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Abstract

The dynamic relationship between predators and their prey has long been and will continue to be
one of the dominant themes of research in applied mathematics and ecology. Stability and Hopf
Bifurcation Analysis of Prey-Predator Mathematical Model with Delay. In this thesis,
mathematical model of prey predator with delay was studied. To show Positivity of the solution
for the model given. The equilibrium points for the system were calculated. The model under
consideration was nonlinear so that it was linearized by Jacobian matrix at the positive
equilibrium point. The local stability conditions were proved by using Routh Huwertiz stability
criteria and local stability of the model in the absence and presence of delay was studied at the
positive equilibrium point by linearizing the model. Finally, Hopf bifurcation condition was well

spelled out. Generally the end result is stability by positive equilibrium points.

Keywords: Jacobian Matrix, Routh Huwertiz Stability Criteria, Hopf Bifurcation.



List of Variables and Parameters

o, - Migration rate coefficient of the prey species from the unreserved to reserved zone,
o, - Migration rate coefficient of the prey species from the reserved to unreserved zone;

k -Carrying capacities of the prey in the unreserved zone,
| - Carrying capacities of the prey in the reserved zone.

r -Intrinsic growth rates of the prey in the unreserved zone.
s -Intrinsic growth rates of the prey in the reserved zone.

p, - Attack rate of the predator on the prey in the unreserved region area.
B, - Conversion rate of the prey in the unreserved zone to a predator.

7, - Attack rate of the top predator on the predator;

7, - Conversion rate of the predator to the top predator.

B, - Predator natural death rate.

a - Top predator's natural death rate.
7 - Conversion rate of the prey in the unreserved zone to a predator.

X(t) - Denotes the biomass density of prey in unreserved zone
y(t) - Denotes the biomass density of prey in reserved zone
z(t) - Denotes the biomass density of the predator

w(t) - Denotes the biomass density of to the top predator
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Predator-prey model is the first model to illustrate the interaction between predators and prey. It’s
a topic of great interest for many ecologists and mathematicians. This model assumes that the
predator populations have negative effects on the prey populations. The dynamic relationship
between predators and their prey has long been and will continue to be one of the dominant themes
in both ecology and mathematical ecology due to its universal existence and importance
(Berryman, 1992). Population dynamics deals with the time-dependent behavior of modeled
ecological systems. These models provide significant insights into the behavior of nature. The
mathematical equations can govern the time evolution of interacting species. The evolution and
growth of the species depend on many factors, such as overcrowding, age structure, past population
size, sources of food supply, interactions with other species, topographical, ecological and
environmental conditions in the habitat, including seasonal and climatic variations. In recent years,
predator-prey models are arguably the most fundamental building blocks of any biological and
ecosystems as all biomasses are grown out of their resource masses. Species compete, evolve and
disperse often simply for the purpose of seeking resources to sustain their struggle for their very
existence. Their extinctions are often the results of their failure in obtaining the minimum level of
resources needed for their subsistence. Mathematical models inter of ordinary differential equation
(ODE) have been widely used to model physical phenomena, engineering systems, and economic
behavior, biological and biomedical processes. In particular, ODE models have recently played a
prominent role in describing the dynamic behavior of predator-prey systems. The study of
population phenomena or growth phenomena or competition between two species is really
dominated problem in the biological system. Prey-predator interactions abound in the biological

world, and are one of the most important topics in theoretical ecology (Sinha 2018).

The study of predation has long history, beginning with the work of Lotka and Volterra and
continuing to be of interest today. In most ecological models the growth rate of species does not
only depend on the instantaneous population size but also on the past history of the population.
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For example, in the prey-predator model the loss of prey by predator will affect the growth rate of
predators at the future time (Kolmanovskii and Myshkis, 1999). In 2018, Shireen and Matthias

proposed prey-predator mathematical modelas follows:

dx X

e rx l—F)—51x+52y—,lez

d

=5y T)+ x5,y (L.D)
dz

a = PoX2 — By — 2w

aw_ IW—aWw

at V2

Here, the model (1.1) has been analyzed with the initial conditions. All parameters of the model
(1.1) are assumed to be positive and described as follows k and| are the carrying capacities of the

prey in the unreserved and reserved zone, respectively, with intrinsic growth rates r ands ; ¢, is the
migration rate coefficient of the prey species from the unreserved to reserved area and J,the
migration rate coefficient of the prey species from the reserved to unreserved zone; /4 is the attack
rate of the predator on the prey in the unreserved region; f, is the conversion rate of the prey in the
unreserved zone to a predator; y,is the attack rate of the top predator on the predator; y,is the

conversion rate of the predator to the top predator; and finally, S,anda represent the predator

and top predator's natural death rate, respectively .

In the real world, there is sometimes a need to control population at a reasonable level because

otherwise this population may cause increase or even extinction of other populations.

Bearing this in mind, if an average of time delays, taking into account some purposeful action of
various factors on the system acts only on predators, the model (1.1) modified to the following
model.



dx X
i rx(l—E) —O0X+0,y— pxz

%:sy(i—Ty)ﬂzx—azy 1L2)

dz
E =B X(t—7)2— Byz—y,ZW

d—W— IW— oW
a2 ’

7 - is conversion rate of the prey in the unreserved zone to a predator.

Stability of dynamical systems plays a very important role in control system analysis and design.
Unlike the case of linear systems, proving stability of equilibrium points of nonlinear systems is
more complicated. For example Chernet Tuge and Mitiku Daba (2017) investigated the stability
analysis of delayed nonlinear cournot model in the sense of Lyapunov. One of the finding of this
investigation indicates that the presence of equal information time delay in the given model causes
oscillation process in the system and doesn’t affect the qualitative behavior of the solution (no
effect on the stability of the equilibrium point), but only changes the transition process. In other
words, it delays stability as delay parameter increases. On the other hand, when one of the firms
has implementation delay and the rival player makes decision without delay, it leads to instability

of the dynamic system at least locally.

Bifurcation theory is the mathematical study of changes in the qualitative or topological structure
of a given dynamical systems. Local bifurcation occurs when a parameter change causes the
stability of equilibrium to change. To date, many authors have studied the dynamics of predator-
prey models with time delay and obtained complex dynamic behavior, such as stability of
equilibrium, Hopf bifurcation. For example, Song and Wei (2005) investigated further the
dynamics of the system prey-predator model by considering the time delay as the bifurcation
parameter and they obtained that, under certain conditions, the unique positive equilibrium of the
model is absolute stable while it is conditionally stable and there exist switches from stability to

instability under other conditions.

In 2011, Xuet al. studied stability and Hopf bifurcation analysis for a Lotka-Volterra predator—
prey model with two-times delays. In 2015, Soliman and Jarallah, studied asymptotic stability of

solutions of Lotka-Volterra predator-prey model for four species. In 2014, Yue and Qingling
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studied stability and bifurcation analysis of a singular delayed predator-prey bio-economic model
with stochastic fluctuations. In 2012, Mukherjee studied the bifurcation and stability analysis of
prey-predator model with a reserved area. In 2013, Liu et al., studied global stability analysis and
optimal control of a harvested eco-epidemiological prey predator model with vaccination and
taxation. In 2016, Jana, et a studied on the stability and Hopf bifurcation of a prey-generalist

predator system with independent age-selective harvesting.

