
Jimma University

Jimma Institute of Technology

Faculity of Electrical and Computer Engineering

Constructing a Model for Kafi-Noonoo Word

Sequence Prediction Using Transfer Learning

Approach

A Thesis Submitted to the School of Graduate Studies

of Jimma University in Partial Fulfilment of the

Requirement for the Degree of Master of Science in

Computer Engineering

Presented by:

TEGENE GAREDEW ABATE

Jimma, Oromia, Ethiopia, March 2022.

2

Advisor: Dr. Kinde Anlay(Assistant Professor)
Co-Advisor: Mr. Fetulhak Abdurahman(MSc.)

Jimma University

Jimma Institute of Technology

Faculity of Electrical and Computer Engineering

Constructing a Model for Kafi-Noonoo Word

Sequence Prediction Using Transfer Learning

Approach

Thesis carried out by:

TEGENE GAREDEW ABATE

 March 2022
Jimma, Ethiopia

Declaration

I declare that the work described in this thesis is entirely my own. No portion of the work

referred to in this thesis has been submitted in support of an application for another

degree or qualification of this or any other university or institute. Any help or source

information, which has been availed in the thesis, has been duly acknowledged

This thesis has been submitted for examination with our approval as the university ad-
visers.

Co-advisor: Mr. Fetulhak Abdurhman(MSc.) Signature:______ Date:________

The thesis had been examined by:

Internal Examiner: Mr. Kris Calpotura Signature: ______ Date:________

Main Advisor: Dr.Kinde Anlay(Assistant Professor) Signature:______ Date:________

Chair-person: Dr. Sirinivasan Trs. Signature: ______ Date:________

External Examiner: Dr. Million Meshesha Signature:______ Date:__March 15, 2022__

Researcher: Tegene Garedew Signature:______ Date:________

Mil
Stamp

Copyright © – All rights reserved. Jimma University
Jimma Institute of Technology
Faculity of Electrical and Computer Engineering, 2030.

Copyright statement

(Signatures)

Jimma University

Jimma Institute of Technology

Faculity of Electrical and Computer Engineering

. .
TEGENE GAREDEW ABATE

AbstractAbstract

This study presents word sequence prediction Language model for Kafi-Nono words.
Text generation, in particular, next-word prediction, is convenient for users because it
helps to type without errors and faster. Therefore, a personalized text prediction sys-
tem is a vital analysis topic for all languages, primarily for Kafi-Nono, because of limited
support for the Kafa language tools. Language model (LM) gives probability of how likely
a sequence of words might appear in a particular order in a sentence, and they are an
essential part of word prediction and natural language processing (NLP) systems. Lan-
guage models have significantly advanced after the invention of Neural Network Language
Models (NNLMs) called Transformers. Transformers have become the state-of-the-art lan-
guage modeling tools for many NLP tasks because of their superior performance compared
to N-gram models. Similarly, word prediction systems have improved at a considerable
pace over the past decade. Though Kafi-Nono is spoken by a significant number of peo-
ple, there is no word prediction system developed sofar for the language; this thesis is a
first attempt to develop a word prediction language model for Kafi-Nono. We have applied
cross-lingual transfer technique on the latest deep learning transformer model to develop
the system. The main objective of this study is to develop word prediction language model
that can predict next word/phrase for Kafi-Nono. The corpus was collected from books,
news, cultural documents, and history of the language speaking societies for the sake
of this study only. In order to develop the model, we have used unsupervised machine
learning method called transfer learning. The transformer model used in this work is
Generative Predictive Transformer(GPT2), which is made of 12 layers of NN, 768 Hidden
units per layer, 768 Code context length, 768 Embedding dimension and 12 Attention
heads. Transfer learning helped to overcome the problem of data scarcity for this lan-
guage and enabled us to adapt the power of neural networks to get reasonable result with
less effort. The idea behind the approach is to overcome the problem of a low-resources
of the language, and handle the vast morphological inflection behaviour and scarcity of
training data for Kafi-Nono by using unsupervised approach. This makes our approach
effective for prediction problems where there is lack of resources for the language. For our
experiment we have divided the dataset in to training and evaluation parts each with a
dataset of 80% and 20% respectively.A separate testing data is also prepared to evaluate
the final model. To evaluate the performance of our model, we have implemented two
types of evaluation metrics; human(extrinsic) evaluation and automatic(intrinsic) evalu-
ation called perplexity. The result claimed that our model yields an accuracy of 89% in
human evaluation and 4.7 in perplexity. The achieved result was encouraging;. However;
we trained our model with a mix of data from all dialects and also tonal features are not
treated in our data.So, handling this two problems in the data can bring better result.

I

Keywords
Language Modeling,Word Predictions,Transfer Learning,Transformers,Kafi-nono

AcknowledgementsAcknowledgements

First of all, all praise be to the Almighty God, for giving me the blessing, the strength,
the chance and endurance to complete this study. Next, I would like to express my
sincere gratitude to my advisor Dr. Kinde Anlay for his time, generous guidance, patience
and encouragement throughout the whole thesis work, from which I have learned a lot
regarding my title. I would also like to acknowledge Mr. Fetulhak Abdurrehman for
his suggestive and constructive comments which strengthen this research work. He has
been working day in day out with me in the all over work. To my family who have been
with me in every ups and downs during all my study period. I extend my thanks to the
colleagues for providing me the necessary data that is important for training and testing of
the prototype developed. Finally, my gratitude goes to all my classmates for the discussion
we have and for the ideas we share which was very helpful for the successful completion
of this work.

TEGENE GAREDEW ABATE

III

ContentsContents

Abstract I

1 Introduction 1

1.1 Background . 1
1.2 The Trends of Language Technologies . 2
1.3 Transfer learning . 3
1.4 Statement of the Problem . 3
1.5 Objectives . 6

1.5.1 General Objective . 6
1.5.2 Specific Objectives . 6

1.6 Benefit/Significance of the Study . 6
1.7 Scope and Limitation of the Study . 7
1.8 Outline of the Thesis . 7

2 Literature and Related Works 9

2.1 Language Models . 9
2.2 Need for Language Models . 9

2.2.1 Accelerating communication . 10
2.2.2 Human-computer Interaction . 10

2.3 Classic Language Models . 12
2.3.1 Statistical Language Modeling . 12
2.3.2 N-Gram Models . 13
2.3.3 Word Prediction Using Frequencies of Words 14
2.3.4 Word Prediction Using Probability 15
2.3.5 Informed (Knowledge based) Models 15

2.4 Neural Network Language Models . 17
2.4.1 Feed-Forward Neural Network Based Models 18
2.4.2 Recurrent Neural Network Based Models 21
2.4.3 Advanced Models . 22

V

Abbreviations XV

List of Tables XI

Acknowledgements III

List of Figures IX

CONTENTS

2.4.4 Summary . 23
2.5 Transformers for Natural Language Processing 24

2.5.1 The Transformer Algorithm . 25
2.5.2 Selective Focusing . 26
2.5.3 Attention Mechanisms . 27

2.6 Pre-Training Transformers . 27
2.6.1 Corpus . 28
2.6.2 Architecture of GPT . 28
2.6.3 Performance . 29
2.6.4 Training . 29
2.6.5 Limitations . 30
2.6.6 Applications and Subsequent Research 30

2.7 Cross-Lingual Transfer Learning Approach 31
2.8 Multilingual VS Monolingual Models for Cross-Lingual Transfer 32
2.9 Evaluating Language Models . 33

2.9.1 Perplexity . 33
2.10Lexical unit selection for NNLM . 34

2.10.1Word-based models . 35
2.10.2Sub-word based models . 36
2.10.3Character-based models . 36

2.11About Kafi-Nono Language . 36
2.11.1Linguistic Characteristics of Kafi-Nono 37
2.11.2Kafi-Nono Dialect . 38
2.11.3Kafi-Nono Vowels . 38
2.11.4Kafi-Nono Part of Speeches . 39

2.12Related Works . 39
2.12.1Foreign languages . 39
2.12.2African Languages . 42
2.12.3Local languages . 42

2.13Suitability Assessment of Reviewed Methods 43
2.13.1Summary . 45

2.14Proposed Approach . 45

3 Research Methodology 47

3.1 Research Design . 47
3.2 Literature Review . 47
3.3 Data collection and preparation . 48
3.4 Design and Implementation Approach . 48
3.5 Evaluation . 49

VI

CONTENTS

4 Methods and Techniques 51

4.1 Overview . 51
4.2 Data Preparation . 53

4.2.1 Data Processing . 54
4.2.2 Sentence Segmenting . 54
4.2.3 Tokenization . 55

4.3 The Pre-Trained Transformer Model . 55
4.4 Proposed System Architecture and Components 57

4.4.1 Data Preprocessing Component . 57
4.4.2 The Transformer Component . 58
4.4.3 Text Cleaning . 58
4.4.4 Text Normalization . 59
4.4.5 Tokenization and Input Encoding . 60

5 Experiment, Results and Discussion 63

5.1 Overview . 63
5.2 Dataset and Data Processing . 63

5.2.1 Data Partitioning . 64
5.3 Experimental Setup . 65
5.4 Training and Test Results . 66

5.4.1 Long-Short-Term Memory-LSTM Model 67
5.4.2 LSTM Model Training . 67

5.5 Pretrained Model . 69
5.5.1 Fine-tuning Hyper-parameters . 70

5.6 Training Procedure for Pretrained Model . 71
5.6.1 Tokenization and Input Formating 71
5.6.2 Splitting the Model and Gradual Unfreezing 72
5.6.3 Pretrained Model Training . 74

5.7 Sequence Decoding . 76
5.7.1 Suggestion Processing . 77

5.8 Model Comparison and Selection . 78
5.9 Experiments . 79

5.9.1 How Fast Transformer Model Adapts to KN Lang. Pattern 79
5.9.2 Training Loss In Fine-Tuning . 80

5.10Evaluation . 83
5.10.1Perplexity . 83
5.10.2Human Evaluation . 84
5.10.3Evaluation Results . 85

5.11The Prototype . 86
5.12Discussion . 87

VII

CONTENTS

5.12.1Tones . 90
5.12.2Kafi-Nono Dialects . 90
5.12.3Domain . 90

6 Conclusion, Contribution and Recommendation 91

6.1 Conclusions . 91
6.1.1 Future Work Recommendation . 94

References 102

VIII

List of FiguresList of Figures

4.1 The General Method of Language Modeling 52
4.2 The Fine-Tuning Process- LM was first trained with huge English language

Unlabled data (LM pretraining) and then fine-tuning and training on top of
the frozen embeddings with Kafi-nono language unlabeled data 52

4.3 Kafi-Nono tokenizer . 55
4.4 The pre-trained model (GPT2) Structure 57
4.5 The proposed system architecture . 58

5.1 LSTM Model Structure . 68
5.2 LSTM Model Details . 69
5.3 Currently GPT2 publicly available model sizes 69
5.4 Sample of BPE KN Tokens . 72
5.5 Updating Model Embedding . 73
5.6 Splitting and gradual unfreezing . 74
5.7 updating Embedding layer with new dataset 75
5.8 The positions of special tags "<|sos|" and "<|eos|>" in the generated text . 80
5.9 Sample automatically generated at 200th step- We observe that there are

repeated words showing the model’s early leaning stage. 81
5.10 Sample text automatically generated at 400th step-We observe that the

model already removed repetition which observed in the previous 200th
step and is putting the words in context well improvement is clearly shown 82

5.11 Training loss . 83
5.12 Perplexity . 84
5.13 User Interface for the system . 86
5.14 Initial word Entered . 87
5.15 Generated Kafi-Nono words . 87

IX

2.1 An example of accelerated human-computer interaction by Google . . . 10
2.2 An example of accelerated interaction between people taken from 10
2.3 Possible interpretations of a spoken phrase 11
2.4 An overview of the network architecture of neural probabilistic language
model taken from [1] . 19
2.5 Recurrent NNLM Architecture taken from [2] 22
2.6 Cross-lingual Transfer Learning Types taken from 32

user
Typewritten text
Figure

user
Typewritten text
 Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

user
Typewritten text
Figure

List of TablesList of Tables

2.1 The Phonemic feature of Vowel length and tone 38
2.2 Kafi-Nono Vowels . 38

4.1 Data set Statistics . 53

5.1 LSTM Model Evaluation result . 68
5.2 Well-performing values of model architecture hyperparameters 76
5.3 The LSTM predicted results. 78
5.4 Comparison by time. 78
5.5 Comparing Evaluation on the base model(LSTM) and Pretrained model . . 78
5.6 Sample Output comparison from both models 79
5.7 Sentence Samples, generated by LSTM and KNGPT2 conditioned on prefixes

for human evaluation . 85
5.8 Output examples from four systems of the Pretrained model 89

XI

user
Typewritten text
Table

user
Typewritten text
Table

user
Typewritten text
Table

user
Typewritten text
Table

user
Typewritten text
Table

user
Typewritten text
Table

user
Typewritten text
Table

user
Typewritten text
Table

user
Typewritten text
Table

user
Typewritten text
Table

user
Typewritten text
Table

AAC Augmentative and Alternative Communication

ACL Association for Computational Linguistics

AI Artificial Intelligence

BERT Bidirectional Encoder Representations

BiLSTM Bi-directional Long-Short Memory

BPE Byte-Pair Encoding

FFNNs Feed Forward Neural Networks

GPT Generative Pre-Training

HMM Hidden Markov Model

KN Kafi-Noonoo

KNGPT2 Kafinoonoo Generative Pretraining

KSS Key Stroke Per Second

LMs Language Models

LSTM Long-Short Term Memory

NLP Natural Language Processing

NMT Neural Machine Translation

OOV Out-of-vocabulary

POST Parts-of- Speech Tag

RNN Recurrent Neural Network

SOV Subject-Object-Verb

TPU Tensor Processing Unit

WP Word Prediction

XLMR Cross-Lingual Model - Representation
XV

Abbreviations

Introduction

1.1 Background

Language is one of the distinct characters of human being and is an important
component of our lives. In written form it serves as a tool to transfer knowledge from one
generation to the next. In spoken form it serves as a primary means of communication
with others to accomplish our day-to-day activity. Natural Language Processing (NLP),
therefore, is an area of research and application that explores how computers can be
used to understand and manipulate natural language text or speech to carry out useful
tasks [3]. Some of these useful tasks are word prediction, Automatic Speech Recognition
(ASR), Machine Translation (MT), optical character recognition (OCR), question answering
(QA) and so on.

Ethiopia is a linguistic diverse country with more than 80 spoken languages. The
development of human language technologies (HLTs) for these languages can contribute
meaningfully for multilingualism and language development.

So far considerable effort from government universities, and some private educa-
tional institutions and individuals have been made to develop NLP resources for Ethiopian
languages, but most of the languages are still considered low-resource for being with lit-
tle data that can be used to develop NLP applications and technologies. The continuing
development and advance of core technologies is a key step towards getting the goals set
by the government policies, while also being a precondition for downstream NLP systems,
such as machine translation. Therefore, it is vital that these development efforts are in
agreement with international best practices and trends.

Language Models(LM) give a probability of how likely a sequence of words might
appear in a certain order in a sentence. LMs are applied to a wide range of modern
natural language processing (NLP) applications. LMs are important for automatic speech
recognition (ASR), machine translation, and spelling correction systems, to name a few.
LMs form a significant part of NLP applications because many tasks depend on the quality
of the LMs used. The quality of LMs is determined with perplexity (PPL), which tells how
well they can predict the correct sequence of words[4].

The task of next word prediction is finding the most possible next word(s) based on
words around it. This is the archetypal prediction problem in NLP. Most NLP tasks require

1

Chapter One : Introduction

Chapter One 1. Introduction

prediction of most possible word, part of speech tag (POST) [5] or any other token, when
given the context. For example, word-sense disambiguation, speech recognition, accent
restoration, word choice selection, identifying discourse markers and context-sensitive
spelling correction. Most methods implemented to these problems are based on n-gram
and the like.

1.2 The Trends of Language Technologies

Approaches for modelling language are broadly classified as statistical and neural
models. The models have their own advantages and shortcomings. For example, statisti-
cal models such as N-gram are limited only on the available dictionary words, that mean
N-grams cannot produce new words. And though neural models are far better than statis-
tical methods, they require a vast sum of training data making it difficult for low-resource
languages.

The trend of language technologies has shifted from rule-based systems, which
were popular until the 1990s [6, 7]], to data- driven, statistical, or supervised machine
learning based methods like as Hidden Markov Models (HMMs), memory-based learning
and decision trees [7, 8],6], and over the last decade the trend shifted again from machine
learning to neural networks [8, 9].

As of 2011, [10] showed that neural networks could overtake other machine learn-
ing methods available at that time on POST, NER, phrase chunking, and semantic role
labelling tasks. Later in 2013, Neural Machine Translation (NMT) [11, 12, 13] has proven
itself as the new state-of-the- art machine translation. NMT systems have achieved im-
provements of up to 20 BLEU points [14] over statistical language modeling systems
[15], which is currently in use by technology giants like Google [15] and Facebook [16].
Recently, deep learning based pre-trained transformer models have proved outstanding
results in numerous language tasks.

Most recently, transfering the pre-trained transformer models like ELMo (Embed-
ding from Language Models) [17], GPT (Generative Pre-Training) [18], GPT-2 [11] and BERT
(Bidirectional Encoder Representations from Transformers) to low resource languages be-
come the dominant practices for state-of-the-art NLP results. GPT2 is the successor of
GPT. Although both GPT-2 and BERT are capable of text generation, Wang and Cho [7]
shown that GPT-2 based generations are better in quality. Actually, the powerfulness of
GPT-2 is claimed to be so high that it can be the risk of malicious or dangerous use. For
this reason, OpenAI did not release the largest model to give more time to discuss about

2

1.3 Transfer learning

the concerns.

1.3 Transfer learning

Though Neural language models require a vast sum of training data making it
difficult for low-resource languages, they often outperform traditional language modeling
methods. To tackle the problem of Neural language modeling systems shortfall for low-
resource languages, transfer learning has been proven to be an effective approach.

Transfer learning is using knowledge from a source model trained with high re-
source language (such as English) to improve the performance on a target low resource
language [19]. A low-resource language is defined as one for which there are few, if any,
documenting resources such as corpus, grammars, or written texts. For communities
who speak rare and under-served languages, these kinds of materials are important for
preserving and promoting their culture, linguistic heritage, and identity.

In this thesis, we have used the state-of-the-art (SOTA) transformer model by ap-
plying transfer learning technique which best fit for morphologically rich and low resource
languages, since Kafi-Nono is morphologically complex.

Generally, we have observed that how a few training steps are needed for our model
to predict the first text that looks like a Kafi-Nono text and the coherence and complication
of the generated words are very remarkable, although not all text is equally generated in
terms of quality.

1.4 Statement of the Problem

The field of Artificial Intelligence (AI) has changed many aspects of human living,
specially the human communication. The foundation for communication is language.
This day there are a number of AI based communication applications that are used on
a daily basis. For example, we practice AI based navigation systems like Google Maps
and Waze to find the shortest way to our destination; we use AI assisted search engines
like Google and Bing to search for relevant information; and AI based personal assistant
systems like Siri and Alexa to organize our daily schedules, among many other things
[18]. And all of these applications are based on language technology.

3

Chapter One 1. Introduction

NLP primarily improves the development of languages through digital resources
development and efficient language usage in digital communication. In the modern world
of today the significance of computers and handheld devices is immense. Texts are the
primary communication mechanism in the modern digital devices.

Unfortunately, a significant proportion of people all over the world have not ben-
efited from these AI technologies, primarily because of lack of access to these technolo-
gies. In particular, this lack of access to AI technologies is very common to low-resource
communities, communities which are suffering from financial and social impoverishment
[18]. Kafi-Nono is one of the previously marginalized and highly low-resource languages of
Ethiopia. However, it is currently spoken and officially working language by about three
million people.

Kafi-Nono is a language which is spoken by around 3 million people in south western
region of Ethiopia. Emphasis was not given to the language before 1987 by the previous
governments. The language started as official working language of the Kafa zone since
1987 and offered as independent course both at primary and secondary school level in
Kafa zone [61,85].

One of the existing problems with Kafi-Nono language is lack of automatic word
completion system. Some speakers of the language may not be familiar with how to spell
some words in Kafi-Nono because of pronunciation difference due to different pronuncia-
tion in different zones of the regions language hence they are writing as they are pronounc-
ing which may not be correct.. The problem is more severe for peoples where Kafi-Nono
is their second language. The lack of word completion, creates multiple problems with
Kafi-Nono texts literary works such as journals, Books, fictions and some newspapers.
This may undermine the wide usage of the Kafa language, limits the amount of linguistic
research in the region and impacts image of Kafi-Nono for new generation due to mis-
spelling the words. This has a potential to restrict readers to enjoy books published using
Kafi-Nono language due to wide range of inconsistencies in spelling. As a result, it can
be safely assumed that books and other knowledge produced about the Kafa people may
lead to varying interpretations and hence the future generation may have little knowledge
of culture, custom, religion, etc. The problem of misspelling is magnified when non-Kafa
language history Speakers try to create document using text editing software.

Word sequence prediction, being the product of NLP and AI, is one of the most
broadly used systems to enhance communication in augmentative and alternative com-
munication [16]. A number of word sequence prediction systems exist for different local
languages to assist users on their text entry. Amharic [20, 21, 22], Afan Oromo, from
some of the local languages and Swedish [23, 24], English [25], Italian [26], Persian [27],
Bangle [16] from international languages are some of word prediction studies conducted

4

1.4 Statement of the Problem

lately. These studies contribute in reducing the error, effort and time to write a text for
typesetting, and for people who are not able to use a conventional keyboard. As to the
researcher knowledge there is no attempt to come up with word prediction for Kafi-Nono
language.

Kafi-Nono has most of the features of agglutinative languages where all certain
forms (morphemes) are affixes (mostly suffixes and sometimes infixes). In agglutinative
languages like Kafi-Nono most of the information is communicated through affixes (infixes
and suffixes) attached to the roots or stems. For example, the verb daamo which mean
take can be inflected in to more than 90 forms like daamme, daamite, daamaache, etc. to
mean, we will take, taken, not taken, etc. Since Kafi-Nono is morphologically very rich,
derivations and word formations in the language involve a number of different linguis-
tic features including affixation, reduplication and compounding [28]. The difference in
length of both vowels and consonants induces difference in meaning. For example, the
Kafi-Nono word baaroo means Holiday while baroo means another or forehead and baaro
means corn or maize.

In addition, by using word sequence prediction the swiftness of typing could be
greatly advanced when people write Kafi-Nono texts and at the same time correct mis-
spelled word that create miscommunication between Authors and readers. A Single letter
may change the meaning of the word if misspelled. Furthermore, lack of Kafi-Nono word
auto completion impacts non-native speakers from learning Kafi-Nono language in its
proper form. Due to misspelling and low speed of typing, the new Kafi-Nono speakers
could develop low-esteem that prevents them from practicing the language. Therefore,
this study is undertaken to solve the above listed problems by providing Kafi-Nono word
auto completion. The purpose of this study is to design and develop word sequence pre-
diction language model for Kafi-Nono with inclusion of context information. The developed
model can be used in predictive text entry systems and writing aids. In this research we
are therefore interested in answering the following main Research questions:

• how to prepare data set of Kafi-Nono for transfer learning?

