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Abstract

In this research, we introduced new class of mappings called generalized (ψ,φ)-
Suzuki-type mappings and generalized (ψ,φ)- Jungck-Suzuki contraction type map-
pings and established existence and uniqueness of fixed point for generalized (ψ,φ)-
Suzuki-type mapping and studied coincidence point results for generalized (ψ,φ)-
Jungck-Suzuki contraction mappings in the frame work of complete b- metric spaces.
Our results improve, extend and generalize some known results in the literature.
Also, we provided examples in support of our main findings. In this research un-
dertaking, we followed analytical study design and used secondary sources of data,
such as published articles and related books.
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Chapter 1

Introduction

1.1 Background of the study

Fixed point theory is an important tool in the study of nonlinear analysis. It is con-
sidered to be the key connection between pure and applied mathematics. It is also
widely applied in different fields of study such as Economics, Chemistry, Physics
and almost all engineering fields. The contraction mapping principle introduced
by Banach, (1922) has wide range of applications in a fixed point theory. In 1922,
Banach proved the following famous fixed point theorem.
Let (X ,d) be a complete metric space, T : X → X be a contraction map, then there
exists a unique fixed point x0 ∈ X of T . This theorem, called the Banach contraction
principle is a forceful tool in nonlinear analysis.

Another category of contraction which is separate from Banach contraction, and
does not imply continuity, was proposed by Kannan, (1968) who also established in
the same work that such mappings necessarily have unique fixed points in complete
metric spaces. Mappings belonging to this category are known as Kannan type.
In 1972, a new concept which is different from that of Banach, (1922) and Kan-
nan, (1968) contraction type mappings was introduced by Chatterjea, (1972) which
gives a new direction to the study of fixed point theory. There are a class of contrac-
tive mappings which are different from Banach contraction and have unique fixed
point in complete metric spaces. Banach contraction principle has been extended
and generalized in different directions by different researchers. For more details we
refer Aage and Salunke, (2012), Choudhuny and Bandyopadhyay, (2015), Doric,
(2009), Morales and Rojas, (2012), Alsulami .et al, (2015), Ameer .et al and etc.The
family of contractive mappings in metric spaces is a great interest and has already
been studied in the literature since long time.
In 2009, Suzuki Introduced the concept of Suzuki-type generalized non-expansive
mapping and proved some fixed-point theorems.
In 1984, Khan et al introduced the notion of an altering distance function, which is
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a control function that alters distance between two points in a metric space. In 1997,
Alber et al introduced the concept of weak contraction in Hilbert spaces. Later, in
2001 Rhoades proved that the result which Alber et al, 1997 is also valid in com-
plete metric spaces.
Using the concept of altering distance function, Dutta and Choundhury, (2008),
Doric, (2009), Harjani and Sadarjani, (2009), established some fixed point results
for weak contractions and generalized contraction mappings in the frame work of
metric spaces. Jleli, et al (2014) introduced the notion of θ -contraction and es-
tablished fixed point theorems and also Liu, et al, (2016) proved new fixed point
theorems for (ψ,φ)-type Suzuki contractions in complete metric spaces. Recently,
Eskandar, et al, (2019) proved new fixed point theorems for generalized multi-
valued (ψ,φ)-Suzuki type contractions in complete metric spaces. Very recently,
Mebawondu and Mebawondu, (2021) introduced a new class of mappings called
(ψ,φ)-Suzuki-type mapping and (ψ,φ)-Jungck-Suzuki contraction type mappings
and they established the existence, uniqueness and coincidence results for (ψ,φ)-
Suzuki-type mapping and (ψ,φ)-Jungck-Suzuki contraction mappings in the frame
work of complete metric spaces.
Inspire and motivated by the works of Liu, et al, (2016), Eskandar, et al, (2019),
Mebawondu and Mebawondu, (2021) the main purpose of this research work is to
study some fixed point results for generalized Suzuki (ψ,φ) and (ψ,φ)-Juncgck-
Suzuki contraction type mappings in the context of complete b-metric spaces.

1.2 Statements of the problem

In 2009, Doric (2009) introduced the class of generalized (ψ,φ)-weak contractive
mappings and established that these mappings necessarily have unique common
fixed point in complete metric spaces. In 2016, Liu, et al, (2016) proved new
fixed-point theorems for (ψ,φ)-type Suzuki contractions in complete metric spaces.
In 2019, Eskandar, et al, (2019) proved new fixed-point theorems for generalized
multivalued (ψ,φ)-Suzuki type contractions in complete metric spaces. In 2021,
Mebawondu and Mebawondu, (2021) introduced a new class of mappings called the
generalized Suzuki (ψ,φ) contraction mappings in complete metric spaces. How-
ever, fixed-point results for generalized Suzuki (ψ,φ) and (ψ,φ)-Juncgck-Suzuki
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contraction type mappings in complete b-metric spaces are not yet studied. Thus, in
this study we focused on establishing and proving fixed point results for generalized
Suzuki (ψ,φ) and (ψ,φ)-Juncgck-Suzuki contraction type mappings in complete
b-metric spaces.

1.3 Objectives of the study

1.3.1 General objective

The main objective of this research work was to study fixed-point results for gen-
eralized Suzuki (ψ,φ) contraction and coincidence point results for generalized
(ψ,φ)-Jungck-Suzuki contraction type mappings in the context of complete b-
metric spaces.

1.3.2 Specific objectives

This study has the following specific objectives:

• To prove the existence of fixed point results for generalized Suzuki (ψ,φ)

contraction and coincidence point results for generalized (ψ,φ)-Jungck-Suzuki
contraction type mappings in the setting of b-metric spaces.

• To show the uniqueness of the fixed point results for generalized Suzuki
(ψ,φ)- contraction type mappings in the context of complete b-metric spaces.

