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Abstract 

The dynamic relationship between predators and their prey has long been and will continue to be 

one of the dominant themes of research in applied mathematics and ecology. Stability and Hopf 

Bifurcation Analysis of Prey-Predator Mathematical Model with Delay. In this thesis, 

mathematical model of prey predator with delay was studied.  To show Positivity of the solution 

for the model given. The equilibrium points for the system were calculated. The model under 

consideration was nonlinear so that it was linearized by Jacobian matrix at the positive 

equilibrium point. The local stability conditions were proved by using Routh Huwertiz stability 

criteria and local stability of the model in the absence and presence of delay was studied at the 

positive equilibrium point by linearizing the model. Finally, Hopf bifurcation condition was well 

spelled out. Generally the end result is stability by positive equilibrium points. 

 

Keywords: Jacobian Matrix, Routh Huwertiz Stability Criteria, Hopf Bifurcation. 

 

 

 

 

 

 

 

 

 

 

 



 

iv 

 

 

List of Variables and Parameters 

1 - Migration rate coefficient of the prey species from the unreserved to reserved zone,  

2  -  Migration rate coefficient of the prey species from the reserved to unreserved zone; 

 -Carrying capacities of the prey in the unreserved zone, 

l  - Carrying capacities of the prey in the reserved zone. 

r -Intrinsic growth rates of the prey in the unreserved zone. 

s  -Intrinsic growth rates of the prey in the reserved zone. 

1   -  Attack rate of the predator on the prey in the unreserved region area. 

2 -  Conversion rate of the prey in the unreserved zone to a predator. 

1  - Attack rate of the top predator on the predator; 

2  - Conversion rate of the predator to the top predator. 

0 - Predator natural death rate. 

   -  Top predator's natural death rate.
 

  -  Conversion rate of the prey in the unreserved zone to a predator. 

( )x t - Denotes the biomass density of prey in unreserved zone 

( )y t - Denotes the biomass density of prey in reserved zone 

( )z t - Denotes the biomass density of the predator 

( )w t - Denotes the biomass density of to the top predator 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Predator-prey model is the first model to illustrate the interaction between predators and prey. It’s 

a topic of great interest for many ecologists and mathematicians. This model assumes that the 

predator populations have negative effects on the prey populations. The dynamic relationship 

between predators and their prey has long been and will continue to be one of the dominant themes 

in both ecology and mathematical ecology due to its universal existence and importance 

(Berryman, 1992). Population dynamics deals with the time-dependent behavior of modeled 

ecological systems. These models provide significant insights into the behavior of nature. The 

mathematical equations can govern the time evolution of interacting species. The evolution and 

growth of the species depend on many factors, such as overcrowding, age structure, past population 

size, sources of food supply, interactions with other species, topographical, ecological and 

environmental conditions in the habitat, including seasonal and climatic variations. In recent years, 

predator-prey models are arguably the most fundamental building blocks of any biological and 

ecosystems as all biomasses are grown out of their resource masses. Species compete, evolve and 

disperse often simply for the purpose of seeking resources to sustain their struggle for their very 

existence. Their extinctions are often the results of their failure in obtaining the minimum level of 

resources needed for their subsistence. Mathematical models inter of ordinary differential equation 

(ODE) have been widely used to model physical phenomena, engineering systems, and economic 

behavior, biological and biomedical processes. In particular, ODE models have recently played a 

prominent role in describing the dynamic behavior of predator-prey systems. The study of 

population phenomena or growth phenomena or competition between two species is really 

dominated problem in the biological system. Prey-predator interactions abound in the biological 

world, and are one of the most important topics in theoretical ecology (Sinha 2018).  

The study of predation has long history, beginning with the work of Lotka and Volterra and 

continuing to be of interest today. In most ecological models the growth rate of species does not 

only depend on the instantaneous population size but also on the past history of the population. 
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For example, in the prey-predator model the loss of prey by predator will affect the growth rate of 

predators at the future time (Kolmanovskii and Myshkis, 1999). In 2018, Shireen and Matthias 

proposed prey-predator mathematical modelas follows: 

1 2 1

1 2

2 0 1

2

(1 )

(1 ) (1.1)

dx x
rx x y xz

dt k

dy y
sy x y

dt l

dz
xz z zw

dt

dw
zw w

dt

  

 

  

 

    

   

  

 

 

Here, the model (1.1) has been analyzed with the initial conditions. All parameters of the model 

(1.1) are assumed to be positive and described as follows and l  are the carrying capacities of the 

prey in the unreserved and reserved zone, respectively, with intrinsic growth rates r and s ; 1 is the 

migration rate coefficient of the prey species from the unreserved to reserved area and 2 the 

migration rate coefficient of the prey species from the reserved to unreserved zone; 1 is the attack 

rate of the predator on the prey in the unreserved region; 2 is the conversion rate of the prey in the 

unreserved zone to a predator; 1 is the attack rate of the top predator on the predator; 2 is the 

conversion rate of the predator to the top predator; and finally, 0 and   represent the predator 

and top predator's natural death rate, respectively . 

In the real world, there is sometimes a need to control population at a reasonable level because 

otherwise this population may cause increase or even extinction of other populations.  

Bearing this in mind, if an average of time delays, taking into account some purposeful action of 

various factors on the system acts only on predators, the model (1.1) modified to the following 

model. 
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1 2 1

1 2

2 0 1

2

(1 )

(1 ) (1.2)

( )

,

dx x
rx x y xz

dt k

dy y
sy x y

dt l

dz
x t z z zw

dt

dw
zw w

dt

  

 

   

 

    

   

   

 
 

 - is conversion rate of the prey in the unreserved zone to a predator. 

Stability of dynamical systems plays a very important role in control system analysis and design. 

Unlike the case of linear systems, proving stability of equilibrium points of nonlinear systems is 

more complicated. For example Chernet Tuge and Mitiku Daba (2017) investigated the stability 

analysis of delayed nonlinear cournot model in the sense of Lyapunov. One of the finding of this 

investigation indicates that the presence of equal information time delay in the given model causes 

oscillation process in the system and doesn’t affect the qualitative behavior of the solution (no 

effect on the stability of the equilibrium point), but only changes the transition process. In other 

words, it delays stability as delay parameter increases. On the other hand, when one of the firms 

has implementation delay and the rival player makes decision without delay, it leads to instability 

of the dynamic system at least locally. 

