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Abstract

In this thesis, we consider singularly perturbed differential equation containing neg-

ative shift parameter on the convection term. The considered problem exhibits

boundary layer on the left or right side of the domain, depending on the sign of the

coefficient of convective term. The terms with the negative shift treated using Tay-

lor’s approximation. The resulting singularly perturbed boundary value problem

is solved using the technique of non-standard finite difference method. The formu-

lated scheme converges uniformly with order of convergence O(h). The theoretical

finding is validated using numerical examples and observed to be more accurate

than the results in the literature.

ix



Chapter 1

INTRODUCTION

1.1 Background of the Study

Numerical analysis is a branch of mathematics concerned with theoretical foun-

dations of numerical algorithms for the solution of problems arising in scientific

applications, Wasow (1942).

The problems in which the highest order derivative is multiplied by a small positive

parameter are known to be singularly perturbed problems and the parameter is

known as the perturbation parameter. Depending on the solution behavior of the

problem in the limiting case when perturbation parameter goes to zero, such type

of problems are classified into two classes, namely; (i) regularly perturbed problems

(ii) singularly perturbed problems. If the solution of the original problem tends to

the solution of the reduced problem (i.e., the problem which is obtained by putting

ε = 0 in the original problem) as the perturbation parameter tends to zero, the

problem is known as regularly perturbed otherwise, it is known as singularly per-

turbed.

The classification of singularly perturbed higher order problems depends on

how the order of the original equation is affected when small positive parameter ε

is multiplying the highest derivative occurring in the differential equation. If the
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order is reduced by one, we say that the problem is of convection-diffusion type

and reaction-diffusion type if the order is reduced by two. Singularly perturbed

differential equations with negative shift are special cases of functional differential

equations, where the evolution of a system at a certain time, depends on the present

state of the system as well as the state of the system at an earlier time.

In general, a singularly perturbed differential equation with negative shift pa-

rameter is an ordinary differential equation in which the highest derivative is mul-

tiplied by a small parameter and involving at least one delay term. In recent

years, many researchers have tried to develop different numerical methods for solv-

ing singularly perturbed delay differential equations. For examples, finite differ-

ence method of various orders and approaches ( Phaneendra and Soujanya, 2014;

Gemechis et al., 2017; Gashu et al., 2018), Galerkin method (Swamy et al., 2016),

and Differential quadrature method are presented for solving singularly perturbed

delay differential equations. However, the issue of accuracy and convergence of the

scheme still needs attention and improvement. In this thesis, we present a stable

and convergent method and more accurate than the stated methods for solving

singularly perturbed delay convection-diffusion equations of the type under consid-

eration.

1.2 Statement of the problem

Any differential equation in which the highest order derivative is multiplied by a

small positive parameter and containing at least one negative/positive shift param-

eter is known as a singularly perturbed differential-difference equation. Such types

of problem have a variety of applications in the mathematical modeling of various

physical and biological phenomena. However, the computation of its solution has

been a great challenge and has been of great importance due to the versatility of

such equations in the mathematical modeling of processes in various application
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fields. The numerical treatment of such problems presents severe difficulties that

have to be addressed to ensure accurate numerical solutions as (Roos et al.,1996)

states that, the accuracy of the problem increased by increasing the resolution of

the grid, which might be impractical in some cases like higher dimensions. A vari-

ety of different numerical approaches have been suggested in an attempt to obtain

accurate and reliable schemes for the treatment of boundary value problems of sin-

gularly perturbed differential-difference equations with a small negative shift in the

convection term (Gadisa and File, 2019). They also tried to discuss the effect of

small shifts on the solution profile of the problem.

Recently, Duressa (2021) was presented the problem under consideration using

exponential fitted operator method. But, still there is a room to increase the accu-

racy. Owing to this, the present study attempt to answer the following questions:

1. How does this study was describe the numerical method for singularly perturbed

boundary value problem with negative shift parameter?

2. To what extent the proposed method converges?

3. To what extent the present method approximate the exact solution?

1.3 Objectives of the study

1.3.1 General Objective

The general objective of this study is to develop non- standard finite difference

method for solving singularly perturbed boundary value problem with negative shift

parameter

1.3.2 Specific Objectives

The specific objectives of the present study are:
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– To formulate non-standard finite difference method for solving singularly per-

turbed boundary value problem with negative shift parameter.

– To establish the convergence of the scheme.

– To investigate the accuracy of the scheme

1.4 Significance of the study

The results obtained in this research may

– Serve as a reference material for scholars who works on this area.

