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Abstract

In this thesis, we constructed the Green's functionfor corresponding homogeneous equation
by using its properties. Under the suitable conditions, we established the existence and
uniqueness of positive solution for four-point boundary value problems by applying
Krasnoselskii's fixed point theorem and Banach contraction principle respectively. This study
was mostly dependent on secondary source of data such as journals, books which related to

our study area and internet.



Acronym

Throughout this research, we denote the following notation.
R is the set of real numbers.

00 is boundary of omega.

BVPs is boundary value problems.
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CHAPTER ONE
INTRODUCTION

1.1. Background of the study

Differential equations with deviated arguments are found to be important mathematical tools
for the better understanding of several real-world problems in physics, mechanics,
engineering, economics, etc. In fact, the theory of integer order differential equations with
deviated arguments has found its extensive applications in realistic mathematical modeling of
a wide variety of practical situations and has emerged as an important area of investigation.
Boundary value problems associated with linear as well as non-linear ordinary differential
equations or finite difference equations have created a great deal of interest and play an
important role in many fields of applied mathematics such as engineering design and
manufacturing. Major industries like automobile, aerospace, pharmaceutical, petroleum,
electronics and communications as well as emerging technologies like biotechnology and
nanotechnology rely on the boundary value problems to simulate complex phenomena at
different scales for designing and manufacturing of high-technological products. In these
applied setting, positive solutions are meaningful.

Boundary conditions mean a condition that is required to be satisfied at all or part of the
boundary of a region in which a set of differential conditions has to be solved. In the field of
differential equations, a boundary value problem is a differential equation together with a set
of additional constraints, called the boundary conditions. A solution to a boundary value
problem is a solution to the differential equation which also satisfies the boundary conditions.

In analyzing nonlinear phenomena many mathematical models give rise to problems for
which only positive solutions make sense.Since the publication of the monograph positive
solutions of operator equations in the year 1964 by academician, M.A. Krasnoselskii,
hundreds of research articles on the theory of positive solutions of nonlinear problems have
appeared. The existence of positive solutions of boundary value problems was studied by
many researchers. We list down few of them which are related to our particular problem.

Erbe(Erbe, L. H. and Wang, H., 1994), studied the existence of positive solutions of ordinary

differential equations by using fixed point theorem in cone.



u' @) +a@®)f(u(@®) =0 o0<t<1
au(0) —pu’'(0) =0
yu(l) +6u’'(1) =0

where f e C([0, «0),[0,)), a<C([0,1],[0,0)) and a(t) = 0on any interval of[0,1],
a, B,y,0=0and p=yB+ay+ad >0.

Lian(Lian, Wong and Yeh, 1996), studied the existence of at least one positive solution and

multiple positive solutions for the two-point boundary value problems.

u' @)+ f(tu®) =0 0<t<1
au(0) —pu’'(0) =0
yu(1l) +6u'(1) = 0.

For a parameter k# Omost of the authors focused on the existence of positive solutions for

the second-order ordinary differential equations satisfying the Neumann boundary conditions.

Ruyum(Ruyun Ma, 1998), studied positive solutions of nonlinear three-point boundary value

problem by using fixed point theorem in cone.
u"+a()f(u)=0.te(0,1,
u(0) =0, au(n) =u(),
1
where0<zn<1, 0<a <;and f,aeC([0,),[0,0)).
Wang(Ma, R. and Wang, H., 2003), studied positive solutions of nonlinear three-point
boundary value problems by applying fixed point theorem in cones.

u(0) =0, au() =uQ),

where 0 <7 <1 and 0 < ad () <lare given heC([0,1],[0,0)) and f  C([0, o0),[0,0)) .

Liu (Liu, B., 2004), studied positive solutions of a nonlinear four-point boundary value

problems by Krasnoselskii’s theorems in a cone.
y'(t)+a) f(yt))=0,0<t <],
y(0) =ay($), y@) = By®),

where0< &<y <1, O<a<land af(l- L)+ @—a)(l—£r) >0alsoa, y e C([0,x),[0,x)) .
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Zhang (Zhang, X. and Liu, L., 2007), studied positive solutions of fourth-order four-point
boundary value problems with p-Laplacian operator by using the upper and lower solution

method and fixed-point theorems.

[, " E)]"= f(t,u(t)), 0<t <1, with the four-point boundary conditions
u(0) =0, u@®) =au($), u(0) =0, u™@) =bu"(7),

where g, (1) =[t)"t, p>L0< &7 <L, f €C((0,2)x(0,+0), [0, +0)).

Dong and Bai (Dong, X. and Bai, Z., 2008), studied the existence of one or two positive

solutions for the fourth-order boundary value problem with variable parameters.

u® (@) + B (¢) — AQu@®) = f(tu@®),u"®), 0<t<1
u(0) =u(1)=u"(0)=u"(1)=0.

where A(t), B(t) € C[0,1] and f(t,u,v):[0,1] X [0,0) X R — [0, ©0) is continuous.

Benaicha and Haddouchi(Benaicha, S. and Haddouchi, F., 2016), studied positive solutions
of a nonlinear fourth-order integral boundary value problem.

u™()+ f(u(t))=0,te(0,2),

u'(0)=u'@=u"(0)=0,u(0)= I:a(s)u(s)ds

where f e C([0,0),[0,0)); 2 e C([0,1],[0,oc)) and 0 < j:a(S)dS <1.

Xu and Wang (Xu, W. and Wang, H., 2017), studied the Positive Solution of a Nonlinear
Four-Point Boundary-Value Problem by usingfixed point theorem in cone.

u"(® -+ f 1) =0,
u'(0)=0.uh) =au(¢)+auln),

where0 < ¢, <1, f,geC([0,),[0,00))andd, +a, #1.

Motivated by the above mentioned results, in this paper, we investigated the existence and

uniqueness of positive solutions for four-point boundary value problems in cone.

