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Abstract 

 

In this thesis, we constructed the Green's functionfor corresponding homogeneous equation 

by using its properties. Under the suitable conditions, we established the existence and 

uniqueness of positive solution for four-point boundary value problems by applying 

Krasnoselskii's fixed point theorem and Banach contraction principle respectively. This study 

was mostly dependent on secondary source of data such as journals, books which related to 

our study area and internet. 
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Acronym 

Throughout this research, we denote the following notation. 

R is the set of real numbers. 

𝜕Ω is boundary of omega. 

 BVPs is boundary value problems. 
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CHAPTER ONE 
INTRODUCTION 

1.1. Background of the study 

Differential equations with deviated arguments are found to be important mathematical tools 

for the better understanding of several real-world problems in physics, mechanics, 

engineering, economics, etc. In fact, the theory of integer order differential equations with 

deviated arguments has found its extensive applications in realistic mathematical modeling of 

a wide variety of practical situations and has emerged as an important area of investigation. 

Boundary value problems associated with linear as well as non-linear ordinary differential 

equations or finite difference equations have created a great deal of interest and play an 

important role in many fields of applied mathematics such as engineering design and 

manufacturing. Major industries like automobile, aerospace, pharmaceutical, petroleum, 

electronics and communications as well as emerging technologies like biotechnology and 

nanotechnology rely on the boundary value problems to simulate complex phenomena at 

different scales for designing and manufacturing of high-technological products. In these 

applied setting, positive solutions are meaningful. 

Boundary conditions mean a condition that is required to be satisfied at all or part of the 

boundary of a region in which a set of differential conditions has to be solved. In the field of 

differential equations, a boundary value problem is a differential equation together with a set 

of additional constraints, called the boundary conditions. A solution to a boundary value 

problem is a solution to the differential equation which also satisfies the boundary conditions. 

In analyzing nonlinear phenomena many mathematical models give rise to problems for 

which only positive solutions make sense.Since the publication of the monograph positive 

solutions of operator equations in the year 1964 by academician, M.A. Krasnoselskii, 

hundreds of research articles on the theory of positive solutions of nonlinear problems have 

appeared. The existence of positive solutions of boundary value problems was studied by 

many researchers. We list down few of them which are related to our particular problem. 

Erbe(Erbe, L. H. and Wang, H., 1994), studied the existence of positive solutions of ordinary 

differential equations by using fixed point theorem in cone. 
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𝑢′′(𝑡) + 𝑎(𝑡)𝑓(𝑢(𝑡)) = 0,       0 < 𝑡 < 1

𝛼𝑢(0) − 𝛽𝑢′(0) = 0

𝛾𝑢(1) + 𝛿𝑢′(1) = 0

 

where ([0, ),[0, )),f C   ([0,1],[0, ))a C  and ( ) 0a t  on any interval of[0,1] ,

, , , 0     and 0.        

Lian(Lian, Wong and Yeh, 1996), studied the existence of at least one positive solution and 

multiple positive solutions for the two-point boundary value problems. 

𝑢′′(𝑡) + 𝑓(𝑡, 𝑢(𝑡)) = 0,    0 < 𝑡 < 1

𝛼𝑢(0) − 𝛽𝑢′(0) = 0

𝛾𝑢(1) + 𝛿𝑢′(1) = 0.

 

 For a parameter k≠ 0most of the authors focused on the existence of positive solutions for 

the second-order ordinary differential equations satisfying the Neumann boundary conditions. 

Ruyum(Ruyun Ma, 1998), studied positive solutions of nonlinear three-point boundary value 

problem by using fixed point theorem in cone. 

'' ( ) ( ) 0. (0,1),

(0) 0, ( ) (1),

u a t f u t

u u u 

  

 
 

where 0 1  , 
1

0 


  and , ([0, ),[0, )).f a C    

Wang(Ma, R. and Wang, H., 2003), studied positive solutions of nonlinear three-point 

boundary value problems by applying fixed point theorem in cones. 

(0) 0, ( ) (1),u u u    

where 0 1   and 10 ( ) 1   are given ([0,1],[0, ))h C  and ([0, ),[0, ))f C   . 

Liu (Liu, B., 2004), studied positive solutions of a nonlinear four-point boundary value 

problems by Krasnoselskii’s theorems in a cone. 

''( ) ( ) ( ( )) 0, 0 1,y t a t f y t t     

(0) ( ), (1) ( ),y y y y      

where 0 1, 0 1,       and (1 ) (1 )(1 ) 0a       also , ([0, ),[0, ))a y C   . 
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Zhang (Zhang, X. and Liu, L., 2007), studied positive solutions of fourth-order four-point 

boundary value problems with p-Laplacian operator by using the upper and lower solution 

method and fixed-point theorems. 

[ ( ''( ))]'' ( , ( )), 0 1,p u t f t u t t    with the four-point boundary conditions 

(0) 0, (1) ( ), ''( ) 0, "(1) "( ),u u au u o u bu      

where
2

( ) , 1,0 , 1, ((0,1) (0, ),[0, )).
p

p t t t p f C  


         

Dong and Bai (Dong, X. and Bai, Z., 2008), studied the existence of one or two positive 

solutions for the fourth-order boundary value problem with variable parameters. 

𝑢(4)(𝑡) + 𝐵(𝑡)𝑢′′(𝑡) − 𝐴(𝑡)𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡), 𝑢′′(𝑡)),        0 < 𝑡 < 1

𝑢(0) = 𝑢(1) = 𝑢′′(0) =  𝑢′′(1) = 0.
 

where 𝐴(𝑡), 𝐵(𝑡) ∈ 𝐶[0, 1] and 𝑓(𝑡, 𝑢, 𝑣): [0, 1] × [0,∞) × ℝ → [0,∞) is continuous. 

Benaicha and Haddouchi(Benaicha, S. and Haddouchi, F., 2016), studied positive solutions 

of a nonlinear fourth-order integral boundary value problem. 

1

0

''''( ) ( ( )) 0, (0,1),

'(0) '(1) ''(0) 0, (0) ( ) ( )

u t f u t t

u u u u a s u s ds

  

    
 

where ([0, ),[0, )); ([0,1],[0, ))f C a C     and 
1

0
0 ( ) 1.a s ds   

Xu and Wang (Xu, W. and Wang, H., 2017), studied the Positive Solution of a Nonlinear 

Four-Point Boundary-Value Problem by usingfixed point theorem in cone. 

''( ) ( ) ( ) 0,u t q t f t   

1 2'(0) 0, (1) ( ) ( )u u a u a u    , 

where 0 , 1   , , ([0, ),[0, ))f g C   and 1 2 1a a  . 

Motivated by the above mentioned results, in this paper, we investigated the existence and 

uniqueness of positive solutions for four-point boundary value problems in cone. 

−𝑢′′(𝑡) + 𝑘2𝑢(𝑡) = 𝑓((𝑡, 𝑢(𝑡))  0 ≤ 𝑡 ≤ 1        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     (1.1) 

𝑢(0) − 𝛼𝑢(𝜁) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . …………. . . . . . . . . . (1.2) 

𝑢(1) − 𝛽𝑢(𝜂) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . ……….. . . . . . . . . . . . (1.3), 
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where 0 < 𝜁 < 𝜂 < 1, 𝛼, 𝛽 > 0   𝑘 ≥ 0 is a constant and f is continuous function by 

applying Karsnosel’skiis fixed point theorem and Banach contraction theorem. 

1.2 .Statement of the problem 

Xu and Wang (Xu, W. and Wang, H., 2017), studied the Positive Solution of a Nonlinear 

Four-Point Boundary-Value Problem by usingfixed point theorem in cone. 

''( ) ( ) ( ) 0u t q t f t   

1 2'(0) 0, (1) ( ) ( )u u a u a u     

where 0 , 1   , , ([0, ),[0, ))f g C   and 1 2 1a a  . 

Liu (Liu, B., 2004), studied positive solutions of a nonlinear four-point boundary value  

Problems by Krasnoselskii’s theorem in a cone. 

''( ) ( ) ( ( )) 0, 0 1,y t a t f y t t     

(0) ( ), (1) ( ),y y y y      

where 0 1, 0 1,       and (1 ) (1 )(1 ) 0a       also , ([0, ),[0, )).a y C    

In this Research work, we  concentrated in establishing the existence and uniqueness of 

positive solutions for four-point boundary value problems for (1.1) -(1.3) by using 

Kransnoselskii’s fixed point theorem and Banach Contraction theorem in cone respectively. 