– Give an idea about the application of numerical methods in different field of

studies.

– Help the graduate students to acquire research skills and scientific procedure.

– Provide a numerical method for solving singularly perturbed convection diffu-

sion equation with negative shift parameter.

1.5 Delimitation of the study

The singularly perturbed delay differential equations perhaps arise in variety

of applied mathematics that contributes for the advancement of science and tech-

nology. Though, singularly perturbed delay differential equations are vast topics

and have many applications in the real world, this study is delimited to singularly

perturbed delay convection-diffusion equation of the form :

εy
′′
(x) + a(x)y

′
(x− δ) + b(x)y(x) = f(x), x ∈ (0, 1), (1.5.1)
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with the interval and boundary conditions

y(x) = φ(x),−δ ≤ x ≤ 0, y(1) = γ, (1.5.2)

with small perturbation parameter, 0 < ε � 1, δ < ε and δ is small negative shift

parameter; a(x), b(x), φ(x) and f(x) are bounded smooth functions in (0, 1) and γ

is given constant.

Further, the study is delimited to non standard finite difference method for solving

singularly perturbed convection-diffusion equations with negative shift parameter,

though there are varieties of methods for solving the problems under the study.
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Chapter 2

RIVIEW OF RELATED

LITERATURE

2.1 Singular perturbation Theory

The term “singular perturbations” was first used by (Friedrichs and Wasow,

1946) in a paper presented at a seminar on non-linear vibrations at New York Uni-

versity. Perturbation theory is a vast collection of mathematical methods used to

obtain approximate solution to problems that have no closed form of analytical

solution. Perturbation problems depend on a small positive parameter(s). These

parameters affect the problem in such a way that the solution varies rapidly in

some region of the problem domain and slowly in other parts. The study of many

theoretical and applied problems in science and technology leads to boundary value

problems for singularly perturbed differential equations that have a multi-scale char-

acter.perturbation theory is a subject, which studies the effect of small parameter

in the mathematical model problems in ordinary differential equations. In mathe-

matics, more precisely in perturbation theory, a singular perturbation problem is

a problem containing a small parameter that cannot be approximated by setting
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the parameter value to zero. The boundary value problems for ordinary differential

equations in which one or more small positive parameter(s) multiplying the second

derivative(s) are known as singularly perturbed problems.

2.2 Singularly Perturbed Delay Differential Equa-

tion

Delay differential equations (DDEs) model problems where there is after effect

affecting the variable of the problem as compared to differential equations which

model the problem to current conditions. DDEs is said to be retarded type if the

delay argument does not occur in the highest order derivative term, otherwise it

is known as neutral DDEs. A singularly perturbed delay differential equations is

differential equations in which its highest order derivative is multiplied by small

perturbation parameter and having delay parameter(s) on the terms different from

the highest order derivative, Gopalsamy(2013). Singularly perturbed DDEs arise

in the mathematical modeling of various physical phenomena.

2.3 Boundary Value Problem

A boundary value problem is a problem, typically an ordinary or partial dif-

ferential equation that has values assigned on physical boundary of the domain in

which the problem is specified. A boundary value problem for a given differential

equation consists of finding a solution of the given differential equation subject to

a given set of boundary conditions, Kumar( 2012). Finding the numerical solution

of a boundary value problem is more difficult than that of corresponding initial

value problem. There is a wide class of asymptotic expansion methods available for

solving the two small parameters singularly perturbed boundary value problems.
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But there can be difficulties in applying these asymptotic expansion methods, such

as finding the appropriate asymptotic expansions in the inner and outer regions,

which are not routine exercises but require skill, insight and experimentation.

2.4 Non standard Finite Difference Method

Non-standard finite difference schemes (NSFD) have emerged as an alternative

method for solving a wide range of problems whose mathematical models involve

algebraic, differential and biological models as well as chaotic systems, Mickens

(2005). These techniques have many advantages over classical techniques and pro-

vide an efficient numerical solution. In fact, the non-standard finite difference

method is an extension of the standard finite difference method. Non-standard

schemes as introduced by Mickens, (1990) are used to resolve some of the issues

related to numerical instabilities. Furthermore, Mickens, (2005,2000,1999) intro-

duced certain rules for obtaining the best difference equations.