• To verify the applicability of the main results obtained using specific exam-
ples.

1.4 Significance of the study

The study may have the following importance:

• It may provide basic research skills to the researcher.

• The outcome of this study may contribute to research activities on study area.

• The outcome of this study may be applied in solving some problems in ap-
plied sciences.
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1.5 Delimitation of the Study

The study focuses on proving the existence and uniqueness of fixed points for
generalized Suzuki (ψ,φ) contraction and coincidence point results for generalized
(ψ,φ) -Jungck-Suzuki contraction type mappings in the setting of b-metric spaces.
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Chapter 2

Review of Related Literatures
The formal form of the metric fixed point theory appeared by the pioneer and art
work of Banach results in 1922. In the fixed point theory, contraction is one of
the main tools to prove the existence and uniqueness of a fixed point. Banach’s
contraction principle, which gives an answer on the existence and uniqueness of the
solution of an operator, T x= x is used in all analysis. There are a class of contractive
mappings which are different from Banach contraction and have unique fixed point
in complete metric spaces. Every contraction in a complete metric space possesses
a unique fixed point. By changing the contraction conditions and involving some
auxiliary functions, several new results were reported.In 1976, Jungck proved a
common fixed point theorem for commuting maps under the condition that X = Y .
The metric fixed point theory has been extended and generalized in several aspects
by a number of authors from all over the worlds. (See e.g., Alber, et al, Berinde,
(2009), Harjani, (2009), Sadarangani, (2010) and etc.)
A very interesting extension of the notion of a metric, called b-metric, was proposed
by Czerwik, (1993) contraction. In these pioneer papers, Czerwik observed some
fixed point results, including the analog of the Banach contraction principle in the
context of complete b-metric spaces. In 1997, Alber et al introduced the concept of
weak contraction in Hilbert spaces.

Definition 2.0.1 (Alber et al, 1997) Let (X ,d) be metric space. A self mapping

f on X is said to be weakly contractive if, d( f x, f y) ≤ d(x,y)− φ(d(x,y)) for all

x,y ∈ X, where φ is an altering distance function.

In 2004, Berinde introduced ’weak contractions’ as a generalization of contraction
maps in continuation to the extensions of contraction maps. Also in 2008, Berinde
renamed ’weak contractions’ as ’almost contractions’ in his later work.In 2008,
Suzuki proved two fixed point point theorems, one of which is a new type of gener-
alization of the Banach contraction principle and does characterize the metric com-
pleteness. In 2010, Pacurar proved results on sequences of almost contractions and
fixed points in b-metric spaces.In 2013, Kir and Kiziltunc established the results
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in b-metric spaces which generalized the Kannan and Chatterjea type mappings.
Roshan, et al, 2016 presented Suzuki type fixed point results in b-metric spaces and
some common fixed point results for two mappings under generalized contractive
condition in b-metric spaces where the b-metric function is not necessarily contin-
uous. In 2015, Latif, et al proved the existence and uniqueness of fixed points of a
single self map satisfying Suzuki type contraction condition in b-metric spaces. In
2017, Leyew and Abbas proved the existence and uniqueness of fixed points of gen-
eralized Suzuki-Geraghty contraction maps in complete b-metric spaces. In 2019,
Babu and Babu proved fixed points of generalized contraction maps with rational
expressions in b-metric spaces. In the sequel, several papers have been reported on
the existence (and the uniqueness) of (common) fixed points of various classes of
single-valued and multi-valued operators in the setting of b-metric spaces (see, e.g.,
Aydiet al, (2012), Roshan, (2014), Liu,et al , (2016) , Eskandar ,et al, (2019) and
the related references therein).
Recently, Mebawondu and Mebawondu, (2021) introduced a new class of map-
pings called (ψ,φ)-Suzuki-type mapping and (ψ,φ)-Jungck-Suzuki contraction
type mappings and they established the existence, uniqueness and coincidence re-
sults for (ψ,φ)-Suzuki-type mapping and (ψ,φ)-Jungck-Suzuki contraction map-
pings in the frame work of complete metric spaces.
The main purpose of this research work is to study fixed point results for general-
ized Suzuki (ψ,φ)-contraction in the context of complete b-metric spaces.
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Chapter 3

Methodology
This chapter contains study design, description of the research methodology, data
collection procedures and data analysis process.

3.1 Study area and period

The study was conducted from September 2021 G.C to February 2022 at Jimma
University under mathematics department.

3.2 Study Design

In order to achieve the objective of the study we followed analytical method of
design.

3.3 Source of Information

In this study secondary source of data such as, different mathematics books related
to the study area, published articles related to the research topic and Internet sources
was used.

3.4 Mathematical Procedure of the Study

In this study we followed the procedures stated below:

• Establishing fixed point theorems.

• Constructing sequences.

• Showing the constructed sequences are b-Cauchy .

• Showing the b-convergence of the sequences.
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• Proving the existence of fixed points and coincidence points.

• Showing uniqueness of the fixed points.

• Giving examples in support of our main findings of the research work.
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Chapter 4

Preliminaries and Main Results
4.1 Preliminaries

Notation 1 We need the following symbols and class of functions to prove certain

results of this section:

• ℜ+ = [0,∞);

• ℜ is the set of all real numbers;

• N is the set of all natural numbers;

• φ and ψ = altering distance function;

• Ψ = family of set.

Definition 4.1.1 (Czerwik,1993) Let X be a nonempty set and s≥ 1 be a given real

number. A function d : X ×X → ℜ+ is said to be a b-metric if and only if for all

x,y,z ∈ X, the following conditions are satisfied:

a. d(x,y) = 0 if and only if x = y;

b. d(x,y) = d(y,x);

c. d(x,z)≤ s[d(x,y)+d(y,z)].