Bifurcation theory is the mathematical study of changes in the qualitative or topological structure 

of a given dynamical systems. Local bifurcation occurs when a parameter change causes the 

stability of equilibrium to change. To date, many authors have studied the dynamics of predator-

prey models with time delay and obtained complex dynamic behavior, such as stability of 

equilibrium, Hopf bifurcation. For example, Song and Wei (2005) investigated further the 

dynamics of the system prey-predator model by considering the time delay as the bifurcation 

parameter and they obtained that, under certain conditions, the unique positive equilibrium of the 

model is absolute stable while it is conditionally stable and there exist switches from stability to 

instability under other conditions.  

In 2011, Xuet al. studied stability and Hopf bifurcation analysis for a Lotka-Volterra predator–

prey model with two-times delays. In 2015, Soliman and Jarallah, studied asymptotic stability of 

solutions of Lotka-Volterra predator-prey model for four species. In 2014, Yue and Qingling 
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studied stability and bifurcation analysis of a singular delayed predator-prey bio-economic model 

with stochastic fluctuations. In 2012, Mukherjee studied the bifurcation and stability analysis of 

prey-predator model with a reserved area. In 2013, Liu et al., studied global stability analysis and 

optimal control of a harvested eco-epidemiological prey predator model with vaccination and 

taxation. In 2016, Jana, et a studied on the stability and Hopf bifurcation of a prey-generalist 

predator system with independent age-selective harvesting.  

In 2016, Shiva Reddy studied Dynamics in harvested prey–predator mathematical model with 

noise and diffusion. In2016,Naji and Jawad studied the dynamics of prey-predator model with are 

served zone. In 2017, Ahmed Buseri studied global asymptotic stability analysis of predator-prey 

model. Also, in 2017, Penget al. studied hybrid control of Hopf bifurcation in a Lotka-Volterra 

predator-prey model with two-time delays. In 2018, Shireen and watthias studied Modeling, 

Dynamics and Analysis of Multi-Species Systems with Prey Refuge. The researcher proposed the 

model as well as conducted necessary analysis. In 2018, Dawit Getachew studied Stability 

Analysis of Prey-Predator Mathematical Model with Delay and Control of the Prey. In 2020, Li 

and Zhao studied Periodic Solution of a Neutral Delay Leslie Predator-Prey Model and the Effect 

of Random Perturbation on the Smith Growth Model.In2017, Ali, et al. studied Dynamics of a 

three species ratio-dependent food chain model with intra-specific competition within the top 

predator. 

However, to the best knowledge of the author, the stability and Hopf bifurcation analysis of the 

mathematical model of prey-predator with delays represented by equation (1.2) is not yet 

investigated. Therefore, the central goal of this study is to investigate the dynamic behavior such 

as positivity, local stability Analysis and Hopf bifurcation of prey-predator model with delay 

represented by equation (1.2).  
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1.2 Statement of the Problem 

A slight change in the environment could have a profound influence on all living species. In 

particular, a food chain might lose one of their components. These problems will create an 

imbalance in the ecosystem. For species protection, some strategies and appropriate measures that 

will diminish interaction by species including the creation of reserved zones, restricting harvesting, 

etc. need to be deployed (Mukherjee, 2012). Several scholars conducted research on prey predator 

mathematical model as pointed out in introduction part. For example, Shireen and Matthias 

proposed and analyzed mathematical model of prey predator represented by Eq. (1.1). However, 

those scholars didn’t take time delay into consideration in the mathematical model they developed. 

As a result, it sounds to incorporate time delay into the mathematical model to get more realistic 

information.  

Therefore, this research mainly focuses on the following problems related to prey predator 

mathematical model with delay given by Eq. (1.2).  

 Positivity of the solution of the model given by (1.2), 

 Local stability analysis of the model given by Eq.(1.2), 

 Hopf bifurcation condition of model given by Eq.(1.2).  

1.3 Objective of the Study 

1.3.1 General Objective 

The general objective of this study is to investigating stability and Hopf bifurcation analysis of 

prey-predator mathematical model with delay represented by Eq. (1.2). 

1.3.2 Specific Objectives  

The specific objectives of the present study are: 

 To show positivity solution of model given by Eq. (1.2), 

 To determine local stability analysis of model given by Eq.(1.2),, 

 To establish Hop bifurcation of model given by Eq. (1.2). 
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1.4Significance of the Study 

Many species become extinct and many others are at the verge of extinction due to several reasons 

like, over exploitation, over predation, environmental pollution, and mismanagement of natural 

resources etc. As a result, this study enables policy makers of ecosystem for co-existence different 

species by providing theme necessary conditions which guarantee for co-existence. 

1.5 Delimitation of the Study 

This study is delimited to stability and Hopf bifurcation analysis of the prey-predator mathematical 

model with delay given by Eq. (1.2 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Historical background 

Mathematical models in terms of ordinary differential equations (ODE's) have been widely used 

to model physical phenomena, engineering systems, economic behavior, biological and 

biomedical processes. In particular, ODE models have recently played a prominent role in 

describing the dynamic behavior of predator-prey systems. To study the dynamic behavior of 

model, mathematical modeling is used as an effective tool to describe and analyze the model. 

Mathematical population models have been used to study the dynamics of prey predator systems 

since Lotka and Volterra proposed the simple model of prey-predator interactions now called the 

Lotka-Volterra model. Since then, many mathematical models, some reviewed in this study, have 

been constructed based on more realistic explicit and implicit biological assumptions. Modeling is 

a frequently evolving process, to gain a deep understanding of the mathematical aspects of the 

problem and to yield non trivial biological insights; one must carefully construct biologically 

meaningful and mathematically tractable population models (Kuang, 2002).  

