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Abstract

Cooperative communication is one of the promising approaches for achieving high
data rates and efficient bandwidth utilization, but introducing relay nodes in the ar-
chitecture brings a challenge in physical layer security. Scholars propose different
approaches like a secure beamforming model and a combination of beamforming
and jamming using artificial noise to overcome this challenge. The channel state
information (CSI) of the eavesdropper and the legitimate user is necessary for the se-
crecy of the transmission, but in reality, the eavesdropper is always passive, and the
channel state information is difficult to obtain, and the channel state information of
the legitimate user is outdated. This thesis proposes a secure multiple input multiple
output (MIMO) communication system to overcome security threats during cooper-
ation with the relay node. A zero-forcing algorithm is used to secure leakage to the
eavesdropping relay node by transmitting on null space using the beamforming tech-
nique. The deep convolutional neural network (DCNN) is trained with the imperfect
version channel state information to produce the perfect channel state information
then the input bit is recovered using a maximum likelihood detector. The Simulation
was done for different performance factor parameters like imperfect correlation fac-
tor, doppler frequency, and the number of antennas to show the BER performance
of the system. The results show that the deep convolutional neural network detector
has a gain performance about 2dB in higher correlation factor and about 10.5dB in
lowest imperfect correlation factor than the standard maximum likelihood detector.

Keywords: Deep learning, Deep CNN, Cooperative relay, AF protocol, DF protocol,
MIMO communication, imperfect CSI, channel estimation, physical layer security .
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Chapter 1. Introduction

1.1 Introduction

With globalization, present-day wireless networks are facing high traffic demands.
Different improvement techniques, such as optimizing, changing the architecture, or
combining different networks, are used to meet those needs. Cooperative commu-
nication is one of the promising approaches for achieving high data rates as well as
efficient utilization of the bandwidth. Cooperative communication uses a relay node
(RN), to provide coverage in the holes within the Long-Term Evolution-Advanced
(LTE-A) cellular networks [1]. Similarly, relaying techniques are used in 5G mm-
wave communication to overcome various challenges such as link blockage, back-
haul connectivity, and path loss [2]. But this combination of the network architecture
brings a challenge in physical layer security [3]. In a cooperative network, security
constraints and measurement must be taken into account for reliable and efficient
end-to-end communication. In some scenarios, the eavesdropping link node may
have a good channel quality for attracting in the selection process of the RN and
aims to acquire the information during the communication process [4]. There are
different techniques which overcome the different security problems in the network.
One is directly facing the eavesdropper characteristics to achieve the higher secrecy
capacity by artificial noise during the transmission of data to confuse the eavesdrop-
per elements in the network [5] or by combining the optimal relay selection method
with artificial noise increase secrecy capacity [6] and also by selecting the best re-
lay, based on full and statistical eavesdropping CSI to derive closed-form secrecy
outage probability (SOP) [7]. One of the key points for secure cooperative commu-
nication is the CSI between the relay and the legitimate user. To acquire the CSI
most the time it uses pilot-base estimation method like maximum likelihood, least
square and minimum mean square error but the performance of the algorithms de-
grades due to imperfection factors. The performance degradation can be optimized
with the aid of mathematical models and expert knowledge, which heavily relies on
the channel model and estimation theory. But this mathematical model cannot cope
with an excessively complex scenario.Especially when the channel state information
is dynamically changing over time. Currently deep learning-based detectors shows a
greater performance in communication field [8]. Motivated by that we proposed deep
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learning-based detector for MIMO cooperative relay network with imperfect CSI.

1.2 Statement of the problem

Cooperative communication uses a relay node which is used to overcome different
challenges of link blockage, backhaul connectivity, and path loss, etc. In some sce-
narios when the legitimate relay transmits a secure message to the receiver user, the
eavesdropper relay node and eavesdropper user may intercept the message. Various
researchers optimize the security rate by addressing the eavesdropper effect and/or
optimizing channel estimation algorithms. maximum likelihood detector has greater
performance than other with perfect CSI but the CSI obtained by the receiver is im-
perfect due to the time difference between channel estimation and data transmission.
The performance of maximum likelihood detector will degrade due to imperfection
factors.research shows, if the channel estimation is supported with deep learning
the performance can be enhanced.So We are Motivated to study the performance of
DCNN type detector for MIMO cooperative relay communication.
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1.3 The objective of the research

1.3.1 General Objective

The objective of the study is to Secure MIMO Communications with imperfect CSI
for cooperative relay Networks using Deep Learning.

1.3.2 Specific Objective

The specific objectives of the study include:

• To develop a MIMO cooperative relay communication that avoids information
leakage to the eavesdropper node.

• To estimate the perfect CSI between the relay and the legitimate receiver using
deep convolutional neural network which increases the BER performance of
the receiver.

• To enhance the overall performance of cooperative relay communication

1.4 Methodology

In order to achieve the objectives described above, the following techniques has been
used. First of all, reviewed the previous works related to this work. This include
study of MIMO communication, cooperative relay communication, and application
of Deep learning in communication.
Secondly, asses starting from the reason for requiring of new channel estimation
method up to identifying the proposed candidate channel estimation method. Then
the candidate channel estimation method formats will be reviewed in order to under-
stand their operation principles and mathematical formulations.
The next step is the system development, which is common frame work for the com-
parison.

1.4.1 Developing system setup

A communication scenario will be setup in which the CSI is outdated at the receiver.
The mathematical model for calculating the received signal will be outlined which
helps to evaluate the BER performance and identify the input parameters for the
simulation.
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1.4.2 Developing and training proposed DCNN

Python simulation software is implemented to build model of deep learning estima-
tion method and conventional maximum likelihood estimator in order to study their
respective bit error rate for different performance factor parameters. The DCNN
model first trained using the imperfect version of CSI to produce perfect CSI for
different performance factor parameters.

1.4.3 Data preparation

The data set is a channel fading matrix between the sender, relay and the destination.
To acquire training and testing data, continuous-time channel responses are sampled,
adhering to the assumption of the selected communication scenario. The channel
fading matrix will be reshaped as a column vector to form a one-dimensional array
and the real and imaginary part of the channel fading matrix will be separated and
form RIRI in preprocessing of data set. The generated data set will be Split into
training, validating, and test sets to fed to the DCNN model. To generate the data a
python software with tensor-flow framework will be used.

1.4.4 Result analysis

By plotting BER graphs we can make a reasonable comparison between the both esti-
mator, which are useful in showing how the transmitted signal distorted by imperfect
CSI. Finally, perform result analysis and interpretation

1.5 Significance of the Study

This study will decrease the security threats between a legitimate user and relay node
which is occurred due to the open nature of the cooperative relay network. Because
this study considers imperfection of the channel, the performance degradation due to
imperfect CSI will be improved and will have a significant role to enhance the overall
performance of Wireless cooperative relay communication capacity.
The contribution of this thesis is

• It uses the application of deep learning specifically DCNN estimator to en-
hance the BER performance of both AF and DF cooperative relay network
with imperfect channel condition.this include preparation of data and training
of the DCNN network for both protocol.
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• The system considers the eavesdropper relay nodes security threat during the
communication between legitimated relay and receiver.