Mickens, (1994) mentions in details about these construction rules in his refer-

ence book Non standard Finite Difference Models of Differential Equations. Non-

standard method is more stable than the standard finite methods and the domain

of h for stability in the non-standard is larger than those of the standard method. If

the denominator functions are chosen in appropriate form the non-standard meth-

ods produce better results,YOghoubi( 2015)
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Chapter 3

METHODOLOGY

3.1 Study Area and Period

The study was conducted in Jimma University, department of Mathematics

from August 2020 to February 2022.

3.2 Study Design

The study was employed mixed-design (documentary review and experiment).

3.3 Source of Information

The relevant sources of information for this study are books, published articles

on reputable journal and related studies from internet services.

9



3.4 Mathematical Procedure of the study

In order to achieve the above mentioned objectives, the study was follows the

following steps:

1. Defining( or describing) the problems.

2.Discretizing the solution domain.

3.Formulating the numerical scheme for the governing problem under consideration.

4. Establishing the stability and convergence analysis of the scheme.

5. Write MATLAB code for the obtained numerical scheme.

6. Validating the scheme using numerical experment

7. Presenting the results in tables and graphs.

10



Chapter 4

DESCRIPTION OF THE

METHODS, EXAMPLES AND

RESULTS

4.1 Description of the method

In this section, the description of second order finite difference methods and

their stability and convergence analysis is discussed. Consider singularly perturbed

delay convection – diffusion equation of the standard form:

εy
′′
(x) + a(x)y

′
(x− δ) + b(x)y(x) = f(x), x ∈ (0, 1), (4.1.1)

subject to the interval boundary conditions

y(x) = φ(x),−δ ≤ x ≤ 0, y(1) = γ, (4.1.2)

with small perturbation parameter,0 < ε� 1 and δ is small delay parameter.

The functions a(x), b(x) and f(x) are assumed to be sufficiently smooth with a(x) ≥
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a > 0 and b(x) ≥ b > 0 for x ∈ [0, 1]. When the shift parameter δ is smaller than ε

the use of Taylor’s series expansion for the term containing shift argument is valid

,Tian (2002). In this work the case when δ < ε is considered. Thus , to approximate

the term with delay parameter, Taylor’s series expansion is applied as follows:

y′(x− δ) = y′(x)− δy′′(x) +O(δ2). (4.1.3)

Now substituting Eq.(4.1.3) in to Eq.(4.1.1),

we get

εy′′(x) + a(x)y′(x)− a(x)δy′′(x) + b(x)y(x) = f(x), x ∈ (0, 1).

We obtain an asymptotically equivalent singularly perturbed two point boundary

value problem of the form:

cεy
′′
(x) + a(x)y

′
(x) + b(x)y(x) = f(x), (4.1.4)

subject to the boundary conditions

y(0) = φ(0), y(1) = γ, (4.1.5)

where cε = ε− δa(x),and assumed to be positive throughout the interval [0, 1] since

δ is smaller than ε, the effect of the value of the truncated term with O(δ2) is

negligible.

Hence, the solution of the asymptotically equivalent problem is equivalent to that

of the original problem. Further, its error bound is also equivalent to that of the

original problem .
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4.2 Properties of continuous function

The following lemmas are necessary for the existence and uniqueness of the

solution and for the problem to be well-posed .

Lemma 1 (Continuous minimum principle)

Assume that v(x) ∈ C2(Ω̄) be any function satisfying v(0) ≥ 0, v(l) ≥ 0 and

Lv(x) ≤ 0, ∀x ∈ Ω = (0, l).then v(x) > 0,∀x ∈ Ω̄ = [0, l].

Proof : Let x∗ be such that v(x∗) = minx∈[0,l] v(x) and assume that v(x∗) < 0.

Clearly x∗ /∈ {0, l}, therefore v′(x∗) = 0 and v′′(x∗) ≥ 0. Moreover, Lv(x∗) =

εv′′(x∗) + a(x∗)v′(x∗) ≥ 0, which is a contradiction. It follows that v(x∗) > 0 and

thus v(x) ≥ 0,∀x ∈ [0, l].

The uniqueness of the solution is implied by this minimum principle. Its ex-

istence follows trivially (as for linear problems, the uniqueness of the solution im-

plies its existence). This principle is now applied to prove that the solution of

Eqs.(4.1.4)− (4.1.5) is bounded.

The following lemma shows the bound for the derivatives of the solution.

Lemma 2 (Boundedness of the solution) Let u(x) be the solution of the Eqs.

(4.1.1)− (4.1.2), then we obtain the bound

|u(x)| ≤ ||f ||
b

+ {max |φ|, |γ|} , for b(x) ≥ b > 0,

where b is lower bound of b(x).