In 2016, Shiva Reddy studied Dynamics in harvested prey—predator mathematical model with
noise and diffusion. In2016,Naji and Jawad studied the dynamics of prey-predator model with are
served zone. In 2017, Ahmed Buseri studied global asymptotic stability analysis of predator-prey
model. Also, in 2017, Penget al. studied hybrid control of Hopf bifurcation in a Lotka-Volterra
predator-prey model with two-time delays. In 2018, Shireen and watthias studied Modeling,
Dynamics and Analysis of Multi-Species Systems with Prey Refuge. The researcher proposed the
model as well as conducted necessary analysis. In 2018, Dawit Getachew studied Stability
Analysis of Prey-Predator Mathematical Model with Delay and Control of the Prey. In 2020, Li
and Zhao studied Periodic Solution of a Neutral Delay Leslie Predator-Prey Model and the Effect
of Random Perturbation on the Smith Growth Model.In2017, Ali, et al. studied Dynamics of a
three species ratio-dependent food chain model with intra-specific competition within the top

predator.

However, to the best knowledge of the author, the stability and Hopf bifurcation analysis of the
mathematical model of prey-predator with delays represented by equation (1.2) is not yet
investigated. Therefore, the central goal of this study is to investigate the dynamic behavior such
as positivity, local stability Analysis and Hopf bifurcation of prey-predator model with delay
represented by equation (1.2).



1.2 Statement of the Problem

A slight change in the environment could have a profound influence on all living species. In
particular, a food chain might lose one of their components. These problems will create an
imbalance in the ecosystem. For species protection, some strategies and appropriate measures that
will diminish interaction by species including the creation of reserved zones, restricting harvesting,
etc. need to be deployed (Mukherjee, 2012). Several scholars conducted research on prey predator
mathematical model as pointed out in introduction part. For example, Shireen and Matthias
proposed and analyzed mathematical model of prey predator represented by Eq. (1.1). However,
those scholars didn’t take time delay into consideration in the mathematical model they developed.
As a result, it sounds to incorporate time delay into the mathematical model to get more realistic

information.

Therefore, this research mainly focuses on the following problems related to prey predator

mathematical model with delay given by Eq. (1.2).

» Positivity of the solution of the model given by (1.2),
» Local stability analysis of the model given by Eq.(1.2),
» Hopf bifurcation condition of model given by Eq.(1.2).

1.3 Objective of the Study

1.3.1 General Objective
The general objective of this study is to investigating stability and Hopf bifurcation analysis of

prey-predator mathematical model with delay represented by Eq. (1.2).

1.3.2 Specific Objectives

The specific objectives of the present study are:
» To show positivity solution of model given by Eg. (1.2),
» To determine local stability analysis of model given by Eq.(1.2),,
» To establish Hop bifurcation of model given by Eq. (1.2).



1.4Significance of the Study

Many species become extinct and many others are at the verge of extinction due to several reasons
like, over exploitation, over predation, environmental pollution, and mismanagement of natural
resources etc. As a result, this study enables policy makers of ecosystem for co-existence different

species by providing theme necessary conditions which guarantee for co-existence.

1.5 Delimitation of the Study
This study is delimited to stability and Hopf bifurcation analysis of the prey-predator mathematical

model with delay given by Eq. (1.2



CHAPTER TWO

LITERATURE REVIEW

2.1 Historical background

Mathematical models in terms of ordinary differential equations (ODE's) have been widely used
to model physical phenomena, engineering systems, economic behavior, biological and
biomedical processes. In particular, ODE models have recently played a prominent role in
describing the dynamic behavior of predator-prey systems. To study the dynamic behavior of
model, mathematical modeling is used as an effective tool to describe and analyze the model.
Mathematical population models have been used to study the dynamics of prey predator systems
since Lotka and Volterra proposed the simple model of prey-predator interactions now called the
Lotka-Volterra model. Since then, many mathematical models, some reviewed in this study, have
been constructed based on more realistic explicit and implicit biological assumptions. Modeling is
a frequently evolving process, to gain a deep understanding of the mathematical aspects of the
problem and to yield non trivial biological insights; one must carefully construct biologically

meaningful and mathematically tractable population models (Kuang, 2002).

Inter species or Intra species competition models have been the subjects of central discussions in
ecological and biological systems. Among the competition models, Lotka-Volterra inter-specific
competition model occupies the top role to discuss the competitive behavior of the biological
species which determines the present state in terms of past state and changes with the period of
time. The competition models are used in forecasting of species growth rate, maximum and
minimum consumption of resource, food pre- serving, environment capacities and many others
applications. The study of population phenomena or growth phenomena or competition between
two species is really dominated problem in the biological system. Volterra (1926) first developed
competition model between a predator and a prey (Brauer and Soudack, 1979). In the ecological
system, the predator-prey model is among the oldest studies and also the first model to illustrate

the interaction between predators and prey.



This model assume that the predator populations have negative effects on the prey population sand
this system was formulated by VitoVolterra who is an Italian mathematician and Alfred Lotka who

is an American mathematical biologist in 1925 (Boyce, 2010).

2.2 Models of Prey Predator with time delay

In nature, populations do not reproduce instantaneously; rather it is mediated by certain time delay
required for gestation, maturation time, capturing time, or other reasons. Thus, time delays of one
type or another have been incorporated into mathematical models of population dynamics. Delay
is a general concept that can represent different phenomena such as the time it takes for the
progenitor to reach maturity or the finite gestation period of a species. Mathematical delays are
input in model to correct the classical logistic model, which assumes that the growth rate of a
population at time is determined by the number of individuals at that time. Of course, biological
delays are complex and the mathematical representation is often a simplification of reality. The
time delay is considered into the population dynamics when the rate of change of the population
is not only a function of the present population but also depends on the past population. This
relationship/interaction between two or more species has been essential in theoretical ecology
since the famous Lotka—Volterra equations (Volterra, 1926), which are a system of first which is
a system of first order, nonlinear differential equations that describe the dynamics and interactions
between two or more species of biological systems. Of course, the qualitative properties of a prey-
predator system such as stability of the steady states, bifurcation analysis, and oscillation of the
solutions usually depend on the system parameters (Kaung, 1993).

2.3 Recent studies

In the context of predator-prey interaction, some studies that treat population can be extended by
Martin and Ruan have analyzed generalized cause predator prey models where the prey is
harvested with constant rate while Kar considered the predator-prey model with the predator
harvested and suggested that it is ideal to study the combined harvesting of predator and prey
population models (Kar, 2003).

In 2018, Teshale Fikre studies Stability and Bifurcation Analysis of Prey-Predator Mathematical
Model with Delay and Control of the Predator. They showed how to classify the possibilities and
determine the region of stability. They found that if the equilibrium point is asymptotically stable,

which is determined by a local linearization, then every solution whose initial value is in some
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neighborhood of the stable equilibrium point tends to it as the time approaches infinity. There
exists an asymptotically stable limit cycle when the constant rate is small and the equilibrium point
is unstable. In 2019, Srinivasarao studied Prey-Predator Model for Awash National Park, Oromia,
Ethiopia and its Stability Analysis with Simulations. The study is based on formulation of a
mathematical model to study the dynamics of the population densities and analyzing the stability

of equilibrium points of the prey-predator model.

In 2020,Wang and Zou, studied On a Predator—Prey System with Digestion Delay and Anti-
predation Strategy. In 2020, Rihan, et al, studied Stability and Hopf Bifurcation of Three-Species
Prey-Predator System with Time Delays and Allee Effect. In 2021, San-Xing and Xin-You studied
Dynamics of a delayed predator-prey system with fear effect, herd behavior and disease in the
susceptible prey. Then taking time delay as the bifurcation parameters, the existence of Hopf
bifurcation of the system at the positive equilibrium is given. Thirdly, the global asymptotic
stability of the equilibrium is discussed by constructing a suitable Lyapunov function. Next, the
direction of Hopf bifurcation and the stability of the periodic solution are analyzed based on the

center manifold theorem and normal form theory.