1.3.1 General objective: 

The general objective of this thesis is to study the existence and uniquenessof a positive 

solution for four-point boundary value problems in a cone(1.1) -(1.3).    

1.3.2. Specific Objectives: 

The specific objective of this study was: 

 To construct Green’s function for the corresponding homogeneous equation. 

 To formulate operator equation for the given boundary value problem. 

 Toproveexistence and uniqueness of a positive solution by using Krasnoselskii’s 

fixed point theorem. 

1.4. Significance of the study 

The result of this thesis may have the following importance. 

 The outcome of this thesis may give a better understanding about research for 

the researcher. 

 It may contribute to research activities in the study area. 

 It may provide some background information for other researchers who want 

toconduct a research on related topics. 
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 Furthermore, this thesis was useful for graduate program of the department of 

mathematics. 

1.5 Delimitation of the study  

This study was delimited to finding the existence and uniqueness of a positive 

solutionfor-four point boundary value problems in a cone from (1.1) - (1.3) by using 

Krasnoselskii’s fixed point theorem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

CHAPTER TWO 

REVIEW OF RELATED LITERATURE 

2.1 Over View of Positive Solutions 

Positive solution is very important in diverse disciplines of mathematics since it can be 

applied for solving various problems and it is one of the most dynamic research subjects in 

nonlinear analysis. The existence of positive solutions for boundary value problems has been 

studied by many researchers such as: 

Yang (Yang, B. 2005), studied positive solutions for a fourth order boundary value problem 

''''( ) ( ) ( ( )), 0 1,u t g t f u t t    

''''( ) ( ) ( ( )), 0 1,u t g t f u t t    

where :[0, ) [0, )f    is continuous and :[0,1] [0, )g   is a continuous function such that 

1

0
( ) 0.g t dt   

Bai and Gu (Z.Bai and Z.Gu, 2007), studied positive solutions for some second-order four-

point boundary value problems. 

𝑥"(t) + 𝜆ℎ(𝑡)𝑓(𝑡, 𝑥(𝑡)) =0 , 0< t < 1, 

𝑥(0) = 𝛼𝑥(𝜉), 𝑥(1) =𝛽x (𝜂). 

Nieto (Nieto, J. J., 2013), studied existence of a solution for a three-point second order 

boundary value problem by using fixed point theorem. 

''( ) ( , ( )), 0u t f t u t t T    , 

(0) ( ) ( )u u u T   , 

where 0, :[0, ]T f T R R    is continuous function R and (0, )T . 

Sveikete (Sveikate, N., 2016), studied the existence of solutions on three-point boundary 

value problem by using quasi linearization approach. 

2'' ( , , ')x k x f t x x  , 

(0) 0, (1) ( ),x x x    

where 0 1, 0     and f  may be unbounded. 

 

 

 



7 
 

2.2 Preliminaries 

In this section, we provide some definitions, basic concepts on Green’s function, definition of 

existence of positive solutions and statements of few standard fixed point theorems, which 

are frequently used in thesis. 

Definition.2.1 Let  𝑋 be a non-empty set. A map 𝑇: 𝑋 → 𝑋 is said to be a self-map 

withdomainof 𝑇 = 𝐷(𝑇) = 𝑋 and range of𝑇 = 𝑅(𝑇) = 𝑇(𝑋) ⊆ 𝑋. 

Definition2.2 Let 𝑇: 𝑋 → 𝑋 be self-map. A point 𝑥 in 𝑋 is called fixed point of 𝑇 if 𝑇𝑥 = 𝑥. 

Definition 2.3.Consider the second-order linear differential equation, 

𝑝0(𝑥)𝑦
′′ + 𝑝1(𝑥)𝑦

′ + 𝑝2(𝑥)𝑦 = 𝑟(𝑥),              𝑥 ∈ 𝐽 = [𝛼, 𝛽].  (2.1) 

Where the functions 𝑝0(𝑥), 𝑝1(𝑥), 𝑝2(𝑥)  and 𝑟(𝑥)  are continuous in J and boundary 

conditions of the form 

𝑙1[𝑦] =  𝑎0𝑦(𝛼) + 𝑎1𝑦
′(𝛼) + 𝑏0𝑦(𝛽) + 𝑏1𝑦

′(𝛽) = 𝐴

𝑙2[𝑦] =  𝑐0𝑦(𝛼) + 𝑐1𝑦
′(𝛼) + 𝑑0𝑦(𝛽) + 𝑑1𝑦

′(𝛽) = 𝐵 .   
                                     (2.2) 

Where𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 , ( i =  0, 1) and A, B are given constants.  

The boundary value problem  (2.1) -(2.2)  are calleda non-homogeneous two-point linear 

boundary value problem, where asthe homogeneous differential equation 

𝑝0(𝑥)𝑦
`` + 𝑝1(𝑥)𝑦

′ + 𝑝2(𝑥)𝑦 = 0,         𝑥 ∈ 𝐽 = [𝛼, 𝛽 ](2.3). 

Together with the homogeneous boundary conditions 

𝑙1[𝑦] = 0,          𝑙2[𝑦] = 0                                                            (2.4) 

be called a homogeneous two-point linear boundary value problem. The function called a 

Green’s function 𝐺(𝑥, 𝑡) for the homogeneous boundary value problems   (2.3)-(2.4) and the 

solution of the nonhomogeneous boundary value problem (2.1) - (2.2)  can be explicitly 

expressed in terms of 𝐺(𝑥, 𝑡). 

Obviously, for the homogeneous problem (2.3) - (2.4)  the trivial solution always exists. 

Green’s function 𝐺(𝑥, 𝑡) for the boundary value problem(2.3)-(2.4) is defined in the square 

[𝛼, 𝛽] × [𝛼, 𝛽]and possesses the following fundamental properties: 

(i) 𝐺(𝑥, 𝑡) is continuous in [𝛼, 𝛽] × [𝛼, 𝛽], 

(ii) 𝜕𝐺(𝑥, 𝑡) 𝜕𝑥⁄  is continuous in each of the trianglesα ≤ x ≤ t ≤ β and α ≤ t ≤ x ≤

β; moreover, 

𝜕𝐺(𝑡+,   𝑡) 

𝜕𝑥
−
𝜕𝐺(𝑡−,   𝑡)

𝜕𝑥
 =  −

1

𝑝0(𝑡)
. 

Where
𝜕𝐺(𝑡+,𝑡) 

𝜕𝑥
= lim

𝑥→𝑡
𝑥>𝑡

𝜕𝐺(𝑥,𝑡)

𝜕𝑥
,      

𝜕𝐺(𝑡−,𝑡) 

𝜕𝑥
= lim

𝑥→𝑡
𝑥<𝑡

𝜕𝐺(𝑥,𝑡)

𝜕𝑥
, 



8 
 

(iii) for every   𝑡 ∈ [α, β], z(x) = G(x, t)is a solution of the differential equation(2.3) 

in each of the intervals  [α, t) and (t, β], 

(iv) for every  𝑡 ∈ [α, β], z(x) = G(x, t)satisfies the boundary conditions (2.4). 

These properties completely characterize Green’s function  𝐺(𝑥, 𝑡). 

Definition 2.4 A normed linear space is a linear space 𝑋 in which for each vector 𝑥 there 

corresponds a real number, denoted by ∥ 𝑥 ∥called the norm of 𝑥  and has the following 

properties: 

(i) ∥ 𝑥 ∥≥ 0, for all 𝑥 ∈ 𝑋 and ∥ 𝑥 ∥ = 0 if and only if 𝑥 = 0, 

(ii) ∥ 𝑥 + 𝑦 ∥≤∥ 𝑥 ∥ + ∥ 𝑦 ∥, for all 𝑥, 𝑦 ∈ 𝑋, 

(iii) ∥ 𝛼𝑥 ∥=  |𝛼| ∥ 𝑥 ∥, for all 𝑥 ∈ 𝑋𝑎𝑛𝑑𝛼𝑏𝑒𝑖𝑛𝑔𝑎𝑠𝑐𝑎𝑙𝑎𝑟. 