Inter species or Intra species competition models have been the subjects of central discussions in 

ecological and biological systems. Among the competition models, Lotka-Volterra inter-specific 

competition model occupies the top role to discuss the competitive behavior of the biological 

species which determines the present state in terms of past state and changes with the period of 

time. The competition models are used in forecasting of species growth rate, maximum and 

minimum consumption of resource, food pre- serving, environment capacities and many others 

applications. The study of population phenomena or growth phenomena or competition between 

two species is really dominated problem in the biological system. Volterra (1926) first developed 

competition model between a predator and a prey (Brauer and Soudack, 1979). In the ecological 

system, the predator-prey model is among the oldest studies and also the first model to illustrate 

the interaction between predators and prey. 
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This model assume that the predator populations have negative effects on the prey population sand 

this system was formulated by VitoVolterra who is an Italian mathematician and Alfred Lotka who 

is an American mathematical biologist in 1925 (Boyce, 2010). 

2.2 Models of Prey Predator with time delay  

In nature, populations do not reproduce instantaneously; rather it is mediated by certain time delay 

required for gestation, maturation time, capturing time, or other reasons. Thus, time delays of one 

type or another have been incorporated into mathematical models of population dynamics. Delay 

is a general concept that can represent different phenomena such as the time it takes for the 

progenitor to reach maturity or the finite gestation period of a species. Mathematical delays are 

input in model to correct the classical logistic model, which assumes that the growth rate of a 

population at time is determined by the number of individuals at that time. Of course, biological 

delays are complex and the mathematical representation is often a simplification of reality. The 

time delay is considered into the population dynamics when the rate of change of the population 

is not only a function of the present population but also depends on the past population. This 

relationship/interaction between two or more species has been essential in theoretical ecology 

since the famous Lotka–Volterra equations (Volterra, 1926), which are a system of first which is 

a system of first order, nonlinear differential equations that describe the dynamics and interactions 

between two or more species of biological systems. Of course, the qualitative properties of a prey-

predator system such as stability of the steady states, bifurcation analysis, and oscillation of the 

solutions usually depend on the system parameters (Kaung, 1993).  

2.3 Recent studies  

In the context of predator-prey interaction, some studies that treat population can be extended by 

Martin and Ruan have analyzed generalized cause predator prey models where the prey is 

harvested with constant rate while Kar considered the predator-prey model with the predator 

harvested and suggested that it is ideal to study the combined harvesting of predator and prey 

population models (Kar, 2003). 

In 2018, Teshale Fikre studies Stability and Bifurcation Analysis of Prey-Predator Mathematical 

Model with Delay and Control of the Predator. They showed how to classify the possibilities and 

determine the region of stability. They found that if the equilibrium point is asymptotically stable, 

which is determined by a local linearization, then every solution whose initial value is in some 
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neighborhood of the stable equilibrium point tends to it as the time approaches infinity. There 

exists an asymptotically stable limit cycle when the constant rate is small and the equilibrium point 

is unstable. In 2019, Srinivasarao studied Prey-Predator Model for Awash National Park, Oromia, 

Ethiopia and its Stability Analysis with Simulations. The study is based on formulation of a 

mathematical model to study the dynamics of the population densities and analyzing the stability 

of equilibrium points of the prey-predator model. 

 

In 2020,Wang and Zou, studied On a Predator–Prey System with Digestion Delay and Anti-

predation Strategy. In 2020, Rihan, et al, studied Stability and Hopf Bifurcation of Three-Species 

Prey-Predator System with Time Delays and Allee Effect. In 2021, San-Xing and Xin-You studied 

Dynamics of a delayed predator-prey system with fear effect, herd behavior and disease in the 

susceptible prey. Then taking time delay as the bifurcation parameters, the existence of Hopf 

bifurcation of the system at the positive equilibrium is given. Thirdly, the global asymptotic 

stability of the equilibrium is discussed by constructing a suitable Lyapunov function. Next, the 

direction of Hopf bifurcation and the stability of the periodic solution are analyzed based on the 

center manifold theorem and normal form theory. 

Although the above studies were conducted by different researchers, still there is a room for further 

study. Consequently, this study is going to contribute on mathematical rigorous analysis of 

mathematical model represented by Eq. (1.2).  
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CHAPTER THREE 

METHODOLOGY 

3.1. Study Area and Period 

The study was conducted at Jimma University under the department of Mathematics from 

December, 2020 to February, 2022 G.C. 

3.2 Study Design 

This study will employ mixed-design (documentary review design and experimental design) on 

prey-predator model given by equation (1.2). 

3.3. Source of Information 

The relevant sources of information for this study are books, published articles & related studies 

from internet. 

3.4. Mathematical Procedures 

In order to achieve the stated objectives, the study will follow the following mathematical 

procedures: 

1. Showing  positivity of the solution of the model, 

2. Determining the steady state points of the model, 

3. Linearizing the mathematical model of prey-predator under consideration, 

4. Determining the local stability analysis condition of the model, 

5. Establishing Hopf-bifurcation conditions. 
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CHAPTER FOUR 

RESULT AND DISCUSSION 

4.1 Preliminaries 

Definition 4.1: Consider non-linear system , where . A point is an 

equilibrium point if 
 

   Definition 4.2: For a linear system the stability of equilibrium point can be completely 

determined by location of Eigen values of A. This is expressed as follows;
 

I. If the all Eigen-values of the Jacobean matrix have real parts less than zero, then the linear 

system is locally asymptotically stable and 

II. If at least one of the Eigenvalues of Jacobean matrix has real part greater than zero, then 

the system is unstable (Khalil, 2002). 

Definition 4.3: Routh-Hurwitz Stability Criterion (Katsuhiko, 1970) 

Given characteristic polynomial of the form 1

0 1 ... 0n n

na m a m a   
 

Where 0 0 and 0na a  , then the Routh-Hurwitz array or table is given as follows.
 

 

Where 

 
dx

f x
dt

 : n nf R R
nx R

    0
dx

x f x
dt

  

dx
AX

dt


2

0 2 4 6

1
1 3 5 7

2
1 2 3 4

3
1 2 3 4

4
1 3 4

2

1 2

1

1

0

0

n

n

n

n

n

a a a am

a a a am

b b b bm

c c c cm

d d d dm

m e e

m f

m g
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,  ,     

4.1.2 Descartes rule of signs 

Let p(x) defines a characteristic polynomial with real coefficients and a non- zero constant term, 

with the terms being in descending powers of x. Hence, the number of positive real roots of p(x) 

= 0 either equals the number of variances in sign occurring in the coefficients of p(x), or less than 

the number of variations by a positive even number. 