Although the above studies were conducted by different researchers, still there is a room for further
study. Consequently, this study is going to contribute on mathematical rigorous analysis of

mathematical model represented by Eq. (1.2).



CHAPTER THREE

METHODOLOGY

3.1. Study Area and Period
The study was conducted at Jimma University under the department of Mathematics from
December, 2020 to February, 2022 G.C.

3.2 Study Design
This study will employ mixed-design (documentary review design and experimental design) on

prey-predator model given by equation (1.2).

3.3. Source of Information
The relevant sources of information for this study are books, published articles & related studies

from internet.

3.4. Mathematical Procedures
In order to achieve the stated objectives, the study will follow the following mathematical
procedures:

Showing positivity of the solution of the model,
Determining the steady state points of the model,
Linearizing the mathematical model of prey-predator under consideration,

Determining the local stability analysis condition of the model,

gk W N

Establishing Hopf-bifurcation conditions.
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CHAPTER FOUR

RESULT AND DISCUSSION
4.1 Preliminaries

dx o 0 o )
Definition 4.1: Consider non-linear systema= f(x), where f :R" > R". A point X" €R" s an

equilibrium point if %(X) =f (X) =0

dx
Definition 4.2: For a linear system at = AX the stability of equilibrium point can be completely

determined by location of Eigen values of A. This is expressed as follows;

I.  Ifthe all Eigen-values of the Jacobean matrix have real parts less than zero, then the linear
system is locally asymptotically stable and
Il.  If at least one of the Eigenvalues of Jacobean matrix has real part greater than zero, then
the system is unstable (Khalil, 2002).
Definition 4.3: Routh-Hurwitz Stability Criterion (Katsuhiko, 1970)

Given characteristic polynomial of the form aym” +am"™* +...+a, =0

Wherea, = 0and a, >0, then the Routh-Hurwitz array or table is given as follows.

m'|d @ a d ‘-
mtla & & &
m™?|b b, bs b,
milc, ¢ C ¢
m“d, d d, d,
m’ (e e,
m | f,
0
m- |9,

Where
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p = 2% %3 . _Dd-ab

& bl dl — Cle _bICZ
b2 — 88, — 8,8 ,C, = blas _aibs 1 G

& b1 d2 — C1b3 — b1C3
b, = 8,85 — 8,8, C,= ba, —ab, g

3 b,

4.1.2 Descartes rule of signs

Let p(x) defines a characteristic polynomial with real coefficients and a non- zero constant term,
with the terms being in descending powers of x. Hence, the number of positive real roots of p(x)
= 0 either equals the number of variances in sign occurring in the coefficients of p(x), or less than
the number of variations by a positive even number.

4.2 Positive of the Solution of the Model

Let, X =(x,¥,z,w) e R, *and f(X)=[f,(X), f,(X), f;(X), f,(X)]

Where, f(X):R! >R?and f e R? Then system (1.2) becomes:

% = rx(1_E)—5lx+52y—ﬂlxz =f(xy.z,w)
%¥=wa—$+@x—@y=ﬂxmzw) (4.
dz

o = A= 02= Az —aw=f(x . 2,w)

c:j_\ivznzw—aW= f(x,y,z,w)

From the first equation of Eq. (4.1)

dx rx

E:rx(_?)_é‘lx""é‘zy_ﬂlzx

dx rx 1)

E:(r—?—@ﬂ%—ﬂlz)x

dx rx 0,y

—=|r——-05)+-2-—pz|dt

< ( T ﬂl)
Where
X px, v,z wet (42
X

‘ rx 1)
Where p(x,y,z.w,):r—?—51+ ZK—ﬂlz

Integrating Eq. (4.2) from [0, t]
12



B [CORORIOMONE

Inx = [ p(x(s), y(s), 2(s)w(s))ds

t
[pex(s)y(s)2(s)wis)ds
0

Inx

e =e
t
[p(x(s)y(s).2(s)wis)ds
X=Cge°

Wherec, is an integrating constant? Apply initial condition at t =0

x(0)>0
x(0)=c,

Putting the value of c,in to Eq. (4.3)

t
[Pex@)y(s)z(s)w(s)ds

X(t) = x(0)e° >0, Vt>0
Therefore, x, (t) is positive vt > 0.

From the second equation of Eq. (4.1)

d
YA+ ox-5y

dy sy 5ly j
Doyl s
dt y(s VAR
d sy Ox
Vy:[S_Ter %—éJdt

Where
ﬂ: k(x,Y,z,w)dt
y

Where k(x,y,zw,) = s—sl—y+5l)%—52

Then integrating Eq. (4.4) from [0,t]

13
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| d%zjk(x(s), y(s), 2(S)W(s))ds

In'y = [k(x(s), y(s), 2(s)w(s))ds

t
JkCx(sy(s)z(s)w(s)as

Iny _ A0

e =e

t
[K(x(s)y(s)z(s)ws)ds
y =ce’

Wherec is an integrating constant. Apply initial condition at t =0

y(0)>0
y(0)=c

Putting the value of ¢ in to Eq. (4.5)

t
[K(x(s).y(s).2(s)w(s)ds

y(t) = y(0)e® >0, vt >0
Therefore, y(t) is positive vt >0
From the third equation of Eq. (4.1)

%
dt
%:(ﬂzx(t_f)_ﬂo _71W)Z
dx

e

=B X(t=7)2~ Bz -y, ZW

Box(t—7) -5, _71W) dt

%z m(x,y, z, w)dt
z

Wherem(x, y,z,w) = g,X(t—7) - B, — W

Then integrating Eq. (4.6) from [0,t]

14
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d_zz _ j M(X(5—1,), Y(), 2(s)w(s))ds

Inz= jm(x(s —17,), Y(8), z(s)w(s))ds

t
| [mOx(s=r).y(s).z(s)w(s)ds
e nz — eo

t
Jmex(s=).y(s).2(s)w(s)ds
z=Ce’°

Wherec is an integrating constant. Apply initial condition at t =0

z2(0)>0
z(0)=c

Putting the value of ¢ into Eq. (4.7)

t
[mOx(s=z).y(s).2(s)w(s)ds

z(t) = z(0)e° >0, vt>0
Therefore, z(t) is positive Vt >0
From the fourth equation of Eq. (4.1)

dz
dt
dx
dt
dx
w

d_w= n(x,y,z, w)dt
w

= ¥,IW— QW
=(r,z—a)w

=(y,2—a)dt

Where N(X,Y,zZ,W)=y,Z2—a
Then integrating Eq. (4.8) from [0,1]
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[ = N x(S), Y, 2w

Inw= j' N (x(s), y(s), z(s)w(s))ds

t
| [N Gs)y(s)z(s)ws)ds
e nw — eo

t
[Nx(s).y(s).2(s)w(s)ds
W = ce’

Wherec is an integrating constant. Apply initial condition at t =0

w(0) >0
w(0)=c

Putting the value of¢ in to Eq. (4.9)

t
N Cs)y (). 2(s)w(s))ds

w(t) = w(0)e® >0, vt>0
Therefore, w(t) is positive Vt >0

Therefore, all solutions of system (1.2) are non- negative.
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4.3 Equilibrium point

In dynamical system theory, equilibrium solutions are solutions which do not change with time
(Meiss, 2007). Studying equilibrium solutions is important in mathematical biology because it
predicts long-term behaviors of a system. In the following, the existence of the equilibrium points
of the system (1.2) will be elucidated. To find equilibrium point, equate the right hand side of

equation (1.2) with zero
rx(l- E) -0, X+0,y—pBx2=0

sy(l—Ty)+§1x—§2y:0 (4.10)
Box(t—7)z—foz—y,zw=0
7HIW—aw=0

Since the time delay has no effect on the equilibrium point, firstly

rx(1—§) —5X+8,y - fxz =0 (4.11)
sy(1—|—y) L EX—8,y=0 (4.12)

(Bx=By—rW)z=0 (4.13)
(7,2-a)W=0 (4.14)

From Eq. (4.14)

(y,z—a)w=0 ,w=0, y,z—a=0, 2=2
V2

For w=0 Eq. (4.14) gives:-

(BX—fy—7W)2=0, 2=0, fx—f, =0, x=%
2
Forw=0 and z=0
r(1—§)—51+%:0 (4.15)
y OX
S(l—T)—52 +7:0 (416)
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formEq.(4.15)

1.rx?

