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Abstract

This study presents triple Laplace transform coupled with iterative method to obtain the

exact solution of two dimensional nonlinear fourth order parabolic partial differential equation

subject to the appropriate initial and boundary conditions. The noise term in this equation

is vanished by successive iterative method. The proposed technique has the advantage of

producing exact solution and it is easily applied to the given problems analytically. Two

test problems from mathematical physics are taken to show the accuracy, convergence and

the efficiency of the proposed method. Furthermore, the results indicate that the introduced

method is promising for solving other type nonlinear partial differential equations.
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Chapter 1

Introduction

1.1 Background of the study

Partial differential equation has big importance in mathematics and other fields of sci-

ences such as: economics, engineering, physics, dynamical models, and so on(Keskin and

Oturanc, 2010). PDEs are categorized into different types, including elliptic, parabolic, and

hyperbolic PDEs. One of the most important classes of partial differential equations occur-

ring in applied mathematics is that associated with name of parabolic partial differential

equation. The Laplace transform can be helpful in solving ordinary differential equation and

partial differential equations because it can replace an ODE with an algebraic equation or

replace a PDE with an ODE. Another reason that the Laplace transform is useful is that

it can help deal with the boundary conditions of a PDE on an infinite domain. One of the

most known methods to solve partial differential equation is the integral transform method

(Atangana, 2014).

The Laplace Transform Method (LTM) is one of the integral transform methods that

have been intensively used to solve linear and nonlinear equations (Hazewinkel, 2001) Per-

forming this calculation in Laplace space turns the convolution into a multiplication; the

latter is easier to solve because of its algebraic form. The Laplace transform can also be
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used to solve differential equations and is use extensively in electrical engineering . The

Laplace transform reduces a linear differential equation to an algebraic equation, which can

then be to solve by the formal rules of algebra. The original differential equation can then be

to solve by applying the inverse Laplace transform ( Atangana, 2013). The concept of single

Laplace transform is extended to double Laplace transform to solve some kind of dierential

equations and fractional dierential equations (Ranjit and Waghamare, 2016a).

To find the solution of nonlinear differential equation, an Iterative Method (IM) is a

fascinating task in applied scientific branches. Over the last years, IMs have been to apply

in many diverse elds like economics, engineering, physics, dynamical models, and so on. An

IM is used to find a solution with degree of accuracy. The iterative procedure leads to a

series, which can be to summed up to find an analytical formula, or it can form a suitable

approximation (Bhalekar and DaftardarGejji, 2011).

As a result of this, Triple Laplace Transform (TLT) has been developed to solve two di-

mensional partial differential equations (Atangana, 2013). Besides, to obtain analytical

solution of nonlinear differential equation (Dafrartar-GejjiansJafari, 2006) have introduced

a new iterative method and used it to solve nonlinear differential equations ( Bhalekar and

Daftardar-Gejji, 2011).

The purpose of this work is to apply Triple Laplace transform coupled with iterative method

developed in to find the analytic solution of two dimensional fourth order parabolic partial

differential equations.

utt(x, y, t) + µ(x, y)u
∂4u

∂x4
+ λ(x, y)u

∂4u

∂y4
= f(x, y, t), a < x, y < b, t > 0, (1.1)

with initial conditions:

u(x, y, 0) = f0(x, y), ut(x, y, 0) = f1(x, y), utt(x, y, 0) = f2(x, y). (1.2)
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and boundary conditions:

(a, y, t) = g0(y, t), u(b, y, t) = g1(y, t),

u(x, a, t) = g2(x, t), u(x, b, t) = g3(x, t)

ux(a, y, t)h0(y, t), ux(b, y, t) = h1(y, t),

uy(x, a, t) = h2(x, t), uy(x, b, t) = h3(x, t)

∂2u

∂x2
(a, y, t) = k0(y, t),

∂2u

∂x2
(b, y, t) = k1(y, t)

∂2u

∂y2
(x, a, t) = k2(y, t),

∂2u

∂y2
(x, b, t) = k3(y, t),

(1.3)

where µ(x, y) and λ(x, y) are positive, u is a function of x, y, t and f(x, y, t) is a known

analytic function and the functions fi, gi, ki, hi, i = 0, 1, 2, 3 are continuous. In this work,

the fourth-order parabolic partial differential equation (1.1) was solved analytically to obtain

the exact solution by using triple Laplace transform coupled with iterative method.

1.2 Statement of the problem

Triple Laplace Transform (TLT) has been developed to solve two dimensional partial

differential equations (Atangana,2013). Besides, to obtain analytical solution of nonlin-

ear differential equation (Dafrartar-Gejji ans Jafari,2006) have introduced a new iterative

method and used it to solve nonlinear differential equations (Bhalekar andDaftardar-Gejji,

2011) As a result, this study mainly focuses on the following ideas related to two dimensional

fourth order parabolic partial differential equation using triple Laplace transform coupled

with iterative method given by (1.1).

• Applying Triple Laplace transform method coupled with iterative method to obtain the

analytical solutions of the two dimensional fourth order parabolic differential equations.

• Verify the applicability of the method by using specific examples.

• Compare the result obtained in this method with some other results in the literature.
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1.3 OBJECTIVE OF THE STUDY.

1.3.1 General objective

The general objective of this study is to investigate the analytical solution of fourth order

parabolic partial differential equation in two dimensions by using Triple Laplace transform

coupled with iterative method.

1.3.2 Specific objectives

The specific objects of this study are:

• To determine the solution of two dimensional fourth order parabolic partial differential

equation by using Triple Laplace transform coupled with iterative method(IM).

• To demonstrate the applicability of triple Laplace transform coupled with iterative

method(IM) by using some specific examples.

1.4 Significance of the study

The outcome of the study is believed to have the following significances.

• It provides technique to find the solution of two - dimensional fourth order parabolic

partial differential equations of Triple Laplace transform method coupled with IM.

• It may familiarize the researcher with the scientific communication in mathematics and

develops the skills of mathematical research.

• It can be used as reference material for other researches in the same area.