—u () +ku@ =f(tLu®)) 0 <t<1 ... (1.1)
u) —au(@) =0. ... i (12)
u(D) —Bum) = 0. . (1.3),



where0 < {<n <1, af >0 k=0isaconstantand f iscontinuous function by

applying Karsnosel’skiis fixed point theorem and Banach contraction theorem.

1.2 .Statement of the problem
Xu and Wang (Xu, W. and Wang, H., 2017), studied the Positive Solution of a Nonlinear

Four-Point Boundary-Value Problem by usingfixed point theorem in cone.
u"t)+qt)f(t)=0

u'(0)=0,u(l) =au(g) +a,u(n)
where0< ¢, ;7 <1, f,geC([0,50),[0,0))and &, +a, #1,

Liu (Liu, B., 2004), studied positive solutions of a nonlinear four-point boundary value
Problems by Krasnoselskii’s theorem in a cone.
y"t)+at) f(y()) =0, 0<t <],
y(0) =ay(8), y@) = By(),
where0< &<y <1, O<a<land af(l—B)+@A—a)(l—pn) >0alsoa, y € C([0,),[0,)).
In this Research work, we concentrated in establishing the existence and uniqueness of
positive solutions for four-point boundary value problems for (1.1) -(1.3) by using
Kransnoselskii’s fixed point theorem and Banach Contraction theorem in cone respectively.
1.3.1 General objective:
The general objective of this thesis is to study the existence and uniquenessof a positive
solution for four-point boundary value problems in a cone(1.1) -(1.3).
1.3.2. Specific Objectives:
The specific objective of this study was:
» To construct Green’s function for the corresponding homogeneous equation.
» To formulate operator equation for the given boundary value problem.
» Toproveexistence and uniqueness of a positive solution by using Krasnoselskii’s
fixed point theorem.
1.4. Significance of the study
The result of this thesis may have the following importance.
» The outcome of this thesis may give a better understanding about research for
the researcher.
> It may contribute to research activities in the study area.
» It may provide some background information for other researchers who want
toconduct a research on related topics.



» Furthermore, this thesis was useful for graduate program of the department of
mathematics.
1.5 Delimitation of the study
This study was delimited to finding the existence and uniqueness of a positive
solutionfor-four point boundary value problems in a cone from (1.1) - (1.3) by using

Krasnoselskii’s fixed point theorem.



CHAPTER TWO
REVIEW OF RELATED LITERATURE

2.1 Over View of Positive Solutions
Positive solution is very important in diverse disciplines of mathematics since it can be

applied for solving various problems and it is one of the most dynamic research subjects in
nonlinear analysis. The existence of positive solutions for boundary value problems has been

studied by many researchers such as:

Yang (Yang, B. 2005), studied positive solutions for a fourth order boundary value problem
u™(t)=g()f(u®), 0=<t<1,
u™(t)=g()f(u®), 0<t<1,

where f :[0,00) —[0,0)is continuous and g :[0,1] —[0, ) is a continuous function such that

[Ladt>o0.

Bai and Gu (Z.Bai and Z.Gu, 2007), studied positive solutions for some second-order four-
point boundary value problems.
x'(t) + Ah(O)f(t, x(£)) =0, 0< t < 1,
x(0) = ax(¢), x(1) =Bx ().
Nieto (Nieto, J. J., 2013), studied existence of a solution for a three-point second order
boundary value problem by using fixed point theorem.
—u"(t) = f(t,u(), 0<t<T,
u(0) =au(r) =u(),
whereT >0, f :[0,T]xR — R is continuous function € Rand 77 (0, T).
Sveikete (Sveikate, N., 2016), studied the existence of solutions on three-point boundary
value problem by using quasi linearization approach.
X"+k2x = f(t,x, X)),
X(0) =0, X(2) = ax(w),

where0<7 <1, >0 and f may be unbounded.



2.2 Preliminaries
In this section, we provide some definitions, basic concepts on Green’s function, definition of

existence of positive solutions and statements of few standard fixed point theorems, which

are frequently used in thesis.

Definition.2.1 Let X be a non-empty set. A mapT:X — X is said to be a self-map
withdomainof T = D(T) = X and range ofT = R(T) = T(X) < X.
Definition2.2 Let T: X — X be self-map. A point x in X is called fixed point of T if Tx = x.
Definition 2.3.Consider the second-order linear differential equation,

Po(x)y" + p1()y" + p2(0)y = (), x €] =[a,pl. (2.1)
Where the functions py(x),p,(x),p,(x) and r(x) are continuous in J and boundary
conditions of the form

Lyl = apy(a) + a1y’ (@) + boy(B) + byy'(B) = A
LIyl = coy(@) + 1y’ (a) + doy(B) +d1y'(B) = B.

Wherea;, b;, c;,d;, (i = 0,1) and A, B are given constants.

(2.2)

The boundary value problem (2.1)-(2.2) are calleda non-homogeneous two-point linear
boundary value problem, where asthe homogeneous differential equation
Po()y +p1()y +p )y =0, x€]=[ap ]23).

Together with the homogeneous boundary conditions

LIyI=0,  Lly]=0 (2.4)
be called a homogeneous two-point linear boundary value problem. The function called a
Green’s function G (x, t) for the homogeneous boundary value problems (2.3)-(2.4) and the
solution of the nonhomogeneous boundary value problem (2.1)-(2.2) can be explicitly
expressed in terms of G (x, t).
Obviously, for the homogeneous problem (2.3)-(2.4) the trivial solution always exists.
Green’s function G (x, t) for the boundary value problem(2.3)-(2.4) is defined in the square
[a, B] X [a, B]and possesses the following fundamental properties:

Q) G(x,t) is continuous in [a, B] X [a, B],

(i)  9G(x,t)/0x is continuous in each of the trianglesa < x <t<fanda<t<x <

[3; moreover,
aG(tt, o 6T, 1
ax ax  po®
oG(ttt . 0G(xt aG(t™,t . 0G(xt
Where28828. = iy 2600 - 0600 i, 960D
ox x-t 0x 0x x->t 0x

x>t x<t



(iii)  forevery te€ [a,B], z(x) = G(x,t)is a solution of the differential equation(2.3)
in each of the intervals [a,t) and (t, f],

(iv) forevery t € [a,B], z(x) = G(x, t)satisfies the boundary conditions (2.4).