=—[—-(r-o 4.17
y 52[k (r-o)x] (4.17)

1 .rx?

1 .rx? 3[7_ (r=a)x] rx?
S(E[T_(r_gl)x] j—s I —[T—(r—5l)x]+5lx=0

2 2 2 2
S;Xk —g(r—@)x—s[lgk —%(r—@)xj —%+(r—§l)x+5lx:0
2 2 2 2

2

2 2 2
SIX _i(r—é})x—S( rx _i(r—@)xj —%+(r—§l)x+51x:0

o,k 0, 1o,k 195,
2 2,4 _ 3 o e\24,2 2
Srx —i(r—5l)x— srzx2 2sr(r—o)x>  (r-4)°x —ri+(r—51)x+5lx:0
o,k 0, 16,7k 15,k 1o, k
2,3 _ 2 aY:
ﬂ—i(r—ﬁl)— sr2x2+25r(r 251)x _(r-9) X—r—x+(r—51)+§l X=0
o,k 9, 16,7k 15,7k 1o, k
2,3 _ 2
XZO or 2 2 , 2 2
SO X X s5)46,-0
10, k
2,3 _ 2 Y
—ﬂ+i(r—§l)+ sr2x2_23r(r 251)x +(r o) x+§_(r_51)_§1:0
o,k 9, 15,7k 16,7k 1o, k
2 _ _ 2 _ _ _
ST o 2S(=8) o (S(=8)" _1(r=5,) ), (=8)(s=8) 5 _,
16,k 16,k o o,k 0,

For x=0Eq. (4.17) givens y=0

Therefore E, =(0,0,0,0)

Now, substituting the value of y into Eq. (4.16), and after a little algebraic manipulation yields:
ax® +bx* +cx+d =0 (4.18)

Where,

18



sr?

a=— 50 4.19
0% (4.19)
p=2r=3) g (4.20)
157k
2
(o SU=8) rr=5) @2
15 Sk
d =“‘51)5M—51. (4.22)
2

Hence, by using Descartes rule of signs, Eq (4.18) has positive solution, if the following
inequalities hold:
s(r—¢,)° y r(r-:o,)
152 5,k
(r=6)(s-6,)< 6,6,
Knowing the value of x™ , the value of y"is computed from Eq. (4.17). It should also be noted that

for y” to be positive, the following must be the case

.1 .rx? . .
=—[——(r-95)x] >0,y =0

y 52[ " (r-o6,)x1] y

1.rx . . rx’

—[——-(r-¢6,)]x >0,x =0,or ——(r-o,)>0

52[k (r—o)] ” (r-o)

rx’
" >(r-o,)

X > E(r -9,) (4.23)
r
Similarly, the value of x"can be determined from Eq. (4.16) as:
. 1.sy .
X ==[—-(s-9¢ 4.24
5 0k (s-6,)y ] (4.24)

While, yis a positive root that can be determined from Eq. (4.24), so that:
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-2 ALY
2
X :% S)I: I ! P
y > O,STy*—(s—éz) >0,
y >Ig(s—52) (4.25)

E,=(x,y,0,0)
Where X" and y~ positive. Conditions (4.24) and (4.25) represent the necessary conditions for the
existence of the planar equilibrium point in the interior of R? of the xy —plane.
The equilibrium point (x*, Yy, z*O,)exists in the interior of R? of the xyz —plane, if and only if,

X",y and z"are the positive roots of the following set of algebraic equations:

r(l——) o, + - pxz= (4.26)
s(1—Ty) 5, +iyx -0 (4.27)
BoX—f, =0 (4.28)
Solving the above equations, gives that:
X = b
ﬂz
=5 ﬂ [18,(s=8,) + 1’87 (s=6,)" + _ 418,31
* ﬁz [ﬂo(r 5) r:Bo +52y*
IBOﬂl ﬁZ kﬂZ
For,z to be positive, the following condition must holds:
2 [ﬁf’(r 5)) oy = (4.29)
BB B kp,’

The equilibrium point (x*, v,z O,)exists in the interior of R® of the xyz —plane, if and only if,

X",y and z"are the positive roots of the as followed equilibrium point:
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— & I By | B(r - 5) rﬂo *
Es—(ﬂz,z%[wz(s 8)+ B (s =6, +_4s1 56 ]ﬁoﬂi TR }@y,OJ

Then to find all positive value
X 0,y
r(1—E)—51+27—ﬁ12 =0

s( —Ty)—52+%=0 (4.31)

(4.30)

Box=py—yw=0 (4.32)
7,2—a=0 (4.33)
From the above list of equations, the following is obtained:
. 4sS,X°

y =_[(S_52)+\/(S_52)2 : ] (4-34)
2S |

7% (4.35)
e

w =X b (4.36)

71

By substituting the values of y” and z* in Eq. (4.30), a little algebraic manipulation yields:

ax®+bx?+cx+d =0
Where,

a:(_—rj2>0

k

_2r( oy P

—k[(r )2 j

(sl o Ba)
= (ZS(S 52)j+[<r 5) hj

5521

(4.37)

- P'(s S8~ 1+

By using Descartes rule of signs, Eq (4.37) has positive solution, if the following inequalities hold:

(r-s)>2% (4.38)
e!
Knowing the value of x™, the values of y and w" can be computed from Eq. (4.37). It should also

be noted that for w™ to be positive, the following must be true. B,x" > 3,

E, —(x ~(s- 5)+\/(s 5,) + 4S5’(] @ PX-h J
"

72
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4.4 Linearization
In mathematics, linearization is finding the linear approximation to a function at a given point. In

the study of dynamical systems, linearization is a method for assessing the local stability of an
equilibrium point of a system of nonlinear differential equations or discrete dynamical systems.
Linearization can be used to give important information about how the system behaves in the
neighborhood of equilibrium points. Linearization makes it possible to use tools for studying linear
systems to analyze the behavior of a nonlinear function near a given point. The small perturbation
of the homogeneous equilibrium point develops in the large time limit

Let

X (1) =x(®) =X, x(t) = x (t) + X = X'(t) =x(t)
RO =y-y yO=vO+y  =yO=y'0 (4.39)
z,)=z2)-2 ,z(t)=z(t)+2Z =z'(t)=2z"(t)
W) =wt)-w wt)=w, () +w = w'(t)=w'(t)
Plugging Eq. (4.39) into Eq. (1.2). Lead to

% 0= 060+x)ra- B .60 +x) +6, 040 + ) - A0+ X0 +7)

n® = (10 +y)s0- L) 50,0+ y) 46,0+ )

z,' (1) = B,(x(t-2)+X )z ) +27) = By (z,(1) + 2) — 1 (2, () + 2 ) (W, (D) + W)
W, '(t) = 7, (z, () + Z*)(Wl (t)+w)- a(w(t) + w)
X (t) = (x, (t)rk = x> (t)r - xi(t)rxi: +rkx” =X (1)rx —r(x)? X ()-6xX