4.2 Positive of the Solution of the Model 

Let, 4

1 2 3 4( , , , ) and ( ) [ ( ), ( ), ( ), ( )]X x y z w f X f X f X f X f X    

Where, 4 4 4( ) : andf X f    Then system (1.2) becomes: 

1 2 1

1 2

2 0 1

2

(1 ) ( , , , )

(1 ) ( , , , ) (4.1)

( ) ( , , , )

( , , , )

dx x
rx x y xz f x y z w

dt k

dy y
sy x y f x y z w

dt l

dz
x t z z zw f x y z w

dt

dw
zw w f x y z w

dt

  

 

   

 

     

    

    

  

 

From the first equation of Eq. (4.1) 

1 2 1

2
1 1

2
1 1

( )

)

)

dx rx
rx x y zx

dt k

ydx rx
r z x

dt k x

ydx rx
r z dt

x k x

  


 


 

    

 
     
 

 
     
 

 

Where  

( , , , ) (4.2)
dx

p x y z w dt
x


‘Where 2
1 1( , , . , )

rx y
p x y z w r z

xk


       

Integrating Eq. (4.2) from [0, ]t  

1 2 0 3
1

1

1 4 0 5
2

1

1 6 0 7
3

1

a a a a
b

a

a a a a
b

a

a a a a
b

a










1 3 1 2
1

1

1 5 1 3
2

1

1 7 1 4
3

1

b a a b
c

b

b a a b
c

b

b a a b
c

b










1 2 1 2
1

1

1 3 1 3
2

1

c b b c
d

c

c b b c
d

c









 

13 

 

0

( ( ), ( ), ( ) ( ))

t
dx

p x s y s z s w s ds
x
 

 

0

0

0

( ( ), ( ), ( ) ( ))
ln

( ( ), ( ), ( ) ( ))

1

ln ( ( ), ( ), ( ) ( ))

(4.3)

t

t

t

p x s y s z s w s ds
x

p x s y s z s w s ds

x p x s y s z s w s ds

e e

x c e











 

Where 1c  is an integrating constant? Apply initial condition at 0t   

1

(0) 0

(0)

x

x c




 

Putting the value of 1c in to Eq. (4.3) 

0

( ( ), ( ), ( ) ( )

( ) (0) 0, 0

t

p x s y s z s w s ds

x t x e t


     

Therefore, 1( )x t  is positive 0t  . 

From the second equation of Eq. (4.1) 

1 2

1
2

1
2

(1 )
dy y

sy x y
dt l

dy sy x
y s

ydt l

dy sy x
s dt

yy l

 







   

 
    

 

 
    
 

 

Where 

( , , , ) (4.4)
dy

k x y z w dt
y


 

Where 1
2( , , . , )

sy x
k x y z w s

yl


     

Then integrating Eq. (4.4) from [0, ]t  
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0

0

0

0

( ( ), ( ), ( ) ( ))
ln

( ( ), ( ), ( ) ( ))

( ( ), ( ), ( ) ( ))

ln ( ( ), ( ), ( ) ( ))

(4.5)

t

t

t

t

k x s y s z s w s ds
y

k x s y s z s w s ds

dy
k x s y s z s w s ds

y

y k x s y s z s w s ds

e e

y ce











 



 

Where c  is an integrating constant. Apply initial condition at 0t   

(0) 0

(0)

y

y c




 

Putting the value of c in to Eq. (4.5) 

0

( ( ), ( ), ( ) ( )

( ) (0) 0, 0

t

k x s y s z s w s ds

y t y e t


     

Therefore, ( )y t  is positive 0t   

From the third equation of Eq. (4.1) 

 

 

2 0 1

2 0 1

2 0 1

( )

( )

( )

dz
x t z z zw

dt

dx
x t w z

dt

dx
x t w dt

z

   

   

   

   

   

   

 

( , , , ) (4.6)
dz

m x y z w dt
z


 

Where 2 0 1( , , , ) ( )m x y z w x t w        

Then integrating Eq. (4.6) from [0, ]t  
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1

0

1

0

1

0

1

0

( ( ), ( ), ( ) ( ))
ln

( ( ), ( ), ( ) ( ))

( ( ), ( ), ( ) ( ))

ln ( ( ), ( ), ( ) ( ))

(4.7)

t

t

t

t

m x s y s z s w s ds
z

m x s y s z s w s ds

dz
m x s y s z s w s ds

z

z m x s y s z s w s ds

e e
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Where c  is an integrating constant. Apply initial condition at 0t   

(0) 0

(0)

z

z c




 

Putting the value of c in to Eq. (4.7) 

1

0

( ( ), ( ), ( ) ( ))

( ) (0) 0, 0

t

m x s y s z s w s ds

z t z e t


     

Therefore, ( )z t  is positive 0t   

 From the fourth equation of Eq. (4.1) 

 

 

2

2

2

dz
zw w

dt

dx
z w

dt

dx
z dt
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( , , , ) (4.8)
dw

n x y z w dt
w



 

Where 2( , , , )N x y z w z    

Then integrating Eq. (4.8) from [0, ]t  
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0

0

0

0

( ( ), ( ), ( ) ( ))
ln

( ( ), ( ), ( ) ( ))

( ( ), ( ), ( ) ( ))

ln ( ( ), ( ), ( ) ( ))

(4.9)

t

t

t

t

N x s y s z s w s ds
w

N x s y s z s w s ds

dw
N x s y s z s w s ds

w

w N x s y s z s w s ds

e e

w ce











 



 

Where c  is an integrating constant. Apply initial condition at 0t   

(0) 0

(0)

w

w c




 

Putting the value of c in to Eq. (4.9) 

0

( ( ), ( ), ( ) ( ))

( ) (0) 0, 0

t

N x s y s z s w s ds

w t w e t


     