The pair (X ,d) is called a b-metric space.

It should be noted that, the class of b-metric spaces is effectively larger than that of
metric spaces, since a b-metric is a metric when s = 1. But, in general, the converse
is not true.

Example 4.1.1 (Roshan,2014) Let X =ℜ and d : X×X→ℜ+ be given by d(x,y)=

|x− y|2 for x,y ∈ X, then d is a b-metric on X with s = 2 but it is not a metric on X

since for all x,y,z ∈ℜ where, x = 1,y = 3 and z = 7, we have

d(1,7)� d(1,3)+d(3,7).
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Hence the triangle inequality for a metric does not hold.

Definition 4.1.2 (Boriceanu et al, 2010) Let X be a b-metric space and {xn} be a

sequence in X, we say that

a. {xn} is b-converges to x ∈ X if d(xn,x)→ 0 as n→ ∞.

b. {xn} is a b-Cauchy sequence if d(xn,xm)→ 0 as n,m→ ∞.

c. (X ,d) is b-complete if every b-Cauchy sequence in X is b-convergent.

Definition 4.1.3 (Boriceanu, 2009)Let (X ,d) be a b-metric space with the coeffi-

cient s≥ 1 and let T : X → X be a given mapping. We say that T is b-continuous at

x0 ∈ X if and only if for every sequence {xn} in X , we have xn→ x0 as n→ ∞, then

T xn→ T x0 as n→ ∞. If T is b-continuous at each point x ∈ X, then we say that T

is b-continuous on X.

In general, a b-metric is not necessarily b-continuous.

Definition 4.1.4 (Khan et al, 1984) A function ψ : ℜ+→ℜ+ is called an altering

distance function if the following properties hold;

ψ is continuous and nondecreasing function and ψ(t) = 0 if and only if t = 0.

Definition 4.1.5 (Alber et al, 1997) A mapping T : X → X where (X ,d) is a metric

space, is said to be weakly contractive if d(T x,Ty) ≤ d(x,y)− φ(d(x,y)) where

φ : R+→ R+ is altering distance function.

Definition 4.1.6 (Jungck and Hussain, 2007) Let X be a nonempty set and S,T :
X → X be any two mapping;

a. a point x ∈ X is called:

i) coincidence point of S and T if Sx = T x,

ii) common fixed point of S and T if x = Sx = T x.

b. If y = Sx = T x for some x ∈ X,then y is called a point of coincidence of S and

T .

Lemma 4.1.1 (Roshan et al,2014) Let (X ,d) be a b-metric space with s ≥ 1 and

let {xn} be a sequence in X such that

lim
n→∞

d(xn,xn+1) = 0
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If {xn} is not a b-Cauchy sequence, then there exist ε > 0 and two subsequences

{xnk} and {xmk} of {xn} such that for the following four sequences

d(xmk ,xnk),d(xmk+1,xnk),d(xmk ,xnk+1),d(xmk+1,xnk+1)

it holds

a. ε ≤ liminf
k→∞

d(xmk ,xnk)≤ limsup
k→∞

d(xmk ,xnk)≤ sε.

b. ε

s ≤ liminf
k→∞

d(xmk ,xnk+1)≤ limsup
k→∞

d(xmk ,xnk+1)≤ s2ε.

c. ε

s ≤ liminf
k→∞

d(xmk+1,xnk)≤ limsup
k→∞

d(xmk+1,xnk)≤ s2ε.

d. ε

s2 ≤ liminf
k→∞

d(xmk+1,xnk+1)≤ limsup
k→∞

d(xmk+1,xnk+1)≤ s3ε.

Theorem 4.1.2 (suzuki, 2009) Let (X ,d) be a complete metric space and T : X→X

be self mapping. Assume that for all x,y ∈ X with x 6= y,
1
2

d(x,T x)< d(x,y)⇒ d(T x,Ty)< d(x,y).

Then, T has a unique fixed point in X.

Recently, Mebawondu and Mebawondu, (2021) introduced the notion of gener-
alized Suzuki (ψ,φ)-contraction in complete metric spaces and they proved the
existence and uniqueness of fixed point.

Definition 4.1.7 (Mebawondu and Mebawondu, 2021) Let (X ,d) be a metric space.

A mapping T : X → X is said to be (ψ,φ)-Suzuki type if for all x,y ∈ X,
1
2

d(x,T x)≤ d(x,y)⇒ ψ(d(T x,Ty))≤ ψ(M(x,y))− kφ(N(x,y))+Lφ(N1(x,y)),

where 0 < k ≤ 1,L≥ 0,
M(x,y) = max{d(x,y),d(x,T x),d(y,Ty)},
N(x,y) = max{d(x,y),d(y,Ty)},
N1(x,y) = min{d(x,Ty),d(x,T x),d(y,T x)} and

ψ,φ are altering distance functions.

Theorem 4.1.3 (Mebawondu and Mebawondu, 2021) Let (X ,d) be a complete

metric space and T : X → X be a mapping satisfying definition (4.1.7). Then T

has unique fixed point.

11



4.2 Main Results

In this section, we introduced generalized Suzuki (ψ,φ)-and (ψ,φ)-Juncgck-Suzuki
contraction type mappings and study fixed point and coincidence point results for
the mappings introduced in the setting of b-metric spaces.
Now, we define generalized Suzuki (ψ,φ)- contraction type mappings and study
existence and uniqueness of fixed points for such mapping.