1.6 Scope and limitation of the study

This thesis focuses on imperfect channel estimation for a MIMO DF-based coopera-
tive relay network, which is accomplished by training the DCNN with an imperfect
channel fading matrix between the relay and the source and destination indepen-
dently, and then detecting the information symbol using a maximum likelihood de-
tector. The addition of DCNN will increase the computational complexity of the
system, but the performance degradation caused by the imperfect factor will be re-
duced.

1.7 Organization of the Thesis

This thesis work contains six chapters. The first chapter is the introduction part which
contains a motivational overview, statement of the problem, objective, methodology,
scope, and significance of the thesis. The second chapter discusses technical back-
groung which contain overview of MIMO communication, cooperative relay com-
munication and the application of deep neural networks .The third chapter is about
literature review. Chapter four deals with proposed system, it contains the system
model, DCNN architecture, and detection method. Chapter five is about simulation
results and discussions and the last chapter is conclusion and recommendation.
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Chapter 2. Technical background

2.1 Overview of MIMO Wireless communication sys-
tem

MIMO communication refers to a link for which the transmitting end as well as
the receiving end is equipped with multiple antenna elements. To transmit digital
information through wireless channel needs certain procedures.

2.1.1 Modulation technique

Transmitting digital information through channels needs modulation. Modulation is
the process of changing amplitude (amplitude shift keying (Ask)), frequency (fre-
quency shift keying (FSK)) or phase (phase-shift keying (PSK)), or combination of
them (quadrature amplitude modulation (QAM)) of the analog signal with respect to
the digital information bit or symbol. This modulation techniques use two orthog-
onal sinusoidal signals which makes the modulated signal complex signal. Using
these two orthogonal signals we can make a different constellation which is known
as M-array. where M indicates the constellation size. PSK is an angle-modulated,
constant-amplitude digital modulation technique.It is an M-array digital modulation
scheme with M=2,4,8 called binary phase-shift keying (BPSK), quadrature phase-
shift keying (QPSK), 8 phase-shift keying (8PSK), and so on respectively. In choos-
ing modulation scheme we need to know the tradeoff between the BER performance
and data rate performance. As the modulation order increases the data rate will be
increase but the the BER performance will decrease so, for this thesis, We employ
a QPSK modulation scheme in which the binary input data is divided into two-bit
groups known as di-bits. Each di-bit code generates one of the four possible output
phases (+45,+135,−45, and − 135) but the system can work for any modulation
scheme. [9]

2.1.2 Wireless Channel Model

MIMO systems are wireless transmission schemes that operate in the absence of
direct line of sight and rely on multi-path propagation [10].
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Multi-path propagation

Properties of multipath propagation include amplitude fade and phase variations,
time and power delay spread information, angle of entry and exit, Doppler shift
effect, and the amount of multipath components. The component of the received
signal through different paths due to environmental effects like reflection, diffrac-
tion, and scattering implies add constructively so that the received signal is large or
they add destructively, resulting in a very small or practically zero signal. Mathemat-
ically written as (2.1) where α is channel attenuation, λ is wave length and d is path
distance.

g =
L

∑
i=1

√
αie−j2 (di−d)

λ (2.1)

FIGURE 2.1: Non line of sight communication.

There are certain characteristics to consider while we model fading channels.

Slow and Fast Fading

The slow and fast fading scenario is related to the coherence time Tc, which measures
the period after which the correlation function of two samples of the channel response
taken at the same frequency but at different time instants falls below a predefined
value. The channel coherence time is also related to the channel Doppler spread fd
which occurs due to the relative speed of the elements in the communication system.

Tc = 1/ fd (2.2)

In slow fading, the symbol duration is significantly shorter than the channel coher-
ence time, implying that the channel remains constant over an entire symbol period.
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In fast fading the symbol duration is higher than the coherence time of the chan-
nel so, the communication will experience different channel fading coefficients. The
detection decisions in a fast-fading scenario are based on the received signal with dif-
ferent symbol times. As a matter of fact, proper correlation models must be used to
give an explanation for the fading channels’ variation. This is accomplished through
the use of a variety of correlation models, the majority of which are determined by
the propagation environment and the underlying communication scenario. Because
this thesis is concerned with the land mobile environment, the correlation coefficient
factor between adjust sample is modeled as (2.3)[11].

ρ = J0(2 fdTs) (2.3)

where fd is doppler frequency, Ts is symbol duration and Jo(.) is zero order Bessel
function

Frequency Flat and Frequency Selective Fading Channel

channels coherence bandwidth fc is defined as the frequency bandwidth over which
the correlation function of two samples of the channel response is taken at the same
time but different frequencies fall below a suitable value. The relationship between
the coherence bandwidth and the maximum delay spread τmax is given as:

fc = 1/τmax (2.4)

If the signal bandwidth is significantly smaller than the coherence bandwidth of
the channel fc, all the frequency components of the transmitted signals are passed
through the same channel. This is called flat fading. In other cases, If the signal
bandwidth exceeds the coherence bandwidth of the channel, the transmitted signal is
modified with different amplitude gains and phase shifts; this is known as frequency
selective fading. The fading characteristics is simply summarized as figure 2.2

Various models are used to describe the statistical behavior of multi-path fading,
depending on the nature of the radio propagation environment.

Rayleigh, Rician and Nakagami Fading Channel

The wireless channel has a multiplicative effect on the transmitted signals in fre-
quency flat fading channels, where the multiplicative term is a complex Gaussian
random variable. If the mean of the channel coefficient is zero, the channel is con-
sidered Rayleigh fading because the absolute value of the channel gain is a Rayleigh
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FIGURE 2.2: characteristics of fading channel delay spread vs coher-
ence time.

random variable [12].If the mean of the channel gain is non-zero, its absolute value
is Rician distributed, and the channel is said to be Rician fading. Another popular
fading channel model is Nakagami fading, which is based on experimental obser-
vations rather than theoretical models like the ones used to develop Rayleigh and
Rician models.[13].

2.1.3 MIMO system

MIMO system considers an antenna array with Nt × Nr transmitting and receiving
elements. For the given jth transmitting element and the ith receiving elements, the
channel impulse response between them is named as hi,j(τ, t). The MIMO channel
can then be described by the Nt ×Nr size of H(τ, t) matrix.