These properties completely characterize Green’s function G(x, t).
Definition 2.4 A normed linear space is a linear space X in which for each vector x there
corresponds a real number, denoted by || x llcalled the norm of x and has the following
properties:

0] Il x|[=0,forallx e Xand |l x =0 ifand only if x = 0,

() Nx+yl<lxl+Nyl, foralxye€X,

@iii)  Nax = |a| Il x I, forall x € Xandabeingascalar.
Definition 2.5 Let Xbe a normed linear space with norm denoted by |I.Il. A sequence of
elements {x,,} of X is a Cauchy sequence, if for every e > 0 there exists an integer N such
that |l x, — x,,, I< €, forallm,n > N.
Definition 2.6 Anormed linear space X is said to be complete, if every Cauchy sequence in X
converges to a point inX.
Definition 2.7 ABanach space is a complete normed linear space.
Definition 2.8 Let Ebe a Banach space over R. A non-empty, convex, closed set P c E is
said to be a cone provided that
(a)au + pv e Pforallu,v ePandall «,f = 0 and
(b)u,—u € Pimpliesu =0
Theorem (Contraction Mapping Theorem). If T is a contraction mapping on a Banach space

X with contraction constant a, with 0 < a < 1, then T has a unique fixed point x, € X.

Definition 2.9 Let Xand Y be Banach spaces and T : X - Y, Tis said to be completely
continuous, if T is continuous and for each bounded sequence {x,} c X, {Tx,} has a
convergent subsequence.

Definition 2.10 A function f (¢, y) satisfies a Lipschitz condition in the variable y on a set
D c R? if a constant L>0 exists with the absolute value of f(t,y;) — f(t,v;) < L|y; — y5|,
whenever, (t, y,), (v, y2) are in D and L is Lipchitz constant.
Theorem (Krasnoselskii, M.A, 1964), Let E be a Banach space, and let P c E be a cone
in E.AssumeQ,, Q, are open subsets of E with 0 € Q;, Q; € Q,,and let T: P n (Q,\ ;) -
P is a completely continuous operator. Such that either

(1) ITull<llulbu €EPNoQy,and Tull=llull,u €PN, or

(i) ITull=llulbu ePNaQq,and [Tull<llul,u € PNAaQ,,

Then T has a fixed pointin P N (9, \ ;).



CHAPTER THREE
METHODOLOGY
This chapter contains study period and site, study design, source of information and

mathematical procedures.

3.1 Study period and site
The study was conducted from December 2021 to February 2022 in Jimma University

under the department of mathematics.

3.2 Study design
In order to achieve the objective of the study we employed analytical method of design.

3.3 Source of Information
The relevant sources of information for this study were different mathematics books,

published articles, journals and related studies from internet.

3.4 .Mathematical Procedure of the Study
The study follows the following steps:

» Existing the definition of second-order four-point boundary value problem.

» Constructing the Green’s function for the corresponding homogeneous equation.

» Formulating the equivalent operator equation for the boundary value problem
(1.1)- (1.3).

» Prove existence and uniqueness of positive solution for the given operator equation.



CHAPTER FOUR
MAIN RESULT AND DISCUSSION

4.1 Construction of Green’s Function
In this section, we construct Green’s function for the associated homogeneous boundary
value problem corresponding to (1.1) - (1.3).
Let us consider the boundary value problem
—u"(t) + k2u(t) = f(t,u(t))), 0<t<1,
u(0) —au($) =0,
u(1) — pu(m) =0,
where k > 0O isaconstant,a >0, >20and 0 < <n < 1.
Lemma4.1 Let y(t) € C([0,1]) and y(t) = 0. Then the boundary value problem
—u"(t) + k*u®) =y(), O0<t<1, 4.2)
u(0) =0,u(1) =0, (4.2)
has a unique solution,
u(t) = folH(t, s)y(s) ds.
Where H(t, s) is Green’s function for the homogeneous problem
—u"(t)+ k*u(t)=0,0 <t < 1, (4.3)
satisfying the boundary condition (4.2)and given by

sinh kt sinh k(1-s)

ksinhk ’ st=s=1
H(t, ) = | sinhks s (4.9)
’ sinh ks sinh k(1-t)
<s<t<
ksinhk , 0ss=t=1

Proof:We prove by the properties of Green’s function. Obviously thedifferential equation
(4.3) with the boundary condition (4.2) has only trivial solution. Green’s function H(t, s)
defined in the square [0,1] x [0, 1]. Let u;(t) = cosh kt and u,(t) = sinh kt are the two
linearly independent solutions of (4.3).