Definition 4.2.1 Let (X ,d) be a b-metric space and s ≥ 1. A mapping T : X → X

is said to be generalized (ψ,φ)-Suzuki contraction type mapping if for all x,y ∈ X,
1
2s

d(x,T x)≤ d(x,y)⇒

ψ(s3d(T x,Ty))≤ ψ(M(x,y))− kφ(N(x,y))+Lφ(N1(x,y)), (4.1)

where

0 < k ≤ 1
s
,L≥ 0,ψ,φ ∈Ψ,

M(x,y) = max{d(x,y),d(x,T x),d(y,Ty),
d(x,Ty)+d(y,T x)

2s
},

N(x,y) = max{d(x,y),d(y,Ty),
d(x,T x)d(x,Ty)+d(y,Ty)d(y,T x)

1+d(x,Ty)+d(y,T x)
,

d(x,T x)d(x,Ty)+d(y,Ty)d(y,T x)
1+ s[d(x,y)+d(T x,Ty)]

},

N1(x,y) = min{d(x,y),d(x,T x),d(y,Ty),d(x,Ty),d(y,T x)}
and ψ , φ are altering distance functions.

Theorem 4.2.1 Let (X ,d) be a b- complete b-metric space, s ≥ 1 and T : X → X

be generalized (ψ,φ)-Suzuki contraction type mapping. Then T has a unique fixed

point.

proof: Let x0 ∈ X be arbitrary. We define a sequence {xn} in X by xn = T xn−1 for
all n ∈N. If we suppose that xn0 = xn0+1 for some n0 ∈N, since T xn0 = xn0+1 = xn0

the point xn0 forms a fixed point of T that completes the proof. From now on we
suppose that xn−1 6= xn for all n ∈ N.
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Now we observe that by (4.1)

1
2s

d(xn−1,T xn−1) =
1
2s

d(xn−1,xn)

≤ d(xn−1,xn),s≥ 1,

Which implies

ψ(s3d(xn,xn+1)) = ψ(s3d(T xn−1,T xn))

≤ ψ(M(xn−1,xn))− kφ(N(xn−1,xn))

+Lφ(N1(xn−1,xn)), (4.2)

where

M(xn−1,xn) = max{d(xn−1,xn),d(xn−1,T xn−1),d(xn,T xn),
d(xn−1,T xn)+d(xn,T xn−1)

2s
},

= max{d(xn−1,xn),d(xn,xn+1),
d(xn−1,xn+1)+d(xn,xn)

2s
}

= max{d(xn−1,xn),d(xn,xn+1)},

N(xn−1,xn) = max{d(xn−1,xn),d(xn,T xn),

d(xn−1,T xn−1)d(xn−1,T xn)+d(xn,T xn)d(xn,T xn−1)

1+d(xn−1,T xn)+d(xn,T xn−1)
,

d(xn−1,T xn−1)d(xn−1,T xn)+d(xn,T xn)d(xn,T xn−1)

1+ s[d(xn−1,xn)+d(T xn−1,T xn)]
}

= max{d(xn−1,xn),d(xn,xn+1),

d(xn−1,xn)d(xn−1,xn+1)+d(xn,xn+1)d(xn,xn)

1+d(xn−1,xn+1)+d(xn,xn)
,

d(xn−1,xn)d(xn−1,xn+1)+d(xn,xn+1)d(xn,xn)

1+ s[d(xn−1,xn)+d(xn,xn+1)]
}

= max{d(xn−1,xn),d(xn,xn+1)},
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N1(xn−1,xn) = min{d(xn−1,xn),d(xn−1,T xn−1),d(xn,T xn),d(xn−1,T xn),d(xn,T xn−1)}

= min{d(xn−1,xn),d(xn−1,xn),d(xn,xn+1),d(xn−1,xn+1),d(xn,xn)}

= 0.

If max{d(xn−1,xn),d(xn,xn+1)}= d(xn,xn+1) for some n ∈ N,
then, (4.2) becomes
ψ(d(xn,xn+1))≤ ψ(s3d(xn,xn+1))≤ ψ(d(xn,xn+1))− kφ(d(xn,xn+1))+Lφ(0)

= ψ(d(xn,xn+1))− kφ(d(xn,xn+1)), (4.3)

which implies that

ψ(d(xn,xn+1)) ≤ ψ(d(xn,xn+1))− kφ(d(xn,xn+1)

< ψ(d(xn,xn+1)),

which is a contradiction.
Hence, we have

max{d(xn−1,xn),d(xn,xn+1)}= d(xn−1,xn).

Which implies that

ψ(d(xn,xn+1))≤ ψ(d(xn−1,xn))− kφ(d(xn−1,xn)). (4.4)

From (4.4) we have that {d(xn,xn+1)} is a nonincreasing sequence of nonnegative
real numbers which is bounded below.
Thus, for all n≥ 1 there exists c≥ 0 such that

lim
n→∞

d(xn,xn+1) = c. (4.5)

We show that c = 0.
Assume that c > 0.
Taking the upper limit as n→ ∞ in (4.4) , we have

ψ(c)≤ ψ(c)− kφ(c)< ψ(c).
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Which is a contradiction. Hence,
c = 0.

It follows that for all n≥ 1,

lim
n→∞

d(xn,xn+1) = 0. (4.6)

Now, we show that {xn} is a b-Cauchy sequence in X . Assume on contrary that the
sequence {xn} is not a b-Cauchy. Then there exists ε > 0 for which we can find two
subsequences {xnk} and {xmk} of {xn} with nk > mk > k such that

d(xmk ,xnk)≥ ε (4.7)

which implies that
d(xmk ,xnk−1)< ε

and (a)-(d) of lemma (4.1.1) hold.
By taking x = xmk and y = xnk in (4.2) we have,

1
2s

d(xmk ,T xmk) =
1
2s

d(xmk ,xmk+1)

≤ d(xmk ,xnk)

implies,

ψ(s3d(xmk+1,xnk+1)) = ψ(s3d(T xmk ,T xnk))

≤ ψ(M(xmk ,xnk))− kφ(N(xmk ,xnk))