• which model of transfer learning is suitable for Kafi-Nono word prediction?

• To what extent the proposed Kafi-Nono word sequence prediction works?

5

Chapter One 1. Introduction

1.5 Objectives

1.5.1 General Objective

The general objective of this research is to plan and develop a word sequence pre-
diction model for Kafi-Nono language.

1.5.2 Specific Objectives

The specific objectives of this thesis are to:

1. Analyze and study the morphology and structure of Kafi-Nono language

2. Construct Kafi-Nono corpus.

3. Develop word sequence prediction model.

4. Evaluate the performance of word sequence prediction model using collected data.

1.6 Benefit/Significance of the Study

Word Prediction is mainly useful for users with motor losses. The prediction of
the best probable words benefits to minimize the number of keystrokes needed to type
a text and frequently becomes vital for users with speech and language disabilities or
dyslexia: it has been proven that such systems assist users representing an Alternative
and Augmentative Communication (AAC) technique, [8]. Specifically, our proposed system
will benefit in such a way that:

• Increase NLP resource for the target language.

• Contribute for the development of Kafi-Nono language.

• assist physically disabled individuals who have typing difficulties

• speed up typing by decreasing keystrokes for mobile phone, computer and other
hand-held device users.

6

1.7 Scope and Limitation of the Study

• Suggesting correct words, hence giving error free text entry.

Furthermore, this study will be a stepping stone for other NLP researches such as Machine
translation, speech recognition etc.

1.7 Scope and Limitation of the Study

The scope of this study is to construct word sequence prediction model to inves-
tigating word prediction for Kafi-Nono words at word and phrase level which study the
actual prediction of the word given in corpus.The technique used was an unsupervised
machine learning approach particularly based a deep learning approach, using transfer
learning. This study is conceptually limited to developing prototype for Kafi-Nono words
that auto complete words. Due to the absence of standard training and test corpus, we
have prepared mixed dialect training and test sets data for the experimentation which
needs further development for other purposes.

1.8 Outline of the Thesis

This chapter begins with the discussion about the background of the research.
This is followed by the problem statement and then the objective of this research and
the methodology. Finally, the scope and the significance of the study are described. The
outline of the remaining chapters is given below:

CHAPTER 2: Presents the literature and related works related to language model-
ing and next word prediction where it starts with Language model, overview of Artificial
Neural Networks, Machine Learning for Natural Language Processing, Selective Focusing,
Attention Mechanisms, Transformers, Pre-Trained Transformer for Text Generation, Cor-
pus, Architecture of GPT, Performance of transformers, Scale-Up for Better Performance,
Training, Restrictions and Partial Release, Limitations of transformer, Applications and
Subsequent Research on transformers is discussed.

Comparison of Multilingual Vs Monolingual Models for Cross-Lingual Transfer is
presented and the Transformer Model algorithm is overviewed. And also we have provided
an overview About Kafi-Nono Language, Linguistic Characteristics, Dialect, Vowels, Kafi-
Nono Part of Speeches. Evaluation of the reviewed methods for the Suitability to Kafi-

7

Chapter One 1. Introduction

Nono Language is discussed. Finally Related Works of Local languages and Other African
Languages are summarized.

CHAPTER 3: The Chaper discusses the Methodology, the Model Selection, Trans-
former Language Modeling Algorithm, Datasets and Data Quality; Representative Data
and Deduplication. And the Proposed Approach briefly. Also the KN WPS System Archi-
tecture, Text Data preprocessing- The Embedding Component- Data Processing, Sentence
Segmenting, Tokenization, The Pre-Trained Transformer Model Input Encoding Byte Pair
Encoding (BPE) are presented.

CHAPTER 4: In this chapter the Experiment, Results and Discussion on Dataset,
Experimental Setup, The Prototype, Fine-Tuning Hyper-Parameters, Training-Hyper pa-
rameters, Training and the experiment on How Fast Transformer Model Learns the KN
Language Pattern, the Training Loss in Fine-Tuning and Evaluation are presented. Dis-
cussion on on the results are also presented

CHAPTER 5: Presents the conclusion and recommendations. This chapter also
includes the summary of contributions and future research works.

8

Literature and Related Works

This section we will examine momentarily on the chosen themes that are identified
with our work.

2.1 Language Models

The field of Natural Language Processing (NLP) has been growing quickly over the
previous decade. A portion of this advancement has come about because of advancement
of computational power, such as, bigger memories and powerful Graphical Processing
units (GPUs). These has empowered bigger datasets processing and computationally
heavy estimations [29], [30], [31]. These computational performance enhancements have
likewise empowered scientists to utilize a lot more significance in preparing corpus for
language Modeling (LM), a sub-field of NLP [4].

One can consider language modeling as a task of giving a probability to given sen-
tences. Practically speaking, this would imply that when one presents a sequence of words
into a language model, the language model will yield a likelihood of how possible these
words will show up in the provided request. This section will present the significance of
language models in current society and clarify how the traditional (non-neural) language
models work.

2.2 Need for Language Models

Language modeling in current times started during the 1980s when the primary
models of some importance were created [32]. These first models were intended for writ-
ten words, and, from that point forward, the model has been adjusted and improved to
incorporate spoken words. Today, language models are expected to speed up and up-
grade the communication between people just as for the association between people and
PCs. Some substantial and apparent use cases for language models are smart keyboards,
response suggestions for emails [33], auto-correction for spelling, and remote helpers
(virtual assistants).

9

Chapter Two : Literature and Related Works

Chapter Two 2. Literature and Related Works

2.2.1 Accelerating communication

The most apparent language model implementation, concerning the speed increase
of communication between people, is the auto-completion apparatus on a smart cell
phones. Google previously began utilizing auto completion in its web index 2.1 in 2004
to improve and speed up the communication among people and PCs.

These days, both Google and Apple are utilizing language models in their product
to predict subsequent words when composing messages 2.2. This forecast of resulting
words should be possible with supposed measurable language models or neural network
language models (NNLMs). Today, nonetheless, the preference is more for the utilization
of NNLMs because of their prevailing performance, which will be discussed in this section.

(a) iPhone: apple inc. (b) android: by google

2.2.2 Human-computer Interaction

Language models undertake a basic part in human-PC collaboration with speech
recognition system (ASR) frameworks when ASR frameworks look to comprehend the set-

10

Figure 2.1: An example of accelerated human-computer interaction by Google [99]

Figure 2.2: An example of accelerated interaction between people taken from [100]

2.2.2 Human-computer Interaction

ting of what the human is attempting to say. For people, this coordinating of speech or
voice to words is simple since we have learned, through experimentation, to naturally
coordinate with the right words and expressions for the duration of our lives. Although,
PCs come up short on the context oriented information that is important for successfully
preparing spoken communication. For instance, if a human inquires: Can you hear me?

Now, as the pronunciation of “hear” and “here” are so similar, the ASR may inaccurately
interpret the question as: Can you here me? This inquiry would look bad for the individual
with background information that assists with comprehension or "predict" the proposed
expression. The language model is the instrument that tells the speech recognition sys-
tem, which of the given arrangement of potential expressions, is the most likely. Thus,
the LM is fundamental for the presentation of a speech recognition framework as it prob-
ably won’t be certain which words have been said. For instance, because of comparative
pronunciations, poor hearing of the voice, or loud background noise.

A language model can identify phrases that make no sense to a human speaker
because they have learned the probability of sentences by seeing vast amounts of written
text. A language model, trained with quality data, should not have seen a sentence "Can
you here me?" but it has most probably seen some combination of a sentence "Can you
hear me?". Hence, if a speech recognition system asks the language model which one of
these is most likely to appear, it will give a higher probability to the "Can you hear me?"
sentence. This way, LMs help ASR systems understand contextual information, which
improves accuracy and performance in speech recognition. If speech recognition systems
were not using a language model in deciding what has been spoken, it would generate
much more sentences that would not make sense.

Some voice aides can even show all potential understandings of a human’s spoken
expression. For example, Apple’s Siri is one such voice assistant, as displayed in 2.3

(a) (b) (c)

11

Figure 2.3: Possible interpretations of a spoken phrase [12]

Chapter Two 2. Literature and Related Works

2.3 Classic Language Models

The historical background of language models is rich. It began from the classic
methodologies dependent on statistical language modeling, such as, n-gram models that
utilized diverse smoothing procedures to deal with concealed n-grams [34]. One late
synopsis of this set of experiences of language modeling is done by [35]. The most recent
advancements in the quickly arising field of language modeling are discussed in this work.

2.3.1 Statistical Language Modeling

In this work, since there are many statistical methods, we will only see the most re-
cent one, N-gram models One key capacity of NLP has been Statistical Language Modeling,
which is basic for speech recognition and machine interpretation [32].

Statistical Language Modeling is intend to become familiar with the probability P(w1,
..., wn) of a grouping of words w1, ..., wn [2], [36], [28]. The chain rule 2.1 of probability
can be used to ascertain this likelihood

P(w1, w2, .., wn) =
n∏

i=1

P(w|w1, w2, .., w1) 2.1

As there is much variation in the number of words that may precede a given word, and also
due to the complexity of calculating P(wi|w1, ..., wi-1) for many words i, the probability
of a word is typically conditioned on a window of m previous words 2.2.

P(w1, ..., wn) ∼
n∏

i=1

P(wi |wi −m, ..., wi − 1) 2.2

There are various approaches to utilize a language model. For instance, the model can
expect and foresee succeeding words; it can likewise give probabilities to sentences. The
accompanying model exhibits this. The language model may figure that the sentence:
that is when I saw the three big giants walking towards me has a greater likelihood of
appearing in a text than the same sentence with a different ordering of the words walking

big that saw is the me three when I giants towards

In addition to other things, this is utilized for tasks that recognize words in vague
settings, such as recognizing human speech, where the information is noisy. The accom-
panying Equation 2.2 presents one of the settled in traditional language models (called

12

2.3.2 N-Gram Models

n-gram models) that have been utilized by the analysts for quite a long time.

2.3.2 N-Gram Models

The N-gram model is a language model with low difficulty, which is just an arrange-
ment of N words. For example, an arrangement of two words is a bigram (or 2-gram): "I
saw" or "walking towards". Adding a word to the grouping makes a trigram (or 3-gram)
that contains three words; "walking towards me". In a trigram model case, the likelihood
of a grouping of words w1, ..., wn would be determined in the accompanying manner 2.3

P(w1, ..., wn) ∼
n∏

i=1

P(wi |wi − 2, ..., wi − 1) 2.3

A trigram model can be generalized because it observes the two previous words in a given
sequence, so it can be calculated as an N-gram that takes into account N-1 words (2.4)

P(w1, ..., wn) ∼
n∏

i=1

P(wi |wi−N+1, ..., wi−1) 2.4

Here we use the Markov assumption, which is the term for the basic assumption that
the probability of a word is only dependent on a limited number of previous words. An
easy way of calculating trigram or N-gram probabilities is by using maximum likelihood
estimation (MLE) [28]. The estimate given by MLE for the N-gram probability of a word wi
given a previous sequence of words h = wi|wi-N+1, ..., wi-1 can be calculated by summing
the number of times wi appearances in the context h, and normalizing this by dividing
every observation with h 2.5 [36], [37].

P(wi |wi−N+1, ..., wi−1) =
count(wi−N+1, ..., wi−1, wi)

count(wi−N+1, ..., wi−1)
2.5

For instance, consider that the words "three big" gives the context of those words h, and
we wish to forecast the likelihood that the next word in the sequence w will be "giants". A
training corpus offers a trigram model the ability to count the number of times "three big"
was followed by "giants" and calculate 2.6

P(wi |wi−N+1, ..., wi−1) =
count(ȷthreebiggiantsȷ)

Count(ȷthreebigȷ)
2.6

13

Chapter Two 2. Literature and Related Works

However, even N-gram models that have been trained with a large corpus are problematic.
The reason for this is that it is challenging to calculate N-Gram probabilities. Like our
previous example, numerous sequences of words typically appear very infrequently, only
once, or not at all [36], [37], [32]. Let us consider the three-word sequence "walking
towards me". What is the probability of having the word "me" following a sequence of
words "walking towards"? A training corpus may contain not a single instance of that
particular sequence. As a consequence, count (walking towards me) would be zero, and
hence, P(me | walking towards) would also be zero. This is problematic as the sequence
of words "walking towards" may appear a number of times in the corpus. Forecasting
with Equation 2.7 would fail to correctly estimate the actual likelihood of the sequence
appearing.

P(me|walkingtowards) = 0 2.7

Thus, the use of a standard N-gram model would yield such inaccurate zero probabilities
on far too many occasions, making the model’s predictions very noisy. Therefore, in order
to circumvent probabilities of zero, it will be necessary to apply smoothing techniques.
These smoothing techniques remove some probability mass from frequent events, redis-
tributing it to unseen events. For example, those that have been assigned zero probability
by the N-Gram model. [36] [38], [37]. There are significant issues related to the use of
N-gram models, even though they are effective in certain contexts with a limited range of
words and phrases. Modern recurrent neural network language models (RNNLMs) can
offer improved perplexities and error rates in speech recognition systems compared to
these traditional n-gram approaches [2], [5], [39], [40]. The following section introduces
such RNNLMs.

2.3.3 Word Prediction Using Frequencies of Words

The simplest word prediction method is to build a dictionary containing words and
their relative frequencies of apparition. When the user starts typing a string of characters
c, the predictor offers the n most frequent words beginning by this string in the same
way they are stored in the system [41]. Then, the user can choose the word in the list
he or she wanted to enter or continue typing if it is not in the list [41]. There are several
studies about word frequencies in different languages, for instance [42] gives information
about the frequency of word occurrence in English used by some disabled people. In
this approach Using the frequency every single word or unigram word model, it is clear
that some of the predicted words are not appropriate because context or history of words
is not taken into account. This means word sequence history would provide a clue for

14

2.3.4 Word Prediction Using Probability

appearance of the next words. Nevertheless, in most case, it is difficult to calculate the
probability of entire sequence. Based on Markov assumption in which only last n-1 word
of the history affects succeeding word. Two common statistical models those provide a
compatible technique to compute probabilities of next words though Markov model are
N-gram and HMM [43] [44].

2.3.4 Word Prediction Using Probability

Another possibility is to use the relative probability of appearance of a word depend-
ing on the previous one. To implement this system a two-entries table is needed to store
the conditional probability of appearing of each word Wj after each Wi. If the dictionary
contains N words, the dimension of the table will be of N*N. That is, it will have N2 entries,
but most of the values in the dictionary will be zero or close to zero. In some cases, it could
be possible for the system to give proposals before entering the beginning of a word. The
recentness of use may also be included in this approach This method is hardly adaptable
to include the user preferred words because the dimensions of the dictionary cannot be
changed. This difficulty leads to the design of modified versions, like the one that uses
only the most probable pair of words.

2.3.5 Informed (Knowledge based) Models

Syntactic Word Prediction Using Probability

This approach takes into account the syntactic information inherent to the lan-
guages. In this way, the set of words that are candidates to be proposed by the predictor
is restricted to the ones that match the most probable syntactic role in the current position
of the sentence, thus increasing the hint rates. This syntactic vector dimension is smaller
than the one used in the previous approach, and the proportion of probabilities which
are close to zero is also smaller. Each entry in the dictionary will associate a word with
its syntactic category, and its frequency of apparition. Words can be sorted by syntactic
categories to facilitate the selection process. When a word is syntactically ambiguous,
that is, when more than one category is possible for a given word, one entry for each pos-
sible category may be created. The table of conditional probabilities of syntactic categories
has a fixed size and it is built before the use of the predictor. Adaptation to the user’s
lexicon is possible because there is no need to increase the size of the table. New words
are included in the dictionary with a provisional syntactic category deducted from its use.

15

Chapter Two 2. Literature and Related Works

Syntactic Word Prediction by Using Grammars

In these approaches, the current sentence is being parsed using a grammar to get
the most probable categories. Parsing methods for word prediction can be either top-down
[45]] or bottom up [46].

So, there is a need to define the syntactic rules (typically LEFT <[RIGHT]+, usually
being LEFT and RIGHT some syntactic categories defined in the system) that are used
in a language. Within a rule, it could be possible to define concordance amongst the
components of the right part (either in gender and/or in number). Then, the suggestions
may be offered with the most appropriate morphological characteristics. wet is necessary
to leave open to the user the possibility of changing the word’s ending. For example, if
there is a mismatch in the rule used by the system, it may be necessary to modify the end
of an accepted proposal. The dictionary is similar to the one used in the previous approach
with the addition of morphological information to allow concordance. The complexity of
this system is also larger because in this case, all the words of the sentence that appear
before the current word are taken into account, while in the previous approaches only
one previous word was used. The adaptation of the system for the new words is made
increasing the word frequencies and the weights of the rules. The inclusion of new words
is similar to the one in the previous approach [41].

Semantic Word Prediction

These methods are not very used, because their results are similar to those of the
syntactic approaches, but the increase in complexity is great. Maybe the simplest method
that can be used is the semantic word prediction by using parsing methods. In this ap-
proach each word has some associated semantic categories, while in the previous one
categories were purely syntactic. The rest of the features (the procedure, complexity,
structure of the dictionary, adaptability...) are similar to the previous one. Nevertheless,
the problem of giving semantic categories to the words is very complex and it results
difficult to be programmed [41]. There may be other methods to treat the semantic in-
formation, but their complexity is going to be very great for a real-time system as the
word predictors are intended to be, even the time requirements maybe a few seconds

16

Later on, the system may require some help from the user to verify if the categorization
was correct. wet could be also possible to add some morphological information in the
dictionary to propose the words with the most appropriate morphological characteristics
(gender, number). This could increase the hint rate of the predictor .

2.4 Neural Network Language Models

between two consecutive keystrokes of an impaired person are not very strong for the
computational capacities of today’s ordinary equipment like hand held devices.

2.4 Neural Network Language Models

In this section, our purpose is to give an overview of the most important LMs. Each
technique is described and along with its performance on LM is discussed. Our structured
overview makes it possible to detect the most promising techniques in the field of LM.

Neural networks [12] are a collection of algorithms that is aimed at recognizing pat-
terns. Their nature is very similar to the human brain. Machine perception, labelling,
or clustering of source data helps to interpret sensory data. All real-world data (images,
sound, text, or time series) must be converted into vectors for a neural network to rec-
ognize numerical patterns. Artifi- cial neural networks (ANN) consist of many deeply
interconnected processing elements (neurons) that collaborate to solve a problem. ANN
typically includes numerous processors that run parallel and are organized in tiers. The
same as optic nerves get input in human visual processing first level gets the initial in-
put. Each subsequent level accepts output from the level prefacing it, not from the raw
input—similar to the neurons distant from the optic nerve that gets signals from those
closes to it. The last level gives the system result. Recurrent neural networks [13] are
generalizations of a direct transmission neural network that has internal memory. The
RNN is repetitive in nature because it performs the same function for each data entry, but
at the same time, the current output depends on the previous calculation. After receiving
the original data, it is copied and sent back to the periodic network. The decision is based
on an analysis of the current input and the output from the previous input. RNNs can use
their internal state (memory) to process input sequences when direct communication neu-
ral networks cannot. The internal state helps them in duties such as speech recognition
or unsegmented, connected handwriting recognition. Unlike RNN, other neural networks’
inputs are independent of each other. All RNN inputs are interconnected. Drawbacks of
the periodic neural network RNNs are as follows:

1. Gradient problems of disappearance and explosion

2. RNN training is a complicated task

3. In the case of tanh or relu activation function models cannot process very long
sequences

17

Chapter Two 2. Literature and Related Works

Language models (LM) can be classified into two categories: count-based and continuous-
space LM. The count-based methods, such as traditional statistical models,usually involve
making an n-th order Markov assumption and estimating n-gram probabilities via count-
ing and subsequent smoothing. The LM literature abounds with successful approaches for
learning the statistical(count) based LM: modified Kneser-Ney smoothing, Jelinek-Mercer
smoothing [47, 48] etc. In recent years, continuous-space LM such as feed-forward neu-
ral probabilistic language models (NPLMs) and recurrent neural network language models
(RNNs) are proposed. This Neural Language Models (NLM) solves the problem of data
sparsity of the n-gram model, by representing words as vectors (word embeddings) and
using them as inputs to a NLM. The parameters are learned as part of the training process.
Word embeddings obtained through NLMs exhibit the property whereby semantically close
words are likewise close in the induced vector space. Moreover, NLMs can also capture
the contextual information at the sentence-level, corpus-level and subword-level.

Neural language model (NLM) is also known as Continuous-space LM. There are
two main NLM: feed-forward neural network based LM, which was proposed to tackle the
problems of data sparsity; and recurrent neural network based LM, which was proposed
to address the problem of limited context. Recently, recurrent neural network based
approach have achieved state-of-the-art performance. The early proposed NLM are to
solve the aforementioned two main problems of n-gram models. Subsequent works have
turned to focus on sub-word modelling and corpus-level modelling based on recurrent
neural network and its variant — long short-term memory network (LSTM)

2.4.1 Feed-Forward Neural Network Based Models

The first neural approach to LM is a neural probabilistic language model [49], which
learns the parameters of conditional probability distribution of the next word, given the
previous n-1 words using a feed-forward neural network of three layers. An overview of
the network architecture is additionally given in Figure 1. In this architecture,

1. Build a mapping C from each word i of the vocabulary V to a distributed, real-valued
feature vector C(i)Rm, with m being the number of features. C is a |V |m matrix,
whose row i is the feature vector C(i) for word i.

2. A function g over words maps the input sequence of feature vectors for words in
context (C(w_(t − n + 1)), , C(w_(t − 1)))to a conditional probability distribution of
words in V for the next word w_t .

3. Finally, simultaneously learn the word feature vectors and the parameters of that

18

2.4.1 Feed-Forward Neural Network Based Models

probability function with a composite function f, comprised of the two mappings C
and g:

f (i, wt−1, ..., wt−n+1) = g(i, C(wt−1), ..., C(wt−n+1)) 2.8

In this model, each word in the vocabulary is associated with a distributed word feature

Figure 2.4: An overview of the network architecture of neural probabilistic language model
taken from [1]

vector, and the joint probability function of words sequence is expressed by a function
of the feature vectors of these words in the sequence. The model can learn the word
feature vectors and the parameters of that probability function simultaneously. This
neural network approach can solve the sparseness problem, and have also been shown
to generalize well in comparison to the n-gram models in terms of perplexity. However, a
major weakness of this approach is the very long training and testing times. Therefore,
several other open questions for the future are addressed, mostly concerning speed-up

19

Chapter Two 2. Literature and Related Works

techniques, more compact probability representations (trees), and introducing a-priori
knowledge (semantic information etc. to cluster the highly discrete word forms).

Two models[50, 51] that were concerned about training and testing speed of NLM
were proposed. The basic idea in these papers is to cluster similar words before computing
their probability, in order to only have to do one computation per word cluster at the
output layer of the NN.