1.5 Delimitation of the study

The study is delimited to fourth order nonlinear parabolic partial differential equation

in two dimensions and is focusing on finding analytical solution by using Triple Laplace

transform coupled with iterative method.
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Chapter 2

REVIEW OF RELATED

LITERATURE

Many of the phenomena that arise in mathematical physics and engineering fields

can be described by partial differential equations (PDEs). In physics for example, the heat

flow and the wave propagation phenomena are well described by partial differential equa-

tions. Moreover, most physical phenomena of fluid dynamics, quantum mechanics, electricity,

plasma physics, propagation of shallow water waves, and many other models are formulated

by partial differential equations ( Majeed.A.W,2018). PDE s have numerous essential ap-

plications in various fields of science and engineering such as fluid thermodynamics, heat

transfer, physics (Keskin and Oturanc, 2010).In Mathematics, a PDE is a differential equa-

tion that contains unknown multi-variable functions and their partial derivatives. PDEs are

used to formulate problems involving functions of several variables, and are either solved

by hand, or used to create a relevant computer model. A special case is ordinary differen-

tial equations (ODEs), which deal with functions of a single variable and their derivatives.

PDEs can be used to describe a wide variety of phenomena such as sound, heat, electro-

statics, electrodynamics, fluid dynamics, elasticity, or quantum mechanics. These seemingly
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distinct physical phenomena can be formalized similarly in terms of PDEs (Zauderer, 1989).

Many real life problems are represented by differential equation some of those are transport

equation (ux + uy = 0), Laplace equation (uxx + uyy = 0), Heat equation (ut − kuxx = 0,

Wave equation(utt − c2uxx = 0), parabolic equation in one dimension and two dimension.

In addition to this Differential equations are the mathematical expressions of some real life

problems arising out of the real world around us such as physical, biological, engineering,

financial or sociological fields.

Differential equation can be catagorized as partial Differential equation (PDE) and Or-

dinary differential equation (ODE) ,Where PDE is a differential equation that contains

unknown multi-variable functions and their partial derivatives and ODE represents a func-

tion of a single variable and their derivatives.There are many problems arising in science

and engineering are modeled using linear or nonlinear partial differential equations (PDEs).

Boundary and initial value problems in PDEs occur in fluid mechanics, mathematical physics,

astrophysics, biology, material science, electromagnetism, image processing, computer graph-

ics, etc. PDEs are categorized into different types, including elliptic, parabolic, and hyper-

bolic PDEs. In this study, the triple laplace transform method will be applied to solve

non-linear two dimensional parabolic partial differential equation of the form eq (1.1) ,since

Triple Laplace transform method (TLTM) coupled with iterative method is one of the mod-

ern method used to solve such differential equation.

The Laplace Transform Method (LTM) is one of the integral transform methods that

have been intensively used to solve linear and nonlinear equations. The Laplace transform

method is used frequently in engineering and physics; the output of a linear time invariant

system can be calculated by convolving its unit impulse response with the input signal. Per-

forming this calculation in Laplace space turns the convolution into a multiplication; the

latter is easier to solve because of its algebraic form.The Laplace transform can also be used

to solve differential equations and is used extensively in electrical engineering .The Laplace

6



transform reduces a linear differential equation to an algebraic equation, which can then be

solved by the formal rules of algebra. The original differential equation can then be solved

by applying the inverse Laplace transform (Deresse, A. T., Mussa, Y. O., and Gizaw, A.

K). (2021). Recently, the concept of single Laplace transform is extended to double Laplace

transform to solve some kind of differential equations and fractional differential equations

such as linear/nonlinear space-time fractional telegraph equations, functional, integral and

partial differential equations. Dhunde and Waghmare applied the Double Laplace Transform

method for solving a one dimensional Boundary Value Problems. Through this method the

boundary value problem is solved without converting it into Ordinary Differential equation,

therefore no need to find complete solution of Ordinary Differential equation. This is the

biggest advantage of the proposed method.

Furthermore, different scholars were extended the double Laplace transform method to

Triple Laplace Transform (TLT) to solve two dimensional nonlinear partial differential equa-

tions arising in various natural phenomena. Mathematical approaches to PDEs are divided

into two methods called analytical method which strives to find exact formulae for the de-

pendent variable as a function of independent variables numerical method which result in

approximate values of dependent variables (Saravanan and Magesh, 2013).

7



Chapter 3

METHODOLOGY

3.1 Study area and period

This study was conducted to find the analytic solution of two dimensional fourth order

parabolic partial differential equations by using triple Laplace transform method coupled

with iterative method under Department of Mathematics, college of natural science ,Jimma

university from August 2019 up to February, 2022.

3.2 Study Design

This study was designed to be done analytically.

3.3 Source of information

The source of information for this study are collected from related documentary materials

such as reference books, internets, published and unpublished articles.

3.4 Mathematical Procedures

To attain the objective of the study, the following steps are carried out.

1. Applying triple Laplace transform on both sides of equation (1.1).

2. Employing double Laplace transform to equations (1.2) and (1.3).
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3. Implementing the triple inverse Laplace transformation to the results obtained in steps

1 and 2.

4. Assume that u(x, y, t) =
∑∞

i=1 ui(x, y, t) is the solution of equation (1.1).

5. Implementing the new iterative method to the nonlinear term of equation (1.1).

6. Using Triple Laplace transform coupled with new iterative method the recursive rela-

tions are developed.

7. Finally, the solution of equations (1.1) - (1.3) will be constructed to have the following series

form: u(x, y, t) = u0(x, y, t) + u1(x, y, t) + u2(x, y, t) + ...un(x, y, t) + ....

9



Chapter 4

RESULT AND DISCUSSION

4.1 Premilinaries

In this section, we give some essential definitions, properties and theorems of Triple

Laplace transform of partial differential equation, which should be used in the present study.

Definition 1: Let f(x) be a piecewise continuously differentiable function in every finite

interval and is absolutely integrable function on the whole real line (Debtnath, 2007).

The Fourier integral formula of f(x) is defined by:

f(t) =
1

2π

∫ ∞
−∞

[ ∫ ∞
−∞

e−iktf(t)dt

]
e−iktdk, (4.1)

where k is a complex number and is taken as the variable of the transform.