Green function for second- order two point boundary value problem can be defined in the
form

U (A(s) +uy(H)A,(s) if0<t<s<1
U (Op(8) + u,(Dpa(s) if0<s<t<1
where 1, (s), A, (s), uy (s)and u,(s) are functions to be determined. By applying properties

H(ts) = { (4.5)

of Green function (i) and (ii) we obtain

{ u1(t)(#1(s) - 11(5)) + uz(t)(ﬂz(s) - /12(5)) =0
w1 () (1 () = 41(9)) + ' 2(O) (2 (s) — 22(s)) = —1

Let vy (s) = uy(s) — 41(s) and v,(s) = pp(s) — A,(s) *)

10



coshkt v,(s) + sinhkt v,(s) =0
ksinhkt v,(s) + kcoshkt v,(s) = —1

From this we get

Then{

—coshks
k

sinhks
k

v.(s) = andv, (s) =

sinhks coshks

From (*), we have u,(s) = 1,(s) + P

and p, (s) = A,(s) —
Substituting the value of y; and u, in equation (4.5) we have

coshk(t)A4 (s) +sinnk(t)A,(s) if 0<t<s<1

H(t,s)= i if 0<s<t<l.
(G921 coshk(t) 4 (5)+ coskt ST sinn ity 4, (s) —sinh kt S25KS

H(t, s)Satisfies the boundary conditions with respect to t. Hence, 1, (s)andA,(s) uniquely

determined as

inhk hks—coshk sinhk inhk(1- . —
(5) = SRRECoe RS = SECS) Finally, substituting the value of

A1(s) =0and 4, ksinhk

U1, Uy A1, @and A, in equation (4.5) we arrive on the required Green’s function

sinh kt sinh k(1-s)

P ) <t<s<l1
H(t,s) =1 .. sin
’ sinh ks sinh k(1-t) ’
<t<
ksinhk y O=ss=t=1

and the solution of the BVP
—u" + k*u = f(t,u(s)),
u(0) =0,u(1) =0,
is given by
w(®) = [ H(t,$)f (s, u(s))ds, (4.6)

andw(0) = 0,w(1) = 0,w(n) = [} H(,5)f (s, u(s)))ds.
Lemma4.2 H(t,s) has the following properties

i, H(t,s) < H(s,s),forall t,s €[0,1].

sinh k&§
sinhk

Proof: we prove this lemma by splitting in to different cases.

ii, H(t,s) = NH(s,s),forallt € [6,1 — 6],s € [0,1],N =

i. H(t, s)is positive for all t,s € [0,1]
for0 <s <t <1, wehave

H(t,s) sinhkssinhk(1—¢) sinhk(1-1) -
H(s,s) sinhkssinhk(1—s) sinhk(1—s) —

= H(t,s) < H(s,s), t,s €[0,1]

For0 <t <s<1wehave

11



H(t,s) _ sinh kt sinh k(1-y5) __ sinhkt
H(s,s) sinhkssinhk(1 —s) sinhks —

= H(t,s) < H(s,s), t,s €[0,1].
ii. Ifs<tforte[s§1-6],s€][0,1], wehave

H(t,s) sinhkssinhk(1—1t) - sinhk §
H(s,s) sinhkssinhk(1—s)~ sinhk

= H(t,s) = NH(s,s).
Ift<sfortel[s§1-6],s€[0,1], we have

H(t,s) sinhktsinhk(1l—ys) - sinhk §
H(s,s) sinhkssinhk(1—s)~ sinhk

= H(t,s) = NH(s,s).

Lemma4.3Lete =0, =0, 0 <& <n<1landf(tut)) e C([0,1] x [0,),[0,)).
Then the boundary value problem (1.1)-(1.3) has a unique solution

u(t) = fol G(t, $)f (s, u(s))ds, 4.7

where

[Bsinhk —afsinhk(1—&)]sinh k& sinh k(l—t)} H
{aBsinhk(@—n)sinhkt+ (sinh k —aBsinh kn)sinh k(1 -t)}

A

G¢9=H¢@+{ (,8)+

H(,9). (4.7a)

And A = afsinhk sinhk(n — &) + sinh?k — asinhk(1 — &) — Bsinhk sinhké > 0.
Proof:The four point boundary value problem (1.1)-(1.3) can be obtained by
replacing u(0) = 0 by u(0) = au(é) and u(1) =0 by u(1) = Bu(n) in (4.2).Thus we
suppose the solution of the four-point boundary value problem (1.1)-(1.3) can be expressed
byu(t) = w(t) + B;sinhkt + B,sinhk(1 —t), (4.8)

whereB, and B, will be determined.

u(0) = B,sinhk = au(§)
J u(1) = B;sinhk = Bu(n)
u(®) = fol H(&,s)f(t,u(s))ds + B;sinhk& + B,sinhk(1 — &) (4.9)

Lu(n) = fol H(n,s)f (t,u(s))ds + Bysinhkn + B,sinhk(1 — 1)

12



B,sinhk = « fol H(¢,s)f(s,u(s))ds + aB;sinhké + aB,sinhk(1 — &)
—aB;sinhké + B,(sinhk — asinhk(1 —§)) = f01 Hf (s,y(s))ds. (4.10)
B;sinhk = 8 fol H(n,s)f(s,y(s))ds + fB;sinhkn + BB,sinhk(1 — 1)

—B, (sinhk — Bsinhkn) — BB,sinhk(1 —n) = fol H(n,5)f (s,u(s))ds. (4.12)

Solving equation (4.10) and (4.11) simultaneously we have

fol BH®,5)f (s,u(s))ds —Bsinhk(1-1) ‘
_ fol aH(&,s)f(su(s))ds  sinhk—asinhk(1-¢§)|
B, = sinhk—Bsinhkn —Bsinhk(1-7) '
‘ —asinhké sinhk—asinhk(1-§)
and
sinhk—Bsinhkn fol BH(™,s)f (s,u(s))ds
—asinhké& f01 aH(&,s)f(s,u(s)ds
BZ = ,

|sinhk—[¥sinhkn —Bsinhk(1-n) ’
—asinhké sinhk—asinhk(1-§)

Computing for B; and B, we get

[Bsinhk—aBsinhk(1-§)] fol H®,9)f (s,u(s))ds+apBsinhk(1-1m) f01H(E,s)f(s,u(s))ds’3

B1= A

nd

8 _ [sinhk —afsinh kn]ﬁ H(&,s) f (s,u(s))ds+afsinh kéj'o1 H(#,s) f (s,u(s))ds

2

A
Substituting B, and B, in equation (4.8)

u(t) =w()+

[Bsinhk—aBsinhk(1—§)] folH(17,s)f(s,u(s))ds+aﬁsinhk(1—17) folH(é’,s)f(s,u(s))ds
A

[sinhk—Basinhkn] fol H(&,5)f (su(s))ds+aPsinhké f01 Hm,8)f(su(s))ds
A

sinhkt +

sinhk(1 —t).