+Lφ(N1(xmk ,xnk)), (4.8)

where,

M(xmk ,xnk) = max{d(xmk ,xnk),d(xmk ,T xmk),d(xnk ,T xnk),
d(xmk ,T xnk)+d(xnk ,T xmk)

2s
}

= max{d(xmk ,xnk),d(xmk ,xmk+1),d(xnk ,xnk+1),
d(xmk ,xnk+1)+d(xnk ,xmk+1)

2s
},
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N(xmk ,xnk) = max{d(xmk ,xnk),d(xnk ,T xnk),

d(xmk ,T xmk)d(xmk ,T xnk)+d(xnk ,T xnk)d(xnk ,T xmk)

1+d(xmk ,T xnk)+d(xnk ,T xmk)
,

d(xmk ,T xmk)d(xmk ,T xnk)+d(xnk ,T xnk)d(xnk ,T xmk)

1+ s[d(xmk ,xnk)+d(T xmk ,T xnk)]
}

= max{d(xmk ,xnk),d(xnk ,xnk+1),

d(xmk ,xmk+1)d(xmk ,xnk+1)+d(xnk ,xnk+1)d(xnk ,xmk+1)

1+d(xmk ,xnk+1)+d(xnk ,xmk+1)
,

d(xmk ,xmk+1)d(xmk ,xnk+1)+d(xnk ,xnk+1)d(xnk ,xmk+1)

1+ s[d(xmk ,xnk)+d(xmk+1,xnk+1)]
},

N1(xmk ,xnk) = min{d(xmk ,xnk),d(xmk ,T xmk),d(xnk ,T xnk),d(xmk ,T xnk),d(xnk ,T xmk)}

= min{d(xmk ,xnk),d(xmk ,xmk+1),d(xnk ,xnk+1),d(xmk ,xnk+1),d(xnk ,xmk+1)}.

Applying the upper and lower limits as k→ ∞, (4.8) becomes

lim
k→∞

infψ(s3d(xmk+1,xnk+1)) = lim
k→∞

infψ(s3d(T xmk ,T xnk))

≤ lim
k→∞

supψ(M(xmk ,xnk))− k lim
k→∞

supφ(N(xmk ,xnk))

+L lim
k→∞

supφ(N1(xmk ,xnk)).

By applying continuity of ψ and φ we have,

ψ(s3 lim
k→∞

infd(xmk+1,xnk+1)) = ψ(s3 lim
k→∞

infd(T xmk ,T xnk))

≤ ψ( lim
k→∞

supM(xmk ,xnk))− kφ( lim
k→∞

supN(xmk ,xnk))

+Lφ( lim
k→∞

supN1(xmk ,xnk)).

Taking the upper and lower limits as k→ ∞ and using (4.6) and lemma (4.1.1),
limsup

k→∞

M(xmk ,xnk) = limsup
k→∞

max{d(xmk ,xnk),d(xmk ,xmk+1),d(xnk ,xnk+1),

d(xmk ,xnk+1)+d(xnk ,xmk+1)

2s
},

= max{sε,0,0,
s2ε + s2ε

2s
}= sε. (4.9)

16



lim
k→∞

supN(xmk ,xnk)) = lim
k→∞

supmax{d(xmk ,xnk),d(xnk ,xnk+1),

d(xmk ,xmk+1)d(xmk ,xnk+1)+d(xnk ,xnk+1)d(xnk ,xmk+1)

1+d(xmk ,xnk+1)+d(xnk ,xmk+1)
,

d(xmk ,xmk+1)d(xmk ,xnk+1)+d(xnk ,xnk+1)d(xnk ,xmk+1)

1+ s[d(xmk ,xnk)+d(xmk+1,xnk+1)]
}

= max{sε,0,0,0}= sε. (4.10)

limk→∞ infN1(xmk ,xnk))= limk→∞ infmin{d(xmk ,xnk),d(xmk ,xmk+1),d(xnk ,xnk+1),d(xmk ,xnk+1),

d(xnk ,xmk+1)},

= min{sε,0,0,s2
ε,s2

ε}= 0. (4.11)

From Lemma (4.1.1) we have,

ε

s2 ≤ limn→∞ infd(xmk+1,xnk+1)≤ limn→∞ supd(xmk+1,xnk+1)≤ s3ε.

Which implies

ψ(sε) = ψ(s3 ε

s2 )≤ ψ(s3 lim
k→∞

infd(xmk+1,xnk+1)). (4.12)

Now using (4.9), (4.10), (4.11) (4.12) and (4.8) becomes;

ψ(sε)≤ ψ(sε)− kφ(sε)< ψ(sε),

which is a contradiction.
Thus, {xn} is b-Cauchy.

Now completeness of X yields that {xn} b-converges to a point say y ∈ X such
that

lim
n→∞

xn = y.
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Now suppose that for every n≥ 0,we have

d(xn,y)<
1
2s

d(xn,xn+1) and d(xn+1,y)<
1
2s

d(xn+1,xn+2).

From the triangle inequality we have,

d(xn,xn+1) ≤ sd(xn,y)+ sd(y,xn+1)

<
1
2s

sd(xn,xn+1)+
1
2s

sd(xn+1,xn+2)

≤ 1
2
[d(xn,xn+1)+d(xn,xn+1)]

= d(xn,xn+1),

which is a contradiction.
Hence, we have

1
2s

d(xn,xn+1)≤ d(xn,y) and
1
2s

d(xn+1,xn+2)≤ d(xn+1,y) holds for all n≥ 0.