Definition 2: Euler gamma function Γ(s) is defined by the uniformly convergent integral

and is given by:

Γ(s) =

∫ ∞
0

x(s−1)e−xdx s > 0. (4.2)

Note that Γ(s) = (s− 1)! for a positive integer s (Debtnath, 2015).
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4.1.1 Triple Laplace Transform

Definition 3: Let f(x, y, t) be a function of three variables x, y and t defined in the

positive xyt in space. The triple Laplace transform of the function f(x, y, t) is defined by

Lxyt[f(x, y, t)] = F (k, p, s) =

∫ ∞
0

e−kx
∫ ∞

0

e−py
∫ ∞

0

e−stf(x, y, t)dxdydt, (4.3)

whenever the integral exist (Thakuri and Shrikume,2015).

Here Lxyt[f(x, y, t)] denote LxLyLt[f(x, y, t)],and k, p, s are complex numbers.

From this definition, we deduce that:

Lxyt{f(x)g(y)h(t)} = F (k)G(p)H(s) = Lx{f(x)}Ly{g(y)}Lt{h(t)}. (4.4)

Definition 4: The inverse triple Laplace transform ofF (k, p, s), L−1
xyt[F (k, p, s)] = f(x, y, t)

is given by the complex triple integral formula.

L−1
xyt[F (k, p, s)] = f(x, y, t) =

1

2πi

∫ q+i∞

q−i∞
e−kx

(
1

2πi

∫ r+i∞

r−i∞
e−px

[ 1

2πi

∫ z+i∞

z−i∞
e−sxds

]
dp

)
dk,

(4.5)

where L−1
xyt[F (k, p, s)] denote L−1

x L−1
y L−1

t [F (k, p, s)],and F (k, p, s) must be an analytic func-

tion for all k,p and s in the region defined by the inequality Re(k) > q,Re(p) > rand

Re(s) > z where q,r and z are real constant to be chosen suitably.

Property 1: The triple Laplace transform of second order partial derivatives are given by:

Lxyt[
∂2

∂x2
f(x, y, t)] = k2F (k, p, s)− kF (0, p, s)− Fx(0, p, s),

Lxyt[
∂2

∂y2
f(x, y, t)] = p2F (k, p, s)− pF (k, 0, s)− Fy(0, p, s),

Lxyt[
∂2

∂t2
f(x, y, t)] = s2F (k, p, s)− sF (k, p, 0)− Ft(k, p, 0),

Lxyt[
∂2

∂x∂y
f(x, y, t)] = kpF (k, p, s)− F (0, p, s)− F (k, 0, s).(4.6)
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Furthermore, the triple Laplace transform of first order partial derivatives are given by:

 Lxyt[
∂

∂x
f(x, y, t)] = kF (k, p, s)− F (0, p, s),

 Lxyt[
∂
∂y
f(x, y, t)] = pF (k, p, s)− F (k, 0, s),

 Lxyt
∂
∂t
f(x, y, t) = sF (k, p, s)− F (k, p, 0). (4.7)

4.1.2 Existence and uniqueness of the Triple Laplace Transform

. Theorem 1 (Existence): Let f(x, y, t) be a continuous function on the interval

[0,∞) wich is of exponential order that is for some a ,b,c ∈ R.

Consider sup
x,y,t>0

∣∣ f(x, y, t)

exp[ax+ by + ct]

∣∣ < 0. (4.8)

Under this condition, the triple transform,

F (k, p, s) =
∫∞

0

∫∞
0

∫∞
0
e−kxe−pye−stf(x, y, t)dxdydt

Exists for all k > a, p > b and s > c and is in actuality infinitely differentiable with respect

to k > a, p > b and s > c.

Proof: we have

|F (k, p, s)| =|
∫ ∞

0

∫ ∞
0

∫ ∞
0

e−kx−py−st|

≤ k

∫ ∞
0

e−(k−a)xdx

∫ ∞
0

e−(p−b)ydy

∫ ∞
0

e−(s−c)tdt,

=
k

(k − a)(p− b)(s− c)
.

(4.9)

Then it follows that , lim
k,p,s→∞

|F (k, p, s)| = 0.

and hence lim
k,p,s→∞

F (k, p, s) = 0.

This proves the existence of triple Laplace transform.

Theorem 2 (Uniqueness): Let f(x, y, t) and g(x, y, t) be continuous functions defined for

x, y, t ≥ 0 and having Laplace transforms, F (k, p, s) and G(k, p, s), respectively.
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If F (k, p, s) = G(k, p, s), then f(x, y, t) = g(x, y, t).

Proof: By definition 3 the inverse triple Laplace transform off(x, y, t) is given by the

integral expression L−1
xyt[F (k, p, s)] = f(x, y, t) = 1

2πi

∫ q+i∞
q−i∞ e−kx

(
1

2πi

∫ r+i∞
−i∞ e−px

[
1

2πi

∫ z+i∞
z−i∞ e−sxds

]
dp

)
dk

f(x, y, t) = 1
2πi

∫ α+i∞
α−i∞ ekx

(
1

2πi

∫ β+i∞
β−i∞ epx

[
1

2πi

∫ µ+i∞
µ−i∞ esxds

]
dp

)
dk = g(x, y, t),

where α, β,and µ, are sufficiently large. By hypothesis, F(k,p,s) = G(k,p,s), then replacing

this in the previous expression, we get

f(x, y, t) = 1
2πi

∫ α+i∞
α−i∞ ekx

(
1

2πi

∫ β+i∞
β−i∞ epx

[
1

2πi

∫ µ+i∞
µ−i∞ esxds

]
dp

)
dk = g(x, y, t)

and this proves the uniqueness of the triple Laplace transform.

4.1.3 Some properties of triple Laplace transform

Property 2 (Linearity of Triple Laplace Transform(TLT)):

If f(x, y, t) and g(x, y, t) are two functions of x, y and t such that

Lxytf(x, y, t)=F (k, p, s)andLxytg(x, y, t) = G(k, p, s)then,

Lxytαf(x, y, t) + βg(x, y, t) = αLxytf(x, y, t) +xyt g(x, y, t) =αF (k, p, s) + βG(k, p, s),

where α and β are constants.

Property 3(Change of Scale Property):

LetLxytf(x, y, t) = F (k, p, s), then Lxytf(ax, by, ct) = 1
abc
F (k

a
, p
b
, s
c
),

where a,b and c are non-zero constants .