Proof : Defining barrier function

ϑ±(x, t) as u±(x, t) = |u(x)| ≤ ||f ||
b

+ {max |φ|, |γ|} ± y(x) and applying the maxi-

mum principle , we obtain the required bound. At the boundary points.

y±(0) = ||f ||
b

+ {max |φ|, |γ|} ± y(0) ≥ 0,

y±(1) = ||f ||
b

+ {max |φ|, |γ|} ± y(1) ≥ 0,

on the differential operator

Lϑ±(x) = cεϑ±(x) + a(x)ϑ
′
±(x) + b(x)ϑ±(x)

=cε(0± u
′′
(x) + a(x)(0± u′(x) + b(x)( ||Lu||

b
+ {max |φ|, |γ|} ± y(x))

13



=b(x)( ||Lu||
b

+ {max |φ|, |γ|})± f(x))

=0, since b(x) ≥ b > 0,

which implies

L±ϑ(x) ≥ 0.

Hence, by maximum principle we obtain

ϑ(x) ≥ 0, ∀x ∈ Ω

. Lemma 3

Let yε be the solution of (Pε). Then, for k = 0, 1, 2, 3,

| y(k)ε (x) |≤ C(1 + ε−k exp(
−a
ε
x)),∀x ∈ [0, l].

Proof: For the proof refer (Woldaregay and Duressa, 2020).

4.3 Formulation of the Numerical Method

The theoretical basis of non-standard discrete numerical method is based on the

development of exact finite difference method. Mickens(2005) presented techniques

and rules for developing non-standard finite difference methods for different problem

types. In Mickens’s rules, to develop a discrete scheme, denominator function for

the discrete derivatives must be expressed in terms of more complicated functions of

step sizes than those used in the standard procedures. These complicated functions

constitute a general property of the schemes, which is useful while designing reliable

schemes for such problems.we consider separately for left and right boundary layer

problems and develop individual schemes for each. First let us consider the right

boundary layer problem.

Case (1): Right boundary layer problems

For the problem of the form in (4.3.4)− (4.3.5) , in order to construct exact finite

difference scheme we follow the procedures of Bansal and Sharma, (2017).
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Consider the constant coefficient sub equations from (4.3.4)− (4.4.5) as

cεy
′′
(x) + a(x)y

′
(x) + by(x) = 0, (4.3.6)

cεy
′′
(x) + a(x)y

′
(x) = 0, (4.3.7)

where a(x) ≥ a and b(x) ≥ b

Thus, Eq. (4.3.6) has two independent solutions namely exp(λ1x) and exp(λ2x)

with λ1,2 =
−a±
√

(a)2−4cεb
2cε

.

We discretize the domain (0, 1), using uniform mesh length x = h such that

ωN1 = {xi = xo + ih, 1, 2, ........, N, xo = 0, xN = 1, h = 1
N
},

where N is the number of mesh points. We denote Yi as the approximate solution

of y(x) at mesh point xi.

The target is to calculate a difference equation which has the same general so-

lution as the differential equation in (4.3.7) has at the mesh pointxi is given by

Yi = A1 exp(ω1xi)+ A2 exp(ω2xi).

Using the theory of difference equations for second order linear difference equations

in (Bansal and Sharma, 2017), we obtain

det


Yi−1 exp(λ1xi−1) exp(λ2xi−1)

Yi exp(λ1xi) exp(λ2xi)

Yi+1 exp(λ1xi+1) exp(λ2xi+1)

 = 0, (4.3.8)

Substituting the values of λ1 andλ2 gives

− exp(
−ah
2cε

)Yi−1 + 2cosh(h

√
(a)2 − 4cεb

2cε
)Yi − exp(

ah

2cε
)Yi+1, (4.3.9)

is an exact difference scheme for Eq. (4.3.7). For cε → 0, we use the approximation

h

√
(a)2−4cεb
2cε

) ≈ ah
2cε

in (4.3.9).

15



Multiplying both sides by exp( ah
2cε

) and simplifying, we obtain

Yi−1 − 2Yi + Yi+1 = (exp(
ah

cε
)− 1)(Yi − Yi−1), (4.3.10)

Rearranging Eq.(4.3.10) , we obtain

cε
Yi−1 − 2Yi + Yi+1

hcε
a

(exp(ah
cε

)− 1
) + a

Yi − Yi−1
h

= 0. (4.3.11)

The required denominator function for second derivative discretezation becomes

ωR =
hcε
a

(exp(
ah

cε
)− 1). (4.3.12)

Adopting ωR for the variable coefficient problem we write as

ωRi =
hcε
a(xi)

(exp(
ah(xi)

cε
)− 1) (4.3.13)

Using the denominator function ωRi in to the scheme (4.3.4), the difference scheme

becomes

LRωYi ≡ cε
[yi+1 − 2yi + yi−1]

ωRi
+a(xi)

[yi − yi−1]
h

+b(xi)yi = f(xi), i = 1, 2, 3, .., N−1.