Definition 2.5 Let 𝑋be a normed linear space with norm denoted by ∥. ∥. A sequence of 

elements {𝑥𝑛} of 𝑋 is a Cauchy sequence, if for every 𝜖 > 0 there exists an integer 𝑁 such 

that   ∥ 𝑥𝑛 − 𝑥𝑚 ∥< 𝜖, for all 𝑚, 𝑛 ≥ 𝑁. 

Definition 2.6 Anormed linear space 𝑋 is said to be complete, if every Cauchy sequence in 𝑋 

converges to a point in𝑋. 

Definition 2.7 ABanach space is a complete normed linear space. 

Definition 2.8 Let 𝐸be a Banach space over 𝑅. A non-empty, convex, closed set 𝑃 ⊂ 𝐸 is 

said to be a cone provided that  

(𝑎)𝛼𝑢 + 𝛽𝑣 ∈ P for all 𝑢, 𝑣 ∈ P and all 𝛼, 𝛽 ≥ 0 and 

(𝑏)𝑢,−𝑢 ∈ P implies 𝑢 = 0 

Theorem (Contraction Mapping Theorem). If 𝑇 is a contraction mapping on a Banach space 

𝑋 with contraction constant α, with 0 ≤ 𝛼 < 1, then 𝑇 has a unique fixed point 𝑥0 ∈ 𝑋. 

Definition 2.9 Let  𝑋and 𝑌  be Banach spaces and  𝑇 ∶ 𝑋 → 𝑌 , 𝑇 is said to be completely 

continuous, if 𝑇  is continuous and for each bounded sequence {𝑥𝑛} ⊂ 𝑋 , {𝑇𝑥𝑛}  has a 

convergent subsequence.  

Definition 2.10 A function 𝑓(𝑡, 𝑦) satisfies a Lipschitz condition in the variable y on a set 

𝐷 ⊂ 𝑅2 if a constant L>0 exists with the absolute value of 𝑓(𝑡, 𝑦1) − 𝑓(𝑡, 𝑦2) ≤ 𝐿|𝑦1 − 𝑦2|, 

whenever, (t, 𝑦1), (𝑦, 𝑦2) are in D and 𝐿 is Lipchitz constant. 

Theorem (Krasnoselskii, M.A, 1964), Let 𝐸 be a Banach space, and let 𝑃 ⊂ 𝐸 be a cone 

in 𝐸.AssumeΩ1, Ω2 are open subsets of 𝐸 𝑤𝑖𝑡ℎ 0 ∈ Ω1, Ω1 ⊂ Ω2, and let 𝑇: 𝑃 ∩ (Ω2\ Ω1) →

𝑃  is a completely continuous operator. Such that either 

(i) ∥ 𝑇𝑢 ∥≤ ∥ 𝑢 ∥, u ∈ 𝑃 ∩ 𝜕Ω1, and ∥ 𝑇𝑢 ∥ ≥ ∥ 𝑢 ∥, u ∈ 𝑃 ∩ 𝜕Ω2,  or 

(ii) ∥ 𝑇𝑢 ∥ ≥ ∥ 𝑢 ∥, u ∈ 𝑃 ∩ 𝜕Ω1, and ∥ 𝑇𝑢 ∥ ≤ ∥ 𝑢 ∥, u ∈ 𝑃 ∩ 𝜕Ω2,  

  Then T has a fixed point in 𝑃 ∩ (Ω2 \ Ω1). 
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CHAPTER THREE 

METHODOLOGY 

This chapter contains study period and site, study design, source of information and 

mathematical procedures. 

3.1 Study period and site  

The study was conducted from December 2021 to February 2022 in Jimma University 

under the department of mathematics. 

3.2 Study design 

In order to achieve the objective of the study we employed analytical method of design.   

3.3 Source of Information 

The relevant sources of information for this study were different mathematics books, 

published articles, journals and related studies from internet.  

3.4 .Mathematical Procedure of the Study 

The study follows the following steps: 

 Existing the definition of second-order four-point boundary value problem. 

 Constructing the Green’s function for the corresponding homogeneous equation. 

 Formulating the equivalent operator equation for the boundary value problem 

(1.1)- (1.3). 

 Prove existence and uniqueness of positive solution for the given operator equation. 
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CHAPTER FOUR 

MAIN RESULT AND DISCUSSION 

4.1 Construction of Green’s Function 

In this section, we construct Green’s function for the associated homogeneous boundary 

value problem corresponding to (1.1) - (1.3).  

Let us consider the boundary value problem  

−𝑢′′(𝑡) + 𝑘2𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡))),        0 ≤ 𝑡 ≤ 1,                     

               𝑢(0) − 𝛼𝑢(𝜉) = 0,                                               

  𝑢(1) − 𝛽𝑢(𝜂) = 0, 

where 𝑘 > 0 is a constant,𝛼 ≥ 0, 𝛽 ≥ 0 𝑎𝑛𝑑 0 < 𝜉 < 𝜂 < 1. 

Lemma4.1 Let 𝑦(𝑡) ∈ C([0,1]) and 𝑦(𝑡) ≥ 0. Then the boundary value problem  

−𝑢′′(𝑡) + 𝑘2𝑢(𝑡) = 𝑦(𝑡),        0 ≤ 𝑡 ≤ 1,                      (4.1) 

               𝑢(0) = 0, 𝑢(1) = 0,      (4.2) 

has a unique solution,  

𝑢(𝑡) = ∫ 𝐻(𝑡, 𝑠)𝑦(𝑠)
1

0
𝑑𝑠. 

Where 𝐻(𝑡, 𝑠) is Green’s function for the homogeneous problem 

−𝑢′′(𝑡) + 𝑘2𝑢(𝑡) = 0, 0 ≤  t ≤  1,     (4.3) 

satisfying the boundary condition (4.2)and given by  

𝐻(𝑡, 𝑠) = {

sinh𝑘𝑡 sinh𝑘(1−𝑠)

𝑘 sinh𝑘
 ,    0 ≤ 𝑡 ≤ 𝑠 ≤ 1

sinh𝑘𝑠 sinh𝑘(1−𝑡)

𝑘 sinh𝑘
 ,    0 ≤ 𝑠 ≤ 𝑡 ≤ 1

.   (4.4) 

Proof:We prove by the properties of Green’s function. Obviously thedifferential equation 

(4.3) with the boundary condition (4.2) has only trivial solution. Green’s function 𝐻(𝑡, 𝑠) 

defined in the square [0, 1] × [0, 1]. Let 𝑢1(𝑡) =  cosh 𝑘𝑡  and 𝑢2(𝑡) = sinh 𝑘𝑡  are the two 

linearly independent solutions of (4.3).  

Green function for second- order two point boundary value problem can be defined in the 

form  

𝐻(𝑡, 𝑠) =  {
𝑢1(𝑡)𝜆1(𝑠) + 𝑢2(𝑡)𝜆2(𝑠)      𝑖𝑓 0 ≤ 𝑡 ≤ 𝑠 ≤ 1

𝑢1(𝑡)𝜇1(𝑠) + 𝑢2(𝑡)𝜇2(𝑠)    𝑖𝑓 0 ≤ 𝑠 ≤ 𝑡 ≤ 1
,                      (4.5) 

where 𝜆1(𝑠), 𝜆2(𝑠), 𝜇1(𝑠)𝑎𝑛𝑑 𝜇2(𝑠)  are functions to be determined. By applying properties 

of Green function (i) and (ii) we obtain  

{
𝑢1(𝑡)(𝜇1(𝑠) − 𝜆1(𝑠)) + 𝑢2(𝑡)(𝜇2(𝑠) − 𝜆2(𝑠)) = 0

𝑢′1(𝑡)(𝜇1(𝑠) − 𝜆1(𝑠)) + 𝑢
′
2(𝑡)(𝜇2(𝑠) − 𝜆2(𝑠)) = −1

 

Let 𝑣1(𝑠) = 𝜇1(𝑠) − 𝜆1(𝑠) and 𝑣2(𝑠) = 𝜇2(𝑠) − 𝜆2(𝑠)                     (*) 
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Then{
𝑐𝑜𝑠ℎ𝑘𝑡 𝑣1(𝑠) + 𝑠𝑖𝑛ℎ𝑘𝑡 𝑣2(𝑠) = 0

𝑘𝑠𝑖𝑛ℎ𝑘𝑡 𝑣1(𝑠) +  𝑘𝑐𝑜𝑠ℎ𝑘𝑡 𝑣2(𝑠) = −1
 

From this we get  

𝑣1(𝑠) =
𝑠𝑖𝑛ℎ𝑘𝑠

𝑘
and𝑣2(𝑠) =

−𝑐𝑜𝑠ℎ𝑘𝑠

𝑘
 

From (*), we have 𝜇1(𝑠) = 𝜆1(𝑠) +
𝑠𝑖𝑛ℎ𝑘𝑠

𝑘
and 𝜇2(𝑠) = 𝜆2(𝑠) −

𝑐𝑜𝑠ℎ𝑘𝑠

𝑘
. 