Proof: we have

LxLyLt[f(ax, by, ct)] =
∫∞

0
e−kx

∫∞
0
e−py

∫∞
0
e−stf(x, y, t)dxdydt

Applying change of variables u = ax, v = by, w = ct, we get

LxLyLt[f(ax, by, ct)] =

∫ ∞
0

e−k(u
a

)

∫ ∞
0

e−p(
v
b

)

∫ ∞
0

e−s(
w
c

)f(u, v, w)
du

a

dv

b

dw

c

=
1

abc

∫ ∞
0

e−k(u
a

)

∫ ∞
0

e−p(
v
b

)

∫ ∞
0

e−s(
w
c

)f(u, v, w)dudvdw

=
1

abc
F (
k

a
,
p

b
,
s

c
),

(4.10)

where a, b, and c are non-zero constants and hence property 3 is proved.
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Property 4(First Shifting Property):

If Lxytf(x, y, t) = F (k, p, s),then Lxyt[e
ax+by+ctf(x, y, t)] = F (k − a, p− b, s− c).

Proof: By definition,

LxLyLt[e
ax+by+ctf(x, y, t)] =

∫∞
0
e−kx

∫∞
0
e−py

∫∞
0
eax+by+ctf(x, y, t)dxdydt

=
∫∞

0
e−(k−a)x

∫∞
0
e−(p−b)y ∫∞

0
e−(s−c)tf(x, y, t)dxdydt = F (k − a, p− b, s− c)

Hence property 4 is proved

Property 5(Second Shifting Property):

If Lxytf(x, y, t) = F (k, p, s), then Lxytf(x− a, y − b, t− c)H(x− a, y − b, t− c)

= e−ak−bp−csF (k, p, s),

where H(x,y,t) is the Heaviside unit step function defined by

H(x− a, y − b, t− c) =

 1 : x > a, y > b, t > c

0 : x < a, y < b, t < c.
(4.11)

Proof: by definition of triple Laplace transform,

LxLyLt[f(x− a, y − b, t− c)H(x− a, y − b, t− c)]

=
∫∞

0

∫∞
0

∫∞
0
e−kx−py−stf(x− a, y − b, t− c)H(x− a, y − b, t− c)dxdydt.

=
∫∞

0

∫∞
0

∫∞
0
e−kx−py−stf(x− a, y − b, t− c)dxdydt

Taking u = x− a, v = y − b and w = t− c we have,∫∞
0

∫∞
0

∫∞
0
e−kx−py−stf(x− a, y − b, t− c) dxdydt

= e−ka−pb−sc
∫∞

0

∫∞
0

∫∞
0
e−ku−pv−swf(u, v, w)dudvdw = e−ka−pb−scF (k, p, s).

Hence property 5 is proved.

Property 6: IfLxytf(x, y, t) = F (k, p, s), then

LxLyLt(x
myntr) = m!n!r!

km+1pn+1sr+1 ,(m > −1), (n > −1) and (r > −1) are real numbers.
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Proof: the proof follows by extending the concept double Laplace transform to triple Laplace

transform (Debtnat,2015). By Definition 2,

LxLyLt(x
myntr) =

∫∞
0

∫∞
0

∫∞
0
e−kx−py−stxmyntrdxdydt =

∫∞
0
e−kxxmdx

∫∞
0
e−pyyndy

∫∞
0
e−sttrdt

put kx = u py = v and st = w we obtain,

LxLyLt(x
myntr) = 1

km+1

∫∞
0
uue−udu 1

pn+1

∫∞
0
vne−vdv 1

sr+1

∫∞
0
wre−wdw

= Γ(m+1)Γ(n+1)Γ(r+1)
km+1pn+1sr+1

= m!n!r!
km+1pn+1sr+1 .

is proves property 6

4.1.4 Triple Laplace transforms of some functions of three vari-

ables

Based on the definition and properties of triple Laplace transform table 4.1 display triple

laplace transform of some special functions.

Table 4.1 Triple Laplace transform for some function of three variables (Atangana, 2013)
Functions of f(x,y,t) Triple Laplace transform F (k, ps)

abc abc
kps

xyt 1
k2p2s2

xmyntr m!n!r!
km+1pn+1sr+1

e−ax−by−ct 1
(k+a)(p+b)(s+c)

cos(x)cos(y)cos(t) kps
(k2+1)(p2+1)(s2+1)

sin(x)sin(y)sin(t) 1
(k2+1)(p2+1)(s2+1)

cos(x+ y + t) k+p+s−kps
(k2+1)(p2+1)(s2+1)

sin(x+ y + t) −1+ps+k(p+s)
(k2+1)(p2+1)(s2+1)

4.1.5 The new iterative method

Consider the following general functional equation.

u = N(u) + f (4.12)
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where N is a nonlinear operator from a Banach space f : B → B and f is a known function.

We are looking for a solution u of equation (4.12) having the series from:

u =
∞∑
i=0

ui (4.13)

The nonlinear operator N can be decomposed as :

N(
∞∑
i=0

ui) = N(u0) +
∞∑
i=1

[N(
i∑

j=0

uj)−N(
i−1∑
j=0

uj)] (4.14)

From equation (4.13)and (4.14),equation (4.12) is equivalent to

∞∑
i=0

ui = f +N(u0) +
∞∑
i=1

[N(
i∑

j=0

uj)−N(
i−1∑
j=0

uj)], (4.15)

where we have used equations (4.13) and (4.14) to get (4.15). Consider now the sequences

given by:

Gn = N(
n∑
i=0

ui)−N(
n−1∑
i=0

ui), n = 1, 2, 3... (4.16)

We define the recurrence relation: G0 = u0 = f

G1 = u1 = N(u0) (4.17)

Gn = un+1 = N(u0 + ...un)−N(u0 + ...+ un−1), n ≥ 1 (4.18)

Then,

(u1 + ...+ un+1) = N(u1 + ...+ un), n ≥ 1 (4.19)

and

u(x) = f +
∞∑
i=0

ui (4.20)
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The n-term approximate solution of equation (4.19) is given by:

u = u0 + u1 + ...+ un−1. (4.21)

4.1.6 Convergence of the new iterative method

Theorem 3: If N is a continuously differentiable functional in a neighborhood of u0

and ‖N (n)(u0)‖ ≤M ≤ e−1 for all n, then the series
∑∞

i=0Gn is absolutely convergent

(Bhalekar and Daftarder, 2011), and where Gn is as indicated in equation (4.16).