(4.3.14)

This can be written as three term recurrence relation of the form:

Eiyi−1 + Fiyi +Giyi+i = Hi, i = 1, 2, 3........, N − 1, (4.3.15)

where Ei = cε
ωR
i
− ai

h
, Fi = −2cε

ωR
i

+ ai
h

+ bi, Gi = cε
ωR
i
, and Hi = fi.

Case (2): Left boundary layer problems

In this case −a(x) ≤ −a < 0 in(4.3.4)− (4.3.5), we consider the constant coefficient

sub- equations from (4.3.4)− (4.3.5) as
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cεy
′′
(x) + a(x)y

′
(x) + βy(x) = 0, (4.3.16)

cεy
′′
(x) + a(x)y

′
(x) = 0, (4.3.17)

where b(x) ≥ b,

Thus, Eq. (4.3.17) has two independent solutions namely exp(λ1x) and exp(λ2x)

with λ1,2 =
a∓
√

(a)2−4cεb
2cε

We discretize the domain (0, 1), using uniform mesh length x = h such that

ωN1 = {xi = xo + ih, 1, 2, ........, N, xo = 0, xN = 1, h = 1
N
},

where N is the number of mesh intervals. We denote Yi as the approximate solution

of y(x) at mesh point xi.

The target is to calculate a difference equation which has the same general solution

as the differential equation in (4.3.17) whose solution at the mesh point xi is given

by Yi = A1exp(ω1xi) + A2exp(ω2xi ) .

Using the theory of difference equations for second order linear difference equations

in (Bansal and Sharma, 2017) , we obtain

det


Yi−1 exp(λ1xi−1) exp(λ2xi−1)

Yi exp(λ1xi) exp(λ2xi)

Yi+1 exp(λ1xi+1) exp(λ2xi+1)

 = 0, (4.3.18)

Substituting the values of λ1 and λ2 and simplfying , we obtain

− exp(
ah

2cε
)Yi−1 + 2cosh(h

√
(a)2 − 4cεb

2cε
)Yi − exp(

−ah
2cε

)Yi+1 (4.3.19)

is an exact difference scheme for Eq. (4.3.15). For cε → 0 , we use the approximation

h

√
(a)2−4cεb
2cε

) ≈ ah
2cε

. After doing the arithmetic adjustment, we obtain

cε
Yi−1 − 2Yi + Yi+1

hcε
a

(1− exp(ah
cε

)
) + a

Yi + 1− Yi
h

= 0, (4.3.20)
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The denominator function becomes

ωL = hcε
a

(1− exp(ah
cε

)) .

adopting it for the variable coefficient problem , we write as

ωLi =
hcε
a(xi)

(1− exp)(
ah(xi)

cε
). (4.3.21)

The required finite difference schemes becomes

LLωYi ≡ cε
[yi+1 − 2yi + yi−1]

ωLi
+a(xi)

[yi+1 − yi]
h

+ b(xi)yi = f(xi), i = 1, 2, 3, .., N −1,

(4.3.22)

This can be written as three term recurrencerelation as of the form:

Eiyi−1 + Fiyi +Giyi+i = Hi, i = 1, 2, 3........, N − 1, (4.3.23)

where Ei = cε
ωL
i
, Fi = −2cε

ωL
i
− ai

h
+ bi, Gi = cε

ωL
i

+ ai
h
and Hi = fi.

Therefore, on the whole domain, [0, 1], the basic schemes to solve Eq.(4.1.4) and

Eq. (4.1.5) are the scheme given in Eq. (4.3.15) and Eq. (4.3.23) using Thomas

algorithm.

4.4 Uniform convergence analysis

In this section,we need to show the discrete scheme satisfying the discrete min-

imum principle and uniform convergence.