Substituting the value of 𝜇1 and 𝜇2 in equation (4.5) we have  

1 2

1 2

cosh ( ) ( ) sinh ( ) ( ) 0 1

( , ) 0 1sinh cosh
cosh ( ) ( ) cosh sinh ( ) ( ) sinh

k t s k t s if t s

H t s if s tks ks
k t s kt k t s kt

k k

 

 

   


   
  



. 

𝐻(𝑡, 𝑠)Satisfies the boundary conditions with respect to 𝑡. Hence, 𝜆1(𝑠)and𝜆2(𝑠) uniquely 

determined as  

𝜆1(𝑠) = 0 and 𝜆2(𝑠) =
𝑠𝑖𝑛ℎ𝑘 𝑐𝑜𝑠ℎ𝑘𝑠−𝑐𝑜𝑠ℎ𝑘 𝑠𝑖𝑛ℎ𝑘𝑠

𝑘𝑠𝑖𝑛ℎ 𝑘
=

𝑠𝑖𝑛ℎ𝑘(1−𝑠)

𝑘𝑠𝑖𝑛ℎ𝑘
. Finally, substituting the value of 

𝜇1, 𝜇2. 𝜆1, and 𝜆2 in equation (4.5) we arrive on the required Green’s function 

𝐻(𝑡, 𝑠) = {

sinh𝑘𝑡 sinh𝑘(1−𝑠)

𝑘 sinh𝑘
 ,    0 ≤ 𝑡 ≤ 𝑠 ≤ 1

sinh𝑘𝑠 sinh𝑘(1−𝑡)

𝑘 sinh𝑘
 ,    0 ≤ 𝑠 ≤ 𝑡 ≤ 1

,    

and the solution of the BVP  

−𝑢′′ + 𝑘2𝑢 = 𝑓(𝑡, 𝑢(𝑠)), 

𝑢(0) = 0, 𝑢(1) = 0,   

is given by 

 𝜔(𝑡) = ∫ 𝐻(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠,
1

0
 (4.6)   

and𝜔(0) = 0,𝜔(1) = 0, 𝜔(𝜂) = ∫ 𝐻(𝜂, 𝑠)𝑓(𝑠, 𝑢(𝑠)))𝑑𝑠.  
1

0
     

Lemma 4.2      𝐻(𝑡, 𝑠) has the following properties  

i, 𝐻(𝑡, 𝑠) ≤ 𝐻(𝑠, 𝑠),for all 𝑡, 𝑠 ∈ [0,1]. 

ii, 𝐻(𝑡, 𝑠) ≥ 𝑁𝐻(𝑠, 𝑠), for all 𝑡 ∈ [𝛿, 1 − 𝛿], 𝑠 ∈ [0,1], 𝑁 =
sinh𝑘𝛿

sinh𝑘
. 

Proof:  we prove this lemma by splitting in to different cases. 

i. 𝐻(𝑡, 𝑠)is positive for all 𝑡, 𝑠 ∈ [0,1] 

for 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, we have  

𝐻(𝑡, 𝑠)

𝐻(𝑠, 𝑠)
=
sinh 𝑘𝑠 sinh𝑘(1 − 𝑡)

sinh 𝑘𝑠 sinh 𝑘(1 − 𝑠)
=
sinhk(1 − t)

sinhk(1 − s)
 ≤ 1 

⟹  𝐻(𝑡, 𝑠) ≤ 𝐻(𝑠, 𝑠),          𝑡, 𝑠 ∈ [0,1] 

For 0 ≤ 𝑡 ≤ 𝑠 ≤ 1 we have  
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𝐻(𝑡, 𝑠)

𝐻(𝑠, 𝑠)
=
sinh 𝑘𝑡 sinh 𝑘(1 − 𝑠)

sinh 𝑘𝑠 sinh 𝑘(1 − 𝑠)
=
sinhkt

sinhks
 ≤ 1. 

⟹  𝐻(𝑡, 𝑠) ≤ 𝐻(𝑠, 𝑠),          𝑡, 𝑠 ∈ [0,1]. 

ii. If 𝑠 ≤ 𝑡 for 𝑡 ∈ [𝛿, 1 − 𝛿], 𝑠 ∈ [0,1], we have  

𝐻(𝑡, 𝑠)

𝐻(𝑠, 𝑠)
=
sinh𝑘𝑠 sinh𝑘(1 − 𝑡)

sinh 𝑘𝑠 sinh 𝑘(1 − 𝑠)
≥
sinh 𝑘 𝛿

sinh 𝑘
. 

 

⟹  𝐻(𝑡, 𝑠) ≥ 𝑁𝐻(𝑠, 𝑠). 

If 𝑡 ≤ 𝑠 for 𝑡 ∈ [𝛿, 1 − 𝛿], 𝑠 ∈ [0,1], we have 

𝐻(𝑡, 𝑠)

𝐻(𝑠, 𝑠)
=
sinh𝑘𝑡 sinh 𝑘(1 − 𝑠)

sinh 𝑘𝑠 sinh 𝑘(1 − 𝑠)
≥
sinh 𝑘 𝛿

sinh 𝑘
. 

 

⟹  𝐻(𝑡, 𝑠) ≥ 𝑁𝐻(𝑠, 𝑠). 

Lemma 4.3Let𝛼 ≥ 0, 𝛽 ≥ 0, 0 < 𝜉 < 𝜂 < 1 and 𝑓(𝑡, 𝑢(𝑡)) ∈ 𝐶([0, 1] × [0,∞), [0,∞)). 

Then the boundary value problem (1.1)-(1.3) has a unique solution  

𝑢(𝑡) = ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0
,       (4.7)  

where 

 

 

[ sinh sinh (1 )]sinh sinh (1 )
( , ) ( , ) ( , )

sinh (1 )sinh (sinh sinh )sinh (1 )
( , ). (4.7 )

k k k k t
G t s H t s H s

k kt k k k t
H s a

   


   


  
  

   
 

And Δ = 𝛼𝛽𝑠𝑖𝑛ℎ𝑘 𝑠𝑖𝑛ℎ𝑘(𝜂 − 𝜉) + 𝑠𝑖𝑛ℎ2𝑘 − 𝛼𝑠𝑖𝑛ℎ𝑘(1 − 𝜉) − 𝛽𝑠𝑖𝑛ℎ𝑘 𝑠𝑖𝑛ℎ𝑘𝜉 > 0.  

Proof:The four point boundary value problem (1.1)-(1.3) can be obtained by 

replacing  𝑢(0) = 0 by 𝑢(0) = 𝛼𝑢(𝜉)  and 𝑢(1) = 0 by 𝑢(1) = 𝛽𝑢(𝜂)  in (4.2).Thus we 

suppose the solution of the four-point boundary value problem (1.1)-(1.3) can be expressed 

by𝑢(𝑡) = 𝜔(𝑡) + 𝐵1𝑠𝑖𝑛ℎ𝑘𝑡 + 𝐵2𝑠𝑖𝑛ℎ𝑘(1 − 𝑡),     (4.8) 

where𝐵1 and 𝐵2 will be determined. 