Proof: Consider the recurrence relation.

ξn = ξ0exp(ξn − 1, n = 1, 2, 3...whereξ0 = M (4.22)

Define,

βn = ξn − ξn−1 (4.23)

using equation (4.16) - (4.23), and the hypothesis of Theorem (3), we observe that

Gn ≤ βn, forn = 1, 2, 3, ... (4.24)

Let

αn =
n∑
i=1

βi ≤ ξn − ξ0 (4.25)

Note that ,ξo = e−1 > 0, ξ1 = ξ0exp(ξ0) > ξ0, ξ2 = ξ0exp(ξ1) > ξ0exp(ξ0) = ξ1

In general ,ξn > ξn−1 > 0 and hence
∑∞

n=1 βn is a serie of positive real numbers.

0 ≤ ξ0 = M = e−1 < 1.0 < ξ1 = ξ0exp(ξ0) < ξ0e
1 = e−1e1 = 1.0 < ξ2 = ξ0exp(ξ1) < ξ0e

1 = 1

(4.26)
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It follows that,0 ≤ ξn < 1 hence,an = ξn − ξ0 < 1.

This implies that the sequence is bounded, and hence convergent.

Therefore,
∑∞

n=0 Gn is absolutely convergent by comparison test.

On the other hand this proves the existence of analytical solution by the help of the new

iterative method.

4.2 Main result

The aim of this study is to obtain analytical solution of two dimensional fourth order

parabolic partial differential equation using Triple Laplace transfom coupled with Iterative

Method. This is done by extending the work of (Ranjit and Waghamar, 2016) that was used

to solve two dimensional NLPDE by using double Laplace transform and iterative method.

So, the definitions, theorems and some derivations related to triple Laplace transform men-

tioned in the preceding section be applied here. Consider the two-dimensional nonlinear

fourth order parabolic equation

utt(x, y, t) + µ(x, y)u∂
4u
∂x4

+ λ(x, y)u∂
4u
∂y4

= f(x, y, t) , a < x, y < b, t > 0.

with initial conditions:

u(x, y, 0) = f0(x, y), ut(x, y, 0) = f1(x, y), utt(x, y, 0) = f2(x, y).

and boundary conditions:

(a, y, t) = g0(y, t), u(b, y, t) = g1(y, t),

u(x, a, t) = g2(x, t), u(x, b, t) = g3(x, t)

ux(a, y, t)h0(y, t), ux(b, y, t) = h1(y, t),

uy(x, a, t) = h2(x, t), uy(x, b, t) = h3(x, t)

∂2u
∂x2

(a, y, t) = k0(y, t), ∂2u
∂x2

(b, y, t) = k1(y, t)

∂2u
∂y2

(x, a, t) = k2(y, t), ∂2u
∂y2

(x, b, t) = k3(y, t),

where µ(x, y) andλ(x, y) are positive and f(x, y, t) is a source function.

In order to solve such problem we first decompose the source function f(x, y, t) into f1(x, y, t)and
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f2(x, y, t) . The part f1(x, y, t) with the terms in equation (1.1) is always leads to the sim-

ple algebraic expression while applying the inverse triple Laplace transform. The portion

h2(x, y, t) is combined with the nonlinear term of equation (1.1 ) to avoid complicated terms

in the iteration process.

Step 1: Applying triple Laplace transform on both sides of equation (1.1), we get

s2ū(k, p, s)−sū(k, p, 0)−ūt(k, p, 0) = Lxyt(f(x, y, t))−Lxyt
(
µ(x, y)u

∂4u

∂x4
(x, y, t)+λ(x, y)u

∂4u

∂y4
(x, y, t)

)
,

(4.27)

where f(x, y, t) is the source of functions of equation (1.1) .

Note that the existence of Laplace transform of functions of three variables .

Step 2. Now employing double Laplace transform to equations (1.2) and (1.3), we have

u(x, y, 0) = f0(x, y), ut(x, y, 0) = f1(x, y), utt(x, y, 0) = f2(x, y)

u(a, y, t) = g0(y, t), u(b, y, t) = g1(y, t), u(x, a, t) = g2(x, t), u(x, b, t) = g3(x, t)

u(x, y, 0) = f0(x, y), ut(x, y, 0) = f1(x, y), utt(x, y, 0) = f2(x, y)

ux(a, y, t) = h0(y, t), ux(b, y, t) = h1(y, t), uy(x, a, t) = h2(x, t), uy(x, b, t) = h3(x, t)

uxx(a, y, t) = k0(y, t), uxx(b, y, t) = k1(y, t), uyy(x, a, t) = k2(x, t), uyy(x, b, t) = k3(x, t).

By substituting equations (1.2) and (1.3) into equation (4.27) and simplifying, we obtain

ū(k, p, s) =
1

s2
[sū(k, p, 0)+ūt(k, p, 0)+Lxyt(f(x, y, t))−Lxyt(µ(x, y)u

∂4u

∂x4
(x, y, t)+λ(x, y)u

∂4u

∂y4
(x, y, t)].

(4.28)

Step 3. By implementing the triple inverse Laplace transformation of equation (4.28), we

obtain:

ū(k, p, s) = L−1
xyt

1

s2


sū(k, p, 0) + ūt(k, p, 0)

−Lxyt(µ(x, y)u∂
4u
∂x4

(x, y, t) + λ(x, y)u∂
4u
∂y4

(x, y, t)

+Lxyt(f(x, y, t))

 . (4.29)
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Step 4. Assume that u(x,y,t)=
∑∞

i=0 ui(x, y, t) is the solution of equation (1.1).