A hierarchical probabilistic NLM [51] is proposed to speed-up training and pre-
diction. A binary hierarchical tree of words in the vocabulary was built using expert
knowledge. The binary tree is to form a hierarchical description of a word as a sequence
of decisions. Instead of directly predicting each word probability, a hierarchical LM learn
to take the hierarchical decisions. This model was two orders of magnitude faster than
the non-hierarchical model it was based on. However, it performed considerably worse
than its non-hierarchical counterpart.

Another hierarchical LM is the hierarchical log-bilinear (HLBL) model [52], which
uses a data-driven method to construct a binary tree of words rather than expert knowl-
edge. The authors first trained a model using a random tree over corpus, then extracted
the word representations from the trained model, and performed hierarchical clustering
on the extracted representations. In this model, the probability of the next word w is the
probability of making the sequences of binary decisions specified by the word’s encoding,
given its context. Since what only matters for generating a probability at each node is the
predicted feature vector, determined by the context, the probability of the current word
can be expressed as a product of probabilities of the binary decisions:

P(wn = w|w1:n−1) =
∏

i

P(di |qi , w1:n−1) 2.9

where d_i is the i-th encoding for word w_i, and q_i is the feature vector for the i-th node
in the path to the corresponding word encoding. The above probability definition can
be extended to multiple encodings per word and a summation over all encodings, which
allows better prediction of words with multiple senses in multiple contexts. The best HLBL
model reported in [52] reduces perplexity by 11.1% compared to a baseline Kneser-Ney
smoothed 5-gram LM, at only 32 minutes training time per epoch.

These continuous models share some common characteristics, in that they are
mainly based on feedforward neural network and word feature vectors. This approach
doesn’t suffer from the data sparsity problem, since it can be seen as automatically ap-
plying smoothing. After introducing hierarchical tree of words, the models can be trained
and tested more quickly, and can outperform non-hierarchical neural models as well as

20

2.4.2 Recurrent Neural Network Based Models

the best n-gram model.

2.4.2 Recurrent Neural Network Based Models

We have known that feed-forward neural network based LM use fixed length con-
text. However, recurrent neural network do not use limited size of context. By using
recurrent connections, information can cycle inside these networks for an arbitrary long
time. The recurrent neural network based language model (RNNLM) [53] provides further
generalization: instead of considering just several preceding words, neurons with input
from recurrent connections assumed to represent short term memory. Specifically, the
network architecture is given in figure 2.5, in this architecture:

1. Input layer w and output layer y have the same dimensionality as the vocabulary
(10K — 200K).

2. Hidden layer s is orders of magnitude smaller (50–1000 neurons).

3. U is the matrix of weights between input and hidden layer, V is the matrix of weights
between hidden and output layer.

4. Without the recurrent weights W, this model would be a bigram neural network LM.

A variant [54] of RNNLM was presented to further improve the original RNNLM by decreas-
ing its computational complexity, which was implemented by factorization of the output
layer. In this work, simple factorization of the output layer using classes have been imple-
mented. Words are assigned to class proportionally, while respecting their frequencies.
The modified RNN model can thus be smaller and faster, both during training and testing,
while being more accurate than the basic one.

We have introduced the two main neural language models. Next, we provide a short
overview of the main differences between FNN-based LMs and RNN-based LMs:

1. When using a FNN, one is restricted to use a fixed context size that has to be
determined in advance. RNNs in principle use the whole context, although practical
applications indicate that the context size that is effectively used is rather limited.
However, RNNs at least have the advantage of not having to make decisions on the
context size, a parameter for which a suitable value is very difficult to determine.

2. Because RNNs are dynamic systems, some issues which cannot arise in FNNs can
be encountered. For example, it may happen that the influence of a given input

21

Chapter Two 2. Literature and Related Works

Figure 2.5: Recurrent NNLM Architecture taken from [2]

on the network output blows up exponentially as subsequent training examples are
presented, a highly undesired artifact.

3. Comparisons between RNNs and FNNs in applications on statistical LM typically
favor RNNs. The reason will become clear in later advanced models.

2.4.3 Advanced Models

We noted that NLM are mostly word-level language models up to now. They do not
understand subword information (e.g. morphemes). For example, they do not know, a
priori, that ‘eventful’, ‘eventfully’, ‘uneventful’ and ‘uneventfully’ should have structurally
related embeddings in the vector space. More recently, people have started to focus
on subword-level LM and a character-wise NLM [55] was proposed. This NLM relies
on character-level inputs through a character-level convolutional neural network, whose
output is used as an input to a recurrent NLM. The experiments demonstrate that the
model outperforms word-level LSTM baselines with fewer parameters on language with

22

2.4.4 Summary

rich morphology (Arabic, Czech, French, German, Spanish, Russian).

At the same time, a gated word-character recurrent LM[48] is presented to address
the same issue that information about morphemes such as prefix, root, and suffix is
lost, and rare word problems using word-level LM. Unlike the character-wise NLM which
only dependent on character-level inputs, this gated word-character RNN LM utilizes both
word-level and character-level inputs. In particular, the model has a gate that determines
which of the two ways to use to represent each word, that is, whether to derive the word
into character-level or the word-level itself. This gate is trained to make this decision
based on the input word. The major contribution of this model with this kind of threshold
mechanism is that it effectively uses the character-level inputs to better represent rare
and out-of-vocabulary words.

Actually, the recurrent LM captures the contextual information (i.e. previous words)
implicitly across all preceding words within the same sentence using recurrent neural
networks. Besides, the range of context that a vanilla RNN can model is limited, due to
the vanishing gradient problem. To achieve larger context, a novel method to incorporate
corpus-level discourse information into LM is proposed, which is called larger-context LM
[48]. The conventional recurrent LM estimate the sentence-level probability, assuming
that all sentences in a document are independent from each other.

However, this assumption of mutual independence of sentences in a corpus is
not necessary for the larger context LM. It models the influence of context by defining
a conditional probability in term of words from the same sentence, but the context is
also composed of a number of previous sentences of arbitrary length. That is to say,
the context information is modeled explicitly by context representation of a sequence of
preceding sentences. Specifically, authors build a bag-of-words context from the previous
sentence, and then integrate it into the Long Short-Term Memory (LSTM). Thus, this
model explores another aspect of context-dependent recurrent LM. The larger-context LM
improve perplexity for sentences, significantly reducing per-word perplexity compared to
the LM without context information. Similarly, in order to incorporate document-level
contextual information, a document-context LM[48] is presented. In this work, local and
global information is combined into the multi-level recurrent architectures in LM.

2.4.4 Summary

In this section, we summarized the current work in LM. Based on count-based(statistical)
LM, the NLM can solve the problem of data sparseness, and they are able to capture the
contextual information in a range from subword-level to corpus-level. However, a very

23

Chapter Two 2. Literature and Related Works

long training time and large amounts of labeled-training data are the main limitations.
Sub-word modelling and large-context LM are the frontier of LM.

2.5 Transformers for Natural Language Processing

Due to their ability to process sequential information, recurrent neural networks
have been used in many NLP applications; unlike FFNNs, they are capable of encoding
different weights (and giving different output) for identical items based on their surround-
ings in a sequence — that is to say, a RNN system that parsed one word at a time could
still associate a black dog (a type of food)with fuzzy paws, a corn dog with ketchup, and
a sun dog with refraction. Moreover, since the retention of information from previous
sequence items can be performed recursively, RNN systems can be designed that recall
items arbitrarily far back in a sequence: for example, being able to continue the sequences
Tom looked at the black dog, Tom looked at the corn dog, and Tom looked at the sun dog
with fondly, hungrily, and indirectly, respectively [56] [57].

While capable of impressive solutions, many-layered FFNNs and RNNs both proved
vulnerable to the vanishing gradient problem: since gradients (encoded as finite-precision
numbers) are required to back propagate across all layers of a model, they can vanish
to zero (or explode to infinity) over a sufficiently large number of layers. The long short-
term memory network (LSTM), first proposed by [15] [41] sought to resolve this issue by
introducing a novel architecture consisting of multiple distinct cells with input, output
and forget gates. In 2009, an LSTM-based model submitted by Alex Graves’ team won
the ICDAR competition for handwriting recognition; [58] another was the most accurate
model in the competition and a third was the fastest [59].

Another issue RNNs and LSTMs encounter is that they can only take into account
the context of previous sequence items. [56, 60] This can create issues when parsing
sentences like Tom rode his bike to the store, put out the kickstand, and turned off the
engine, in which the necessary context of the bike being a motorcycle is revealed only
at the end. One method of solving problems like this is the bidirectional LSTM, which
proceeds in both directions simultaneously, giving access to both past and future input
features.[56] Conditional random fields use tags to connect inputs directly to outputs.[56]
There exist combinations of the above approaches, like the LSTM-CRF network and the
BI-LSTM-CRF network.[56] Other improvements on the RNN model include neural Turing
machines, adaptive computation time, neural programmers, and attention mechanisms,
the latter of which form the basis for the development of a transformer called Generative
Pre-Trained version-2 (GPT-2) and related technologies [61].

24

2.5.1 The Transformer Algorithm

GPT-2 is a decoder transformer model [62], which has achieved state-of-the-art
performance in text prediction [?]] due to its ability to observe all sequence elements
simultaneously with its self-attention block.

2.5.1 The Transformer Algorithm

In order to predict a sequence of response tokens M={m_t},t=0,1,...,N conditioned on
initial word typed in by a user {w_t}, t=0,1,..,T we need to estimate the following conditional
probability distribution 2.10

P(m0, m1, ..., mN |w0, ..., wT) =
N∏
i

P(mi |w0, w1, ..., wT , m0, ..., mi−1 2.10

With the auto-regressive approach, the objective is to maximize the following log-likelihood(2.11)

L(M) =
∑

i

logP(mi |w0, ..., wT , mi−k, mi−k+1, ..., mi−1; θ 2.11

where k is the length of predicted word sequence, and the conditional probability P mod-
eled using a neural network with parameters θ. These parameters are learned via stochas-
tic gradient descent(SGD) optimization procedure.

GPT-2 applies a multi-headed self-attention operation over the input context tokens
(2.11) followed by position-wise feed-forward layers (2.12) to produce an output distribu-
tion over target tokens (2.13)

h0 = we.C +Wp 2.12

h1 = transformer − block(hl−1),∀l = 1, 2, ..., n 2.13

P(mt) = yt = softmax(hn.WTe), t = 0, ..., N 2.14

where C= c-1, c-k+1, ...c-1 is the context vector of tokens, n is the number of layers,
WeϸR|Vx |xdx tokens embedding matrix, and WpϸRNctxxdx is the position embedding matrix,
which encodes relative positions of tokens in a sequence.Nctx is the length of the sequence
attended to (context length), |V| is vocabulary size, and dxs the embedding dimension.

We are reusing the input token embedding matrix as the output classification ma-
trix [27], which allows to remove the large fully connected layer reducing the number of
parameters by 25%.

25

Chapter Two 2. Literature and Related Works

More specifically, we introduce a projection matrix A = (a)i jϸRdmodelxdx initialized
according to a random uniform distribution

Given an encoded word context and a hidden state at the last temporal step hn(T)ϸRdmodel

the predicted token embedding vector by multiplying the two together as (2.15)

W p
e red = (W pred)jϸRdx 2.15

W p
j red =

∑
i

hni(Tj)ai j 2.16

Subsequently, the logits are obtained as (2.17):

yk =
∑

j

WkjW p
j red + bk 2.17

where bk, k = 0...|V |1 is the bias vector, and number of hidden units per transformer
block. During inference, beam-search decoding algorithm is applied to iteratively extract
best token sequences according to a negative log-likelihood optimization objective.

In the following sections we will examine what features and mechanisms made
transformers more powerful than other NNLMs like RNN, LSTMs and FFNNs.

2.5.2 Selective Focusing

By the early 2010s, the best performance in neural machine translation was achieved
with the encoder–decoder model, in which a RNN or LSTM encoder network encoded
source sentences into vectors, and a decoder network of similar architecture processed
these vectors into translated output. [63] saw the introduction of significantly more com-
plex attention mechanisms, which vastly augmented these models’ performance. Atten-
tion mechanisms gave these models the ability to adaptively focus their decoder networks’
attention on specific aspects of the source text, rather than forcing them to parse the
entire text as one vector. [64] then saw the introduction of transformer models, which
went a step further by using attention mechanisms to replace the RNN/LSTM architecture
entirely [16] [65].

26

2.5.3 Attention Mechanisms

2.5.3 Attention Mechanisms

One constraint of encoder–decoder models like BERT was the difficulty of com-
pressing the encoding of larger sentences into fixed-length vectors; performance often
deteriorated on larger inputs. In 2014, Bahdanau et al. [66] introduced an extension to
the encoder–decoder model that could align and translate jointly. [64]

2.6 Pre-Training Transformers

On June 11, 2018, OpenAI released a paper entitled Improving Language Under-
standing by Generative Pre-Training, in which they introduced the Generative Pre-Trained
Transformer (GPT) [62] At this point, the best-performing neural NLP models primarily em-
ployed supervised learning from large amounts of manually labeled data. This reliance on
supervised learning limited their use on datasets that were not well-annotated, in addition
to making it prohibitively expensive and time- consuming to train extremely large models;

27

For each word of the source sentence that was translated, the Bahdanau model’s
encoder (a bidirectional RNN with 1000 hidden units in each direction) searched the
entire rest of that sentence for the positions of relevant information. Rather than giving
the decoder a fixed-length vector encoding of the entire input sequence (like previous
models), it produced context vectors, associated with those positions as well as previously
generated target words. [66] The decoder (which also had 1000 hidden units) then used
these context vectors to decide where to focus its attention [66] [64][61].

While attention mechanisms were effective in improving performance when used to
augment existing convolutional and recurrent neural network architectures, it was soon
discovered that performant models could be built using attention mechanisms on their
own, without anything else underlying them [3].

In June 2017, the Generative Pre-Trained transformer architecture was first in-
troduced, in a paper released by Google’s deepMind. [3] Transformers are a type of
model based solely on attention mechanisms, discarding convolution and recurrence al-
together. Unlike previous RNN-based models, transformers can process sequential input
without needing to perform computation on each item in sequence; this means they can
be massively parallelized. [3] On the WMT’14 French–English task, specifically trained
French–English translation model using the transformer architecture was able to establish
a new single-model benchmark of 41.8 BLEU [3]. Since their introduction, transformers
have seen use in many NLP applications [60].

Chapter Two 2. Literature and Related Works

[62, 67] many languages (such as Swahili or Haitian creole) are difficult to translate and
interpret using such models due to a lack of available text for corpus- building.[62] In
contrast, GPT’s semi- supervised approach involved two stages: an unsupervised gen-
erative pre-training stage in which a language modeling objective was used to set initial
parameters, and a supervised discriminative fine-tuning stage in which these parameters
were adapted to a target task.[62]

The use of a transformer architecture, as opposed to previous techniques involving
attention-augmented RNNs, provided GPT with a more structured memory than could be
achieved through recurrent mechanisms; this resulted in robust transfer performance
across diverse tasks [62] During transfer, we utilize task-specific input adaptations de-
rived from traversal-style approaches, which process structured text input as a single
contiguous sequence of tokens. [62]

2.6.1 Corpus

The transformer’s unsupervised pre-training was performed using booksCorpus,
[68] a dataset of over 7,000 unpublished fiction books from various genres; while other
models this dataset was chosen in part because its long passages of continuous text con-
ditioned the model to handle long- range information. Other available datasets, while
larger, were rejected on the basis that they lacked this long-range structure (being shuf-
fled at a sentence level). [62] The ftfy library was used to clean the BooksCorpus text
(standardize punctuation and whitespace); it was tokenized using spaCy[62]

2.6.2 Architecture of GPT

GPT’s architecture used in this work was a 24-layer decoder-only transformer, using
24 masked self-attention heads, with 128 dimensional states each for a total of 1536.
Rather than simple stochastic gradient descent, the Adam optimization algorithm was
used; the learning rate was increased linearly from zero over the first 2,000 updates, to
a maximum of 2.510−4, and annealed to 0 using a cosine schedule [62]. While GPT’s
fine-tuning was adapted to specific tasks, its pre-training was not; to perform the various
tasks, minimal changes were performed to its underlying task-agnostic model architecture
[62].

Despite this, GPT still improved on previous benchmarks in several language pro-
cessing tasks, outperforming discriminatively-trained models with task- oriented archi-

28

2.6.3 Performance

tectures on a number of diverse tasks [62].

2.6.3 Performance

Another task, semantic similarity (or paraphrase detection), assesses whether a
model can predict whether two sentences are paraphrases of one another; on the Quora
Question Pairs (QQP) dataset, GPT improved on previous best-performing models by 4.2%.
[62] In a text classification task using the Corpus of Linguistic Acceptability (CoLA), GPT
achieved a score of 45.4, versus a previous best of 35.0. Finally, on GLUE, a multi-task
test, [71] GPT achieved an overall score of 72.8 (compared to a previous record of 68.9).

2.6.4 Training

29

Models are mostly evaluated for their ability of classifying the given pairs of sen-
tences from various datasets based on the relationship between them using natural lan-
guage inference task also known as textual entailment. They classify as "entailment",
"contradiction" or "neutral"[62]. Examples of such datasets include QNLI (wikipedia ar-
ticles) and MultiNLI (transcribed speech, popular fiction and government reports, among
other sources);[69] on these GPT achieved, respectively, a 5.8% and 1.5% improvement
over previous best results [62] It similarly outperformed previous models on two tasks
related to question answering and commonsense reasoning — by 5.7% on RACE,[69] a
dataset of written question– answer pairs from middle and high school exams, and by
8.9% on the Story Cloze Test [70].

Since the transformer architecture enabled massive parallelization, GPT-series mod-
els could be trained on larger corpora than previous NLP models. While the initial GPT
model demonstrated that the approach was viable, GPT-2 would further explore the
emergent properties of networks trained on extremely large corpora. CommonCrawl, a
large corpus produced by web crawling and previously used in training NLP systems,[71]
was considered due to its large size, but was rejected after further review revealed large
amounts of unintelligible content [9, 71] Instead, OpenAI developed a new corpus, known
as WebText; rather than scraping content indiscriminately from the World Wide Web,
WebText was generated by scraping only pages linked to by Reddit posts that had re-
ceived at least three upvotes prior to December 2017. The corpus was subsequently
cleaned; HTML documents were parsed into plain text, duplicate pages were eliminated,
and Wikipedia pages were removed (since their presence in many other datasets could
have induced overfitting)[9].

Chapter Two 2. Literature and Related Works

While the cost of training GPT-2 is known to have been $256 per hour, [72] the
amount of hours it took to complete training is unknown; therefore, the overall training
cost cannot be estimated accurately.[73] However, comparable large language models
using transformer architectures have had their costs documented in more detail; the
training processes for BERT and XLNet consumed, respectively, $6,912 and $245,000 of
resources.

2.6.5 Limitations

GPT-2 can generate contextually-appropriate text for a range of scenarios, even
odd ones like a CNN article about Donald Trump giving a speech praising the anime
character Asuka Lang; ley; Sory; u. Here, the tendency to generate nonsensical and
repetitive text with increasing output length, even in the full 1.5B model, can be seen; in
the second paragraph, grammar begins to deteriorate, and the output eventually becomes
one incoherent sentence repeated over and over.

2.6.6 Applications and Subsequent Research

Possible applications of GPT-2 described by journalists included aiding humans
in writing text like news articles. [65] Even before the release of the full version, GPT-
2 was used for a variety of applications and services, as well as for entertainment. In

30

While GPT-2’s ability to generate reasonable passages of natural language text were
generally remarked on positively, its shortcomings were noted as well, especially when
generating texts longer than a couple paragraphs; Vox said "the prose is pretty rough,
there’s the occasional non-sequitur, and the articles get less coherent the longer they
get".[74] The Verge similarly noted that longer samples of GPT-2 writing tended to "stray
off topic" and lack overall coherence;[12] The Register opined that "a human reading
it should, after a short while, realize something’s up", and noted that "GPT-2 doesn’t
answer questions as well as other systems that rely on algorithms to extract and retrieve
information"[72].

GPT-2 deployment is resource-intensive; the full version of the model is larger than
five gigabytes, making it difficult to embed locally into applications, and consumes large
amounts of RAM. In addition, performing a single prediction "can occupy a CPU at 100%
utilization for several minutes", and even with GPU processing, "a single prediction can
take seconds"[3].

2.7 Cross-Lingual Transfer Learning Approach

2.7 Cross-Lingual Transfer Learning Approach

Transfer learning refers to training a model in a resource-rich language and applying
it in a resource-poor language in zero-shot or one-shot learning. Zero-shot learning refers
to training a model in one domain and assuming it generalizes more or less out-of- the-
box in a low-resource domain. One-shot learning is a similar approach that uses a very
limited number of dataset from a low-resource domain to adapt the model trained in rich-
resource domain. This approach is particularly popular in machine translation where
the weights collected for a rich-resource language pair are transferred to low- resource
pairs. An example of such an approach is a model by [31]. A parent model is trained
in a high-resource language pair (French to English) and some of the trained weights are
reused as the initialization for a child model which is further trained on a specific low-
resource language pair (Hansa, Turkish and Uzbek into English). Similar approach was
explored by [79] where the parent language pair is also low-resource but it was related to
the child language pair.Language models and transfer learning have become one of the
cornerstones of NLP recently.

The central idea underlying the transfer learning approach is that there are certain
commonalities between languages that could be exploited to build, for example, a language
model for one language from another model. The process of cross-lingual transfer learning

31

June 2019, a subreddit named SubSimulatorGPT2 was created in which a variety of
GPT-2 instances trained on different subreddits made posts and replied to each other’s
comments, creating a situation where one could observe an AI personification of Bitcoin
argue with the machine learning-derived spirit of ShittyFoodPorn";[12] by July of that
year, a GPT-2-based software program released to auto-complete lines of code in a variety
of programming language was described as "game-changer"[12].

In 2019, AI Dungeon was launched, which used GPT-2 to generate dynamic text
adventures based on user input. [75] While AI Dungeon now offers access to the GPT-3
API as an optional paid upgrade, the free version of the site continues to use GPT-2.[76]
Latitude, the company formed around AI Dungeon, raised $3.3 million in seed funding in
2021 [77].

In February 2021, a crisis center for troubled teens announced that they would
begin using a GPT-2-derived chatbot to help train counselors by allowing them to have
conversations with simulated teens (this use was purely for internal purposes, and did
not involve having GPT-2 communicate with the teens themselves) [78].

Chapter Two 2. Literature and Related Works

refers to transfer of resources and models from resource-rich source to resource-poor
target languages on several levels such as:

2.8 Multilingual VS Monolingual Models for Cross-Lingual

Transfer

Multilingual or Polyglot Learning converts data in all languages to a shared repre-
sentation (e.g., phones or multilingual word vectors) and trains a single model on a mix
of data sets in all languages, to enable parameter sharing where possible. This approach
is closely related to recent efforts to train a cross-lingual Transformer language model
trained on 100 most popular languages and cross-lingual sentence embedding [80]. The
later approach learns joint multilingual sentence representations for 93 languages, be-
longing to more than 30 different language families and written in 28 scripts. With the
help of a single BiLSTM encoder with a shared BPE vocabulary for all languages, which
is coupled with an auxiliary decoder and trained on parallel corpora, the approach allows
learning a classifier on top of the resulting sentence embedding using English annotated
data only, and transfer it to any of the 93 languages without any modification.