{
 
 

 
 

𝑢(0) = 𝐵2𝑠𝑖𝑛ℎ𝑘 = 𝛼𝑢(𝜉)

𝑢(1) = 𝐵1𝑠𝑖𝑛ℎ𝑘 = 𝛽𝑢(𝜂)

𝑢(𝜉) = ∫ 𝐻(𝜉, 𝑠)𝑓(𝑡, 𝑢(𝑠))𝑑𝑠 + 𝐵1𝑠𝑖𝑛ℎ𝑘𝜉 + 𝐵2𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)
1

0

𝑢(𝜂) = ∫ 𝐻(𝜂, 𝑠)𝑓(𝑡, 𝑢(𝑠))𝑑𝑠 + 𝐵1𝑠𝑖𝑛ℎ𝑘𝜂 + 𝐵2𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)
1

0

 (4.9) 
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𝐵2𝑠𝑖𝑛ℎ𝑘 = 𝛼 ∫ 𝐻(𝜉, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠 + 𝛼𝐵1𝑠𝑖𝑛ℎ𝑘𝜉 + 𝛼𝐵2𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)
1

0
    

−𝛼𝐵1𝑠𝑖𝑛ℎ𝑘𝜉 + 𝐵2(𝑠𝑖𝑛ℎ𝑘 − 𝛼𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)) = 𝛼 ∫ 𝐻𝑓(𝑠, 𝑦(𝑠))𝑑𝑠
1

0
.  (4.10) 

𝐵1𝑠𝑖𝑛ℎ𝑘 = 𝛽 ∫ 𝐻(𝜂, 𝑠)𝑓(𝑠, 𝑦(𝑠))𝑑𝑠 + 𝛽𝐵1𝑠𝑖𝑛ℎ𝑘𝜂 + 𝛽𝐵2𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)
1

0
    

−𝐵1(𝑠𝑖𝑛ℎ𝑘 − 𝛽𝑠𝑖𝑛ℎ𝑘𝜂) − 𝛽𝐵2𝑠𝑖𝑛ℎ𝑘(1 − 𝜂) = 𝛽 ∫ 𝐻(𝜂, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0
. (4.11) 

Solving equation (4.10) and (4.11) simultaneously we have 

𝐵1 =

|
∫ 𝛽𝐻(𝜂,𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠
1
0 −𝛽𝑠𝑖𝑛ℎ𝑘(1−𝜂)

∫ 𝛼𝐻(𝜉,𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠
1
0 𝑠𝑖𝑛ℎ𝑘−𝛼𝑠𝑖𝑛ℎ𝑘(1−𝜉)

|

|
𝑠𝑖𝑛ℎ𝑘−𝛽𝑠𝑖𝑛ℎ𝑘𝜂 −𝛽𝑠𝑖𝑛ℎ𝑘(1−𝜂)

−𝛼𝑠𝑖𝑛ℎ𝑘𝜉 𝑠𝑖𝑛ℎ𝑘−𝛼𝑠𝑖𝑛ℎ𝑘(1−𝜉)
|

; 

and 

𝐵2 =

|
𝑠𝑖𝑛ℎ𝑘−𝛽𝑠𝑖𝑛ℎ𝑘𝜂 ∫ 𝛽𝐻(𝜂,𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠

1
0

−𝛼𝑠𝑖𝑛ℎ𝑘𝜉 ∫ 𝛼𝐻(𝜉,𝑠)𝑓(𝑠,𝑢(𝑠)𝑑𝑠
1
0

|

|
𝑠𝑖𝑛ℎ𝑘−𝛽𝑠𝑖𝑛ℎ𝑘𝜂 −𝛽𝑠𝑖𝑛ℎ𝑘(1−𝜂)

−𝛼𝑠𝑖𝑛ℎ𝑘𝜉 𝑠𝑖𝑛ℎ𝑘−𝛼𝑠𝑖𝑛ℎ𝑘(1−𝜉)
|
; 

Computing for  𝐵1 and 𝐵2 we get  

𝐵1 =
[𝛽𝑠𝑖𝑛ℎ𝑘−𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1−𝜉)] ∫ 𝐻(𝜂,𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠+𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1−𝜂)∫ 𝐻(𝜉,𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠

1
0

1
0

Δ
and 

1 1

0 0
2

[sinh sinh ] ( , ) ( , ( )) sinh ( , ) ( , ( ))k k H s f s u s ds k H s f s u s ds
B

      


 
. 

Substituting 𝐵1 and 𝐵2 in equation (4.8)  

𝑢(𝑡)   = 𝜔(𝑡) +

[𝛽𝑠𝑖𝑛ℎ𝑘−𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1−𝜉)] ∫ 𝐻(𝜂,𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠+𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1−𝜂)∫ 𝐻(𝜉,𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠
1
0

1
0

Δ
𝑠𝑖𝑛ℎ𝑘𝑡 +

[𝑠𝑖𝑛ℎ𝑘−𝛽𝛼𝑠𝑖𝑛ℎ𝑘𝜂] ∫ 𝐻(𝜉,𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠+𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉 ∫ 𝐻(𝜂,𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠
1
0

1
0

Δ
𝑠𝑖𝑛ℎ𝑘(1 − 𝑡).   

Rearranging  
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 

 

1

1
0

0

1

0

[ sinh sinh (1 )]sinh sinh sinh (1 ) ( , ) ( , ( ))
( , ) ( , ( ))

sinh (1 )sinh (sinh sinh )sinh (1 )
( , ) ( , ( )) .

k k kt k k t H s f s u s ds
H t s f s u s ds

k kt k k k t
H s f s u s ds

     

   


   


   






In closed form the above equation re-written as  

𝑢(𝑡)

= ∫ [𝐻(𝑡, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝜂, 𝑠)

1

0

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝜉, 𝑠)]𝑓(𝑠, 𝑢(𝑠))𝑑𝑠. 

Before stating the results we make the following assumptions throughout the thesis.  

A1. 𝑓(𝑡, 𝑢(𝑡)) ∶ [0, 1] × [0,∞) → [0,∞), is continuous. 

A2. 0 < 𝜉 ≤ 𝜂 < 1, 𝑠𝑖𝑛ℎ𝑘 > 𝛼𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)and𝑠𝑖𝑛ℎ𝑘 > 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂. 

Lemma 4.4 The function 𝐺(𝑡, 𝑠) possesses the following properties. 

𝐺(𝑡, 𝑠) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡, 𝑠 ∈ [0, 1]. 

                                          𝐺(𝑡, 𝑠) ≤ 𝑀𝐻(𝑠, 𝑠), 𝑀 = max {𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5, 𝑀6}. 

𝐺(𝑡, 𝑠) ≥ Π𝐻(𝑠, 𝑠). 

Proof;Consider𝐺(𝑡, 𝑠) given by (4.7a). 

From assumption A2 and the positivity of 𝐻(𝑡, 𝑠) for all 𝑡, 𝑠 ∈ [0, 1] we assure that 𝐺(𝑡, 𝑠) is 

nonnegative.  

We prove the second part of the Lemma by considering different cases 

𝐺(𝑡, 𝑠) = 𝐻(𝑡, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝜂, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝜉, 𝑠). 

Case I:Let 0 ≤ 𝑠 ≤ min{𝑡. 𝜁} ≤ 1. We have the following. 
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𝐺(𝑡, 𝑠) ≤ 𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠); 

 

≤  𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘}

∆
𝐻(𝑠, 𝑠); 

𝐺(𝑡, 𝑠) ≤ [ 1 +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘}

∆

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘}

∆
]𝐻(𝑠, 𝑠). 

Thus 𝐺(𝑡, 𝑠) ≤ 𝑀1𝐻(𝑠, 𝑠).        (4.12)  

Case II: Let 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜉 ≤ 𝜂. 

𝐺(𝑡, 𝑠) ≤ 𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠); 

 

≤  𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝜉 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝜉 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘}

∆
𝐻(𝑠, 𝑠); 

𝐺(𝑡, 𝑠) ≤ [ 1 +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝜉 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝝃𝑠𝑖𝑛ℎ𝑘}

∆

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝜉 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘}

∆
]𝐻(𝑠, 𝑠). 

Hence, 𝐺(𝑡, 𝑆) ≤ 𝑀2𝐻(𝑠, 𝑠).                                                                                (4.13) 

Case III: Let 0 ≤ ξ ≤ s ≤ min{η, t}. 
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𝐺(𝑡, 𝑠) ≤ 𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠); 

 

≤  𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)}

∆
𝐻(𝑠, 𝑠); 

𝐺(𝑡, 𝑠) ≤ [ 1 +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)}

∆

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)}

∆
]𝐻(𝑠, 𝑠). 

Hence, 𝐺(𝑡, 𝑆) ≤ 𝑀3𝐻(𝑠, 𝑠).                                                                  (4.14)  

    

Case IV:Letmax{𝑡, 𝜉} ≤ 𝑠 ≤ 𝜂 < 1. 