+ 52 Yi (t) + é‘2 y* - ﬂlxl(t)zl (t) - 13121 (t) X* - ﬁlxl(t) - ﬁlZ*X*

v, (1) = (. (®)sl =y, (t)s - y1(t)5yl +sly =y, (O)sy —s(y) _

2,'(t) = B,(% (t=7)2,(1) + ()X + X (t-2)Z +X2) = Bz,(t) - B2’
- 7121 (t)Wl (t) - 71W1 (t)Z* - 7121 (t)W* - 712*W*
W, '(t) = 7,2, (), (t) + 72W1(t)2* +7.4 (t)W* + 722*W*) —aw,(t) - aw’

52 y1 (t) - 52 y* + 51)(1 (t) + 51)(*
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X () = (x, () rk — x> (t)r - Xl(t)rx; +rkx” =X (H)rx" —r(x)? ox()-5X

+ 52 Y1 (t) + é‘z y* - /31X1(t)21 (t) - :3121 (t) X* - /31X1(t) - ﬁlZ*X*
! _ (yl(t)SI - y12 (t)S - yl(t)sy* + SIy* B yl(t)sy* - S(y*)2 _
y, (1) = |
z,' (1) = f,(x -0z, +7,(O)X +x(t-7)2 +Xx27) = fz,() - 7’
N4 (t)Wl (t) =W (t)Z* — N4 (t)W* - 712*W*
W '(t) = 7,2 (OW () + 7, W (1) + 7,2 (W + 7,2 W) —awy (t) —aw’
r(x’)? (x, () rk —x (t)r —2x, (t)rx’
k k
- 1X1(t) + é‘2 yl(t) - ﬂlxl(t) Z (t) - ﬂlzl (t)X* - ﬂlxl(t)Z*

, . s(y)? . . 2(t)s—2y, (t)sy
n® =5y -y iy st - LEZRROY 15 10,0

Z I(t) = :BgX*Z* _IBOZ* _712*W* + :Bzx1(t _T)Zl(t) + ﬁZZl(t)X* +ﬂ2X1(t _T)Z* _ﬂozl(t)
=1z (W () — 7w, (t)Z* - 7121(t)W*
W, (1) = 7,2 W —aW + 1,2, (W, (1) +7,W, (D)2 + 7,2, OOW —aw(t)

S (1) =8,y +% ) + 5

—0X +68,Y —BTX +

X () =rx" -

Since (x7,y",z",w") is an equilibrium point

rkx —r(x)’ —kox +kd,y —kBzx
k
sly” —s(y")’ =15,y" +15,x"
I
pXz _ﬂOZ* ~7ZwW =0
7,ZW —aw =0

=0

=0

Hence, the following equation.
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X, '(t) _ (Xl(t) rk — X12 (t)r — 2X1(t) rX* _ké‘lxl(t) + k52 y1(t) - kﬂ1xi(t) Zl(t) - kﬁ121(t) X* - kﬁlxl(t)Z*

K K

y, () = 0= Y s =y, (©)sy” — vy (®)sy” —18,y, (1) +15,%,(t)
1 |

2,'(t) = +B X, (t—7,) 7, () + ﬂzzl(t)X* +B,% (t - z'1)2* =Bz, (t)
—n4 (t)Wl(t) — W (t)Z* - 7/121(t)W*
W '(t) = 7221(t)W1(t) + 72W1(t)2* + 7221(t)W* - awl(t)

(rk—2rx"—kpz" —ks,)
k
(sl-2sy"-13,)

Y, '(t) = | yl(t—lfyf(t>+61x1(t>

2,'(t) = (ﬂzX* - By — 71W*) 2,(t) + Box (t—7,)z, (1) + Box (t— T1)Z* =7z Ow(t) - 71W1(t)2*
W) = (7,27~ )W (0) + 7,2 OW O + 7,2, OW

X '(t) = X1(t) _i X12 (t) + 52 yl(t) - ﬂlxl (t)z1 (t) - ﬂlzl (t)X*

X'(t) = ax, (1) —a,%" (1) + 8,y (t) — 2,2, (t) %, (t) — a1, (1)
y '(t) = b1y1 (t) - bz yl2 (t) + b3X1 (t) (4-40)
z'(t) =cz,(t) —C, X, (t = 7) 7, (t) + Co X, (t —7) —C,z, ()i (1)
w'(t) = d,w (t) +d,z, (t)w (t) +dyz, (1)
Where
2X'r

* r * *
aizr_T_51_ﬂ1z ’azz_E’ 8, =0, 8 =-f7, 8 =-pX

b = s—%—@, b,=s, Dby,=0

G :ﬁz)(* =B, =0 G :_182)(*’ C,=n

d=72~a, d,=7, dy=—y,W
However x, (t), y,(t), z,(t) and w,(t) are small perturbations hence its products as well as any higher
order greater or equal to two goes to zero.

X' >0, x>0, y ()0 X({t-7)z(t)—>0

z,(Ow,(t) >0, z(t—7,)w(t) >0
Therefore equation (4.40) reduce to
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x'(t) =X, +a3y, — 852,

y't)=by, + b3X1 (4.41)
z'(t) =c,z, +Cx (t—7)

w'(t) =d,w, +d,z (t)

This is the linearized form.

4.5 local stability analysis
Local stability of the model is predicated from the linearized part

X'(t)=ax +ay, —a:z,
y'(t) = b1y1 + b3X1 (4.42)
z'(t) =c,z, +Cx (t—7)
w'(t) =d,w, +d,z (t)
The characteristic equation.

x (t)=ne”  then x, '(t) =nie*

y, (t) = me“then vy, '(t) = mie* (4.43)
z,(t) = fe“'then z,'(t) = f 2e™

w, (t) = ge“then w, '(t) = g1e™

Plugging equation (4.43) into equation (4.42)

nie” =ane™ +ame” —a, fe*
mAe* =bme™ +b,ne*

f1e* =c, fe* +c,ne* ™
gie™ =d,ge™ +d, fe*®

ni=an+am-a;f

mA =bm+b;n

Sincee™ =0 om+b, ,
fA=cf+cne™

gA=d,g+d,f

25



an+am-af-ni=0,
bm+b,n-mA =0,
c,f+cne” —fa1=0,
d,g+d,f —gi=0,

(a, —A)n+a;m-a,f =0,

(b, =A)m+b,n=0,

(c,—A)f +c,ne* =0, (4.44)
(d,-4)g+d,f =0.