There is a repeated criticism against multilingual models is that they obtain very
less performance than their monolingual counterparts [81]. A comparison of XLM-R and
RoBERTa, to evaluate this claim on the XNL in task bench-mark was experimented by [81].
They extended the comparison between multilingual XLM models and monolingual BERT
models on 7 languages and compared the performance as in Table below. They trained
14 monolin- gual BERT models on Wikipedia and Common Crawl (capped at 60 GiB), and

32

Figure 2.6: Cross-lingual Transfer Learning Types taken from [101]

2.9 Evaluating Language Models

two XLM-7 models. They also increased the vocabulary size of the multilingual model,
however they show that for cross lingual transfer, monolingual baselines outperform XLM-
7 for both Wikipedia and CC by 1.6(%) and 1.3(%) average accuracy.

2.9 Evaluating Language Models

There are two ways of evaluating a language model’s performance, extrinsically
and intrinsically. Extrinsic evaluation refers to embedding the language model in an
application, letting users test the updated system, and telling how much they think the
application improves the quality of their end-user experience. For example, an extrinsic
evaluation could be performed by embedding a language model to a smartphone’s auto-
completion tool. With this embedded auto-completion tool, the users could score how
useful the auto-completion is and how much time it saves from them or how often they use
it. Intrinsic evaluation metrics make it possible to measure the quality of a model detached
from any particular application, which means that it makes it easier to compare with other
models [38]. In language modeling, the most commonly used intrinsic evaluation metric
is perplexity [36], [37]. For doing an intrinsic evaluation, there needs to be a corpus of
data that acts as a test set. This corpus of test data is separate from the training data
that is used to train the language model. The test set also ensures that the model will not
be over trained with the particular training data, which is called over-fitting a model with
training [38].

These two evaluation strategies complement each other. Hence, this thesis uses
both evaluation methods. Though, intrinsic (perplexity) testing is sufficient and there is
need for extrinsic evaluation to make it clear in evaluating language models.

2.9.1 Perplexity

A language model’s perplexity (PPL) on a given test set is the inverse probability of
the test set, normalized by the number of words [38]. When the test set is W = wi, w2...,
wn: It is possible to use the chain rule for expanding the probability of W: As this equation
2.15 shows, the PPL is high when the probability of the words in a particular sequence
is low. However, we want to maximize the conditional probability of word sequences and
minimize the PPL of a test set. In practice, this means that we are trying to create a
language model that can mimic the word sequences of the test set so that it is able to
predict a subsequent word when given the previous words. When assuming that the test

33

Chapter Two 2. Literature and Related Works

set is a perfect representation of the language, it means that the smaller the PPL is, the
better the language model performs in creating the actual utterances used in the language
[38].

PPL(W) = P(w1, w2,, wn)−1/n =
n

√
1

P(w1, w2, . . . , wn)
2.18

It is impossible to use chain rule for expanding the probability of W (5.3):

PPL(W) = n

√
Πn

i=1
1

P(wi |w1, w2, . . . , wn)
2.19

As an example, for bigram (or 2-gram) language model this would be computed as follows
(5.6):

PPL(W) = n

√
Πn

i=1
1

P(wi |wi − 1)
2.20

Perplexity has useful properties. For instance, PPL can be easily computed for a set of test
data. Computing PPL with any language model with a single training and test set makes
it ideal for comparing different language models’ performances. This fact makes it one of
the fastest overall quality metrics when comparing language models [38],[36], [37].

2.10 Lexical unit selection for NNLM

When it comes to the training data format, Neural network language models can be
built in a few different ways. The traditional way of training language models has been to
use word-based training data. However, wordbased models have some drawbacks, and
hence, other techniques have been developed. Other models built to overcome the chal-
lenges that wordbased models face are sub-word based models, character-based models,
and combinations of these two models. This section introduces these different ways of
building NNLMs.

34

Perplexities also have downsides. First of all, an improvement in PPL (intrinsic) does
not necessarily mean an extrinsic performance improvement in a language processing ap-
plication such as machine translation or speech recognition. Hence, LM’s improvement
should always be tested also extrinsically in the application before concluding the eval-
uation of the model. However, the PPL often correlates with the extrinsic improvement
of the language model; consequently, it is commonly used as an indicator of the quality
of the language model. It is also important to note that the perplexities of two different
language models are comparable only if they have the same vocabularies [38].

2.10.1 Word-based models

2.10.1 Word-based models

One of the disadvantages related to these word-based language models arises when
the vocabulary of these models grow. To calculate the probability distribution with a vast
vocabulary becomes computationally heavy and slows down the system. The reason for
this is the amount of calculated inner products that are the vocabulary size (V) times the
word vector (w) length (len(P) * len(w)) which in turn radically slows down the updates on
the gradient descent [82]. This problem arises with some languages that simply have too
vast a lexicon to represent every word as an embedding.

Fortunately, there are methods that seek to address this challenge. Some examples
of these are Hierarchical Softmax [82] Importance Sampling [83], class-based models [5],
Noise Contrastive Estimation [84, ?], and self normalizing partition functions [6].

Another drawback is that even languages or applications with manageable lexicons
will encounter unknown words due to spelling mistakes and new and borrowed words
from other languages [38]. These word-based language models can only model the words
that they know. They are limited only to the words that have been included in the
model initiation phase when the initial word vectors were created. If the language model
sees words that it does not know, it will replace that word with an <unk> (unknown)
token. Replacing words with <unk> tokens decreases the accuracy and performance of
the language models due to the loss of the structure and sense of a sentence.

Having an upper limit for vocabulary is a major problem with agglutinative lan-
guages because even some common words might not be included in the "known" corpus.
The Kafi-Nono language is one such problematic language because it is possible to create
words by concatenating morphemes. Hence, it has a vast amount of infrequent words
that are some morphological variants, which creates an extensive vocabulary, making
word-based models impractical[85].

35

Word-based language models have the benefit of being the most intelligible language
models. It is easy for a human being to understand how a wordlevel based language model
works when it estimates the probability of a sequence of words. Word-based embeddings
are also well suited for capturing the distributional similarity between words. However,
there are also disadvantages of using only word-based language models [38].

Chapter Two 2. Literature and Related Works

2.10.2 Sub-word based models

Results based on larger sub-word units have proven to be able to deal with new
words and offer reasonable accuracy and training speed [37]. Sub-word approaches also
have some drawbacks, such as the specification of the sub-word unit creation, which often
differs from language to language. Also, the fact that a word can have multiple different
segmentations into sub-word units depends on the context [86]. For instance, in the Kafi-
Nono language, the word "keemo" might mean the number three or prophecy. Depending
on the context, the ideal sub-word units would be either "keem" (mo) or "keemo" (three or
prophecy).

2.10.3 Character-based models

Character-based language models solve problems in capturing the similarity of
words like "drink", "drinks", and "drinking", unlike the word-based model (if not using
pre-trained word embedding like glove from [80]). Also, character-based models do not
need to decide how to split words as the vocabulary is just all the alphabets. However,
they have their drawbacks. For example, to successfully model long-term dependencies,
we need large hidden representation, which means higher computational costs, that might
become unreasonable in practice . One successful approach to overcome some problems
of both word-based and character-based language models is a model that uses both of
them as an input [87].

2.11 About Kafi-Nono Language

Kafi-Nono is a language which is spoken by around 3 million people in south western
part of Ethiopia. It belongs to Afro-Asiatic language super family of the North-Omotic,
Southern Gonga sub-group. Kafi-Nono uses Latin script for typing. The language has
22 consonants. Out of these, six of them are both long and short consonants. Five of
the 22 consonants, are borrowed from English and Amharic languages. Also, it has five
long and short vowels. The long vowels and consonants can be obtained by doubling the
corresponding short vowels and consonants, respectively. The difference in length of both
vowels and consonants induce difference in meaning. For example, the Kafi-Nono word
baro means corn while baroo means forehead. In Kafi-Nono, tone has a semantic and
grammatical function. For example, kemo (with high tones) can mean buy and the same

36

2.11.1 Linguistic Characteristics of Kafi-Nono

word (with low tones) can also mean sell Kafi-Nono is one of a ‘low resource’ languages
broadly spoken in South western part of Ethiopia. It is spoken by about 3 million people
in the Kafa zone and the surrounding.

Emphasis was not given to the language before 1987 by the previous governments.
The language started as official working language of the Kafa zone since 1987 and offered
as independent course both at primary and secondary school level in Kafa zone [63, 88].
Kafi-Nono uses Latin Script for writing purpose and has 22 consonant phonemes and 5
vowel phonemes. Out of these, six of them are both long and short consonants. Among
the 22 consonants, five of them are borrowed from English and Amharic languages. In
Kafi-Nono, a sentence is a set of words that contain subject and a predicate. Kafi-Nono
Language follows Subject->Object ->Verb (SOV) grammatical rule [63].

2.11.1 Linguistic Characteristics of Kafi-Nono

Fleming (1976 b) Showed that germination is very common in KN language, but
germination does not appear at the beginning of the word. Regarding the vowels, he states
that diphthongs are rare in the language. Except before /y/ and /w/ or noun suffixes
/o/, /e/, or /i/, vowels do not combine as diphthongs. [63] deals with the tonology of
Kafi-Nono. He identifies that the language has rising and falling tones in addition to the
two basic tones, high and low. He states that absorption and bridging are the two most
pervasive phonologically accountable pitch phenomena in Kafi-Nono tonology. It means in
Kafi-Nono, when a bimoraic syllable with LH contour occurs followed by H, the sequence
LHH undergoes tone absorption resulting in LH. He classifies the nominal and verbs in
to different classes (i.e. class I, II, and III) since the Kafi-Nono tonal alternations are
associated with morphological processes. This means there are different vowels referred
to as theme vowels that pop up when some suffixes are attached to root forms. Consider
the following examples.

According to Tadesse, consonant germination, vowel length, and tone are phone-
mic. Examples in A and B below show the phonemic feature of vowel length and tone
respectively. According to Tadesse, consonant germination is common. However not ev-
ery consonant germinate: consonants such as /z/ /r/ and /w/ resist germination and
others t, sh, d, P, l, germinate most of the time. Still others f, sh, h, y is realized as either
a stop or an afflict when they germinate.

37

Chapter Two 2. Literature and Related Works

word meaning
keemo ‘three’
keemo ‘Prophesy’
kasho ‘farm tool’
garoo ‘bur’
gotisho ‘swamp’
kasho ‘ripe’
garoo ‘pure’

Table 2.1: The Phonemic feature of Vowel length and tone

Short Front i , e, a
Short Back Round o, u
Long front up round ii, ee, aa
Long back round oo, uu

Table 2.2: Kafi-Nono Vowels

2.11.2 Kafi-Nono Dialect

Dialects are Variations of the same language specific to geographical regions or
social groups. Although many similarities are shared, there are usually large variations
at several linguistic levels; some of these are: phonological, grammatical, orthographic
(e.g., “color” vs. “colour” in english) and always different vocabularies. As a result, Neural
language models trained or fine-tuned for one certain dialect achieve poorly when tested
on a different dialect of the same language [18]. Additionally, systems trained on many
dialects simultaneously, fail to generalize well for each individual dialect separately [12].
Inevitably, multi-dialect languages pose a challenge to neural LM systems. If sufficient
data is available for each dialect, a good practice is to treat each dialect individually.
Otherwise, in cases where dialects are resource-scarce, these models are boosted with
data from other dialects.

According to Theil (2007) Kafi-Nono is usually divided into six dialects which he
calls, Gimbo, Dechi, Xallo, Manjiyo, Chani, and Geshi.

2.11.3 Kafi-Nono Vowels

Most scholars agree that Kafi-Nono has five long vowels and five short vowels if
foreign sounds are excluded, vowel phonemes of Kafi-Nono. Six long and five short vowel
phonemes. For the sake of ease let us see by contrasting the vowel phonemes of the three
scholars in 2.2.

38

2.11.4 Kafi-Nono Part of Speeches

2.11.4 Kafi-Nono Part of Speeches

In Kafi-Nono Words can be divided into two broad categories: closed class types
and open class types [5]. Closed types are those that have moderately fixed morpheme
members while open classes are those that continually changed even can be borrowed
from other languages. Since Kafi-Nono is under-resourced language, to till, there were no
defined tag sets and/or tagged corpus available for research and development. Thus, in
consultation with linguists,[5] identified a total of 34 part of speeches for the language.
The part of speeches is defined according to the hierarchies of word classes and sub-
classes of nouns, verbs, adjectives, pronouns, adverbs, prepositions. In addition to these,
conjunction, interjections, numerals and punctuation are also included as basic classes
of Kafi-Nono language.

2.12 Related Works

2.12.1 Foreign languages

English Word Prediction

Antal van den Bosch [58] proposed classification-based word prediction model
based on IGTREE. A decision-tree induction algorithm has been favorable scaling abil-
ities. Token prediction accuracy, token prediction speed, number of nodes and discrete
perplexity are evaluation metrics used for this work. Through a first series of experiments
they demonstrate that the system exhibits log-linear increases in prediction accuracy and
decreases in discrete perplexity, a new evaluation metric, with increasing numbers of
training examples. The induced trees grow linearly with the amount of training examples.
Trained on 30 million words of newswire text, prediction accuracies reach 42.2% on the
same type of text. In a second series of experiments we show that this generic approach
to word prediction can be specialized to confusible prediction, yielding high accuracies
on nine example confusible sets in all genres of text. The confusible-specific approach
outperforms the generic word-prediction approach, but with more data the difference de-
creases.

Agarwal and Arora [59] proposed a Context Based Word Prediction system for SMS
messaging in which context is used to predict the most appropriate word for a given code.

39

Chapter Two 2. Literature and Related Works

The growth of wireless technology has provided alternative ways of communication such
as Short Message service (SMS) and with tremendous increase in mobile Text Messaging,
there is a need for an efficient text input system. With limited keys on the mobile phone,
multiple letters are mapped to same number (8 keys, 2 to 9, for 26 alphabets). The many
to one mapping of alphabets to numbers gives us same numeric code for multiple words.

Trnka[60] conducted a research on topic Adaptive Language Modeling for Word.
AAC devices are highly specialized keyboards with speech synthesis, typically providing
single- button input for common words or phrases, but requiring a user to type letter-
by-letter for other words, called fringe vocabulary. Word prediction helps speed AAC
communication rate. The previous research conducted by different scholars using ngram
models. At best, modern devices utilize a trigram model and very basic recency promotion.
However, one of the lamented weaknesses of ngram models is their sensitivity to the
training data. The objective of this work is to develop and integrate style adaptations from
the experience of topic models to dynamically adapt to both topically and stylistically. They
address the problem of balancing training size and similarity by dynamically adapting the
language model to the most topically relevant portions of then training data. They present
the results of experimenting with different topic segmentations and relevance scores in
order to tune existing methods to topic modeling. The inclusion of all the training data
as well as the usage of frequencies addresses the problem of sparse data in an adaptive
model. They have demonstrated that topic modeling can significantly increase keystroke
savings for traditional testing as well as testing on text from other domains. They have
also addressed the problem of annotated topics through fine-grained modeling and found
that it is also a significant improvement over a baseline ngram model.

Word Prediction for Persian Language

Masood Ghayoomi and Seyyed Mostafa Assi[61]studied word prediction for Persian
language. In this study, they designed and developed based a system on a Statistical
Language Modeling. The corpus contained approximately 8 million tokens. The corpus is
divided in to three sections: one was the training corpus that contained 6,258,000 tokens,
and 72,494 tokens; the other section was used as the developing corpus which contained
872,450 tokens, and the last section was used as the test corpus which contained 11,960
tokens. The user enters each letters of the required word; the system displays a list of
the most probable words that could appear in that position. Three standard performance
metrics were used to evaluate the system including keystroke saving, the most important
one. The system achieved 57.57% saving in keystrokes. Using such a system saved a
great number of keystrokes; and it led to reduction of users effort.

40

2.12.1 Foreign languages

Ghayoomi and Daroodi [26] studied word prediction for Persian language in three
approaches. Persian is a member of the Indo-European language family and has many
features in common with them in terms of morphology, syntax, phonology, and lexi-
con. This work is based on bi-gram, tri-gram, 4-gram models and it utilized around
10 million tokens in the collected corpus. Using Keystroke Saving (KSS) as the most
important metrics to evaluate systems performance, the primary word-based statistical
system achieved 37% KSS, and the second system that used only the main syntactic cat-
egories with word-statistics achieved 38.95% KSS. Their last system which used all of the
available information to the words get the best result by 42.45% KSS.

Word Prediction for Russian Language

Hunnicutt et al. [56] performed a research on Russian word prediction with mor-
phological support as a co-operative project between two research groups in Tbilisi and
Stockholm. This work is an extension of a word predictor developed by Swedish part-
ner for other languages in order to make it suitable for Russian language. Inclusion of
morphological component is found necessary since Russian language is much richer in
morphological forms. In order to develop Russian language database, an extensive text
corpora containing 2.3 million tokens is collected. It provides inflectional categories and
resulting inflections for verbs, nouns and adjectives. With this, the correct word forms
can be presented in a consistent manner, which allows a user to easily choose the desired
word form. The researchers introduced special operations for constructing word forms
from a word„s morphological components. Verbs are the most complex word class and
algorithm for expanding root form of verbs to which their inflectional form is done. This
system suggests successful completion of verbs with the remaining inflect able words.

Word Prediction for Hebrew Language

Netzer et al. [57] are probably the first to present results of experiments in word
prediction for Hebrew. They developed a NLP-based system for Augmentative and Alter-
native Communication (AAC) in Hebrew. They used three general kinds of methods: (1)
Statistical methods: based on word frequencies and repetition of previous words in the
text. These methods can be implemented by using language models (LMs) such as the
Markov model, and unigram/bigram/trigram prediction, (2) Syntactic knowledge: part of
speech tags (e.g. nouns, adjectives, verbs, and adverbs) and phrase structures. Syntactic
knowledge can be statistical-based or can be based on hand-coded rules and (3) Semantic
knowledge: assigning categories to words and finding a set of rules that constrain the

41

Chapter Two 2. Literature and Related Works

possible candidates for the next word. They used 3 corpuses of varying length (1M words,
10M words, 27M words) to train their system. The best results have been achieved while
training a language model (a hidden Markov model) on the 27M corpus. They applied
their model on various genres including personal writing in blogs and in open forums in
the Internet. Contrary to what they expected, the use of morpho-syntactic information
such as part of speech tags didn’t improve the results. Furthermore, it decreases the
prediction results. The best results were obtained using statistical data on the Hebrew
language with rich morphology. They report on keystroke saving up to 29% with nine
word proposals and 34% for seven proposals, 54% for a single proposal.

2.12.2 African Languages

Melinda Loubser and Martin J. Putt kammer [89] has conducted the possibility of
neural networks on low-resource south African languages. In their thesis, the viability of
neural network implementations of core technologies (the focus of the paper was on text
technologies) for 10 resource-scarce South African languages is evaluated. Accordingly,
Neural architectures that performed well on similar tasks in other settings(high-resource)
were implemented for each task and the performance was assessed in comparison with
currently used machine learning implementations of each technology. The neural network
models evaluated perform better than the baselines for compound analysis, are viable and
comparable to the baseline on most languages for POS tagging and NER, and are viable,
but not on par with the baseline, for Afrikaans lemmatization. The research gap in [89] is
that Neural architectures that performed well on similar tasks in high resource settings
were directly implemented for each task and the performance was assessed in comparison
with currently used machine learning implementations of each technology. Large-scale
transformer-based language models such as ELMo, BERT [90], GPT2 [62], Grover, and
CTRL [91] have produced state-of-the-art results on many NLP tasks and proven to be
capable of generating highly fluent text passages. For example, GPT-2 has been used to
generate patent claims and to power task-oriented conversational dialogues [92].

2.12.3 Local languages

Locally the most widely used type of language models are the corpus-based prob-
abilistic(statistical) ones. These models provide an estimate of the probability of a word
sequence based on training data. Therefore, large amounts of training data are required
in order to ensure statistical significance. But even if the training data are very large, it is
impossible to avoid the problems of data sparseness and out-of-vocabulary (OOV) words.

42

2.13 Suitability Assessment of Reviewed Methods

These problems are particularly serious for languages with a rich morphology, which are
characterized with high vocabulary growth rate and a correspondingly high perplexity of
their language models. Since the vocabulary size directly affects system complexity, a
promising direction is towards the use of Neural network approach in language modeling)
[93]. So far there are few works are done on word prediction on local languages and all of
them are based on statistical methods: Tigist Tensou [94] conducted a research on word
sequence prediction for Amharic. In her work, statistical methods and linguistic rules are
used. Statistical models are constructed for root/stem, and morphological properties of
words like aspect, voice, tense, and affixes. Word sequence prediction using a hybrid of
bigram and tri-gram model offers better keystroke savings in all scenarios for her experi-
ment. For instance, when using test data disjoint from the training corpus, 20.5%,17.4%
and 13.1% keystroke savings are obtained in hybrid, tri-gram and bi-gram models re-
spectively. Evaluation of the model is performed using developed prototype and keystroke
savings (KSS) as a metrics. According to their experiment, prediction result using a hybrid
of bigram and tri-gram model has higher KSS and it is better compared to bi-gram and
trigram models separately. Nesredin Suleiman [95] performed a research on word predic-
tion model for Amharic online hand writing recognition. In his work, he used a corpus of
131,399 Amharic words and extracted statistical information to determine the value of N
for the N-gram model, where the value two (2) is considered as a result of the analyses.
His Experiment shows a prediction accuracy of 81.39% The analyses used to get informa-
tion like the average word-length of Amharic language; the most frequently used Amharic
word-length and the like have been used to decide which for N-gram model to use best,
where N is the number of characters after which the prediction process starts. Ashenafi
Bekele Delbeto [96], researched on Afan oromo next word predictor using bi-gram and tri-
gram statistical methods, the same approach as [95] and [94]. Additionally, as [96] stated,
he has employed stemming and POS tagging for capturing the morphological features of
Afan oromo language. According to the evaluation, the primary word-based statistical
system achieved 20.5% KSS, and the second system that used syntactic categories with
word-statistics achieved 22.5 that, statistical and linguistic rules have good potential on
word sequence prediction for Afaan Oromo.

2.13 Suitability Assessment of Reviewed Methods

In this section the use of previously reviewed word prediction methods suitability for
the target languages is discussed. So, the key question is: Are the word prediction meth-
ods that we have previously discussed useful for inflected and low resource languages? As
we mentioned, in non-inflected languages it is feasible to include in the dictionary all the

43

Chapter Two 2. Literature and Related Works

forms derived from each lemma, taking into account that the number of variations is quite
small. For instance, in English friends is the only variation (without creating composed
words) of friend, and the verbs have a few variations too. In Kafi-Nono, the word nuuchoo
(with the same meaning than friend) may vary in gender and number, giving the words:
nuuchee, nuucheena’o and nuuchittino. Here the variations that the word nuuchoo may
have in Kafi-Nono which has more than 90 forms, making it impossible to store all of
them in the dictionary of the system. This is one of the changes to be taken into account
for the design of a predictor for this type of languages.

