.74	-27.64
Sample	CSA	MDD	0/2	OMC	% decrease
--------	-------	----------------------	-----------	-------	-------------
Nampie			70		70 uccrease
Name	(%)	(g/cm ⁻)	decrease	(%)	/Increase
			/Increase		
	0	1.50	0	01.46	
	0	1.59	0	21.46	0
	2	1.62	1 00	21.20	0.702
	2	1.02	1.00	21.29	-0.792
	Δ	1.60	0.628	2/ 01	16.076
	-	1.00	0.020	27.71	10.070
	6	1 51	-5.03	25 70	19 757
	U	1.51	5.05	23.70	17.757
	8	1.49	-6.289	31.25	45.619
	-				
	10	1.47	-7.547	26.54	23.67
	CA				
2.69	(0/)				
MS	(%)				
	10	1.63	2.51	20.55	-4.24
	20	1 5 4 4	2.002	0155	14445
	20	1.544	-2.893	24.56	14.445
	20	1 401	())(25.96	20.502
	30	1.491	-0.220	25.80	20.503
	40	1 474	7 205	20.83	30.002
	40	1.4/4	-1.293	29.03	39.002
	50	1 44	-9/133	27.35	27 446
	50	1.77	-7.433	21.55	27.440
	BF				
	(9/2)				
	(70)				
	1	1.59	0	28.55	33,038
	1	1.57	Ũ	20.00	33.030
	1.5	1.77	11.320	15.22	-29.077
	2	1.69	6.289	31.16	45.20
	2.5	1.52	-4.402	20.18	-5.964
	3	1.47	-7.547	19.74	-8.015

Figure 4. 8: SUMMARY Of OMC and MDD for treated soil sample of BD

As observed from Table 4.14, the MDD of untreated sample was observed to be 1.6 g/cm3 and 1.59 g/cm3 for BD and MS soil samples respectively. Even though the compaction curve is normal the curve shifted the left upward in the case of treating the soil with GSA-Soil, BF-soil and CA-Soil, which also means additions of those additives slightly decrease the OMC and increase the MDD for both soil samples.

As it can be seen that from the above Figure, the MDD shows a slight increase and OMC shows a decrease in the treatment of weak subgrade soil with GSA-soil, CA-soil and BF-soil additive agents. The MDD increases from 1.6 g/cm3 to 1.64 g/cm3(GSA), 1.6g/cm3 to 1.62g/cm3(CA), 1.6 g/cm3 to 1.61 g/cm3(BF) and OMC decreases from 18.99% to 16.89% (GSA), 18.99% to 17.24%(CA), 18.99% to 13.74%(BF) for BD soil sample.

The MDD shows a slight increase and OMC shows a decrease in the treatment of weak subgrade soil with GSA-soil, CA-soil and BF-soil additive agents. The MDD increases from 1.59 g/cm3 to 1.62g/cm3(GSA), 1.59g/cm3 to 1.63 g/cm3(CA), 1.59g/cm3 to 1.77g/cm3(BF) and OMC decreases from 21.46% to 21.29%(GSA), 21.46% to 20.55%(CA), 21.46% to 15.22%(BF) for MS soil sample. Generally, increasing the percentage of BF ratio in BF-Soil mix-ratio led increase in the maximum dry density and decrease optimum moisture content rather than GSA and CA.

4.1.2.3 CBR Test results of treated soil sample

CBR is a parameter which is used to measure the strength of subgrade soil. The CBR tests were conducted with the addition of the mixed of GSA-Soil, CA-Soil, and BF-Soil with different percentage of additives.

Specimens are molded at respective optimum moisture content as determined in moisture density relationships. Three-point CBR with 65, 30, 15 blows and 4 days (96 hours) socking is conducted and CBR value at 95% MDD is determined for all tests. The soaked CBR test results for different percentage of GSA- Soil, CA-Soil, and BF-Soil are summarized in the Tables 4.15. The details of the laboratory results are attached in Appendix C and D.

Table 4. 15: CBR	test results of	treated soil sample
------------------	-----------------	---------------------

Sampl	Percent						
e	of				CDD	-	D 1
Name	additives	CBR V	alue (%)		CBR	Era	Remarks
1 (unite	uuuuu				@95%	requi	
					MDD	reme	
						nt	
		65 blow	30 blow	10 blow			

	GSA	2.54	5.08	2.54	5.08	2.54	5.08			
	(%)									
	0	2.48	1.96	2.29	1.86	2.02	1.59	2.2		Poor
	2	4.17	3.19	3.94	2.95	3.62	2.92	3.8		Poor
	4	5.50	4.37	4.88	3.84	4.27	3.31	5.2	∽ 5 0∕	Satisfied
	6	6.19	4.77	5.94	4.37	5.63	4.29	5.9	// //	Satisfied
BD	8	7.59	6.01	7.35	5.87	7.17	5.43	7.5		Satisfied
	10	6.66	5.07	6.36	4.89	6.09	4.78	6.4		Satisfied
	CA (%)									
	10	4.42	3.24	4.05	3.03	3.75	2.84	4.3		Poor
	20	5.43	4.17	5.23	4.03	4.99	3.79	5.3		Satisfied
	30	7.08	5.53	6.80	5.35	6.46	4.92	6.90		Satisfied
	40	9.50	7.74	8.22	6.46	7.10	5.80	7.8		Satisfied
	50	6.59	4.84	6.26	4.62	5.73	4.29	6.4		Satisfied
	BF (%)									
	1	4.23	3.17	3.69	2.83	2.43	1.90	3.7		Poor
	1.5	5.05	3.69	4.74	3.49	4.13	3.14	4.9		Poor
	2	5.73	4.37	4.82	3.66	4.12	3.12	5.3		Satisfied
	2.5	6.93	5.62	6.10	4.84	4.75	3.46	6.4		Satisfied
	3	4.40	3.38	4.32	3.26	4.15	3.07	4.3		Poor
	GSA			1	1	1	1			
	(70)		•		-			-		
	0	2.13	1.62	1.82	1.49	1.63	1.34	1.6		Poor
	2	4.51	3.59	3.47	3.11	2.74	2.55	3.2		Poor
	4	4.06	3.58	3.69	3.44	3.16	3.01	3.9		Poor

	6	5.65	4.47	5.43	4.31	5.05	3.93	5.1		Satisfied
	0	656	5 27	5 50	1 61	4 20	2.40	5.0	> 50/	Satisfied
	0	0.30	5.57	3.38	4.01	4.30	5.49	5.9	>5%	Saustieu
	10	5.52	4.29	5.03	3.86	4.60	3.51	5.2		Satisfied
	CA (%)									
MS	10	4.13	3.26	4.03	3.08	3.98	3.04	4.1		Poor
MIS	20	5.22	4.24	4.96	4.01	4.71	3.73	5		Satisfied
	30	6.65	5.21	6.50	4.84	6.39	4.79	6.5		Satisfied
	40	7.71	6.02	7.56	5.87	7.45	5.73	7.5		Satisfied
	50	7.07	5.92	6.39	4.97	5.91	4.79	6.2		Satisfied
	BF (%)									
	1	4.38	3.49	4.48	3.29	3.88	2.87	3.4		Poor
	1.5	4	2.97	3.51	2.69	3.04	2.38	3.9		Poor
	2	4.78	3.49	4.48	3.29	3.88	2.87	4.7		Poor
	2.5	6.75	4.88	6.55	4.68	5.96	4.27	6.1		Satisfied
	3	5.35	4.23	4.75	3.93	4.30	3.36	5.1		Satisfied

As it may be seen a Table 4.15, CBR result showed that the significant improvement in strength compared to untreated soil sample. Results indicated that the CBR values of treated soils with GSA, CA, and BF increases the strength of weak sub grade soil. However, according to ERA pavement design manual specification, the CBR values of treated soil with (4%GSA, 6%GSA, 8%GSA, 10% GSA, 20%CA, 30%CA, 40%CA,50% CA, 2% BF and 2.5% BF) fulfill the ERA specification but the (2% GSA, 10%CA, 1%BF, 1.5%BF, 3%BF) not fulfill the ERA specification for BD soil sample and with (6%GSA, 8%GSA, 10%GSA, 20%CA, 30%CA, 40%CA, 50%CA and 2.5%BF, 3%BF) alone full fill the specification as subgrade material but the (2%GSA, 4%GSA, 10%CA,

1%BF, 1.5% ,2%BF) not fulfill the ERA specification for MS soil sample. The significant increase in CBR value may attribute to reactions between GSA, CA, BF, soil and water.

4.1.2.4 CBR Swell for treated soil samples

The swells of soil-GSA, soil-CA and soil-BF are measured and determined from Soils with various percentage combination of GSA-soil, CA-soil and BF-soil was conducted on CBR tests, from these Swell measurements are taken at the time of soaking and after four days of soaking. Results are tabulated in Table 4.16.

Sample				
Name	Additives	CBR swell	FRΔ	Remarks
	(%)	(%)	requirements	Kemarks
	(70)	(70)	requirements	
	GSA (%)			
	0	5.57		Poor
	2	1.23		Satisfied
	4	0.89		Satisfied
	6	1.09		Satisfied
	8	0.55		Satisfied
	10	0.64	<2%	Satisfied
	CA (%)			
	10	1.73		Satisfied
BD	20	1.69		Satisfied
	30	1		Satisfied
	40	0.75		Satisfied
	50	1.30		Satisfied
	BF (%)			
	1	1.87		Satisfied
	1	1.8/		Sausned

Table 4. 16: Swell value from CBR test

	1.5	1.43		Satisfied
	2	1.66		Satisfied
	2.5	0.97		Satisfied
	3	1.86		Satisfied
	GSA (%)			
	0	6.90		Poor
	2	1.75		Satisfied
	4	1.19		Satisfied
	6	1.16		Satisfied
	8	1.02		Satisfied
MS	10	1.80		Satisfied
	CA (%)			
	10	1.92	< 2%	Satisfied
	20	1.71		Satisfied
	30	0.77		Satisfied
	40	1.07		Satisfied
	50	1.49		Satisfied
	BF (%)			
	1	2.30		Poor
	1.5	1.87		Satisfied
	2	1.31		Satisfied
	2.5	1.14		Satisfied
	3	1.86		Satisfied

Soils with various percentages of GSA-soil, CA-soil and BF-soil mix ratio and 10% GSA, 50% CA and 3% BF alone was conducted as shown in Table 4.16, as results indicted all mix proportion percentages of GSA-soil, CA-soil, BF-soil for BD and MS soil sample are met the requirement specified by ERA pavement design manual as criterion for suitable material except 1% BF for MS soil sample. The CBR swell decreases when increasing the percentage of GSA, CA and BF in the mixed ratio for all mixed ratio for both soil sample.

4.1.5 Cost Estimation

The quantitative cost of for untreated and treated sub grade is given in Tables 4.17 and 4.18 troughs Table 4.19 respectively.

Item	Item description	Unit	Rate	Length(m)	Width(m)	Depth(m)	amount
No							
1	Subgrade						
	Site clearing	M^2	15.49	1000	3.5		54215
	Bulk excavation in expansive soil not exceeding 1.5m	M ³	99.58	1000	3.5	0.6	209118
	Disposal of excavated material (5KM hauling distance)	M ³	126.66	1000	3.5	0.6	265986
	Road bed preparation compaction to 93% MMD	M ²	58	1000	3.5		203000
	Selected material(5km)	M ³	145	1000	3.5	0.6	304500

Table 4. 17. Quality cost for unrealed expansive son (Constructionermopia.com, 2016)	Table 4. 17: Quantity	cost for untreated	expansive soil (C	Constructionethiop	ia.com, 2018)
--	-----------------------	--------------------	-------------------	--------------------	---------------

Placing and	M^2	78.24	1000	3.5	273840
compacting					
selected material					
to 95% MDD					
Sub total			1310659		

Table 4. 18: Quantitative Cost for Groundnut shell ash, Coal ash and Bamboo fiber stabilized Expansive soil

1, Road section	Unit	Unit price	
Clearing and grubbing with in road prism	M^2	15.49	
Purchase cost of stabilizer including transport			
Purchase cost of GSA stabilizer only transport cost	M^3	660	
Purchase cost of coal ash stabilizer	M ³	850	
Purchase cost of bamboo fiber stabilizer including transport and labor cost	M^3	355	
*For 1m ³ of Expansive soil,			
1, 0.08m ³ of GSA required(by 8% GSA which is optimum)	M^3	52.8	
2, 0.4m ³ of CA required	M^3	340	
3, 0.025m ³ of BF required	M ³	9	
Purchase cost of GSA stabilizer	M^2	31.8	
Purchase cost of CA stabilizer	M^2	204	
Purchase cost of BF stabilizer	M^2	5.40	

2, placing of stabilizer		
Hauling of stabilizer	M^2	76.91
Mixing of stabilizer	M^2	71.94
Placing of stabilizer	M^2	54.19
Total quantity cost of GSA	M^2	250.33
Total quantity cost of CA	M^2	422.53
Total quantity cost of BF	M^2	223.93

Table 4. 19: Quantitative cost of sub grade after stabilizing

		Unit	Rate	Length(m)	Width(m)	Depth(m)	Amount
Item No	Item description						
1	Stabilized subgrade with	M ²					
	GSA		250.33	1000	3.5		876155
	CA		422.53	1000	3.5		1478855
	BF		223.93	1000	3.5		783755

The comparisons of the cost benefits were made from Tables 4.16 and 4.18. As shown in the tables, the total quantitative cost of GSA, CA and BF stabilized subgrade was estimated as 876155 Birr/km, 1478855 Birr/km and 783755 Birr/km respectively against the cost of 1,310,659 Birr / km for replacing selective borrow material from a 5km distance. The saving in cost for GSA, CA and BF stabilization thus estimated to be 33.15% (GSA), 12.83% (CA) and 40.20% (BF) respectively of construction cost of sub grade soil.

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

On the basis of the results obtained in the experimental investigation, the following conclusions have been drawn.

- According to USCS and AASHTO classification system, BD soil sample was categorized as CH and A-7-5 (167), a plastic index of 49.44%, and low CBR value of 2.2%. For MS soil sample was categorized as CH and A-7-5 (189), a plastic index of 55.86% and low CBR value of 1.6%. Thus, the natural soil was very poor in strength to be used as a subgrade material as per ERA (2013) specification.
- The Natural soil sample mixed with groundnut shell ash, coal ash and bamboo fiber in d/t proportion is CBR > 5%, PI < 30%, LL< 60% and CBR swell < 2%. Therefore the engineering properties of stabilized expansive subgrade soil revealed that it was suitable to use as subgrade materials and the stabilizers are effectively improved the expansive subgrade soil.</p>
- The LL decreases from control value 81.84% to 54.49%, the PL increases from control value of 32.4% to 51.15% and the PI decreased from 49.44% to 4.23% for BD soil sample. Similarly the LL decrease with stabilization of additives of the Mix-ratio from control value of 89.16% to 57.36%, the PL increase from 33.3% to 50.26% and 55.86% to 7.17% for MS soil sample. Also in the mixed ratio of GSA-Soil, CA-Soil the liquid limit decreases when increasing the CA and GSA and the plastic index decreases when increasing the CA and GSA for both soil samples. Also the MDD shows a slight increase and OMC shows a decrease in the treatment of expansive subgrade soil with GSA, CA and BF additive agents.
- CBR test, there was an initial increase from the control value of 2.2% to 7.5%(GSA), 2.2% to 7.8%(CA), 2.2% to 6.4%(BF) for BD and 1.6% to 5.9%(GSA), 1.6% to 7.5%(CA), 1.6% to 6.1%(BF) for MS, at (8%GSA, 40%CA, 2.5%BF). Generally the CBR value (%) increases with increasing the percentage of GSA, CA, and BF in mixed ratio (GSA-soil, CA-soil, BF-soil). The CBR swell value of mixing stabilizers (GSA-soil, CA-soil, BF-soil) fulfills the ERA

specification requirements. However the 1% BF for MS soil sample does not fulfill the ERA requirements for CBR swell.

- As observed from the test was performed under this study, the maximum results were achieved at 8%GSA, 40%CA and 2.5%BF by weight. Since most parameters achieve the ERA requirement and have got maximum strength or CBR value. The optimum ratio for the studied weak subgrade soils is at 8% GSA, 40% CA and 2.5% BF. From this comparatively it is observed that Coal ash (40%) is effectively improving the engineering properties of expansive subgrade soil better than groundnut shell ash (8%) and bamboo fiber (2.5%).
- 8% of GSA, 40% of CA and 2.5% of BF saved construction costs 33.15% (GSA), 12.83% (CA) and 40.20% (BF) respectively when compared with expansive subgrade soil from a distance of 5 Km.

5.2 Recommendations

Based on the findings of this research, the following recommendations are forwarded:

- As stabilization of expansive subgrade soil with groundnut shell ash, coal ash and bamboo fiber is a relatively new concept and are scanty in the literature, chemical interactions and mechanisms involved in GSA, BF, CA, water and expansive subgrade soil shall be studied.
- There is not enough investigation done on Groundnut shell ash, Coal ash and Bamboo fiber as soil stabilizer in Ethiopia. So it is recommended that extensive researches on a large number soil samples taken from different places in Ethiopia with different percentages of GSA, CA and BF should be done considering the benefits of the result.
- The present study was conducted by taking limited parameter such as Atterberg limit, free swell index, moisture density relation, CBR and CBR swell potential on stabilization by Coal ash, Groundnut shell ash and Bamboo fiber. It is recommended to test additional parameter like unconfined compressive strength, PH value test, volumetric shrinkage should also be performed to have more realistic test results.
- This study coal ash, Groundnut shell ash and bamboo fiber can be used as a soil stabilizing material, bearing in mind economic and environmental advantage concerned bodies should be aware of this potential soil stabilizing material and promote its level of quality required, collection, production and application

REFERENCES

- Adetoro, A. and Ezekiel, D. O. (2015). Michael Potentials of Groundnut Sh ell Ash for Stabilization of Ekiti State Soil. *Journal of Multidisciplinary Engineering Science and Technology (JMEST). Vol.* 2, No.8.
- Aditya Kumar Anupam et al., (2013). Use of Various Agricultural and Industrial Waste Materials in Road Construction, *Procedia -Social and Behavioral Sciences 104*, pp. 264 – 273.
- Ahmed, Wolela. 2008. "Fossil Fuel Energy Resources of Ethiopia." 22(1): 67-84.
- Ahmed, R. Rifa I, Yasufuku, N. and Tsuji, K. (2009). Characterization and effective utilization Of coal ash as soil stabilization on road application. *Geotechnical Society of Singapore (GeoSS)*. In: Ground Improvement Technologies and Case Histories, Singapore: Research Publishing Services.
- Alabadan, B.A., M.A. Olutoye, M.S. Abolarin and M. Zakariya (2005) "Partial Replacement of Ordinary Portland Cement (OPC) with Bambara Groundnut Shell Ash (BGSA) in Concrete". *Leonardo Electronic Journal of Practices and Technologies. Issue 6, pp.43-48, January-June 2005. Vol. 04.08, American* Society for Testing and Material, Philadelphia.
- Alabadan B.A, Njoku C.F and Yusuf M.O. (2006)"The Potentials of Groundnut Shell Ash ash Concrete Admixture". Agricultural Engineering International: the CIGR Ejournal.Manuscript BC 05 012, Vol. VIII.
- Alemayehu, T. and Mesfin, L. (1999). Soil Mechanics, Addis Ababa University press, Addis Ababa.
- Alemayehu, L. (2015). Stabilization of Expansive Clay soils Using Potassium Chloride.MSc. Thesis, Addis Ababa University, Addis Ababa.
- Alhassan, M., and Mustapha, A.M. (2007) Effect of rice husk ash on cement stabilized laterite. *Leonardo Electronic J. Practice and Technol.* 6(11): 47-58.

American National Lime Association. (2004). Lime Treated Soil Construction

Manual. American National Lime Association, USA, pp. 4-23.

ASTM C618 – 03, "Specification for Fly Ash and Raw or Calcined Natural

Pozzolanas for Use as a Mineral Admixture in Portland Cement Concrete," *American Society for Testing and Materials*, Vol.04.02, Philadelphia, 2003.

Barasa, P. K. Jonah, T. K. & Mulei, S. M. (2015). Stabilization of Expansive Clay

Using Lime and Sugarcane Bagasse Ash. *International Journal of Science and Research (IJSR)*. Vol. 4, no.4.

- Bell, F. G. (1996). Lime stabilization of clay minerals and soils. *Engineering Geology*. *Vol.42*, no. 4. PP.223-237.
- Bhavanna Rao D.V. (2005). Adverse effects of using natural gravel in sub base, base and Water Bound Macadam.
- Bhavsar, S. N. Joshi, H. B. Shrof, P. k. and Patel, A. J. (2014). Effect of burnt brick dust on engineering properties on expansive soil. *International Journal of Research in Engineering and Technology (IJRET)*. Vol. 03, no. 04. pp. 433-441.
- Bowles, J., "Engineering properties of soil and their measurements," McGraw-Hill Boston, 4th edition, 1979.
- Brahmachary, K. T. and Md. Rokonuzzaman. (2018). "Investigation of random inclusion
 Of bamboo fiber on ordinary soil and its effect CBR value". *International Journal of Geo- Engineering. Vol.* 9, no. 1. Pp. 2-11.
- B.S. 1377 (1990) "Methods of testing soil for civil engineering purposes". *British Standards institute London*.
- Chen, F. H. (1975). "Foundation on Expansive Soils", *Elsevier Scientific Pub. Co*Amsterdam.
- Chen, F. H. (1988). "Foundations on expansive soils", Chen & Associates, *Elsevier Publications, U.S.A.*

- Chittaranjan, M., et al., "Agricultural wastes as soil stabilizers, "International Journal of Earth Sciences and Engineering, Volume 04, No 06 SPL, pp 50-51, October 2011.
- Coutts, P. (1995). Autoclaved bamboo pulp fiber reinforced cement. *Cement Concrete Compos. Vol.* 17, pp.99–106.
- Das, B. M. (1998). Principles of geotechnical engineering 4th edition, PWS publish division of international Thomas publishing London.
- Devi, D. and Jempen, B. (2016). "Shear Strength Behavior of Bamboo Fiber Reinforced Soil". *International Research Journal of Engineering and Technology (IRJET)*. *Vol.3*, no. 8. pp.96-98.

Ethiopian Roads Authority (2013). "Pavement Design Manual," Addis Ababa.

- FAO. "World Bambooo Resources.A Thematic Study Prepared in the Framework of the Global Forest Rsources Assessment 2005", Rme,Italiy, Rome ,73p,2007.
- Fekerta, A. (2006). Spectroscopy to Drive Engineering Parameters of Expansive Soil, Msc Thesis, International Institute for Geo- Information Science and Earth Observation, Enschede, the Netherland.
- Fredlund, D.G, and Rahardjo, H. (1993). Soil mechanics for unsaturated soils, Wiley, New York.
- Ghavami K."Bamboo as Reinforcement in Structural Concrete Element, Cement and Composites", pp. 27(6),637-649,2005.
- Gourley, C. S. and Newill, D. (1993). Expansive soils: TRI~s research strategy. Proc.,1st Int. Symp. on Engineering Characteristics of Arid Soils.

Guyer, J. P. (2011). "Introduction to Soil Stabilization in Pavements", New York.

INBAR. ,"The Value Chain Develpoment and Sustainability of Bamboo Housing in Ethiopia", China, 2011.

Jemal, J. (2014). In-depth investigation into Engineering characteristics of Jimma soils,

MSc. Thesis, Addis Ababa University, Ethiopia.

- Kassahun E."The Indigenous Bamboo Forests of Ethiopa", *An Overview Ambio Royal* Swedish Academy of sciences, 29(8), 2000
- Kerr, T.J., W.R., Wirdham, J.H. Woodward, and R. Benner, 1986. Chemical composition and in-votro digestability of thermochemically treated peanut hull. J. Sci. Food Agri.37: 632-636.
- Li, X. (2004). Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. *LSU Master's Theses.* 866.
- Lin, D. Huang, B. and Lin, S. (2010). 3-D numerical investigations into the shear strength of the soil–root system of Makino bamboo and its effect on slope stability. *Ecol Eng. Vol.* 36, pp. 992–1006.

Liu Gui-jian, Hou Zhuanxi, Liang Taiqun, 1995, Sedimentary environment and its evolution reqularity of Shanxi Formation in Liangbaosi, *Coal Geology & Exploration, Vol. 23*, No. 4:14–17.

- Makusa, G. P. (2012). Soil Stabilization Methods and Materials in Engineering Practice.
 Department of Civil, Environmental and Natural resources engineering, Luleå
 University of Technology, Luleå, Sweden.
- Manzano-agugliaro, Francisco. 2018. "Peanut Shell for Energy : Properties and Its Potential to Respect the Environment." : 1–15.
- Melik, Y. (2015). Performance of Road Constructed on Black Cotton Sub grade Soil
 With Respect to Replacement Materials Type and Replacement Depth, *Msc Thesis, Addis Ababa University.*
- Meron, W. (2013). "Bagasse ash as a sub-grade Stabilziong Material," Addis Ababa, Ethiopia
- Mishra, E. N. K. (2012). Strength Characteristics of Clayey Sub-Grade Soil Stabilized with Fly Ash and Lime for Road Works. *Indian Geotechnical Journal*. Vol.42, no.3. pp. 206–211.

- Mitchell. J. K. and Soga. K. (2005). Fundamentals of Soil Behavior, *3rd Edition*, John New York: Wiley and Sons Inc.
- Mulatu, T. (2016). Optimum Utilization Of Coal Ash As Additive For Blended Cement Production, *MSc. Thesis, Addis Ababa University, Addis abeba.*
- National lime association, (2004). Lime stabilization and lime modification. *Published report.41p.*
- Nautiyal P.C (2002) "Groundnut; Post Harvest Operations" National Research Centre For Groundnut (ICAR).www.icar.org.in
- Nebro, D. (2002). "Stabilization of Potentially Expansive Sub grade Soil Using Lime and Con Aid" *MSc. Thesis, Addis Ababa University, Addis Ababa. Of Forestry and Natural Environment, Thessaloniki.*
- Nega, Fredu, Kai Mausch, K P C Rao, and Gizachew Legesse. 2015. "Scoping Study on Current Situation and Future Market Outlook of Groundnut in Ethiopia." (38).
- Nelson, D. and Miller, J. (1992). Expansive soils problems and practice in Foundation and pavement engineering, *John Wiley and Sons, Inc*, *New York*
- Odunayo, Akinyeye Richard, Pereao Omoniyi, Petrik Leslie, and Olaofe Olorunfemi. 2016. Comparative Chemical and Trace Element Composition.
- Osinubi, K. J. (1999). Evaluation of admixture stabilization of Nigerian black cotton soil. *Nigerian Society of Engineers Technical Transactions*, *Vol.* **34**, No. 3. Pp. 88-96.
- Osinubi, K. J. (2000). Laboratory trial of soil stabilization using pulverized coal bottom ash. *Nigerian Society of Engineers Technical Transactions*. *Vol.* **35**, No. 4. Pp. 13 – 21.
- Paul V, J. and Sneha M, R. A. (2016). "Effect of Random Inclusion of Bamboo Fibers on Strength Behaviour of Flyash Treated Black Cotton Soil". *International Journal of Civil Engineering and Technology (IJCIET)*. Vol.7, no. 5. pp.96-98.