For Eq. (4.44) to have non-trivial solution the determinant of coefficients matrix must be zero

a-A a -a O
b, b-4 0 0

ce’ 0 -1 0
0 0 d, d -4
b-4i 0 0 b, O o | b -4
(a,—1)|0 ¢, -4 0-alce”™ ¢-4 O0|+alce”™ 0 0 [=0
0 d, d-2 0 d,d-A 0 0 d-4

(@4 )0 ~2)((6 ~ 2)(d, ~ 1)~ (d,)(0)) 2, (b,) (¢, - 2)(d; ~ 1)~ (d;)(0))
+a5[b3 (0)— (b - 2)((cse ™™ )(dy — 2) —0)]: 0

(8, =4 )b —A)((c,—4)(d, = 4))—ay(b,) ((c, = A)(d, — 1))
+ag(~(0, - 2)((ce " )(dy = 2))) =0

(a,—4 )b, —A)((c,—A)(d, — 2))—ay(b,) ((c, — 2)(d, - 4))

~a,(bd,ce " —bAce ™ —ddce ™ +A%ce ) =0

A*—aA’-pA’-c A’ -d A’ +ab A’ +ac A’ +ad A’ +cd, A% +cp A% +db A’
—-abcA-abd A-bdci-adcA+abcd —abcd +abcd+abcdi-abA’
-abdce ™ +abice” +adice” —ai’ce’ =0
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2

At _(al +b +c + dl)/13 +(a1b1 +a,c +ad, +cd, +ch +db —ab, —ace™ );L
_(alblcl + albldl + bldlcl + a:l.dlcl - a3b3cl - asb3d1 - a5b1c3e‘“ - a5d103e_h )’1
+abc,d; —ab,cd, - asbldlcse_h =0 (4.45)

Which is the characteristic equation of Eq. (4.42)
Case 1 if 7 =0then the characteristic equation become

a1b1 +a,C + aidl + C1d1 + C1b1
At — d,)A° A?
(al " bl et l) +(+d1b1 _aebs —a5C;
_(aiblcl + a1b1d1 + b1d1C1 + aidlcl - asbzclj 1
_aabadl - asblcs - asdlcs

+a1b1C1d1 - a3b3cld1 - a5b1d103 =0 (4-46)
A+ A_ﬂﬁ + Azﬂ,z +AA+A,=0 (4.47)
Where

A =—(a,+b+c +d,)

A = a1b1 +a6 + aidl +Cld1 +C1b1 + d1b1 - asbs —85Cy

A =-(abg, +abd, +bdc +adc —abc —ahb,d, —abc; —adc,)

A = alblcldl - a3b3cld1 - asbldlc3
Theorem: The positive equilibrium point of the system given by Eq. (4.38) is locally stable in the
absence of time delay. If the following condition.

Proof:
1 A A
A A A O
5 AA-A
vk A '
ZAAA -AT-AA, 0 o
A° AR, — A,
A, 0 O
Where,
A>0 (4.48)
A >0 (4.49)
AAA > AA+AS (4.50)
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A =(a+b+c+d)>0

A :(r-%-&l—ﬂlzns—%—@ +ﬂ2x*—ﬂ0+yzz*—aj>0

For condition (4.23) and (4.25) equilibrium positive
Therefore A >0

For Eq. (4.49)

A >0

A4 = (a1b1C1d1 - a3b3c1d1 - a5b1dlc3) >0
(-2 -5, 52 )5 - 228X - ) - )

A = oyt >0
“(BX =BT ~@)8,0+ BT (=28 ~ B

The positive equilibrium points  (x',y",z",w’) is locally asymptotically stable when condition
(4.48) and (4.49) is satisfied

A=AAA-A"-A’A,

Now, according to the Routh-Hurwitz criteria, all the eigenvalues of positive equilibrium points
have roots with negative real parts,

Case 2: If 7= 0then the characteristic equation becomes

A'—(a+b +c +d,) 2% +(ab +ac +a,d, +cd, +cb +db —ahb,)A°

- (aiblcl + a1b1d1 + bldlcl + a1d1C1 - a3b3C1 - a3badl ) A

+ab,c,d, —aghic,d, +(—a,c,A” — (ahyc, +a,d,c,) A —ahyd,c Je =0

A'—(a,+b +c +d,) 2% +(ab +ac +ad, +cd, +cb +db —ab, —ace )2’

_(a1b1C1 + albldl + bldlcl + aldlcl - aabscl - asb3d1 - a5b103e_“ - a5dlc3e"” )ﬂ“

+a1b1C1d1 - asbscldl - asbldlcseih =0

AP+ MA+ M2+ MA+ M, + (NlﬂL2 +N, A+ Ns)e’“ =0 (4.51)
Where,
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M,=—(a,+b+c +d,)

M, =(ab +ac, +ad, +cd, +cb +db —ab,)

M, =—(abc, +abd, +bd.c, +adc —ahb;c, —ahd,)
M, =abcd, —ab,cd,

N1 =—aC;
Nz = _(asblca - asdlcs)
N3 = _a5b1d1C3

For o >0 suppose A =wiis aroot of Eq. (4.51) it follows

(wi)* + Ml(a)i)3 + Mz(a)i)2 +M,(ai)+M, +(N1(C()i)2 + N, ol + Ns)e‘“’” =0

o' —M,0%i —M,0" + M, + M, +(—Nla)2 + N, ol + NB)(COSa)T—iSin wt)=0

) . —N.w? cos wr + N.w?i sin wr + N, wi cos wr
a)4—M1w3|—M2a)2+I\/I3a)I+M4+( ! ! 2

+N,wsin ot + N, coswr — N,isin oz

Equating real and imaginary parts.

o' —M,0” + M, = N’ cos ot — N,wsin ot — N, cos ot 452)

~M,@° + M0 = -N,@’ sin @t — N,wcos wz + N, sin ot '
Squaring both side of Eq. (4.49)

(0" —M,0" + M4)2 =(N,@’ cos @z — N,wsin oz - N, cos cor)2 (4.53)

(—le3 + Msa))2 = (—Nla)2 sinz —N,wcoswz + N, sin an’)z (4.54)

@* —2M,0°

N,’®" cos’ (w7) + N,’ @’ sin® (w7)

+2N,N,’ cos(e7)sin 455

+2M40)4_2M4M20)2+M22a}4+M42: 2 10)- (w7)sin(w7) ( )
—2N,N, sin(w7) cos(w7)

—2N,*N,@° cos®(w7) + N,’ cos* (wr)
N’ @ sin’(w7) + N,’ @’ cos’ (o)
—2N,N,@° cos(w7)sin
M0 — 2M M o' + M e =| 2NaNie cos(@r)sin(wz) (4.56)
+2N,N, sin(ew7) cos(wr)

—2N,’N,’ sin’(w7) + N,* sin®*(w7)
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Adding Eq. (4.55) and Eqg. (4.56)

@’ —2M,0° +2M,@" - 2M M, 0* +
{Mzzw4 +MS2+Mj0° -2MM, 0" + M 0’
@° = 2M,0° +2M,@" - 2M M, 0’
+M, 0" +M,? + M 0® -2M M, 0" =0
+M,/@* =N — N,0® + 2N,N,0° — N,’
{wg +(M,? =2M,)0° +(M,” =2M,;M, +2M, - N, )"
+(=2M M, + M =N, +2N,N,)o* + M * = N,?

@® +Po® +Qa* +Ro*+T =0
Where,

P=M;-2M,
Q=M,>—2M,M, +2M, — N ?
R=-2M,M,+M.?—N,+2NN,

T=M,/-N}
Remark: P >0
Proof.

P=M2-2M,

M,=—(a +b+c +d,)
M, =(ab +ac, +ad, +cd, +chb +db —a}h,)

Then for this M,> —2M, >0

= N/o" + N,o’

—2N,N, @ + N2

(—(a1+bl+cl+dl))2 —2(ab, +ac, +ad, +cd, +cb +db —ah,)>0
a’+b%+c?+d?+2ab +2ac +2ad, +2cd, +2chb +2db -0

{—Zaibl —2a,c, —2a,d, —2c,d, —2cb, —2d,b, +2a,b,
a’+b?+c?+d?+2ah, >0

* 2 - 2
[r—%—gl_ﬁlz*j +(s—%—52] +(ﬂ2x*—ﬂo)2+(;/Zz*—a)2+251 5,>0
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Therefore P > 0 for this parameter is positives

To find the minimum values of z for which the stability of the system lost substitute @, in Eq.
(4.51) we obtain.

a,' —M,w,* +M, = N,w,’ cos(w,r) — N,a, sin(a,) — N, cos(w,7) (4.61)
~M,@,’ + M@, =—N,m,’ sin(w,r) — N,a, cos(w,z) + N, sin(ew,z) (4.62)

Hence, Eq. (4.61) and Eq. (4.62) both side multiple by N,a, and (N,@,” + N,) respectively.