H(τ, t) =


h11(τ, t) h12(τ, t) . . . h1Nt(τ, t)
h21(τ, t) h22(τ, t) . . . h2Nt(τ, t)

...
... . . . ...

hNr1(τ, t) hNr2(τ, t) . . . hNrNt(τ, t)

 (2.5)

The matrix elements are complex numbers that correspond to the propagation loss
and phase shift introduced by the wireless channel to the signal arriving at the re-
ceiver with delay τ

The input output relationship can be described as

y = Hx + n (2.6)
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FIGURE 2.3: Block Diagram of M IMO wireless network[14] .

where y ∈ CNr received signal, x ∈ XNt the input signal and H is CNr×Nt channel
fading matrix, and n ∼ CN(0, I) the received noise.
The detection process of the transmitted symbol x is depending on the estimated
channel. The estimation process done either by blind estimation method like Bus-
sang algorithm and sub-space based which is carried out by evaluating the statistical
information of the channel and particular properties of the transmitted signals. This
blind channel estimation has no overhead loss and it is only suitable for slowly time
varying channels [15]. Or pilot-base estimation method like least square and mini-
mum mean square error,[16]–[18]. In training-based channel estimation algorithms,
the transmitter will transmit training symbols or pilot tones that are known to the re-
ceiver, then the receiver will use the channel state information to detect the message
signal.
The detection for the transmitted vector x̂, based on its knowledge of the channel
matrix H, x, and the observation y will be calculated using different algorithm as
seen equations 2.7, 2.8, and 2.9

Maximum likelihood detection (MLD)

MLD is the optimum in terms of minimizing the overall error probability because the
minimization is with all possible transmitted vectors [19].

x̂ = arg min
x∈XNt

∥y − Ĥx∥2 (2.7)

where XNt is all possible constellation set, x̂ is the recovered signal at receiver, Ĥ
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is estimated channel fading matrix using training pilot symbols. due to computing
the function for all possible constellation set of potential value of x, MLD has higher
complexity than zero force and Minimum mean squire error.

Zero forcing (ZF) at the receiver

To reduce the complexity of MLD linear receiver like zero forcing is introduced [19].
It involves design a matrix which is the inverse of channel fading matrix H−1 and
multiply with the received signal. If the Matrix H is well conditioned, we get a good
bit error rate but if the channel fading matrix H is ill conditioned which means if
H is closed to zero the inverse will be closed to infinity which causes the noise to
amplify

x̂ = H−1(Hx + n) = x + H−1 (2.8)

Minimum mean squire error (MMSE)

To maintain the ill-conditioning of the matrix Hin order to reduce the sensitivity of
linear receivers, regularization term will be added

x̂ = HH(HH H + λI)−1y (2.9)

Where, λ is regularization weight and I is identity matrix with the same size of H.
Since it minimizes the mean squared error in the estimate of x, it is called linear
minimum mean squire error detector (LMMSE)[20],[21]

Neural Network based detector

This method estimates the unknown channel response at non-pilot subcarriers by
leveraging knowledge of pilot channel properties. This estimator learns to adapt to
channel variations before estimating channel frequency response. This method is
less complex and high quality than conventional methods such as least Square (LS),
Minimum Mean Square Error (MMSE).[22]
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2.2 Overview on Deep Learning

Deep learning is a subset of machine learning. It is based on the idea that systems
can learn from data, identify patterns and make decisions. The leaning process can
be categorized in to supervised, unsupervised and reinforcement.
In supervised learning a labeled data is used to train the network and develop a func-
tion that govern the input/output relationship then it will predict the value of the label
for an input data that is not in the training set. The prediction is classification, if the
label is discrete and regression, if the label is continuous. For this thesis we use
unsupervised learning to predict the CSI of the system. Where the system learn the
association between the input data. Reinforcement learning based on rewarding and
punishing depending to the desired.
Deep learning has its origins in early work that tried to model networks of neurons
in the brain with computational circuits. For this reason, the networks trained by
deep learning methods are often called neural networks [23]. A single neuron in
deep learning is constructed as figure 2.4 with input x, weight w, bias b, activation
function f (.)

FIGURE 2.4: Structure of single neuron in deep learning.

Mathematical represented as (2.10)

y = f ((x1w1 + x2w2 + xnwn) + b) (2.10)

The activation function was included to give the function non-linear behavior, allow-
ing the network to learn more complex things. By creating the corresponding output,
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the activation function determines whether a neuron will respond or not for a partic-
ular input. The most commonly used activation functions in deep neural networks
are summarized on table 2.1.

Activation Function Mathematical Model Range and graph

Linear f (x) = ax (−∞, ∞)

ReLu f (x) = max(0, x) [0, ∞)

tanh f (x) = tanh(x) (-1, 1)

Sigmoid f (x) = 1
1+e−x (0, 1)

Softmax f (x) = exi

∑k
j=1 exj (0, 1)

TABLE 2.1: List of some activation functions and their characteristics
for deep neural networks

Deep neural network is constructed from multiple neurons and layers. It has the input
layer, hidden layers (one or more than one depending on the depth of the information
to be extracted) and the output layer. If the connection of the neurons and propagation
of the signals are only in forward direction it is categorized as feed forward neural
network (FFNN). If it has feedback to previous neuron the network is categorized



Chapter 2. Technical background 14

as Recurrent neural network. A FFNN type Convolutional neural network is used in
this thesis.

2.3 Convolutional neural network

Convolutional Neural Network (CNN), also known as ConvNet, is a form of Arti-
ficial Neural Network (ANN) with a deep feed-forward architecture and incredible
generalization power. It can learn highly abstracted aspects of objects, particularly
spatial data, and recognize them more effectively. A deep CNN model is made up of
a finite number of processing layers that can learn many levels of abstraction from
incoming data. The higher-level features (with lower abstraction) are learned and ex-
tracted by the initiatory layers, while the lower-level characteristics are learned and
extracted by the deeper layers (with higher abstraction). The basic conceptual model
of CNN was shown in figure 2.5.

FIGURE 2.5: Conceptual model of CNN [24].

One of the essential building elements of a convolutional neural network is the con-
volution process. The parameters of the convolutional layers are made up of a col-
lection of learnable filters (kernels). The pooling layers are used to sub-sample the
feature maps, which means they shrink the larger feature maps to smaller feature
maps.While decreasing the feature maps, the most prominent features in each pool
step are always preserved.
Convolution operation, is the process of taking the kernel with filter size and slide it
over all data set horizontally as well as vertically with given stride and by multiply-
ing the corresponding values of the kernel and the input data set and we sum up all
values to generate one scalar value in the output feature map. This process continues
until the kernel can no longer slide further. The convolution process will eliminate
the border of the data set to overcome this problem padding is used to give border
size information of the input data more importance. The padding is also used to in-
crease the input data size, as a result the output feature map size also gets increased.
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The feature map size after convolution operation can be calculated as 2.11 for height
and 2.12 for width of feature map size.

ĥ =
h − f + p

s
+ 1 (2.11)

ŵ =
w − f + p

s
+ 1 (2.12)

Where ĥ and ŵ is the height and width of the output feature map, h and w is the
height and width of the intput data, f is the filter size, p is the padding and s is stride
of convolution operation.