Then substituting equation (4.29) into equation (4.28), we obtain:

∞∑
i=0

ui(x, y, t) = L−1
xyt


1

s2


sū(k, p, 0) + ūt(k, p, 0)

−Lxyt
(
µ(x, y)u∂

4u
∂x4

(x, y, t) + λ(x, y)u∂
4u
∂y4

(x, y, t)

)
+Lxyt(f(x, y, t))

] . (4.30)

Step5. By implementing the new iterative method in equation (4.30) is decomposed as the

nonlinear term µ(x, y)u∂
4u
∂x4

(x, y, t) + λ(x, y)u∂
4u
∂y4

(x, y, t) in equation (4.30) is decomposed as:

∞∑
i=0

ui(x, y, t) = L−1
xyt

 1

s2

 sū(k, p, 0) + ūt(k, p, 0)

+Lxyt

(
f(x, y, t)− µ(x, y)u∂

4u
∂x4

(x, y, t) + λ(x, y)u∂
4u
∂y4

(x, y, t)

) ]
 . (4.31)

Step6. Using Triple Laplace Transform coupled with new iterative method, we introduce the

recursive relations and get:

u0(x, y, t) = L−1
xyt

{
1

s2

[
sū(k, p, 0) + ūt(k, p, 0)

]}
. (4.32)

u1(x, y, t) = L−1
xyt

{
1

s2
Lxyt

[
f(x, y, t)− µ(x, y)u∂

4u
∂x4

(x, y, t) + λ(x, y)u∂
4u
∂y4

(x, y, t

]}
. (4.33)

un+1(x, y, t) = −L−1
xyt


1

s2
Lxyt


∑n

r=0

(
µ(x, y)ur

∂4ur
∂x4

(x, y, t) + λ(x, y)ur
∂4ur
∂y4

(x, y, t)

)
−∑n−1

r=0

(
µ(x, y)ur

∂4ur
∂x4

(x, y, t) + λ(x, y)ur
∂4ur
∂y4

(x, y, t)

) ]
 , n ≥ 1. (4.34)

Step7. The solution of equations (1.1) - (1.3) in series form is given by:

u(x, y, t) = u0(x, y, t) + u1(x, y, t) + u2(x, y, t) + ...+ un(x, y, t) + ... (4.35)
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4.2.1 Illustrative examples

In order to show the validity and effectiveness of the method under consideration some

examples are presented here.

Example 1: Consider the following two dimensional nonlinear fourth-order parabolic partial

differential equation :

∂2u

∂t2
+ xu

∂4u

∂x4
+ yu

∂4u

∂y4
= 2x4y4 + 24t4x8y5 + 24t4x5y8,

1

2
< x, y < 1, t > 0 (4.36)

with initial conditions

u(x, y, 0) = 0, ut(x, y, 0) = 0. (4.37)

and boundary conditions:

u(
1

2
, y, t) = (

1

2
)4y4t2, u(1, y, t) = y4t2.

∂2u

∂x2
(
1

2
, y, t) = 12(

1

2
)2y4t2,

∂2u

∂x2
(1, y, t) = 12y4t2.

∂2u

∂y2
(x,

1

2
, t) = 12(

1

2
)2x4t2,

∂2u

∂y2
(1, y, t) = 12x4t2.

(4.38)

solution:Rewrite the equation(4.36)

∂2u
∂t2
− 2x4y4 = 24t4x8y5 + 24t4x5y8 − (xu∂

4u
∂x4

+ yu∂
4u
∂y4

).

Applying properties of triple Laplace transform on both sides of equation (4.36) , we get,

s2ū(k, p, s)−sū(k, p, 0)−ūt(k, p, 0)−2(4!)(4!)

sp5k5
= Lxyt

[
24t4x8y5+24t4x5y8−(xu

∂4u

∂x4
+yu

∂4u

∂y4
)

]
.

(4.39)
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Applying double Laplace transform to equations (4.37) and (4.38), we obtain.

ū(k, p, 0) = 0 and ūt(k, p, 0) = 0andū(
1

2
, p, s) = (

1

2
)4 (3)!(1)!

y4t2

ū(1, p, s) =
(3)!(1)!

y4t2
, ūxx(

1

2
, p, s) = 12(

1

2
)2 (3)!(1)!

y4t2
, ūxx(1, p, s) = 12

(3)!(1)!

y4t2
,

ūyy(
1

2
, p, s) = 12(

1

2
)2 (3)!(1)!

x4t2
ūyy(k, 1, s) = 12

(3)!(1)!

x4t2
.

(4.40)

By substituting equations (4.40) into equation (4.39), we get

ū(k, p, s) = 1
s2

(
2(4!)(4!)
sp5k5

+ Lxyt[24t4x8y5 + 24t4x5y8 − (xu∂
4u
∂x4

+ yu∂
4u
∂y4

)]

)

ū(k, p, s) =
2(4!)(4!)

s3p5k5
+

1

s2

{
Lxyt[24t4x8y5 + 24t4x5y8 − (xu

∂4u

∂x4
+ yu

∂4u

∂y4
)]

}
. (4.41)

Applying inverse triple Laplace transform to equation (4.41), we get

u(x, y, t) = x4y4t2 + L−1
xyt

{
1
s2
Lxyt[24t4x8y5 + 24t4x5y8 − (xu∂

4u
∂x4

+ yu∂
4u
∂y4

)]
}

.

Now ,applying the new iterative method,

u0(x, y, t) = x4y4t2. (4.42)

u1(x, y, t) = L−1
xyt

{
1
s2
Lxyt[24t4x8y5 + 24t4x5y8 − (xu0

∂4u0
∂x4

+ yu0
∂4u0
∂y4

)]
}

.

un+1(x, y, t) = −L−1
xyt

{
1

s2
Lxyt

[ n∑
r=0

(
xur

∂4ur
∂x4

+ yur
∂4ur
∂y4

)
−

n−1∑
r=0

(xur
∂4ur
∂x4

+ yur
∂4ur
∂y4

)

]}
, n ≥ 1

(4.43)

Similarly, we obtain u2(x, y, t) = u3(x, y, t) = 0 and so on,

Therefore, the solution of Example 1 by using equation (4.35) is

u(x, y, t) = x4y4t2 .

Let us now test the convergence of the obtained series solution. From equation (4.42), we

have,
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u0(x, y, t) = x4y4t2 and

N(u(x,y,t))=L−1
xyt

{
1
s2
Lxyt[24t4x8y5 + 24t4x5y8 − (xu∂

4u
∂x4

+ yu∂
4u
∂y4

)]
}

.