Rearranging
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{[ﬂsinh k —afsinhk(1-&)]sinh kt + e sinh k& sinh k(l—t)}I:H (n,5) T (s,u(s))ds

f: H(t,s) f (s,u(s))ds +

A

. {aBsinhk(1—n)sinhkt + (sinhk —aBsinhkz)sinh k(1-t)} Il H(& s) f (5,u(s))ds.

A 0

In closed form the above equation re-written as

u(t)

_ f (e, 5) + USinhtk = apsinhied = f)]sizhkt * apsinhkSsinhke ~ 0}
0

4 apsinhk( = m)sinhkt + (sinhk = afsinhln)sinhk(1 = O} o o cc 2 as

A

Before stating the results we make the following assumptions throughout the thesis.
AL f(t,u(®)) : [0,1] X [0,00) — [0, ), is continuous.
A2.0 <& <n < 1,sinhk > asinhk(1 — &)andsinhk > afsinhkn.
Lemma 4.4 The function G (t, s) possesses the following properties.
G(t,s) =0 forallt,s €[0,1].
G(t,s) < MH(s,s), M = max{M,, M,, M5, M,, Ms, M,}.

G(t,s) = H(s,s).

Proof;ConsiderG (t, s) given by (4.7a).

From assumption A2 and the positivity of H(t,s) for all t,s € [0, 1] we assure that G (¢, s) is

nonnegative.
We prove the second part of the Lemma by considering different cases

{[Bsinhk — afsinhk(1 — &)]sinhkt + afsinhkésinhk(1 —t)} H
A

4 {aBsinhk(1 — n)sinhkt + (sinhk — af3sinhkn)sinhk(1 —t)}

A

G(t,s) = H(t,s)+

(1,s)

H(E,s).

Case I:Let 0 < s < min{t.{} < 1. We have the following.

14



{[Bsinhk — aBsinhk(1 — &)]sinhkt + aBsinhkésinhk(1 —t)} Hu
A

N {aBsinhk(1 — n)sinhkt + (sinhk — afsinhkn)sinhk(1 —t)} .

A

G(t,s) < H(s,s) + (s,s)

(s,s);

{[Bsinhk — aBsinhk(1 — &)]sinhk + afsinhkésinhk}
A H(s,s)

N {aBsinhk(1 — n)sinhk + (sinhk — afsinhkn)sinhk} H
A

< H(s,s)+

(s,s);

{[Bsinhk — aBsinhk(1 — &)]sinhk + afsinhkésinhk}
A

N {aBsinhk(1 — n)sinhk + (sinhk — afsinhkn)sinhk}
A

G(t,s) <|[1+

H(s,s).

Thus G(t,s) < M;H(s,s). (4.12)

Casell: Let0<t<s<¢&<n.

{[Bsinhk — aBsinhk(1 — &)]sinhkt + aBsinhkésinhk(1 —t)} H
A

N {aBsinhk(1 — n)sinhkt + (sinhk — afsinhkn)sinhk(1 —t)} .

A

G(t,s) < H(s,s) + (s,5)

(s,s);

{[Bsinhk — aBsinhk(1 — &)]sinhké + afsinhkésinhk}
2 H(s,s)

N {aBsinhk(1 — n)sinhké + (sinhk — afsinhkn)sinhk} .
A

< H(s,s) +

(s,s);

{[Bsinhk — aBsinhk(1 — &)]sinhké + afsinhk&sinhk}
A

N {aBsinhk(1 — n)sinhké + (sinhk — afsinhkn)sinhk}
A

G(t,s)<|1+

H(s,s).

Hence, G(t,S) < M,H(s, s). (4.13)

Case I1l: Let 0 < § < s < min{n, t}.
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{[Bsinhk — aBsinhk(1 — &)]sinhkt + aBsinhkésinhk(1 —t)} Hu
A

N {aBsinhk(1 — n)sinhkt + (sinhk — afsinhkn)sinhk(1 —t)} .

A

G(t,s) < H(s,s) + (s,s)

(s,s);

{[Bsinhk — afsinhk(1 — &)]sinhk + afsinhkésinhk(1 — &)} .
A (s,s)

{aBsinhk(1 — n)sinhk + (sinhk — afsinhkn)sinhk(1 — &)}
+ A H(s, s);

{[Bsinhk — aBsinhk(1 — &)]sinhk + afsinhkésinhk(1 — &)}
A

N {aBsinhk(1 — n)sinhk + (sinhk — afsinhkn)sinhk(1 — &)}
A

< H(s,s) +

G(t,s)<|1+

H(s,s).

Hence, G(t,S) < M3H(s, s). (4.14)

Case IV:Letmax{t,é} <s<n < 1.

{[Bsinhk — aBsinhk(1 — &)]sinhkt + aBsinhkésinhk(1 —t)} H
A

N {aBsinhk(1 — n)sinhkt + (sinhk — afsinhkn)sinhk(1 —t)} .

A

G(t,s) < H(s,s)+

(s,8)

(s,s);

{[Bsinhk — aBsinhk(1 — &)]sinhkn + aBsinhkésinhk}
A H(s,s)

N {aBsinhk(1 — n)sinhkn + (sinhk — afsinhkn)sinhk} .
A

< H(s,s) +

(s,s);

{[Bsinhk — afsinhk(1 — &)]sinhkn + afsinhkésinhk}
A
N {aBsinhk(1 — n)sinhkn + (sinhk — afsinhkn)sinhk} .
A

G(t,s) <|[1+

(s, s).