We use a Loss Function to calculate the prediction error created by the CNN model
over the training data at the output layer. This prediction error indicates how far the
network’s prediction is off from the actual output.If your prediction is completely
wrong, your loss function will produce a higher number. If they are good enough,
it will generate a lower number. As you change parts of your algorithm to try to
improve your model, the loss function tells you where you’re going. Some of the
most used loss functions are

2.4 Loss functions

Cross-Entropy: also called log loss function is widely used to measure the perfor-
mance of the CNN model, whose output is a binary number (0,1) mathematically
expressed as

H(P, y) = −
N

∑
i=1

(Pi)log2(yi) (2.13)

where P is the probability for each output category and y denotes the desired output.

Hinge loss function: is utilized in maximum margin classification problems, partic-
ularly for support vector machines (SVMs). The optimizer is attempting to maximize
the margin between two target classes in this case.

H(ŷ, y) =
N

∑
i=1

max(0, m(2yi1)ŷi (2.14)
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Where m is the margin, ŷi denotes the predicted output and yi denotes the desired
output.

Mean squared error(MSE): is commonly used in regression problems. The mean
squared error between the predicted output ŷ and the actual output y

H(ŷ, y) =
1

2N

N

∑
i=1

(ŷiyi)
2 (2.15)

where N is number of neuron in output layer

2.5 Optimizer selection

The model parameters are adjusted constantly during each training epoch to reduce
error, and the model iteratively searches for the locally optimal solution in each train-
ing session. The learning rate is the size of parameter updating steps, and a training
epoch is a complete iteration of parameter update that contains the entire training
data set. There exist a number of variants of the gradient-based learning algorithm,
out of them the most widely used are:

2.5.1 Batch Gradient Descent

The gradient is calculated throughout the entire training set and then used to update
the parameters. The CNN model creates a more stable gradient when using Batch
gradient descent, and it also converges faster for small data sets. However, as the
training data set grows larger, convergent time increases, and the solution may con-
verge in a locally optimal state. [25].

2.5.2 Stochastic Gradient Descent

Each training sample’s parameters are changed independently [26]. It is more faster
and memory economical when dealing with huge training data sets. However, be-
cause of the frequent updates, it takes highly noisy steps towards the solution, caus-
ing the convergence behavior to be quite unstable.

2.5.3 Mini Batch Gradient Descent

Separate the training examples into non-overlapping mini-batches and process them
separately. It was more memory efficient, faster to compute, and had a more steady
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convergence. The main disadvantage of the Gradient-Based learning algorithm is
that it easily stuck in a local minimum instead of a global minimum

2.5.4 Momentum

Improves both training speed and accuracy by adding the gradient calculated at the
previous training step weighted by a parameter called the momentum factor.

∆wt
ij = (η ∗ dE

dwij
) + (λ ∗ ∆wt−1

ij ) (2.16)

Where∆wt
ij is current weight, ∆wt−1

ij previous weight, is the learning rate and is the
momentum factor.

2.5.5 AdaGrad

Adaptive learning rate method updates each network parameter differently, based on
their significance for the problem. perform larger updates for infrequent and smaller
updates for frequent parameters.

2.5.6 AdaDelta

AdaDelta can be imagined as the extension of AdaGrad. The problem with AdaGrad
is that, if we train the network with many large training epochs (t), then the sum of
the square of all the past gradients becomes large, as a result, it almost vanishes the
learning rate. AdaDelta method divides the learning rate of each parameter with the
sum of the square of some past gradients (instead of using all the past gradients) for
each parameter in each training epoch.

2.5.7 RMSProp

Root Mean Square Propagation (RMSProp) is also designed to solve the Adagrads
radically diminishing learning rates problem

2.5.8 Adaptive Moment Estimation (Adam)

Adaptive Moment Estimation (Adam)[27] is another learning strategy, which calcu-
lates adaptive learning rate for each parameter in the network and it combines the
advantages of both Momentum and RMSprop by maintaining both the exponential
moving average of the gradients and the exponential moving average of the squared
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gradients. Adam is more memory efficient than others and also needs less computa-
tional power. In this thesis, we use Adam optimizer.

∆wt
ij = ∆wt−1

ij − η√
Ê[δ2]t + ϵ

∗ Ê[δ]t (2.17)

Where Ê[δ]t is the estimate of the first moment (the mean) and Ê[δ2]t is the estimate
of the second moment (the uncentered variance) of the gradients.
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2.6 Cooperative communications

The use of diversity technology highly improves the performance of wireless com-
munications is improved using diversity gain technique. The transmission of the sig-
nals through multiple fading path exploit diversity in different channel dimensions,
such as time, frequency, and space, and hence achieve diversity gains. The principle
is similar to that of achieving spatial diversity gains in MIMO systems.
Cooperative communications allow nodes or terminals in a communication network
to collaborate in the transmission of information, allowing for more effective use of
communication resources. It’s a technology that could be useful in future communi-
cation systems.
Structures of cooperative relaying technique has three types which are coordinated
multi-point transmission (CoMP) which coordinate their transmissions in the down-
link and jointly process the received signals in the uplink, fixed relay, and mobile
relay. Fixed and mobile relay may have sigle relay or multiple relay models.

A relay system has three components: a source (S), a relay node (RN), and a desti-
nation (D). The RNs receive the data from the sources first. Each RN then applies a
protocol to the data it receives and sends it to the destination nodes. The destinations
then decode the data from their relevant sources using the received signal from the
RNs.

FIGURE 2.6: Block diagram of cooperative relay communication

Some of the basic cooperation protocols are:

2.6.1 Amplify-and-forward (AF)

Each RN basically scales the received signal to fit its transmit power constraints and
sends the scaled signal to the next transmission slot. Laneman et al. analyzed a
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simple cooperative signaling method[28]. The fundamental disadvantage of the AF
relaying protocol is that noise is amplified in the cooperative network, resulting in
inter-symbol interference (ISI) between the source and destination channels[29]. Be-
cause the AF protocol includes less processing at the RN, it has a low computational
complexity and thus a cheap cost when compared to other protocols[2]. Further-
more, the time it takes to send the information to D is short [30]. The AF is the finest
solution for a quick communication application.

FIGURE 2.7: block diagram of an amplify-and-forward cooperation
protocol

2.6.2 Decode-and-forward (DF)

Each RN decodes the source message from the signal it receives, re-encodes it into
a new codeword, and broadcasts it in the next timeăslot. This helps to avoid noise
amplification along the message signal, lowering the risk of ISI and reducing the like-
lihood of interference in the cooperative communication network. The fundamental
drawback of this protocol is the processing delay, which required additional time
from RN to demodulate, decode, modulate, and encode the incoming signal [31].