In inflected languages, the complexity in making the changes is very high, because
of the number of possibilities. One possibility is to group the suffixes depending on
their syntactic function to make it possible to have an easy automation. In addition,
we shouldn’t forget that suffixes may be recursively concatenated that means suffixes
themselves have suffixes. In the previously presented prediction methods, the ones using
probabilistic information mainly work with the words as isolated entities. That is, they
work seeing each word in the dictionary as a whole to be guessed, without taking into
account the morph-syntactical information inherent to the languages. So, a word that is
not at the lexicon cannot be guessed. The impossibility to store all the combinations of a
word, make these methods not very suitable for inflected languages. Therefore, it would
be very interesting to treat the entire sentence. Then, the statistical syntactic approach is
not very useful, because it only takes into account the previous word. And the syntactic
with grammars is very hard to implement, because of the number of variations a word may
have. Maybe a great number of rules have to be defined to cope with all the variations,
but in this way the probabilities to guess the rule which is being used are very small,
because of their variety. The same thing happens with the semantic approach, which
has, as it has been said before, the same procedural characteristics as the grammar
based syntactic one. So, the complexity needed to create a correct word, including all
the suffixes it needs, in inflected languages may make it necessary to search for other
prediction methods, apart from each that are shown statistical methods.

When we come to the traditional NNMs, such as FFNN, LSTM and RNN the cost of
training a new Neural model is also very high for most languages in terms of Computing
resources(power) and Language resources. Their performance is very related to the size
of data and they need a huge amount of data to for showing their highest performance.
Hence, in this work, we have explored a cost-effective approach-cross-lingual transfer
learning method to adopt a strong source language pre-trained transformer model, trained
from a large monolingual corpus to a low-resource language of our interest, Kafi-Nono.We
found the transformer being the most suitable in overcoming the shortcomings of all stati-
cal and traditional NNM specially for the language we are studying.Transformer overcomes
the data need gap by leveraging the cross-lingual transfer technique and the morphologi-

44

2.13.1 Summary

cal behaviour through its architectural arrangement. The transformer model selected for
this work is Generative Pre Trained(GPT2) version 2. All the shortcomings of traditional
NNM and advantages of transformer are mentioned in section 2.5 and 2.6 above.

2.13.1 Summary

In this section, we have discussed works related to word sequence prediction for
different languages. We understand that languages have their own linguistic character-
istics requiring specific approaches to word prediction. Hence, the research conducted
on one language cannot be directly applied to other languages. Therefore, the aim of this
study to design and develop word sequence prediction model for Kafi-Nono by taking the
unique features and resources of the language into consideration.

2.14 Proposed Approach

Based on related works reviewed in this Section , different researchers used differ-
ent approaches to develop language models. Researchers have their own point of view
with evidence to apply a particular approach in such domain. In this Section we need
to highlight about the approaches used in this research work and the reasons behind it
before we are going to the system architecture. Kafi-Nono is a language that can be char-
acterized as both Morphologically rich(inflected) and Digitally low-resource. For handling
these two problems, neural deep learning method (for handling inflection) and pre-trained
transformer model (for handling low-resource problem) system is proposed. The proposed
model is biasing on the deep learning approach which involves learning words and word
embedding using The first step in the deep learning phase was to somehow convert these
mentions into a feature vector. After feature extraction, a position embedding vector is
created and added to the word embedding vector. Then we could feed these features to a
variety of neural network layers and see how they perform. We started by trying to build
our own word encoding using Byte-Pair encoding (BPE) and train it using a hugging-face
library.

45

Chapter Two 2. Literature and Related Works

46

Research Methodology

Research methodology is a systematic way to solve a problem. It is a science of
studying how research is to be carried out. Essentially, the procedures by which re-
searchers go about their work of describing, explaining and predicting phenomena are
called research methodology. It is also defined as the study of methods by which knowl-
edge is gained. Its aim is to give the work plan of research.

3.1 Research Design

3.2 Literature Review

The research study started with a critical literature review in order to establish an in-
depth understanding of the landscape of the Word Prediction. A number of related works
and resources are reviewed. This consists of thesis, conference and journal articles, white
papers and word prediction systems developed for other languages. The large portions of
reviewed materials are conference and journal articles. The nature, background history

47

CHAPTER THREE : Research Methodology

In a experimental design, the researcher tests his or her intervention in an educa-
tional setting such as a Laboratory, makes modifications depending on the data collected,
and conducts the intervention until it produces good results. The data collected is in
any form of work that will show that the student has learned what is expected. In the
design experiment, modifications are made over time.The design experiment adapts the
intervention to suit the setting through iteration.Experimental design methods allows
the researcher to understand better and evaluate the factors that influence system by
means of quantitative and/or qualitative approaches. Such approaches combine theoret-
ical knowledge of experimental designs and a working knowledge of the particular factors
to be studied. Experimental research is a scientific technique to study that focuses on
creating research with a high level of internal and external validity. The correctness of
assertions about cause and effect relationships is referred to as causal validity. This
type of research will yield results that can be validated by experiment or observation.
This thesis is based on an experimental study design, which includes data preparation,
preprocessing, evaluation metrics, and analysis as basic procedures.

CHAPTER THREE 3. Research Methodology

and operational function of word prediction systems are studied. In addition, a discussion
is made with Kafi-Nono Linguistic experts regarding the linguistic nature of the language
like the grammatical structure and morphology of Kafi-Nono.

3.3 Data collection and preparation

This study conducted to design a WSP language model and implement for Kafi-
Nono Language. Unfortunately, Kaf-Nono is a low resourced language.Kafi-Nono does not
have a publicly available text corpora resource for such studies. For this reason,we have
prepared our own corpora for this thesis work implementation. The corpora preparation
started from collecting web based digital books(holly bible),Text books in digital form(PDF),
randomly selected word, sentence, and paragraph level Kaf-Nono text files from social
media(Facebook).We have used a web scrapping tools such as HTTrack to collect data from
websites. The collected data is needed to be preprocessed before it is ready to be fitted
to train the model.Language models have their own data preparation technique slightly
different in terms of embedding dimension and feeding batch size. For Our pretrained
language model we have made the preprocessing includes normalization, segmentation
and tokenization.The details are given in section 4.2.

3.4 Design and Implementation Approach

Transfer Learning in Language modeling involves fine-tuning hyper-parameters and
re-training a selected pretrained model. In this thesis we have selected a transformer
based pretrained English Model to make it learn the Kaf–nono language pattern and use
it for word prediction in kafi-nono language. We have selected the English Version of
pretrained model for it resembles in character and grammatical structure with Kafi-Nono.
The architecture, module, and components of the proposed system were defined. Perfor-
mance metrics, training approach and parameter tuning were specified. Required tools,
algorithms, programming languages were identified, chosen, and studied. To develop the
system we have used different software and hardware tools.We have used python pro-
gramming language for development. Benefits that make Python the best fit for our thesis
work include simplicity and consistency, access to great libraries and frameworks for AI
and machine learning (ML), flexibility, platform independence, and a wide community.
These add to the overall popularity of the language.

48

3.5 Evaluation

3.5 Evaluation

After the system is developed in order to check whether our study works in ac-
cordance with the ideas and theories of word sequence prediction,It is evaluated for it
performance. There are common evaluation techniques for WSP models, such as accu-
racy,perplexity, bits-per-character, and cross entropy. The most widely used evaluation
metric for WP language model is Perplexity. We have implemented evaluation using two
methods: automatic (perplexity) and human evaluation for accuracy. We have used two
evaluation methods in order to be sure that the automatic and manual evaluation results
are consistent on our data and our systems performance.More Can be found on section
2.9 and 5.10.

49

Methods and Techniques

4.1 Overview

In this chapter we discuss about the proposed models of our work along with the
design constraints and implementation issues. The main components of word prediction
model along with sub components and the interaction between the cooperative compo-
nents will be presented. As described in literature and background, Kafi-Noonoo is a
language with scarce data in text form. This scarcity of those resources makes the lan-
guage not to be incorporated in the field of the Natural Language Processing (NLP) and
information extraction (IE). By taking this in consideration and reading different support-
ive articles, journals and books, we selected a cross-lingual transfer method being most
suitable to model kafinoonoo language and predict next word. We used books, reports and
cultural documents of the language corpus as our data source. As discussed in chapter
two various approaches have been proposed to predict next word of different languages.
The models depend on the characteristics of the language and the available amount of
data. As a result, it is difficult to apply the models proposed for other languages to Kafi-
Noonoo directly. Here, we have proposed a new fine-tuned model for Kafi-Noonoo called
KNGPT2. This task requires us to build a system which can predict next words with
corresponding referent words.

The main goal of this work is to present a simple Transformer-based NNL model
called KNGPT2. It is built by re-training and hyperparameter optimization of pretrained
transformer model called GPT2 that can be used for word prediction in autocompletion
tools, scoring the "rightness" of sentences, or generating text. The model has been devel-
oped using a Python library called Pytorch, which allows developers and researchers to
modify neural networks and tune the training process effortlessly. This effortless tuning is
essential for both research and industry since the models have to be trained with multiple
different configurations to figure out how to develop the best performing language models.
One part of this LM development process includes so-called hyper-parameter optimization
or fine-tuning, where the different default parameters are set for the model and observed
which parameters perform the best [22].

In addition to the flexibility, Pytorch is optimized to utilize multiple GPU and CPU
cores to speed up and parallelize the massive numerical computation. Computational
optimization is critical to keep the research and product development iteration cycle as

51

CHAPTER FOUR : Methods and Techniques

CHAPTER FOUR 4. Methods and Techniques

Figure 4.1: The General Method of Language Modeling

fast and productive as possible.

GPU utilization is essential because the training times of neural networks can be 10
to 100 times faster on GPUs than CPUs [29] Concerning parallel computation, even with
the most efficient GPUs, the training time of complex and computationally heavy models
can take multiple days [31]. Hence, it is crucial to parallelize the computation to multiple
GPUs. Then, it is still possible to decrease the computation time significantly even if there
are no possibilities to improve the computation time by optimizing the code or hardware.

Figure 4.2: The Fine-Tuning Process- LM was first trained with huge English language
Unlabled data (LM pretraining) and then fine-tuning and training on top of the frozen em-
beddings with Kafi-nono language unlabeled data

52

4.2 Data Preparation

Data Source No. of Sentences No.of Words No. of Tokens
New Testament Text 5100 14,500 34,300
Educational text Books 3800 12,700 25,800
Social Media 1800 7,200 14,900
Total 10,700 214400 75,000

Table 4.1: Data set Statistics

4.2 Data Preparation

Data is the fuel of the machine learning age. There are no existing Kafi-Noonoo
corpora for any machine learning tasks and hence language modeling tasks. Thus, it is
necessary for us to create a corpus for this study. Different books are chosen as sources
of data.

One of the quality of data is its representativeness. Books are good sources of
data since it represents structured content well, however books are very domain-specific
depending on the plots and settings. The educational books contents are written for ease
of understanding. So, we have collected data from three main sources these are the
new testament holy bible in Kafi-Noonoo language, Educational Text books and social
dialogues (this data was extracted from an interview made by an international social
researcher in some part of Kafa zone). Hence we have considered data representativeness.

Many of the books we have collected were full of duplicate contents. These duplicate
data were removed to insure quality of data.

The need for large amount of data by deep neural networks is reduced by different
techniques and tools in order to reach low-resourced languages. One of the techniques
is using cross-lingual transfer learning, where a pre-trained language model in another
language (e.g. English) is fine-tuned in to a new-language. In this approach, without
requiring gigabits of data we can get the advantage of neural networks in to resource
scarce languages

. We have used different tools and techniques to extract Kafi-Noonoo data. One of
such tools is the HTTRACK, which is used to dumb websites to a local storage. And text
collector tools to collect text data from the offline repository, downloaded earlier. Theses
tool was used to extract a non-downloadable text corpus of the new testament bible in
Kafi-Noonoo language. The statistics of the dataset is given in Table 4.1 The dataset also
covers a variety of topics in the books of the New Testament Holly bible in Kafi-Noonoo.
We have formatted (segmented) the data so that the beginning and end of the text is used
for training and evaluating our models. To give our AI model the most uncluttered and

53

CHAPTER FOUR 4. Methods and Techniques

High quality learning data possible, we have used a series of simple markers to give GPT-2
the shape of a writing prompt response. we added <|sos|> for indicating start of sentence
and <|eos |> to denote end of sentence tokens to match the writing prompt dataset, while
this was a huge, time-consuming effort, but it made the output infinitely more interesting.
We have saved the whole dataset as a .TXT file.

4.2.1 Data Processing

Collected Kafi-Noonoo corpus needs different type of preprocessing before we made
ready for word prediction system, as which Kafi-Noonoo has different language specific
features that should be normalized. The document preprocessing component such as,
tokenization, sentence segmenting, character normalization, stop word removal etc. are
applied on the dataset to handle language specific issues.

4.2.2 Sentence Segmenting

When we process a batch of sentences, they aren’t always the same length. This is a
problem because IDs, the input to the model, need to have a uniform shape. segmenting is
a strategy for ensuring IDs are rectangular by adding a special padding token to sentences
with fewer tokens. This is done by setting the padding parameter to True to pad the shorter
sequences in the batch to match the longest sequence. We need segmenting because we
wanted to give the AI the most uncluttered and high-quality learning data possible, so we
used a series of simple markers to teach GPT-2 the shape of a writing prompt response.

We use pad_sequences for padding. pad_sequences uses arguments such as se-
quences, padding, maxlen, truncating, value and dtype.

Sequences: list of sequences that we created from the data corpus.

Padding: ‘pre’ or ‘post (default pre). By using pre, we pad (add 0) before each sequence
and post pad after each sequence.

maxlen: maximum length of all sequences. If not provided, by default it will use the
maximum length of the longest sentence.

Truncating: ‘pre’ or ‘post’ (default ‘pre’). If a sequence length is larger than the provided
maxlen value then, these values are truncated to the maxlen. ‘pre’ option will
truncate at the beginning whereas ‘post’ truncate at the end of the sequences.

54

4.2.3 Tokenization

Value: padding value (default is 0)

dtype: output sequence type (default is int32)

4.2.3 Tokenization

This is the task of breaking texts in to piece of meaningful tokens. Sometimes it can
be defined as a arrangement of characters or a defined text unit. Tokenization is the job
of slicing sentences(text) up into pieces, possibly at the same removing certain characters
such as punctuation. A token is an example of a sequence of characters in some text
document that are arranged together as a meaningful semantic unit for processing. The
tokenizer then tokenizes all the text segments which have space between each other as
independent token. We used Byte-Pair Encoding (BPE) word tokenizer for this task.

Figure 4.3: Kafi-Nono tokenizer

4.3 The Pre-Trained Transformer Model

We use a Transformer GPT-2 based architecture for our prediction LMs. The model
largely follows the details of the OpenAI GPT model [32]. GPT-2 is a large transformer-
based language model with 1.5 billion parameters, trained on a dataset of 8 million web
pages. GPT-2 is trained with a objective to predict the next word, given all of the previous
words within some text. The diversity of the dataset causes this simple goal to contain

55

CHAPTER FOUR 4. Methods and Techniques

naturally occurring demonstrations of many tasks across diverse domains. GPT-2 is a
direct scale-up of GPT, with more than 10X the parameters and trained on more than 10X
the amount of data. Zero-Shot Transfer: The pre-training task for GPT-2 is solely lan-
guage modeling. All the downstream language tasks are framed as predicting conditional
probabilities and there is no task-specific fine-tuning. The Pre-Trained Transformer Model
GPT-2 architecture implements a deep neural network, in which input is processed by
multiple layers of neurons whose weights determine the activation patterns of subsequent
layers, and the final layer of neurons constitutes the output of the network. The Internal
Configuration of the model is:
"activation_function": "gelu_new",

"architectures": [

"GPT2LMHeadModel"

],

"attn_pdrop": 0.1,

"sos_token_id": 50256,

"embd_pdrop": 0.1,

"eos_token_id": 50256,

"initializer_range": 0.02,

"layer_norm_epsilon": 1e-05,

"model_type": "gpt2",

"n_ctx": 768,

"n_embd": 768,

"n_head": 12,

"n_layer": 12,

"n_positions": 768,

"n_special": 0,

"predict_special_tokens": true,

"resid_pdrop": 0.1,

"summary_activation": null,

"summary_first_dropout": 0.1,

"summary_proj_to_labels": true,

"summary_type": "cls_index",

"summary_use_proj": true,

"task_specific_params":

"text-generation":

"do_sample": true,

"max_length": 50

"vocab_size": 50257

56

4.4 Proposed System Architecture and Components

Figure 4.4: The pre-trained model (GPT2) Structure

4.4 Proposed System Architecture and Components

In general, the following are some of the general components of Kafinono Next word
prediction system.

4.4.1 Data Preprocessing Component

This component allows the system to identify language specific aspects and to nor-
malize the document in order to save the CPU cost, space, and to enhance the system
performance.

57

CHAPTER FOUR 4. Methods and Techniques

4.4.2 The Transformer Component

The transformer is the main component where the neural network operations are
done to model the patterns of the language. It contains both the Embedding Compo-
nents and the neural components. Embedding Components extract both word-wise and
position-wise features. The word and position embedding vectors are added up in this
component and passed to the next component.

Figure 4.5: The proposed system architecture

The proposed system architecture of our next word prediction system is adopted
from the general architecture of transformer based natural language generation and pre-
diction system. Our own system specific components are incorporated along with the
general architecture. Figure 4.5 renders our proposed system architecture.

4.4.3 Text Cleaning

Cleaning data from undesired characters and spaces is necessary for quality of data.
We have used Beautiful Soup for cleaning our text and find all paragraphs objects that
we don’t want. From this point, we can already use regex to return the string obtained

58

4.4.4 Text Normalization

by replacing the leftmost non-overlapping occurrences of the pattern (“</?p[>̂]*>”)in the
string by the replacement (“”). In this way, we clean the text from undesirable characters.

4.4.4 Text Normalization

Normalization is a set of operations applied to a raw data to make it less random or
cleaner. Common operations include stripping white space, removing accented charac-
ters or lower casing all text. Unicode normalization, is also a very common normalization
operation applied in most tokenizers.Each normalization operation is represented in the
Tokenizers library by a function called normalizer, and we can combine several of those
by using a the Sequence function. Here we used a normalizer applying unigram nor-
malization(Characters are decomposed by canonical equivalence, and multiple combining
characters are arranged in a specific order) and removing unicode characters which don’t
belong to Kafi-Nono language.

Require: Input: set of strings D, target vocab size k
Ensure: procedure UNIGRAMLM(D; k)

V ← all sub-strings occurring more than once in D (not crossing words)
while |V | > k do

▷ Prune tokens
Fit unigram LM θtoD
if t ∈V then

▷ Estimate token ‘loss’
Lt ← pθ(D) − pθt (D)

where θt is the LM without token t
end

Remove min(|V | − k; [α|V |])of the tokens t with
highest Lt from V , where α ∈ [0, 1] is a hyper parameter

59

end
Fit final unigram LM θ to D
return V , θ
EndProcedure

Algorithm 4.1: Text Normalization Algorithm with

CHAPTER FOUR 4. Methods and Techniques

This uni-gram LM text normalization method begins with a super-set of the final
vocabulary, pruning it to the desired size see Algorithm 4.1.It takes the vocabulary V
and unigram LM parameters θ and performs Viterbi inference to decode the segmentation
with maximum likelihood under θ. This method is similar to Morfessor’s unsupervised
segmentation without its informed prior over token length.

4.4.5 Tokenization and Input Encoding

The word vectors used for the first layer of GPT-2 are not simple one-hot tokeniza-
tion. We have used Byte pair encodings (BPE). Byte-Pair Encoding (BPE) tokenization is
unsupervised tokenization, in which the most frequently occurring pair of Unicode char-
acters is recursively replaced with a character that does not occur in the vocabulary –
these approach is adopted by various contextual language models in NLP.

BPE effectively bridges between word level inputs for frequent symbol sequences
and character level inputs for rare symbol sequences.The byte pair encoding scheme
compresses an arbitrarily large tokenized word list into a set vocabulary size by recur-
sively keying the most common word components to unique values. Before token/word
is fed to the model, it will be embedded in the model’s embedding component. BPE is
Subword tokenization algorithms consisting of two components: a vocabulary construc-
tion procedure, which takes a corpus of text and returns a vocabulary with the desired
size, and a tokenization procedure, which takes the built vocabulary and applies it to
new text, returning a sequence of tokens. In theory, these two steps can be independent,
although for the algorithms we examine the tokenization procedure is tightly coupled to
the vocabulary construction procedure. A BPE vocabulary is constructed as in Algorithm
(4.2):
BPE tokenization takes the vocabulary V containing ordered merges and applies them to

new text in the same order as they occurred during vocabulary construction. The Word-
Piece algorithm, closely resembles BPE. However, instead of merging the most frequent
token bigram, each potential merge is scored based on the likelihood of the language
model to be trained on a version of the corpus incorporating that merge.

60

4.4.5 Tokenization and Input Encoding

Algorithm 4.2: BPE Kafi-Nono Tokenization Algorithm

Require: Input: set of strings D, target vocab size k
Ensure: Procedure BPE(D; k)
V ← D all unique characters in D
(about 10,700 in Kafi-Nono corpus)

Replace each occurrence of tL , tR in D with tN EW

end
return V
EndProcedure

61

while |V | < k do
// Merge tokens

tL , tR ← most frequent bi-gram in D
tN EW ← tL + tR /Make new token
V ← V + [tN EW]

CHAPTER FOUR 4. Methods and Techniques

62

Experiment, Results and Discussion

5.1 Overview

This chapter presents the experiment performed with the proposed methodology
and the findings.

In the first part of this section, the dataset,the experiments environment specifica-
tion and the experimental parameters will be discussed. Then experimental results are
presented and discussed. In the result section, the performance of the proposed algorithm
is evaluated against different methods.