Hence, G(t,S) < M,H(s,s).(4.15)

CaseViLet0<¢{<n<s<t
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{[Bsinhk — aBsinhk(1 — &)]sinhkt + aBsinhkésinhk(1 —t)} Hu
A

N {aBsinhk(1 — n)sinhkt + (sinhk — afsinhkn)sinhk(1 —t)} .

A

G(t,s) < H(s,s) + (s,s)

(s,s);

{[Bsinhk — aBsinhk(1 — &)]sinhk + afsinhkésinhk(1 —n)}
2 H(s,s)

N {aBsinhk(1 — n)sinhk + (sinhk — afsinhkn)sinhk(1 —n)} H
A

< H(s,s) +

(s,s);

{[Bsinhk — afsinhk(1 — §)]sinhk + afsinhkésinhk(1 —n)}
A

N {aBsinhk(1 — n)sinhk + (sinhk — afsinhkn)sinhk(1 —n)}
A

G(t,s) <|1+

H(s,s).

Thus, G(t,s) < MsH(s, s). (4.16)

Case Vl:Letmax{n,t} < s < 1.

{[Bsinhk — aBsinhk(1 — &)]sinhkt + afsinhkésinhk(1 —t)} .
A

N {aBsinhk(1 — n)sinhkt + (sinhk — afsinhkn)sinhk(1 —t)} .

A

G(t,s) < H(s,s)+ (s, )

(s,s);

{[Bsinhk — aBsinhk(1 — &)]sinhk + afsinhkésinhk}
A H(s,s)

N {aBsinhk(1 — n)sinhk + (sinhk — afsinhkn)sinhk} .
A

< H(s,s) +

(s,s);

{[Bsinhk — afsinhk(1 — &)]sinhk + afsinhkésinhk}

<
Gt,s)<|[1+ A
{aBsinhk(1 — n)sinhk + (sinhk — afsinhkn)sinhk}
+ A H(s,s).

Thus, G(t,s) < MgH(s,s).(4.17)
Setting, M = maX{Ml, Mz, M3,M4_, Ms, M6}

Forallt,s, € [0,1],G(t,s) < MH(s,s).
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iii) We prove the third part of the Lemma by considering different cases as we proved (ii)

{[Bsinhk — aBsinhk(1 — &)]sinhkt + aBsinhkésinhk(1 —t)}
A
N {aBsinhk(1 — n)sinhkt + (sinhk — afsinhkn)sinhk(1 —t)}
A

G(t,s) = H(t,s) + H(n,s)

H(¢,s).

Case I: Let0 < s < min{t.{} < 1. We have the following.

G(t,s) = N[H(s,s)

N {[Bsinhk — aBsinhk(1 — &)]sinhkt + afsinhkésinhk(1 —t)} u

A (s,5)
{aBsinhk(1 — n)sinhkt + (sinhk — afsinhkn)sinhk(1 —t)}
+ A H(s,s)];

> N H(s,s).
Therefore, G(t,s) = NH(s, s).
Casell:Let0<t<s<¢&<n.

G(t,s) = N[H(s,s)
{[Bsinhk — aBsinhk(1 — &)]sinhkt + afsinhkésinhk(1 —t)}

. j H(s,s)
N {afsinhk(1 — n)sinhkt + (sir;hk — afsinhkn)sinhk(1 —t)} H(s, $)];
> N H(s,s) + {aﬁsmhkgsznhk(l —Dyy (s,5)
+ {(sinhk — apsinhkn)sinhk(1 — $)} NH(s, s);

A

1+ {aBsinhkésinhk(1 — &)} N {(sinhk — aBsinhkn)sinhk(1 — &)}

=
A A

NH(s,s).

Hence, G(t,S) = N,H(s, s).

Case Ill:Let 0 < ¢ < s < min{n, t}.
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G(t,s) = N[H(s,s)
[Bsinhk — aBsinhk(1 — &)]sinhkt + afsinhkésinhk(1 —t)} u
A
N {aBsinhk(1 — n)sinhkt + (sinhk — afsinhkn)sinhk(1 —t)} .
A
{[Bsinhk — aﬁsinitk(l — &)]sinhké} NH

(s,8);

+ { (s,s)

(s,9)];

> NH(s,s) +

N {aﬁsinhk(lA— n)sinhké} NH

(s,5)

{[Bsinhk — aBsinhk(1 — &)]sinhké}
A
{aBsinhk(1 — n)sinhké}
+ A

G(t,s)=|1+

NH(s,s).

Hence, G(t,S) = N;H(s, s).
Case IV:Letmax{t,é} <s<n < 1.

G(t,s) = N[H(s,s)

{[Bsinhk — aBsinhk(1 — &)]sinhkt + afsinhkésinhk(1 —t)}
+ x H(s,s)
N {aBsinhk(1 — n)sinhkt + (sir;hk — afsinhkn)sinhk(1 —t)} H(s, 9]

{aBsinhkésinhk(1 —n)} NH

> NH(s,s) + A (5,5

N {(sinhk — aﬁsinhAkU)Si”hk(l —m} NH(s, s);
cieo |1 {aﬁsinhkfsgnhk(l — )}

N {(sinhk — aﬁSinhAkn)Sinhk(l —n)} NH(s, s).

Hence, G(t,S) = N, H(s, s).

CaseViLet0<é<n<s<t

19



G(t,s) = NH(s,s)

inhk — afisinhk(1 — §)]sinhkt + apsinhkEsinhk(1 — ¢t

_I_{[ﬁsm apsinhk( 5)]“2 apBsinhkgsink( )}NH(S,S)
inhk(1 — n)sinhkt + (sinhk — afsinhkn)sinhk(1 -t

+{aﬁsm (1 —mn)sin (5”; afsinhkn)sinhk( )}NH(S,S);

{[Bsinhk — aﬁsinilk(l — &)]sinhkn} N

inhk(1 — inhk
| laBsin (A msinhkn}

> NH(s,s) + (s,s)

(s,s);

{[Bsinhk — aBsinhk(1 — &)]sinhkn}
A

afsinhk(1l — n)sinhk
+{ B ( . n) n} N

G(t,s)=|1+

H(s,s).