ψ(d(xn+1,Ty)) ≤ ψ(s3d(xn+1,Ty))

= ψ(s3d(T xn,Ty))

≤ ψ(M(xn,y))− kφ(N(xn,y))+Lφ(N1(xn,y)), (4.13)

where

M(xn,y) = max{d(xn,y),d(xn,T xn),d(y,Ty),
d(xn,Ty)+d(y,T xn)

2s
}

= max{d(xn,y),d(xn,xn+1),d(y,Ty),
d(xn,Ty)+d(y,xn+1)

2s
},
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N(xn,y) = max{d(xn,y),d(y,Ty),
d(xn,T xn)d(xn,Ty)+d(y,Ty)d(y,T xn)

1+d(xn,Ty)+d(y,T xn)
,

d(xn,T xn)d(xn,Ty)+d(y,Ty)d(y,T xn)

1+ s[d(x,y)+d(T xn,Ty)]
}

= max{d(xn,y),d(y,Ty),
d(xn,xn+1)d(xn,Ty)+d(y,Ty)d(y,xn+1)

1+d(xn,Ty)+d(y,xn+1)
,

d(xn,xn+1)d(xn,Ty)+d(y,Ty)d(y,xn+1)

1+ s[d(x,y)+d(xn+1,Ty)]
},

N1(xn,y) = min{d(xn,y),d(xn,T xn),d(y,Ty),d(xn,Ty),d(y,T xn)}

= min{d(xn,y),d(xn,xn+1),d(y,Ty),d(xn,Ty),d(y,xn+1)}.

Taking upper limits as n→ ∞ in (4.13) , we get

ψ(d(y,Ty))≤ ψ(d(y,Ty))− kφ(d(y,Ty))+Lφ(0)< ψ(d(y,Ty)).

Which is a contradiction.
This shows that

Ty = y.

Hence, we proved that y is a fixed point of T .

Now we verify the uniqueness of the fixed point of T .
Suppose that T has two distinict fixed points y,z ∈ X such that Ty = y and T z = z

(y 6= z) .
1
2s

d(y,Ty) = 0 < d(y,z),

implies that

ψ(d(y,z)) ≤ ψ(s3d(y,z))

= ψ(s3d(Ty,T z))

≤ ψ(M(y,z))− kφ(N(y,z))+Lφ(N1(y,z)),
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where

M(y,z) = max{d(y,z),d(y,Ty),d(z,T z),
d(y,T z)+d(z,Ty)

2s
}

= max{d(y,z),d(y,y),d(z,z), d(y,z)+d(z,y)
2s

}

= d(y,z).

N(y,z) = max{d(y,z),d(z,T z),
d(y,Ty)d(y,T z)+d(z,T z)d(z,Ty)

1+d(y,T z)+d(z,Ty)
,

d(y,Ty)d(y,T z)+d(z,T z)d(z,Ty)
1+ s[d(y,z)+d(Ty,T z)]

},

= max{d(y,z),d(z,z), d(y,y)d(y,z)+d(z,z)d(z,y)
1+d(y,z)+d(z,y)

d(y,y)d(y,z)+d(z,z)d(z,y)
1+ s[d(y,z)+d(y,z)]

}

= d(y,z).

N1(xn,y) = min{d(y,z),d(y,Ty),d(z,T z),d(y,T z),d(z,Ty)}

= min{d(y,z),d(y,y),d(z,z),d(y,z),d(z,y)},

= 0.

We obtain
ψ(d(y,z))≤ ψ(d(y,z))− kφ(d(y,z))< ψ(d(y,z)),

which is a contradiction.

Hence, y = z.

Therefore, the fixed point is unique. 2

Now we give an example in support of theorem 4.2.1.

Example 4.2.1 Let X = [0,1] be endowed with the b-metric d : X×X →ℜ+

defined by;

d(x,y) =

x2 + y2 +(x− y)2 if x6= y,

0 if x = y.

20



T hen (X,d) is a b− complete b− metric space with s=2.

But(X,d) is not a metric space. For example if x = 0, y =
1
3

andz=1,

d(0,1)≮ d(0,
1
3
)+d(

1
3
,1).

Define T:X→ X and φ ,ψ : ℜ+→ℜ+ by;

T (x) =

0 if x ∈ [0, 1
5 ],

x
4 if x ∈ (1

5 ,1].

ψ(t) =
t
8
,

φ(t) =
t
2
.

Then for any k ∈ (0,
1
2
] and L≥ 0, T is generalized (ψ,φ)-Suzuki contraction type

mapping.

Now we verify by the following cases.

case I: Let x,y ∈ [0, 1
5 ] and x≥ y.

a) If x = y, then
1
2s

d(x,T x) =
1
4

d(x,0) =
x2

2
≥ 0 = d(x,y).

In this case, we have nothing to show.
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b) If x > y, then

d(x,y) = x2 + y2 +(x− y)2 = 2x2 +2y2−2xy

≥ x2 + y2

≥ (x2 + y2)2

x2 + y2

≥ x4 + y4

x2 + y2

≥ x4 + y4

x2 + y2 +(x− y)2

≥ 2x4 +2y4

1+2[x2 + y2 +(x− y)2]
.

1
2s

d(x,T x) =
1
4

d(x,0) =
x2

2
≤ 2x2 +2y2−2xy = d(x,y).

Then

d(T x,Ty) = d(0,0) = 0,
d(x,Ty) = d(x,0) = 2x2,

d(y,T x) = d(y,0) = 2y2,

d(y,Ty) = d(y,0) = 2y2.

So, we obtain

ψ(s3d(T x,Ty)) = ψ(23(0)) = 0 ≤ ψ(M(x,y))− kφ(N(x,y))+Lφ(N1(x,y))

=
x2 + y2− xy

4
− k(x2 + y2− xy)+Ly2.

where

M(x,y) = max{2x2 +2y2−2xy,2x2,2y2,
x2 + y2

2
},

= 2x2 +2y2−2xy.