Lemma 4 : (Discrete Minimum Principle) Let vi be any mush function that satis-

fies v0 ≥ 0, vN ≥ 0 and Lhvi ≤ 0 ,i = 1, 2, ........N − 1,then vi ≥ 0, i = 0, 1, 2.....N

proof : The proof is obtained by contradiction.Let f be such that vj = minvi and

suppose that vj < 0.clearly, j /∈ {0, N}, vj+1 − vj ≥ 0 and vj − vj−1 ≤ 0 Therefore

Lhvj = cε
ωR
i

(vj+1 − 2vj + vj−1) +
aj
h

(vj+1 − vj)− bjvj

18



= cε
ωR
i

[(vj+1 − vj)− (vj − vj−1) +
aj
h

(vj+1 − vj)− bjvj ≥ 0

where the strict inequality holds if vj+1− vj > 0. This is a contradiction and there-

fore vj ≥ 0. since j is arbitrary,we havevi ≥ 0 i = 1, 2, 3..., N

We proved above that the discrete operator Lh satisfy the minimum principle.

Next we analyze the uniform convergence analysis.Let us define the forward,backward

and cenral finite difference operators as:

D+vj =
vj+1−vj

h
,D−vj =

vj−vj−1

h
,δ2vj = D+D−vj =

D+vj−D−vj
h

Lemma 5 For a fixed mesh and for cε → 0, it holds

lim
cε→0

max
1≤i≤N−1

(
exp(−axi

cε
)

cmε

)
= 0, m = 1, 2, 3, ...

lim
cε→0

max
1≤i≤N−1

(
exp(−a(1−xi)

cε
)

cmε

)
= 0, m = 1, 2, 3, ...

where xi = ih, h = 1
N
, i = 1, 2, ..., N − 1.

proof : Consider the partition [0, 1] := {0 = x0 < x1 < .... < xN−1 < xN = 1} for

the interior grid points, we have

max
1≤i≤N−1

exp

(
−axi
cε

)
cmε

≤
exp

(
−ax1
cε

)
cmε

=

exp

(
−ah
cε

)
cmε

,

max
1≤i≤N−1

exp

(
−a(1− xi)

cε

)
cmε

≤
exp

(
−a(1− xN−1)

cε

)
cmε

=

exp

(
−ah
cε

)
cmε

,

as x1 = 1− xN−1 = h.

Then, by the application of L’Hospital’s rule m times gives

lim
cε−→0

exp

(
−ah
cε

)
cmε

= lim
r= 1

cε
−→∞

rm

exp(ahr)
= lim

r= 1
cε
−→∞

m!

(ah)m exp(ahr)
= 0.

Hence, the proof is completed.

Theorem 1: Let the coefficients functions a(x) and the source function f(x) in Eqs.
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(4.4.17)− (4.4.18) of the domain Ω be sufficiently smooth, so that y(x) ∈ C4[0, 1].

Then, the discrete solution Yi satisfies

|LN(yi − Yi)| ≤ Ch

(
1 + sup

x∈(0,1)

(
exp(−axi

cε
)

c3ε

))
.

proof: We consider the truncation error discretization as

|LN(yi − Yi)| =|LNyi − LNYi|,

≤C|cεy′′i + aiy
′
i − {cε

D+D−h2

ωRi
yi + aiD

+yi}|,

≤C|cε(y′′i −
D+D−h2

ωRi
yi) + ai(y

′
i −D+yi)|,

≤Ccε|y′′i −D+D−yi|+ Ccε|(
h2

ωRi
− 1)D+D−yi|+ Ch|y′′i |,

≤Ccεh2|y(4)i |+Ch|y′′i |+ Ch|y′′i |,

≤Ccεh2|y(4)i |+ Ch|y′′i |.

We used the estimate cε| h
2

ωR
i
− 1| ≤ Ch . Indeed, define ρ =

aih

cε
, ρ ∈ (0,∞)

.Then,

cε|
h2

ωRi
− 1| = aih|

1

exp(ρ)− 1
− 1

ρ
| =: aihQ(ρ).

By simplifying and writing explicitly, we obtain

Q(ρ) =
exp(ρ)− ρ− 1

ρ(exp(ρ)− 1)
,

and we obtain the limit is bounded as

lim
ρ−→0

Q(ρ) =
1

2
, lim

ρ−→∞
Q(ρ) = 0.