Thus for x, y, t ≥ 0, we have

N(u0(x, y, t)) = L−1
xyt

{
1
s2
Lxyt[24t4x8y5 + 24t4x5y8 − (xu0

∂4u0
∂x4

+ yu0
∂4u0
∂y4

)]
}

= L−1
xyt

{
1
s2
Lxyt[24t4x8y5 + 24t4x5y8 − (xu0

∂4u0
∂x4

+ yu0
∂4u0
∂y4

)]
}

= 0.

Therefore,‖N(u0(x, y, t))‖ = ‖0‖ = 0 < 1
e
.

N ′(u(x, y, t))=L−1
xyt

{
1
s2
Lxyt[(24t4x8y5 + 24t4x5y8)′ − (xu∂

4u
∂x4

+ yu∂
4u
∂y4

)′]
}

.

where N ′(u(x, y, t)) represents the partial derivatives ∂
∂x
u(x, y, t) ∂

∂y
u(x, y, t) or ∂

∂t
u(x, y, t).

N( ∂
∂t
u(x, y, t))= L−1

xyt

{
1
s2
Lxyt[96t3x8y5 + 96t3x5y8 − (xu∂

4u
∂x4

+ yu∂
4u
∂y4

)′]
}

.

Then,

N( ∂
∂t
u0(x, y, t))= L−1

xyt

{
1
s2
Lxyt[96t3x8y5 + 96t3x5y8 − (96t3x5y8 + 96t3x8y5)]

}
=0.

N( ∂
∂x
u0(x, y, t))= L−1

xyt

{
1
s2
Lxyt[192t4x7y5 + 120t4x4y8 − (120t4x4y8 + 192t4x7y5)]

}
=0.

N( ∂
∂y
u0(x, y, t))= L−1

xyt

{
1
s2
Lxyt[120t4x8y4 + 192t4x5y7 − (192t4x5y7 + 120t4x8y4)]

}
=0.

Therefore,‖N(u′0(x, y, t))‖ = ‖0‖ = 0 < 1
e
.

N( ∂
2

∂t2
u0(x, y, t))= L−1

xyt

{
1
s2
Lxyt[288t2x8y5 + 288t2x5y8 − (288t2x5y8 + 288t2x8y5)]

}
=0.

N( ∂2

∂x2
u0(x, y, t))= N( ∂2

∂y2
u0(x, y, t))=N( ∂2

∂x∂y
u0(x, y, t))=0.

N( ∂2

∂x∂t
u0(x, y, t))= N( ∂2

∂y∂t
u0(x, y, t))=0.

Therefore,‖N(u′0
′(x, y, t))‖ = ‖0‖ = 0 < 1

e
.

where N(u′0
′(x, y, t)) represents all the second order partial derivatives of u0(x, y, t).

Similarly by principle of Mathematical induction we have ,

‖N(u
(3)
0 (x, y, t))‖=‖N(u

(4)
0 (x, y, t))‖ = ... =‖N(u

(n)
0 (x, y, t))‖ = ‖0‖ = 0 < 1

e
,for all n ≥ 3.

As the condition ,If N is a continuously differentiable functional in a neighborhood of u0

and‖N(u
(n)
0 (x, y, t))‖ ≤M ≤ e−1 for all n, then the series solution, u(x, y, t) =

∑∞
i=0 ui(x, y, t)is

absolutely convergent and hence the solution obtained by the new iterative method is con-

vergent on the domain of interest.
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The numerical solution representing the solution behavior of Example 1 is depicted in

Figure 1.

Fig. 1 Solution behavior of Example 1 for t = 2
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Example 2: Consider the following three dimensional non-homogeneous nonlinear

fourth-order parabolic partial differential equation with variable coefficients :

∂2u

∂t2
+ xu

∂4u

∂x4
+ yu

∂4u

∂y4
= 6tx4y4 + 24t6x8y5 + 24t6x5y8,

1

2
< x, y < 1, t > 0. (4.44)

with initial conditions:

u(x, y, 0) = 0, ut(x, y, 0) = 0. (4.45)

and boundary conditions:

u(
1

2
, y, t) = (

1

2
)4y4t3, u(1, y, t) = y4t3.

∂u

∂x
(
1

2
, y, t) = 4(

1

2
)3y4t3,

∂u

∂x
(1, y, t) = 4y4t3.

∂u

∂y
(x,

1

2
, t) = 4(

1

2
)3x4t3,

∂u

∂y
(1, y, t) = 4x4t3.

(4.46)

Solution:Rewrite the equation(4.44)

∂2u
∂t2
− 6tx4y4 = 24t6x8y5 + 24t6x5y8 − (xu∂

4u
∂x4

+ yu∂
4u
∂y4

),

Applying properties of triple Laplace transform on both sides of equation (4.44), we get,

s2ū(k, p, s)−sū(k, p, 0)−ūt(k, p, 0)−6(4!)(4!)

s2p5k5
= Lxyt

[
24t6x8y5+24t6x5y8−(xu

∂4u

∂x4
+yu

∂4u

∂y4
)

]
.

(4.47)

Applying double Laplace transform to equations (4.45) and (4.46), we obtain
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ū(k, p, 0) = 0 and ūt(k, p, 0) = 0and

ū(
1

2
, p, s) = (

1

2
)4 (3)!(2)!

y4t3
, ū(1, p, s) =

(3)!(2)!

y4t3

ūx(
1

2
, p, s) = 4(

1

2
)3 (3)!(2)!

y4t3
ūx(1, p, s) = 4

(3)!(2)!

y4t3

ūy(
1

2
, p, s) = 4(

1

2
)3 (3)!(2)!

x4t3
, ūy(1, p, s) = 4

(3)!(2)!

x4t3

(4.48)

By substituting equations (4.48) into equation (4.47)), we get

ū(k, p, s)= 1
s2

{
6(4!)(4!)
s2p5k5

+ Lxyt

[
24t6x8y5 + 24t6x5y8 − (xu∂

4u
∂x4

+ yu∂
4u
∂y4

)

]}
ū(k, p, s) =

(3!)(4!)(4!)
s4p5k5

+ 1
s2

{
Lxyt

[
24t6x8y5 + 24t6x5y8 − (xu∂

4u
∂x4

+ yu∂
4u
∂y4

)