Petry, T. M., and Little, D. N. (2002). "Review of Stabilization of Clays and Expansive HIGHWAY ENGINEERING STREAM, JIT Page 78

Soils in Pavement and Lightly Loaded Structures-History, Practice and Future," Journal of Materials in Civil Engineering, Vol. 14, No. 6,

- Rajakumar, C. and Meenambal, T. (2015). Effect of Coal Ash in the Stabilization of Expansive Soil for the Pavement. *International Journal of Chem Tech Research CODEN (USA). Vol.8*, No.1. pp. 170-177.
- Salahudeen, A. B., Eberemu O. A. and Osinubi, K. J. (2014). Assessment of cement kiln dust-treated expansive soil for the construction of flexible pavements. *Geotechnical and Geological Engineering, Springer, Vol.* 32, No. 4, PP. 923-931.
- Somal S.G. Singh G. Walia BS. (2017). Effects of Cement and Corn Cob Ash on UCS and direct shear test of clayey soil. *International Journal of Advanced Research and Development.* 2(5):559-566.
- Technical assessment report; -a technical assessment of coal utilization and research trends, *Global climate and energy project, Stanford university*, 2006.
- Teklu, D. (2003). "Examining the Swelling Pressure of Addis Ababa Expansive Soil," Msc. Thesis, Addis Ababa University, Addis Abeba.
- Warren, K.W. And Kirby, T.M. (2004). "Expansive Clay Soil A Wide Spread And Costly Geohazard", Geostra, Geoinstitute Of The American Society Of Civil Engineers.
- Whitlow, R., (1995) Basic Soil Mechanics, 3rd, Ed., Addison Wesley Longman limited: Edinburgh Gate.
- Yan R., Gauthier D., Flamant G., Badie J. M, 1999, Thermodynamic study of the behavior of minor coal elements and their affinities to sulfur during coal combustion. Fuel, 78:1817–1829.

APPENDAX

APPENDAX A: laboratory test result for BD soil sample

1) Wet sieve analysis

Sample	e Location	BD soil sample		
Sieve size	mass of retain	Percentage of	Cumulative %	percentage of
(mm)	on each sieve	retained soil	of retain soil	passing
	(g)			particle
9.5	0.00	0.00	0.00	100.00
4.75	1.44	0.14	0.14	99.86
2	10.49	1.05	1.19	98.81
0.85	9.07	0.91	2.10	97.90
0.425	4.78	0.48	2.58	97.42
0.25	2.13	0.21	2.79	97.21
0.15	8.35	0.83	3.63	96.37
0.075	19.66	1.97	5.59	94.41
Pan	944.10	94.41	100.00	0.00
Sum		1000.0		

2) Specific Gravity

Determination Code	7	11
Mass of dry, clean Calibrated pycnometer, Mp, in g	30.98	26.05
A. Mass of oven dry sample	25	25
B. Mass of Pycnometer + water(gm)	125.71	122.01
C. Mass of Pycnometer + water + sample(gm)	141.33	138.01
Observed temperature of water, Ti	24	23
Temperature of contents of pycnometer when Mpsw was taken, Tx, in oc	26	25
K for Tx	0.9997	1.0000
Specific gravity at 20oc, Gs	2.66	2.78
Gs=A*k/(A+B-C)		
Average Specific gravity at 20oc, Gs	2.72	

3) Free Swell Index

Additive Content	Natural subgrade soil		
reading on the glass jar			
Vw=volume of soil specimen read from the from the graduated cylinder containing distilled water	17.5	18.5	
Vk=volume of soil specimen read from the graduated cylinder containing kerosene	10	10	
FSI=(Vw-Vk)/Vk *100	75	85	
A average Free swell index	80		

4) Linear Shrinkage

Measure Length of Mould	Trial – 1	Trial - 2
1. Original Length, Lo(mm)	140	140
2. Length of sample after Dry, Ld. (mm)	123.4	122.08
3. (1-Ld/Lo) * 100, %	11.86	12.80
Average of Linear Shrinkage (%)		12.33

5) Atterberg test result

Liquid Limit				
Number of blows		32	29	24
Test No		1	2	3
Container No		B12	3L	G8
Wt. of container +	- wet soil, g	19.45	36.01	32.32
Wt. of container +	- dry soil, g	14.03	28.74	24.23
Wt. of container,	g	6.01	19.27	14.50
Wt. of water, g		5.42	7.27	8.09
Wt. of dry soil, g		8.02	9.47	9.73
Moisture content,	%	67.6	76.8	83.1
Plastic Limit				
Test		1	2	
Container		B9	13	
Wt. of container +	- wet soil, g	14.25	15.01	
Wt. of container +	- dry soil, g	12.25	13.01	
Wt. of container,	g	6.23	6.66	
Wt. of water, g	-	2.00	2.00	
Wt. of dry soil, g		6.02	6.35	
Moisture containe	er, %	33.22	31.5	
Average Moisture	content, %	32.4	1	
LL	81.84			
PL	32.4			
PI	49.44			

Density Determination							
Test No.	1	2	3	4			
Mass of sample (gm)	4500	4500	4500	4500			
Water Added(cc)	350	530	710	890			
Mass of Mold+Wet soil(gm)(A)	10857.2	11076.2	11112.4	10985.6			
Mass of Mold(gm)(B)	6731.4	6731.4	6731.4	6731.4			
Mass of Wet Soil(gm)A-B=C	4125.8	4344.8	4381	4254.2			
Volume of Mold cm ³ (D)	2285.00	2285.00	2285.00	2285.00			
Bulk Density gm/cm ³ C/D=(E)	1.81	1.90	1.92	1.86			
Moisture Content Deter	rmination				NMC		
Container Code	G3T3	P65	G10	P1	A1		
Mass of Wet soil+ Container(gm)(F)	141.23	158.1	142.32	153.12	2030.9		
Mass of dry soil+ container (gm)(G)	126.43	138.87	120.12	127.12	1964.4		
Mass of container (gm)(H)	37.7	37.6	17.1	17.8	924.2		
Mass of moisture(gm)F-G=(I)	14.8	19.23	22.2	26	66.5		
Mass of Dry soil(gm)G-H=(J)	88.73	101.27	103.02	109.32	1040.2		
Moisture content % (I/J)*100=K	16.68	18.99	21.55	23.78	6.39		
Dry Density $gm/cm^3 E/(100+K)*100$	1.55	1.60	1.58	1.50			

6) Compaction Laboratory test

7) CBR Laboratory test

			65 Blows			30 Blows		10 Blows				
COMF	PACTIO	N DATA		Refore coak	After soak	Rof	ore soak	After	soak	Refore sool		After soak
Mould No				T8	T8		N12	N1	2	T4	a	T4
Mass of soil	l + Moulo	1	g	13584.1	13830.1	13	389.8	1371	5.2	12919.1		13471.7
Mass Mould			g	9327.1	9327.1	93	358.1	9358	3.1	9330.1		9330.1
Mass of Soil			g	4257	4503	4(031.7	4357	7.1	3589		4141.6
Volume of N	Aould		g	2124	2124	2	2124	212	24	2124		2124
Wet density	of soil		g/cc	2.004	2.120	1	.898	2.05	51	1.690		1.950
Dry density	of soil		g/cc	1.651	1.653	1	.552	1.58	32	1.376		1.467
				Moist	ure Determ	inati	on					
				65 BI	ows		30 Bl	ows		10	Blo	ows
MOISTUR	E CON'I	TENT D	ATA	Before soak	After soak	Befe	ore soak	After	soak	Before soal	k	After soak
Container no).			G-53	G19		A-3	B-5	3	10G		A-16
Mass of wet	soil + Co	ontainer	g	160.80	140.47	13	37.78	146.	63	110.10		118.32
Mass of dry	soil + Co	ntainer	g	137.54	113.34	1	19.56	117.	12	92.95		93.32
Mass of con	tainer		g	28.73	17.36	3	7.81	17.5	53	17.60		17.32
Mass of wate	er		g	23.26	27.13	1	8.22	29.5	51	17.15		25.00
Mass of dry	soil		g	108.81	95.98	8	1.75	99.5	59	75.35		76.00
Moisture con	ntent		%	21.38	28.27	2	2.29	29.6	53	22.76		32.89
				CBR Pene	etration Det	termi	ination					
Penetration a Period	after 96 h	rs Soakin	g			Surc	harge We	eight:-4.	55 K(J		
	65 Blov	ws		30 Blows 10 Blows								
Pen.mm	Load, F	KN (CBR %	Pen.mm	Load, KN		CBR %	Pen.r	nm	Load, KN	[CBR %
0.00	0.000)		0.00	0.000			0.0	0	0.000		
0.64	0.198	3		0.64	0.187			0.6	4	0.165		
1.27	0.264	1		1.27	0.241			1.2	7	0.215		
1.91	0.30	L		1.91	0.276			1.9	1	0.247		
2.54	0.33	l	2.48	2.54	0.305		2.29	2.5	4	0.269		2.02
3.81	0.367	7		3.81	0.345			3.8	1	0.299		
5.08	0.39	L	1.96	5.08	0.372		1.86	5.0	8	0.318		1.59
7.62	0.415	5		7.62	0.412			7.6	2	0.346		
Modified Max.Dry Density				1.60	0		омс	. %		18	.9	
		8 **		Sw	ell Determin	ation						
		65										
		Blows			30 Blo	ws				10 B	low	s
Date		Gauge rdg	Swall	Ga	uge rdg				Ga	uge rdg		
		mm	in %		- ~		Swell i	n %		~~~~	S	well in %
					mm					mm		
27/02/2013	Initial	0.90	4 39		5.3		5.5	7		3.08		6.06
01/03/2013	Final	6.01	1.57		11.78	5.57			10.13	0.00		

		D: 1.520		
No.of blows	MCBS %	DDBS g/cm3	Correcre CBR %	% OF Compaction
10	22.8	1.376	2.02	86
30	22.3	1.552	2.29	97
65	21.4	1.651	2.49	103
	CBR % at 95 % MDD		2.2	Swell % 5.57

APPENDAX B: Laboratory test result for MS soil sample

1) Wet sieve analysis

Sieve size (mm)	mass of retain on each sieve(g)	Percentage of retained soil	cumulative % of retain soil	percentage of passing particle
9.5	0.00	0.00	0.00	100.00
4.75	1.67	0.17	0.17	99.83
2	14.60	1.46	1.63	98.37
0.85	12.23	1.22	2.85	97.15
0.425	5.23	0.52	3.37	96.63
0.25	2.13	0.21	3.59	96.41
0.15	9.32	0.93	4.52	95.48
0.075	25.64	2.56	7.08	92.92
Pan	929.20	92.92	100.00	0.00
Sum	1000.0			

2) Specific Gravity

Determination Code		B1	P6
Mass of dry, clean Calibrated pycnom	31.65	27.05	
A. Mass of oven dry sample(gm)	25	25	
B. Mass of Pycnometer + water(gm) g	126.11	123.55	
C. Mass of Pycnometer + water + sa	141.6	140.1	
Observed temperature of water, Ti	24	23	
Temperature of contents of pycnomete was taken, Tx, in oc	er when Mpsw	26	25
K for Tx	0.9997	1.0000	
Specific gravity at 20oc, Gs	Gs=A*k/(A+ B-C)	2.63	2.96
Average Specific gravity at 2	,	2.79	

3) Free Swell Index

Additive Content	Natural sub	grade soil
reading on the glass jar		
Vw=volume of soil specimen read from graduated cylinder containing distilled water	18	19
Vk=volume of soil specimen read from the		

graduated cylinder containing kerosene	10	10
	10	10
FSI=(Vw-Vk)/Vk *100	80	90
A average Free swell index	85	

4) Linear shrinkage

Measure Length of Mould	Trial - 1	Trial – 2
1. Original Length, Lo (mm)	140	140
2. Length of sample after Dry, Ld. (mm)	120.06	121.7
3. (1-Ld/Lo) * 100, %	14.24	13.80
Average of Linear Shrinkage (%)	14.	.02

5) Atterberg limit

Determination	Liquid Limit				
Number of blows	34	27		21	
Test No	1	2		3	
Container No	C77	AA	L	B01	
Wt. of container + wet soil, g	29.91	36.5	1	31.42	
Wt. of container + dry soil, g	22.31	27.0	0	24.64	
Wt. of container, g	12.40	15.85		17.64	
Wt. of water, g	7.60	9.51	l	6.78	
Wt. of dry soil, g	9.91	11.1	5	7.00	
Moisture content, %	76.7	85.3	3	96.9	
Plastic Limit					
Test	1			2	
Container	G1			1	
Wt. of container + wet soil, g	16.82			15.40	
Wt. of container + dry soil, g	14.53			13.20	

Wt. of container, g`		7.86	6.40
Wt. of water, g		2.29	2.20
Wt. of dry soil, g		6.67	6.80
Moisture container, %	6	34.33	32.4
Average Moisture Co	ontent, %	33.3	
LL	89.16		
PL	33.3		
PI	55.86		

6) Compaction Laboratory Test

Density Determination									
Test No.	1	2	3	4					
Mass of sample (gm)	4500	4500	4500	4500					
Water Added(cc)	350	530	710	890					
Mass of Mold+Wet soil(gm)(A)	10989.6	11156.2	11220.4	11196.8					
Mass of Mold(gm)(B)	6731.4	6731.4	6731.4	6731.4					
Mass of Wet Soil(gm)A-B=C	4258.2	4424.83	4489	4465.4					
Volume of Mold cm ³ (D)	2285.00	2285.00	2285.00	2285.00					
Bulk Density gm/cm ³ C/D=(E)	1.86	1.94	1.96	1.95					
Moisture Conte	ent Determ	ination			NMC				
Container Code.	G3T3	P65	G10	P1	D10				
Mass of Wet soil+Container(gm)(F)	147.31	160.6	145	157.12	181.1				
Mass of dry soil+container(gm)(G)	129.41	138.87	120.12	127.12	171.4				

HIGHWAY ENGINEERING STREAM, JIT

Page 88

Mass of container(gm)(H)	37.7	37.6	17.1	17.8	33.2
Mass of moisture(gm)F-G=(I)	17.9	21.73	24.88	30	9.7
Mass of Dry soil(gm)G-H=(J)	91.71	101.27	103.02	109.32	138.20
Moisture content % (I/J)*100=K	19.52	21.46	24.15	27.44	7.01
Dry Density gm/cm ³ E/(100+K)*100	1.56	1.59	1.58	1.53	

7) CBR Laboratory test

COMPACTION DATA		65 Blows		30 Blows		10 Blows	
		Before	After	Before	After	Before	After
		soak	soak	soak	soak	soak	soak
Mould No.		A15	A15	B-4	B-4	F2	F2
Mass of soil + Mould	g	12385.7	12900	12346.7	12785.4	11502.8	11890.3
Mass Mould	g	8150.8	8150.8	7915.3	7915.3	7330.1	7330.1
Mass of Soil	g	4234.9	4749.2	4431.4	4870.1	4172.7	4560.2
Volume of Mould	g	2124	2124	2124	2124	2124	2124
Wet density of soil	g/cc	1.994	2.236	2.086	2.293	1.965	2.147
Dry density of soil	g/cc	1.607	1.585	1.551	1.605	1.518	1.622
		Mois	ture Dete	rmination			
MOISTURE CONTE	NT	65 Blows		30 Blows		10 Blows	
DATA		Before	After	Before	After	Before	After
		soak	soak	soak	soak	soak	soak
Container no.		W-60	G40	43-A	49K	36H	AJ
Mass of wet soil +	g	140.16	161.45	149.48	174.23	112.54	138.74

Container															
Mass of dr Container	y soil +	- g	5	120	.46	122.56	119	.56	132.6	50	91.6	55	116	5.34	
Mass of co	ntainer	g	5	38.7	73	27.81	32.8	34	35.53	3	20.6	50	47.	10	
Mass of wa	ater	g	5	19.7	70	38.89	29.9	92	41.63	3	20.8	39	22.	40	
Mass of dr	y soil	Ę	5	81.7	73	94.75	86.7	72	97.07	7	71.0)5	69.	24	
Moisture c	ontent	9	6	24.1	10	41.04	34.5	50	42.89)	29.4	0	32.	35	
				CB	R Pen	etration	Deter	mina	nination						
Penetration a	fter 96 hi	rs. Soaki	ng Peri	od				Sur	charge V	Veight:	-4.55	KG			
	65	5 Blows					30 Bl	ows				10 Blo	ws		
Pen.mm		Load, Kl	N	(CBR %	Pen.mm	Loa Ki	Nd, (CBR %	Pen.n	m	Load,	KN	CBR %	ó
0.00		0.000				0.00	0.0	00		0.0	0	0.00	0		
0.64		0.156				0.64	0.1	46		0.64	4	0.12	8		
1.27		0.218				1.27	0.1	94		1.2	7	0.17	6		
1.91		0.261				1.91	0.2	21		1.9	1	0.19	8		
2.54		0.284			2.13	2.54	0.2	43	1.82	2.54	4	0.21	7	1.63	
3.81		0.307			1.(2)	3.81	0.2	76	1.40	3.8	1	0.24	6	1.24	
5.08		0.324			1.62	5.08	0.2	98 21	1.49	<u> </u>	8 2	0.26	6	1.34	
7.02		0.551				7.02	0.5	21		7.0.	2	0.27	0		
Modifie	d Max.D	ry Den	sity g/c	c		1.590			OM	С %			21.	5	
					Sw	vell Deter	minati	on							
		65 Bl	ows					3	0 Blows			1	0 Bl	ows	
Date							Gau	ige	~ ~			Gauge	•	Swell in	
		Gau	ige rdg		Swel	l in %	rd	g	Swell	in %	-	rdg		%	
27/02/2013	Initial		<u>11111</u> 9 87				1 5	n (1				3 22			_
01/03/2013	Final) 55		5	.74	12	54	6.	90	F	11 54		7.15	
01/05/2015 Final 9.55 12.54 11.54															
					Dry	/ Densit	v at 95	5% of	MDD:			1.5	11	% OF Compaction	
No.of blo	ws	МС	CBS %	,	Dry	/ Densit DDBS g	<u>y at 95</u> /cm3	6% of Cor CE	MDD: rrecrt BR %		% C	DF Cor	11 npa	ction	
No.of blo	ws	MC 2	CBS % 29.4	,		y Densit DDBS g 1.518	y at 95 ;/cm3	6% of Cor CE	MDD: rrecrt BR % .63		% (1.5 DF Cor 95	l 1 npao 5	ction	
No.of blo 10 30	ws	MC 2 3	CBS % 29.4 34.5	•		7 Densit DDBS g <u>1.518</u> 1.551	y at 95 :/cm3	6% of Cor CE 1	MDD: rrecrt BR % .63 .83		% C	1.5 DF Cor 95 98	11 npao 5	ction	
No.of blo 10 30 65	ws	MC 2 3 2	CBS % 29.4 34.5 24.1	,		y Densit DDBS g 1.518 1.551 1.607	<u>y at 95</u> /cm3	0% of Cor CE 1 1 2	MDD: rrecrt 3R % .63 .83 .14		% C	1.5 DF Cor 95 98 10	11 npao 5 3 1	ction	

APPENDAX C: Laboratory test result of stabilizing BD Soil Sample using soil-CA,

soil-GSA and soil-BF.

- 1) Compaction test result
- 1.1) 1% BF

Density Determination									
Test No.	1	2	3						
Mass of sample (gm)	4500	4500	4500						
Water Added(cc)	450	630	810						
Mass of Mold+Wet soil(gm)(A)	10912	10990.1	10858.4						
Mass of Mold(gm)(B)	6569.1	6569.1	6569.1						
Mass of Wet Soil(gm)A-B=C	4342.7	4421	4289.3						
Volume of Mold cm ³ (D)	2285.00	2285.00	2285.00						
Bulk Density gm/cm ³ C/D=(E)	1.90	1.93	1.88						
Moisture Content De	terminatio	n		NMC					
Container Code.	K4	SSB	G	G-10					
Mass of Wet soil+Container(gm)(F)	104.2	100.1	116.5	106.9					
Mass of dry soil+container(gm)(G)	00.07	05.0							
	89.87	85.9	97.7	100.9					
Mass of container(gm)(H)	89.87	85.9 17.6	97.7 18.1	100.9 17.2					
Mass of container(gm)(H) Mass of moisture(gm)F-G=(I)	89.87 18.1 14.33	85.9 17.6 14.2	97.7 18.1 18.8	100.9 17.2 6					
Mass of container(gm)(H) Mass of moisture(gm)F-G=(I) Mass of Dry soil(gm)G-H=(J)	89.87 18.1 14.33 71.77	85.9 17.6 14.2 68.3	97.7 18.1 18.8 79.6	100.9 17.2 6 83.7					
Mass of container(gm)(H) Mass of moisture(gm)F-G=(I) Mass of Dry soil(gm)G-H=(J) Moisture content % (I/J)*100=K	89.87 18.1 14.33 71.77 19.97	85.9 17.6 14.2 68.3 20.79	97.7 18.1 18.8 79.6 23.62	100.9 17.2 6 83.7 7.16					

1.2) 1.5%BF

Density Determination									
Test No.	1	2	3						
Mass of sample (gm)	4500	4500	4500						
Water Added(cc)	450	630	810						
Mass of Mold+Wet soil(gm)(A)	10897.2	10967.5	10906.1						
Mass of Mold(gm)(B)	6731.4	6731.4	6731.4						
Mass of Wet Soil(gm)A-B=C	4165.8	4236.1	4174.7						
Volume of Mold cm ³ (D)	2285.00	2285.00	2285.00						
Bulk Density gm/cm ³ C/D=(E)	1.82	1.85	1.83						
Moisture Content D	eterminatio	n							
Container Code .	A-12	G-19	K43						
Mass of Wet soil+Container(gm)(F)	142.21	134.53	145.76						
Mass of dry soil+container(gm)(G)	127.36	120.12	125.12						
Mass of container(gm)(H)	32.65	41.3	25.5						
Mass of moisture(gm)F-G=(I)	14.85	14.41	20.64						
Mass of Dry soil(gm)G-H=(J)	94.71	78.82	99.62						
Moisture content % (I/J)*100=K	15.68	18.28	20.72						
Dry Density gm/cm ³ E/(100+K)*100	1.58	1.57	1.51						

1.3) 2% BF

Density Determination										
Test No.	1	2	3							
Mass of sample (gm)	4500	4500	4500							
Water Added(cc)	380	550	730							
Mass of Mold+Wet soil(gm)(A)	10672.9	10888.9	10819.1							
Mass of Mold(gm)(B)	6566.6	6566.6	6566.6							
Mass of Wet Soil(gm)A-B=C	4106.3	4322.3	4252.5							
Volume of Mold cm ³ (D)	2285.00	2285.00	2285.00							
Bulk Density gm/cm ³ C/D=(E)	1.80	1.89	1.86							
Moisture Content Determination										
Moisture Content D	eterminati	on		NMC						
Moisture Content De Container Code .	eterminati E-12	on G19	F	NMC P65						
Moisture Content De Container Code . Mass of Wet soil+Container(gm)(F)	eterminati E-12 159.1	on G19 142.6	F 112.9	NMC P65 148						
Moisture Content D Container Code . Mass of Wet soil+Container(gm)(F) Mass of dry soil+container(gm)(G)	eterminati E-12 159.1 142.74	on G19 142.6 126.39	F 112.9 98.35	NMC P65 148 140.96						
Moisture Content De Container Code . Mass of Wet soil+Container(gm)(F) Mass of dry soil+container(gm)(G) Mass of container(gm)(H)	eterminati E-12 159.1 142.74 34.5	on G19 142.6 126.39 41.3	F 112.9 98.35 34.2	NMC P65 148 140.96 37.7						
Moisture Content D Container Code . Mass of Wet soil+Container(gm)(F) Mass of dry soil+container(gm)(G) Mass of container(gm)(H) Mass of moisture(gm)F-G=(I)	eterminati E-12 159.1 142.74 34.5 16.36	on G19 142.6 126.39 41.3 16.21	F 112.9 98.35 34.2 14.55	NMC P65 148 140.96 37.7 7.04						
Moisture Content De Container Code . Mass of Wet soil+Container(gm)(F) Mass of dry soil+container(gm)(G) Mass of container(gm)(H) Mass of moisture(gm)F-G=(I) Mass of Dry soil(gm)G-H=(J)	E-12 159.1 142.74 34.5 16.36 108.24	G19 142.6 126.39 41.3 16.21 85.09	F 112.9 98.35 34.2 14.55 64.15	NMC P65 148 140.96 37.7 7.04 103.26						
Moisture Content De Container Code . Mass of Wet soil+Container(gm)(F) Mass of dry soil+container(gm)(G) Mass of container(gm)(H) Mass of moisture(gm)F-G=(I) Mass of Dry soil(gm)G-H=(J) Moisture content % (I/J)*100=K	eterminati E-12 159.1 142.74 34.5 16.36 108.24 15.11	G19 142.6 126.39 41.3 16.21 85.09 19.05	F 112.9 98.35 34.2 14.55 64.15 22.68	NMC P65 148 140.96 37.7 7.04 103.26 6.81						

1.4) 2.5% BF

Density Determination									
Test No.	1	2	3						
Mass of sample (gm)	4500	4500	4500						
Water Added(cc)	380	550	730						
Mass of Mold+Wet soil(gm)(A)	10762.5	10832.1	10819.1						
Mass of Mold(gm)(B)	6569.1	6569.1	6569.1						
Mass of Wet Soil(gm)A-B=C	4193.4	4263	4250						
Volume of Mold cm ³ (D)	2285.00	2285.00	2285.00						
Bulk Density $gm/cm^3 C/D=(E)$	1.84	1.87	1.86						
Moisture Content De	eterminatior	I							
Container Code .	G3T2	J41	2WE						
Mass of Wet soil+Container(gm)(F)	176.21	153.21	122.13						
Mass of dry soil+container(gm)(G)	158.8	136.35	108.21						
Mass of container(gm)(H)	37.6	32.3	34.76						
Mass of moisture(gm)F-G=(I)	16.98	16.86	13.92						
Mass of Dry soil(gm)G-H=(J)	121.63	104.05	73.45						
Moisture content % (I/J)*100=K	14.36	16.20	18.95						
Dry Density gm/cm ³ E/(100+K)*100	1.60	1.61	1.56						

1.5) 3% BF

Density Determination			
Test No.	1	2	3
Mass of sample (gm)	4500	4500	4500
Water Added(cc)	380	550	730
Mass of Mold+Wet soil(gm)(A)	10541.2	10622.3	10495.3
Mass of Mold(gm)(B)	6566.2	6566.2	6566.2
Mass of Wet Soil(gm)A-B=C	3975	4056.1	3929.1
Volume of Mold cm ³ (D)	2285.00	2285.00	2285.00
Bulk Density gm/cm ³ C/D=(E)	1.74	1.78	1.72
Moisture Content Determination			
Container Code .	AQ	G53	E12
Mass of Wet soil+Container(gm)(F)	154.23	143.12	159.63
Mass of dry soil+container(gm)(G)	140.84	130.12	143.54
Mass of container(gm)(H)	33.6	35.5	34.5
Mass of moisture(gm)F-G=(I)	13.39	13	16.09
Mass of Dry soil(gm)G-H=(J)	107.24	94.62	109.04
Moisture content % (I/J)*100=K	12.49	13.74	14.76
Dry Density gm/cm ³ E/(100+K)*100	1.55	1.56	1.50

1.6) 2% GSA

Density Determination								
Test No.	1	2	3					
Mass of sample (gm)	4500	4500	4500					
Water Added(cc)	380	550	730					
Mass of Mold+Wet soil(gm)(A)	10672.9	10888.9	10819.1					
Mass of Mold(gm)(B)	6566.6	6566.6	6566.6					
Mass of Wet Soil(gm)A-B=C	4106.3	4322.3	4252.5					
Volume of Mold cm ³ (D)	2285.00	2285.00	2285.00					
Bulk Density gm/cm ³ C/D=(E)	1.80	1.89	1.86					
Moisture Content De	termination	L		NMC				
Container Code.	E-12	G19	F	P65				
Mass of Wet soil+Container(gm)(F)	159.1	142.6	112.9	148				
Mass of dry soil+container(gm)(G)	142.74	126.39	98.35	140.96				
Mass of container(gm)(H)	34.5	41.3	34.2	37.7				
Mass of moisture(gm)F-G=(I)	16.36	16.21	14.55	7.04				
Mass of Dry soil(gm)G-H=(J)	108.24	85.09	64.15	103.26				
Moisture content % (I/J)*100=K	15.11	19.05	22.68	6.81				
Dry Density gm/cm ³ E/(100+K)*100	1.56	1.59	1.52					