FIGURE 2.8: block diagram of Decode-and-forward cooperation pro-
tocol
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2.6.3 Coded Cooperation (CC)

When repetition codes are used, the same codeword is sent twice either by the source
or the relay, this will reduce bandwidth efficiency by half. CC basically incorporates
cooperation into channel coding. Different chunks of the same message are conveyed
in the two phases of coded collaboration schemes [32]. In particular, the source mes-
sage is encoded in the first component of the codeword sent by the source, and incre-
mental redundancy can be sent by the relay in the second portion of the codeword.
Even though the time it takes to execute this operation causes a delay, the communi-
cation system’s accuracy and dependability are much improved, and interference is
decreased.
One protocol may outperform the other in terms of system capacity or diversity,
depending on the network topology and the strength of the backhaul link between
the source and the RN. In general, DF-based cooperation schemes are more ad-
vantageous for systems with decent backhaul links, whereas AF-based cooperation
schemes are more advantageous for systems with relatively poor backhaul links[33].

2.6.4 Selective Detect-and-Forward

This protocol checks if the detected signal from source have an error due to channel
noise then relay detects the source transmission; if the detection is error free it will
be forwarded to the destination. To detect the source transmission correctly, it uses
cyclic redundant check (CRC) error detection mechanism. This kind of protocol
eliminates the problem of error propagation.
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The performance of cooperative communication depends on the relay selection tech-
nique [34]. One of the efficient approaches is stablishing communication channel
between RN and legitimate user by finding the channel condition using training bit
[35]. Due to the variation of the channel the selected RN might not remain optimal.
The performance of the system will degrade because of outdated CSI [36]. In the
most cases, the obtained CSI through training was imperfect during the transmission
time [37].
[38] proposed smart relay selection systems to overcome the performance degrada-
tion problem when spatial information channels are correlated in a MIMO environ-
ment. The eigenvalue properties-based relay selection method reduces the processing
complexity of user equipment (UE) at the receiving end. However, especially in the
case of frequency-flat fading channels, efficiency and performance are not achieved.
[39].
Security is the most essential factor in general in wireless communication. Specif-
ically in cooperative communication, the process of selecting the best relay during
the transmission of data is highly susceptible to malicious attacks that generate a lot
of security threads [40]. In some scenarios, the eavesdropping link node may have a
good channel quality to acquire the information during the communication process
[4].
To overcome this security threads scholars proposed different techniques. Some of
them are uses a technique to enhance physical layer security by facing the effect of
eavesdroppers.
In [3], the author designs a secure beamforming model (SBM) based on machine
learning to modulate the signals on the relay. The input of SBM was signals re-
ceived by the relay, the outputs of the network pass through the legitimate and the
eavesdroppers channel respectively, and finally, arrive at the receiver or eavesdrop-
per. After the signals are received, the signals will pass through the SBM network
again and then the SBM network can output the plaintext. Through iterative learn-
ing, the SBM network can learn the statistical characteristics of the legitimate and
the eavesdroppers channel, so that the legitimate user can decrypt the signals and
the eavesdropper cannot decrypt the signals transmitted by the relay. However, the
proposed network requires that the CSI of legitimate users and eavesdroppers are
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known. But in reality, the eavesdropper is always passive and the CSI is difficult to
obtain.
In [41] a combination of jamming and beamforming is used to enhance overall infor-
mation security. A unique interference node is created in the first time slot to transmit
jamming signals, so that the eavesdropper receives both the information-bearing sig-
nal from the source node and the jamming signal from the interfering node in the
first time slot. The SINR for eavesdropping has decreased. The relay broadcasts the
relayed signal in the second time slot, along with fake noise projected over the null
space of the legitimate channel to boost secrecy even more. However, sending the
jamming signal through a specialized interfering node may cause interference with
other relays or legitimate receivers.
In [42], secrecy enhancement for a three-timeslot two-way AF relaying scheme is
investigated. Instead of using a dedicated jamming node, it is proposed that in the
first two timeslots designated for legitimate node transmissions, the legitimate user
that is not transmitting information-bearing signals acts as jamming to interfere with
eavesdropping thereby reducing system complexity and delay. In the final time slot,
when the relay amplifies and forwards the information received in the first two time
slots, the bidirectional signals are processed separately using two beamforming ma-
trices and optimizes each beamforming matrix based on knowledge of the CSI. The
jamming signals are projected onto the null space of the legitimate channels. The
sum secrecy rate of the legitimate users can be maximized through joint optimiza-
tion.
In [6] an Optimal Relay Selection for Secure Cooperative Communications with an
Adaptive Eavesdropper was proposed in which it derives closed-form secrecy outage
probability expressions for the optimal relay selection schemes in the full and sta-
tistical eavesdroppers CSI cases and derives approximate secrecy outage probability
expression for the optimal relay selection scheme in the partial eavesdroppers CSI
case. In any case, the CSI of the eavesdropper and legitimate user is required for
optimal relay selection and transmission secrecy, but in practice, the eavesdropper is
always passive and the CSI is difficult to obtain; additionally, the CSI of legitimate
users is outdated due to the time difference between channel estimation and packet
transmission instant. The security risks can be reduced by improving the legitimate
user’s channel estimation performance.

[43] dealt with the problem of performance degradation of cooperative communi-
cation systems due to imperfect CSI. It uses a pilot symbol assisted modulation
(PSAM)-based LMMSE scheme for the channel estimation and by deriving prob-
ability density function (PDF) and the moment generating function (MGF) of the
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instantaneous SNR at the destination terminal, statistical quantities are applied to de-
veloped an accurate SER formula. But the performance of the algorithm decreases
as the imperfection factor increases.
The deep learning assisted channel estimation is outperformed the conventional esti-
mators for MIMO communications.
In [44] the authors argue for applying conventional neural network (CNN) to ex-
tract CSI pattern and present a CNN-RNN architecture for CSI aging. [45] build a
decision-directed estimation with deep feed forward neural network-based channel
prediction for MIMO transmission .
[46] Shows all proposed deep learning-based channel estimation models outper-
formed the conventional methods, even when channel imperfections were present.
even if the performance of bi-LSTM model outperform in comparison to the FDNN
and CNN models, it is more sensitive to Doppler frequency. The Doppler frequency
has more serious consequences on the bi-LSTM model since it exploits the time-
varying features of channels. But the complexity of bi-LSTM model is higher than
both FDNN and DCNN is high.
In [47] a DCNN type detector is proposed as a MIMO communication with imper-
fect channel state information for the Internet of Things where the DCNN is trained
offline and then used online to increase the BER of wireless systems by refining the
imperfect CSI. Simulation results suggest that the DCNN outperform compared with
the classical maximum likelihood detector (MLD). The network is not trained for
cooperative relay communication.
The use of deep learning-based algorithms to overcome the imperfect CSI for MIMO
communication systems is a promising approach. Motivated by that we extend the
application of DCNN for a Cooperative relay network that considers the security
issue of the system.
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Chapter 4. Proposed system