]}
.(4.49)

Applying inverse triple Laplace transform to equation (4.49), we get:

u(x, y, t) = x4y4t3 + L−1
xyt

{
1

s2

{
Lxyt

[
24t6x8y5 + 24t6x5y8 − (xu

∂4u

∂x4
+ yu

∂4u

∂y4
)

]}}
. (4.50)

Now, applying the new iterative method,

u0(x, y, t) = x4y4t3 (4.51)

u1(x, y, t) = L−1
xyt

{
1
s2

{
Lxyt

[
24t6x8y5 + 24t6x5y8 − (xu0

∂4u0
∂x4

+ yu0
∂4u0
∂y4

)

]}}
.

un+1(x, y, t)=−L−1
xyt

{
1
s2

{
Lxyt

[∑n
r=0(xur

∂4ur
∂x4

+ yur
∂4ur
∂y4

)−
∑n−1

r=0 (xur
∂4ur
∂x4

+ yur
∂4ur
∂y4

)

]}}
, n ≥

1.

Similarly, we obtain u2(x, y, t) = u3(x, y, t) = 0 and so on.

Therefore, the solution of Example 2 by using equation (4.35) is

u(x, y, t) = x4y4t3.

Let us now test the convergence of the obtained series solution.
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From equation (4.51), we have,

u0(x, y, t) = x4y4t3and

N(u(x, y, t)) = L−1
xyt

{
1
s2

{
Lxyt

[
24t6x8y5 + 24t6x5y8 − (xu∂

4u
∂x4

+ yu∂
4u
∂y4

)

]}}
.

Thus for all x, y, t ≥ 0, we have,

N(u0(x, y, t)) = L−1
xyt

{
1
s2

{
Lxyt

[
24t6x8y5 + 24t6x5y8 − (xu0

∂4u0
∂x4

+ yu0
∂4u0
∂y4

)

]}}
=L−1

xyt

{
1
s2

{
Lxyt

[
24t6x8y5 + 24t6x5y8 − (xu0

∂4u0
∂x4

+ yu0
∂4u0
∂y4

)

]}}
= 0.

Therefore,‖N(u0(x, y, t))‖ = ‖0‖ = 0 < 1
e
.

N(u′(x, y, t)) = L−1
xyt

{
1
s2

{
Lxyt

[
(24t6x8y5 + 24t6x5y8)′ − (xu∂

4u
∂x4

+ yu∂
4u
∂y4

)′
]}}

.

where N ′(u(x, y, t)) represents the partial derivatives ∂
∂x
u(x, y, t) ∂

∂y
u(x, y, t) or ∂

∂t
u(x, y, t).

N( ∂
∂t
u(x, y, t))= L−1

xyt

{
1
s2
Lxyt[144t5x8y5 + 144t5x5y8 − (xu∂

4u
∂x4

+ yu∂
4u
∂y4

)′]
}
.

Then,

N( ∂
∂t
u0(x, y, t))= L−1

xyt

{
1
s2
Lxyt[144t5x8y5 + 144t5x5y8 − (144t5x5y8 + 144t5x8y5)]

}
=0.

N( ∂
∂x
u0(x, y, t))= L−1

xyt

{
1
s2
Lxyt[192t6x7y5 + 120t6x4y8 − (120t6x4y8 + 192t6x7y5)]

}
=0.

N( ∂
∂y
u0(x, y, t))= L−1

xyt

{
1
s2
Lxyt[120t6x8y4 + 192t6x5y7 − (192t6x5y7 + 120t6x8y4)]

}
=0.

Therefore,‖N(u′0(x, y, t))‖ = ‖0‖ = 0 < 1
e
.

N( ∂
2

∂t2
u0(x, y, t))= L−1

xyt

{
1
s2
Lxyt[720t4x8y5 + 720t4x5y8 − (720t4x5y8 + 720t4x8y5)]

}
=0.

N( ∂2

∂x2
u0(x, y, t))= N( ∂2

∂y2
u0(x, y, t))=N( ∂2

∂x∂y
u0(x, y, t))=0.

N( ∂2

∂x∂t
u0(x, y, t))= N( ∂2

∂y∂t
u0(x, y, t))=0.

Therefore,‖N(u′0
′(x, y, t))‖=‖0‖ = 0 < 1

e
.

where N(u′0
′(x, y, t)) represents all the second order partial derivatives ofu0(x, y, t).

Similarly by principle of Mathematical induction we have ,

‖N(u
(3)
0 (x, y, t))‖=‖N(u

(4)
0 (x, y, t))‖ = ... = ‖N(u

(n)
0 (x, y, t))‖ = ‖0‖ = 0 < 1

e
,for all

n ≥ 3, 4, 5, ....

As the condition ,If N is a continuously differentiable functional in a neighborhood of u0

and ‖N(u
(n)
0 (x, y, t))‖ ≤M ≤ e−1 for all n, then the series solution,

u(x, y, t) =
∑∞

i=0 ui(x, y, t) is absolutely convergent and hence the solution obtained by the
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new iterative method is convergent on the domain of interest.

The numerical solution representing the solution behavior of Example 2 is depicted in

Figure 2.

Fig. 2 Solution behavior of Example 2 for t = 2
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Chapter 5

CONCLUSION AND FUTURE

SCOPE

5.1 CONCLUSION

In this study, triple Laplace transform coupled with iterative method is applied to obtain

exact solution of two dimensional nonlinear fourth order parabolic equation subject to

initial and boundary conditions.Illustrative Examples are presented to shows the validity of

the method under consideration.The solutions of Examples 1 - 2 obtained by the proposed

method is solution of the form

u(x, y, t) =
∑∞

n=0 un(x, y, t) = u0(x, y, t) + u1(x, y, t) + u2(x, y, t) + ..+ un(x, y, t) +... and

consists of only one term i.e., u(x, y, t) = u0(x, y, t).

From this study we concluded that triple Laplace transform coupled with iterative method

finds quite practical analytical results with less computational work.

5.2 FUTURE SCOPE

Triple Laplace transform coupled with iterative method can be successfully applied

to solve nonlinear higher dimensional parabolic partial differential equation.
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