Hence, for all ρ ∈ (0,∞) , we have Q(ρ)C. So, the error estimate in the discretiza-

tion is bounded as

|LN(yi − Yi)|Ccεh2|y(4)i |+ Ch|y′′i |. (4.4.24)
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From Eq. (4.4.24) and boundedness of derivatives of solution , we obtain

||LN(y(xi)− Yi)|| ≤ Ccεh
2

∣∣∣∣ (1 + c−4ε exp

(
−axi
cε

)) ∣∣∣∣,
+ Ch

∣∣∣∣ (1 + c−2ε exp

(
−axi
cε

)) ∣∣∣∣,
≤ Ch2

∣∣∣∣ (cε + c−3ε exp

(
−axi
cε

)) ∣∣∣∣,
+ Ch

∣∣∣∣ (1 + c−2ε exp

(
−axi
cε

)) ∣∣∣∣,
≤ Ch

(
1 + sup

x∈(0,1)

(
exp(−axi

cε
)

c3ε

))
,

since c−3ε > c−2ε .

Theorem 2: Under the hypothesis of boundness of discrete solution (i.e., it satisfies

the discrete minimum principle), Lemma 5 and Theorem 1, the discrete solution

satisfies the following bound.

sup
0≤ε≤1

max
i
|yi − Yi|≤ CN−1. (4.4.25)

Proof: Results from boundness of solution, Lemma 5 and Theorem 1 gives the

required estimates. Hence the proof.

4.5 Numerical Example and Results

To validate the established theoretical results, we perform numerical experiments

using the model problems of the form in Eqs.(4.1.1)− (4.1.2).

Example 1:  εy′′(x)− exp(x)y′(x− δ)− xy(x) = 0,

y(x) = 1,−δ ≤ x ≤ 0, y(1) = 1.
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Example 2:

 εy′′(x)− (1 + x)y′(x− δ)− exp(−x)y(x) = 1,

y(x) = 1,−δ ≤ x ≤ 0, y(1) = 1.

Example 3:  εy′′(x) + y′(x− δ) + y(x) = 0,

y(x) = 1,−δ ≤ x ≤ 0, y(1) = 1.

Having yj ≡ yNj (the approximated solution obtained via fitted operator finite

difference method) for different values of h and ε, the maximum errors. Since the

exact solution is not available, the maximum errors (denoted by EN
ε ) are evaluated

using the double mesh principle for fitted operator finite difference methods using

formula

EN
ε := max

0≤j≤n
|yNj − y2N2j |.

Further, we tabulate the ε- uniform error

EN = max
0<ε≤1

EN
ε .

The numerical rate of convergence are computed as

rNε :=
log(EN

ε )− log(E2N
ε )

log(2)
.

and the ε- uniform rate of convergence is computed using

RN =
log(EN)− log(E2N)

log(2)
.
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Table 4.1: Maximum absolute errors and rate of convergent for different values of ε,
δ = 0.5ε and number of mesh size, N for Example 1.

ε N=16 N=32 N= 64 N= 128 N= 256
10−2 1.0815e-03 2.9684 e-04 7.6113e-05 1.9154e-05 4.7962e-06
10−4 2.0031e-03 1.0180 e-03 5.1327e-04 2.5766e-04 2.2891e-04
10−6 2.0031e-03 1.0180 e-03 5.1327e-04 2.5766e-04 2.2891e-04
10−8 2.0031e-03 1.0180 e-03 5.1327e-04 2.5766e-04 2.2891e-04
10−10 2.0031e-03 1.0180 e-03 5.1327e-04 2.5766e-04 2.2891e-04

EN 2.0031e-03 1.0180 e-03 5.1327e-04 2.5766e-04 2.2891e-04
RN 0.9765 0.9879 0.9942 0.9991

Table 4.2: Comparison of maximum absolute errors and ε=0.1 for Example 1 at number
of mesh points N .
δ N=8 N=32 N=128 N=8 N=32 N=128

Present M Duressa(2021)
0.03 5.1683e-04 3.2995e-05 2.0653e-06 1.8773e-03 1.247e-04 7.8243e-06
0.05 4.2381e-04 2.6999e-05 1.6891e-06 1.5524e-03 1.0187e-04 6.3843e-06
0.07 3.5805e-04 2.6663e-05 1.4172e-06 1.3187e-03 8.5539e-05 5.3586e-06
0.09 3.0779e-04 1.9404e-05 1.2137e-06 1.1409e-03 7.3473e-05 4.5998e-06

Table 4.3: Maximum absolute errors and rate of convergent for different values of ε,
δ = 0.5ε and number of mesh size, N for Example 2.