N(x,y) = max{2x2 +2y2−2xy,2y2,
2x4 +2y4

1+2x2 +2y2 ,
2x4 +2y4

1+2[2x2 +2y2−2xy]
},

= 2x2 +2y2−2xy.
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N1(x,y) = min{2x2 +2y2−2xy,2x2,2y2},

= 2y2.

Therefore,
1
2s

d(x,T x)≤ d(x,y)⇒ψ(s3d(T x,Ty))≤ψ(M(x,y))−kφ(N(x,y))+Lφ(N1(x,y)).

case II: Let x ∈ [0, 1
5 ] and y ∈ (1

5 ,1]. This implies x < y.

1
2s

d(x,T x) =
1
4

d(x,0) =
x2

2
≤ 2x2 +2y2−2xy = d(x,y).

Then

d(T x,Ty) = d(0,
y
4
) =

y2

16
+

y2

16
=

y2

8
,

d(x,Ty) = d(x,
y
4
) =

16x2 + y2−4xy
8

,

d(y,T x) = d(y,0) = 2y2,

d(y,Ty) = d(y,
y
4
) =

13y2

8
.

So we obtain,

ψ(s3d(T x,Ty)) = ψ(23(
y2

8
)) =

y2

8
≤ ψ(M(x,y))− kφ(N(x,y))+Lφ(N1(x,y))

=
x2 + y2− xy

4
− k(x2 + y2− xy)+L

16x2 + y2−4xy
16

,

where

M(x,y) = max{2x2 +2y2−2xy,
13y2

8
,2x2,

16x2 +17y2−4xy
32

},

= 2x2 +2y2−2xy.

23



N(x,y) = max{2x2 +2y2−2xy,
13y2

8
,
256x4 +26y416(xy)2−64x3y

16x2 + y2−4xy+8
,

256x4 +26y4 +16(xy)2−64x3y
32x2 +34y2−32xy+8

},

= 2x2 +2y2−2xy.

N1(x,y) = min{2x2 +2y2−2xy,2x2,2y2,
13y2

8
,
16x2 + y2−4xy

8
},

=
16x2 + y2−4xy

8
.

Therefore,
1
2s

d(x,T x)≤ d(x,y)⇒ψ(s3d(T x,Ty))≤ψ(M(x,y))−kφ(N(x,y))+Lφ(N1(x,y)).

case III: Let x,y ∈ (1
5 ,1] and x≥ y.

a) If x = y, then
1
2s

d(x,T x) =
1
4

d(x,
x
4
) =

13x2

32
≥ 0 = d(x,y).

In this case, we have nothing to show.

b) If x > y, then
1
2s

d(x,T x) =
1
4

d(x,
x
4
) =

13x2

32
≤ 2x2 +2y2−2xy = d(x,y).

Then

d(T x,Ty) = d(
x
4
,

y
4
) =

x2 + y2− xy
8

d(x,Ty) = d(x,
y
4
) =

16x2 + y2−4xy
8

d(y,T x) = d(y,
x
4
) =

x2 +16y2−4xy
8

d(y,Ty) = d(y,
y
4
) =

13y2

8
So we obtain,

ψ(s3d(T x,Ty)) = ψ(23(
x2 + y2− xy

8
)) =

x2 + y2− xy
8

≤ ψ(M(x,y))− kφ(N(x,y))+Lφ(N1(x,y))

=
x2 + y2− xy

4
− k(x2 + y2− xy)+L

x2 +16y2−4xy
16

.
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where

M(x,y) = max{2x2 +2y2−2xy,
13x2

8
,
13y2

8
,2x2,

17x2 +17y2−8xy
32

}

= 2x2 +2y2−2xy.

N(x,y) = max{2x2 +2y2−2xy,
13y2

8
,
104x4 +104y4 +13(xy)2−26x3y−26y3x

68x2 +68y2−32xy+32
,

104x4 +104y4 +13(xy)2−26x3y−26y3x
136x2 +136y2−136xy+32

}

= 2x2 +2y2−2xy.

N1(x,y) = min{2x2 +2y2−2xy,
13x2

8
,
13y2

8
,
16x2 + y2−4xy

8
,
16y2 + x2−4xy

8
}

=
x2 +16y2−4xy

8
.

Therefore,
1
2s

d(x,T x)≤ d(x,y)⇒ψ(s3d(T x,Ty))≤ψ(M(x,y))−kφ(N(x,y))+Lφ(N1(x,y)).

case Iv: Let x ∈ (1
5 ,1] and y ∈ [0, 1

5 ]. This implies x > y.

1
2s

d(x,T x) =
1
4

d(x,
x
4
) =

13x2

32
≤ 2x2 +2y2−2xy = d(x,y).

Then

d(T x,Ty) = d(
x
4
,0) =

x2

16
+

x2

16
=

x2

8

d(x,Ty) = d(x,0) = 2x2

d(y,T x) = d(y,
x
4
) =

16y2 + x2−4xy
8

d(y,Ty) = d(y,0) = 2y2.

So we obtain,

ψ(s3d(T x,Ty)) = ψ(23(
y2

8
)) =

x2

8
≤ ψ(M(x,y))− kφ(N(x,y))+Lφ(N1(x,y))

=
x2 + y2− xy

4
− k(x2 + y2− xy)+L(

16y2 + x2−4xy
16

).
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where

M(x,y) = max{2x2 +2y2−2xy,2y2,
13x2

8
,
17x2 +16y2−4xy

32
},

= 2x2 +2y2−2xy.

N(x,y) = max{2x2 +2y2−2xy,2y2,
26x4 +32y4 +2(xy)2−8xy3

17x2 +16y2−4xy+8
,
13x4 +16y4 +(xy)2−4xy3

17x2 +16y2−32xy+4
},

= 2x2 +2y2−2xy.