1.7) **4% GSA**

Density Determination						
Test No.	1	2	3			
Mass of sample (gm)	4500	4500	4500			
Water Added(cc)	380	550	730			
Mass of Mold+Wet soil(gm)(A)	6684.5	6824.3	6737.65			
Mass of Mold(gm)(B)	2716.2	2716.2	2716.2			
Mass of Wet Soil(gm)A-B=C	3968.3	4108.1	4021.45			
Volume of Mold cm ³ (D)	2124.00	2124.00	2124.00			
Bulk Density gm/cm^3 C/D=(E)	1.87	1.93	1.89			
Moisture Content Dete	rmination					
Container Code .	HC12	D2	F12			
Mass of Wet soil+Container(gm)(F)	155.42	162.15	152.25			
Mass of dry soil+container(gm)(G)	138.42	140.88	131.71			
Mass of container(gm)(H)	32.5	25.1	35.5			
Mass of moisture(gm)F-G=(I)	17	21.27	20.54			
Mass of Dry soil(gm)G-H=(J)	105.92	115.78	96.21			
Moisture content % (I/J)*100=K	16.05	18.37	21.35			
Dry Density $gm/cm^3 E/(100+K)*100$	1.61	1.63	1.56			

1.8) 6% GSA

Density Determination						
Test No.	1	2	3			
Mass of sample (gm)	4500	4500	4500			
Water Added(cc)	380	550	730			
Mass of Mold+Wet soil(gm)(A)	6681.5	6782.1	6716.2			
Mass of Mold(gm)(B)	2716.2	2716.2	2716.2			
Mass of Wet Soil(gm)A-B=C	3965.3	4065.9	4000			
Volume of Mold cm ³ (D)	2124.00	2124.00	2124.00			
Bulk Density gm/cm ³ C/D=(E)	1.87	1.91	1.88			
Moisture Content Dete	rmination					
Container Code.	E-12	RE	G19			
Mass of Wet soil+Container(gm)(F)	188.5	152.1	148			
Mass of dry soil+container(gm)(G)	169.23	135.25	128.47			
Mass of container(gm)(H)	42.1	35.5	36.1			
Mass of moisture(gm)F-G=(I)	19.27	16.85	19.53			
Mass of Dry soil(gm)G-H=(J)	127.13	99.75	92.37			
Moisture content % (I/J)*100=K	15.16	16.89	21.14			
Dry Density gm/cm ³ E/(100+K)*100	1.62	1.64	1.55			

1.9) 8% GSA

Density Determination						
Test No.	1	2	3			
Mass of sample (gm)	4500	4500	4500			
Water Added(cc)	550	730	910			
Mass of Mold+Wet soil(gm)(A)	6654.2	6796.2	6698.2			
Mass of Mold(gm)(B)	2716.2	2716.2	2716.2			
Mass of Wet Soil(gm)A-B=C	3938	4080	3982			
Volume of Mold cm ³ (D)	2124.00	2124.00	2124.00			
Bulk Density gm/cm ³ C/D=(E)	1.85	1.92	1.87			
Moisture Content Dete	ermination					
Container Code .	WE	FD	H43			
Mass of Wet soil+Container(gm)(F)	175.76	166.47	160.53			
Mass of dry soil+container(gm)(G)	154.21	143.99	136.245			
Mass of container(gm)(H)	35.5	36.06	36.1			
Mass of moisture(gm)F-G=(I)	21.55	22.48	24.285			
Mass of Dry soil(gm)G-H=(J)	118.71	107.93	100.145			
Moisture content % (I/J)*100=K	18.15	20.83	24.25			
Dry Density gm/cm ³ E/(100+K)*100	1.57	1.59	1.51			

1.10) 10% GSA

Density Determination						
Test No.	1	2	3			
Mass of sample (gm)	4500	4500	4500			
Water Added(cc)	550	730	910			
Mass of Mold+Wet soil(gm)(A)	6561.2	6701.25	6622.4			
Mass of Mold(gm)(B)	2716.2	2716.2	2716.2			
Mass of Wet Soil(gm)A-B=C	3845	3985.05	3906.2			
Volume of Mold cm ³ (D)	2124.00	2124.00	2124.00			
Bulk Density gm/cm ³ C/D=(E)	1.81	1.88	1.84			
Moisture Content Deter	rmination					
Container Code.	C3	P67	2WE			
Mass of Wet soil+Container(gm)(F)	160.08	172.84	166.32			
Mass of dry soil+container(gm)(G)	142.3	150.74	144.02			
Mass of container(gm)(H)	36.06	30.66	34.76			
Mass of moisture(gm)F-G=(I)	17.78	22.1	22.3			
Mass of Dry soil(gm)G-H=(J)	106.24	120.08	109.26			
Moisture content % (I/J)*100=K	16.74	18.40	20.41			
Dry Density $gm/cm^3 E/(100+K)*100$	1.55	1.58	1.53			

1.11) 10% CA

Density Determination							
Test No.	1	2	3	4			
Mass of sample (gm)	4500	4500	4500	4500			
Water Added(cc)	550	730	910	1000			
Mass of Mold+Wet soil(gm)(A)	6590.8	6719.8	6814.5	6650.8			
Mass of Mold(gm)(B)	2724	2724	2724	2724			
Mass of Wet Soil(gm)A-B=C	3866.8	3995.8	4090.5	3926.8			
Volume of Mold cm ³ (D)	2124.00	2124.00	2124.00	2124.00			
Bulk Density gm/cm ³ C/D=(E)	1.82	1.88	1.93	1.85			
Moisture C	ontent De	terminatio	n		NMC		
Container Code.	ZE	P6	Α	P15	Е		
Mass of Wet soil+Container(gm)(F)	177.01	184.63	189.06	155.94	220.97		
Mass of dry soil+container(gm)(G)	157.83	163.42	165.24	134.7	208.1		
Mass of container(gm)(H)	33.07	38.08	37.01	33.53	37.95		
Mass of moisture(gm)F-G=(I)	19.18	21.21	23.82	21.24	12.87		
Mass of Dry soil(gm)G-H=(J)	124.76	125.34	128.23	101.17	170.15		
Moisture content % (I/J)*100=K	15.37	16.92	18.58	20.99	7.56		
Dry Density $gm/cm^3 E/(100+K)*100$	1.58	1.61	1.62	1.52			

1.12) 20% CA

Density Determination							
Test No.	1	2	3				
Mass of sample (gm)	4500	4500	4500				
Water Added(cc)	700	980	1160				
Mass of Mold+Wet soil(gm)(A)	6514.27	6718.36	6651.14				
Mass of Mold(gm)(B)	2706.5	2706.5	2706.5				
Mass of Wet Soil(gm)A-B=C	3807.77	4011.86	3944.64				
Volume of Mold cm ³ (D)	2124.00	2124.00	2124.00				
Bulk Density $gm/cm^3 C/D=(E)$	1.79	1.89	1.86				
Moisture Conter	nt Determin	nation		NMC			
Moisture Conter Container Code .	nt Determin C19	nation G41	O3	NMC E			
Moisture Conter Container Code . Mass of Wet soil+Container(gm)(F)	t Determin C19 153.24	G 41 166.34	O3 151.24	NMC E 220.97			
Moisture Conter Container Code . Mass of Wet soil+Container(gm)(F) Mass of dry soil+container(gm)(G)	t Determin C19 153.24 133.26	G41 166.34 144.32	O3 151.24 143.41	NMC E 220.97 204.35			
Moisture Conten Container Code . Mass of Wet soil+Container(gm)(F) Mass of dry soil+container(gm)(G) Mass of container(gm)(H)	t Determin C19 153.24 133.26 34.24	G41 166.34 144.32 36.33	O3 151.24 143.41 31.24	NMC E 220.97 204.35 37.95			
Moisture Conter Container Code . Mass of Wet soil+Container(gm)(F) Mass of dry soil+container(gm)(G) Mass of container(gm)(H) Mass of moisture(gm)F-G=(I)	nt Determin C19 153.24 133.26 34.24 19.98	G41 166.34 144.32 36.33 22.02	O3 151.24 143.41 31.24 29.03	NMC E 220.97 204.35 37.95 16.62			
Moisture Conter Container Code . Mass of Wet soil+Container(gm)(F) Mass of dry soil+container(gm)(G) Mass of container(gm)(H) Mass of moisture(gm)F-G=(I) Mass of Dry soil(gm)G-H=(J)	t Determin C19 153.24 133.26 34.24 19.98 99.02	G41 166.34 144.32 36.33 22.02 107.99	O3 151.24 143.41 31.24 29.03 112.17	NMC E 220.97 204.35 37.95 16.62 166.4			
Moisture Conter Moisture Conter Container Code . Mass of Wet soil+Container(gm)(F) Mass of dry soil+container(gm)(G) Mass of container(gm)(H) Mass of moisture(gm)F-G=(I) Mass of Dry soil(gm)G-H=(J) Moisture content % (I/J)*100=K	at Determin C19 153.24 133.26 34.24 19.98 99.02 20.18	G41 166.34 144.32 36.33 22.02 107.99 20.39	O3 151.24 143.41 31.24 29.03 112.17 25.88	NMC E 220.97 204.35 37.95 16.62 166.4 9.98			

1.13) 30% CA

Density Determination								
Test No.	1	2	3					
Mass of sample (gm)	4500	4500	4500					
Water Added(cc)	700	880	1060					
Mass of Mold+Wet soil(gm)(A)	6326.7	6531.4	6441.5					
Mass of Mold(gm)(B)	2706.5	2706.5	2706.5					
Mass of Wet Soil(gm)A-B=C	3620.2	3824.9	3735					
Volume of Mold cm ³ (D)	2124.00	2124.00	2124.00					
Bulk Density gm/cm ³ C/D=(E)	1.70	1.80	1.76					
Moisture Content Determina	ation		N	MC				
Container Code .	G19	G3T3	2	Е				
Mass of Wet soil+Container(gm)(F)	150.21	163.96	147.09	220.97				
Mass of dry soil+container(gm)(G)	130.25	141.36	138.05	204.35				
Mass of container(gm)(H)	34.24	37.76	34.66	37.95				
Mass of moisture(gm)F-G=(I)	19.96	22.6	29.03	16.62				
Mass of Dry soil(gm)G-H=(J)	96.01	103.6	103.39	166.4				
Moisture content % (I/J)*100=K	20.79	21.81	28.08	9.98				
Dry Density gm/cm ³ E/(100+K)*100	1.41	1.48	1.37					

1.14) 40% CA

Density Determination							
Test No.	1	2	3	4			
Mass of sample (gm)	4500	4500	4500	4500			
Water Added(cc)	700	980	1110	1290			
Mass of Mold+Wet soil(gm)(A)	6309.84	6485.78	6573.5	6524.71			
Mass of Mold(gm)(B)	2654	2654	2654	2654			
Mass of Wet Soil(gm)A-B=C	3655.84	3831.78	3919.5	3870.71			
Volume of Mold cm ³ (D)	2124.00	2124.00	2124.00	2124.00			
Bulk Density gm/cm ³ C/D=(E)	1.72	1.80	1.85	1.82			
Moisture C	ontent Det	erminatio	n		NMC		
Container Code.	CA	FG2	Q12	MO6	Е		
Mass of Wet soil+Container(gm)(F)	131.28	146.53	165.34	157.23	220.97		
Mass of dry soil+container(gm)(G)	114.75	124.46	139.67	128.96	204.35		
Mass of container(gm)(H)	37.54	31.52	38.94	32.01	37.95		
Mass of moisture(gm)F-G=(I)	16.53	22.07	25.67	28.27	16.62		
Mass of Dry soil(gm)G-H=(J)	77.21	92.94	100.73	96.95	166.4		
Moisture content % (I/J)*100=K	21.41	23.75	25.48	29.16	9.98		
Dry Density $gm/cm^3 F/(100+K)*100$	1 42	1 46	1 47	1 41			

1.15) 50% CA

Density Determination							
Test No.	1	2	3	4			
Mass of sample (gm)	4500	4500	4500	4500			
Water Added(cc)	750	930	1110	1290			
Mass of Mold+Wet soil(gm)(A)	6254.6	6468.9	6612.7	6547.8			
Mass of Mold(gm)(B)	2724	2724	2724	2724			
Mass of Wet Soil(gm)A-B=C	3530.6	3744.9	3888.7	3823.8			
Volume of Mold cm ³ (D)	2124.00	2124.00	2124.00	2124.00			
Bulk Density gm/cm ³ C/D=(E)	1.66	1.76	1.83	1.80			
Moisture C	ontent Det	erminatio	n		NMC		
Container Code .	AR	K-15	A50	Z-10	Е		
Mass of Wet soil+Container(gm)(F)	121.63	136.7	184.4	142.53	220.97		
Mass of dry soil+container(gm)(G)	111.83	123.68	162.89	123.85	204.35		
Mass of container(gm)(H)	36.54	38.08	38.14	32.48	37.95		
Mass of moisture(gm)F-G=(I)	9.8	13.02	21.51	18.68	16.62		
Mass of Dry soil(gm)G-H=(J)	75.29	85.6	124.75	91.37	166.4		
Moisture content % (I/J)*100=K	13.02	15.21	17.24	20.44	9.98		

2) Atterberg Limit

2.1) 2% GSA

		Liquid Limit				Plastic Limit	
No of blows		32	27	22	16		
Container No		T-2	В	G14	LL	C9	A5
Wt. of Container+Wet soil(g)		24.49	19.46	42.72	24.81	25.43	21.94
Wt. of Container+Dry soil(g)		21.69	13.49	29.17	15.68	21.73	20.18
Wt. of Container(g)		17.86	6.02	20.19	6.04	11.11	16.01
Wt. of Moisture(g)		2.80	6.0	7.76	9.13	3.70	1.76
Wt. of Dry soil(g)		3.83	7.47	8.98	9.6	10.62	4.17
Moisture Content (%)		73.11	79.92	86.41	94.71	34.84	42.21
LIQUIDLIMIT	LL	82.50			AV. Plas. Lim.	38	8.5
PLASTIC LIMIT	PL	38.52					
PLASTICITY INDEX =	LL-PL	43.98					

2.2) 4% GSA

		Liquid Limit				Plastic Limit	
No of blows		34	28	24	19		
Container No		4A	O2	C3B	SS	SP	B-4
Wt. of Container+Wet soil(g)		61.21	46.32	49.88	45.19	23.21	18.74
Wt. of Container+Dry soil(g)		47.90	34.30	28.50	33.10	21.58	14.96
Wt. of Container(g)		27.87	17.32	18.17	18.20	17.28	6.38
Wt. of Moisture(g)		13.31 12.0		7.76	12.09	1.63	3.78
Wt. of Dry soil(g)		20.03	16.98	10.33	14.9	4.30	8.58
Moisture Content (%)		66.45	70.79	75.12	81.14	37.91	44.06
LIQUIDLIMIT	LL	74.03			AV. Plas. Lim.	41	.0
PLASTIC LIMIT	PL	40.98					
PLASTICITY INDEX =	LL-PL	33.05					

2.3) 6% GSA

			Liquio	l Limit		Plastic	c Limit
No of blows		33	26	21	15		
Container No		B12	4A	C9	3	DD	A12
Wt. of Container+Wet soil(g)		38.39	41.95	34.96	26.41	28.31	30.53
Wt. of Container+Dry soil(g)		31.52	36.54	22.66	17.86	21.17	26.03
Wt. of Container(g)	19.59	27.87	11.11	6.29	5.60	16.06	
Wt. of Moisture(g)		6.87	5.4	7.76	8.55	7.14	4.50
Wt. of Dry soil(g)		11.93	8.67	11.55	11.6	15.57	9.97
Moisture Content (%)		57.59	62.40	67.19	73.90	45.86	45.14
LIQUIDLIMIT	LL	63	.35		AV. Plas. Lim.	45	5.5
PLASTIC LIMIT	PL	45	.50				
PLASTICITY INDEX =	LL-PL	17	.85				

2.4) 8% GSA

			Liquic	l Limit		Plastic	c Limit
No of blows		33	26	20	16		
Container No		L3	B-4	3rdB	L-14	3	A12
Wt. of Container+Wet soil(g)		30.97	30.49	26.05	42.20	14.00	25.02
Wt. of Container+Dry soil(g)		22.79	21.75	18.79	32.92	11.40	22.14
Wt. of Container(g)		6.55	6.38	6.41	19.49	6.29	16.06
Wt. of Moisture(g)	8.18	8.7	7.76	9.28	2.60	2.88	
Wt. of Dry soil(g)		16.24	15.37	12.38	13.4	5.11	6.08
Moisture Content (%)		50.37	56.86	62.68	69.10	50.88	47.37
LIQUIDLIMIT	LL	57	.83		AV. Plas. Lim.	49).1
PLASTIC LIMIT PL		49	.12				
PLASTICITY INDEX =	LL-PL	8.	71				

2.5) 10% GSA

			Liquid	l Limit		Plastic	c Limit
No of blows		31	27	22	18		
Container No		C8	1	A20	G-2	SP	L3
Wt. of Container+Wet soil(g)		26.43	24.71	35.16	38.76	25.82	19.47
Wt. of Container+Dry soil(g)		19.86	18.34	33.08	30.51	22.93	15.20
Wt. of Container(g)	5.81	6.16	19.65	17.19	17.28	6.55	
Wt. of Moisture(g)		6.57	6.4	7.76	8.25	2.89	4.27
Wt. of Dry soil(g)		14.05	12.18	13.43	13.3	5.65	8.65
Moisture Content(%)		46.76	52.30	57.78	61.94	51.15	49.36
LIQUIDLIMIT	LL	54	.49		AV. Plas. Lim.	50).3
		50	.26				
PLASTICITY INDEX =	II-PI	4	23				

2.6) 10% CA

			Liqui	id Limit		Plastic	c Limit
No of blows		32	24	20	16		
Container No		C2	03L1	LL	B-3	SP	A36
Wt. of Container+Wet so	l(g)	24.50	30.00	27.30	25.50	24.69	23.87
Wt. of Container+Dry soil	(g)	16.82	19.74	17.55	15.95	22.54	22.19
Wt. of Container(g)		6.19	6.67	6.04	5.45	17.28	17.58
Wt. of Moisture(g)		7.68	10.3	9.75	9.55	2.15 1.68	
Wt. of Dry soil(g)		10.63	13.07	11.51	10.5	5.26	4.61
Moisture Content (%)		72.25	78.50	84.71	90.95	40.87	36.44
					AV. Plas. Lim.	38	3.7
LIQUIDLIMIT	LL		77.71				
PLASTIC LIMIT	PL		38.66				
Plastic index	LL- PL		39.05				

2.7) 20% CA

		Liquid	Lim	it		Plastic	: Limit
No of blows	31	27		23	18		
Container No	L3	3	(G10	C3B	A13	A1
Wt. of Container+Wet soil(g)	28.55	31.55	2	5.39	30.86	20.79	23.47
Wt. of Container+Dry soil(g)	20.37	21.44	1.93	25.12	16.35	22.13	
Wt. of Container(g)	6.55	6.29	1	1.93 25.12 16 7.17 18.17 6		6.01	19.25
Wt. of Moisture(g)	8.18	10.1	:	3.46	5.74	4.44	1.34
Wt. of Dry soil(g)	13.82	15.15	4	4.76	7.0	10.34	2.88
Moisture Content (%)	59.19	66.73	7	2.69	82.59	42.94	46.53
LIQUIDLIMIT	LL	69.68		AV. F	Plas. Lim.	44.7	
PLASTIC LIMIT	PL	44.73					
PLASTICITY INDEX =	LL-PL	24.95					

2.8) 30% CA

			Liquic	I Limit		Plastic	c Limit	
No of blows		30	26	21	16			
Container No		B-3	C2	03L1	LL	A12	3	
Wt. of Container+Wet soil(g)		29.09	28.70	25.46	29.10	22.60	16.11	
Wt. of Container+Dry soil(g)		20.65	20.25	18.03	19.11	20.47 13.0		
Wt. of Container(g)	5.45	6.19	6.67	6.04	16.06	6.29		
Wt. of Moisture(g)		8.44	8.5	7.43	9.99	2.13 3.04		
Wt. of Dry soil(g)		15.20	14.06	11.36	13.1	4.41	6.78	
Moisture Content(%)		55.53	60.10	65.40	76.43	48.30	44.84	
LIQUIDLIMIT	LL	61.	.16		AV. Plas. Lim.	46	6.6	
PLASTIC LIMIT	PL	46	.57					
PLASTICITY INDEX =		14	.59					

2.9) 40% CA

			Liquic	Limit		Plastic	: Limit
No of blows		34	27	22	17		
Container No		C4	B9	C8	L3	F2	A12
Wt. of Container+Wet soil(g)		26.78	34.08	23.77	26.88	20.43	19.26
Wt. of Container+Dry soil(g)		21.06	28.98	16.81	18.19	15.50	14.52
Wt. of Container(g)	7.70	19.67	5.83	6.54	5.70	5.03	
Wt. of Moisture(g)		5.72	5.1	6.96	8.69	4.93	4.74
Wt. of Dry soil(g)		13.36	9.31	10.98	11.7	9.80 9.49	
Moisture Content (%)		42.81	54.78	63.39	74.59	50.31	49.95
LIQUIDLIMIT	LL	58	.22		AV. Plas. Lim.	50).1
PLASTIC LIMIT	PL	50	.13				
PLASTICITY INDEX =		8.	09				

2.10) 50% CA

			Liquic	l Limit		Plastic	: Limit
No of blows		32	28	22	18		
Container No		S6	В	DD	6A	A5	B11
Wt. of Container+Wet soil(g)		31.49	29.58	28.13	34.98	27.11	32.26
Wt. of Container+Dry soil(g)		23.76	21.41	19.63	26.33	23.21	27.03
Wt. of Container(g)	5.99	6.02	5.60	13.55	16.01	17.03	
Wt. of Moisture(g)	7.73	8.2	8.50	8.65	3.90	5.23	
Wt. of Dry soil(g)		17.77	15.39	14.03	12.8	7.20	10.00
Moisture Content (%)		43.50	53.09	60.58	67.68	54.17	52.30
LIQUIDLIMIT	LL	56.83			AV. Plas. Lim.	53	5.2
PLASTIC LIMIT PL		53.	.23				
PLASTICITY INDEX =	LL-PL	3.0	60				

3) CBR Laboratory test result

3.1) 1% BF

			65	Blows		30 Blo	ws		10 Bl	ows	
			Before soa	k After soal	k Befor	e soak	After soak	Befo	ore soak	Afte	er soak
Mould No.			N4	N4	Ν	7	N7		N1		N1
Mass of soil +	Mould	g	11111.6	5 11292.	3 1099	92.6	11192.2	10	802.6	11	071.6
Mass Mould		g	7025	7025	696	5.7	6965.7	6	5942	6	942
Mass of Soil		g	4086.6	4267.3	3 402	6.9	4226.5	38	860.6	41	29.6
Volume of Mor	uld	g	2124	2124	21	24	2124	2	2124	2	124
Wet density of	soil	g/cc	1.924	2.009	1.8	96	1.990	990 1.818		1.	.944
Dry density of	soil	g/cc	1.619	1.649	1.5	78	1.444	1	.507	1.	.382
			Moi	isture Dete	erminatio	n		•			
			65	Blows		30 Blo	ws		10 B1	ows	
MOISTU	KE CONTEN DATA	(T	Before	After	Bef	ore	After	Be	efore	A	fter
	JAIA		soak	soak	SO	ak	soak	S	oak	S	oak
Container no.			P15	2W	E	3	A-13	-13 2Q			G19
Mass of wet so	il + Container	g	155.21	160.40) 137	.71	171.88	71.88 162.5		15	57.84
Mass of dry so	il + Container	g	135.92	137.41	. 121	21.01 133.96 140.64		5 140.64		12	22.12
Mass of contain	ner	g	33.59	32.30	37.	96	33.58 34.59		34.59		4.27
Mass of water		g	19.29	22.99	16.	70	37.92 2		34.59 21.86		5.72
Mass of dry soi	1	g	102.33	105.11	. 83.	05	100.38	10	06.05	8	7.85
Moisture conte	nt	%	18.85	21.87	20.	11	37.78	2	0.61	4	0.66
			CBR Pe	enetration	Determi	nation					
Penetration at	fter 96 hrs. So	oaking	Period Surcharge Weight:-4.55 KG								
	65 Blows			3	0 Blows			1	0 Blows	s	
Pen.mm	Load, Ki	N	CBR %	Pen.mm	Load, KN	CBF %	Pen.m	ım	Load, F	KN	CBR %
0.00	0.000			0.00	0.000		0.00)	0.000)	
0.64	0.339			0.64	0.302		0.64		0.216	5	
1.27	0.458			1.27	0.401		1.27	7	0.273	3	
1.91	0.524		1.00	1.91	0.452		1.91		0.305	5	0.15
2.54	0.564		4.23	2.54	0.489	3.67	2.54	•	0.324	ł	2.43
3.81	0.606		2 17	5.81	0.538	0.00	3.81	<u> </u>	0.352	2	1.00
5.08	0.633		3.17	5.08	0.565	2.83	5.08	5	0.379	1	1.90
/.02	0.674			1.62	0.394		/.62	2	0.412	2	
Madifiad	Any Der Der	a:+						<u> </u>			
woaified I	viax.Dry Der	isity		1 660			MC 0/)U 0	
		g/cc		1.000		l (JNIC 70		4	20.0	

·											
			Sv	vell Deter	mination						
		65Blows				30 Blows	10 B	lows			
Date		Gauge			Gauge		Gauge	Currel1			
Dute		rdg	Swe	ll in %	rdg	Swell in %	rdg	in %			
		mm			mm		mm	111 70			
27/02/2013	Initial	4.10	1.77		3.24	1.97	4.95	1.09			
01/03/2013	Final	6.16			5.42	1.07	7.25	1.98			
Dry Dens			1.577								
No.of	MCBS	DDBS	C	orreart CB	D %	% OF C	Compaction				
blows	%	g/cm3	C	onecn CB	K 70	% OF C					
10	20.6	1.507		2.43			91				
30	20.1	1.578		3.68			95				
65	18.9	1.619	4.24				98				
CBR % at 95 % MDD		3.7 Swell %			1.87						

3.2) 1.5% BF

	65 Bl	OWS	30 B	lows	10 Blows	
	Before	After	Before	After	Before	After
	soak	soak	soak	soak	soak	soak
Mould No.	N4	N4	N7	N7	N1	N1
Mass of soil + Mould g	11223.2	11432.2	11087.6	11298.5	10802.6	11223.2
Mass Mould g	7025	7025	6965.7	6965.7	6942	6942
Mass of Soil g	4198.2	4407.2	4121.9	4332.8	3860.6	4281.2
Volume of Mould g	2124	2124	2124	2124	2124	2124