ε 16 32 64 128 256
10−2 4.7914e-03 1.3185 e-03 3.3984e-04 8.5532e-05 2.1428e-05
10−4 8.6731e-03 4.4133 e-03 2.2256e-03 1.1175e-03 5.5925e-04
10−6 8.6731e-03 4.4133 e-03 2.2256e-03 1.1175e-03 5.5925e-04
10−8 8.6731e-03 4.4133 e-03 2.2256e-03 1.1175e-03 5.5925e-04
10−10 8.6731e-03 4.4133 e-03 2.2256e-03 1.1175e-03 5.5925e-04

EN 8.6731e-03 4.4133 e-03 2.2256e-03 1.1175e-03 5.5925e-04
RN 0.9747 0.9877 0.9939 0.9987

Table 4.4: Comparison of maximum absolute errors and ε=0.1 for Example 2 at number
of mesh points N .
δ N=8 N=32 N=128 N=8 N=32 N=128

Present M Duressa (2021)
0.03 2.3518e-03 1.4946e-04 9.3492e-06 7.8120e-03 5.1772e-04 3.2466e-05
0.05 1.9088e-03 1.2077e-04 7.5557e-06 6.4652e-03 4.2158e-04 2.6415e-05
0.07 1.5765e-03 1.0057e-04 6.2894e-06 5.4621e-03 3.5314e-04 2.2121e-05
0.09 1.3529e-03 8.5462e-05 5.3440e-06 4.6929e-03 3.0211e-04 1.8924e-05
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Table 4.5: Maximum absolute errors and rate of convergent for different values of ε,
δ = 0.5ε and number of mesh size, N for Example 3.

ε 16 32 64 128 256
10−2 1.7887e-02 6.6606 e-03 1.8827e-03 4.9114e-04 1.2389e-04
10−4 1.9521e-02 1.0186 e-02 5.2007e-03 2.6274e-03 1.3205e-03
10−6 1.9521e-02 1.0186 e-02 5.2007e-03 2.6274e-03 1.3205e-03
10−8 1.9521e-02 1.0186 e-02 5.2007e-03 2.6274e-03 1.3205e-03
10−10 1.9521e-02 1.0186 e-02 5.2007e-03 2.6274e-03 1.3205e-03

EN 1.9521e-02 1.0186 e-02 5.2007e-03 2.6274e-03 1.3205e-03
RN 1.0001 1.0000 1.0000 1.0001

Table 4.6: Comparison of maximum absolute errors and ε=0.1 for Example 3 at number
of mesh points N .
δ N=8 N=32 N=128 N=8 N=32 N=128

Present M Duressa (2021)
0.03 6.7217e-03 4.3369e-04 2.7141e-05 2.4155e-02 1.6227e-03 1.0172e-04
0.05 1.0288e-02 6.5201e-04 4.0814e-05 3.4122e-02 2.4758e-03 1.5568e-04
0.07 1.7230e-02 1.1693e-03 7.3343e-05 5.3192e-02 4.4352e-03 2.8433e-04
0.09 3.2744e-02 3.6524e-03 2.4050e-04 7.0034e-02 1.2727e-02 9.4159e-04
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Figure 4.1: The behavior of Numerical Solution at ε = 10−8 and different values of N for
Example 1 and Example 2 respectively.
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Figure 4.2: Point wise absolute error plot at ε = 10−8 and different values of N for
Example 3.
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Chapter 5

Discussion,Conclusion and Scope for

future Work

5.1 Discussion and Conclusion

In this thesis, we consider three examples exhibiting boundary layer. Example

3 exhibit left boundary layer and Examples 1 and 2 exhibit right boundary layer. In

the computed solutions we used the perturbation parameter ε very small compared

to the number of mesh points N. For each Examples, we computed the maximum

absolute error, parameter uniform error and uniform rate of convergence. In Tables

4.1, 4.3 and 4.5 one can observe that the maximum absolute error is independent

of the perturbation parameter as goes small. This means that, as the perturbation

parameter goes small, the maximum absolute error of the scheme is bounded and it

becomes uniformly convergent. On the last two rows of these tables the parameter

uniform error and the parameter uniform rate of convergence are given. In Table

4.2,4.4 and 4.6 we give the comparison of the obtained result with the result given

in Example 1,Example 2 and Example 3 respectively paper (Duressa,2021). As

one can see, the obtained result is more accurate than the one in (Duressa,2021).
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For left boundary layer problems, one can observe from Figure 4.2 for Example

3 as the values of the delay parameters increases the size of the boundary layer

decreases. For the case of the right boundary layer problems as the values of the

delay parameter increases the size of the boundary layer increases as it is seen on

Figure 4.1 for Example 1 and 2.

5.2 Scope for future Work

In this thesis, non standard finite difference method for solving singularly per-

turbed boundary value problem with negative shift parameter is introduced.
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