4.1 System model

The system considers both AF and DF-based cooperative communication protocol
which consists of the sender, receiver, and relay nodes. Each is equipped with N
number of antennas and the number of antennas at a relay node is greater than the
number of antennas of the sender, and the receiver. All nodes operate in half-duplex
mode which means the relay node and sender or relay node and receiver are com-
municating one way only at a time to avoid inter symbol interference. Considering
no direct link available, the sender and the receiver need to communicate with each
other with the assistance of a relay. The channel fading matrix between the relay
node and source, destination and relay node, and relay node1 and 2 is denoted by
HSR1, HDR1, and HR1R2, respectively. Two-time slots are used to transmit one data
symbol. In the first time slot, the source terminal communicates with the relay. In
the second time slot, the relay terminal communicates with the destination terminal.
The channel is modeled as independent identically distributed Rayleigh fading and,
fading characteristics are considered as time-correlated, fast and, flat fading. The
correlation function is modeled as (2.3) so the channel fading matrix of adjacent
samples will be calculated as

H(n) = ρH(n − 1) +
√

1 − ρ2N(n) (4.1)

Where n is the sample time and N is the received noise the same size as H

One data symbol is transmitted over two time slots. The source terminal connects
with the relay in the first time slot. The relay terminal connects with the destination
terminal in the second time slot. During communication between the relay node one
(R1) and the source or destination, relay node two (R2) will intercept the information
due to the open nature of the cooperative network. To avoid this threat the R1 will
zero forcing the channel fading matrix between R1 and R2 (HR1R2). Which is, first
the CSI of HR1R2 will be estimated using pilot symbol then by applying eigenvalue
decomposition it will produce null-space eigenvectors.

(A, V) = Eig(H∗
R1R2, HR1R2), (4.2)
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FIGURE 4.1: System Diagram of cooperative relay network with no
direct link between source and destination

where Eig() is the eigenvalue decomposition function, A ,V are the eigenvalues
and eigenvectors respectively. Then R1 will transmit the signal to the receiver using
beamforming matrix which the information lies on the null-space of HR1R2. There-
fore, the received signal at R2 will be zero forced.

4.1.1 DF based cooperative protocol

For DF based protocol the signal from the source will be decoded and re encoded in
relay node then transmitted to the destination. During the communication between
the source and R1 in first time slot the pilot signal will be sent with the beamforming
matrix to estimate the channel.Then the source will transmit the symbol with the
knowledge of beamforming matrix. The received signal at R1 will be calculated as

yR1 =
√

PSHSR1Bx + NSR1 (4.3)

where PS is the normalized transmission power of source terminal, B is beamforming
matrix, x ∈ CN(0, I) is the original message with size of B and,NSR1 ∈ CN(0, σ2 I)
complex additive Gaussian white noise vector with zero mean and covariance of σ2

between source and R1.
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During the communication between R1 and the destination in the second time slot
first the symbol will be detected using maximum likelihood detector as 4.7 then re-
encoded and transmitted to the destination. The received signal at the destination
terminal will be calculated as

yD =
√

PR1HDR1Bx + NDR1 (4.4)

Where, PR1 is the transmission power of R1, B is beamforming matrix, x ∈ CN(0, I)
is the re-encoded original message with size of B and,NDR1 ∈ CN(0, σ2 I) complex
additive Gaussian white noise vector with zero mean and covariance of σ2 between
R1 and destination.

The assumption of perfect CSI from the source to the relay and from the relay to
the destination terminal will reduce system performance. In actuality, the CSI is
never completely understood by the source to relay and relay to destination terminals.
Imperfect CSI might occur as a result of a faulty channel estimating technique or as
a result of channel fluctuations after it has been accurately measured. The flaw in our
scenario is caused by a time delay between the estimation and the packet transmission
instant. The imperfect equation from source to R1 and R1 to destination is modeled
as 4.5 and 4.6 respectively.

ĤSR1 =
√

ζHSR1 +
√

1 − ζNSR1, (4.5)

ĤDR1 =
√

ζHDR1 +
√

1 − ζNDR1, (4.6)

Where, ζ is the correlation factor of the imperfect version of the channel fading
matrix. Therefore, the detected original message at R1 from source and at destination
from R1 using standard maximum likelihood detector is calculated as equation 4.7
and 4.8 respectively

ˆxR1 = arg min
x∈XNt

∥yR1 − ĤSR1Bx∥2 (4.7)

x̂D = arg min
x∈XNt

∥yD − ĤDR1Bx∥2 (4.8)

where yR1 is the received signal at R1 terminal in first time slot and yD is the received
signal at R1 terminal in second time slot.
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4.1.2 AF based cooperative protocol

For AF based protocol the signal will be sent in first time slot to the relay then the
relay will first normalize the received signal to ensure the unity of average energy.
Then, the normalized signal will be amplified and forwarded to the destination termi-
nal during the second time slot. So the received signal at relay node and destination
is given by 4.9 and 4.10 respectively

yR1 =
√

PSHSR1Bx + NSR1 (4.9)

yD = βHSR1HDR1Bx + NDR1 (4.10)

Where, PS and PR1 are the transmission power of source terminal and R1, B is beam-
forming matrix, x ∈ CN(0, I) is the original message with size of B, NDR1 ∈
CN(0, σ2 I) complex additive Gaussian white noise vector with zero mean and co-
variance of σ2 between R1 and destination and amplification factor β is given by
equation .

β =

√
PR1

σ2
h PS + σ2

n
(4.11)

where, σ2
h and σ2

n are covariance of channel fading matrix between source and R1
and, channel noise between R1 and destination.
Again the assumption of perfect CSI at destination terminal will degrade the system
performance. The imperfect or outdated channel fading equation is modeled as

ĤSR1ĤDR1 =
√

ζHSR1HDR1 +
√

1 − ζNDR1, (4.12)

Where, ζ is the correlation factor of the imperfect version of the channel fading
matrix.

But the imperfect CSI will decrease the performance and security of the system. To
solve this problem, we propose a deep convolutional neural network estimator. The
deep learning networks can effectively capture the correlation features of the training
data set.
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4.2 Deep CNN architecture

Some well-known CNN models, such as VGG [48] and ResNet [49], enhance de-
tection probability by increasing model depth. Specifically, the number of learn-
able parameters for VGG-19 is up to 144M, VGG-16 is 134.7, ResNet-18 11.4 M,
ResNet-34 21.5 M, ResNet-50 23.9 M, ResNet-101 42.8 M. We must strike a bal-
ance between complexity and performance when developing the DCNN’s architec-
ture. Although a fully connected DNN performs better, the computing complexity
of a fully connected DNN is proportional to the square of the number of nodes. In
addition, the training period and data set are both very large. As a result, we adopt
simplified classical DCNN models from[47] to reduce computational complexity as
shown figure 4.2 and number of learnable parameters are summarized in table 4.1.