Therefore, ( )w t  is positive 0t   

Therefore, all solutions of system (1.2) are non- negative.  
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4.3 Equilibrium point 

In dynamical system theory, equilibrium solutions are solutions which do not change with time 

(Meiss, 2007). Studying equilibrium solutions is important in mathematical biology because it 

predicts long-term behaviors of a system. In the following, the existence of the equilibrium points 

of the system (1.2) will be elucidated. To find equilibrium point, equate the right hand side of 

equation (1.2) with zero  

1 2 1

1 2

2 0 1

1

(1 ) 0

(1 ) 0 ( 4.10)

( ) 0

0

x
rx x y xz

k

y
sy x y

l

x t z z zw

zw w

  

 

   

 


    


    


   
  

Since the time delay has no effect on the equilibrium point, firstly

 

1 2 1

1 2

2 0 1

2

(1 ) 0 (4.11)

(1 ) 0 (4.12)

( ) 0 (4.13)

( ) 0 (4.14)

x
rx x y xz

k

y
sy x y

l

x w z

z w

  

 

  

 


    


    


  
  

 

 

From Eq. (4.14) 

2 2

2

( ) 0 , 0, 0,z w w z z


   


       

 

For 0w  Eq. (4.14) gives:-  

0
2 0 1 2 0

2

( ) 0, 0, 0,x w z z x x


    


        

For 0 and 0w z 

 

2
1

1
2

(1 ) 0 ( 4.15)

(1 ) 0 (4.16)

yx
r

k x

xy
s

l y







   

   



 

18 

 

2

1

2

2
2

12 2

2
1 1 1

2

form Eq.(4.15)

1
[ ( ) ] (4.17)

1
[ ( ) ]

1
[ ( ) ] [ ( ) ] 0

rx
y r x

k

rx
r x

krx rx
s r x s r x x

k l k







  


  

 
   

         
  
 
 

2
2 2 2

1 1 1 1

2 2 2 2

2
2 2 2

1 1 1 1

2 2 2 2

3 2 22 2 4 2

1 1
1 12 2

2 2 2 2 2

1
( ) ( ) ( ) 0

1
( ) ( ) ( ) 0

2 ( ) ( )
( ) (

srx s rx rx
r x s r x r x x

k l k l k

srx s rx rx
r x s r x r x x

k l k l k

sr r x r xsrx s sr x rx
r x r

k l k l k l k

   
   

   
   

 
 

    

 
          

 

 
          

 

 
        1

2 22 3

1 1
1 1 12 2 2

2 2 2 2 2

22 3

1
1 2 2 2

2 2 2 2

2

1
1 1

2

2 3

1 2

2 2 2

) 0

2 ( ) ( )
( ) ( ) 0

2 ( )
( )

0 or
( )

( ) 0

( )

x x

sr r x r xsrx s sr x rx
r r x

k l k l k l k

sr r xsrx s sr x
r

k l k l k
x

r x rx
r

l k

srx s sr x
r

k l



 
  

    




   


 




  

 

  
          

 

 
   


 

     



   
2 2

1 1
1 12 2

2 2

2 ( ) ( )
( ) 0

sr r x r x rx
r

k l k l k

 
 

 

 
      

 

 

22
3 21 1 2 1 2

12 2 2 2

2 2 2 2 2

2 ( ) ( ) ( ) ( )( )
0

rs r s r r r r ssr
x x x

l k l k l k

    


    

     
      

 
 

For 0x  Eq. (4.17) givens 0y   

Therefore 1 (0,0,0,0)E 

 Now, substituting the value of y into Eq. (4.16), and after a little algebraic manipulation yields:

 3 2 0 (4.18)ax bx cx d     

Where, 



 

19 

 

2

2 2

2

1

2

2

2

1 2

2

2 2

1 2
1

2

0 (4.19)

2 ( )
0 (4.20)

( ) ( )
, (4.21)

( )( )
. (4.22)

sr
a

l k

rs r
b

l k

s r r r
c

l k

r s
d







 

 

 




 

 
 

 
 

 
 

Hence, by using Descartes rule of signs, Eq (4.18) has positive solution, if the following 

inequalities hold: 
2

1 2

2

2 2

1 2 2 1

( ) ( )

( )( )

s r r r

l k

r s

 

 

   

 


  

 

Knowing the value of
*x  , the value of *y is computed from Eq. (4.17). It should also be noted that 

for *y  to be positive, the following must be the case 

*2
* * *

1

2

* *
* *

1 1

2

*

1

*

1

1
[ ( ) ] 0, 0

1
[ ( )] 0, 0,or ( ) 0

( )

( ) (4.23)

rx
y r x y

k

rx rx
r x x r

k k

rx
r

k

k
x r

r




 






    

      

 

 

Similarly, the value of 
*x can be determined from Eq. (4.16) as: 

*
* *

2

1

1
[ ( ) ] (4.24)
sy

x s y
k




    

 

While, *y is a positive root that can be determined from Eq. (4.24), so that: 
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*2
* *

2

1

*2 *
* * * *

2 2

1 1

*
*

2

*

2

1
[ ( ) ]

1 1
[ ( ) ] 0, 0, or [ ( )] 0

0, ( ) 0,

( ) (4.25)

sy
x s y

k

sy sy
x s y x s y

k k

sy
y s

k

l
y s

s




 
 





  

       

   

 

 

* *

2 ( , ,0,0)E x y  

Where * *andx y  positive. Conditions (4.24) and (4.25) represent the necessary conditions for the 

existence of the planar equilibrium point in the interior of 2 of the xy plane. 