Wet density of	f soil	Q	/cc	1.	977	2.075	;	1.941		2.040	1.818	2.016		
Dry density of	f soil	<u>ح</u>	/cc	1.	559	1.614		1.489		1.526	1.386	1.433		
			<u> </u>	Mo	isture I	Determi	inatio	on				•		
					65 Bl	ows		30	Bl	ows	10 E	Blows		
MOISTURI	E CONT	ENT DAT	ΓA			Afte	r	Befor	e	After	Before	After		
				Befo	ore soak	soak		soak		soak	soak	soak		
Container no.]	P15	2V	V	Е		A-13	2Q	G19		
Mass of wet se	oil + Conta	iner	g	14	43.43	166.	53	137.01		165.32	162.50	157.84		
Mass of dry so	oil + Conta	iner	g	12	20.21	137.	21	113.97	,	132.12	132.12	122.12		
Mass of conta	iner		g	3	33.59	34.0	57	37.96		33.58	34.59	34.27		
Mass of water			g	2	23.22	29.3	32	23.04		33.20	30.38	35.72		
Mass of dry so	oil		g	8	86.62	102.	54	76.01		98.54	97.53	87.85		
Moisture cont	ent		%	2	26.81	28.	59	30.31		33.69 31.15 40.60				
CBR Penetration Determination														
Penetration aft	after 96 hrs. Soaking Period Surcharge Weight:-4.55 KG													
	65 Blo	ows				30 H	Blows				10 Blows	5		
Pen.mm	Load	I, KN	CI	BR %	Pen	.mm	Load KN	l, CBF	R %	Pen.mm	Load, KN	CBR %		
0.00	0.0	000			0.	00	0.00	0		0.00	0.000			
0.64	0.4	07		0.		64	0.43	4		0.64	0.246			
1.27	0.5	56				27	0.54	7		1.27	0.424			
1.91	0.6	533			1.	91	0.59	8		1.91	0.507			
2.54	0.6	574 110	5	.05	2.54		0.63	2 4.7	/4	2.54	0.551	4.13		
3.81	0.7	18	2	70	3.	81	0.67	4	10	3.81	0.592	2.1.1		
5.08	0.7	58	3	.79	5.	08	0.69	$\frac{8}{2}$ 3.4	19	5.08	0.627	3.14		
7.62	0.8	501			1.	62	0.73	3		7.62	0.651			
Modified Ma	ax.Dry De	nsity g/cc			1.60	0			OM	IC %	1	8.3		
					Swell De	etermina	tion							
		65 Blows						30 Blow	S		10	Blows		
Date		Gauge rdg		Swell	in %	Gaug	e rdg		Swel	l in %	Gauge rdg	Swell in		
		mm		5		m	m				mm	%		
27/02/2013	Initial	3.28		13	36	6.	2		1	43	3.13	2.07		
01/03/2013	Final	4.86		1	,0	7.8	37		1	.+5	5.54	2.07		
Dry Density a	at 95% of	MDD:									1.520			
No.of blows	МС	CBS %]	DDBS g/cm3	Corre	crt C	BR %		% OF	Compac	tion		
10	3	81.1		1.3	86		4.13				87			
30	3	80.3		1.4	89		4.75				93			
65	2	26.8		1.5	59		5.07			97				
(CBR %	at 95 % N	ADI	D			4.9		S	well %	1.43			

3.3) 2% BF

		65 Bl	lows	30 Bl	OWS	10 BI	OWS			
COMPACTION DAT.	A	Before soak	After soak	Before soak	After soak	Before soak	After soak			
Mould No.		N12	N12	I65	I65	N10	N10			
Mass of soil + Mould	g	11185.5	11303.5	11010.8	11162.5	10854.7	11023.6			
Mass Mould	g	7006.1	7006.1	6917.3	6917.3	6950.1	6950.1			
Mass of Soil	g	4179.4	4297.4	4093.5	4245.2	3904.6	4073.5			
Volume of Mould	g	2124	2124	2124	2124	2124	2124			
Wet density of soil	g/cc	1.968	2.023	1.927	1.999	1.838	1.918			
Dry density of soil	g/cc	1.572	1.458	1.457	1.447	1.377	1.264			
		Moistu	ure Detern	nination						
MOISTURE CONTEN	65 Bl	lows	30 Bl	ows	10 BI	ows				
DATA	1	Before soak	After soak	Before soak	After soak	Before soak	After soak			
Container no.		P65	A2	D21	E12	G3T3	T1			
Mass of wet soil + Container	g	154.12	136.80	163.70	152.72	154.72	166.56			
Mass of dry soil + Container	g	130.74	109.11	132.12	121.00	125.40	122.60			
Mass of container	g	37.81	37.62	34.20	37.90	37.81	37.63			
Mass of water	g	23.38	27.69	31.58	31.72	29.32	43.96			
Mass of dry soil	g	92.93	71.49	97.92	83.10	87.59	84.97			
Moisture content	%	25.16	38.73	32.25	38.17	33.47	51.74			
CBR Penetration Determination										
Penetration after 96 hrs. Period	. Soak	king		Surcharge V	Weight:-4.	55 KG				

	65 Blov	WS			30) Blo	WS			10 Blows		
Pen.mm	Load	l, KN	CE %	BR	Pen.mm	L	oad, KN	CBR %	Pen.mm	Load, KN	CBR %	
0.00	0.0	000			0.00	0	.000		0.00	0.000		
0.64	0.4	423			0.64	0	.367		0.64	0.327		
1.27	0.6	505			1.27	0	.506		1.27	0.448		
1.91	0.7	702			1.91	0	.596		1.91	0.512		
2.54	0.7	765	5.7	73	2.54	0	.643	4.82	2.54	0.549	4.12	
3.81	0.8	831			3.81	0	.698		3.81	0.591		
5.08	0.8	373	4.3	37	5.08	0	.731	3.66	5.08	0.624	3.12	
7.62	0.9	915			7.62	0	.757		7.62	0.658		
Modified Ma	x.Dry De	nsity g/o	c		1.590			O	MC %	AC % 19.1		
					Swell Deterr	ninat	ion					
		65 Blo	ows					30 B	lows	10 B	lows	
Date		Gaug m	ge rdg m		Swell in %		Gauge rdg mm	S	well in %	Gauge rdg mm	Swell in %	
27/02/2013	Initial	2.	05		1.45		2.37		1.00	3.52	2 20	
01/03/2013	Final	3.	74		1.45		4.30	-	1.66	6.20	2.30	
	Dry De	nsity at	95% of	f MDI):				1.511			
No.of blows	MCBS	5 %	D] g/	DBS cm3	Correcrt C %	BR		9	6 OF Com	paction		
10	33.5	5	1.37	'7	4.12				87			
30	32.3	3	1.45	57	4.83				92			
65	25.2	2	1.57	'2	5.75				99			
CBR % at 95 % MDD				5.3		Swell %			1.66			

3.4) 2.5% BF

COMBAG		A T A		65 BI	lows			30 Bl	ows			10 B	lows	
COMPAC		AIA	1	Before soak	After soak		Before	soak	Af	ter soak	В	efore soak	After soal	k
Mould No.				N12	N12		I65	5		I65		N10	N10	
Mass of soil + 2	Mould		g	11142.1	11303.5		1096	5.4	1	1162.5	1	10646.2	10903	
Mass Mould			g	7006.1	7006.1		6981	.5	6	981.5		6951.3	6951.3	
Mass of Soil			g	4136	4297.4		3983	5.9		4181		3694.9	3951.7	
Volume of Mou	ıld		g	2124	2124		212	4		2124		2124	2124	
Wet density of s	soil	g/c	С	1.947	2.023		1.87	6		1.968		1.740	1.860	
Dry density of s	soil	g/c	с	1.590	1.633		1.49	9		1.571		1.363	1.443	
				Moist	ure Deter	rmi	inatio	n						
MOISTURE	CONTEN	ΙΤ ΠΑΤ Α		65 B	ows			30 Bl	ows			10 B	lows	
MOBICKE			1	Before soak	After soak		Before	soak	Af	ter soak	Be	fore soak	After soak	
Container no.				P65	A2		D2	1		E12	,	G3T3	T1	
Mass of wet soi	1 + Conta	iner	g	143.21	136.80		153.2	21	1	52.72	1	148.12	167.21	
Mass of dry soil	l + Contai	iner	g	123.87	117.65		129.3	34	1	29.54	1	24.21	138.12	
Mass of contain	ler		g	37.81	37.62		34.2	20	, ,	37.90		37.81	37.63	
Mass of water			g	19.34	19.15		23.8	37		23.18		23.91	29.09	
Mass of dry soil	1		g	86.06	80.03		95.1	4	9	91.64		86.40	100.49	
Moisture conter	nt	Q	ó	22.47	23.93		25.0	19	,	25.29		27.67	28.95	
			C	BR Pene	tration D)ete	ermin	ation	1					
Penetration af	ter 96 hr	s. Soakin	g Per	riod			Sur	charg	ge W	/eight:-4	1.55	5 KG		
	65 B	lows	-		3	30 I	Blows			-		10 Blow	8	
Pen.mm	L	oad, KN		CBR %	Pen.mm	Ι	Load, KN	CB %	R	Pen.m	m	Load, K	N CBR %	
0.00		0.000			0.00	(0.000			0.00		0.000		
0.64		0.524			0.64	(0.654			0.64		0.462		
1.27		0.711			1.27	(0.687			1.27		0.552		
1.91		0.824			1.91	(0.765			1.91		0.601		
2.54		0.925		6.93	2.54	(0.814	6.1	0	2.54		0.634	4.75	
3.81		1.042			3.81	(0.895			3.81		0.665		
5.08		1.123		5.62	5.08	(0.967	4.8	4	5.08		0.691	3.46	
7.62		1.213			7.62		1.043			7.62		0.734		
					1 (10				01					
Modified	Max.Dr	y Density	g/cc		1.610				ON	IC %]	6.2	
	1			Sw	ell Determ	inat	tion							
		65 Blo	WS			ļ		30 B	low	S		10	Blows	
Date		~	_	a 1		G	auge	a		1 • • • •		Gauge	Swell in	n
		Gauge	rdg	Swel	l in %	1	rdg	S	we	l in %		rdg	%	
		mn				1	mm					mm		
27/02/2013	Initial	4.90		0.	88		6.4		0	.97	-	3.08	1.32	
01/03/2013	Final	5.98				7	7.53					4.62		
Dry Density	at 95%	of MDE	:								1.:	530		
No.of blows	MCBS	%	DD g/c	C C C C	orrecrt C	BR	%			% OF	$\begin{array}{c c c c c c } 27.67 & 28.95 \\ \hline 28.95 \\ \hline 4.55 \ KG \\ \hline 10 \ Blows \\ \hline 10 \ Blows \\ \hline 0.601 \\ 0.462 \\ 0.552 \\ 0.601 \\ 0.634 \\ 0.552 \\ \hline 0.601 \\ 0.634 \\ 4.75 \\ \hline 0.665 \\ 0.691 \\ 3.46 \\ \hline 0.734 \\ \hline \hline 10 \ Blows \\ \hline 0.734 \\ \hline \hline 10 \ Blows \\ \hline 10 \ Blows \\ \hline 0.734 \\ \hline 1.32 \\ \hline 1.530 \\ \hline $			

10	27.7	1.363		4.75	85
30	25.1	1.499		6.12	93
65	22.5	1.590		6.95	99
CI	BR % at 95 % M	DD	6.4	Swell %	0.97

3.5) 3	3%	BF
--------	----	----

		65 Bl	ows	30 BI	ows	10 Blor	ws		
COMPACTION DATA		Before soak	After soak	Before soak	After soak	Before soak	After soak		
Mould No.		MN8	MN8	P56	P56	G37	G37		
Mass of soil + Mould	g	11074.2	11180.3	10900.2	11000.1	10801.2	10948.3		
Mass Mould	g	7041.2	7041.2	6003.5	6003.5	5600.2	5600.2		
Mass of Soil	g	4033	4139.1	4896.7	4996.6	5201	5348.1		
Volume of Mould	g	2124	2124	2124	2124	2124	2124		
Wet density of soil	g/cc	1.899	1.949	2.305	2.352	2.449	2.518		
Dry density of soil	g/cc	1.564	1.424	1.504	1.757	1.387	1.550		
Moisture Determination									

		65 BI	ows	30 BI	ows	10 Blov	ws
MOISTURE CONTENT DAT	À	Before soak	After soak	Before soak	After soak	Before soak	After soak
Container no.		S40	G19	P1	45D	A22	C150
Mass of wet soil + Container	g	160.80	148.70	163.10	150.90	150.60	140.78
Mass of dry soil + Container	g	137.54	113.34	119.56	117.12	92.95	93.32
Mass of container	g	28.73	17.36	37.81	17.53	17.60	17.32
Mass of water	g	23.26	35.36	43.54	33.78	57.65	47.46
Mass of dry soil	g	108.81	95.98	81.75	99.59	75.35	76.00
Moisture content	%	21.38	36.84	53.26	33.92	76.51	62.45

HIGHWAY ENGINEERING STREAM, JIT

Page 123

			(BR F	Pene	tration D	etermin	ation			
Penetration a	fter 96 h	rs. So	oaking P	eriod			Sur	charge W	Veight:-4.5	5 KG	
	65 B	lows	-			30	0 Blows	-		10 Blow	VS
Pen.mm	Lo	oad, H	KN	CBI %	R	Pen.mm	Load, KN	CBR %	Pen.mm	Load KN	, CBR %
0.00		0.000)			0.00	0.000		0.00	0.000)
0.64		0.358				0.64	0.364		0.64	0.371	
1.27		0.473				1.27	0.478		1.27	0.468	;
1.91		0.546				1.91	0.544		1.91	0.517	,
2.54		0.587		4.4(0	2.54	0.576	4.32	2.54	0.553	4.15
3.81		0.642	,			3.81	0.617		3.81	0.592	2
5.08	5.08 0.676 3.38				8	5.08	0.651	3.26	5.08	0.614	3.07
7.62		0.704				7.62	0.695		7.62	0.648	
Modified Max.Dry Density g/cc					1.560		ON	IC %		13.7	
					Swe	ell Determi	nation				
		65 B	lows					30 Blow	S	10) Blows
Date		Ga	uge rdg	S	Swell	in %	Gaug e rdg	Swe	ll in %	Gauge rdg	Swell in %
			mm				mm			mm	
27/02/2013	Initial		4.01		1.6	56	3.25	1	.86	3.08	2.71
01/03/2013	Final		5.94				5.42			6.23	
Dry Density at	: 95% of N	MDD:							1.	482	
No.of blows	No.of blows MCBS % DDBS g/cm3					Correcrt CB	R %		% OF C	ompaction	
10 76.5 1.387					4.15			:	89		
30	53.3	53.3 1.504			4.33				96		
65	21.4		1.564	4		4.41			1	.00	
СВ	CBR % at 95 % MDD		4.3	Swel	11 %		1	.86			

3.6) 2% GSA

l I			1									
COMB	ACTION	ЛАТА	6	5 Blo	ows		30 Bl	ows	10	Blows		
COMP	ACTION	DATA	Before so	ak	After soak	Be	ofore soak	After soak	Before soak	After soak		
Mould No.			MN8	uix	MN8		N5	N5	N2	N2		
Mass of soil	+ Mould	ş	g 11241.	2	11376.7	1	1129.8	11263.1	11067.3	11168.9		
Mass Mould		Ę	, 7041.2	2	7041.2	(6931.5	6931.5	6935.6	6935.6		
Mass of Soil			4200		4335.5	2	4198.3	4331.6	4131.7	4233.3		
Volume of M	lould	ŷ	2124		2124		2124	2124	2124	2124		
Wet density of	of soil	g/co	1.977		2.041		1.977	2.039	1.945	1.993		
Dry density of	of soil	g/co	1.657		1.651		1.591	1.613	1.488	1.503		
			Mo	oistu	re Deter	mina	ation					
MOICTUD			6	5 Blo	ows		30 Bl	ows	10	10 Blows		
MOISTUR	E CONTE	INT DATA	Before so	ak	After soak	Be	efore soak	After soak	Before soak	After soak		
Container no.			2Q		T5C2		P10	J41	P1	А		
Mass of wet	soil + Cont	ainer g	151.71		136.89		147.16	142.93	174.38	158.37		
Mass of dry s	soil + Cont	ainer g	132.76	5	114.15		124.43	119.83	142.29	128.56		
Mass of conta	ainer	<u>c</u>	34.59		17.90		30.68	32.50	37.81	37.03		
Mass of wate	r	ş	18.95		22.74		22.73	23.10	32.09	29.81		
Mass of dry s	soil	Ę	g 98.17		96.25		93.75	87.33	104.48	91.53		
Moisture con	tent	%	19.30		23.63		24.25	26.45	30.71	32.57		
			CBR Pe	netr	ation De	tern	nination					
Penetration after 96 hrs. Soaking Surcharge Weight:-4.55 KG												
reriou	65 Blows				30 Blow	s			10 Blows			
Pen.mm	Load K	J CBR %	Pen.mi	n	Load, K	N	CBR %	Pen.mm	Load K	N CBR		
0.00	0.000		0.00		0.000	.,		0.00	0.000	· · · · · · · · · · · · · · · · · · ·		
0.00	0.000		0.00		0.000			0.64	0.000			
1.27	0.411		1.27		0.419			1.27	0.364			
1.91	0.493		1.91		0.485			1.91	0.436	;		
2.54	0.556	4.17	2.54		0.526		3.94	2.54	0.483	3.62		
3.81	0.611		3.81		0.564			3.81	0.539			
5.08	0.637	3.19	5.08		0.589		2.95	5.08	0.584	2.92		
7.62	0.674		7.62		0.634			7.62	0.654			
Modified I	Max.Dry											
Den	sity g/cc		1.620				OMO	C %	,	20.9		
				Swell	l Determin	ation						
		65										
-		Blows		ſ		30 B	lows		10 Blows			
Date		Gauge	Swell		1	Sv	vell in	C	1 0	11 . 0/		
		rdg	in %	Ga	uge rdg		%	Gauge ro	ig Sw	ell in %		
		mm			mm			mm				
27/02/2013	Initial	1.26	1.46		1.33		1.23	2.06		1.50		
01/03/2013	Final	2.96		1.46 2.76		1.25		3.81				

	Dry	Density at 95% of M	DD:		1.539
No.of blows	MCBS %	DDBS g/cm3		Correcrt CBR %	% OF Compaction
10	30.7	1.488		3.62	92
30	24.2	1.591		3.95	98
65	19.3	1.657		4.18	102
CBR % at 95	% MDD		3.8	Swell %	1.23

3.7) 4% GSA

ΓΟΜΡΑ CTION DATA		65 Bl	ows	30 Bl	ows	10 Bl	ows
COMPACTION DATA		Before soak	After soak	Before soak	After soak	Before soak	After soak
Mould No.		N7	N7	N12	N12	N10	N10
Mass of soil + Mould	g	11129.8	11276.9	11129.8	11255.1	10976.8	11179.4
Mass Mould	g	6965.7	6965.7	7006.1	7006.1	6935.6	6935.6
Mass of Soil	g	4164.1	4311.2	4123.7	4249	4041.2	4243.8
Volume of Mould	g	2124	2124	2124	2124	2124	2124
Wet density of soil	g/cc	1.960	2.030	1.941	2.000	1.903	1.998
Dry density of soil	g/cc	1.600	1.620	1.501	1.510	1.398	1.422
		Moistu	ıre Detern	nination			
MOISTUDE CONTENT DAT	Γ.	65 BI	ows	30 BI	ows	10 BI	ows
WOISTURE CONTENT DAT	A	Before soak	After soak	Before soak	After soak	Before soak	After soak
Container no.		В	G4	WX-4	F22	C41	AB30
Mass of wet soil + Container	g	156.63	162.37	172.39	150.40	181.46	168.49
Mass of dry soil + Container	g	134.15	135.71	140.83	123.12	142.74	131.06
Mass of container	g	34.50	30.15	33.20	39.10	35.51	38.60

Mass of water	g	22.48	26.66	31.56	27.28	38.72	37.43
Mass of dry soil	g	99.65	105.56	107.63	84.02	107.23	92.46
Moisture content	%	22.56	25.26	29.32	32.47	36.11	40.48

	CBR Penetration Determination											
Penetration a	fter 96 hrs.	Soaking Period				Surcharge V	rcharge Weight:-4.55 KG					
	5 Blows		30 Blows			10 Blows						
Pen.mm		Load, KN	CBR %	Pen.mm	Load, KN	CBR %	CBR % Pen.mm		CBR %			
0.00		0.000		0.00	0.000		0.00	0.000				
0.64		0.437		0.64	0.318		0.64	0.303				
1.27		0.584		1.27	0.472		1.27	0.437				
1.91		0.673		1.91	0.579		1.91	0.513				
2.54		0.734	5.50	2.54	0.651	4.88	2.54	0.569	4.27			
3.81		0.813		3.81	0.719		3.81	0.623				
5.08		0.873	4.37	5.08	0.768	3.84	5.08	0.661	3.31			
7.62		0.934		7.62	0.816		7.62	0.701				
Moo	dified Max	Dry Density g/cc		1.630		ОМ	C %	18.4				
			Sv	vell Determi	nation							
		65 Blows				30 Blows	5	10	Blows			
Data					Gauge			Gauge				
Date		Gauge rdg	Swel	l in %	rdg	Swell	l in %	rdg	Swell in %			
		mm			mm			mm				
27/02/2013	Initial	0.00	0	75	0.00	0	80	0.00	1 13			
01/03/2013	Final	0.87	0.	15	1.04	0.89		1.32	1.15			

3.8) 6% GSA

				65 Blows				30 1	Blows		10 Blows		
	COMPA	ACTION DATA		Before	soak	Afte	er soak	Before soak	Afte	r soak	Before soak	After soak	
Mould	No.			K6	4		K64	D40	D	940	A-50	A-50	
Mass o	f soil + N	Mould	g	11052	2.41	11	149.68	10829.7	110	16.76	10635.96	10887.31	
Mass N	lould		g	689	7.2	6	897.2	6523.4	65	23.4	6935.6	6935.6	
Mass o	f Soil		g	4155	.21	42	252.48	4306.3	449	93.36	3700.36	3951.71	
Volum	e of Mou	ld	g	212	24	4	2124	2124	21	124	2124	2124	
Wet de	fet density of soil g/cc		g/cc	1.956		2.002		2.027	2.	116	1.742	1.861	
Dry de	nsity of s	oil	g/cc	1.740		1	.720	1.572	1.	604	1.345	1.367	
				Mo	Moisture Determination								
	MOISTURE CONTENT DATA				65 Bl	ows		30 1	Blows		10 Blows		
MO				Before soak		Afte	er soak	Before soak	Afte	r soak	Before soak	After soak	
Contain	Container no.				Г4		P65	P67	G	19	T1	S40	
Mass o	f wet soil	+ Container	g	145.	35	1	76.99	158.26	14	7.86	155.63	175.56	
Mass o	Mass of dry soil + Container g				25	1.	57.37	130.68	12	0.39	128.75	136.59	
Mass o	Mass of container g			17.	59	3	37.76	35.53	34	.22	37.65	28.73	
Mass o	Mass of water g				14.10		9.62	27.58	27	.47	26.88	38.97	
Mass o	Mass of dry soil g				66	1	19.61	95.15	86	5.17	91.10	107.86	
Moistu	Moisture content %				41	1	6.40	28.99	31	.88	29.51	36.13	
			CB	R Pen	etrati	on l	Determ	ination					
Penetration a	enetration after 96 hrs. Soaking Period							Surcharge	e Weigh	t:-4.55 K	G		
		65 Blows					30 B	lows			10 Blows		
Pen.mm	I	Load, KN	CBR	% Pen.mm Load,			Load, KN	N CBR	%	Pen.mr	n Load, KN	CBR %	
0.00		0.000			0.00 0.000		0.000				0.000		
0.64		0.452			0.64 0.4		0.482			0.64	0.457		
1.27		0.641			1.2	7 0.634					0.618		
2.54		0.754	6.1	0	1.9	1 1	0.735	5.0	5.04		0.698	5.63	
3.81		0.894	0.1	7	3.8	+ 1	0.839	J.7-	+	3.81	0.731	5.05	
5.08		0.953	4.7	7	5.08	8	0.873	4.3	7	5.08	0.857	4.29	
7.62		1.046			7.62	2	0.924			7.62	0.943		
Modified	Max.Dr	y Density g/cc			1.640			(OMC %	6	1	6.9	
				Sv	vell De	tern	nination						
	65 Blows							30	Blows		10 E	Blows	
Date								Gauge			Gauge	G-mall	
		Gauge r	dg	_	Swell	in %	6	rdg	rdg Swell		rdg	Swell in %	
		mm						mm			mm		
27/02/2013	Initial	0.00		_	0.9	96		0.00		1.09	0.00	1.37	
01/03/2013	Final	1.12						1.27			1.59		
Dry De	ensity at	95% of MDD:								1.55	8		

No.of blows	MCBS %	DDBS g/cm3	(Correcrt CBR % % OF Compaction			
10	29.5	1.345		5.63 82			
30	29.0	1.572		5.96 96			
65	12.4	1.740		6.21 106			
	CBR % at 95 % I	MDD	5.9	Swell %	1.09		

^{3.9) 8%} GSA

ΓΟΜΡΑ CTION DΑΤΑ		65 BI	ows	30 Bl	ows	10 Blows		
COMPACTION DATA		Before soak	After soak	Before soak	After soak	Before soak	After soak	
Mould No.		MN8	MN8	P85	P85	TP01	TP01	
Mass of soil + Mould	g	10842.6	11013.2	10647.9	10842.1	10573.5	10819.3	
Mass Mould	g	7041.2	7041.2	7056.5	7056.5	6785.6	6785.6	
Mass of Soil	g	3801.4	3972	3591.4	3785.6	3787.9	4033.7	
Volume of Mould	g	2124	2124	2124	2124	2124	2124	
Wet density of soil	g/cc	1.790	1.870	1.691	1.782	1.783	1.899	
Dry density of soil	g/cc	1.588	1.639	1.405	1.420	1.271	1.331	
		Mois	sture Determ	ination				
MOISTIDE CONTENT D		65 BI	ows	30 Bl	ows	10 Blows		
MOISTURE CONTENT DA	AIA	Before soak	After soak	Before soak	After soak	Before soak	After soak	
Container no.		49K	W-60	4AA	W56	85K	K-20	
Mass of wet soil + Container	g	143.24	158.00	167.38	133.74	124.36	176.91	
Mass of dry soil + Container	g	131.11	143.26	145.63	114.26	97.39	133.29	
Mass of container	g	35.53	38.73	38.81	37.96	30.50	31.02	

HIGHWAY ENGINEERING STREAM, JIT

Page 129

Mass of wate	vater		12.13	14.74	21.75	19.48	26	5.97	43.62			
Mass of dry s	soil	g	95.58	104.53	106.82	76.30	66	.89	102.27			
Moisture con	tent	%	12.69	14.10	20.36	25.53	40	0.32	42.65			
	CBR Penetration Determination											
	Penetration a	fter 96 hrs. Soa	aking Period		Surcharge Weight:-4.55 KG							
		65 Blow	s		30 Blows		10 Blows					
	Pen.mm		KN CB	R % Pen.r	nm Load, KN	CBR %	Pen.mm	Load, KN	CBR %			
	0.00	0.00	0	0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.00	0.000				

0.64

1.27

1.91

2.54

3.81

7.59

5.08		1.202		6.01	5.0)8	1.174	5.87	5.08	1.086	5.43		
7.62		1.291			7.6	52	1.269		7.62	1.143			
Modified Max.Dry Density g/cc						90		ON	IC %		20.8		
				S	Swell D	Determ	ination						
		65	Blows					30 Blow	S	10	Blows		
Date		Gau	ige rdg	Swe	Swell in %		Gauge rdg	Swel	l in %	Gauge rdg	Swell in %		
		r	nm				mm			mm			
27/02/2013	Initial	1	.41) 10		1.69	0	55	1.55	0.74		
01/03/2013	Final	1	.63	().19		2.33	0	.55	2.41			
Dry Density	y at 95%	of MD	D:							1.511			
No.of blows	MCBS	5%		DDBS g/cm3		Co	rrecrt CBR	%	9/	% OF Compaction			
10	40.	3	-	1.271			7.17			80			
30	20.4	4		1.405			7.38			88			
65	12.	7		1.588		7.61				100			
CBR % at 95 % MDD					7.5	:	Swell %		0.55				