N,y (@," — M, +M,) = N,a, (N,,” — N,) cos(w,z) — N,’ @, sin(a,r)
(Nla)o2 - N3)(—M1a)03 + M3a)o) = (Nla)o2 - Na)(_Nla)o2 + Ns)Sin(wof)
—(N,@” = N3)N 9, cos(yr)

Then the add two equation.

N,@y (05" = M,@," + M)+ Ny, = No)(-M,@,° + My@y) = (N o' =N =N 20, )sin(e,7)
N, o, (@," —M,@,> +M,) +
(Nla)o2 - N3)(—Mla)03 +M.,aw,)
Nza)o(w04 - M2w02 +M,)+ (Nla)o2 - Ng)(—Mla)o3 +M,m,)
(NS = N2 =N, ’o”)

(lea)04 -Nj - sza)oz)sin(a)or) ={

sin(w,7) =

N, ((004 - Mza)o2 +M,)+ (Nla)o2 - Ns)(_leo3 +M;w,)

sin(w,r —27k) = (Nza)4—N2—N2a)2)
10 3 2 70

(4.63)

For Eg. (4.61) and Eq. (4.62) both side multiple by (N,@,”> —N,) and N,a, respectively

(=N,@,” + No)(@," =M,@," + M) = (=N @," = N;*) cos(@,7) = (=N, @,” + Ng) N0, sin(o,

N, @, (-M,@,> + M,@,) = N, @, (=N, @,” + N,) sin(w,7) — N,*@,’ cos(@,r)

Then add two equation
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(=Ny@y” + Ny )(@," —=M,0," + M) 2 4 2 2 2
LN @, (-M,@.° + M. a,) :(—N1 @, —N;" =N, w, )COS(a)Oz')
2770 10 3%

N,,* = Ny) (@, —M,0,2 + M) +
(—N12w04 _ st _ sza)oz)COS(a)OT) _ ( 10 3)(3 0 2% 4)
N,y (-M, ;" + M)
cos(@,7) = (N,@,” = N,)(@," =Mo" +M,) + N,a, (-M,0,* + M, @,)
o
(_lea)o4 -Ng* - sza)oz)
4 2 2 _ 3
cos(@,r — 27k) = N, @, (0, — M, o, +I2\/I4?1+(N12a)0 2N3)2( M,@,” + M, ;)
(_Nl @y —N;" =Ny, )

Dividing Eq. (4.63) by Eq. (4.64).

Nza)o(a)o4 - M2w02 +M,)+ (Nla)o2 - NS)(—Mla)O3 +M,a,)
Sin(a)or—27rk) B (N12w04 - N32 - sza)oz)

cos(w,z —277k) Ny, (,* —M,@,% + M,) + (N,w,* — N ) (=M, @,* + M)
(_N12w04 _ N32 _ szwoz)

N, @, (@," =M, @," +M,) + (—N2w4—N2—N 20)2)

(leoz_Ns)(_leog"'Msa)o) s ’ £

(Nza)4—N 2_N 2a)2)(N2wo(wo4_M2a)02+M4)+ ]
1 @y 3 2 Wy

(Nla’o2 - Ns)(_M1w03 + M)

N,y (0" =M, @," +M,) + (—N2w4—N2—N 2(02)

(N,@? =N)) (Mo + M) )0+ ° 5 20

N,a, (@, = M,0," + M) +
(N12w04—N32—N22a)02)( 2 0( 0 2% 4) j

tan(w,7 — 27K) =

,7 — 27K = arctan

(Nla’o2 - Ns)(_Mﬂ’o3 + M)
(Nza)o(a)o4 - Mza)o2 +M,)+

(-NS@," =N =N, e’
.7 = arctan (Nyoy” = Ny )My’ + M3a)0)J
o7 =

+ 277k

(N2w4_N 2_N 2wz)(Nzwo(a’o4_Mzwoz+M4)+ j
1 @y 3 2 @y

(N,@,” = N,)(-M, 0, + M, @,)
N,y (@," =M, @, + M, ) + (—N2w4—N 2_N 2602)
(N2 = No) (Mo +Mye) ) 77 5

N, o, (0. —M. w2 +M,)+ @
(N12a)04_N32_N22a)02)( 2 0(2 0 270 ) 4) J 0
(Nyo,” = N,)(—M,0,” + M, 0,)

1
T = —arctan
2
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(4.64)



N, o, (@, —M,0," + M) +
[ 2020 20y 34 (_leo _Ns_Nza’o)
(N, = N3)(=M,0," + M)

N, o, (@," —M,w," +M,) +
(N12w04—N NZ )[ o( 0 2%0 . 4) J
(Nla)o —N;)(-M,0,” + M)

If k=0,7, = iarctan
20

The smallest out off value at which stability of the equilibrium points is lost and never be regained

in the future time.

4.6 Hopf Bifurcation

Bifurcation study is a powerful tool in understanding an ecological community because bifurcation
implies an abrupt change from one state to the other. For predator-prey systems, the population of
prey and predators may stay at a steady state or oscillate periodically. The bifurcation parameter
considered in the model is time delay.

1. From the characteristic equation (4.51), suppose it has a simple pair of pure imaginary

Eigenvalues A =iw,w > 0. By the same analysis made for local stability with delay, there exist

when @ >0 condition (4.58) is satisfied.

2. Transeversality condition

A+ M2+ MuA” £ MA+ M, + (N,A® + N, A+ N, Je ™ =0 (4.65)
Differentiate both sides of (4.51) with respect to - where A is a function of
42292 3m A== a2 2|v|2/1d—)“+ M, a2 M(N A*+N,A+N;)e? =0
T dr dr dr dr
4/13d/1 3M lzd;t 2M ﬂdl dA + 2N, 1e “d—ﬂ
T dr dr Sdr dr
—~N,A%re ™ L N, A% +N,e ™ L N,zle " a4
dr dr dr
-N,2%™* —N,ze ™™ 3—/1— N, e " =0
T

42° +3M, A% +2M,A+ M, + 2N e dA
—N, A%z + N,e*" —N,zAe ™" —N,r,e™” dr
~N,A% " —N,A%¢*" =N, e ™" =0
(427 +3M,47 +2M, A+ My + (22N, = 2Nyt +N, —2AN, = Nyz )e™ )d—’j
= A°N,e™ + A°N,e ™ + AN e
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di _ N, A% +N,A%* + N de ™"
dz (42°+3M, A% +2M,A+ M, + (2N,4 =N, A7+ N, —N,zA— Nz, )e ™)

-1

dA) 447 +3MA° +2M,A+ M, + N A =N A1+ N, —N,zA = Nyr)e ™
dr N, A% +N,2% " + N e ™™

dAY" 44 +3M A% +2M,A+ M+ (2N A =N A%+ N, —N,zd = Nyr)e ™
dr (N,A% +N,A°+ NyA)e ™
dA)"_42°+3M A% +2M, A+ M, , @NA N7+ N, —Npzd—Nyr)e ™
dz)  (NA* +N2°+ Nyd)e ™ (N,A? +N2° + Ny e ™

dA)" 42 +3MA% +2M,2+ M, (2N, A+ N, )e ™

— | = +
dz) (N2 +NA°+NA)e ™ (NA2 + NAS+ Nya)e ™
t(N,A? +N,A+N,)e ™
A(N,A +NA* +N, e

dA)"_44°+3MA° +2M,A+ M, N 2N, A+ N, T
dr (N, A2 + N2+ NgA e ™ (N2 +NAB+NG) A
dAY 4282 +3M A% +2(M,+NDA+ N, + M, ¢
dr (N, A% +NA° +NyA)e ™ Yl
da)" 400 3M A2
U 2 e T 2 —Ar
dz)  A(NA+N2*+N;)e™  A(N2 +NA%+N; e
2(M, +N,)A .\ N, +M, T
A(NA +NAT+NgJe ™ A(N,A +NAP+NgJe ™ A
(d_/i)'l_ 42" . 3M, 4
dz)  (NAP+N A +Nj)e™  (NA°+ N4 + N, e