𝐺(𝑡, 𝑠) ≤ 𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠); 

 

≤  𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝜂 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝜂 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘}

∆
𝐻(𝑠, 𝑠); 

𝐺(𝑡, 𝑠) ≤ [ 1 +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝜂 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘}

∆

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝜂 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘}

∆
]𝐻(𝑠, 𝑠). 

Hence, 𝐺(𝑡, 𝑆) ≤ 𝑀4𝐻(𝑠, 𝑠). (4.15) 

Case V:Let 0 ≤ 𝜉 ≤ 𝜂 ≤ 𝑠 ≤  𝑡. 
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𝐺(𝑡, 𝑠) ≤ 𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠); 

 

≤  𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)}

∆
𝐻(𝑠, 𝑠); 

𝐺(𝑡, 𝑠) ≤ [ 1 +
{[𝜷𝒔𝒊𝒏𝒉𝒌 − 𝜶𝜷𝒔𝒊𝒏𝒉𝒌(𝟏 − 𝝃)]𝑠𝑖𝑛ℎ𝑘 + 𝜶𝜷𝒔𝒊𝒏𝒉𝒌𝝃𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)}

∆

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)}

∆
]𝐻(𝑠, 𝑠). 

Thus, 𝐺(𝑡, 𝑠) ≤ 𝑀5𝐻(𝑠, 𝑠).                                                                            (4.16)  

   

Case VI:Letmax {𝜂, 𝑡} ≤ 𝑠 ≤ 1. 

𝐺(𝑡, 𝑠) ≤ 𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠); 

 

≤  𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘}

∆
𝐻(𝑠, 𝑠); 

𝐺(𝑡, 𝑠) ≤ [ 1 +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘}

∆

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘}

∆
]𝐻(𝑠, 𝑠). 

Thus, 𝐺(𝑡, 𝑠) ≤ 𝑀6𝐻(𝑠, 𝑠).(4.17) 

Setting, 𝑀 = max{𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5, 𝑀6}. 

For all𝑡, 𝑠, ∈ [0, 1] , 𝐺(𝑡, 𝑠) ≤ 𝑀𝐻(𝑠, 𝑠). 
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iii) We prove the third part of the Lemma by considering different cases as we proved (ii) 

𝐺(𝑡, 𝑠) = 𝐻(𝑡, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝜂, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝜉, 𝑠). 

Case I: Let0 ≤ 𝑠 ≤ min{𝑡. 𝜁} ≤ 1. We have the following. 

𝐺(𝑡, 𝑠) ≥ 𝑁[𝐻(𝑠, 𝑠)

+
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)]; 

 

  ≥ 𝑁 𝐻(𝑠, 𝑠). 

Therefore, 𝐺(𝑡, 𝑠) ≥ 𝑁𝐻(𝑠, 𝑠). 

Case II: Let 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜉 ≤ 𝜂. 

𝐺(𝑡, 𝑠) ≥ 𝑁[𝐻(𝑠, 𝑠)

+
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)]; 

≥ 𝑁 𝐻(𝑠, 𝑠) +
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)}

∆
𝑁𝐻(𝑠, 𝑠)

+
{(𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)}

∆
𝑁𝐻(𝑠, 𝑠); 

≥ [1 +
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)}

∆
+
{(𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)}

∆
]𝑁𝐻(𝑠, 𝑠). 

Hence, 𝐺(𝑡, 𝑆) ≥ 𝑁2𝐻(𝑠, 𝑠).          

Case III:Let 0 ≤ 𝜉 ≤ 𝑠 ≤ min{𝜂, 𝑡}. 
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𝐺(𝑡, 𝑠) ≥ 𝑁[𝐻(𝑠, 𝑠)

+
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)];

≥ 𝑁𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝜉}

∆
𝑁𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝜉}

∆
𝑁𝐻(𝑠, 𝑠); 

𝐺(𝑡, 𝑠) ≥ [ 1 +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝜉}

∆

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝜉}

∆
]𝑁𝐻(𝑠, 𝑠). 

Hence, 𝐺(𝑡, 𝑆) ≥ 𝑁3𝐻(𝑠, 𝑠).          

Case IV:Let max{𝑡, 𝜉} ≤ 𝑠 ≤ 𝜂 < 1. 

𝐺(𝑡, 𝑠) ≥ 𝑁[𝐻(𝑠, 𝑠)

+
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝐻(𝑠, 𝑠)]; 

 

≥ 𝑁𝐻(𝑠, 𝑠) +
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)}

∆
𝑁𝐻(𝑠, 𝑠)

+
{(𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)}

∆
𝑁𝐻(𝑠, 𝑠); 

𝐺(𝑡, 𝑠) ≥ [ 1 +
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)}

∆

+
{(𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)}

∆
]𝑁𝐻(𝑠, 𝑠). 

Hence, 𝐺(𝑡, 𝑆) ≥ 𝑁4𝐻(𝑠, 𝑠).          

Case V:Let 0 ≤ 𝜉 ≤ 𝜂 ≤ 𝑠 ≤  𝑡. 
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𝐺(𝑡, 𝑠) ≥ 𝑁𝐻(𝑠, 𝑠)

+
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝑁𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝑁𝐻(𝑠, 𝑠); 

 

≥ 𝑁𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝜂}

∆
𝑁𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝜂}

∆
𝑁𝐻(𝑠, 𝑠); 

𝐺(𝑡, 𝑠) ≥ [ 1 +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝜂}

∆

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝜂}

∆
]𝑁𝐻(𝑠, 𝑠). 

Thus, 𝐺(𝑡, 𝑠) ≥ 𝑁5𝐻(𝑠, 𝑠).          

Case VI:Letmax {𝜂, 𝑡} ≤ 𝑠 ≤ 1. 

𝐺(𝑡, 𝑠) ≥ 𝑁𝐻(𝑠, 𝑠)

+
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝑡 + 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜉𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝑁𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝑡 + (𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘𝜂)𝑠𝑖𝑛ℎ𝑘(1 − 𝑡)}

∆
𝑁𝐻(𝑠, 𝑠); 

 

≥ 𝑁𝐻(𝑠, 𝑠) +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝜂}

∆
𝑁𝐻(𝑠, 𝑠)

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝜂}

∆
𝑁𝐻(𝑠, 𝑠); 

𝐺(𝑡, 𝑠) ≥ [ 1 +
{[𝛽𝑠𝑖𝑛ℎ𝑘 − 𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜉)]𝑠𝑖𝑛ℎ𝑘𝜂}

∆

+
{𝛼𝛽𝑠𝑖𝑛ℎ𝑘(1 − 𝜂)𝑠𝑖𝑛ℎ𝑘𝜂}

∆
]𝑁𝐻(𝑠, 𝑠). 

Thus, 𝐺(𝑡, 𝑠) ≥ 𝑁6𝐻(𝑠, 𝑠).          

Setting, Π = min{𝑁, 𝑁2, 𝑁3, 𝑁4, 𝑁5, 𝑁6}.     (4.18) 
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From the above six cases we conclude that for all 𝑡, 𝑠, ∈ [0, 1] ,               

𝐺(𝑡, 𝑠) ≥ Π𝐻(𝑠, 𝑠).    

4.2 Existence of One Positive Solution 

 In this section, we prove the existence of at least one positive solutions for second order four 

point boundary value problem (1.1)- (1.3) by applying Krasnoselskii’sFixed point theorem,  

To establish existence of at least one positive solutions for Four point BVP (1.1)-(1.3) we use 

the following Krasnoselskii’sfixed point theorem  

Consider the Banach space 𝐸 =  {𝑢 ∶  𝑢 ∈  𝐶[0, 1]} equipped with the norm 

‖𝑢‖ = max
𝑡∈[0,1]

|𝑢(𝑡)|. 

Define a cone P ⊂ E by  

𝑃 = {𝑢 ∈ 𝐸: 𝑢(𝑡) ≥ 0, 𝑡 ∈ [0, 1] 𝑎𝑛𝑑 min
𝑡∈(0,1]

𝑢(𝑡) ≥ Π‖𝑢‖}.    (4.19) 

whereΠ is given in Equation (4.18).  

Let 𝑇: 𝑃 ⟶ 𝑃  be the operator defined by  

𝑇𝑢(𝑡) = ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠,       𝑡 ∈ [0, 1].
1

0
    (4.20) 

Lemma 4.5: The operator 𝑇defined in (4.20) is a self-map on 𝑃 and completely continuous. 