0.587

0.795

0.904

0.981

1.089

7.35

0.624

0.841

0.945

1.012

1.112

0.64

1.27

1.91

2.54

3.81

0.548

0.753

0.876

0.956

1.024

7.17

0.64

1.27

1.91

2.54

3.81

3.11) 10% CA

				DI	N S I	ТΥ	DET	FERMI	N A	ΤΙΟΝ							
						1	10 Blo	ws			30 Blo	ws		65 Blows			
	SOAKING	CONDIT	ION		BE	FORE		AFTER		BEFC	DRE	AFTER		BEF	ORE	A	FTER
MOL	D NUMBER]	N5		N5		N	7	N7		Ić	55		I65
WEIG	GHT OF SOIL + M	OLD												1099	90.8		
g					107	63.0	0	11133.4	0	1089	3.90	11231.2	0	3	3	112	228.40
WEIG	GHT OF MOLD						_	0004 54						~~ ~		~~	
g MEIG					693	31.50	0	6931.50)	6991	.80	6991.80) (6974	4.60	69	74.60
g					383	31.50)	4201.90)	3902	.10	4239.40)	401	6.23	42	53.80
VOLU	JME OF MOLD				21/	14.00	<u> </u>	2124.00		2124	00	2124.00		010	1.00	- 21	24.00
g/cc					212	24.00)	2124.00)	2124	.00	2124.00	,	2124	4.00	21	24.00
WET	DENSITY OF SOIL				1	.80		1.98		1.8	4	2.00		1.3	89	2	2.00
DRY	DENSITY OF SOIL																
g/cc					1	.39		1.40		1.4	8	1.59		1.:	59		1.71
	MOISTURE DETERMINATION																
				10 Blo	ws	1		30 B		lows				65 Blows			
S	OAKING CONDIT	ON	BEFOR	RE AFT	ER	AVG	G. B	BEFORE	AF	TER	AVG.	BEFC	RE	AFTER			AVG.
CON	CONTAINER NUMBER G19		z	E			А		E		P6	5		P67			
WET	WET SOIL + CONTAINER g 162.80		80 192	.64		1	69.80	16	9.74		149.	72	190.61				
DRY	SOIL + CONTAINE	Rg	133.4	1 146	46.26		1	43.80 14		2.74		131.	.93		167.82		
WEIG	GHT OF WATER	g	29.3	9 46.	i.38			26.00 27		7.00		17.7	79		22.79		
WEIG	GHT OF CONTAIN	ER g	34.2	2 33.	.05		;	37.03 3 [.]		7.91	7.91		75	35.53			
WEIG	GHT OF DRY SOIL	g	99.1	9 113	.21		1	06.77	10	4.83		94.1	18	132.29			
MOIS %	STURE CONTENT		20.6	3 40	07			24.25 24		5 76		18.9	20	17.00			
70			23.0	<u>5 40.</u> F		ETR	ATIC	24.33 2N TE	<u> </u>	DAT	Α	10.0	55	L	17.20		<u> </u>
			10	Blows				30	Blo	ws				65 [Blows		
	PENETRATION	DIAL	LOAD	COR.	CI	BR	DIAL	LOAD		COR.	CBR	DIAL	LO	AD	COR		CBR
	(11111)	RDG	(kn)	LOAD(kn) 🦻	%	RDG	(kn)	L	OAD(kn)	%	RDG	(kr	n)	LOAD(kn)	%
	0		0.00					0.000					0.0	00			
	0.64		0.309					0.351					0.3	56			
	1.27		0.418		_			0.452			_		0.4	91 52			
	1.91		0.463					0.496					0.5	52			
	2.54		0.495		3.	/5		0.535			4.05		0.5	84			4.42
	3.18		0.529					0.572					0.6	10			
	3.81		0.338		_	-+		0.573					0.6	10			
	4.45		0.577					0.505	_		-			47			2.24
	5.08		0.567		2.	84		0.606	-		3.03		0.6	4/		\dashv	5.24
	7.62		0.598					0.647					0.6	84			

				S	WELL 9	%				
	He	ight of a	Specir	nen(mm)			116.4	3		
No.of BLO	OWS				10)	30		65	
RDG (BEFORE SOAKING)						0	0.00		0.00	
RDG(AFTER SOAKING)						1	2.01		1.49	
PERCEN	Γ SWEL	L			1.8	1	1.73		1.28	
AVERAG	E PERC	ENT SV	VELL	,		•		·		
		Μ	ODIF	IED PROC	TOR : 7	[180, M]	ETHOD	D		
MDD (g/c	c)	1.	.620		OMC	C (%)		13	8.6	
	-		CBF	R Value at	standar	d Force 1	Factor			
Ы		LO	AD (I	KN)		CBI	<u>R (%)</u>		Swell	
BIOW	2.54mm			5.08mm 2.54mm		54mm	5.08mm		%	
10	0.:	50		0.57		3.75	2	.84	1.81	
30	0.:	54		0.61	2	4.05	3.03		1.73	
65	0.:	58		0.65	2	1.42	3	.24	1.28	
		CBR '	Test s	ummary v	alue		•			
Blov	N	Dr dens	y ity	CBF	R%	Swel	1 %	% 0	f compaction	
10		1.39	92	3.7	'5				85.90	
30		1.47	7	4.0)5			91.20		
65		1.59	90	4.4	-2	1.7	73	98.1		
95 % MDD		1.539	CBR at 95 % N		MDD	4.3				

3.12) 20% CA

COMPACTION D	۸ ۸		65 Bl	ows		30 B	lows		10 Blo	ows		
COMPACTION D	AIA	Befo	ore soak	After soak	В	efore soak	After soal	k Before	e soak	Afte	r soak	
Mould No.			N4	N4		N1	N1	NI	12	N	12	
Mass of soil + Mould	g	111	166.35	11366.5	1	0986.37	11266.7	/ 1084	42.3	111	86.9	
Mass Mould	g	7	7025	7025		6942	6942	700	6.1	70	06.1	
Mass of Soil	g	41	41.35	4341.5	4	4044.37	4324.7	383	6.2	41	80.8	
Volume of Mould	g	2	2124	2124		2124	2124	212	2124		2124	
Wet density of soil	g/cc	1	.950	2.044		1.904	2.036	1.8	06	1.	968	
Dry density of soil	g/cc	1	.551	1.600		1.465	1.573	1.3	75	1.	450	
			Moistu	ıre Detern	nina	ation						
			65 Bl	ows		30 B	lows		10 Blows			
MOISTURE CONTEN	T DATA	Bofe	are soak	After soak	B	efore soak	After soa	z Before	soak	A fto	r soak	
Container no		Dere	P65	P1		10G	I41	20		E	-12	
Mass of wet soil + Contai	ner ø	16	59 10	151 50		139 54	161 27	170	18	12	1 32	
Mass of dry soil + Contai	nor g	1/	12.25	126.81		111.42	131.07	137	84	00	34	
Mass of any son + Contai	ner g	2	+2.23	27.01		17.60	22.50	24	.0 4	25	1.00	
Mass of container	g	2	1.15	24.60		17.00	32.50	34.	39 24	21	.90	
Mass of dry soil	<u> </u>	10	0.85	24.09		28.12	29.50	102	25	61	.90	
Maisture content	<u> </u>	2	5 60	09.00		20.07	20.46	21	22	25	.44	
	70		J.09	21.14		29.91	29.40	51.	52	5.		
		CB	sk Pene	tration De	eter	minatio	n					
Penetration after 96 hrs.			Surch	arge Weigh	t:-4.55 KG							
65 Blows					30 Blows 10 Blows							
Pen.mm	Load, KN		CBR %	Pen.mm		Load, KN	CBR %	Pen.mm	Load,	KN	CBR %	
0.00	0.000			0.00		0.000		0.00	0.00	00		
0.64	0.454			0.64		0.473		0.64	0.45	52		
1.27	0.593			1.27		0.594		1.27	0.56	55		
1.91	0.674			1.91		0.654		1.91	0.61	8		
2.54	0.724		5.43	2.54		0.698	5.23	2.54	0.66	55	4.99	
3.81	0.784			3.81		0.754	4.02	3.81	0.71	5	2.50	
5.08	0.833		4.17	5.08		0.805	4.03	5.08	0.75	8	3.79	
7.62	0.895			7.62		0.872		7.62	0.8	0		
Modified Max.L	Pry Density	g/cc	9	1.570			OMC	2 %		20.4		
	(5 Diam	~	Sw	ell Determin		on	20 Dlarra		10	Dlas		
	02 RIOM	s 			+	Gauge	50 B10WS		10 Gaure	р ВІО І Р	vs	
Date	Gauge	rdg	Sw	ell in %		rdg	Swell	n %	rdg		Swell	
	mm	~8	2.1			mm			mm	i	i n %	
27/02/2013 Initial	2.64			0.70		5.3		0	4.33		1.00	
01/03/2013 Final	3.56			0.79		7.27	1.6	9	6.54		1.90	
D	rv Density	at 95%	6 of MDI):				1.49	2			
No.of blows MC	No.of blows MCBS % DDBS g/cm3			3 Correct	rrecrt CBR % % OF Compaction							
10 3	1.3	1	.375	4	4.99 88							
30 3	<u>30.0</u> 1.465			5	5.25			93				

65	25.7	1.551		5.44	99
	CBR % at 95 % M	DD	5.3	Swell %	1.69

3.13)	30%	CA
-------	-----	----

			D E	ΝSITY	DET	ERM	I N A 1	ΓΙΟΝ				
SOAKINI				1	.0 Blo	ows		30 B	lows	65 B	lows	
SUAKIN	GCONDITI	UN		BEFOR	E	AFT	ER	BEFORE	AFTER	BEFORE	AFTER	
MOLD NUMBER			N2		N	2	T4	T4	N10	N10		
WEIGHT OF SOIL + MOLD g				10301.4	40	1087	4.20	10650.50	11106.50	10842.50	11264.20	
WEIGHT OF MOLD	MOLD g			6935.6	60	6935.60		6950.00	6950.00	6967.30	6967.30	
WEIGHT OF SOIL	g			3365.8	0	3938	8.60	3700.50	4156.50	3875.20	4296.90	
VOLUME OF MOLD g/cc				2124.0	0	2124	.00	2124.00	2124.00	2124.00	2124.00	
WET DENSITY OF SOIL g/cc				1.58 1		1.8	35	1.74	1.96	1.82	2.02	
DRY DENSITY OF SOIL g/cc				1.22		1.27		1.36	1.39 1.50 1.52			
			MO	ISTURE	DE	TERN	1 I N A	ATION				
COAKING	1	LO Blows			30 E	Blows			6	5 Blows		
CONDITION	BEFORE	AFTER	AVG	BEFORE	AF	TER	AVG	G. BEFOR	E AFTER	R .	AVG.	
CONTAINER NUMBER	P10	А		G3T4	G3T4 2		T5C2	P65				
WET SOIL + CONTAINER g	157.78	150.37		108.40	108.40 150.03			108.79	9 190.1	0		
DRY SOIL +	127.10	115.10		88.50	11	16.50		92.40	152.5	0		

CONTAIN	NER g														
WEIGHT	OF WATER														
g		30.68	35.27		19.9	90	33.53			16.3	9	37.60	C		
WEIGHT	OF														
CONTAIN	NER g	25.48	37.65		17.5	59	34.64			17.9	0	37.76	6		
WEIGHT	OF DRY														
SOIL	g	101.62	77.45		70.9	91	81.86			74.5	0	114.7	4		
MOISTU	RE														
CONTEN	T %	30.19	45.54		28.0)6	40.96			22.0	0	32.7	7		
				`P E]	NET	R A T	ION	ΤΕ	S T	D A	TA	1			
	PENETRATIC	N	10	Blows				30	Blow	S			65	Blows	
	(mm)	DIALF		D	COR.	CBR	DIAL	LOAD	C	OR.	CBR	DIAL	LOAD	COR	CBR
	, ,		(kn) LO	AD(kn)	%	RDG	(kn)	LOA	.D(kn)	%	RDG	(kn)	LOAD(kn)	%
	0		0.00	0				0.000					0.000		
	0.64		0.57	2				0.576					0.542		
	1.27		0.74	-5				0.747					0.751		
	1.91		0.80	3		6 46		0.830			6 90		0.871		7.00
	2.54		0.85	5		0.40		0.898			0.60		0.934		7.08
	3.10		0.92	7				0 999					1 024		
	4.45		0.72	.,				0.777					1.021		
	5.08		0.98	4		4.92		1.070			5.35		1.105		5.53
	7.62		1.05	54				1.181					1.234		
		Heig	nt of Specim	nen(mm)		1		116	.43						
	No.of BLO	WS				10		3	0				65		
	RDG (BEF	ORE SO	AKING)			0.00		0.0)0				0.00		
	RDG(AFT	ER SOAF	KING)			1.38		1.1	6				1.05		
	PERCENT	SWELL				1.19		1.0)0				0.90		
	Blow	D	ry densit	y	CB	R%		Swell	%			% of	compa	ction	
	10		1.217		6	.46							82		
	30		1.360		6	.80							`92		
	65		1.495		7.	.08		1.00)				101		
	95 % MD	D 1.4	06	a (CBR t 95 %	6 MDI		6.9							

3.14) 40% CA

COMP		јрата		65 Bl	ows		30 Bl	ows		10	Blows	
COMI		DAIA		Before soak	After soak	Bef	ore soak	After s	oak	Before soak	After so	oak
Mould No.				N1	N1		N5	N5	5	I65	I65	
Mass of soil +	- Mould		g	10811.3	11128.6	10)736.8	1105	9.1	10597.4	10857	7.5
Mass Mould			g	6942	6942	6	931.5	6931	.5	6974.6	6974.	.6
Mass of Soil			g	3869.3	4186.6	3	805.3	4127	7.6	3622.8	3882.	.9
Volume of Mo	ould		g	2124	2124	2	2124	212	4	2124	2124	4
Wet density of	f soil		g/cc	1.822	1.971	1	1.792	1.94	3	1.706	1.82	8
Dry density of	soil		g/cc	1.564	1.611	1	1.442	1.53	31	1.315	1.372	2
				Moistu	re Determ	inati	ion					
MOISTUDI	F CONT	ENT DA	Т	65 Bl	ows		30 Blo	ows		10	Blows	
MOISTOR	LCONT		ЦА	Before soak	After soak	Bef	ore soak	After s	oak	Before soak	After so	oak
Container no.				A-13	G-53		2Q	P6'	7	G19	C150	0
Mass of wet so	oil + Con	tainer	g	149.70	158.52	1	32.54	130.	27	178.74	110.6	54
Mass of dry so	oil + Con	tainer	g	133.28	134.84	1	13.42	107.	46	145.68	87.3	7
Mass of contai	iner		g	33.58	28.73	3	34.59	22.7	'9	34.27	17.32	2
Mass of water			g	16.42	23.68	1	19.12	22.8	31	33.06	23.2	7
Mass of dry so	oil		g	99.70	106.11	7	78.83	84.6	57	111.41	70.0	5
Moisture conte	ent		%	16.47	22.32	2	24.25	26.9	94	29.67	33.22	2
				CBR Pene	tration Dete	ermi	nation					
Penetration aft	er 96 hrs.	Soaking	Period			Sur	charge We	eight:-4.	55 KG	Ĵ		
	65 Blov	65 Blows 30					ows 10 Blows					
Pen.mm	Load,	KN	CBR %	Pen.mm	Load, KN		CBR %	Pen	.mm	Load, K	N CBR	R %
0.00	0.00	0		0.00	0.000			0.	00	0.000		
0.64	0.71	2		0.64	0.627			0.	64	0.452		
1.27	0.98	4		1.27	0.864			1.	27	0.684		
1.91	1.14	8		1.91	1.005			1.	91	0.843		
2.54	1.26	7	9.50	2.54	1.097		8.22	2.	54	0.947	7.1	10
3.81	1.43	2		3.81	1.213			3.	81	1.091		
5.08	1.54	7	7.74	5.08	1.291		6.46	5.	08	1.209	6.0)5
7.62	1.68	9		7.62	1.401		1	7.	62	1.367		
Modified N	/lax.Dry	Density		1 45	10		0140			25	_	
		g/cc		1.47		4.	OMC	%		25.	5	
		65		Swe	li Determina	tion						
		Blows			30 Blo	ws				10 Blo	ows	
Date		Gauge rdg	Swell	Gauge rdg		Small :	m 0/	Ga	uge rdg	Swall in	0/	
		mm	in %	mm			Swell I	11 /0		mm	Swell III	/0
27/02/2013	Initial	1.58	0.55	3.4					3.90	1.01		
01/03/2013	Final	2.34	0.65		4.27		0.7:	5		6.01	1.81	
Dry Donsity	v at 05%	of MDT). 							1 3	97	
No.of blows	ai 75/0	MCBS %		DDBS g/cm3	Co	orrecri	t CBR %				npaction	
L	1		1		1				1			

10	29.7	1.315		7.10	89
30	24.3	1.442		8.25	98
65	16.5	1.564		9.53	106
CBR % at 95	% MDD		7.8	Swell %	0.75

3.15) 50% CA

		65 BI	ows	30 Bl	ows	10 B	ows
COMPACTION DATA		Before soak	After soak	Before soak	After soak	Before soak	After soak
Mould No.		N12	N12	N4	N4	N1	N1
Mass of soil + Mould	g	10750.6	10928.7	10634.8	10881.6	10421.5	10687.5
Mass Mould	g	7006.1	7006.1	7025	7025	6942	6942
Mass of Soil	g	3744.5	3922.6	3609.8	3856.6	3479.5	3745.5
Volume of Mould	g	2124	2124	2124	2124	2124	2124
Wet density of soil	g/cc	1.763	1.847	1.700	1.816	1.638	1.763
Dry density of soil	g/cc	1.556	1.566	1.410	1.429	1.240	1.290
		Moistu	re Determ	ination			
MOISTUDE CONTENT DA	ΤA	65 BI	ows	30 Bl	ows	10 B	ows
MOISTURE CONTENT DA	IA	Before soak	After soak	Before soak	After soak	Before soak	After soak
Container no.		G3T4	2	P1	Е	ZE	А
Mass of wet soil + Container	g	128.43	164.23	157.54	168.31	169.24	140.39
Mass of dry soil + Container	g	115.43	144.51	137.12	140.55	136.15	112.67
Mass of container	g	17.59	34.64	37.81	37.96	33.05	37.03
Mass of water	g	13.00	19.72	20.42	27.76	33.09	27.72
Mass of dry soil	g	97.84	109.87	99.31	102.59	103.10	75.64
Moisture content	%	13.29	17.95	20.56	27.06	32.10	36.65
		CBR Pene	tration Dete	ermination			

Penetration a	fter 96	5 hr:	s. Soaking	g Perio	d	Surcharge Weight:-4.55 KG								
	65 I	Blov	ws				30 B	lows				10 Blows	s	
Pen.mm	Lo	oad,	KN	CBR %	6	Pen.mm	Load	, KN	CBR %	Pen.r	nm	Load, KN	I	CBR %
0.00	(0.00	00			0.00	0.0	000		0.0	0	0.000		
0.64	().51	13			0.64	0.5	12		0.6	4	0.432		
1.27	(0.72	21			1.27	0.6	i91		1.2	7	0.635		
1.91	().81	19			1.91	0.7	86		1.9	1	0.716		
2.54	(0.87	79	6.59		2.54	0.8	35	6.26	2.5	4	0.764		5.73
3.81	().93	34			3.81	0.8	83		3.8	1	0.826		
5.08	().96	57	4.84		5.08 0.924 4.62			5.0	8	0.857		4.29	
7.62	1	1.02	21			7.62 0.961				7.6	2	0.914		
Modified N	Max.D	ry	Density											
			g/cc			1.560 OMC % 17.2								
	Swell Determination													
			65											
			Blows	1			30) Blows	1			10 Bl	lows	
Date			Gauge	Swe	11	Gar	ige rdg		G 11.	0/	G	uge rdg	G	11 • 0/
			mm	in %	6	Jai			Swell 1	n %	0.	mm	S	well in %
27/02/2013	Initi	<u>a</u> 1	1.08			 ?	3 61					2.43		
01/02/2013	Eine	a1	2.44	1.17	7		5.01		1.3	0		4.01		1.36
01/03/2013	ГШа	al	2.44				0.12					4.01		
Dr	y Den	nsity	y at 95%	of M	DD	:						1.482	2	
No.of blow	vs		MCBS %			DDBS g/cm3		Correcrt	CBR %			% OF Com	pacti	on
10			32.1			1.240		5.7	3			79		
30			20.6			1.410		6.2	8			90		
65			13.3			1.556		6.6	1			100		
	CI	BR	% at 95 %	6 MDI)		6.4	Sv	Swell %			1.30		

APPENDAX D: Laboratory test result of stabilizing MS Soil Sample using soil-CA,

soil-GSA and soil-BF.

- 1) Compaction test Result
- 1.1) 1% BF

Density Det	termination	1							
Test No.	1	2	3	4					
Mass of sample (gm)	4500	4500	4500	4500					
Water Added(cc)	270	450	630	810					
Mass of Mold+Wet soil(gm)(A)	10856.3	11129.3	11225.6	11112.4					
Mass of Mold(gm)(B)	6569.1	6569.1	6569.1	6569.1					
Mass of Wet Soil(gm)A-B=C	4287.2	4560.2	4656.5	4543.3					
Volume of Mold cm ³ (D)	2285	2285.00	2285.00	2285.00					
Bulk Density gm/cm ³ C/D=(E)	1.87	2.00	2.04	1.99					
Moisture Content Determination									
Moisture Conter	nt Determi	nation			NMC				
Moisture Conter Container Code .	nt Determin A2	nation P01	4P	10L	NMC B-06				
Moisture Conter Container Code . Mass of Wet soil+Container(gm)(F)	A2 141.8	nation P01 114.2	4P 98.7	10L 102.3	NMC B-06 122.9				
Moisture ConterContainer Code .Mass of Wet soil+Container(gm)(F)Mass of dry soil+container(gm)(G)	A2 141.8 121.3	P01 114.2 93.87	4P 98.7 80.2	10L 102.3 82.1	NMC B-06 122.9 113.4				
Moisture ConterContainer Code .Mass of Wet soil+Container(gm)(F)Mass of dry soil+container(gm)(G)Mass of container(gm)(H)	A2 141.8 121.3 37.8	P01 114.2 93.87 15.8	4P 98.7 80.2 15.4	10L 102.3 82.1 21.3	NMC B-06 122.9 113.4 18.5				
Moisture ConterContainer Code .Mass of Wet soil+Container(gm)(F)Mass of dry soil+container(gm)(G)Mass of container(gm)(H)Mass of moisture(gm)F-G=(I)	A2 141.8 121.3 37.8 20.5	P01 114.2 93.87 15.8 20.33	4P 98.7 80.2 15.4 18.5	10L 102.3 82.1 21.3 20.2	NMC B-06 122.9 113.4 18.5 9.5				
Moisture ConterContainer Code .Mass of Wet soil+Container(gm)(F)Mass of dry soil+container(gm)(G)Mass of container(gm)(H)Mass of moisture(gm)F-G=(I)Mass of Dry soil(gm)G-H=(J)	A2 141.8 121.3 37.8 20.5 83.5	P01 114.2 93.87 15.8 20.33 78.07	4P 98.7 80.2 15.4 18.5 64.8	10L 102.3 82.1 21.3 20.2 60.8	NMC B-06 122.9 113.4 18.5 9.5 94.9				
Moisture ConterContainer Code .Mass of Wet soil+Container(gm)(F)Mass of dry soil+container(gm)(G)Mass of container(gm)(H)Mass of moisture(gm)F-G=(I)Mass of Dry soil(gm)G-H=(J)Moisture content % (I/J)*100=K	A2 141.8 121.3 37.8 20.5 83.5 24.55	P01 114.2 93.87 15.8 20.33 78.07 26.04	4P 98.7 80.2 15.4 18.5 64.8 28.55	10L 102.3 82.1 21.3 20.2 60.8 33.22	NMC B-06 122.9 113.4 18.5 9.5 94.9 10.01				

1.2) 1.5% BF

Density De	termination	n								
Test No.	1	2	3							
Mass of sample (gm)	4500	4500	4500							
Water Added(cc)	450	630	810							
Mass of Mold+Wet soil(gm)(A)	10978.4	11189.64	10906.1							
Mass of Mold(gm)(B)	6533.3	6533.3	6533.3							
Mass of Wet Soil(gm)A-B=C	4445.1	4656.34	4372.8							
Volume of Mold cm ³ (D)	2285.00	2285.00	2285.00							
Bulk Density gm/cm ³ C/D=(E)	1.95	2.04	1.91							
Moisture Content Determination NM										
Moisture Conte	ent Determi	nation		NMC						
Moisture Conte Container Code .	e nt Determi G4	nation A15	LM6	NMC E-12						
Moisture Conta Container Code . Mass of Wet soil+Container(gm)(F)	ent Determi G4 155.4	nation A15 144.53	LM6 168.43	NMC E-12 195.63						
Moisture Conta Container Code . Mass of Wet soil+Container(gm)(F) Mass of dry soil+container(gm)(G)	ent Determi G4 155.4 140.36	nation A15 144.53 130.86	LM6 168.43 158.74	NMC E-12 195.63 184.3						
Moisture Conta Container Code . Mass of Wet soil+Container(gm)(F) Mass of dry soil+container(gm)(G) Mass of container(gm)(H)	Ent Determi G4 155.4 140.36 30.15	nation A15 144.53 130.86 41.07	LM6 168.43 158.74 38.63	NMC E-12 195.63 184.3 38.65						
Moisture ContaContainer Code .Mass of Wet soil+Container(gm)(F)Mass of dry soil+container(gm)(G)Mass of container(gm)(H)Mass of moisture(gm)F-G=(I)	G4 155.4 140.36 30.15 15.04	nation A15 144.53 130.86 41.07 13.67	LM6 168.43 158.74 38.63 20.64	NMC E-12 195.63 184.3 38.65 11.33						
Moisture ContaContainer Code .Mass of Wet soil+Container(gm)(F)Mass of dry soil+container(gm)(G)Mass of container(gm)(H)Mass of moisture(gm)F-G=(I)Mass of Dry soil(gm)G-H=(J)	G4 155.4 140.36 30.15 15.04 110.21	nation A15 144.53 130.86 41.07 13.67 89.79	LM6 168.43 158.74 38.63 20.64 120.11	NMC E-12 195.63 184.3 38.65 11.33 145.65						
Moisture ContaContainer Code .Mass of Wet soil+Container(gm)(F)Mass of dry soil+container(gm)(G)Mass of container(gm)(H)Mass of moisture(gm)F-G=(I)Mass of Dry soil(gm)G-H=(J)Moisture content % (I/J)*100=K	G4 155.4 140.36 30.15 15.04 110.21 13.65	nation A15 144.53 130.86 41.07 13.67 89.79 15.22	LM6 168.43 158.74 38.63 20.64 120.11 17.18	NMC E-12 195.63 184.3 38.65 11.33 145.65 7.77						

1.3) 2% BF

Density Determ	ination			
Test No.	1	2	3	
Mass of sample (gm)	4500	4500	4500	
Water Added(cc)	380	550	730	
Mass of Mold+Wet soil(gm)(A)	10559.6	11112.3	10984.6	
Mass of Mold(gm)(B)	6054.3	6054.3	6054.3	
Mass of Wet Soil(gm)A-B=C	4505.3	5058	4930.3	
Volume of Mold cm ³ (D)	2285.00	2285.00	2285.00	
Bulk Density gm/cm ³ C/D=(E)	1.97	2.21	2.16	
Moisture Content De	termination	l		NMC
Container Code .	E-12	G19	F	P65
Mass of Wet soil+Container(gm)(F)	166.3	152.9	114.8	178.9
Mass of dry soil+container(gm)(G)	143.9	126.39	92.7	163.4
Mass of container(gm)(H)	38.6	41.3	36.7	33.5
Mass of moisture(gm)F-G=(I)	22.4	26.51	22.1	15.5
Mass of Dry soil(gm)G-H=(J)	105.3	85.09	56	129.9
Moisture content % (I/J)*100=K	21.27	31.16	39.46	11.93
Dry Density $gm/cm^3 F/(100+K)*100$	1.63	1.69	1.55	