The equilibrium point  * * *, , 0,x y z exists in the interior of 3 of the xyz  plane, if and only if, 

* * *, andx y z are the positive roots of the following set of algebraic equations: 

2
1 1

1
2

2 0

(1 ) 0 (4.26)

(1 ) 0 (4.27)

0 (4.28)

yx
r xz

k x

xy
s

l y

x


 




 

    

   

 

 

Solving the above equations, gives that: 

 

* 0

2

* 2 2 2

2 2 2 2 0 1 1

2

2
* *0 1 02

22

0 1 2 2

[ ( ) ( ) _ 4 ]
2

( )
[

x

l
y l s l s sl

s

r r
z y

k





      


  


   



    


  

 

For, z   to be positive, the following condition must holds: 

2
*0 1 02

2 2

0 1 2 2

( )
(4.29)

r r
y

k

  


   

 
  

 

The equilibrium point  * * *, , 0,x y z exists in the interior of 3 of theR xyz  plane, if and only if, 

* * *, andx y z are the positive roots of the as followed equilibrium point: 

.
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2
2 2 2 *0 0 1 02

3 2 2 2 2 0 1 1 22

2 2 0 1 2 2

( )
, [ ( ) ( ) _ 4 ], ,0
2

r rl
E l s l s sl y

s k

   
       

     

  
         

  

Then to find all positive value  

2
1 1

1
2

2 0 1

2

(1 ) 0 (4.30)

(1 ) 0 (4.31)

0 (4.32)

0 (4.33)

yx
r z

k x

xy
s

l y

x w

z


 




  

 

    

   

  

 

 

From the above list of equations, the following is obtained: 

*
* 2 1

2 2

*

2

*
* 2 0

1

4
[( ) ( ) ] (4.34)

2

(4.35)

(4.36)

s xl
y s s

s l

z

x
w


 





 



   






 

By substituting the values of * *andy z in Eq. (4.30), a little algebraic manipulation yields: 

3 2 0 (4.37)ax bx cx d     

Where, 
2

1
1

2

2

1 1
2 1

2

2

2 1 1 2
2 1

2

0

2
( )

2
( ) ( )

2

( )(( ) )

r
a

k

r
b r

k

lr
c s r

k s

l l
d s r

s s

 




  
 



    
 



 
  
 

 
   

 

   
      

   

 
      

 

 

By using Descartes rule of signs, Eq (4.37) has positive solution, if the following inequalities hold: 

1
1

2

( ) (4.38)r





   

Knowing the value of *x , the values of *y and *w  can be computed from Eq. (4.37). It should also 

be noted that for *w  to be positive, the following must be true.
..

*

2 0x 
 

**
* 2 2 01

4 2 2

2 1

4
, [( ) ( ) ] , ,

2

xs xl
E x s s

s l
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4.4 Linearization 

In mathematics, linearization is finding the linear approximation to a function at a given point. In 

the study of dynamical systems, linearization is a method for assessing the local stability of an 

equilibrium point of a system of nonlinear differential equations or discrete dynamical systems.  

Linearization can be used to give important information about how the system behaves in the 

neighborhood of equilibrium points. Linearization makes it possible to use tools for studying linear 

systems to analyze the behavior of a nonlinear function near a given point. The small perturbation 

of the homogeneous equilibrium point develops in the large time limit 

Let 

* *

1 1 1

* *

1 1 1

* *

1 1 1

* *

1 1 1

( ) ( ) , ( ) ( ) '( ) '( )

( ) ( ) , ( ) ( ) '( ) '( ) (4.39)

( ) ( ) , ( ) ( ) '( ) '( )

( ) ( ) ( ) ( ) '( ) '( )

x t x t x x t x t x x t x t

y t y t y y t y t y y t y t

z t z t z z t z t z z t z t

w t w t w w t w t w w t w t

     

     

     

     

  

Plugging Eq. (4.39) into Eq. (1.2). Lead to 
*

* * * * *1
1 1 1 1 2 1 1 1 1

*
* * *1

1 1 2 1 1 1

* * * *

1 2 1 1 0 1 1 1

( ( ) )
'( ) ( ( ) ) (1 ) ( ( ) ) ( ( ) ) ( ( ) )( ( ) )

( ( ) )
'( ) ( ( ) ) (1 ) ( ( ) ) ( ( ) )

'( ) ( ( ) )( ( ) ) ( ( ) ) ( ( ) )(

x t x
x t x t x r x t x y t y x t x z t z

k

y t y
y t y t y s y t y x t x

l

z t x t x z t z z t z z t z w

  

 

   


         


      

        *

1

* * *

1 1 1 1 1

( ) )

'( ) ( ( ) )( ( ) ) ( ( ) )

t w

w t z t z w t w w t w 











    

2 * * * * 2
*1 1 1 1

1 1 1 1

* * * *

2 1 2 1 1 1 1 1 1 1 1

2 * * * * 2
* *1 1 1 1

1 2 1 2 1 1 1

1

( ( ) ( ) ( ) ( ) ( )
'( ) ( )

( ) ( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( ) ( )
'( ) ( ) ( )

x t rk x t r x t rx rkx x t rx r x
x t x t x

k

y t y x t z t z t x x t z x

y t sl y t s y t sy sly y t sy s y
y t y t y x t x

l

z

 

     

   

    
  

     

    
    

* * * * *

2 1 1 1 1 0 1 0

* * * *

1 1 1 1 1 1 1 1

* * * * *

1 2 1 1 2 1 2 1 2 1

'( ) ( ( ) ( ) ( ) ( ) ) ( )

( ) ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( ) ) ( )

t x t z t z t x x t z x z z t z

z t w t w t z z t w z w

w t z t w t w t z z t w z w w t w
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2 * * * * 2
*1 1 1 1

1 1 1 1

* * * *

2 1 2 1 1 1 1 1 1 1 1

2 * * * * 2
* *1 1 1 1

1 2 1 2 1 1 1

1

( ( ) ( ) ( ) ( ) ( )
'( ) ( )

( ) ( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( ) ( )
'( ) ( ) ( )

x t rk x t r x t rx rkx x t rx r x
x t x t x

k

y t y x t z t z t x x t z x

y t sl y t s y t sy sly y t sy s y
y t y t y x t x

l

z

 

     

   

    
  

     

    
    

* * * * *

2 1 1 1 1 0 1 0

* * * *

1 1 1 1 1 1 1 1

* * * * *

1 2 1 1 2 1 2 1 2 1

'( ) ( ( ) ( ) ( ) ( ) ) ( )

( ) ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( ) ) ( )

t x t z t z t x x t z x z z t z

z t w t w t z z t w z w

w t z t w t w t z z t w z w w t w

    

   

     










       


   
      