Proof:𝑇𝑢(𝑡) = ∫ [𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))]
1

0
𝑑𝑠 ≤ ∫ [𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))]

1

0
𝑑𝑠. 

Note that, by the non-negativity of G and f, one has ‖𝑇𝑢‖ ≤ ∫ [𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))]
1

0
𝑑𝑠 from 

which we have, 

min𝑇𝑢(𝑡) ≥ min∫[𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))]

1

0

𝑑𝑠 = 𝜋∫[𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))]

1

0

𝑑𝑠  𝑡 ∈ (0,1], 

where𝜋  is given in eq.(4.18) 

⟹ ‖𝑇𝑢‖  ≥ 𝜋‖𝑇𝑢‖,  where‖𝑢‖ ∈ 𝑃. 

Therefore, 𝑇: 𝑃 → 𝑃   is a self-map.Since, 𝐺(𝑡, 𝑠)𝑎𝑛𝑑 𝑓(𝑡, 𝑢(𝑠))are continuous the map 𝑇  is 

completely continuous. 

In this thesis we consider the second order BVPs 

−𝑢„ + 𝑘2𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ [0,1], with boundary conditions: 

 𝑢(0) − 𝛼𝑢(𝜁) = 0, 

𝑢(1) + 𝛽𝑢(𝜂) = 0, 

where 0 < 𝜁 < 𝜂 < 1, 𝛼, 𝛽 > 0 𝑎𝑛𝑑   𝑘 ≥ 0 is a constant. 

The following conditions will be assumed throughout. 
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𝐶1: 0 ≤ ∫[𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))]

1

0

𝑑𝑠 ≤ ∞. 

𝑪2: 𝑓[0,1] × [0,∞) → [0,∞)is a continuous function. 

𝑪3: 𝑃 = 𝛾𝛽 + 𝛼𝛾 + 𝛼𝛿 > 0, 𝛼, 𝛽, 𝛾, 𝛿 ≥ 0. By using Karsnosel’skiis fixed point theorem 

the existence of positive solution of (1.1)-(1.3) is obtained in the case when, f is either 

super linear or sublinear. To be precise, we define the nonnegative extended real number 

𝑓0, 𝑓
0, 𝑓∞ 𝑎𝑛𝑑 𝑓

∞ as follow. 

𝑓0 = lim
𝑢→0+

sup
𝑡∈[0,1]

𝑓(𝑡,𝑢(𝑡))

𝑢(𝑡)
= 0,𝑓∞ = lim

𝑢→∞
min
𝑡∈[0,1]

𝑓(𝑡,𝑢(𝑡))

𝑢(𝑡)
= ∞  in super linear case. 

𝑓0 = lim
𝑢→0+

inf
𝑡∈[0,1]

𝑓(𝑡,𝑢(𝑡))

𝑢(𝑡)
= ∞,𝑓∞ = lim

𝑢→∞
max
𝑡∈[0,1]

𝑓(𝑡,𝑢(𝑡))

𝑢(𝑡)
= 0  in sublinear case. 

By a positive solution 𝑢(𝑡) of (1.1)-(1.3) we understand a solution 𝑢(𝑡) which is positive 

on 𝑡 ∈ [0,1] and satisfies eq. (1.1) for 0 ≤ 𝑡 ≤ 1  and the boundary conditions (1.2) and 

(1.3). 

Theorem 1: Assume that the conditions C1-C3 are satisfied. If 𝑓0 = 0 and 𝑓∞ = ∞ then 

the boundary value problem has at least one positive solution. 

Proof: Now since 𝑓0 = 0 , there exists  𝐴1 ∈ [0,1] ≥ 0, 

lim
𝑢→0+

sup
𝑡∈[0,1]

𝑓(𝑡,𝑢(𝑡))

𝑢(𝑡)
= 0, ⃒ sup

𝑡∈[0,1]

𝑓(𝑡,𝑢(𝑡))

𝑢(𝑡)
⃒ < 𝜂  𝑤ℎ𝑒𝑟𝑒 𝜂 ≥ 0,  

sup
𝑡∈[0,1]

𝑓(𝑡,𝑢(𝑡))

𝑢(𝑡)
< 𝜂 , so that 𝑓(𝑡, 𝑢(𝑡)) < 𝜂,   𝜂 > 0 satisfy for every 𝑢 ∈ 𝑃 and ‖𝑢‖ = 𝐴1 

for 0 < 𝑢 < 𝐴1 where 𝜂 satisfies 

𝜂 ∫ [𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))]
1

0
𝑑𝑠.                                                                                                      (2.21) 

𝑇𝑢(𝑡) = ∫[𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))]

1

0

𝑑𝑠  

                ≤ ∫[𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))]

1

0

𝑑𝑠 ≤ 𝜂∫[𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))]

1

0

𝑑𝑠 

≤ ‖𝑢‖by(2.21) . 

Consequently,‖𝑇𝑢‖ ≤ ‖𝑢‖ So, if we set Ω1 = {𝑢 ∈ 𝐸: ‖𝑢‖ < 𝐴1}, then  

‖𝑇𝑢‖ ≤ ‖𝑢‖for 𝑢 ∈ 𝑃 ∩ Ω1.                                                                                    (2.22) 

Next, considering 𝑓∞ = ∞  , lim
𝑢→∞

min
𝑡∈[0,1]

𝑓(𝑡,𝑢(𝑡))

𝑢(𝑡)
= ∞ there exists  𝜂𝜄 > 0 and  𝐴2̅̅ ̅ > 0 . Let  

𝐴2 = min {2𝐴1, 𝜋      and let   Ω2 = {𝑢 ∈ 𝐸: ‖𝑢‖ < 𝐴2} , 



23 
 

If 𝑢 ∈ 𝑃 with ‖𝑢‖ = 𝐴2 then min
𝑡∈[0,1]

𝑓(𝑡,𝑢(𝑡))

𝑢(𝑡)
>𝜂𝜄 , 𝑓(𝑢(𝑡)) > 𝜂𝜄𝑢(𝑡)for 𝑢 ∈ 𝜋2. 

Where 𝜂𝜄 satisfy 𝜂1𝜋2 ∫ [𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))]
3
4
1
4

𝑑𝑠 ≥ 1.                                  (2.23) 

𝑇𝑢(𝑡) = ∫[𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))]

1

0

𝑑𝑠  

≥ min
𝑡∈[1

4
,
3

4
]
∫[𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))]

1

0

𝑑𝑠 ≥ 𝜂1∫[𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))]

1

0

𝑑𝑠 

 

   ≥ 𝜂1𝜋2∫[𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))]

3
4

1
4

𝑑𝑠‖𝑢‖ 

                ≥ ‖𝑢‖by (4.21). 

Hence,‖𝑇𝑢‖ ≥ ‖𝑢‖for 𝑢 ∈ 𝑃 ∩ 𝛼Ω2. 

Therefore, by first part of fixed-point theorem, it follows that T has in  𝑃 ∩ ( Ω2̅̅̅̅ \Ω1) such 

that 𝐴1 ≤ ‖𝑢‖ ≤ 𝐴2 by Kransnofelskii fixed-point theorem. Further since, Green’s function 

positive. It follows that 𝑢(𝑡) > 0 for 𝑡 ∈ [0,1] and 𝑢(𝑡) is a desired solution for (1.1)-(1.3). 

The proof is complete. 

Theorem (2): Assume that conditions 𝑐1, 𝑐2,    𝑎𝑛𝑑 𝑐3 are satisfied if 𝑓0 = ∞ and𝑓∞=0, then 

the boundary value problem has at least one positive solutions that lies in𝑃. 