2(M,+N,) N N, +M, T

’ (NJAZ+N, A +NJe™ A(NAP+N, A +NjJe™ 4
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A =wi(w>0)

( di jl ~ M i) N 3M,wi
dz) i (Ny(@i)*+Nyowi +N,)e™ (N, (@)’ + N,oi + N, )e™"
2(M, +N,) . N, +M, T
(N (@) + N,oi +N;)e @i (N,(ei)’ +N,oi +N;)e  oi
Ay ~40)? 3M,wi
E - (—N 2 . —oit + =\ 2 . —oit
o @ +Nyoi +N,)e ™ (Ny(0i)’ +Nyoi +N,)e
2(M, +N,) . N, +M, K3
(-N,@* + Nyoi + Ny )e ™ 0i(-N,o” + N,oi +N;)e  oi
(dljl B _4w2€wir s 3(Mla)i)ea)ir
dz) i (-N@’ +N,oi +N;)  (-Nyo’ + N,oi +N;)
2(M, +N,)e”" N (N, +M,)e”" T

(-N@? +N,oi +N,)  (-iN,o* ~ N0 +wiN,) oi

( da )“l _ —4@*(cos(wr) +isin(wr)) . 3(M,wi)(cos(wr) +isin(wr))

dr (-N,@ + N,oi +N,) (-N,@” + N,oi +N,)
N 2(M, + N,)(cos(w7) +isin(wr)) N (N, + M)(cos(wr) +isin(wr)) 7
(-N,@” + N,oi +N,) (<IN’ —N,0” +@iNy) i

( di jl _ —4@” cos(wr) —4a'isin(wr) . 3M, wi cos(wr) —3M,wsin(wr)
dr ) . (—N,0 +N,0i +N;) (—N,@* + N,oi +N,)
N 2(M, + N,)(cos(wr)+2(M, + N,)isin(wr)
(—N,@” +N,0i +N;)
N (N, +M;)cos(wz) + (N, + My)isin(wr) 7
(—iNlaf’ — N, +a)iN3) i

(d,ljl 40" cos(w7) - 4a’isin(w7) (-N,o” + N,wi +N,)
dc ) ,_. (-N,@” + N,i + Ny (=N, + N i +N,)
(3M,0i cos(w7) —3M,wsin(wr)) (~N,o” + N,oi +N;)
(-N,@* + N,oi + N, )(-N,o” + N,oi +N,)

2(M, +N,)(cos(e7) +2(M, + N,)isin(wr) (~N,” + N,oi + N,
+
(-N,@” + N,oi + N, )(-N,o0* + N,oi + N,

(N, +M;)cos(7) + (N, +M,)isin(wr)(-iN,o* - N,0® + Nyoi )  7ei
+
(iN,@® = N,@” + Nyoi )(<iN,0° = N,0” + Nyi ) o’
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(Mj_l _ 40’ cos(wr) - 4a’isin(@r) (-N,@” + N,0i +N,)
de ) ... (N/o" + N -2N,N,0* +N’)
(3M,i cos(w7) —3M,wsin(wr))(-N,@” + N,oi +N,)
+

(N/o* +N,’0—2N,N,0 +N?)

2(M, + N,)((cos(wr) +isin(7)) (-N,o” + N i +N,)
+
(N/o" +N,’0—2N,N,0 +N?)

. (N, +M,)cos(wr) + (N, +M,)isin(er) (iN,o®’ - N,o +N,oi) o

(-NS@® —2N,N,0" +N0" + NSo?) o’
~4@” cos(wt)(-N,@® + N, i +N,)
™ ~4o’isin(or)(-N,0” + N,oi +N,)
(d_r) e (N2 +No—2N,N,0 +N,)

(=3N,M,»* —3M,N, @’ +3N,M,wi)cos(wr)
—3M,wsin(wr))(-3N,0° —3M,N,a" +3N,M,0i)
" (N/o* + N,’0—2N,N,0" +N;*)
2(M, +N,)(cos(w7) (-N,o” + N,mi +N,)
+2(M, + N,)isin(w7) (N0’ + N,oi +N;)
’ (N/o" + N @-2N,N,0* +N’)

(N, +M,) cos(@r) (iN,@" — N, + N, )
+(N, +M,)isin(wr) (iN,o* ~ N,o® +N;oi)  7oi
+

+
(-NS@® —2N,N;0" +N,0" + NSo’) o’

-1
Identify the real part of (jlj and after some simplification we get
T j=oi
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Re{ di jl 40 co8(w7)(-N,@® + N,) —4N,0° sin(wr)
de ) ,_. (Nfo'+Nw—2N,N,0® +N;)
N (-3N,M,®” —=3M,N,o* ) cos(w7)3N,M, o’ sin(wr))
(NSo"+ N w-2N,N,0* +N;*)

2(M, + N,)(cos(w7) (-N,@” +N;)+2(M, + N,)N,wsin(wr)
+
(N/o* + N, 2N,N,0" +N;*)

. ~(N, +M,)N,0” cos(wz) + (N, +M,)sin(wr) (~N,&° - Nyo)

(-NS@® —=2NN;o" +N0" + N, »’)

-1
Re(z—}j #0 , provided that
T

~4w* cos(wt)(—N,0* + N,)—4N,w’ sin(wr)
(Nfo' + N w—2N,N,0° +N;)
N (-3N,M,®* —3M,N, @’ ) cos(w7)3N,M,w* sin(wr))
(N/o" + N o—2N,N,0 +N;)

2(M, +N,)(cos(7) (-Ny@” +N;)+2(M, + N,)N,wsin(wr)
+
(Nfo" +N o—2N,N,0° +N;)

~(N, +M,)N,0” cos(wz) + (N, +M,)sin(wr) (—N,° - Nyo)
+
(-Nj@® —2N,N;0" +N,*0" + NSo’)
Transversality condition hold ,that is the eigenvalue cross the imaginary axis with non-zero speed,
As a result, the systems undergo Hopf bifurcation at when z =z, condition (4.51) and (4.66) .

£0 (4.66)
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CHAPTER FIVE

CONCLUSION AND FUTURE WORK

5.1. Conclusions
In this thesis, mathematical model of prey predator with delay was studied. The result of the study

indicates that the positive equilibrium point in the absence of delay is stable with certain
conditions. In the presence of delay the system becomes stable with certain conditions and loses
its stability at cutoff value. Finally, by considering the bifurcation parameter as a time delay the

system undergo Hopf bifurcation at cutoff value with certain condition stated by equation (4.51).

5.2 Future Work

One can investigate the Hopf bifurcation of the system by considering other parameters involved
in the model different from time delay. Global stability with delay, direction of stability and Hopf
bifurcation, Persistence of the prey predator, global existence of periodic solution of the model are
also further investigation. Furthermore, it is possible to consider control that adds with time

parameter and different time delay on the four equations.
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