5.2 Dataset and Data Processing

Our training data set contains 10,700 sentence segments of the Kafi-Nono text.
All of these are the first and new data sets, which has never been seen by any machine
learning models before. There are three steps in our data pipeline. The first step is fresh
data collection. The second step is to split long text into segment lengths. The third step
is to encode the text segments in the required GPT-2 format to digest it. The first step is
described is Chapter 3 above. The latter two steps, second and the third, are presented in
more implementation details as below. At the second step, we implemented the segment
breakdown manually. Our heuristic-based implementation is based on the observation
that line segments are often headed by punctuation. The punctuation mark is either
full stop or question mark or exclamation mark most of the time. It is conventional to
separate a Kafi-Nono text in this way. The punctuation marks alone are not enough to
split a text into segments, however. After identifying text segments, we follow Woolf ’s
code [62] to add "<|sos|>" to the beginning of a sentence and "<|eos|>" to the end. In
this way our training dataset is prepared in a specific format. Later at the inference stage,
we can also identify the beginning and the end of a sentence in all generated text. The
third stage of our data pipeline is straightforward. We use the encode function in the
GPT-2 code and transform text data into compressed NumPy format (*.npz). The format
is ready for training iterations and saving time. We shared our training data in both
numpy format and plain text format. Future researches can reuse our formatted text file
for GPT-2. we added start of text <|sos|> and end of text <|eos|> tokens to match the

63

Chapter Five : Experiment, Results and Discussion

Chapter Four 5. Experiment, Results and Discussion

writing prompt dataset, but we also made sure each response had the original writing
prompt marked. While this was a huge, time-consuming effort, but it made our output
infinitely more interesting. we saved the whole dataset as a .TXT file. Here’s what the
sample dataset looks like the following We also reserved some text for user testing on the
models performance. The words for user testing are just randomly parted from the main
dataset.

<|sos|>Yeeri taan bi ceeggitoomon ittoshicha getee taach immati

shuunoomon, ceeni bi qaaroon ta gettemmoyich kittinnee guuphi maddachon

tunahoye. </eos|> <|sos|> Hini qaaro wonnee yemeenoochee tiĳiqqi

shiĳareena’o bullich aacheeti maacee mooy- one; tunaballi and ebi ara

maacee mooyo Yeerich yaafeetina’oyich gaxxeetone</eos|>

<|sos|>Boonoshichoo Yeeri ebi aacheeti maacee mooyo am shaahoon

woriganikkii beeto gaata bi tunoon aagateena’ochi daggooch arichiyoyich

shunniye</eos|> ebi aacheeti maacee mooyo Yeerichi oogee yiiroon danee

gibano tunati Kiristoosi ittoshi mullee daggooch beemone</eos|>

<|sos|>Asho bulli bi ikki ikkoo Kiristoosina biich beeti ikkittinoona bedditi

ashoon bi tunatee Yeer waan giddiyoyich ariyoo bullina asho bullin kaaraa

ciiccaabee arichii beeto noone</eos|>

5.2.1 Data Partitioning

To evaluate our model, we have divided the dataset in to training,and evaluation
parts each with a dataset of 80% and 20% respectively. We have evaluated our fine-tuned
model-KNGPT2 against the evaluation and testing dataset. Test Dataset is the sample of
data used to provide an unbiased evaluation of a final model fit on the training dataset.
The Test dataset provides the standard used to evaluate the model. It is only used once a
model is completely trained(using the train and validation sets). The test set is generally
what is used to evaluate competing models. Many a times the validation set is used as
the test set, but it is not good practice. The test set is generally well curated. Our test
set contains 51 randomly selected words/phrases carefully sampled data that spans the
various classes that the model would face, when used in the real world.Our test data is
not included in the training and evaluation dataset; hence is prepared from new(unseen)
data. The prototype was tested with these test data along with human evaluation process.
Since we are using the prototype to generate next words for human evaluation, we don’t
need separate testing for user rating.

64

5.3 Experimental Setup

5.3 Experimental Setup

One of the shortcomings of deep neural networks is their greedy behavior both in
terms of computing resources and data. They are not effective for ordinary computing
resources like laptops or desktops we use in our regular times. For this reason, we used
Google Collaboration [88] for GPU. Google Collaboration is a Jupyter based notebook
environment that entirely runs in the cloud. Though Google Colab is freely available, with
limited use of only 12 continuous hours in a session. For our experiments it is sufficient.
For training tasks that require more than 12 hours, we can save the training checkpoints
in training to our google drive and restore them for continuous training in next session.
Manual effort is needed to initialize a fresh session on Colab, in which the previously saved
check points are loaded in to the Colab and setting the paths to the environment. Though
it is time consuming, such a free accessible platform may make it easier for scholars to
try many different experiments.

Huggigng Face and Fastai(facebook) companies made a way to easily access the
huge models and complex data structures which we use in this work. Both of them
made it convenient to easily download and acess GPT-2 models and tokenizers as easily
as calling a library. Python programming language and Pythorch libraries are used to
implement the proposed system.

Google Colab offers free GPUs and TPUs for researchers. Since we will be training
a large neural network it is the best opportunity to take advantage of this since we have
access to a GPU, otherwise training will take a very long time. A GPU can be added by
going to the menu and selecting: Edit > Notebook Settings > Hardware accelerator > (GPU)
The GPU available on Colab is NVIDIA Tesla T4 equipped with roughly 15GB RAM memory.
The memory size is sufficient for finetuning all layers of the small model (124M)but it is not
sufficient for the medium (345M) and large model (747M). It is familiar that TPU (Tensor
Processing Unit) which is more powerful than GPU, is also accessible on Colab. With
the data-parallel implementation, pure computation time Tbatch mini-batch step remains
constant in the number of worker GPUs. The amount of data processed during one mini-
batch step increases linearly with the number of engaged workers N. Synchronization
between workers performed by means of a tree-like allreduce, would yield logarithmic
complexity TsynkαlogN Thus, the number of mini-batches would decrease linearly with N
giving a following scaling model equation 5.3

Tepoch =
1
N

.(TbatchxTsync) =
1
N

.(A + B.log(N)) = O(
log(N)

N
5.1

65

Chapter Four 5. Experiment, Results and Discussion

Overall, the model architecture, tokenization, and training procedure produce a
large number of hyper-parameters that must be tuned to maximize predictive perfor-
mance. These hyper-parameters include numerical values such as the learning rate and
number of transformer layers, dimension of embedding space, but also abstract cate-
gorical variables such as the precise model architecture or the parameters in the GPT-2
transformer model scales near-linearly as a function of number of transformer blocks,
and quadratically with the number of hidden units per block as 5.5.

dx .(|V | + Nctx) + A.n.d2
model 5.2

The constant A here is defined by the parameters of the MLP part of the transformer.
The chosen monolingual GPT-2 models have 12 layers, scaled dot-product attention with
12 heads, and are trained with BPE vocabulary size of 50,000, The rest of the model
architecture parameters is summarized in Table5.2.

Currently, the Hugging Face library seems to be the most widely accepted and
powerful pytorch interface for working with GPT-2. In addition to supporting a variety of
different pre-trained transformer models, the library also includes pre-built modifications
of these models suited to our specific task. The library also includes task-specific classes
for token classification, question answering, next sentence prediciton, etc. Using these
pre-built classes simplifies the process of modifying GPT-2 for our purposes. Next, we
install the transformers package from Hugging Face which will give us a pytorch interface
for working with GPT-2. This library contains interfaces for pretrained language models
of our focus, GPT-2. We’ve selected the pytorch interface because it give a good balance
between the high-level APIs which are easy to use but don’t provide insight into how they
work and tensorflow code which contains lots of details but which led us into lessons
about tensorflow, when the purpose here is GPT-2.

5.4 Training and Test Results

The experiments conducted during this thesis work utilize two different Language
models: LSTM constructed from scratch and transfer learning of Pretrained model GPT2.
Pretrained one is the one that this thesis is presenting. These two models are compared
to each other for the purpose of bench-marking the performances of each models on our
target language and available data.

66

5.4.1 Long-Short-Term Memory-LSTM Model

5.4.1 Long-Short-Term Memory-LSTM Model

Long-term short-term memory networks (LSTMs) (Fig. 5.1) are a modified version
of periodic neural networks that make it easier to remember past data in memory. Here,
the problem of the vanishing RNN gradient is solved. LSTM is well suited for classifying,
processing, and forecasting time series based on time lags of unknown duration and trains
the model with back-propagation. There are three gates in the LSTM network:

1. Entrance gate: learn what value from the input should be used to modify the mem-
ory. The sigmoid function decides which values to pass through 0.1 and the tanh
function provides a weighting to the values transmitted, determining the level of
their importance in the range from -1 to 1:

it = α(Wi ∗ [ht−1, xt] + bi)Ct = tanh(Wc ∗ [ht−1, xt] + bi) 5.3

2. Forget gates: learn what parts should be thrown out of the block. The sigmoid
function determines this. Consider the previous stateht 1 and the input content (x)
and output a number from 0 (skip it) to 1 (save it) for each number in the state of
cell Ct ˘1:

ft = α(Wf ∗ [ht−1, xt] + bf) 5.4

3. Output gate: the input and memory of the unit are used to solve the output. The
sigmoid function decides which values to pass through 0.1, and the tanh function
provides a weighting to the transmitted values, determining their level of importance
in the range from-1 to 1 and multiplying by the sigmoid output:

ot = α(Wo ∗ [ht−1, xt] + bo)ht = ot ∗ tanh(Ct) 5.5

The model has 5 layers, the embedding layer with 1x10 dimension, first and second
layers with 1x1000 neurons, two dense layers with 1000 neurons and 32536 neurons
respectively. Fig. 5.2. IN this LSTM, there was no inherent knowledge of the English
language, and thus is trained only with our Kafi-Nono data.

5.4.2 LSTM Model Training

The figure 5.2 demonstrates the structure of the used LSTM .The model consists of
the embedding layer, LSTM, and neural layers. The embedding layer is highly important

67

Chapter Four 5. Experiment, Results and Discussion

Figure 5.1: LSTM Model Structure

for NLP tasks as it helps to achieve better results focusing on keywords. We trained the
model with 150 epochs, batch_size of 64,loss function categorical_crossentropy ,Adam
optimizer and learning rate of 0.001.The training on the dataset took 12 hours to com-
plete.The training was carried on our kafi-nono data only. Results of model evaluation on

Loss Accuracy
8.750 0.1455

Table 5.1: LSTM Model Evaluation result

the validated data set are displayed in Table 5.1.

68

5.5 Pretrained Model

Figure 5.2: LSTM Model Details

5.5 Pretrained Model

Currently, there are three versions of GPT-2 transformer model released for public
access. The main difference among them is their size: GPT-2 Small, GPT-2 Medium and
GPT-2 Large.

Figure 5.3: Currently GPT2 publicly available model sizes

We choose the small sized model for our work because of two reasons: One is the
smaller model is less resource intensive than larger models, secondly the largest model
is very expensive in terms of hardware resources(memory, GPU, etc) and time required
for training it. Moreover, the larger models requires very large memory which we cannot
afford for this work. So to get the best out of it, we chose the GPT-2 small for this work.
The structural parameters of small-sized GPT-2 English model are: 12 layers of NNs,768
hidden units, 12 Attention heads and 124 million parameters.

69

Chapter Four 5. Experiment, Results and Discussion

5.5.1 Fine-tuning Hyper-parameters

Hyper-parameters top-p, top-k and temperature are known as Fine-Tuning hyper
parameters. They are called so because they can be adjusted at any time, before training
or after training is completed or during generation time. We have used GPT2-small as the
pre-trained language model for model training; In the generation phase, we use the top-p
decoding strategy with p = 0.95 to generate 768 tokens at maximum.

Temperature A method to make the distribution P(ww1:t1) sharper, that is, maxi-
mizing the chance of high probability words and lessening the chance of low probability,
is done by using a parameter called temperature of the SoftMax words. We set the tem-
perature value to different values between 0 and 1. There are less strange words and the
output is a bit more coherent now! While applying temperature can make a distribution
less random, in its limit, when setting temperature to 0, temperature scaled sampling
becomes equal to greedy decoding and will suffer from the same problems as before.

Top-K Sampling a simple, but very powerful sampling scheme, called Top-K sam-
pling was introduced by [97]. In this technique, the K most probable next words are
collected and the probability mass is reallocated only among those K next words. this
sampling scheme is adopted by GPT2 which was one of the reasons for its success story
in text generation. In our experiment, we extended the limit of words used for both
sampling steps from 3 words to 10 words to better illustrate Top-K sampling.

Top-p sampling Top-p also known as nucleus filtering sorts words in the vocabulary
by descending logit, apply softmax to turn logits into probabilities and keep the top N
tokens so that the sum of their probabilities is less than or equal top-p. If we set top-
p=0.9 and the network believes the first most likely token has a probability of occurring
of 95%, then that will be the only token retained (e.g. N equals 1, as 95% > 90%). On
the contrary, if the LM is less sure about its predictions, the top words will likely be
associated with similar (low) probs, hence more than one need to be kept to reach a
cumulative probability of 90%. The idea here is that if the model is super confident about
a specific token to be next, then we just pick it. If instead, the confidence level is low,
it makes little sense to select the most probable word, as the second or third tokens will
show very similar likelihoods to the top one. If top-p<=0 this filter is not applied Note
that the above two filters make sense only if temperature is not set to 0. In this case
(temperature=0), as already mentioned above, the script performs greedy sampling, e.g.
it always selects the top word by probability Therefore, profiteering a list of tokens has no
effect on the final result.

The training Hyper-parameters are used to control the learning process of the model

70

5.6 Training Procedure for Pretrained Model

on how to handle the data and aline with the network architecture accordingly. We have
set the learning rate to 6.25105, cumulative batch size of 128, learning rate decay of 0.98
per epoch, and categorical cross-entropy loss, epoch of 3 (every epoch has 2500 iteration
steps) and optimization algorithm to Adam and an activation function of SoftMax.

5.6 Training Procedure for Pretrained Model

5.6.1 Tokenization and Input Formating

One important part of a language model is the tokenization, which essentially con-
verts the input sequence into tokens that the embedding layer of the model understands
and embeds in a meaningful fashion. For this, we implement a ByteLevelBPE tokenizer
and train it on our Kafi-Nono corpus.

For building up a vocabulary from our data, the byte pair encoding in language
models which tends to work in the opposite direction; it starts out with a set of characters
in that language, and through passes on the data, builds up subwords by finding the
pairs present in the dataset, and then merging to find larger pairs, and so on. In this
way, the tokenizer learns a vocabulary directly from the dataset itself and not from any
manual input from an external source.

We are following steps in order to get a ByteLevelBPE tokenizer with a vocab in Kafi-
Nono. Get the pre-trained GPT-2 Tokenizer Model pre-trained with an English corpus
from the Hugging Face Transformers library. This will give us the tokenizer structure we
need and the pre-trained model weights to start training our GPT-2 model in Kafi-Nono
from weights already trained in another language. And we Train a Byte-level BPE (BBPE)
Tokenizer on the Kafi-Nono corpus by using the Hugging Face Tokenizers library this will
give us the vocabulary files in Kafi-Nono of our ByteLevelBPE tokenizer. Then we import
the tokenized Kafi-Nonon config files (vocab.json, merges.txt) into the pre-trained BPE,
this will give us a ByteLevelBPE structure with the vocab in Kafi-Nono figure ??.

Update the Embedding Matrix of the PreTrained Model

In the next step we need two things: a fastai tokenizer for data loading, and updating
the embedding matrix with Kafi-Nono data which requires converting Hugging Face tokens
to fastai tokenizer.The reason we use fastai tokenizer on top of hugging face tokenizer is

71

Chapter Four 5. Experiment, Results and Discussion

Figure 5.4: Sample of BPE KN Tokens

that fastai is more convenient for loading data to the model. Secondly, we will update
the embedding matrix of the English GPT2 model with the Kafi-Nono vocabulary on top of
English vocabulary. This will set to the embedding weight for further fine tuning during
the training phase Figure 5.5.

Creating a Fastai Dataloader

We have tokenized data and the data needs to get loaded to the model. So we need
a fastai dataloader. This also re-uses the Kafi-Nono tokenizer we made earlier. The fastai
v2 library expects the data to be assembled in a DataLoaders object that has a training
and validation data devider. We can do this done by using the dataloaders method in the
fastai library. We just have to specify a batch size and a sequence length here

5.6.2 Splitting the Model and Gradual Unfreezing

Transfer learning involves accessing some parts of the transformer model for partial
training and leaving others in each training epoch. In this stage we split the pretrained
model to train modules separately. Training some part of the model at a time and leaving

72

5.6.2 Splitting the Model and Gradual Unfreezing

Figure 5.5: Updating Model Embedding

the other part left is called gradual unfreezing. The GPT-2 model parts are the embedding
layer, 3 decoder blocks(each containing 4 NN layers) and the linear layer(LM-head layer).
Generally, the model has 2 main parts (or parameters groups): transformer and lm_head.
As we can read in [141], the lm_head is a copy of the vocab embedding matrix (wte) in
order to get after the softmax probability of each token in the vocab. Therefore, we need to
split all the transformer layers group to get all layers. As such, we finetune the following
layers per run:

• Finetuning step 1: Unfreeze(train) The LM head + embedding and freeze others

• Finetuning step 2: Unfreeze(train) LM head + embedding + decoder block 3 and
freeze others

• Finetuning step 3: Unfreeze(train) LM head + embedding + decoder block 2 and
freeze others

as shown in figure 5.6

73

Chapter Four 5. Experiment, Results and Discussion

Figure 5.6: Splitting and gradual unfreezing

Now, we can create our layers groups that will allow us to use all the fastai v2
fine-tuning techniques. Moreover, we decided to follow the fine-tuning method showed
for text classification training in the [142] by creating 5 parts: 3 decoder blocks each 4
layers groups , one embedding layer and the linear layer. The underlying idea of this,
though difficult to theoretically or experimentally prove, is that the earlier decoder blocks
would focus more on semantics and structure, while the later layers focus more on the
actual dialect (English, Kafi-Nono, etc.) This split is provided to the final Learner along
with the dataloader created earlier, the base model to start from and a loss function.

5.6.3 Pretrained Model Training

Now, we import the pretrained GPT-2 model, as well as the tokenizer. Also, like we
mentionned earlier, GPT-2 is Huge. It is likely that if we try to use it on ou computer, we
will be getting a bunch of CUDA Out of Memory errors. In such cases, an alternative that
can be used is to accumulate the gradients function. The idea is simply that before calling
for optimization to perform a step of gradient descent, it will sum the gradients of several
operations. Then, it will divide that total by the number of accumulated steps, in order to

74

5.6.3 Pretrained Model Training

get an average loss over the training sample. That means much fewer calculations.

Now, we are ready to create our Learner, which is an object for grouping data as
training and validation, model and loss function and handles model training and infer-
ence. Since we are in a language model setting, we pass accuracy and perplexity as
metrics, and we need to use the callback we just defined. Lastly, we use mixed precision
to save every bit of memory we can since we have a modern GPU, it will also make train-
ing faster. And now, finally, we create the training function that will use all our data to
fine-tune GPT-2 so that it can predict quality Kafi-Nono text in the future.

Now for the this part we gradually unfreeze the aforementioned groups one by one,
and each time fit a single cycle , one run of the entire dataloader. After every 500 steps,
we saved the checkpoint so that we don’t loose our work if something happens in the
middle of the training. We did really much hyperparameter tuning on the learning rate,
thanks to google for its free GPUs. In the end, we save the model for further experiment.
Figure 5.7 Optimizing transformer neural networks is a computationally intensive problem

Figure 5.7: updating Embedding layer with new dataset

which requires the engagement of high-performance computing (HPC) clusters in order to
improve time to solution.

Selection of well-performing hyperparameters requires searching a high-dimensional
space. To evaluate a neural architecture or a set of hyperparameters entails running full
model training and inference.

75

Chapter Four 5. Experiment, Results and Discussion

Hyperparameter Explanation Best value

dmodel Hidden units per layer 768

Nctx (block size) Code context length 768

dx Embedding dimension 768

Nhead Attention heads 12

Dropout Dropout keep probability 0.9

Batch-size 128

Epoch 3

Learning rate 6.25x10-5

Optimization Algoritm Adams

Loss function Cross-entropy
top-k 60
Temprature 0.9

Table 5.2: Well-performing values of model architecture hyperparameters

We scale up the training using synchronous data-parallel distributed training al-
gorithm with local gradient accumulation. The learning rate controlling the magnitude of
the weight update during gradient optimization is lowered upon completion of each epoch
according to the cosine decay. In a distributed regime, we increase the learning rate dur-
ing the first few epochs (“warm-up” period) to facilitate reliable model convergence. The
online training is implemented as a Python library integrating PyTorch and HuggingFace
with Adams algorithm for gradient summation.

The GPU available on Colab is NVIDIA Tesla T4 equipped with roughly 15GB RAM
memory. The memory size is sufficient for finetuning all layers of the small model (124M
)but it is not sufficient for the medium (345M) and large model (747M). It is familiar that
TPU (Tensor Processing Unit) which is more powerful than GPU, is also accessible on
Colab.

5.7 Sequence Decoding

Each inference call to the model yields a probability distribution vector over subto-
kens in the vocabulary. This can be conceptualized as an N_ary tree of subtokens rooted
in the last subtoken of the word context typed in by a user. The depth of the tree is de-
fined as a length of the desired completion sequence. Each word sequence suggestion is

76

5.7.1 Suggestion Processing

effectively a path on the tree, from the root node to a terminal node. The beam search algo-
rithm is employed to explore and rank those paths, improving recommendation relevance
of word sequences. At every step, the results are aggregated and the top k results are se-
lected, where k is the beam width. Decoding continues for a preset number of subtokens
or until a break token is reached. The set of break tokens includes the <EOS> (end-of-
sentence) token as well as other language-specific tokens that often precede end-of-line
under common word style patterns.

A naive beam search implementation would iterate over the top k candidates at every
step to produce the output vector. However, for a sequence of length L this would require L
× k inference calls to the model, significantly increasing the inference time and degrading
the overall real-time user experience. Instead, we aggregate top k candidates and perform
batched inference calls at every decoding step, which reduces the number of inference
calls to L provides a comparison of the inference speeds for scenarios with different beam
widths and sequence lengths, quoting speed-ups gained through parallelization.

Given sequential nature of the beam search decoding, we cache the attention keys
and values of the transformer blocks as computed by the model for previous step (token),
passing it as input to the model at the current step instead of recalculating from scratch.
This further speeds up inference by 10%. The speed improvement with parallel and cached
search is most apparent for large L.

As mentioned in section 3, we introduce some new tokens that are not present
literally in the input data. As we decode the output sequences, the model would generate
those new tokens at the appropriate locations. In order to incorporate those tokens
fluently into the completion sequences, we need to post-process them on the user side
into printable characters using the following rules: (1) <SOS> and <EOS> tokens are
ignored, as they almost never seen in the suggestion sequence and do not provide any
additional information relevant to the completion sequence. (2) <EOS> serves as a break
token for beam search decoder.We truncate the com at this token as it indicates the end
of the line.

77

5.7.1 Suggestion Processing

Chapter Four 5. Experiment, Results and Discussion

5.8 Model Comparison and Selection

Next we will compare the performance of the two selected models and select the
better to accomplish our objective in this thesis.

While trained with the LSTM model because of our Kafi-Nono data was small and
the dimension of the dictionary was only 61 words, an accuracy of 14.55% was achieved
, which is bad result for the start of the research. With increasing training data, greater
accuracy can be achieved.In the next, for the LSTM the prediction on validated text is
given. Variants of one and several word prediction were tested. As it can be seen (Table
5.3) all the predicted words are not correct and none sense.

Word Prediction
Asho (1 word) baldiilll
No showee (2 words) Hallo builsssn
Amo biich hamo (3 words) qaasism bifst

Table 5.3: The LSTM predicted results.