Proof: Let 𝑇 bethe preserving, completely continuous operator defined by Lemma (2.20) 

beginning with 𝑓𝑜 =∞ , there exits an 𝐴1 > 0, 𝜀 >0 and satisfy 

𝜂1 𝜋 ∫ 𝐺(𝑠, 𝑠)
3

4
1

4

𝑓(𝑠, 𝑢(𝑠))𝑑𝑠 ≥ 1.(2.24) 

𝑓0= 
lim𝑚𝑖𝑛

𝑓(𝑡,𝑢(𝑡))

𝑢(𝑡)
 = ∞

𝑢 → 0+, 𝑡 ∈ [0,1]
 

𝑓(𝑡,𝑢(𝑡))

𝑢(𝑡)
≥ 𝜉1for 0< 𝑢 ≤ 𝐴1 ,𝑓(𝑡, 𝑢𝑡)) ≥ 𝜉1u. 

where𝜉1 ≥ 𝜂2 and𝜂2 is given above. Then for u∈ 𝑝 and ||u|| = 𝐴1, we have 

𝑇𝑢(𝑡) =  ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0

≥ 𝜋∫ 𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠

3

4

1

4

 

                                                                            ≥ 𝜉1 𝜋∫ 𝐺(𝑠, 𝑠)𝑓(𝑠. 𝑢(𝑠))

3

4

1

4

𝑑𝑠 ‖𝑢‖ 



24 
 

                                                                           ≥ ||𝑢||𝜉2 𝜋∫ 𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠

3

4

1

4

 

≥ ‖𝑢‖by (2.24). 

Thus‖𝑢‖ ≥ ‖𝑢‖,so, if we let Ω1 = {𝑢 ∈ 𝐸: ‖𝑢‖ < 𝐴1}, then 

‖𝑇𝑢‖ ≥ ‖𝑢‖, for 𝑢 ∈ 𝑝 ∩ 𝛼Ω1.(2.25) 

It remains to consider 𝑓∞=0, there exists an𝐴2̅̅ ̅ > 0 such that𝑓(𝑡, 𝑢(𝑡)) ≤ 𝜉2𝑢 for all 

u ≥ 𝐴2̅̅ ̅, where 𝜉2 > 0. 

Satisfies. 

 
1

2
0

( , ) ( , ( )) 1. 2.26G s s f s u s ds   

there are twocases: 

case (𝑖):  𝑓 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑  𝑎𝑛𝑑 case (𝑖𝑖):  𝑓 𝑖𝑠 𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑 

Case (i): Suppose N> 0  is such that 𝑓(𝑡, 𝑢(𝑡)) ≤ 𝑁 𝑓𝑜𝑟 0 < 𝑢 < ∞, 

𝑓∞ =
lim 𝑚𝑎𝑥

𝑢 → ∞ 𝑡 ∈ [0,1]
𝑓(𝑡,𝑢(𝑡))

𝑢(𝑡)
  =0, 

𝑓(𝑡, 𝑢(𝑡)) ≤ 𝜉2𝑢(𝑡) = N for u(t) > 𝐴2 > 0. 

𝐿𝑒𝑡 𝐴2 = max{2𝐴1, 𝑁 ∫ 𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0
}. 

𝑇ℎ𝑒𝑛, 𝑓𝑜𝑟 𝑢(𝑡) ∈ 𝑝 𝑤𝑖𝑡ℎ ||𝑢|| = 2A .We have 

𝑇𝑢(𝑡) = ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0

 

≤ ∫ 𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0

 

≤ ∫ 𝐺(𝑠, 𝑠)𝑑𝑠𝜉2

1

0

𝑢 

= 𝑁∫ 𝐺(𝑠, 𝑠)𝑑𝑠 ≤ 𝐴2 
1

0
= ||u|| 

𝑆𝑜 𝑡ℎ𝑎𝑡   ‖𝑢‖ ≤ ‖𝑢‖.  𝑆𝑜 , 𝑖𝑓 Ω2 ={𝑢 ∈ 𝐸: ||𝑢|| < 𝐴2}then   

‖𝑢‖ ≤ ||𝑢||for𝑢 ∈ 𝑝 ∩ 𝛼Ω2.(2.27) 

Case(𝑖𝑖):  Suppose 𝑓 is unbounded then,   

Let 𝐴2 > 𝑚𝑎𝑥{2𝐴1,𝐴2̅̅ ̅}  be such that 𝑓(𝑡, 𝑢(𝑡)) ≤ 𝑓(𝑡, 𝐴2), for 0< 𝑢 ≤ 𝐴2. 

Choose 𝑢 ∈ 𝑝 with‖𝑢‖ = 𝐴2, we  have 

𝑇𝑢(𝑡) =∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0
 

≤ ∫ 𝐺(𝑠, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0
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≤ ∫ 𝐺(𝑠, 𝑠)𝑓(𝐴2
1

0
)𝑑𝑠 

≤ ∫ 𝐺(𝑠, 𝑠)𝑢𝜉2𝑑𝑠
1

0

 

≤ 𝐴2𝜉2 ∫ 𝐺(𝑠, 𝑠)𝑑𝑠
1

0
=‖𝑢‖by(2.27) 

and so‖𝑇𝑢‖ ≤  ‖𝑢‖. For this case, if we letΩ2 ={𝑢 ∈ 𝐸: ‖𝑢‖ < 𝐴2} 

then ||Tu|| ≤ ||u||, for𝑢 ∈ 𝑝 ∩ 𝛼Ω2 .(2.28) 

Thus, in either of the cases an application of the second part of the Krensnoselskii’s 

fixed point theorem yields a solution of boundary value problems (1.1)-(1.3) has a 

positive solution which belongs to p∩ (Ω2̅̅̅̅ \Ω1). 

4.3.Uniqueness of positive solution 

In this section by applying Banachcontraction principle we verify the uniqueness of the 

positive solution for boundary value problems (1.1)-(1.3). 

Lemma (2.7):Assume 𝑓(𝑡, 𝑢(𝑡))satisfies Lipschitzconditions with respect to the second 

variable with  Lipschiz constant 𝐾for all𝑡 ∈ [0,1] then the boundary value problem (1,1) –

(1.3) has a unique solution when 0< 𝑘 ∫ 𝐺(𝑡, 𝑠)𝑑𝑠 < 1.
1

0
 

Proof:  We consider the operator T defined on cone P and given by, 

𝑇𝑢(𝑡) = ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠 , 𝑢 ∈ 𝑃 
1

0
 

Since, 𝑇is self-map on cone𝑃, then we prove that the map 𝑇 is satisfies the Banach 

contraction principle for all 𝑢, 𝑣 ∈ 𝑃 and  𝑡 ∈ [0,1], 

Where,𝑇𝑢(𝑡) = 𝑘 ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠 , 𝑢 ∈ 𝑝.
1

0
 and 

𝑇𝑣(𝑡) =  𝑘 ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑣(𝑠))𝑑𝑠 , 𝑣 ∈ 𝑝.
1

0
 

So,|𝑇𝑢(𝑡) − 𝑇𝑣(𝑡)| =  |𝑘 ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠 − 
1

0
∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑣(𝑠))𝑑𝑠|.
1

0
 

 =|𝑘 ∫ 𝐺(𝑡, 𝑠) [𝑓(𝑠, 𝑢(𝑠))  − 
1

0
 f(s, v(s))] ds| 

 ≤    𝑘 ∫ |𝐺(𝑡, 𝑠) [𝑓(𝑠, 𝑢(𝑠))  − f(s, v(s))] ds|
1

0

 

                                          ≤ 𝑘 ∫ 𝐺(𝑡, 𝑠)𝑑𝑠|𝑢 − 𝑣|
1

0
=  𝛼|𝑢 − 𝑣| 

Therefor,|𝑇𝑢(𝑡) − 𝑇𝑣(𝑡)| ≤ 𝛼|𝑢(𝑡) − 𝑣(𝑡)|. 

Notice that 𝛼 = 𝑘 ∫ 𝐺(𝑡, 𝑠)𝑑𝑠 < 1,
1

0
the mapping 𝑇 is a contraction. Hence, by 

Banachcontraction principle, 𝑇 has a unique fixed point which is a unique positive solution of 

boundary value problem (1.1)-(1.3) in a cone. 
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Chapter 5 

Conclusion and Future scope 

5.1 Conclusion 

In this thesis we construct the Green’s function for homogenous boundary value problems 

and considered existence and uniqueness of a positive solution for four point boundary value 

problems in a cone by the use of the Karsnoselski’sfixed point theoremandBanach 

contraction principle respectively for (1.1)-(1.3). 

5.2 Future scope 

There are some published results related to the existence of positive Solutions for four point 

boundary value problems.The researcher believes the research for existence and uniqueness 

of a positive solution for four point boundaryvalue problems in a cone by the use of the 

Karsnoselski’s theorem and Banachfixed-point in a cone for the corresponding non-

homogeneous boundary value problems. So,any interested researcher can use this opportunity 

and conduct their research work in this area. 
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