FIGURE 4.2: A four layer classical DCNN architecture

As shown in the figure 4.2 the DCNN model has 4 one dimensional layers excluding
the input layer. The feature map extracted from input, Conv-1, Conv-2, and Conv-
3 are 32,16, 8, and 1 and the filter length are 36, 3, 3, and 36 respectively each
convolutional layer is followed by the ReLu activation function except the last one.
The last one is followed by a SoftMax activation function for optimization purpose.
The number of layers or depth of the network is chosen with the trade-off between
complexity and performance in mind, but excessive depth reduces accuracy.
Also Setting the kernel size is always a tradeoff between speed and accuracy. The
smeller Kernel size has better accuracy with lower execution speed and the larger
kernel size has less accuracy with better execution speed but at some level there is an
accuracy saturation, and computations grow up quadratically. A common choice is
to keep the kernel size at lower. The first convolutional layer is often kept larger. Its
size is less important as there is only one first layer, and it has fewer input channels.
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In our model the first and last layer has lager kernel size which helps the network to
learn general characteristics of the input data but the middle layers has lower kernel
size which help the network to learn deeper level of the data set.
The input size of the network is a batch of Nr × Nt. The batch size depends on the
coherence time to transmit packet data. Similarly the hidden and output layers have
the same size as input to keep information loss. To make sure the input and output
have the same size we apply padding and the convolution process slides with single
stride.

The number of learnable parameters Lp is calculated as

Lp =
Ln

∑
i=1

Input ∗ f iltersize ∗ numbero f f ilters + bias (4.13)

TABLE 4.1: List of learnable parameters and computational complex-
ity

Layers Input * filter size * number of filters + bias Number of learnable Parameters
Input Packet size* packet per batch -

Conv-1 1*36*1*32+32 1,184
Conv-2 32*3*1*16+16 1,552
Conv-3 16*3*1*8+8 392
Output 8*36*1*1+1 289
Total 3,417

4.3 Training process of the DCNN

The aim of the training is to predict the actual output (perfect CSI) from imperfect
version of CSI. That means it will predict the perfect CSI for a given imperfect CSI.
When we say imperfect CSI the previously estimated channel is changed due to dif-
ferent factors through time. Some of the factors are doppler shift which occurs due
to movement of communication nodes, channel noise and etc. The DCNN network
is expected to learn the changing pattern of affected CSI through time by adjusting
the weight and bias of the network for given training data set.

Figure 4.3 shows the training process of the DCNN detector in which a batch of
channel fading matrix ĤRD with the size of Nr × Nt is reshaped as a column vector
to form a one dimensional array. The batch size is equal to the coherence trans-
mission time which is the time taken to transmit a group of packet data. Then the
complex data of ĤRD will be separated into real and imaginary to be treated as two
real channel because the CNN model can only process real data [50]. The DCNN
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FIGURE 4.3: Block diagram of the DCNN training procedure

will convolve the channel fading with initialized filters weight for first time and then
update the filter weight through training. The convolution will be held throughout
the layer with respected filter size. Then after passed through the DCNN the data
will be re arranged back to complex and reshaped to Nr × Nt matrix. The expected
output using maximum likelihood detector will be calculated as 4.14

x̂i = exp{−|y − ĤRDBxi|2}, xi ∈ XNt (4.14)

In the training process, the weights and biases of the DCNN will be updated by
minimizing the loss function.So the normalized likelihood probability of each output
class can be obtained by the SoftMax activation function as 4.15. From likelihood
detection for all possible constallation set, if the probabilllaity Pri = 1 the message
is correctly decoded otherwise the probability will be 0.

xi =
x̂i

∑XNt

i=1 x̂i
(4.15)

Then using cross-entropy the loss will be calculated as 4.16

H(Pri, x̂i) = −
xNt

∑
i=1

(Pri)log2(x̂i) (4.16)

After calculating the loss, it will be back-propagate to the DCNN network to update
the weights and biases. To reduce error, the model’s weights and biases are continu-
ously updated during each training epoch, and the model iteratively searches for the
locally optimal solution in each training epoch using the Adam optimizer, which is
calculated as 2.17
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4.4 Computational complexity

The computational complexity includes the number of multiplications/divisions and
summations/subtractions. It is known as the number of floating point operations (f
lops). The complexity of summations/subtractions is ignored because these opera-
tions are much easier to implement in hardware; instead, the concern is more about
the number of real valued multiplications than the number of summations. Two com-
plex multiplications involve four real valued multiplications and two summations.
Based on this notion, the computational complexity for traditional ML detection of
equation 4.8 with the search of NtM, where M is constellation size or modulation
order, are the multiplication of hjx has 4Nr real valued multiplication and the Eu-
clidean norm ∥y − ĤDR1x∥2 has 2Nr multiplications. Hence, the computational
complexity of ML detector is

CML = O(6NrNtM) (4.17)

with Ln kernels of size kn in the nth convolution layer and a depth of d, the number
of multiplications for the nth convolution layer is knanLn−1Ln , where an is sizes
of the nth layer. The complexity of all convolution layers is O(∑d

n=1(knanLn−1Ln).
The input layer size is packetsize(ps)× packetperbatch(p/b)where packetsize =
transmissiontimeperpacketlength× Nt × Nr Therefore, the over all DCNN detec-
tor computational complexity is

CDCNN = O(ps × p/b +
d

∑
n=1

(knanLn−1Ln) + 6NrNtM) (4.18)
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Chapter 5. Simulation result and discussion

Here, the simulation results are provided to show DCNN type estimator is efficient
than the traditional maximum likelihood estimator. The provided simulations con-
sider the system performance factors like correlation factor for the imperfection of
channel, doppler effect, and the number of antennas to evaluate the BER of the re-
ceived signal.
To generate the training data, we use QPSK modulation with a packet bit length of
900, 20 data packets are grouped to form one batch of data set, the complex channel
gains are described by the autocorrelation functions using fd with first-order Bessel
function and the variances of the complex channel gains and the noise are normalized
to unity. A single batch has a size of Nt × Nr × transmissiontimeperbatch × 20.
In learning process the data will divided into training, validation and test data set.
For this simulation the training data set is set to 10,000 batch and the validation data
set is set 1000 then to evaluate the BER performance of the system 1000 batch test
data is used. In training process parameter initialization and optimizer selection is
most important part so we select popular Xavier initializer and Adam optimizer by
setting learning rate to 0.005 and γ1 = 0.9 , γ2 = 0.999 and ϵ is set to 10−7 in case
the estimate of the second moment is zero it avoids dividing by zero. The simulation
was done in Anaconda navigator environment with Jupyter notebook, TensorFlow
framework and, python program.