Thus, G(t,s) = N;H(s, s).
Case Vl:Letmax{n,t} < s < 1.

G(t,s) = NH(s,s)

inhk — afisinhk(1 — §)]sinhkt + afsinhkEsinhk(1 — t

1 (sinhk — afsinhk(t - E)lsnhkt + afsinhkésinhe(1 =0},
inhk(1 — n)sinhkt + (sinhk — afsinhkn)sinhk(1 — ¢

_I_{aﬁsm (1 —n)sin (S”; apsinhkn)sinhk( )}NH(S,S);

{[Bsinhk — aBsinhk(1 — &)]sinhkn} N

> NH(s,s) + A (s,s)
inhk(1 — inhk
N {aBsinhk( n)sinhkn} NH(s, 5):
A
Gts)> |14 {[Bsinhk — aﬂsinZk(l — &)]sinhkn}
inhk(1 — inhk
N {aBsinhk( n)sinhkn} NH(s, s).
A
Thus, G(t,s) = NgH(s, s).
Setting, IT= mln{N, Nz, N3, N4, N5, N6}' (418)
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From the above six cases we conclude that for all t,s, € [0,1],
G(t,s) = IH(s,s).

4.2 Existence of One Positive Solution
In this section, we prove the existence of at least one positive solutions for second order four
point boundary value problem (1.1)- (1.3) by applying Krasnoselskii’sFixed point theorem,
To establish existence of at least one positive solutions for Four point BVP (1.1)-(1.3) we use
the following Krasnoselskii’sfixed point theorem
Consider the Banach space E = {u: u € C[0, 1]} equipped with the norm

llull = nax lu(®)].
Define a cone P c E by

p= {u € Fiu(®) = 0,¢ € [0,1] and min u(®) > n||u||}. (4.19)

whereIl is given in Equation (4.18).
Let T: P — P be the operator defined by

Tu(t) = [; G(t,)f (s, u(s))ds, t€[0,1]. (4.20)
Lemma 4.5: The operator Tdefined in (4.20) is a self-map on P and completely continuous.
Proof:Tu(t) = fol[G(t, Sf(s,u(s)]ds < fol[G(s, $)f (s, u(s))] ds.

Note that, by the non-negativity of G and f, one has ||Tu|| < fol[G (s,8)f(s,u(s))] ds from

which we have,
1

1
min Tu(t) > minf[G(s, s)f(s,u(s))] ds = nf[G(s, s)f(s,u(s))]ds te€ (0,1],
0

0
wherer is given in eq.(4.18)
= ||[Tul|| = =||Tu||, where||u]|| € P.
Therefore, T: P — P is a self-map.Since, G(t, s)and f(t,u(s))are continuous the map T is
completely continuous.
In this thesis we consider the second order BVPs
—w + k?u(t) = f(t,u(t)), t € [0,1], with boundary conditions:
u(0) — au(Q) =0,
u(1) + pu(n) =0,
where0 < {<n <1, af >0and k = 0isaconstant.

The following conditions will be assumed throughout.
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1

C:0< f[G(t, s)f(s,u(s))] ds < oo,

0
C,:f[0,1] x [0,0) — [0, 0)is a continuous function.
C;:P=yf+ay+ad >0,a,pB,v,6 = 0.By using Karsnosel’skiis fixed point theorem
the existence of positive solution of (1.1)-(1.3) is obtained in the case when, f is either
super linear or sublinear. To be precise, we define the nonnegative extended real number
for f°, foo and f as follow.

0 = | feu(t)) — = | . fEu(t)) — in r linear
[7=m S T Jeo = lim min, =y = o Insuperlinear case.
fo = lim inf 289 = o £ = fim max 2249 = o in sublinear case.

u—0t+tef0,1] u(®) u—oo te[0,1] u(t)

By a positive solution u(t) of (1.1)-(1.3) we understand a solution w(t) which is positive
ont € [0,1] and satisfies eg. (1.1) for 0 <t < 1 and the boundary conditions (1.2) and
(1.3).

Theorem 1: Assume that the conditions C1-Cs are satisfied. If f© = 0 and f,, = o then
the boundary value problem has at least one positive solution.

Proof: Now since f° = 0, there exists 4; € [0,1] = 0,

fen®) _ o | up LE®) | <1n wheren =0,

lim su
u-0* te[ol,)1] u(t) tefo,1] #®
ftu) . _
wo <750 that £(t,u(t)) <n, n > 0 satisfy for every u € P and [|ull = 4,
tef0,1]

for 0 < u < A; where n satisfies

n J, [G(t,$)f (s, u(s)] ds. (2.21)

1

Tu(t) = j[G(t, s)f(s,u(s))] ds

0

1 1
< f[G(s, s)f(s,u(s))] ds < nf[G(s, s)f(s,u(s))] ds
0 0
< [Jlu|lby(2.21) .
Consequently,||Tu|| < ||ull So, if we set Q, = {u € E: ||lu|| < A}, then
ITul] < ||ullforu e P nQ,. (2.22)

Next, considering f,, = oo , lim min [ — o5 there exists n,>0and A, > 0. Let

u—oo te[0,1] u(t)
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If u € P with [|ull = 4, then min feu®)

min =© >n,, f(u(t)) >nu(t)foru € m,.