2 ** 2
* * * * * 1 1 1

1 1 2 1

* *

1 1 2 1 1 1 1 1 1 1 1

2 ** 2
* * * 1 1

1 2 1 1 2 1 1 1

* *

1 2

( ( ) ( ) 2 ( )( )
'( )

( ) ( ) ( ) ( ) ( ) ( )

( ) 2 ( )( )
'( ) ( ) ( ) ( )

'( )

x t rk x t r x t rxr x
x t rx x y z x

k k

x t y t x t z t z t x x t z

y t s y t sys y
y t sy y x y t sl l y t l x t

l l

z t x z

  

    

   

 

 
     

    


       

  * * * * *

0 1 2 1 1 2 1 2 1 0 1

* *

1 1 1 1 1 1 1

* * * * *

1 2 2 1 1 2 1 2 1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( ) ( )

z z w x t z t z t x x t z z t

z t w t w t z z t w

w t z w w z t w t w t z z t w w t

      

  

     










      


  
      

 

Since ( * * * *, , ,x y z w ) is an equilibrium point

 

* * 2 * * * *

1 2 1

* * 2 * *

2 1

* * * * *

2 0 1

* * *

2

( )
0

( )
0

0

0

rkx r x k x k y k z x

k

sly s y l y l x

l

x z z z w

z w w

  

 

  

 

   


  


  

 

 

Hence, the following equation. 
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2 * * *

1 1 1 1 1 2 1 1 1 1 1 1 1 1
1

2 * *

1 1 1 1 2 1 1 1
1

* *

1 2 1 1 1 2 1 2 1 1 0 1

( ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( )
'( )

( ( ) ( ) ( ) ( ) ( ) ( )
'( )

'( ) ( ) ( ) ( ) ( )

x t rk x t r x t rx k x t k y t k x t z t k z t x k x t z
x t

k k

y t sl y t s y t sy y t sy l y t l x t
y t

l

z t x t z t z t x x t z z

    

 

     

      


    


      

* *

1 1 1 1 1 1 1

* *

1 2 1 1 2 1 2 1 1

( )

( ) ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( ) ( )

t

z t w t w t z z t w

w t z t w t w t z z t w w t

  

   









   


   



 

 

 

 

 

* *

1 1 2 *

1 1 1 2 1 1 1 1 1 1

*

2 2

1 1 1 1 1

* * * *

1 2 0 1 1 2 1 1 1 2 1 1 1 1 1 1 1

*

1 2

2
'( ) ( ) ( ) ( ) ( ) ( ) ( )

2
'( ) ( ( ) ( )

'( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

'( )

rk rx k z k r
x t x t x t y t x t z t z t x

k k

sl sy l s
y t y t y t x t

l l

z t x w z t x t z t x t z z t w t w t z

w t z w

 
  




        

 

  
    

 
  

        

  *

1 2 1 1 2 1( ) ( ) ( ) ( )t z t w t z t w 










  


 

2

1 1 2 1 3 1 4 1 1 5 1

2

1 1 2 1 3 1

1 2 1 1 3 1 4 1 1

1 1 2 1 1 3 1

'( ) ( ) ( ) ( ) ( ) ( ) ( )

'( ) ( ) ( ) ( ) (4.40)

'( ) ( ) ( ) ( ) ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( )

x t a x t a x t a y t a z t x t a z t

y t b y t b y t b x t

z t cz t c x t z t c x t c z t w t

w t d w t d z t w t d z t

 

    

  

     

  

 

Where 
*

* * *

1 1 1 2 3 2 4 1 5 1

*

1 2 2 3 1

* *

1 2 0 2 2 3 2 4 1

* *

1 2 2 2 3 2

2
, , , ,

2
, ,

, , ,

, ,

x r r
a r z a a a z a x

k k

y s
b s b s b

l

c x c c x c

d z d d w

    

 

    

   

          

    

     

      

However 1 1 1 1( ), ( ), ( ) and ( )x t y t z t w t are small perturbations hence its products as well as any higher 

order greater or equal to two goes to zero.  
2 2

1 1 1 1 1 1 1

1 1 1 2 1

( ) 0, ( ) ( ) 0, ( ) 0, ( ) ( ) 0

( ) ( ) 0, ( ) ( ) 0

x t z t x t y t x t z t

z t w t z t w t





    

  
 

Therefore equation (4.40) reduce to 
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1 1 3 1 5 1

1 1 3 1

1 1 3 1

1 1 3 1

'( )

'( ) (4.41)

'( ) ( )

'( ) ( )

x t a x a y a z

y t b y b x

z t c z c x t

w t d w d z t



  

 

  

 

 

This is the linearized form. 

4.5 local stability analysis 

Local stability of the model is predicated from the linearized part  

1 1 3 1 5 1

1 1 3 1

1 1 3 1

1 1 3 1

'( )

'( ) (4.42)

'( ) ( )

'( ) ( )

x t a x a y a z

y t b y b x

z t c z c x t

w t d w d z t



  

 

  

 
 

The characteristic equation. 

1 1

1 1

1 1

1 1

( ) '( )

( ) '( ) (4.43)

( ) '( )

( ) '( )

t t

t t

t t

t t

x t ne then x t n e

y t me then y t m e

z t fe then z t f e

w t ge then w t g e

 

 

 

 









  


 


 
  

Plugging equation (4.43) into equation (4.42) 

1 3 5

1 3

( )

1 3

( )

1 3

t t t t

t t t

t t t

t t t

n e a ne a me a fe

m e b me b ne

f e c fe c ne

g e d ge d fe

   

  

   

  











   


 


 
     

Since 0te 

1 3 5

1 3

1 3

1 3

n a n a m a f

m b m b n

f c f c ne

g d g d f
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1 3 5

1 3

1 3

1 3

0,

0,

0,

0,

a n a m a f n

b m b n m

c f c ne f

d g d f g













   


  


  
   

 

1 3 5

1 3

1 3

1 3

( ) 0,

( ) 0,

( ) 0, (4.44)

( ) 0.

a n a m a f

b m b n

c f c ne

d g d f













   


  


  
   

 

For Eq. (4.44) to have non-trivial solution the determinant of coefficients matrix must be zero 