5.1 Effect of imperfect correlation factor

Figure 5.1 shows the DCNN and standard maximum likelihood (with perfect and
imperfect CSI) detectors BER performance verses SNR simulation result for MIMO
DF cooperative relay network with correlation factor of 0.95, normalized doppler
frequency of 0.1, NR1 = 4, NR2 = 2, and ND = 4. As we observe from the graph
the BER performance of DCNN detector have a gain of about 0.5 dB at lowest SNR
and 2 dB at highest SNR for DF protocol and for correlation factor of 0.95 in AF
protocol, it has a gain difference of about 0.2 dB at lowest SNR and 1.5 at highest
SNR in comparison to standard maximum likelihood detector. The reason is the
DCNN type detectors learns the imperfect pattern of adjacent samples and produce
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more accurate CSI which increase the BER performance of the DF cooperative relay
network.

FIGURE 5.1: The BER performance comparison of the DCNN and
standard maximum likelihood detector with correlation factor=0.95,

f d = 0.1, NR1 = 4, NR2 = 2, ND = 4

Figure 5.2, 5.3, 5.4, 5.5, and 5.6 shows the BER performance comparison of the
DCNN and standard maximum likelihood detector with correlation factors of 0.9,
0.85, 0.8, 0.75, and 0.7 respectively. As the imperfection factor increases the per-
formance difference of DCNN and standard ML detectors become increase. For
instance, when the correlation factor is 0.9, 0.85, 0.8, 0.75, and 0.7 they have a gain
difference of about 1dB, 1.5dB,2dB,2.75dB,and 5dB at lower SNR and about 4.5dB,
6.5dB, 8dB,9.5dB, and 10.5dB at higher SNR respectively for DF protocol and sum-
marized on figure 5.7.

5.2 The effect of cooperation protocol

Figure 5.8 shows the BER performance comparison of the DF and AF protocol using
DCNN detector with correlation factors of 0.9, normalized Doppler frequency of 0.1,
NR1=4, NR2=2, and ND=4. As we observe from the graph the BER performance of
the the DF protocol outperform than the AF protocol with a gain of about 0.5 dB at
the lowest SNR and 2 dB at the highest SNR.

The DF protocol always outperform than the AF protocol. This is because of the
presence of amplified noise in AF cooperative protocol during the transmission of
the signal. Transmitting a symbol with presence of amplified noise has a negative



Chapter 5. Simulation result and discussion 35

FIGURE 5.2: The BER performance comparison of the DCNN and
standard maximum likelihood detector with correlation factor=0.90,

f d = 0.1, NR1 = 4, NR2 = 2, ND = 4

FIGURE 5.3: The BER performance comparison of the DCNN and
standard maximum likelihood detector with correlation factor=0.85,

f d = 0.1, NR1 = 4, NR2 = 2, ND = 4

outcome on the quality of the signal received at the destination due to the inclusion
of noise in the amplified signal.
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FIGURE 5.4: The BER performance comparison of the DCNN and
standard maximum likelihood detector with correlation factor=0.8,

f d = 0.1, NR1 = 4, NR2 = 2, ND = 4

FIGURE 5.5: The BER performance comparison of the DCNN and
standard maximum likelihood detector with correlation factor=0.75,

f d = 0.1, NR1 = 4, NR2 = 2, ND = 4

5.3 Effect of normalized doppler frequency

To show the effect of doppler frequency we can choose any value between 0 < fd <

1 but it is easy to analyze if we choose in such a way the first number is double of
the second number. So, we chose the popular value in communication for normal-
ized doppler frequency. Figure 5.9 shows the effect of normalized doppler frequency
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FIGURE 5.6: The BER performance comparison of the DCNN and
standard maximum likelihood detector with correlation factor=0.7,

f d = 0.1, NR1 = 4, NR2 = 2, ND = 4

FIGURE 5.7: The effect of correlation factor on the BER performance
DCNN and Standard maximum likelihood detectors using SNR=20,

f d = 0.1, NR1 = 4, NR2 = 2, ND = 4

with f d = 0.1 and f d = 0.05 on the BER performance of the DF cooperative com-
munication system with a correlation factor of 0.9. As we see from the figure the
DCNN detector BER performance is degraded to about 0.5dB at lower SNR and
3dB at higher SNR as the normalized Doppler frequency increases from 0.05 to 0.1.
The reason is at the smallest normalized doppler frequency, the channel characteris-
tics are changed slowly in which the symbol duration is significantly smaller than the
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FIGURE 5.8: The effect of coopration protocol factor on the BER
performance DCNN and Standard maximum likelihood detectors us-

ing SNR=20, f d = 0.1, NR1 = 4, NR2 = 2, ND = 4

coherence time but at the highest normalized doppler frequency, the channel char-
acteristics are changed for the transmission of single symbol duration. The doppler
effect also affect the BER performance of maximum likelihood detector.

FIGURE 5.9: The effect of doppler frequency on the BER perfor-
mance of the DCNN and Standard maximum likelihood detectors us-

ing, f d = 0.1and0.05, NR1 = 4, NR2 = 2, ND = 4
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5.4 Effect of number of antennas

Figure 5.10 shows the BER performance of the DCNN and standard ML detector
with antenna configuration of NR1, ND and NR2 as 4, 4, and 2 for first and as 4,
2, and 1 for second respectively. As seen from figure the first configuration has
better BER performance than the second. The reason for this is that as the number
of antennas rises, the capacity increases linearly as a result of the multiplexing gain.
Therefore for a fixed transmit power and bandwidth at high SNR, increasing the
number of transmit and receive antennas results in an increase of the capacity and
vise verse.

FIGURE 5.10: The effect of a number of antennas on the BER per-
formance of the DCNN detector with different antenna configuration

using, fd=0.1,corolation factor=0.9

5.5 Result comparison with related work

In [47] a deep learning detectors with and without accurate CSI are proposed to
estimate and detect information bit considering the effect of imperfect CSI. The ar-
chitecture of the DCNN model is the same as the model we use. The system setup
is only considering base station and user but, in our setup, we consider eavesdropper
relay node also we consider for both AF and DF cooperation protocol. By fine-tuning
the optimizer parameter, the result we get has a gain difference of about 3dB.
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Chapter 6. Conclusion and
Recommendation

6.1 Conclusion

This paper studied the secure MIMO communication with imperfect CSI for coop-
erative relay network by zero forcing the equivalent channel fading matrix between
legitimate RN and eavesdropping RN and then by estimating the equivalent channel
fading matrix between RN and source and, RN and destination. The pattern of this
imperfect version of the channel fading matrix is learned by the DCNN to produce
accurate CSI then a maximum likelihood detector is used to extract the information.
The Simulation was done for different performance factor parameters like imperfect
correlation factor, doppler frequency, and the number of antennas to show the BER
performance of the system. The results show that the DCNN detector has a higher
gain performance than the standard maximum likelihood detector.

6.2 Recommendation

The following few promising future works are recommended by the author

• The security issue in cooperative communication can’t only mitigated with
help of accurete CSI of legitimate user it also affected by passive eavesdroppers
this is also other interesting area to investigate.

• Even though the DCNN detector shows a great performance improvement than
maximum likelihood detector, the bi-LSTM type deep learning can achieve
more improvement by arranging the data set and training the network
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