1.4) 2.5% BF

Density Determ					
Test No.	1	2	3	4	
Mass of sample (gm)	4500	4500	4500	4500	
Water Added(cc)	380	550	730	910	
Mass of Mold+Wet soil(gm)(A)	10382.9	10546.3	10736.8	10623	
Mass of Mold(gm)(B)	6569.1	6569.1	6569.1	6569.1	
Mass of Wet Soil(gm)A-B=C	3813.8	3977.2	4167.7	4054.3	
Volume of Mold cm ³ (D)	2285.00	2285.00	2285.00	2285.00	
Bulk Density gm/cm ³ C/D=(E)	1.67	1.74	1.82	1.77	
Moisture Content De	eterminatio	n			NMC
Container Code .	C-54	AB-36	C4	D4	E-12
Mass of Wet soil+Container(gm)(F)	141.56	123.74	148.63	127.39	195.63
Mass of dry soil+container(gm)(G)	127.85	109.6	129.86	106.3	184.3
Mass of container(gm)(H)	32.15	26.8	36.85	20.76	38.65
Mass of moisture(gm)F-G=(I)	13.71	14.14	18.77	21.09	11.33
Mass of Dry soil(gm)G-H=(J)	95.7	82.8	93.01	85.54	145.65
Moisture content % (I/J)*100=K	14.33	17.08	20.18	24.66	7.77
Dry Density gm/cm ³ E/(100+K)*100	1.46	1.49	1.52	1.42	

1.5) 3% BF

Density Determination								
Test No.	1	2	3					
Mass of sample (gm)	4500	4500	4500					
Water Added(cc)	380	550	730					
Mass of Mold+Wet soil(gm)(A)	10347.6	10526.7	10445.9					
Mass of Mold(gm)(B)	6513.4	6513.4	6513.4					
Mass of Wet Soil(gm)A-B=C	3834.16	4013.3	3932.5					
Volume of Mold cm ³ (D)	2285.00	2285.00	2285.00					
Bulk Density gm/cm ³ C/D=(E)	1.68	1.76	1.72					
Moisture Content Det	ermination							
Container Code .	F35	G23	В					
Mass of Wet soil+Container(gm)(F)	127.36	151.32	187.96					
Mass of dry soil+container(gm)(G)	113.6	131.56	158.45					
Mass of container(gm)(H)	30.45	31.45	34.5					
Mass of moisture(gm)F-G=(I)	13.76	19.76	29.51					
Mass of Dry soil(gm)G-H=(J)	83.15	100.11	123.95					
Moisture content % (I/J)*100=K	16.55	19.74	23.81					
Dry Density $gm/cm^3 E/(100+K)*100$	1.44	1.47	1.39					

1.6) 4% GSA

	TRIAL NUMBER			1	2	3	4	
	WEIGHT OF SOIL + MOLD	(g)	\mathbf{W}_1	6758.49	6,970	7,021.60	6,907	
ТΥ	WEIGHT OF MOLD	(g)	W ₂	2716.2	2716.2	2716.2	2716.2	
DENSI	VOLUME OF MOLD	(Cm ³)	V	2124	2124	2124	2124	
	WEIGHT OF WET SOIL W ₁ -W ₂	(g)	W ₃ =	4042.29	4,254	4,305	4,190	
	WET DENSITY OF SOIL W ₃ /V	(g/Cm ³) $W_d =$	1.90	2.00	2.03	1.97	
	CONTAINER NUMBER			А	P65	M10	C86	
	WET SOIL + CONTAINER	(g)	а	159.78	176.6	121.3	140.7	
RE	DRY SOIL + CONTAINER	(g)	b	137.42	148.9	99.0	117.1	
STU	WEIGHT OF CONTAINER	(g)	c	37.03	37.8	18.85	36.9	
IOM	WEIGHT OF WATER	(g)	d = a - b	22.36	27.7	22.3	23.6	
Π	WEIGHT OF DRY SOIL	(g)	e =b-c	100.39	111.2	80.2	80.2	
	MOISTURE CONTENT (d/e)*100	(%)	m =	22.27	24.91	27.81	29.41	
DF	RY DENSITY OF SOIL ($g W_d/(100+m)*100$	/Cm3)	$\mathbf{D}_{\mathbf{d}} =$	1.56	1.60	1.59	1.52	

1.7) 8% GSA

	TRIAL NUMBER	1	2	3	
	WEIGHT OF SOIL + MOLD (g) W_1	6719.6	6931.56	6,863.18	
ALISNED	WEIGHT OF MOLD (g) W_2	2790.5	2790.5	2790.5	
	VOLUME OF MOLD (Cm ³) V	2124	2124	2124	
	WEIGHT OF WET SOIL (g) $W_3 = W_1$ - W_2	3929.1	4141.06	4,073	
	WET DENSITY OF SOIL (g/Cm^3) $W_d = W_3/V$	1.85	1.95	1.92	
	CONTAINER NUMBER	F12	ZE	2WE	
	WET SOIL + CONTAINER (g) a	156.94	160.29	183.9	
IRE	DRY SOIL + CONTAINER (g) b	129.5	130	146.9	
LC L	WEIGHT OF CONTAINER (g) c	35.5	33.07	34.8	
SIC	WEIGHT OF WATER (g) $d = a-b$	27.44	30.29	37.1	
M	WEIGHT OF DRY SOIL (g) $e = b-c$	94	96.93	112.1	
	MOISTURE CONTENT (%) m= (d/e)*100	29.19	31.25	33.04	
D	DRY DENSITY OF SOIL (g/Cm3) $D_d = W_d/(100+m)*100$	1.43	1.49	1.44	

1.8) 10% GSA

ΓY	TRIAL NUMBER	1	2	3		
NSI	WEIGHT OF SOIL + MOLD (§	g) W ₁	6620.1	6834.24	6,769.68	
DE	WEIGHT OF MOLD (§	g) W ₂	2875.4	2875.4	2875.4	

	VOLUME OF MOLD	(Cm ³)	V	2124	2124	2124	
	WEIGHT OF WET SOIL W ₁ -W ₂	(g)	W ₃ =	3744.70	3958.84	3,894	
	WET DENSITY OF SOIL W ₃ /V	(g/Cm ³	3) $W_{d} =$	1.76	1.86	1.83	
JRE	CONTAINER NUMBER			А	Е	P15	
	WET SOIL + CONTAINER	(g)	а	149.29	180.5	143.0	
	DRY SOIL + CONTAINER	(g)	b	128	150.6	118.5	
ITU	WEIGHT OF CONTAINER	(g)	с	37.01	37.95	33.5	
MO	WEIGHT OF WATER	(g)	d = a-b	21.29	29.9	24.5	
	WEIGHT OF DRY SOIL	(g)	e =b-c	90.99	112.65	85.0	
	MOISTURE CONTENT (d/e)*100	(%)	m =	23.40	26.54	28.77	
DRY DENSITY OF SOIL $(g/Cm3)$ $D_d = W_d/(100+m)*100$		$\mathbf{D}_{\mathbf{d}} =$	1.43	1.47	1.42		

1.9) 10% CA

	TRIAL NUMBER		1	2	3	4	5
	WEIGHT OF SAMPLE	(g)	4500	4500	4500	4500	
Y	WATER ADDED	(%)	550.0	730.0	910.0	1090.0	
ENSIT	WEIGHT OF Mold		2624.14	2624.14	2624.14	2650	
D	WEIGHT OF SOIL (g)		3847.49	4027.86	4176.98	4127	
	VOLUME OF MOLD		2124	2124	2124	2124	
	Wet DENSITY OF Soil (cc)		1.811	1.896	1.967	1.943	NMC
	CONTAINER NUMBER		AB	P12	KL10	U10	S-10
	WET SOIL + CONTAINER (g)		188.91	116.53	196.23	174.39	140.63
URE	DRY SOIL + CONTAINER (g)		167.85	101.73	169.81	145.23	128.39
LSI	WEIGHT OF WATER (g)		21.06	14.80	26.42	29.16	12.24
MC	WEIGHT OF CONTAINER (g)		31.05	18.85	41.25	35.64	31.05
	WEIGHT OF DRY SOIL (g)		136.80	82.88	128.56	109.59	97.34
	MOISTURE CONTENT (%)		15.40	17.86	20.55	26.61	12.57
	DRY DENSITY OF Soil (cc)		1.570	1.609	1.631	1.535	

1.10) 20% CA

	TRIAL NUMBER	1	2	3	4
	WEIGHT OF SAMPLE	4500	4500	4500	
	WATER ADDED	700.0	980.0	1160.0	
SITY	WEIGHT OF SOIL + MOLD (g)	6556.94	6768.39	6639.61	
ENG	WEIGHT OF MOLD (g)	2683.01	2683.27	2683.27	
Д	WEIGHT OF SOIL (g)	3873.93	4085.12	3956.34	
	VOLUME OF MOLD (cc)	2124	2124	2124	
	Wet DENSITY OF SOIL (g/cc)	1.824	1.923	1.863	
	CONTAINER NUMBER	DE	M10	A11	
	WET SOIL + CONTAINER (g)	170.23	123.67	143.86	
URE	DRY SOIL + CONTAINER (g)	148.73	103.00	118.37	
LSI	WEIGHT OF WATER (g)	21.50	20.67	25.49	
MC	WEIGHT OF CONTAINER (g)	40.32	18.85	35.16	
	WEIGHT OF DRY SOIL (g)	108.41	84.15	83.21	
	MOISTURE CONTENT (%)	19.83	24.56	30.63	
	DRY DENSITY OF SOIL (g/cc)	1.522	1.544	1.426	

1.11) 30% CA

	TRIAL NUMBER	1	2	3	4	5
	WEIGHT OF SAMPLE	4500	4500	4500	4500	
	WATER ADDED	570.0	750.0	930.0	1110.0	
SITY	WEIGHT OF SOIL + MOLD (g)	6271.49	6442.39	6692.51	6584	
DEN	WEIGHT OF MOLD(g)	2706.5	2706.5	2706.5	2706.5	
	WEIGHT OF SOIL (g)	3564.99	3735.89	3986.01	3878	
	VOLUME OF MOLD (cc)	2124	2124	2124	2124	
	Wet DENSITY OF SOIL (g/cc)	1.678	1.759	1.877	1.826	
	CONTAINER NUMBER	AW	8KO	0-12	K-20	
	WET SOIL + CONTAINER (g)	155.96	171.42	133.67	169.38	
URE	DRY SOIL + CONTAINER (g)	138.67	148.63	113.64	138.36	
IST	WEIGHT OF WATER (g)	17.29	22.79	20.03	31.02	
οW	WEIGHT OF CONTAINER (g)	36.19	35.16	36.19	39.40	
2	WEIGHT OF DRY SOIL (g)	102.48	113.47	77.45	98.96	
	MOISTURE CONTENT (%)	16.87	20.08	25.86	31.35	
	DRY DENSITY OF SOIL (g/cc)	1.436	1.465	1.491	1.390	

1.12) 40% CA

	TRIAL NUMBER	1	2	3	4	5
	WEIGHT OF SAMPLE	4500	4500	4500	4500	
	WATER ADDED	700.0	980.0	1110.0	1290.0	
λIJ	WEIGHT OF SOIL + MOLD (g)	6303.39	6569.35	6788.96	6718	
DENS	WEIGHT OF MOLD (g)	2724	2724	2724	2724	
	WEIGHT OF SOIL (g)	3579.39	3845.35	4064.96	3994	
	VOLUME OF MOLD (cc)	2124	2124	2124	2124	
	Wet DENSITY OF SOIL (g/cc)	1.685	1.810	1.914	1.881	
	CONTAINER NUMBER	50D	51D	52D	53D	
	WET SOIL + CONTAINER (g)	128.18	134.61	159.67	173.74	
URE	DRY SOIL + CONTAINER (g)	114.00	116.51	131.26	138.00	
DIST	WEIGHT OF WATER (g)	14.18	18.10	28.41	35.74	
Ŭ	WEIGHT OF CONTAINER (g)	34.22	40.94	36.01	38.69	
-	WEIGHT OF DRY SOIL (g)	79.78	75.57	95.25	99.31	
	MOISTURE CONTENT (%)	17.77	23.95	29.83	35.99	
	DRY DENSITY OF SOIL (g/cc)	1.431	1.461	1.474	1.383	

1.13) 50% CA

	TRIAL NUMBER	1	2	3	4	5
	WEIGHT OF SAMPLE	4500	4500	4500	4500	
	WATER ADDED	650.0	830.0	1010.0	1190.0	
SITY	WEIGHT OF SOIL + MOLD (g)	6120.57	6345.28	6574.93	6499	
DEN	WEIGHT OF MOLD (g)	2680.3	2680.3	2680.3	2680.3	
_	WEIGHT OF SOIL (g)	3440.27	3664.98	3894.63	3818	
	VOLUME OF MOLD (cc)	2124	2124	2124	2124	
	Wet DENSITY OF SOIL (g/cc)	1.620	1.726	1.834	1.798	
	CONTAINER NUMBER	P1	P2	P3	P4	
	WET SOIL + CONTAINER (g)	134.73	186.39	148.79	124.16	
URE	DRY SOIL + CONTAINER (g)	119.00	158.00	125.00	101.00	
DIST	WEIGHT OF WATER (g)	15.73	28.39	23.79	23.16	
Ш	WEIGHT OF CONTAINER (g)	33.34	31.96	38.01	31.55	
	WEIGHT OF DRY SOIL (g)	85.66	126.04	86.99	69.45	
	MOISTURE CONTENT (%)	18.36	22.52	27.35	33.35	
	DRY DENSITY OF SOIL (g/cc)	1.368	1.408	1.440	1.348	

2) Atterberg limit laboratory test

2.1) 2% GSA

			Liquid Limit			Plastic	c Limit
No of blows		32	26	21	16		
Container No		AA	B8	6A	LL	L3	C8
Wt. of Container+Wet soil(g)		36.89	30.96	24.61	22.37	19.41	21.53
Wt. of Container+Dry soil(g)		29.21	25.41	22.41	14.55	16.04	17.29
Wt. of Container(g)	Wt. of Container(g)		18.72	13.55	6.04	6.55	5.83
Wt. of Moisture(g)	Wt. of Moisture(g)		5.6	7.76	7.82	3.37	4.24
Wt. of Dry soil(g)		9.93	6.69	8.86	8.5	9.49	11.46
Moisture Content(%)		77.34	82.96	87.58	91.89	35.51	37.00
LIQUIDLIMIT	LL	83.88			AV. Plas. Lim.	36	5.3
PLASTIC LIMIT	PL	36.25					
PLASTICITY INDEX =	LL-PL	47	.63				

2.2) 4% GSA

			Liquic	l Limit		Plastic	c Limit
No of blows		34	29	24	19		
Container No	Container No		A1	C7	C3B	T69	C9
Wt. of Container+Wet soil(g)		40.53	32.84	30.29	28.44	21.39	18.64
Wt. of Container+Dry soil(g)		32.35	27.10	26.87	23.69	17.04	15.00
Wt. of Container(g)		20.29	19.25	17.23	18.17	5.85	6.34
Wt. of Moisture(g)		8.18	5.7	7.76	4.75	4.35	3.64
Wt. of Dry soil(g)		12.06	7.85	9.64	5.5	11.19	8.66
Moisture Content(%)		67.83	73.12	80.50	86.05	38.87	42.03
LIQUIDLIMIT	LL	79	.02		AV. Plas. Lim.	40).5
PLASTIC LIMIT	ASTIC LIMIT PL		.45				
PLASTICITY INDEX =	LL-PL	38	.57				

2.3) 6% GSA

			Liquio	l Limit		Plastic	: Limit
No of blows		30	26	21	17		
Container No		O2	SS	S6	G14	O3L1	F2
Wt. of Container+Wet soil(g)		38.26	34.52	21.22	36.79	18.98	19.76
Wt. of Container+Dry soil(g)		30.56	28.11	17.04	29.55	15.44	15.18
Wt. of Container(g)		17.32	18.20	5.99	20.19	6.67	5.70
Wt. of Moisture(g)	Wt. of Moisture(g)		6.4	7.76	7.24	3.54	4.58
Wt. of Dry soil(g)		13.24	9.91	11.05	9.4	8.77	9.48
Moisture Content(%)		58.16	64.68	70.23	77.35	40.36	48.31
LIQUIDLIMIT	LL	65.79			AV. Plas. Lim.	44	.3
PLASTIC LIMIT	PL	44.34					
PLASTICITY INDEX =	LL-PL	21	.45				

2.4) 8% GSA

				Liquio	l Limit		Plastic	c Limit
No of blows			35	28	22	16		
Container No			DD	C14	A5	N4	1	B-3
Wt. of Container+Wet soil(g)		21.59	26.24	31.29	22.94	22.13	20.83	
Wt. of Container+Dry soil(g)		16.34	19.05	28.23	15.81	17.04	15.96	
Wt. of Container(g)		5.60	5.97	16.01	5.91	6.16	5.45	
Wt. of Moisture(g)	Wt. of Moisture(g)		5.25	7.2	7.76	7.13	5.09	4.87
Wt. of Dry soil(g)			10.74	13.09	12.22	9.9	10.88	10.51
Moisture Content(%)			48.88	54.95	63.50	72.02	46.78	46.34
LIQUIDLIMIT	L	L	59	.23		AV. Plas. Lim.	46	6.6
PLASTIC LIMIT	Р	L	46	.56				
PLASTICITY INDEX =	LL-I	۶L	12	12.67				

2.5) 10% GSA

			Liquic	l Limit		Plastic	c Limit
No of blows		33	27	21	15		
Container No		3L	G-7	16	B8	D3	C2
Wt. of Container+Wet soil(g)		24.82	27.49	21.06	29.98	21.36	22.51
Wt. of Container+Dry soil(g)	Wt. of Container+Dry soil(g)		23.91	20.12	25.29	16.23	17.18
Wt. of Container(g)		19.61	17.36	7.76	18.72	5.82	6.19
Wt. of Moisture(g)		1.68	3.6	7.76	4.69	5.13	5.33
Wt. of Dry soil(g)	Wt. of Dry soil(g)		6.55	12.36	6.6	10.41	10.99
Moisture Content(%)		47.59	54.66	62.78	71.39	49.28	48.50
LIQUIDLIMIT	LL	57.36			AV. Plas. Lim.	48	3.9
PLASTIC LIMIT	PL	48.89					
PLASTICITY INDEX =	LL-PL	8.	47				

2.6) 10% CA

			Liquio	d Limit		Plastic	: Limit
No of blows		34	28	21	16		
Container No		B8	16	3L	L3	A13	3
Wt. of Container+Wet soil(g)		33.78	32.26	35.91	25.78	21.51	25.53
Wt. of Container+Dry soil(g)	Wt. of Container+Dry soil(g)		21.16	28.16	16.09	17.35	20.24
Wt. of Container(g)		18.72	7.76	19.61	6.54	6.01	6.29
Wt. of Moisture(g)	Wt. of Moisture(g)		11.1	7.76	9.69	4.16	5.29
Wt. of Dry soil(g)		8.59	13.40	8.55	9.6	11.34	13.95
Moisture Content(%)		75.32	82.84	90.76	101.47	36.68	37.92
LIQUIDLIMIT	LL	86	.23		AV. Plas. Lim.	37	'.3
PLASTIC LIMIT	PL	37	.30				
PLASTICITY INDEX =	LL-PL	48	.93				

2.7) 20% CA

			Liquio	l Limit		Plastic	c Limit
No of blows		35	29	23	19		
Container No		AA	F2	C4	A1	SP	C14
Wt. of Container+Wet soil(g)		35.62	27.43	33.87	37.41	31.62	23.79
Wt. of Container+Dry soil(g)	Vt. of Container+Dry soil(g)		18.36	17.62	29.01	27.39	18.55
Wt. of Container(g)		19.28	5.70	7.70	19.25	17.28	5.97
Wt. of Moisture(g)		6.49	9.1	7.76	8.40	4.23	5.24
Wt. of Dry soil(g)	Wt. of Dry soil(g)		12.66	9.92	9.8	10.11	12.59
Moisture Content(%)		65.89	71.64	78.23	86.07	41.84	41.64
LIQUIDLIMIT	LL	76	.03		AV. Plas. Lim.	41	.7
PLASTIC LIMIT	PL	41	.74				
PLASTICITY INDEX =	LL-PL	34	.29				

2.8) 30% CA

			Liquio	d Limit		Plastic	c Limit
No of blows		31	27	22	18		
Container No		G-7	A25	O3L1	C2	B-4	3CB
Wt. of Container+Wet soil(g)		32.50	36.98	23.14	30.44	31.96	33.26
Wt. of Container+Dry soil(g)		26.99	31.65	17.50	19.76	24.22	28.39
Wt. of Container(g)		17.36	23.32	6.67	6.19	6.34	18.17
Wt. of Moisture(g)		5.51	5.3	7.76	10.68	7.74	4.87
Wt. of Dry soil(g)		9.63	8.33	10.83	13.6	17.88	10.22
Moisture Content(%)		57.22	63.99	71.65	78.70	43.29	47.65
LIQUIDLIMIT	LL	67	.05		AV. Plas. Lim.	45	5.5
PLASTIC LIMIT	PL	45	.47				
PLASTICITY INDEX =	LL-PL	21	.58				

2.9) 40% CA

			Liquid	l Limit		Plastic	c Limit
No of blows	No of blows		28	22	17		
Container No	Container No		C7	T-2	C9	2	TD
Wt. of Container+Wet soil(g)		22.61	37.48	35.29	29.16	28.73	30.96
Wt. of Container+Dry soil(g)	Wt. of Container+Dry soil(g)		30.08	30.09	19.78	21.12	22.95
Wt. of Container(g)		5.82	17.23	17.86	6.34	5.73	6.50
Wt. of Moisture(g)		5.76	7.4	7.76	9.38	7.61	8.01
Wt. of Dry soil(g)	Wt. of Dry soil(g)		12.85	12.23	13.4	15.39	16.45
Moisture Content(%)		52.22	57.59	63.45	69.79	49.45	48.69
LIQUIDLIMIT	LL	60.52			AV. Plas. Lim.	49	9.1
PLASTIC LIMIT	PL	49.	.07				
PLASTICITY INDEX =	LL-PL	11.	.45				

2.10) 50% CA

			Liquio	l Limit		Plastic	: Limit
No of blows		31	26	21	16		
Container No	Container No		B-3	O2	A12	T69	N4
Wt. of Container+Wet soil(g)		29.76	20.04	37.46	38.01	20.22	22.81
Wt. of Container+Dry soil(g)	Container+Dry soil(g)		14.82	29.38	28.75	15.36	17.22
Wt. of Container(g)	t. of Container(g)		5.45	17.32	16.06	5.85	5.91
Wt. of Moisture(g)		3.03	5.2	7.76	9.26	4.86	5.59
Wt. of Dry soil(g)		6.44	9.37	12.06	12.7	9.51	11.31
Moisture Content(%)		47.05	55.71	64.34	72.97	51.10	49.43
LIQUIDLIMIT	LL	57	.43		AV. Plas. Lim.	50	0.3
PLASTIC LIMIT	PL	50.26					
PLASTICITY INDEX =	LL-PL	7.	17				

3) CBR Laboratory test result

3.1) 1% BF

Before soak After soak Before soak <th< th=""><th></th><th></th><th></th><th>65 BI</th><th>ows</th><th></th><th>30 Bl</th><th>ows</th><th></th><th>10</th><th>Blov</th><th>WS</th></th<>				65 BI	ows		30 Bl	ows		10	Blov	WS
Mould No. P85 P85 C50 C50 D10 D10 Mass of soil + Mould g 11026.5 11185.7 10754.6 10914.3 10782.2 10956.3 Mass Mould g 7056.5 7056.5 6605.1 6605.1 6756.3 6756.3 Mass of Soil g 3970 4129.2 4149.5 4309.2 4025.9 4200 Volume of Mould g 2124				Before soak	After soak	Befo	ore soak	After soak		Before soak		After soak
Mass of soil + Mould g 11026.5 11185.7 10754.6 10914.3 10782.2 10956.3 Mass Mould g 7056.5 7056.5 6605.1 6605.1 6756.3 6756.3 Mass of Soil g 3970 4129.2 4149.5 4309.2 4025.9 4200 Volume of Mould g 2124 2125 1.977 </td <td>Mould No.</td> <td></td> <td></td> <td>P85</td> <td>P85</td> <td>(</td> <td>C50</td> <td>C50</td> <td>)</td> <td>D10</td> <td></td> <td>D10</td>	Mould No.			P85	P85	(C50	C50)	D10		D10
Mass Mould g 7056.5 7056.5 6605.1 6756.3 6756.3 Mass of Soil g 3970 4129.2 4149.5 4309.2 4025.9 4200 Volume of Mould g 2124	Mass of soil + Mould		g	11026.5	11185.7	10	754.6	10914	4.3	10782.2		10956.3
Mass of Soil g 3970 4129.2 4149.5 4309.2 4025.9 4200 Volume of Mould g 2124 212	Mass Mould		g	7056.5	7056.5	66	505.1	6605	.1	6756.3		6756.3
Volume of Mould g 2124	Mass of Soil		g	3970	4129.2	41	149.5	4309	.2	4025.9		4200
Wet density of soil g/cc 1.869 1.944 1.954 2.029 1.895 1.977 Dry density of soil g/cc 1.638 1.630 1.570 1.535 1.496 1.479 Moisture Determination Moisture Determination Before soak After soak Before soak<	Volume of Mould		g	2124	2124	2	124	212	4	2124		2124
Dry density of soil g/cc 1.638 1.630 1.570 1.535 1.496 1.479 Moisture Determination MOISTURE CONTENT DATA 65 Blows 30 Blows 10 Blows G19 P65 A22 T4 R45 A50	Wet density of soil		g/cc	1.869	1.944	1	.954	2.02	9	1.895		1.977
Moisture Determination MOISTURE CONTENT DATA 65 Blows 30 Blows 10 Blows Before soak After soak Before soak After soak Before soak After soak Container no. G19 P65 A22 T4 R45 A50	Dry density of soil		g/cc	1.638	1.630	1	.570	1.53	5	1.496		1.479
MOISTURE CONTENT DATA 65 Blows 30 Blows 10 Blows Before soak After soak Before soak After soak Before soak After soak Container no. G19 P65 A22 T4 R45 A50				Moist	ure Determ	inati	on					
Refore soakAfter soakBefore soakAfter soakBefore soakAfter soakContainer no.G19P65A22T4R45A50	MOISTURE CONT	'ENT DA	та –	65 Bl	ows		30 Bl	ows		10	Blo	WS
Container no. G19 P65 A22 T4 R45 A50				Before soak	After soak	Befo	ore soak	After s	oak	Before soak		After soak
	Container no.			G19	P65	I	422	T4		R45		A50
Mass of wet soil + Container g 125.60 172.36 98.63 109.86 126.70 176.31	Mass of wet soil + Co	ntainer	g	125.60	172.36	9	8.63	109.8	36	126.70		176.31
Mass of dry soil + Container g 114.24 150.23 83.64 91.53 108.73 141.37	Mass of dry soil + Co	ntainer	g	114.24	150.23	8	3.64	91.5	3	108.73		141.37
Mass of container g 33.59 35.40 22.36 34.50 41.50 37.60	Mass of container		g	33.59	35.40	2	2.36	34.5	0	41.50		37.60
Mass of water g 11.36 22.13 14.99 18.33 17.97 34.94	Mass of water		g	11.36	22.13	1-	4.99	18.3	3	17.97		34.94
Mass of dry soil g 80.65 114.83 61.28 57.03 67.23 103.77	Mass of dry soil		g	80.65	114.83	6	1.28	57.0	3	67.23		103.77
Moisture content % 14.09 19.27 24.46 32.14 26.73 33.67	Moisture content		%	14.09	19.27	2	4.46	32.1	4	26.73		33.67
CBR Penetration Determination				CBR Pen	etration De	termi	ination					
Penetration after 96 hrs. Soaking Surcharge Weight:-4.55 KG Period Surcharge Weight:-4.55 KG	Penetration after 96 hr Period	s. Soaking	[Surc	harge We	eight:-4.	55 K(Ĵ		
65 Blows 30 Blows 10 Blows	65 Blov	vs			30 Blows					10 Blows	5	
Pen.mm Load, KN CBR % Pen.mm Load, KN CBR % Pen.mm Load, KN CBR %	Pen.mm Load, K	N C	BR %	Pen.mm	Load, KN	(CBR %	Pen.n	ım	Load, KN		CBR %
0.00 0.000 0.00 0.000 0.000 0.000	0.00 0.000)		0.00	0.000			0.0)	0.000		
0.64 0.427 0.64 0.384 0.64 0.306	0.64 0.427			0.64	0.384			0.64	1	0.306		
1.27 0.509 1.27 0.457 1.27 0.371	1.27 0.509			1.27	0.457			1.2	7	0.371		
1.91 0.557 1.91 0.489 1.91 0.406	1.91 0.557			1.91	0.489			1.9	1	0.406		
2.54 0.584 4.38 2.54 0.517 3.88 2.54 0.432 3.24	2.54 0.584	. 4	4.38	2.54	0.517		3.88	2.54	1	0.432		3.24
3.81 0.614 3.81 0.554 3.81 0.467	3.81 0.614			3.81	0.554			3.8	1	0.467		
5.08 0.634 3.17 5.08 0.591 2.96 5.08 0.487 2.44	5.08 0.634		3.17	5.08	0.591		2.96	5.0	3	0.487		2.44
7.62 0.654 7.62 0.637 7.62 0.516	7.62 0.654			7.62	0.637			7.6	2	0.516		
Modified Max.Dry Density g/cc1.590OMC %28.6	Modified Max.Dry	Density g/cc		1.5	90		OMO	С%		28.	.6	
Swell Determination				Sw	ell Determin	ation						
65		65			Swen Deter mination							
Blows 30 Blows 10 Blows		Blows			30 Bl	ows				10 Bl	ows	
Date Gauge Swell Course rdg Guite of Course rdg	Date	Gauge	Swell		ouco nda		a u	• • • /	C	ango nda	G	
mm in % mm Swell in % Gauge rdg Swell in %		rag mm	in %	6	mm		Swell	in %	G	mm	Sv	well in %
27/02/2013 Initial 4.10 3.14 4.05	27/02/2013 Initial	4 10			3.1/					1 05		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01/03/2013 Final	616	1.77		5.82		2.3	30		7.85		2.49