From the current demonstration in table 5.3, it is clear that the prediction of the
next word for Kafi-Nono is incorrect. The outputs of the LSTM model were random and
lacked a coherent Kafi-Nono word structure. Additionally, given our focus on mimicking

Model Training Time Execution Time
LSTM 12 hours 15 seconds
Pretrained 3 hours 11 seconds

Table 5.4: Comparison by time.

Model Accuracy
LSTM 0.1455 (14.55%)
Fine-tuned Model 0.89 (89%)

Table 5.5: Comparing Evaluation on the base model(LSTM) and Pretrained model

the content and style of specific languages, we chose a transformer-based model to allow
our model to “focus” on learning our target languages’s structure given a specific context
rather than simply learning how to complete a sentence as was the case with LSTM.
Additionally, a disadvantage of recurrent neural networks is that the less recent context
is eventually “forgotten” by the model when generating the next word. With transformer
models, a sentence’s topic is never forgotten, allowing for robust word generation. Thus,
we decided to move forward with the pretrained model for using transfer learning.

78

5.9 Experiments

Initial Word(phrase) Output generated by Prefix with Generated Next Words

"ebich ittoshi mullooch", LSTM ebich ittoshi mullooch giccccchhg
KNGPT2 ebich ittoshi mullooch giyaachemmina’one iye

"gaawe asho", LSTM gaawe asho omboool,..
KNGPT2 gaawe asho koniyolla bi tuna gaata, ta gabiti xaa

"no showee beeti hinnoo", LSTM no showee beeti mkkpjihhiu. kl
KNGPT2 no showee beeti hinnoo chuuqqeebe! iye

"shemmee gaacoon", LSTM shemmee gaacoon utyt;”;’.,iuhu
KNGPT2 shemmee gaacoon digenoona gaacho hakkiyo) qelli maac

"jimma university", LSTM jimma universiti oiuyfyvbbn ,../.m,
KNGPT2 jimma universiti mooyo biich beeti emiroo ceennitone|

"kafi showoochee", LSTM kafi showoochee oiui,.;;’; kmlkju,./
KNGPT2 kafi showoochee qitooch hammiye

"doyee shimbo", LSTM doyee shimbo uĳjjimm kllj
KNGPT2 doyee shimbo kooreeti shimboon ciinnimmi kooroo

...

Table 5.6: Sample Output comparison from both models

5.9 Experiments

During our experiments, we aimed to investigate four goals using the pretrained
model. The first goal is to understand how fast the transformer model, adapts to Kafi-
Nono language. We did this goal by generating and observing the generated text in step
by step course of early fine-tuning process. Our second goal is to observe the loss values
converging trend by recording the loss values during fine-tuning. Our third goal is to
analyze the overall quality of the generated words/ sentences by unconditional random
sampling. We used a random sampling approach in pursuit of higher text quality. Our
final goal is to compare the generated words based on different text inputs for conditional
random sampling. We further saved the fine-tuned model (KNGPT2) for future researchers
to query the our fine-tuned model and review its Kafi-Nono text generation.

5.9.1 How Fast Transformer Model Adapts to KN Lang. Pattern

We measured how fast the GPT-2 adapts to KN language by observing the occur-
rences of our special tags ("<|sos|>" and "<|eos|>") in generated text. It is a reasonable
expectation that GPT-2 can generate more KN like text if the number of fine-tuning step
increases. Fig. 5.8

79

Chapter Four 5. Experiment, Results and Discussion

Figure 5.8: The positions of special tags "<|sos|" and "<|eos|>" in the generated text

It is to our surprise how few steps are required to generate the first KN-like text.
As early as at the 200th step, generated the following KN text in figure 5.9 If there were
more dataset, it would be still astonishing to see the effectiveness of transfer learning
at every stage and, the effectiveness would be unreasonable. We leave this doubt to be
cleared in the future by using a large corpus. Even a simple neural network with a single
layer could be difficult to comprehend [9]. interpreting black box models has been a
topic of research in Deep Learning for a long time. When Compared with other neural
network models, there is a chance that the attention mechanism in Transformer models
may provide better interpretability. For example, Vig [23] presented an open-source tool
for visualizing multi-head self-attention in Transformer-based language models. The tool
is capable of visualizing attention at three levels of courses: attention head level,model
level and neuron level. It is noted that not all of the generated texsts make good sense.
The sampling is a simple and intuitive way to understand the learning is in progress inside
the transformer.

5.9.2 Training Loss In Fine-Tuning

In this trial we used most commonly used hyper parameters only changing the
learning rate from 10-4 to 6.25×105. And we expected a lower training loss. The conver-
gence of the training losses is shown in Fig. 5.11. In general, a lower learning rate leads
to a slower convergence.Based on the graph, it is reasonable to us that the training loss is
likely to decrease after more training steps more and more. At which step it will become

80

5.9.2 Training Loss In Fine-Tuning

Figure 5.9: Sample automatically generated at 200th step- We observe that there are
repeated words showing the model’s early leaning stage.

81

Chapter Four 5. Experiment, Results and Discussion

Figure 5.10: Sample text automatically generated at 400th step-We observe that the model
already removed repetition which observed in the previous 200th step and is putting the
words in context well improvement is clearly shown

82

5.10 Evaluation

flat is unknown, though. The use of a different dataset to validate and prevent over-fitting
is also unknown. We leave this kind of topics to the future after having more computing
resources and data.

Figure 5.11: Training loss

5.10 Evaluation

We use two evaluation mechanisms named, an automatic metric called perplexity,
and Human evaluation to evaluate the quality of text generated by our model.

5.10.1 Perplexity

Perplexity (PPL) is one of the most common metrics for evaluating language models.
Before diving in, we should note that the metric applies specifically to language mod-
els sometimes called auto-regressive or causal language models Perplexity is defined as
the exponential average log-likelihood of a sequence. If we have a tokenized sequence
X=(x0,x1,. . . ,xt), then the perplexity of X is, The perplexity values were calculated for
each of the generated samples, as equation 5.6

PP(W) = N

√
1

P(w1, w2, .., wN)
5.6

83

Chapter Four 5. Experiment, Results and Discussion

The perplexity was computed for each of the produced samples, as well as for the test set
of actual dataset using once again a Google Colab notebook. First, the pertained model
and tokenizer were loaded. Then, the input data was tokenized in blocks of length 768
using this tokenizer. The loss of each block was calculated using the model for each input
text file, and their average was taken to obtain the perplexity value of that file. The loss
corresponds to the cross-entropy of the input, so the perplexity of a block was obtained by
taking two to the power of the loss value. To evaluate our model using the perplexity, we
have divided the dataset in to training,and evaluation parts each with a dataset 80% and
20% respectively. We have evaluated our fine-tuned model-KNGPT2 against the evaluation
and testing dataset. The evaluation was carried on during training and after each 30%
of the training elapse, an evaluation is computed. This is very important to examine how
much the perplexity is improved while advancing the training. The lower the perplexity
is the better the accuracy. fig 5.12 The perplexity in fig 5.12 shows that it decreased

Figure 5.12: Perplexity

continuously until the middle of the training step at 55% and stopped decreasing. The
value where it was stuck was 4.71. This shows that the model quickly understood the
Kafi-Nono language and reached its lower point of perplexity around half of the training
time.

5.10.2 Human Evaluation

Due to the lack of parallel data in transfer area, automatic metrics are insufficient
to evaluate the quality of the transferred sentence. Therefore, we also conduct human
language expert evaluation experiments. We randomly select 6 prefix sentences (4 sen-

84

5.10.3 Evaluation Results

Initial Word(phrase) Output generated by Prefix with Generated Next Words

"ebich ittoshi mullooch", LSTM ebich ittoshi mullooch giccccchhg

KNGPT2 ebich ittoshi mullooch giyaachemmina’one iye

"gaawe asho", LSTM gaawe asho omboool,..

KNGPT2 gaawe asho koniyolla bi tuna gaata, ta gabiti xaa

"no showee beeti hinnoo", LSTM no showee beeti mkkpjihhiu. kl

KNGPT2 no showee beeti hinnoo chuuqqeebe! iye

"shemmee gaacoon", LSTM shemmee gaacoon utyt;”;’.,iuhu

KNGPT2 shemmee gaacoon digenoona gaacho hakkiyo) qelli maac

"jimma university", LSTM jimma universiti oiuyfyvbbn ,../.m,

KNGPT2 jimma universiti mooyo biich beeti emiroo ceennitone|

"kafi showoochee", LSTM kafi showoochee oiui,.;;’; kmlkju,./

KNGPT2 kafi showoochee qitooch hammiye

"doyee shimbo", LSTM doyee shimbo uĳjjimm kllj

KNGPT2 doyee shimbo kooreeti shimboon ciinnimmi kooroo

...

Table 5.7: Sentence Samples, generated by LSTM and KNGPT2 conditioned on prefixes for
human evaluation

tences generated for each) from each test set for human evaluation. For each review, one
prefix input and four generated samples are shown to a reviewer. 10 reviewers are asked
to choose the best sentence for fluency. Which sentence is the most fluent one. When
we consider human linguistic experts’ annotation on fluency of the generated samples,
experts are requested to evaluate the fluency of each individual sample on a scale of 0-5,
with 1 being "not fluent at all" and 5 being "very fluent," as done in [113] We obtain an-
notations from external professional linguistic experts. For fluency, we use average of the
ten annotations. The method of generation is completely hidden and the order of samples
in testing is randomized. Human evaluations show the average of scores (0 to 5) and the
ratio of words/phrases evaluated between 4 and 5 . All results for human evaluation
are on 51 randomly selected words/phrases. Our approach produces a large number of
high-quality words/phrases with 89% accuracy.

5.10.3 Evaluation Results

Our model KNGPT2, is built on top of the GPT-2 – a multi-layer generative pretrained
transformer model for language modeling, which is a variant of the GPT trained from
scratch on huge English corpus data. Our final model yields a perplexity of 4.71 and a
human evaluation of 89% for Kafi-Nono language.

85

Chapter Four 5. Experiment, Results and Discussion

5.11 The Prototype

In order to, evaluate the model and make the necessary experiment on developed
word sequence prediction models a prototype developed. The prototype has been devel-
oped using Python programming language in the colab notebook. Figure 5.13 shows a
user interface of the prototype.

Figure 5.13: User Interface for the system

The prediction engine starts prediction task after users type a word or phrase in the
text area and presses the generate button. Then the engine proposes the most probable
k words for the number of words entered and displays in a text box next to the given
word/s.

86

5.12 Discussion

Figure 5.14: Initial word Entered

Figure 5.15: Generated Kafi-Nono words

5.12 Discussion

The purpose of this research work is to contribute for the development of next word
perdition language model system for Kafi-Nono language. Language modeling is one of

87

Chapter Four 5. Experiment, Results and Discussion

the building block in natural language understanding because the model serves as a
basement stepping stone for all other NLP tasks like NLI, Summarization, pos tagging,
question answering and dialogue generation etc.

For training of the model we used the corpus collected from different sources. For
the sake of this study only we collected a new Kafi-Nono data from different sources:
the new testament holy bible, educational and cultural books and social media. The
data is processed off as discussed in section 4.2. Specifically, hence the language was
examined as under resources as discussed in section 4.2. Many researchers have also
tried to use statistical methods such as N-gram to develop word prediction system for
other local languages, but the most powerful techniques of the neural network models
were not approached before for word prediction in local languages.This may be because
of the data requirement of NNLMs. However, in this study, we have used a data efficient
technique, transfer learning to leverage the shortage of data and incorporation of powerful
NNLM to our local language, Kafi-Nono. As the experiment shows that in most cases, the
fine-tuned pretrained model, with seem to work the best word prediction for Kafi-Nono.

From The result, we can see that Transfer learning saved our effort, time and re-
sources very much. We are able to implement our work without the need for building a
model from scratch, use only small amount of data, and very few training time. All this
were the advantages of using transfer learning techniques without affecting the effective-
ness of language models.

The qualitative analysis in the result show that the pretrained models learn the
pattern of Kafi-Nono language faster than any other models ever. The transfer leaning
approach is the most recent and very effective for low resource languages

In the result, our observation is that the quality of generated text depends on the
distribution of reasonable words in actual cases. If there are many reasonable words, the
number k might be too low. If there are only a few reasonable words to sample from, the
number k might be too high. From the samples, we observed that the possible next words
of each of the given prefixes were generated respectively with acceptable quality except
the,” Jimma University” which is completely non Kafi-Nono noun phrase. In such cases,
we can see here that the noun system of Kafi-Nono mostly ended with -o or -oo is totally
different from English. It can be seen that the length of the initial input text is short.
It can also be noted that the quality of text generation depends on the input text. For
example, when the input text is longer generally, it is harder for all of the generated text
to be relevant to the input text. When the input text is shorter and looks like a Kafi-Nono
beginning sentence, the quality of generated text is usually better. We leave experimental
study on quantitative analysis for future and provide the below examples to show some
reasonable quality of text generation:

88

5.12 Discussion

\t
ex

tb
f{I

ni
tia

lW
or

d(
ph

ra
se

)}
G

en
er

at
ed

N
ex

t
W

or
ds

"e
bi

ch
itt

os
hi

m
ul

lo
oc

h"
,

eb
ic

h
itt

os
hi

m
ul

lo
oc

h
gi

ya
ac

he
eb

ic
h

itt
os

hi
m

ul
lo

oc
h

gi
ya

ac
he

m
m

in
a’

on
e

iy
e

eb
ic

h
itt

os
hi

m
ul

lo
oc

h
gi

ya
ac

he
m

m
in

a’
on

e
eb

ic
h

itt
os

hi
m

ul
lo

oc
h

gi
ya

ac
ha

?
m

ul
le

e
to

o’
iy

oo
n

qa
jii

ch
ii

m
ee

ch
i

"g
aa

w
e

as
ho

",

ga
aw

e
as

ho
gu

m
bo

on
ye

ch
iy

e
ga

aw
e

as
ho

ko
ni

yo
lla

bi
tu

na
ga

at
a,

ta
ga

bi
ti

xa
a

ga
aw

e
as

ho
ta

at
e

bi
is

ho
on

a
ta

be
kk

ii
be

et
oy

ic
h,

ga
aw

e
as

ho
qa

aw
iih

e

"n
o

sh
ow

ee
be

et
ih

in
no

o"
,

no
sh

ow
ee

be
et

ih
in

no
oc

ha
a

no
ci

in
ne

m
m

on
a

ye
er

ic
hi

aa
fo

o
no

sh
ow

ee
be

et
ih

in
no

o
ch

uu
qq

ee
be

!
iy

e
no

sh
ow

ee
be

et
ih

in
no

oc
ha

a
w

ut
te

ci
nn

ac
hi

sh
ab

aa
tt

oo
ch

da
qq

no
sh

ow
ee

be
et

ih
in

no
oc

ha
a

w
ut

te
ci

nn
ac

hi
sh

ab
aa

tt
oo

ch
da

qq
no

sh
ow

ee
be

et
ih

in
no

oc
ha

a
sh

ow
ee

sh
aa

ho
oc

h
gu

up
he

eb
ee

ti
ka

"s
he

m
m

ee
ga

ac
oo

n"
,

sh
em

m
ee

ga
ac

oo
n

di
ge

no
on

a,
bo

on
o

ga
ac

oo
na

de
ge

e
im

o
sh

em
m

ee
ga

ac
oo

n
di

ge
no

on
a

ga
ac

ho
ha

kk
iy

o)
qe

lli
m

aa
c

sh
em

m
ee

ga
ac

oo
n

di
ge

no
oc

h
ha

kk
iim

m
hi

nn
ee

na
’o

n
k

sh
em

m
ee

ga
ac

oo
n

di
ge

no
oy

ic
h

ir
iti

ye
em

m
im

oo
yo

be
eg

a

"ji
m

m
a

un
iv

er
si

ti"
,

jim
m

a
un

iv
er

si
ti

ka
sh

ee
qa

ar
o

hi
ni

ya
w

oo
n

ga
ac

ho
ta

sh
jim

m
a

un
iv

er
si

ti
m

oo
yo

bi
ic

h
be

et
ie

m
ir

oo
ce

en
ni

to
ne

|
jim

m
a

un
iv

er
si

ti
as

he
en

a’
oo

ch
ee

qa
na

at
oo

na
uu

ch
e

sh
e

jim
m

a
un

iv
er

si
ti

as
he

en
a’

oc
hi

m
oo

yo
n

ka
at

aa
sh

a’

"k
afi

sh
ow

oo
ch

ee
",

ka
fi

sh
ow

oo
ch

ee
da

ne
he

et
e

aa
ch

oo
na

a
bi

ra
w

oo
na

,e
bo

sh
ka

fi
sh

ow
oo

ch
ee

qi
to

oc
h

ha
m

m
iy

e
ka

fi
sh

ow
oo

ch
ee

ke
ch

iti
m

oo
yo

n
da

ni
ik

ic
hi

qq
iq

ol
la

ka
fi

sh
ow

oo
ch

ee
w

ot
ta

m
aa

ri
ya

m
i,

sh
iic

hi
qq

is
hi

ĳ

"d
oy

ee
sh

im
bo

",

do
ye

e
sh

im
bo

ko
or

ee
ti

sh
im

bo
on

aa
ko

or
oo

na
ye

sh
et

i
do

ye
e

sh
im

bo
ko

or
ee

ti
sh

im
bo

on
ci

in
ni

m
m

ik
oo

ro
o

do
ye

e
sh

im
bo

ka
ac

he
ti

bi
ro

on
ta

ch
ii

ko
tii

ch
ii

sh
do

ye
e

sh
im

bo
oc

he
e

tiĳ
jit

sh
al

lig
oo

n
ko

be
re

ya
w

o
t

Ta
bl

e
5.

8:
O

u
tp

u
t

ex
a

m
p
le

s
fr

om
fo

u
r

sy
st

em
s

of
th

e
P
re

tr
a

in
ed

m
od

el

89

Chapter Four 5. Experiment, Results and Discussion

5.12.1 Tones

A fundamental challenge arises because of Kafi-Nono’s tonal system. KN has rich
tonal morphology. Syntactic interactions between words impact the surface form tone a
syllable takes. Thus, semantically alike words may take different surface tones than is
present in the relevant lexical entry, resulting in mismatches with the lexicon. Removing
tones might yield a higher hit rate of word prediction and allows tone divergences between
surface forms and lexical entries to be overcome. This advantage is increased in exchange
for higher polysemy (lexical ambiguity). Although this condition of polysemy is what
the method of [98] is designed to address, it means the language model fails to model
tones and doesn’t significantly help LM-pre-training in any case. Future work have to
investigate morph phonological processing for KN, since there is regularity behind these
tonal changes which could mitigate these issues if addressed.

5.12.2 Kafi-Nono Dialects

KafNoonoo has three mainly known dialects, the Manjo, Chena dialect and the
Gimbo dialect. If we train our model separately for each dialect, our data will be not
enough since data is scarce in Kafi-Nono language. For handling the dialect, a separate
dialect handling mechanism (adaptation methods [24] are normally used to incorporate
dialect-specific information into the system, but this is out of the scope of this thesis.

5.12.3 Domain

Another difference that may contribute to the results is that the domain of the text
collected is significantly different. The KN corpus is more of books collection. We used
educational books and the bible books.

90

Conclusion, Contribution and Recommendation

In this chapter we try to address the brief summary of the research work including
the main contribution and future works that could be extended from this work.

6.1 Conclusions

The study deals with Kafi-Nono word sequence prediction. As discussed in the pre-
vious chapters, in this research, transfer learning approach was used which is important
for under resourced languages in general. To this end, we have forwarded the conclusion
and recommendation as presented in the following sections.

The overall focus of this research is to investigate Word prediction which addresses
the problem of low typing speed and poor spelling and completion. A word prediction
guesses what word a user is typing, based on previously written words and prefix letters
of the current word. The predictor can then either insert the word with the highest
frequency into the text or let the user choose an alternative from some kind of list interface
which is then completed. Ideally, this can speed up and ease the user’s typing of words.
The method used here for developing the word prediction is transfer learning on huge
pretrained english model.

Deep learning and machine learning are progressing with leaps and bounds these
days because of the availability of greater amount of computing power. Now language
models are making so much progress with the help of the transformer models trained
on terabytes of data. Two models LSTM and transformer model have been investigated
for a particular lan- guage modeling problem as described. Both models, LSTM are an
advanced variants of Recurrent Neural Networks.

Experiments were performed with the combination of different parameters in these
models to check out which one is giving us better performance for our particular problem.
For the quality of predictions, perplexity was used as a performance metric and softmax
as an activation function. There are many factors like accuracy, training time, response
time which needed to be considered before selecting the better model. If the model takes
a much longer time while training it will impact other processes of the system.

It can be seen that both model results are very far to each other except for one

91

chapter Six : Conclusion, Contribution and
Recommendation

chapter Five 6. Conclusion, Contribution and Recommendation

parameter which is training time. From the results, it can be seen that LSTM is taking
much longer time than the transformer . It has been observed clearly that the transformer
models are giving good results and with more larger models will become more efficient and
with higher accuracy.

For under resourced Ethiopian language like Kafinono transfer learning which is
unsupervised approach is recommended. Since there is no annotated corpus (even dif-
ficult to obtain electronic materials for such language), unsupervised approach plays a
great role to predict simply without considering its contexts. The unsupervised approach
which is not relies on hand- constructed rules that are acquired from language specialists
rather than automatically trained from data.

In the beginning of the work, there we discussed existing solutions for word predic-
tion task all of which the focus on n-gram language models. Consequently, theoretical
background needed for the word prediction was introduced. That included methods for
frequency estimates, in order to cope with sparse training data of the language models
and approaches to combine more models together

In this research work, we proposed a novel NLP Language model called KNGPT2 for
Kafi-Noonoo next word prediction that aims to model the language behavior and generate
the next word/phrase or even sentence of the language. It is shown that the approach for
solving this problem has been transfer learning followed by transformer model fine-tuning.
In this work, we have built a next word prediction system for Kafi-Noonoo language. We
have used a neural approach. The work presents a deep learning approach to next word
prediction in Kafi-Noonoo language relying on the given data. In this work we developed a
generic model for KN next word prediction system using deferent sub components, which
contains major components such as preprocessing, tokenization and word encoding and
transformer network, GPT-2. Each component is comprised of their own subcomponents
and algorithms. We used python Programming language in the google colab platform as
a developmental enviroment and other publicly available Libraries. When evaluating the
system, special emphasis is placed on accuracy via automatic(perplexity) measures and
human expert evaluations on the Training and testing dataset. We found out that our
model best worked on segmented texts with a final evaluation perplexity score of 4.7 and
a human evaluation of 89% accuracy. In this work the unsupervised machine learning
technique: transfer learning achieved an accuracy of 89%, 14.55% on pretrained and
LSTM models. We found that better results were achieved using unsupervised machine
transfer learning features from the other type of machine learning like LSTM commonly
used for word prediction. The results obtained were encouraging as there is lack of
resource of the language because of shortage of corpus.