Where n, satisfy n,m, fE[G(s, f(s,u(s))]ds = 1. (2.23)

Tu(t) = I[G(s, s)f(s,u(s))] ds

1 1

> min f[G(t, s)f(s,u(s))] ds >n f[G(t, s)f(s,u(s))] ds
tE[l,E]

¥a' o 0

= N1T;

[G (s, s)f(s, u(s))] ds||ull

*IH\ alw

> ||ullby (4.21).
Hence,||Tu|| = ||u]/foru € P N aQ,.
Therefore, by first part of fixed-point theorem, it follows that T has in P n ( Q,\Q,) such
that A; < [|lu]| < A, by Kransnofelskii fixed-point theorem. Further since, Green’s function
positive. It follows that u(t) > 0 for t € [0,1] and u(t) is a desired solution for (1.1)-(1.3).
The proof is complete.
Theorem (2): Assume that conditions c;, ¢, and c3 are satisfied if f; = oo andf =0, then
the boundary value problem has at least one positive solutions that lies inP.
Proof: Let T bethe preserving, completely continuous operator defined by Lemma (2.20)

beginning with f, =co , there exits an A; > 0, ¢ >0 and satisfy

nlnéG(s, ) f(s,u(s))ds = 1.(2.24)

lim minM = o0

fO: u(t)
u-0%,tel0,1]

f(zl(zt()t)) > & for0< u < A f(t,ut)) = &;u.

where; > n,andn, is given above. Then for ue p and ||u|| = 4;, we have

Tu(t) = j G(t,8)f (s, u(s))ds = nflzG(s, s)f (s,u(s))ds
0 =

4
3

>&m ffc(s, $)F (s.u(s)) ds [lul

4
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> ||u||fznij(s,s)f(s,u(s))ds

2
> ||lullby (2.24).

Thus||u|| = ||lull,s0, if we let Q; = {u € E: ||u|| < A}, then

| Tull = [|ull, foru € p N aQ,.(2.25)

It remains to consider £ =0, there exists an4, > 0 such thatf (t,u(t)) < &,u for all
u=4,, where & > 0.

Satisfies.
&.6(s,9) f (s,u(s))ds <1. (2.26)

there are twocases:
case (i): f is bounded and case (ii): f is unbounded
Case (i): Suppose N> 0 issuch that f(t,u(t)) < N for 0 < u < oo,

fo = lim max F(tu(t) -0
Tu-oot€e[01] uwe

f(tu(®)) < &u(t) =N foru(t) > 4, > 0.
Let A, = maX{ZAl,N fol G (s, s)f(s,u(s))ds}.

Then, for u(t) € p with ||u|| = A, .We have

Tu(t) = flG(t, s)f (s,u(s))ds
0
< flG(s,s)f(s,u(s))ds
0

1
SL G(s,s)dsé,u

=N [} G(s,5)ds < A, = ||u]

So that ||lu|| < l|lull. So,if Q, ={u € E:||u|| < A,}then

llull < [|ul||foru € p N @Q,.(2.27)

Case(ii): Suppose f is unbounded then,

Let A, > max{24, 4,} be such that £ (¢, u(t)) < f(t,A,), for 0< u < 4,,

Choose u € p with||u|| = A,, we have

Tu(t) :fo1 G(t,5)f (s,u(s))ds
< flG(s, s)f(s,u(s))ds
0
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< folG(s, s)f(4,)ds
1
< | G, d
< JO (s,s)ué,ds

< A8, [} G(s, s)ds=lullby(2.27)

and so||Tul|| < [|lul|. For this case, if we letQ, ={u € E: ||u|| < A,}

then ||Tul|| < [|u]|, foru € p N aQ, .(2.28)

Thus, in either of the cases an application of the second part of the Krensnoselskii’s
fixed point theorem yields a solution of boundary value problems (1.1)-(1.3) has a

positive solution which belongs to pn (Q,\Q,).

4.3.Uniqueness of positive solution
In this section by applying Banachcontraction principle we verify the uniqueness of the

positive solution for boundary value problems (1.1)-(1.3).
Lemma (2.7):Assume f(t, u(t))satisfies Lipschitzconditions with respect to the second

variable with Lipschiz constant Kfor allt € [0,1] then the boundary value problem (1,1) —
(1.3) has a unique solution when 0< k fol G(t,s)ds < 1.

Proof: We consider the operator T defined on cone P and given by,

Tu(t) = f01 G(t,s)f(s,u(s))ds,u€P

Since, Tis self-map on coneP, then we prove that the map T is satisfies the Banach

contraction principle forall u,v € Pand t € [0,1],

Where,Tu(t) = k [ G(¢,5)f (s,u(s))ds ,u € p. and

Tv(t) = k [, G(t,5)f (s,v(s))ds ,v € p.

So,|Tu(t) — Tv(t)| = |k [; G(t,)f(s,u(s))ds — [, G(t,$)f (s, v(s))ds|.
=|e f; 66,9 [F(s,u()) = (s, v(s))] ds|

1
< kj |G, s) [f(s,u(s)) —f(s,v(s))] ds
0

<k fol G(t,s)ds|lu —v|= alu—v|
Therefor,|Tu(t) — Tv(t)| < alu(t) —v(t)|.
Notice thata = k fol G(t,s)ds < 1,the mapping T is a contraction. Hence, by

Banachcontraction principle, T has a unique fixed point which is a unique positive solution of

boundary value problem (1.1)-(1.3) in a cone.
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Chapter 5
Conclusion and Future scope

5.1 Conclusion

In this thesis we construct the Green’s function for homogenous boundary value problems
and considered existence and uniqueness of a positive solution for four point boundary value
problems in a cone by the use of the Karsnoselski’sfixed point theoremandBanach

contraction principle respectively for (1.1)-(1.3).

5.2 Future scope
There are some published results related to the existence of positive Solutions for four point

boundary value problems.The researcher believes the research for existence and uniqueness
of a positive solution for four point boundaryvalue problems in a cone by the use of the
Karsnoselski’s theorem and Banachfixed-point in a cone for the corresponding non-
homogeneous boundary value problems. So,any interested researcher can use this opportunity
and conduct their research work in this area.
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