		Dry Density at	95% of M	IDD:	1.511	
No.of blows	MCBS %	DDBS g/cm3	Correcrt %	CBR	% OF Compaction	on
10	26.7	1.496	3.24		94	
30	24.5	1.570	3.89		99	
65	14.1	1.638	4.39		103	
	CBR % at 95 % MDD		3.4		Swell %	2.30

3.2) 1.5% BF

		65 B	lows	30 B	lows	10 B	lows
		Before soak	After soak	Before soak	After soak	Before soak	After soak
Mould No.		AS6	AS6	P7	P7	K64	K64
Mass of soil + Mould	g	11278.96	11249.67	11179.83	11226.49	10904.6	10984.36
Mass Mould	g	6923.5	6923.5	6887.9	6887.9	6897.2	6897.2
Mass of Soil	g	4355.46	4326.17	4291.93	4338.59	4007.4	4087.16
Volume of Mould	g	2124	2124	2124	2124	2124	2124
Wet density of soil	g/cc	2.051	2.037	2.021	2.043	1.887	1.924
Dry density of soil	g/cc	1.712	1.638	1.558	1.521	1.432	1.405
		Moist	ture Determ	ination			
MOISTUDE CONTENT D	Т	65 B	lows	30 B	lows	10 B	lows
MOISTORE CONTENT DA	AIA	Before soak	After soak	Before soak	After soak	Before soak	After soak
Container no.		A15	KI06	W56	C05	A154	AR36
Mass of wet soil + Container	g	159.73	167.43	186.61	128.93	172.39	187.96
Mass of dry soil + Container	g	139.62	140.83	152.60	105.95	141.28	147.68
Mass of container	g	38.05	31.49	37.96	38.94	43.20	38.76
Mass of water	g	20.11	26.60	34.01	22.98	31.11	40.28
Mass of dry soil	g	101.57	109.34	114.64	67.01	98.08	108.92
Moisture content	%	19.80	24.33	29.67	34.29	31.72	36.98

CBR Penetration Determination												
Penetration a Period	rs. Soakir	ıg			Surcharge Weight:-4.55 KG							
65 Blows 30						ws 10 Blows						
Pen.mm	Load,	KN (CBR %	Pen.mm	Load, F	KN CE	BR %	Pen.mm	Load, KN	CBR %		
0.00	0.00	0		0.00	0.000	C		0.00	0.000			
0.64	0.36	4		0.64	0.314	4		0.64	0.274			
1.27	0.44	8		1.27	0.398	8		1.27	0.346			
1.91	0.49	6		1.91	0.44	1		1.91	0.381			
2.54	0.53	.534 4.00		2.54	0.468	8 3	.51	2.54	0.405	3.04		
3.81	0.57	1		3.81	0.50	7		3.81	0.442			
5.08	0.59	3	2.97	5.08	0.538	8 2	.69	5.08	0.476	2.38		
7.62	0.63	0.635		7.62	0.563	3		7.62	0.518			
Modified Max.Dry Density g/cc 1.770						OMC %			15.2			
				Swe	ell Deteri	nination						
		65 Blows	1	30 Blows					10 Blows			
Date	Gauge rdg		Swell	G	auge rd	ge rdg		ell in %	Gauge rdg	Swell		
		mm	III 70		mm				mm	III 70		
27/02/2013	Initial	4.10	1 77		3.24		_	1 87	4.95	1.98		
01/03/2013	Final	6.16	1.77		5.42			1.07	7.25	1.90		
D	ry Dens	ity at 95°	% of MD	D:					1.682			
No.of blows		MCBS %		DDBS g/c	m3	Correcrt C	BR %	% OF Compaction				
10	10 31.7			1.432		3.04			81			
30	30 29.7		1.558		3.52			88				
65		19.8		1.712		4.02			97			
CBR % at 95 % MDD					3.9	.9 Swell % 1.87						

3.3) 2% BF

COMPACTION DATA				65 Blows			30 Blows			10 Blows		
				Before soak	After soak	Befe	ore soak	After	soak	Before soak	After soak	
Mould No.				A-50	A-50		KN	K	N	TP01	TP01	
Mass of soil	+ Moul	d	g	11097.3	11342.1	10	427.5	1076	53.2	10506.3	10847.3	
Mass Mould g		g	7012.6	7012.6	6	5535	65.	35	6785.6	6785.6		
Mass of Soil			g	4084.7	4329.5	- 38	3892.5		8.2	3720.7	4061.7	
Volume of M	lould		g	2124	2124	2	2124	212	24	2124	2124	
Wet density	of soil		g/cc	1.923	2.038	1	.833	1.9	91	1.752	1.912	
Dry density of	of soil		g/cc	1.644	1.584	1	.525	1.5	90	1.353	1.364	
Moisture Determination												
MOISTUR	F CON	FENT D	лтл –	65 BI	ows		30 Bl	ows	10 Blows			
WOISTOR	LCON		AIA	Before soak	After soak	er soak Before soak		After soak		Before soak	After soak	
Container no.				C4	A45]	D21	EP	12	50K	CD1	
Mass of wet	soil + Co	ontainer	g	187.60	108.90	12	28.76	151	.34	119.00	128.30	
Mass of dry	soil + Co	ontainer	g	165.30	89.32	1	10.23	129	.65	100.50	102.40	
Mass of cont	ainer		g	33.74	21.15	1	8.46	43.	56	37.81	38.00	
Mass of wate	er		g	22.30	19.58	1	8.53	21.	69	18.50	25.90	
Mass of dry soil g				131.56	68.17	9	91.77		09	62.69	64.40	
Moisture content %				16.95	28.72	2	20.19	25.	25.19 29.51		40.22	
	CBR Penetration Determination											
Penetration a Period	fter 96 h	rs Soakin	g			Surc	charge We	eight:-4	.55 K(3		
	65 Blo	ws		30 Blows 10 Blows								
Pen.mm	Load, l	KN (CBR %	Pen.mm	Load, KN	(CBR %		mm	Load, KN	CBR %	
0.00	0.00	0		0.00	0.000			0.0	00	0.000		
0.64	0.42	6		0.64	0.412			0.6	64	0.383		
1.27	0.53	4		1.27	0.527			1.27		0.451		
1.91	0.60	2		1.91	0.571			1.91		0.491		
2.54	0.63	7	4.78	2.54	0.597		4.48	2.4	54	0.518	3.88	
3.81	0.67	1		3.81	0.631	\square		3.81		0.551		
5.08	0.69	8	3.49	5.08	0.657		3.29	5.0)8	0.574	2.87	
7.62	0.72		1	7.62	0.694			7.6	52	0.596		
Modified N	lax.Dry	Density g/cc		1.69	0		OMO	2%		31.	.2	
				Sw	ell Determin	ation	1		•			
		65 Blows		30 Rlowe					10 Plows			
Date		Gauge rdg mm	Swell in %	Ga	Gauge rdg		Swell in %		% Gauge rdg mm		Swell in %	
27/02/2013	Initial	3.45	0.61		4.51		1.3	31		3.14	1.77	
01/03/2013	Final	4.16			6.03		1.0			5.20		
N 61 1			Density	v at 95% of N								
No.of blows MCBS %				DDBS g/cm	recrt (CILLER 70 % OF Compaction			action			

HIGHWAY ENGINEERING STREAM, JIT

Page 165

10	29.5	1.353		3.88	80
30	20.2	1.525		4.49	90
65	17.0	1.644		4.79	97
CBR % at 95 % MDD				Swell %	1.31

3.4) 2.5% BF

	65]	Blows	30 E	Blows	10 Blows						
COMPACTION DATA	Before soak	After soak	Before soak	After soak	Before soak	After soak					
Mould No.	XS-6	XS-6	YF-7	YF-7	FG-3	FG-3					
Mass of soil + Mould	g 11034.6	11136.4	10778.61	11013.6	10534.37	10705.4					
Mass Mould	g 6705.3	6705.3	6542.3	6542.3	6437.6	6437.6					
Mass of Soil	g 4329.3	4431.1	4236.31	4471.3	4096.77	4267.8					
Volume of Mould	g 2124	2124	2124	2124	2124	2124					
Wet density of soil g/c	c 2.038	2.086	1.994	2.105	1.929	2.009					
Dry density of soil g/c	c 1.583	1.593	1.497	1.520	1.432	1.500					
Moisture Determination											
	65]	Blows	30 E	Blows	10 Blows						
MOISTURE CONTENT DATA	Before soak	After soak	Before soak	After soak	Before soak	After soak					
Container no.	E-35	C-24	WX-4	E12	4AA	F22					
Mass of wet soil +											
Container	g 109.30	118.70	150.74	168.97	144.79	138.79					
Mass of dry soil +											
Container	g 88.70	99.65	121.43	132.55	117.48	113.50					
Mass of container	g 17.00	38.17	33.20	37.90	38.81	39.10					
Mass of water	g 20.60	19.05	29.31	36.42	27.31	25.29					
Mass of dry soil	g 71.70	61.48	88.23	94.65	78.67	74.40					
Moisture content	6 28.73	30.99	33.22	38.48	34.71	33.99					

HIGHWAY ENGINEERING STREAM, JIT

Page 166

CBR Penetration Determination													
Penetration a Period	ifter 96 h	rs. Soakir	ıg		Surcharge Weight:-4.55 KG								
	65 Blov	ws			30 Blows					10 Blows			
Pen.mm	Load, K	KN C	BR %	Pen.mm	Load	I, KN	CBR %	Pen.mr	n Load, K	N CBR %			
0.00	0.000)		0.00	0.0	000		0.00	0.000				
0.64	0.659)		0.64	0.6	534		0.64	0.586				
1.27	0.807	7		1.27	0.7	781		1.27	0.701				
1.91	0.865	5		1.91	0.8	343		1.91	0.756				
2.54	0.901	l	6.75	2.54	0.8	374	6.55	2.54	0.795	5.96			
3.81	0.946	5		3.81	3.81 0.911			3.81	0.831				
5.08	0.976	5	4.88	5.08	5.08 0.936		4.68	5.08	0.853	4.27			
7.62	7.62 1.020		7.62	0.9	974		7.62	0.884					
Modified M	lax.Dry	Density											
		g/cc		1.52	20		ON	20.2					
	1	1		1	F	E-35							
		65 DI				20 DI			10.1				
Data		Blows	Gereal	30 Blows					101	Blows			
Date		rdg lin		Gauge rdg			Swell in %		Gauge rdg	Swell in %			
		mm	%		mm			, ii iii 70	mm				
27/02/2013	Initial	4.21	0.02		5.3			1 1 4	3.08	1.50			
01/03/2013	Final	5.18	0.83		6.63		-	1.14	4.92	1.58			
	.		41 (DD						1 4 4 4				
Dry I	Density a	at 95% o	t MDD:						1.444				
No.of blows		MCBS %		DDBS g/cm3	C	orrecrt CBR	% % OF Compaction						
10		34.7		1.432		5.96	5.96		94				
30	30 33.2			1.497	6.57			98					
65		28.7		1.583		6.77			104				
CBR % at 95 % MDD					6.1	6.1 Swell % 1.14							

3.5) 3% BF

COMPACTION DATA				65 Blows			30 Blows			10 Blows			
com	memor	DITI		Before soak	After soak	Befe	ore soak	After s	soak Before soak		A	After soak	
Mould No.				L8	L8]	KL8	KL	8	D40	D	040	
Mass of soil	+ Mould	1	g	11012.6	11124.3	10	896.3	10976	5.4	10623		10904.3	
Mass Mould			g	6652.4	6652.4	6	742.3	6742	.3	6523.4		6523.4	
Mass of Soil			g	4360.2	4471.9	4	4154	4234	.1	4099.6		4380.9	
Volume of M	lould		g	2124	2124	2	2124	212	4	2124		2124	
Wet density	of soil		g/cc	2.053	2.105	1	.956	1.99	3	1.930		2.063	
Dry density	of soil		g/cc	1.654	1.632	1	1.543 1.50			1.451 1.505			
Moisture Determination													
MOISTUD	E CONT		A TT A	65	Blows		30 Blo	ows		10	Blow	/S	
MOISTURE CONTENT DATA			AIA	Before soak	After soak	Befe	ore soak	After soak		Before soak	A	After soak	
Container no.				85K	74K	(C41	F12	2	C90		AB30	
Mass of wet	soil + Co	ontainer	g	101.30	107.23	10	51.10	181.3	30	184.36		134.68	
Mass of dry soil + Container g				87.54	91.64	13	34.60	144.7	76	143.50		108.73	
Mass of container g				30.50	37.90	3	5.51	31.4	0	19.62		38.60	
Mass of wate	Mass of water g				15.59	2	6.50	36.5	4	40.86		25.95	
Mass of dry	of dry soil g		g	57.04	53.74	9	9.09	113.3	36	123.88		70.13	
Moisture cor	loisture content %		%	24.12	29.01	2	6.74	32.2	3	32.98		37.00	
CBR Penetration Determination													
Penetration a Period	fter 96 hr	rs. Soakin	ıg	Surcharge Weight:-4.55 KG									
65 Blows					10 Blows								
Pen.mm	Load, K	N (CBR %	Pen.mm	Load, KN	(CBR %	Pen.mm		Load, KN		CBR %	
0.00	0.000)		0.00	0.000			0.00		0.000			
0.64	0 387	7		0.64	0.315			0.64	1	0.312			
1.27	0.548	3		1.27	0.482			1.2	7	0.453			
1.91	0.653	3		1.91	0.567			1.91		0.528			
2.54	0.714	1	5.35	2.54	0.634		4.75	2.54	1	0.573		4.30	
3.81	0.791	[3.81	0.716			3.81		0.626			
5.08	0.846	5	4.23	5.08	0.786		3.93	5.08	3	0.671		3.36	
7.62	0.923	3		7.62	0.864			7.62		.62 0.749			
Modified M	lax.Drv	Density											
	·	g/cc		1.690			OMC %			31.	2		
				S	well Determin	ation							
		65											
		Blows		30 Blows			'S			10 Blows			
Date		Gauge	Swell		~ -				~	-			
		rdg	in %		Gauge rdg		Swell i	n %	G	auge rdg	Sw	ell in %	
05/00/2012	x x	mm	/0		mm					mm	_		
27/02/2013	Initial	4.01	1.66		3.25		1.8	6		3.08		2.71	
01/03/2013	Final	5.94			5.42		-10	1		6.23			
		T		I	Dry Density	at 959	95% of MDD:		1.606				
No.of blo	ows		MCBS %	6	DDBS g	/cm3	Correcrt CBR %		% OF Compaction			1	
10			33.0		1.451		4.30			86			
			26.7		1.543		4.77		91				
65			24.1		1.654		5.37			98			
CBR %	at 95 %]	MDD					5.1		S	well %		1.86	

3.6) 2% GSA

COMPACTION DATA			65 E	Blows	30 B	lows	10 Blows		
СОМ	PACTION DAT	ľA	Before soak	After soak	Before soak	After soak	Before soak	After soak	
Mould No.			T8	T8	N12	N12	T4	T4	
Mass of so	il + Mould	50	10795.2	10903.5	10766.9	10900.9	10681.3	10846.9	
Mass Moul	d	g	6960.6	6960.6	7033.6	7033.6	7020.8	7020.8	
Mass of Soi	il	g	3834.6	3942.9	3733.3	3867.3	3660.5	3826.1	
Volume of	Mould	g	2124	2124	2124	2124	2124	2124	
Wet density	v of soil	g/cc	1.805	1.856	1.758	1.821	1.723	1.801	
Dry density	of soil	g/cc	1.656	1.448	1.556	1.393	1.476	1.336	
			Mois	sture Determi	nation				
			65 E	Blows	30 B	lows	10 Blo	ows	
MOISTUI	RE CONTENT	DATA	Before soak	After soak	Before soak	After soak	Before soak	After soak	
Container n	10.		G-53	G19	A-3	A-13	10G	A-16	
Mass of we	t soil + Containe	er g	180.86	194.26	198.80	205.64	175.01	154.24	
Mass of dry	v soil + Containe	r g	169.41	159.82	181.23	169.81	154.21	118.94	
Mass of con	ntainer	g	42.39	37.54	45.46	53.2	30.26	17.6	
Mass of wa	ter	g	11.45	34.44	17.57	35.83	20.80	35.30	
Mass of dry	v soil	g	127.03	122.28	135.78	116.61	123.96	101.34	
Moisture co	ontent	%	9.01	28.16	12.94	30.73	16.78	34.83	
			CBR Per	netration Dete	ermination				
Penetration Period	after 96 hrs. Soa	king			Surcharge Weig	ght:-4.55 KG			
	65 Blows		30 Blows 10 Blows						
Pen.mm	Load, KN	CBR %	Pen.mm	Load, KN	CBR %	Pen.mm	Load, KN	CBR %	

0.00	0.000)		0.00	(0.000		0.0	0	0.00			
0.64	0.312	2		0.64	(0.220		0.6	4	0.162	,		
1.27	0.456	5		1.27	(0.324		1.2	7	0.254			
1.91	0.548	3		1.91	(0.402		1.9	1	0.317			
2.54	0.602	2	4.51	2.54	(0.463	3.47	2.5	4	0.366	2.74		
3.81	0.671	l		3.81	(0.559		3.8	1	0.442	,		
5.08	0.718	3	3.59	5.08	(0.622	3.11	5.0	8	2.55			
7.62	0.769)		7.62	(0.704	-	7.6	2	0.594			
Modified N	Aax.Dry	Density									N 0		
		g/cc		1.0	520		OM	C %	21.29				
	1			<u> </u>	well De	etermination	n						
		65 Blows				30 Blows				10 Bl	ows		
Date		Gauge rdg	Swell	G	lauge r	dg	Swell	in %	Gau	ıge rdg	Swell in %		
		mm	in %		mm				J	mm			
27/02/2013	Initial	5.56	1.50		7.32		1,	75		9.45	2.10		
01/03/2013	Final	7.41	1.39		9.36		1.	15	1	1.89	2.10		
Dr	D ''								11.89				
	y Densit	y at 95%	of MD	D:						1.539 % OF Compaction			
No.of blows	y Densit	<u>y at 95%</u> ACBS %	of MDI	D: DDBS g/cm3		Correcrt CBR	R %		% 0	1.539 DF Compact	ion		
No.of blows	y Densit	y at 95% ACBS % 16.8		D: DDBS g/cm3 1.476		Correcrt CBR 2.74	k %		% C	1.539 DF Compact 91	ion		
No.of blows 10 30		y at 95% ACBS % 16.8 12.9		D: DDBS g/cm3 1.476 1.556		Correcrt CBR 2.74 3.48	t %		% (1.539 DF Compact 91 96	ion		
No.of blows 10 30 65		y at 95% ACBS % <u>16.8</u> 12.9 9.0		D: DDBS g/cm3 1.476 1.556 1.656		Correcrt CBR 2.74 3.48 4.53	R %		% (1.539 DF Compact 91 96 102	ion		

3.8) 6% GSA

				65	Blows		30 Blows			10 Blows		
COMP	ACTIO	N DATA	• [_					After	
Mould No				Before soak	After soak	E	Before soak	After s	oak	Before soa	k soak	
Mass of soil	⊥ Moule	1	σ	10826	10981	6	10755.5	1086	, 71	10691.9	10835.9	
Mass Mould	- WIOUK	1	g g	6945.4	6945	1	6972.6	6972	7.1 2.6	69927	6992.7	
Mass of Soil			5	3880.6	40367)	3782.0	380/	5	3600.2	3843.2	
Waluma of M	fould		g	2124	2124	5	2124	2024	г.J Л	2124	2124	
Wet densites			g	1 927	1 000		1 701	1.02	4	1 742	1 200	
Wet density	OI SOIL		g/cc	1.827	1.900		1./81	1.83	94 94	1.742	1.809	
Dry density (DI SOII		g/cc	1.321	1.483		1.479	1.50	94	1.422	1.255	
				Mois	ture Deter	minati	ion					
MOISTUD	E CONT		ATA	65	Blows		30 B	lows		10	Blows	
MOISTUR	E CON I		AIA	Before soak	After soak	Р	Before soak	After s	oak	Before soa	After k soak	
Container no).			WE	G19		A-3	E-1	2	SX	20	
Mass of wet	soil +						-					
Container			g	194.96	164.78	3	158.60	174.	06	197.21	187.19	
Mass of dry	soil + Co	ntainer	g	171.21	135.88	3	137.21	139.	07	167.32	139.94	
Mass of cont	ainer		g	53.35	32.57		32.58	31.2	.9	34.31	38.31	
Mass of wate	er		g	23.75	28.90		21.39	34.9	9	29.89	47.25	
Mass of dry	soil		g	117.86	103.31	L	104.63	107.	78	133.01	101.63	
Moisture cor	ntent		%	20.15	27.97		20.44	32.4	6	22.47	46.49	
			-	CBR Per	etration I	Determi	ination				<u> </u>	
Penetration a	fter 96 h	rs. Soakiı	ıg			Sure	harge Weig	nt•-4 55	KG			
Period						Bure	inui se meisi	11. 4.00	no	10.22		
	65 Blov	vs			30 Blo	ws				10 Blows		
Pen.mm	Load, K	IN (CBR %	Pen.mm	Load,	KN	CBR %	Pen.n	nm	Load, KN	CBR %	
0.00	0.000)		0.00	0.00	0		0.0	0	0.00		
0.64	0.401			0.64	0.31	8		0.6	4	0.362		
1.27	0.584	+		1.27	0.52	4		1.2	1	0.512		
1.91	0.687	1	5 (5	1.91	0.64	8	5 42	1.9	1	0.608	5.05	
2.54	0.754	+	5.05	2.54	0.72	4	5.45	2.5	4	0.074	5.05	
5.81	0.838	5	1 17	5.81	0.81	2	4.21	5.8	0	0.739	2.02	
5.08	0.894	+	4.47	5.08	0.80	1	4.31	5.0	8 2	0.780	3.93	
7.02	0.904		<u> </u>	7.02	0.90	0		7.0	Z	0.801		
Modified M	lax.Dry	Density		1	510		OMO	0/		25 /	,	
		g/tt		1,	<u>510</u>	•	UNIC	70		23.	'	
		<		50	vell Determ	ination						
		65 Blowe			30	Blows				10 RL	NT/C	
Date		Course			50	DIUWS				IU DR	W5	
Date		rdg	Swell		Gauge rdg		Swell i	n %	Gai	uge rdg	Swell in %	
		mm	in %		mm		0 en 1	II /0		mm	Swen in 70	
27/02/2013	Initial	3.26			4.11					5.21		
01/03/2013	Final	4.38	0.96	 	5.46		1.10	6		6.66	1.25	
Drv D	ensity at	t 95% of	MDD:							1.435		
No.of blows		1CBS %	DI	DBS g/cm3	Corr	ecrt CBR	%		% OF Compaction			
10		22.5		1.422		5.05			94			
30		20.4		1.479		5.44			98			
65		20.2		1.521		5.67		101				
CBR % a	at 95 % N	1DD			5.1	Sv	well %			1.16		

3.9) 8% GSA

COM	COMPACTION DATA		65 BI	ows	30 BI	ows	10 Blows		
COM	PACTION DAT	A	Before soak	After soak	Before soak	After soak	Before soak	After soak	
Mould No.			T8	T8	N12	N12	T4	T4	
Mass of soi	il + Mould	g	10811.5	10917.4	10715.7	10839.3	10635.7	10780.4	
Mass Mould	1	g	6957.2	6957.2	6963.7	6963.7	6965.6	6965.6	
Mass of Soi	1	g	3854.3	3960.2	3752	3875.6	3670.1	3814.8	
Volume of M	Mould	g	2124	2124	2124	2124	2124	2124	
Wet density	of soil	g/cc	1.815	1.865	1.766	1.825	1.728	1.796	
Dry density	of soil	g/cc	1.473	1.422	1.384	1.361	1.290	1.315	
			Moist	ure Determ	ination				
MOISTUI	PE CONTENT I	лата	65 Bl	ows	30 BI	ows	10 Bl	ows	
			Before soak	After soak	Before soak	After soak	Before soak	After soak	
Container n	0.		W12	E11	G-67	P21	G19	A4	
Mass of wet	t soil + Container	g	188.25	157.21	218.92	181.06	217.51	167.83	
Mass of dry	soil + Container	g	159.87	128.23	178.97	143.26	171.29	132.98	
Mass of con	itainer	g	37.67	35.21	34.40	32.29	35.20	37.66	
Mass of wat	ter	g	28.38	28.98	39.95	37.80	46.22	34.85	
Mass of dry	soil	g	122.20	93.02	144.57	110.97	136.09	95.32	
Moisture co	ntent	%	23.22	31.15	27.63	34.06	33.96	36.56	
			CBR Pen	etration De	termination				
Penetration	after 96 hrs Soaki	ng Period			Surcharge W	eight:-4.55 K(3		
	65 Blows			30 Blows			10 Blows		
Pen.mm	Load, KN	CBR %	Pen.mm	Load, KN	CBR %	Pen.mm	Load, KN	CBR %	
0.00	0.000		0.00	0.000		0.00	0.00		