As we study the technical procedures to solve the main problem of the Kafi-Nono

92

6.1 Conclusions

language Word prediction the Appropriate technical application or implementations tools
for the problem, For the implementation tools its better if using the python based ma-
chine learning frame works such as pytorch and libraries such as huggingface and fastai;
and from machine learning transfer learning is best for the Under resource language like
Kafi-Nono Transfer learning Word Prediction methods are based on prerained models and
small corpora. They do not rely on labeled training text . Transfer learning used on small
training data and suitable for under resourced languages and also this approach depends
on the available and more reliable computing environment.

Previously nothing is done on Kafi-Nono language Word prediction and Auto com-
pletion so One of the existing problems with Kafi-Nono language is lack of word prediction
and auto word completion services. There is no application that helps user of Languages
as they type speedily and write correct spelling. Being not having word prediction, creates
multiple problems with Kafi-Nono texts literary works such as journals, Books, fictions
and some newspapers. In addition to this the speed of typing of many secretaries when
they write Kafi-Nono texts is very low and misspelled word that create miscommunication.

The main purpose of developing the word prediction and Auto completion prototype
for Kafi-Nono language is to overcome the problems that happens in the language user and
new user of the language, The user of this language due to absence of the word prediction
when they write Kafi-Nono texts their speed of typing is very low and misspelled word that
create miscommunication. Therefore Auto completion of word prediction for Kafi-Nono
will Increase or improve in terms of typing Speed, correcting the misspelled word and also
make the language itself technology.

There is different way of measuring the performance of the system. In our case
the most intuitive performance measure is the perplexity and human evaluation of word
prediction.It gives an idea about how many succeeding words can be predicted correctly
knowing the previous words. Our contributions include:

1. A new Kafi-Nono language dataset

2. being the first to apply transformer model on word sequence generation for local
languages,

3. providing various experiment results for qualitative analysis and future research,

4. publicly availing the fine-tuned transformer model (KNGPT-2) for future researchers
to further explore and

93

chapter Five 6. Conclusion, Contribution and Recommendation

5. showing that cross-lingual language models can be implemented for local low re-
source languages modeling easily.

6.1.1 Future Work Recommendation

During our thesis work on Kafi-Nono language modeling, we have observed different
challenges that arise both from the language characteristics and the technology access.
For better results, we recommend the following key tasks.

1. Use separate dataset for each of the KN dialects- since dialects of KN affect the
wording of the language it is very much better to try a separate dataset for each
dialect.

2. implement bigger size pretrained models

3. Consider for handling tonal words before training either by removing or other mech-
anism

4. Increase the training epoch with more dataset for better results

5. Include human evaluation in addition to automatic measurement of accuracy.

94

[1] I. Goodfellow, Y. Bengio, and A. Courville, “6.5 back-propagation and other differen-
tiation algorithms. deep learning,” 2016.

[2] T. Mikolov, Recurrent neural network based language model. Eleventh annual con-
ference of the international speech communication association, 2010.

[3] I. Polosukhin, L. Kaiser, A. N. Gomez, L. Jones, J. Uszkoreit, N. Parmar, N. Shazeer,
and A. .-.-. Vaswani, “Attention is all you need,” vol. 3762.

[4] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson,
“One billion word benchmark for measuring progress in statistical language model-
ing,” arXiv preprint arXiv:1312.3005, 2013.

[5] F. T. Bekele, ““morphology based spell checker for kafi-noonoo language” a msc the-
sis submitted to department of computer science, addis ababa university, ethiopia,
october, unpublished,” 2018.

[6] A. De Brebisson and P. Vincent, “An exploration of softmax alternatives belonging to
the spherical loss family,” arXiv preprint arXiv:1511.05042, 2015.

[7] C. Hegde and S. . J. Patil, “Unsupervised paraphrase generation using pre-trained
language models,” vol. 5477, 2020.

[8] C. . J. Kaiser, “Towards data science " archived from the original on 15 february 2020
retrieved 27 february 2021,” 2020.

[9] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language
models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[10] L. Booth and C. Morris, “wean ricketts, and alan newell. using a syntactic word pre-
dictor with language impaired young people. we h,” in J. California, USA California
State University, Northridge: Los Angeles, 1992.

[11] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language
understanding by generative pre-training,” 2018.

[12] M. Olazaran, “A sociological study of the official history of the perceptrons contro-
versy,” Social Studies of Science, vol. 26, p. 3, 1996.

[13] B. Wilson, “The machine learning dictionary,” University of New South Wales, 2012.

95

Reference
s

REFERENCES

[14] G. Lesher, B. Moulton, and D. Higginbotham, ““effects of n-gram order and training
text size on word prediction,” in proceedings of (resna99) annual conference, arling-
ton, va,” p, pp. 52–54, 1999.

[15] A. At, ““predicting the next search keyword using deep learning”,” vol. 2019.
[Online]. Available: https://towardsdatascience.com/never-leave-the-search-result-
page-19b654791c27.html

[16] M. Ghayoomi and S. Momtazi”, “An overview on the existing language models for pre-
diction systems as writing assistant tools” department of computational linguistics
saarland university,” Saarbrucken, Germany, vol. 2009.

[17] A. Fazly and G. Hirst, ” Testing the efficacy of part-of-speech information in word

completion”. In Text Entry ’03: Proceedings of the 2003 EACL Workshop on Language
Modelling for Text Entry Methods, pages 9–16, Budapest, Hungary Association for
Computational Linguistics, 2003.

[18] A. Yadav, ““artificial intelligence for low-resource communities: Influence maximiza-
tion in an uncertain world”,” Ph.D. dissertation, A Dissertation Presented to the
faculty of the graduate school university of southern California in Partial Fulfilment
of the Requirements for the Degree DOCTOR OF PHILOSOPHY (Computer Science),
August 2018.

[19] S. Golovanov et al., “Large-scale transfer learning for natural language generation,”
in Proceedings of the 57th Annual Meeting of the Association for Computational Lin-

guistics, 2019.

[20] K. Johnson, “Openai releases curtailed version of gpt-2 language model,” Venture

Beat, Aug, vol. 20, 2019.

[21] S. Enarvi, P. Smit, S. Virpioja, and M. Kurimo, “Automatic speech recognition with
very large conversational finnish and estonian vocabularies,” IEEE/ACM Transactions

on Audio, Speech, and Language Processing, vol. 25, no. 11, pp. 2085–2097, 2017.

[22] S. Falkner, A. Klein, and F. Hutter, ““bohb: Robust and efficient hyperparameter
optimization at scale”,” 2018, in: arXiv preprint.

[23] Y. Fan et al., “(2016). “video-based emotion recognition using cnn-rnn and c3d hybrid
networks”,” in Proceedings of the 18th ACM International Conference on Multimodal

Interaction. pp. 445–450.

[24] K. Fukushima, ““neocognitron: A self-organizing neural network model for a mecha-
nism of pattern recognition unaffected by shift in position”,” In: Biological cybernetics,
vol. 36, p. 4, 1980.

96

https://towardsdatascience.com/never-leave-the-search-result-page-19b654791c27.html
https://towardsdatascience.com/never-leave-the-search-result-page-19b654791c27.html

REFERENCES

[25] I. Sutskever, O. Vinyals, and Q. V. Le, ““sequence to sequence learning with neural
networks”,” In: Advances in neural information processing systems, pp, vol. 3104,
2014.

[26] D. So, Q. Le, and C. Liang, “The evolved transformer,” in International Conference on

Machine Learning. PMLR, 2019, pp. 5877–5886.

[27] H. Inan, K. Khosravi, and R. Socher, “Tying word vectors and word classifiers: A loss
framework for language modeling,” arXiv preprint arXiv:1611.01462, 2016.

[28] J. Jackson. Autocompletion with deep learning. [Online]. Available: https:
//tabnine.com/blog/deep

[29] X. Chen et al., “(2014). “efficient gpu-based training of recurrent neural network
language models using spliced sentence bunch”,” In: INTERSPEECH- pp, vol. 641,
2014. [Online]. Available: https://www.isca-speech

[30] A. Colic, H. Kalva, and B. Furht, ““exploring nvidiacuda for video coding”,” in Pro-

ceedings of the First Annual ACM SIGMM Conference on Multimedia Systems. MMSys
’10. Phoenix, 2010.

[31] Y. You et al., “(2019). “large batch optimization for deep learning: Training bert in 76
minutes”,” in International Conference on Learning Representations, URL.

[32] R. Rosenfeld, ““two decades of statistical language modeling: Where do we go from
here?” in: Proceedings of the ieee 88.8,” p, vol. 1270, 2000.

[33] A. Kannan et al., “(2016). “smart reply: Automated response suggestion for email”,”
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining. pp.

[34] R. Kneser and H. Ney, ““improved backing-off for mgram language modeling”,” in
1995 International Conference on Acoustics. and Signal Processing. Vol. 1. IEEE, pp.
181: Speech, 1995.

[35] A.-L. Popkes, ““language modeling with recurrent neural networks - using trans-
fer learning to perform radiological sentence completion”. ma thesis,” Rheinische

Friedrich-Wilhelms-Univesity pp, vol. 6645, 2018.

[36] M. Lankinen, ““modeling finnish language with character-word compositional lan-
guage model”,” Master’s thesis, Aalto University, 2016.

[37] T. J. Goodman, ““a bit of progress in language modeling extended version”,” In: Ma-
chine Learning and Applied Statistics Group Microsoft Research. Technical Report,
MSR-TR-2001-72. URL:, Tech. Rep., 2001.

97

https://tabnine.com/blog/deep
https://tabnine.com/blog/deep
https://www.isca-speech

REFERENCES

[38] D. Jurafsky, J. H. M. University, and x. . p. h. I. .-.-.-.-. . University of Colorado at
Boulder) Pearson Prentice Hall, 2009, “Speech and language processing,” Vol., vol. 3,
2014.

[39] H. Adel, N. T. Vu et al., “(2013). “recurrent neural network language modeling for
code switching conversational speech”,” I. I. C. on Acoustics, Ed. Speech and, 2013.

[40] H. Adel, K. Kirchhoff et al., “(2014). “comparing approaches to convert recurrent
neural networks into backoff language models for efficient decoding”,” in Fifteenth

Annual Conference of the International Speech Communication Association.

[41] S. Hochreiter and J. Schmidhuber, ““long short-term memory”,” n: Neural computa-

tion, vol. 9, p. 8, 1997.

[42] D. R. Beukelman et al., “Frequency of word occurbence in communication samples
produced by adult communication aid users,” Journal of Speech and Hearing Disor-

ders, vol. 49, no. 4, pp. 360–367, 1984.

[43] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro,
“Megatron-lm: Training multi-billion parameter language models using model paral-
lelism,” vol. 2019.

[44] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back- propagating errors,” 1986.

[45] N. Garay-Vitoria and J. Abascal, “Text prediction systems: a survey,” Univers. Access

Inf, vol. 4, p. 3, February 2006.

[46] J. A. Van Dyke, “Word prediction for disabled users: Applying natural language
processing to enhance communication,” Ph.D. dissertation, Honors BA Thesis, Uni-
versity of Delaware, 1991.

[47] R. Kneser and H. Ney, “Improved backing-off for n-gram language modeling,” in
International Conference on Acoustics, Speech and Signal Processing, pp. 181–184,.

[48] Y. Ji, T. Cohn, L. Kong, C. Dyer, and J. Eisenstein, “Document context language
models,” in Proceedings of the International Conference on Learning Representations,
pp. 148–154,.

[49] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network language model,”
in International workshop on artificial intelligence and statistics. PMLR, 2005, pp.
246–252.

[50] A. Mnih and G. Hinton, “A scalable hierarchical distributed language model,” in
Advances in Neural Information Processing Systems 21. MIT Press.

98

REFERENCES

[51] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur, “Recurrent neural
network based language model,” in Proceedings of Interspeech, pp. 462–466,.

[52] T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khudanpur, “Extensions of
recurrent neural network language model,” in Proceedings of ICASSP, pp. 253–258,.

[53] Y. Kim, Y. Jernite, D. Sontag, and A. Rush, “Character-aware neural language mod-
els,” in Thirtieth AAAI Conference on Artificial Intelligence, pp. 381–389,.

[54] Y. Miyamoto and K. Cho, “Gated word-character recurrent language model,” in Pro-

ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
Austin, Texas, pp. 1992–1997,.

[55] T. Wang and K. Cho, “Larger-context language modelling with recurrent neural net-
work,” in Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics, Berlin, Germany, pp. 1319– 1329,.

[56] A. . F. Bajpai, “Recurrent neural networks: Deep learning for nlp,” Towards Data

Science Retrieved, vol. 19, p. 2021, January 2019.

[57] J. M. Keith Y, “The effects of word prediction on communication rate for aac„” De-

partment of Computer and Information Sciences University of Delaware Newark, DE 6,
vol. 1971.

[58] A. Graves and J. Schmidhuber, ““offline handwriting recognition with multidimen-
sional recurrent neural networks”,” In: Advances in neural information processing

systems, pp, vol. 545, 2009.

[59] A. Graves and N. Jaitly, ““towards end-to-end speech recognition with recurrent
neural networks”,” in International conference on machine learning. pp. 1764–1772,
2014.

[60] C. Buck, K. Heafield, and B. van Ooyen, “N-gram counts and language models from
the common crawl,” Archived from the original on, vol. 28, p. 2021, January 2021.

[61] C. Olah, Understanding LSTM Networks, URL, 2015. [Online]. Available:
http//colah.github.io/posts/2015-08-Understanding-LSTMs/

[62] A. Radford et al., “(2019). “language models are unsupervised multitask
learners”,” In: OpenAI Blog, vol. 1, p. 8. [Online]. Available: https:
//cdn.openai.com/betterlanguagemodels/language_models_are_unsupervised_

[63] S. Tekle, Kafi Noonee Doyee Indee weiqqeena’o. Kaffa: Bonga, 2016.

[64] M.-T. Luong, H. Pham, and C. D. . A. Manning, “Effective approaches to attention-
based neural machine translation,” vol. 4025, 2015.

99

http//colah.github.io/posts/2015-08-Understanding-LSTMs/
https://cdn.openai.com/betterlanguagemodels/language_models_are_unsupervised_
https://cdn.openai.com/betterlanguagemodels/language_models_are_unsupervised_

REFERENCES

[65] C. Olah and S. Carter, “Attention and augmented recurrent neural networks,” Distill,
vol. 1, no. 9, p. e1, 2016.

[66] D. Bahdanau, K. Cho, and Y. . S. Bengio, “Neural machine translation by jointly
learning to align and translate,” vol. 473, 2014.

[67] Y. . J. Tsvetkov, “Opportunities and challenges in working with low-resource lan-
guages,” (PDF) Carnegie Mellon University Archived (PDF) from the original on, vol. 31,
p. 2020, March 2017.

[68] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. . J. Fi-
dler, “Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books,” vol. 6724, 2015.

[69] G. Lai, Q. Xie, L. Hanxiao, Y. Yang, and E. . A. Hovy, “Race: Large-scale reading
comprehension dataset from examinations,” vol. 4683, 2017.

[70] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. . A. Bowman, “Glue: A
multi-task benchmark and analysis platform for natural language understanding,”
vol. 7461, 2018.

[71] T. H. Trinh and Q. V. . J. Le, “A simple method for commonsense reasoning,” vol.
2847, 2018.

[72] K. . F. Quach, “Roses are red, this is sublime: We fed openai’s latest chat bot a classic
reg headline,” The Register Archived from the original on, vol. 9, p. 2021, March 2019.

[73] K. . M. Wiggers, “Google open-sources framework that reduces ai training costs by
up to 80,” 2020.

[74] K. . M. Piper, “A poetry-writing ai has just been unveiled it’s pretty good,” 2019.

[75] M. . D. Olson, “Ai dungeon 2, the text adventure where you can do nearly anything,
is now on mobile,” Archived from the original on, vol. 20, p. 2020, September 2019.

[76] J. . A. Nelius, “This ai-powered choose-your-own- adventure text game is super fun
and makes no sense,” Gizmodo Archived from the original on, vol. 28, p. 2021, Febru-
ary 2020.

[77] A. . F. Ha, “Ai dungeon-maker latitude raises $3 3m to build games with ’infinite’ story
possibilities,” TechCrunch Archived from the original on, vol. 21, p. 2021, February
2021.

[78] A. Ohlheiser and K. . F. Hao, “An ai is training counselors to deal with teens in crisis,”
MIT Technology Review Archived from the original on, vol. 27, p. 2021, February 2021.

100

REFERENCES

[79] T. Q. Nguyen and D. Chiang, “Transfer learning across low-resource, related lan-
guages for neural machine translation,” arXiv, preprint, 2017.

[80] J. Pennington, R. Socher, and C. D. Manning. “Glove: Global vectors for word
representation”, 2014.

[81] G. Lample and A. Conneau, “Cross-lingual language model pretraining,” arXiv,
preprint, 2019.

[82] F. Morin and Y. Bengio, ““hierarchical probabilistic neural network language model.”
in: Aistats,” Vol., vol. 5, pp. Citeseer, pp. 246–252, 2005.

[83] Y. Bengio, J.-S. Senecal et al., “(2003). “quick training of probabilistic neural nets by
importance sampling.” in: Aistats,” p, vol. 1.

[84] M. Gutmann and A. Hyvarinen, “Noise-contrastive estimation: A new estimation prin-

ciple for nnormalized statistical models”. n: Proceedings of the Thirteenth Interna-
tional Conferenc, 2010.

[85] M. Kurimo et al., “(2006). “unlimited vocabulary speech recognition for agglutinative
languages”,” in Proceedings of the main conference on Human Language Technology

Conference of the North America.

[86] T. Mikolov and S. Kombrink, “(2011). “extensions of recurrent neural network lan-
guage model”,” in In:IEEE international conference on acoustics. speech and signal
processing (ICASSP, 2011.

[87] L. Verwimp and J. Pelemans, “Patrickwambacq, et al. (2017). “characterword lstm
language models”,” in: arXiv preprint.

[88] Z. Mekuria and Y. Assabie, “A hybrid approach to the development of part -of-speech
tagger for kafi noonoo text,” in Proceedings of the 15th 65 International Conference on

Intellegent Text Processing and Computational Linguistics(CweCLing 2014). Nepal,
2014.

[89] M. L. and. Martin J. Puttkammer., “Viability of neural networks for core technologies
for resource-scarce languages.”

[90] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers for language
understanding,” arXiv, preprint, 2018.

[91] V. Keselj, “Speech and language processing daniel jurafsky and james h. martin
(stanford university and university of colorado at boulder) pearson prentice hall,
2009, xxxi+ 988 pp; hardbound, isbn 978-0-13-187321-6, $115.00,” 2009.

101

REFERENCES

[92] J.-S. Lee and J. Hsiang, “Patent claim generation by fine-tuning openai gpt-2,” World

Patent Information, vol. 62, 2020.

[93] I. Goodfellow, Y. Bengio, and A. Courville, 6 5 Back- Propagation and Other Differen-

tiation Algorithms. Deep Learning pp 200–220: MIT Press, 2016.

[94] T. Tensu, “Word sequence prediction for amharic language thesis submitted to the
school of graduate studies of addis. ababa university in partial fulfillment of the
requirements for msc in cs., unpublished.”

[95] N. Suleiman, “Word prediction for amharic online handwriting recognition.”

[96] A. B. Delbeto, ““word sequence prediction for afaan oromo”,. unpublished masters
thesis, department of computer science, addis ababa.”

[97] A. Fan, M. Lewis, and Y. Dauphin, “Hierarchical neural story generation,” arXiv,
preprint, 2018.

[98] L. Duong, H. Kanayama, T. Ma, S. Bird, and T. Cohn, “Learning crosslingual word
embeddings without bilingual corpora,” arXiv preprint arXiv:1606.09403, 2016.

102

[99] Ghosh, Surjya, et al. "Evaluating effectiveness of smartphone typing as an indicator of user
 emotion." 2017 Seventh International Conference on Affective Computing and Intelligent
 Interaction (ACII). IEEE, 2017.

[100] Aron, Jacob. "How innovative is Apple's new voice assistant, Siri?." (2011): 24.

[101] Niu, Shuteng, et al. "A decade survey of transfer learning (2010–2020)." IEEE Transactions
 on Artificial Intelligence 1.2 (2020): 151-166.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Background
	The Trends of Language Technologies
	Transfer learning
	Statement of the Problem
	Objectives
	General Objective
	Specific Objectives

	Benefit/Significance of the Study
	Scope and Limitation of the Study
	Outline of the Thesis

	Literature and Related Works
	Language Models
	Need for Language Models
	Accelerating communication
	Human-computer Interaction

	Classic Language Models
	Statistical Language Modeling
	N-Gram Models
	Word Prediction Using Frequencies of Words
	Word Prediction Using Probability
	Informed (Knowledge based) Models

	Neural Network Language Models
	Feed-Forward Neural Network Based Models
	Recurrent Neural Network Based Models
	Advanced Models
	Summary

	Transformers for Natural Language Processing
	The Transformer Algorithm
	Selective Focusing
	Attention Mechanisms

	Pre-Training Transformers
	Corpus
	Architecture of GPT
	Performance
	Training
	Limitations
	Applications and Subsequent Research

	Cross-Lingual Transfer Learning Approach
	Multilingual VS Monolingual Models for Cross-Lingual Transfer
	Evaluating Language Models
	Perplexity

	Lexical unit selection for NNLM
	Word-based models
	Sub-word based models
	Character-based models

	About Kafi-Nono Language
	Linguistic Characteristics of Kafi-Nono
	Kafi-Nono Dialect
	Kafi-Nono Vowels
	Kafi-Nono Part of Speeches

	Related Works
	Foreign languages
	African Languages
	Local languages

	Suitability Assessment of Reviewed Methods
	Summary

	Proposed Approach

	Research Methodology
	Research Design
	Literature Review
	Data collection and preparation
	Design and Implementation Approach
	Evaluation

	Methods and Techniques
	Overview
	Data Preparation
	Data Processing
	Sentence Segmenting
	Tokenization

	The Pre-Trained Transformer Model
	Proposed System Architecture and Components
	Data Preprocessing Component
	The Transformer Component
	Text Cleaning
	Text Normalization
	Tokenization and Input Encoding

	Experiment, Results and Discussion
	Overview
	Dataset and Data Processing
	Data Partitioning

	Experimental Setup
	Training and Test Results
	Long-Short-Term Memory-LSTM Model
	LSTM Model Training

	Pretrained Model
	Fine-tuning Hyper-parameters

	Training Procedure for Pretrained Model
	Tokenization and Input Formating
	Splitting the Model and Gradual Unfreezing
	Pretrained Model Training

	Sequence Decoding
	Suggestion Processing

	Model Comparison and Selection
	Experiments
	How Fast Transformer Model Adapts to KN Lang. Pattern
	Training Loss In Fine-Tuning

	Evaluation
	Perplexity
	Human Evaluation
	Evaluation Results

	The Prototype
	Discussion
	Tones
	Kafi-Nono Dialects
	Domain

	Conclusion, Contribution and Recommendation
	Conclusions
	Future Work Recommendation

	References