1 3 5

3 1

3 1

3 1

0

0 0
0

0 0

0 0

a a a

b b

c e c

d d













 








 

3 3 11

1 1 3 3 1 5 3

3 1 3 1 1

0 0 00 0

( ) 0 0 0 0 0 0

0 0 0 0

b b bb

a c a c e c a c e

d d d d d

 



  

  

 



     

  

 

 

   

   
1 1 1 1 3 3 3 1 1 3

5 3 1 3 1

( )( ) ( )( ) ( )(0) ( ) ( )( ) ( )(0)

0 ( ) ( )( ) 0 0

a b c d d a b c d d

a b b c e d

     

 

        

      
 

 

   

  
1 1 1 1 3 3 1 1

5 1 3 1

( )( ) ( )( ) ( ) ( )( )

( ) ( )( ) 0

a b c d a b c d

a b c e d

     

 

      

    
 

 

   

 
1 1 1 1 3 3 1 1

2

5 1 1 3 1 3 1 3 3

( )( ) ( )( ) ( ) ( )( )

0

a b c d a b c d

a b d c e b c e d c e c e   

     

     

      

    

4 3 3 3 3 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 3 3 1 3 3 1 1 3 3

2

5 1 1 3 5 1 3 5 1 3 5 3 0

a b c d a b a c a d c d c b d b

a b c a b d b d c a d c a b c d a b c d a b c a b c d a b

a b d c e a b c e a d c e a c e   
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4 3 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 5 3

1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 3 3 1 5 1 3 5 1 3

1 1 1 1 3 3 1 1 5 1 1 3 0 (4.45)

a b c d a b a c a d c d c b d b a b a c e

a b c a b d b d c a d c a b c a b d a b c e a d c e

a b c d a b c d a b d c e



 



  





 



            


       

   

 

Which is the characteristic equation of Eq. (4.42) 

Case 1 if 0  then the characteristic equation become 

  1 1 1 1 1 1 1 1 1 14 3 2

1 1 1 1

1 1 3 3 5 3

1 1 1 1 1 1 1 1 1 1 1 1 3 3 1

3 3 1 5 1 3 5 1 3

1 1 1 1 3 3 1 1 5 1 1 3 0 (4.46)

a b a c a d c d c b
a b c d

d b a b a c

a b c a b d b d c a d c a b c

a b d a b c a d c

a b c d a b c d a b d c

  



     
      

   
     
  

   
   



4 3 2

1 2 3 4 0 (4.47)A A A A       
 

Where

  

 

1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 3 3 5 3

3 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 3 3 1 5 1 3 5 1 3

4 1 1 1 1 3 3 1 1 5 1 1 3

A a b c d

A a b a c a d c d c b d b a b a c

A a b c a b d b d c a d c a b c a b d a b c a d c

A a b c d a b c d a b d c

    

       

        

  

 

Theorem: The positive equilibrium point of the system given by Eq. (4.38) is locally stable in the 

absence of time delay. If the following condition.  

Proof: 

 

-

2 4

4
1 3

3
1 2 3

42
1

2 21

1 2 3 3 1 4
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For condition (4.23) and (4.25) equilibrium positive 

Therefore 1 0A   

For Eq. (4.49) 
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The positive equilibrium points    * * * *( , , , )x y z w     is locally asymptotically stable when condition 

(4.48) and (4.49) is satisfied 

2 2

1 2 3 3 1 4A A A A A A   
 

Now, according to the Routh-Hurwitz criteria, all the eigenvalues of positive equilibrium points 

have roots with negative real parts,  

Case 2: If 0  then the characteristic equation becomes 
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For  >0 suppose i  is a root of Eq. (4.51) it follows 

 4 3 2 2

1 2 3 4 1 2 3( ) ( ) ( ) ( ) ( ) 0ii M i M i M i M N i N i N e               

 

 4 3 2 2

1 2 3 4 1 2 3

2 2

4 3 2 1 1 2

1 2 3 4

2 3 3

(cos sin ) 0

cos sin cos
0

sin cos sin

M i M M i M N N i N i

N N i N i
M i M M i M

N N N i

       

     
   

   

         

   
      

   

 

Equating real and imaginary parts. 
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Squaring both side of Eq. (4.49) 
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Adding Eq. (4.55) and Eq. (4.56) 
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Therefore 0P  for this parameter is positives  

 To find the minimum values of  for which the stability of the system lost substitute 0  in Eq. 

(4.51) we obtain. 
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Then the add two equation.
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Dividing Eq. (4.63) by Eq. (4.64). 
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The smallest out off value at which stability of the equilibrium points is lost and never be regained 

in the future time. 

4.6 Hopf Bifurcation 

Bifurcation study is a powerful tool in understanding an ecological community because bifurcation 

implies an abrupt change from one state to the other. For predator-prey systems, the population of 

prey and predators may stay at a steady state or oscillate periodically. The bifurcation parameter 

considered in the model is time delay.  

1. From the characteristic equation (4.51), suppose it has a simple pair of pure imaginary 

Eigenvalues , 0i    . By the same analysis made for local stability with delay, there exist 

when 0   condition (4.58) is satisfied.  

2. Transeversality condition  
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 Transversality condition hold ,that is the eigenvalue cross the imaginary axis with non-zero speed, 

As a result, the systems undergo Hopf bifurcation at when 0   condition (4.51) and (4.66) . 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

5.1. Conclusions 

In this thesis, mathematical model of prey predator with delay was studied. The result of the study 

indicates that the positive equilibrium point in the absence of delay is stable with certain 

conditions. In the presence of delay the system becomes stable with certain conditions and loses 

its stability at cutoff value. Finally, by considering the bifurcation parameter as a time delay the 

system undergo Hopf bifurcation at cutoff value with certain condition stated by equation (4.51).  

5.2 Future Work 

One can investigate the Hopf bifurcation of the system by considering other parameters involved 

in the model different from time delay. Global stability with delay, direction of stability and Hopf 

bifurcation, Persistence of the prey predator, global existence of periodic solution of the model are 

also further investigation. Furthermore, it is possible to consider control that adds with time 

parameter and different time delay on the four equations. 
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