0.64	0.39	5		0.64	0.322		0.6	54	0.308		
1.27	0.60	3		1.27	0.501		1.2	27	0.436		
1.91	0.764	1		1.91	0.642		1.9	91	0.511		
2.54	0.87	3	6.54	2.54	0.745	5.58	2.5	54	0.573		4.30
3.81	0.999)		3.81	0.856		3.8	81	0.641		
5.08	1.074	4	5.37	5.08	0.921	4.61	5.0	08	0.698		3.49
7.62	1.174	1		7.62	1.043		7.6	52	0.794		
Modified N	Max.Dry	Density									
		g/cc		1.	490	OMC	%		31.	25	
					Swell Determinat	ion					
		65 Blows			30 Blows	5			10 B	lows	
Date		Gauge rdg	Swell		Gauge rdg	Swell in	n %	Ga	uge rdg	Sw	ell in %
		mm	in %		mm				mm		
27/02/2013	Initial	3.12	0.80		4.25	1.02	,		4.75		1 21
01/03/2013	Final	4.16	0.89		5.44	1.02	5		6.28		1.51
Dr	y Densit	y at 95%	of MDE):					1.41	6	
No.of bl	ows		MCBS %		DDBS g/cn	n3 Correct CBR %	rt 6		% OF Com	pactio	1
10			34.0		1.290	4.30			87		
30			27.6		1.384	5.60			93		
						2 - · ·		99			
65			23.2		1.473	6.56			99		

3.10) 10% GSA

	65 BI	ows	30 Bl	ows	10 Blows		
COMPACTION DATA	Before soak	After soak	Before soak	After soak	Before soak	After soak	
Mould No.	N10	N10	I65	I65	N2	N2	

Mass of soil	+ Mould	1	g	10803.5	10903	10	0727.4	1084	7.6	10667.4		10819.7
Mass Mould			g	6948.5	6948.5	6	975.3	697	5.3	6995.8		6995.8
Mass of Soil			g	3855	3954.5	3	752.1	387	2.3	3671.6		3823.9
Volume of M	lould		g	2124	2124	1	2124	212	24	2124		2124
Wet density	of soil		g/cc	1.815	1.862	1	1.767	1.82	23	1.729		1.800
Dry density	of soil		g/cc	1.463	1.446	1	1.378	1.3	91	1.316		1.325
				Mo	isture Detern	ninati	ion					
MOISTUR	F CONT	FNT	ПАТА	65	Blows		30 Blo	ows		10	Blow	'S
MOISTOR	ECONI			Before soal	k After soak	Bef	ore soak	After	soak	Before soal	K A	After soak
Container no).			G-53	G19		A-3	A-1	13	10G		A-16
Mass of wet	soil +											
Container			g	121.23	168.14	1	43.43	129.	.72	154.42		174.05
Mass of dry	soil + Co	ntainer	r g	101.10	138.98	1	15.76	103.	.12	124.87		137.25
Mass of cont	tainer		g	17.41	37.49	1	17.74	17.4	45	30.58		34.78
Mass of wate	er		g	20.13	29.16	2	27.67	26.	60	29.55		36.80
Mass of dry	soil		g	83.70	101.49	9	98.02	85.	67	94.30		102.47
Moisture cor	ntent		%	24.05	28.73	2	28.23	31.	05	31.33		35.91
				CBR Pe	enetration De	term	ination					
Penetration a	fter 96 hi	rs. Soak	king			a						
Period			8			Surc	charge Wei	ight:-4	.55 KG	Ĵ		
	65 Blov	WS			30 Blows					10 Blows	5	
Pen.mm	Load, K	(N	CBR %	Pen.mm	Load, KN		CBR %	Pen.	mm	Load, KI	N	CBR %
0.00	0.000)		0.00	0.000			0.0	00	0.00		
0.64	0.376	5		0.64	0.414			0.0	64	0.321		
1.27	0.548	3		1.27	0.546			1.2	27	0.482		
1.91	0.664	l I		1.91	0.618			1.9	91	0.561		
2.54	0.736	5	5.52	2.54	0.671		5.03	2.:	54	0.613		4.60
3.81	0.813	3		3.81	0.730			3.	81	0.664		
5.08	0.857	7	4.29	5.08	0.771		3.86	5.0	08	0.701		3.51
7.62	0.901			7.62	0.843			7.	62	0.764		
Modified M	lax.Dry	Densit	y				0140	A (• •		
		g/c	ec	1	.470		OMC	%		26.	54	
					Swell Determir	nation	1					
		65 Dlarr	~		20 DL					10 D		
Date		Cour	s		50 DI(JWS				10 D	lows	
Date		rdg	Swell		Gauge rdg		Swell ir	۱%	Ga	uge rdg	Sw	ell in %
		mm	in %		mm		Swenn	1 /0		mm	5.	ch m 70
27/02/2013	Initial	5.01			7.46					8.12		• • • •
01/03/2013	Final	6.74	. 1.49		9.56		1.80			10.54		2.08
Drv	Density a	at 95%	of MDD:							1.39	7	
No.of blo	ows		MCBS %		DDBS g	g/cm3	Correct	t		% OF Com	pactio	n
10			31.3		1.316		4.60	-	90			
30			28.2	İ	1.378		5.05			94		
65			24.1		1.463		5.53	_		100		
CBR %	6 at 95 %	MDD					5.2		S	well %		1.80

3.11) 10% CA

COMPACTION DATA			65 BI	ows	30 Bl	ows	10 Blows		
COM	FACTION DA	IA	Before soak	After soak	Before soak	After soak	Before soak	After soak	
Mould No.			P7	P7	MN8	MN8	A-50	A-50	
Mass of soil	l + Mould	g	10921.6	11124.3	10857.6	11053.7	10739.7	10990.4	
Mass Moule	1	g	6887.9	6887.9	7041.2	7041.2	7012.6	7012.6	
Mass of Soi	1	g	4033.7	4236.4	3816.4	4012.5	3727.1	3977.8	
Volume of I	Mould	g	2124	2124	2124	2124	2124	2124	
Wet density	of soil	g/cc	1.899	1.995	1.797	1.889	1.755	1.873	
Dry density	of soil	g/cc	1.561	1.586	1.402	1.440	1.310	1.364	
			Moist	ure Determ	ination				
MOISTU	DE CONTENT		65 BI	ows	30 BI	ows	10 BI	ows	
MOISTUI	LE CONTENT	DATA	Before soak	After soak	Before soak	After soak	Before soak	After soak	
Container n	0.		A154	C90	D21	P65	C4	G40	
Mass of we	t soil + Contain	er g	189.37	132.49	175.26	180.49	151.29	153.68	
Mass of dry	soil + Containe	er g	163.34	109.36	144.25	146.58	121.48	119.50	
Mass of cor	tainer	g	43.20	19.62	34.20	37.81	33.74	27.81	
Mass of war	ter	g	26.03	23.13	31.01	33.91	29.81	34.18	
Mass of dry	soil	g	120.14	89.74	110.05	108.77	87.74	91.69	
Moisture co	ntent	%	21.67	25.77	28.18	31.18	33.98	37.28	
			CBR Pene	etration Det	ermination				
Penetration Period	after 96 hrs Soa	king			Surcharge We	eight:-4.55 K(7		
	65 Blows			30 Blows			10 Blows		
Pen.mm	Load, KN	CBR %	Pen.mm	Load, KN	CBR %	Pen.mm	Load, KN	CBR %	
0.00	0.000		0.00	0.000		0.00	0.000		
0.64	0.337		0.64	0.351		0.64	0.357		
1.27 0.441			1.27	0.452		1.27	0.448		
1.91	1.91 0.505		1.91	0.503		1.91	0.498		

HIGHWAY ENGINEERING STREAM, JIT

Page 175

1					1					1	
2.54	0.55	1	4.13	2.54	0.538	4.03	2.5	4	0.531		3.98
3.81	0.609	9		3.81	0.584		3.8	1	0.578		
5.08	0.65	1	3.26	5.08	0.615	3.08	5.0	8	0.608		3.04
7.62	0.703	3		7.62	0.648		7.6	2	0.652		
Modified N	/lax.Dry	Density									
	·	g/cc		1.61	0	OMO	C %		22.	1	
				Swe	ell Determinatio	n					
		65									
		Blows			30 Blows				10 Bl	ows	
Date		Gauge	Swell		_						
		rdg	in %	Ga	uge rdg	Swell	in %	G	auge rdg	Sw	ell in %
		mm	III 70		mm				mm		
27/02/2013	Initial	1.25	1.92		1.48	1.0	2		1.86		2.00
01/03/2013	Final	3.38	1.05		3.71	1.5	2		4.19		2.00
Dry	Density	at 95% o	of MDD:						1.530		
No.of bl	ows	1	MCBS %		DDBS g/cm3	Gerrect	rt 6		% OF Comp	action	l
10			34.0		1.310	3.98			81		
30			28.2		1.402	4.05			87		
65			21.7		1.561	4.14		97			
CBR	% at 95 9	% MDD				4.1		Swell % 1.			1.92

3.12) 20% CA

	65 I	Blows	30 B	lows	10 Blows		
COMPACTION DATA	Before soak	After soak	Before soak	After soak	Before soak	After soak	
Mould No.	XS-6	XS-6	P7	P7	D40	D40	
Mass of soil + Mould g	11226.5	11478.6	11210.9	11425.7	11198.7	11389.7	
Mass Mould g	6705.3	6705.3	6887.9	6887.9	6523.4	6523.4	

Mass of Soil				σ	4521.2	477	33	43	23	4537.8	4675 3		4866 3	
Volume of N	Aould			<u>σ</u>	2124	21	74	21	23 74	2124	2124		2124	
Wet density	of soil			g/cc	2.129	2.2	47	2.0	35	2.136	2.201		2.291	
Dry density	of soil			g/cc	1 598	1.6	43	1.0	60	1 502	1 343		1 370	
Dry density	01 5011			5,00	 	sture D	etermi	nation	00	1.502	1.5 15		1.570	
					(5)				20 D		10	DL		
MOISTUR	E CON	TENT	DA'	TA –	051	blows		D 4	30 B	lows	10	, ыо	ows	
Container no					G40	After so	ак 15	A D	26 soak	CO5	E 35	K	WY A	
Mass of wet	$\frac{1}{1}$				040	K-	Ð	AN	.30	005	E-55		WΛ-4	
Containor	5011 +			a	144.25	174	25	150	61	167.83	113 25		130.20	
Mass of dry	$coil \perp C$	ontoin	or	g	115 24	1/4	.23 53	135	.01	120.58	75 73		06.63	
Mass of dry	$\frac{5011 + C}{1}$	omanie		g	113.24	130	.55	123	.45	129.38	15.75		90.03	
Mass of con	tainer			g	27.81	41.	50	38.	/0	58.94	17.00	-+	33.20	
Mass of wate	er '1			g	29.01	35.	12	34.	10	38.25	57.52		42.66	
Mass of dry	SO11			g	87.43	97.	03	86.	69	90.64	58.73		63.43	
Moisture con	ntent			%	33.18	36.	81	39.	40	42.20	63.89		67.26	
					CBR Pe	netratio	on Dete	ermina	tion					
Penetration a	after 96 l	nrs. Soa	aking				S	Surcha	rge Wei	ght:-4.55 K(Ĵ			
reriou	65 Blo	ws				30 1	Blows				10 Blows	s		
Pen mm	Load	KN	CF	RR %	Pen mm	Loa	d KN	CI	RR %	Pen mm	Load K	N	CBR %	
0.00	0.00		CI.	JK 70	0.00	0	000		JIX 70	0.00	0.000		CDR /0	
0.60	0.00	6			0.60	0.	367			0.60	0.000			
1.27	0.20	8			1.27	0.	513			1.27	0.570			
1.27	0.47	3			1.27	0.	508			1.27	0.504			
2.54	0.01	7	5	22	2.54	0.	590 667	1	06	2.54	0.570		4 71	
2.34	0.05	0	5	.22	2.54	0.	749		.90	2.34	0.028		4.71	
5.09	0.70	7	4	24	5.01	0.	<u>/40</u> 901	- 1	01	5.09	0.098		2 72	
3.08 7.62	0.04	- /	4		7.62	0.	801	4	.01	7.62	0.740		5.75	
7.02 Modified N	0.93	y Dong	ity		7.02	0.	007			7.02	0.834			
Mounteu r		g Dens	/cc		1	.544			0	MC %	,	24.6		
		0			S	well Def	ermina	tion						
		65			~									
		Blov	ws				30 Ble	ows			10	Blov	WS	
Date		Gau	ige	Greell									Secoll in	
		rd	g	Swell		Gauge	rdg		Sw	ell in %	Gauge rd	g		
		mr	n	III 70		mm					mm		/0	
27/02/2013	Initial	0.0	00	1.00		0.00				1 71	0.00		0.07	
01/03/2013	Final	1.1	6	1.00		1.99				1./1	2.39		2.05	
Dry	Density	at 95%	6 of	MDD:							1.467			
No.of blows		MCBS	%	I	DDBS g/cm3	Corr	ecrt CBR	R %		% OF Compaction				
10		63.9)		1.343		4.71		87					
30		39.4	ļ		1.460		4.98		95					
65		33.2	2		1.598		5.24			1	104			
CBR %	at 95 %	MDD				5.0	S	Swell %	•		1.71			

3.13) 30% CA

COM	COMPACTION DATA		65 B	lows	30 BI	ows	10 Blows		
COM	FACTION DA	IA	Before soak	After soak	Before soak	After soak	Before soak	After soak	
Mould No.			N5	N5	N12	N12	N10	N10	
Mass of soi	l + Mould	g	10943.59	11228.39	10789.61	10976.41	10417.98	10708.51	
Mass Mould	l	g	6931.5	6931.5	7006.1	7006.1	6950.1	6950.1	
Mass of Soi	1	g	4012.09	4296.89	3783.51	3970.31	3467.88	3758.41	
Volume of M	Mould	g	2124	2124	2124	2124	2124	2124	
Wet density	of soil	g/cc	1.889	2.023	1.781	1.869	1.633	1.769	
Dry density	of soil	g/cc	1.574	1.650	1.378	1.422	1.238	1.303	
			Moist	ure Determ	ination				
MOISTUR	PE CONTENT	ПАТА	65 B	lows	30 BI	ows	10 BI	ows	
		DATA	Before soak	After soak	Before soak	After soak	Before soak	After soak	
Container no	Э.		K-20	C-54	AB	В	G4	P22	
Mass of wet	soil + Containe	er g	153.74	168.91	149.83	187.96	163.83	146.88	
Mass of dry	soil + Containe	r g	133.26	143.68	122.94	151.26	131.53	116.35	
Mass of con	tainer	g	31.02	32.15	31.05	34.50	30.15	31.07	
Mass of wat	er	g	20.48	25.23	26.89	36.70	32.30	30.53	
Mass of dry	soil	g	102.24	111.53	91.89	116.76	101.38	85.28	
Moisture co	ntent	%	20.03	22.62	29.26	31.43	31.86	35.80	
			CBR Pen	etration Det	termination				
Penetration after 96 hrs. Soaking Period Surcharge Weight:-4.55 KG									
	65 Blows			30 Blows			10 Blows		
Pen.mm	Load, KN	CBR %	Pen.mm	Load, KN	CBR %	Pen.mm	Load, KN	CBR %	
0.00	0.000		0.00	0.000		0.00	0.000		

	0.64	0.471			0.64	0.573		0.6	4	0.549			
	1.27	0.70	1		1.27	0.743		1.2	7	0.714			
	1.91	0.814	4		1.91	91 0.824		1.91		0.799			
3.81 0.974 3.81 0.928 3.81 0.908 4.79 5.08 1.041 5.21 5.08 0.968 4.84 5.08 0.957 4.79 7.62 1.154 7.62 1.046 7.62 1.029 Modified Max.ry Density y/C V 7.62 1.046 7.62 1.029 Modified Max.ry Density y/C V Y 1.046 7.62 1.029 Modified Max.ry Density y/C V Y 1.046 No.07 1.029 1.029 Mode Swell mode Structure mode Rege rdg Swell mode Swell mode Swell mode Swell mode Swell mode Swell mode Structure mode Swell mode 27/02/2013 Initial 2.93 0.48 Swell mode Swell mod	2.54	0.88′	7	6.65	2.54	2.54 0.867		2.54		0.853		6.39	
5.08 1.041 5.21 5.08 0.968 4.84 5.08 0.957 4.79 7.62 1.154 7.62 1.046 7.62 1.029 4.79 Modified Max.Dry bensity g/cc vice 7.62 1.046 7.62 1.029 1.029 1.029 Modified Max.Dry bensity g/cc vice 1.49 0.06 0.067 0.957 0.957 1.029 Modified Max.Dry bensity g/cc event g/cc 1.49 0.40 0.06 0.07 0.957 1.029 1.029 Modified Max.Dry bensity g/cc Swell 0.07 0.07 0.07 0.07 0.07 0.07 Mote Swell 0.968 Swell 0.967 0.967 0.97 0.97 Mote 0.48 0.48 0.48 0.48 0.48 0.48 0.49 0.97 27/02/2013 Initial 2.99 0.48 0.48 0.08 0.97 3.11 0.82 10/03/2013 Final 2.93 0.48 0.08 0.97 83 3.11 0.82 0.97	3.81	0.974	4		3.81	3.81 0.928		3.81		0.908			
7.621.1547.621.0467.621.029Image: constraint of the sector of the secto	5.08	1.04	1	5.21	5.08	0.968	4.84	5.08		0.957		4.79	
Modified Max.Dry Density g/cI.491OMC \checkmark 25.9Bold \cdot 5Swell DeterminationBold \cdot 5Swell DeterminationDate 65 BlowsSwell nm 30 Blows 10 Blows 010 $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $27/02/2013$ Initial 2.39 2.95 0.48 $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $27/02/2013$ Initial 2.39 2.95 0.48 $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $27/02/2013$ Initial 2.39 2.95 0.48 $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $27/02/2013$ Initial 2.39 2.95 0.48 $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $27/02/2013$ Initial 2.39 2.95 0.48 $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $27/02/2013$ Initial 2.95 0.48 $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $1/03/2013$ Final 2.95 $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $100/2013$ Initial $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $100/2013$ Initial $\overline{0}$ 1	7.62	1.154	4		7.62	1.046		7.6		2 1.029			
	Modified N	/lax.Dry	Density g/cc		1.491			OMC %		25.9			
Date65 Blows30 Blows10 BlowsGauge rdg rdg 					Sw	ell Determination	on						
Date rdg rdgSwell rdgSwell rdgSwell rdgSwell in %Gauge rdg mmSwell in %Gauge rdg mmSwell in %27/02/2013Initial2.39 2.93 $$			65 Blows			30 Blows				10 Blows			
mm mm mm mm mm mm mm mm 27/02/2013 Initial 2.39 0.48 2.84 0.74 3.11 0.82 01/03/2013 Final 2.95 0.48 3.74 0.77 4.06 0.82 Dry Density at 95% of MDD: 1.416 No.of blows NCBS % DDBS g/cm3 Correctt CBR % 6.39 83 10 31.9 1.238 6.39 83 - 92 - - 30 29.3 1.378 6.52 92 -	Date		Gauge rdg	Swell	G	Swell	Swell in %		Gauge rdg S		Swell in %		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			mm	III 70	mm				mm				
01/03/2013 Final 2.95 0.40 3.74 0.77 Dry Density at 95 % MDD: 1.416 No.of blows MCBS % DDBS g/cm3 Correct CBR % % OF Compaction 10 31.9 1.238 6.39 83 30 29.3 1.378 6.52 92 65 20.0 1.574 6.67 106 CBR % at 95 % MDD 6.5 Swell % 0.77	27/02/2013	Initial	2.39	0.48	2.84		0.7	7		3.11	0.82		
Dry Density at 95% of MDD: 1.416 No.of blows MCBS % DDBS g/cm3 Correct CBR % % OF Compaction 10 31.9 1.238 6.39 83 30 29.3 1.378 6.52 92 65 20.0 1.574 6.67 106 CBR % at 95 % MDD 6.5 Swell % 0.77	01/03/2013	Final	2.95	0.40		3.74	0.7	0.77		4.06	0.02		
No.of blows MCBS % DDBS g/cm3 Correct CBR % % OF Compaction 10 31.9 1.238 6.39 83 30 29.3 1.378 6.52 92 65 20.0 1.574 6.67 106 CBR % at 95 % MDD 6.5 Swell % 0.77]	Dry Density at 9	95% of MD	D:		1.416			
10 31.9 1.238 6.39 83 30 29.3 1.378 6.52 92 65 20.0 1.574 6.67 106 CBR % at 95 % MDD 6.5 Swell % 0.77	No.of bl	No.of blows				DDBS g/cm.	Gerreer	Correcrt CBR %		% OF Compaction			
30 29.3 1.378 6.52 92 65 20.0 1.574 6.67 106 CBR % at 95 % MDD 6.5 Swell % 0.77	10			31.9		1.238	6.39	6.39		83			
65 20.0 1.574 6.67 106 CBR % at 95 % MDD 6.5 Swell % 0.77	30			29.3		1.378		6.52		92			
CBR % at 95 % MDD 6.5 Swell % 0.77	65 20			20.0		6.67	6.67		106				
	CBR % at 95 % MDD								Swell % 0.'			0 ==	

3.14) 40% CA

COMP	ГА	65 Blows				30 Blows			10 Blows				
				Before soal	ık	After soak	Before soak A		After	soak	soak Before soak		ter soak
Mould No.		K64		K64	1	N2	<u>N</u>	N2 N7			N7		
Mass of soil	g	11028.7	'	11279.6	109	964.8	111	75.8	10844.3	1	1084.4		
Mass Mould			g	6897.2		6897.2	69	35.6	693	5.6	6965.7	6	965.7
Mass of Soil			g	4131.5		4382.4	40	29.2	424	0.2	3878.6	4	118.7
Volume of N	/lould		g	2124		2124	2	124	21	24	2124		2124
Wet density	of soil		g/cc	1.945		2.063	1.897		1.9	96	1.826		1.939
Dry density	of soil		g/cc	1.593		1.652	1.	479	1.5	526	1.377		1.436
			г	Mo	oistu	re Determ	inatio	ation					
MOISTURE CONTENT DATA			DATA	65 Blows		ows	30 Blows				10 Blows		
				Before soal	k	After soak	Before soak		After	soak	Before soak	Af	ter soak
Container no).			P65		49K	G	3T3	ŀ	4	U10		C86
Mass of wet	soil + Cc	ontaine	er g	143.29		176.89	14	7.83	184	.35	167.83	1	51.39
Mass of dry	soil + Co	ntaine	r g	123.74		148.73	12	3.56	149	0.63	133.74	1	21.71
Mass of cont	tainer		g	35.40		35.53	37	7.70	37	.03	29.16	1	36.90
Mass of wate	er		g	19.55		28.16	24	4.27	34	.72	34.09		29.68
Mass of dry	soil		g	88.34		113.20	85	5.86	112	2.60	104.58	8	84.81
Moisture cor	ntent		%	22.13		24.88	28	3.27	30	.83	32.60		35.00
				CBR P	enet	tration Det	ermi	nation					
Penetration a Period	king	Surcharge Weight:-4.55 KG											
	65 Blov	WS		30 Blows				10 Blows					
Pen.mm	Load, F	Load, KN CBR %		Pen.mm	1	Load, KN	CBR %		Pen	.mm	Load, KN	(CBR %
0.00	0.000)		0.00		0.000			0.	00	0.000		
0.64	0.649)		0.64		0.617			0.	64	0.612		
1.27	0.851	1		1.27		0.823			1.	27	0.826		
1.91	0.964	1		1.91		0.938			1.	91	0.927		
2.54	1.029)	7.71	2.54		1.008		7.56	2.	54	0.994		7.45
3.81	1.124	1		3.81		1.113			3.	81	1.085		
5.08	1.203	3	6.02	5.08		1.173		5.87	5.	08	1.146		5.73
7.62	1.309)		7.62		1.264			7.	62	1.241		
Modified N	lax.Dry	Densit	ty										
		g/o	cc		1.47	74		OMC %			29.8		
				-	Swel	ll Determin	ation						
		65 DI				20 D					10 DI		
Data	Blow		/S		30 Blows			8			10 Blows		
Date		Gaug rdo	ge Swell		Ga	auge rdg		Swell in		% Gauge rdg		S	well in
		mm	in %			mm			, II III ,	~U	mm		%
27/02/2013	Initial	1.39)			1.79					1.96		
01/03/2013	Final	2.21	0.70	3.04		3.04		1.07		4.19		1.92	
Dry Density	DD:								1.400				
No.of blows MCBS			MCBS %	0	DDBS g		g/cm3	m3 Correcrt CBR %			% OF Compaction		
10			32.6		1.377			7.45			93		
30			28.3			1.479		7.58		100			
65			22.1			1.593		7.74		108			
		CBI	R % at 95 °	% MDD				7.5			Swell %		1.07
L													

3.15) 50% CA

COMPACTION DATA			65 BI	lows	30 Bl	ows	10 Blows			
COM				After soak	Before soak	After soak	Before soak	After soak		
Mould No.			T4	T4	KL8	KL8	AS6	AS6		
Mass of so	il + Mould	g	10946.8	11236.4	10904.6	11214.2	10874.9	11173.5		
Mass Moule	đ	g	6950	6950	6742.3	6742.3	6923.5	6923.5		
Mass of Soi	1	g	3996.8	4286.4	4162.3	4471.9	3951.4	4250		
Volume of	Mould	g	2124	2124	2124	2124	2124	2124		
Wet density	v of soil	g/cc	1.882	2.018	1.960	2.105	1.860	2.001		
Dry density	of soil	g/cc	1.586	1.641	1.416	1.501	1.313 1.377			
			Moist	ure Determ	ination					
MOISTIU	DE CONTENT		65 BI	lows	30 Bl	ows	10 Bl	0 Blows		
MOISTURE CONTENT DATA			Before soak	After soak	Before soak	After soak	Before soak	After soak		
Container n	0.		43-K	A22	CD1	C4	85K	KI06		
Mass of wet soil + Container g			151.21	142.93	183.69	168.53	156.38	171.26		
Mass of dry soil + Container g			132.58	120.41	143.26	129.85	119.34	127.71		
Mass of container g		g	32.84	22.36	38.00	33.74	30.50	31.49		
Mass of water g		g	18.63	22.52	40.43	38.68	37.04	43.55		
Mass of dry	y soil	g	99.74	98.05	105.26	96.11	88.84	96.22		
Moisture content %		%	18.68	22.97	38.41	40.25	41.69	45.26		
			CBR Pene	etration Det	ermination					
Penetration Period	after 96 hrs. Soa	aking	Surcharge Weight:-4.55 KG							
	65 Blows			30 Blows		10 Blows				
Pen.mm	Load, KN	CBR %	Pen.mm	Load, KN	CBR %	Pen.mm	Load, KN	CBR %		
0.00	0.000		0.00	0.000		0.00	0.000			
0.64	0.574		0.64	0.542		0.64	0.429			
1.27	0.781		1.27	0.711		1.27	0.618			
1.91	0.894		1.91	0.798		1.91	0.715			

HIGHWAY ENGINEERING STREAM, JIT

Page 181

2 54 0 943		7.07	2.54	0.853	6 39	2.5	4	0 788		5 91	
3.81	1.09	7	,	3.81	0.924	0.57	3.81		0.887		5.71
5.01	1.02	, 1	5.02	5.08	0.994		5.09		0.057		1 70
7.60	1.10	1.104 5.92		7.62	7.62 1.080		7.00		1.022		4.79
7.02 Modified N	1.50	/ Donaity		7.02	1.089		7.0	2	1.022		
Mouilleu N	lax.Dry	pensity g/cc		1.44	омс	OMC %		27.4			
				Sw	ell Determination	on	/0			••	
65									10 Diama		
Date		Gauge	Swell		30 Blows			G	TU BIOWS		
		rdg in %		Ga	Swell i	Swell in %		<u>sauge rug</u> Swell in ^o		ell in %	
27/02/2013	Initial	0.00					1 72				
01/03/2013	Final	2.35	1.17		2.99	1.4	1.49		4.01	1.97	
Dry	⁷ Density	at 95%	of MDD	:					1.36	8	
No.of blows MCBS %				DDBS g/cm3		3 Correc CBR 9	recrt R %		% OF Compaction		
10			41.7		1.313	5.91		91			
30		38.4		1.416	6.41		98				
65 18				1.586		7.09	7.09		110		
CBR % at 95 % MDD								Swell % 1.4			1.49