N1(x,y) = min{2x2 +2y2−2xy,2x2,2y2,
13x2

8
,
16y2 + x2−4xy

8
},

=
16y2 + x2−4xy

8
.

Therefore,
1
2s

d(x,T x)≤ d(x,y)⇒ψ(s3d(T x,Ty))≤ψ(M(x,y))−kφ(N(x,y))+Lφ(N1(x,y)).

Thus, all the conditions of Theorem (4.2.1) are satisfied and 0 is the unique fixed

point of T .

In the following we give the definition of generalized (ψ,φ)-Jungck-Suzuki con-
traction type for a pair of maps and study coincidence points.

Definition 4.2.2 Let (X ,d) be a b-metric space, Y an arbitrary nonempty set and

S,T : Y → X be two mappings. A mapping S,T are said to be (ψ,φ)-Jungck-Suzuki

type mapping if for all x,y ∈ Y ,
1
2s

d(Sx,T x)≤ d(Sx,Sy)⇒

ψ(s3d(T x,Ty))≤ ψ(M(Sx,Sy)− kφ(N(Sx,Sy))+Lφ(N1(Sx,Sy)). (4.14)

where,

0 < k ≤ 1
s
,L≥ 0,

M(Sx,Sy) = max{d(Sx,Sy),d(Sy,Ty),d(Sx,T x),
d(Sx,Ty)+d(Sy,T x)

2s
},
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N(Sx,Sy) = max{d(Sx,Sy),d(Sy,Ty),
d(Sx,T x)d(Sx,Ty)+d(Sy,Ty)d(Sy,T x)

1+d(Sx,Ty)+d(Sy,T x)
,

d(Sx,T x)d(Sx,Ty)+d(Sy,Ty)d(Sy,T x)
1+ s[d(Sx,Sy)+d(T x,Ty)]

},

N1(Sx,Sy) = min{d(Sx,Sy),d(Sx,T x),d(Sy,Ty),d(Sx,Ty),d(Sy,Ty)}
and ψ ,φ are altering distance functions.

Theorem 4.2.2 Let (X ,d) be a b- complete b-metric space, s ≥ 1 and S,T : Y →
X is (ψ,φ)-Jungck-Suzuki type mapping such that T (Y ) ⊆ S(Y ) and S(Y )is a b-

complete subspace of X, then T and S have a coincidence point.

proof For every x0 ∈Y ,there exists x1 ∈Y such that Sx1 = T x0, since T (Y )⊆ S(Y ).
Using this fact, for any xn−1 ∈Y , there exists xn such that Sxn = T xn−1 for all n∈N.
Now observe that

1
2s

d(Sxn−1,T xn−1) =
1
2s

d(Sxn−1,Sxn)

≤ d(Sxn−1,Sxn)

which implies

ψ(s3d(Sxn,Sxn+1)) = ψ(s3d(T xn−1,T xn))

≤ ψ(M(Sxn−1,Sxn))− kφ(N(Sxn−1,Sxn))+Lφ(N1(Sxn−1,Sxn)).

where

M(Sxn−1,Sxn) = max{d(Sxn−1,Sxn),d(Sxn−1,T xn−1),d(Sxn,T xn),
d(Sxn−1,T xn)+d(Sxn,T xn−1)

2s
}

= max{d(Sxn−1,Sxn),d(Sxn−1,Sxn),d(Sxn,Sxn+1),
d(Sxn−1,Sxn+1)+d(Sxn,Sxn)

2s
}

= max{d(Sxn−1,Sxn),d(Sxn,Sxn+1),}.
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N(Sxn−1,Sxn) = max{d(Sxn−1,Sxn),d(Sxn,T xn),

d(Sxn−1,T xn−1)d(Sxn−1,T xn)+d(Sxn,T xn)d(Sxn,T xn−1)

1+d(Sxn−1,T xn)+d(Sxn,T xn−1)
,

d(Sxn−1,T xn−1)d(Sxn−1,T xn)+d(Sxn,T xn)d(Sxn,T xn−1)

1+ s[d(Sxn−1,Sxn)+d(T xn−1,T xn)]
},

= max{d(Sxn−1,Sxn),d(Sxn,Sxn+1),

d(Sxn−1,Sxn)d(Sxn−1,Sxn+1)+d(Sxn,Sxn+1)d(Sxn,Sxn)

1+d(Sxn−1,Sxn+1)+d(Sxn,Sxn)
,

d(Sxn−1,Sxn)d(Sxn−1,Sxn+1)+d(Sxn,Sxn+1)d(Sxn,Sxn)

1+ s[d(Sxn−1,Sxn)+d(Sxn,Sxn+1)]
},

= max{d(Sxn−1,Sxn),d(Sxn,Sxn+1)}.

N1(Sxn−1,Sxn) = min{d(Sxn−1,Sxn),d(Sxn−1,T xn−1),d(Sxn,T xn),d(Sxn−1,T xn),d(Sxn,T xn−1)}

= min{d(Sxn−1,Sxn),d(Sxn,Sxn+1),d(Sxn−1,Sxn+1),d(Sxn,Sxn)},

= 0.

Using similar line of proof as in Theorem(4.2.1), we can show that
max{d(Sxn−1,Sxn),d(Sxn,Sxn+1)}= d(Sxn−1,Sxn)

and for all n≥ 0,

d(Sxn,Sxn+1)≤ d(Sxn−1,Sxn). (4.15)

Hence, (4.14) becomes

ψ(s3d(Sxn,Sxn+1))≤ ψ(d(Sxn−1,Sxn))− kφ(d(Sxn−1,Sxn)). (4.16)

From (4.15), we have that d(Sxn,Sxn+1) is a non increasing sequence.
Thus for all n≥ 0 there exists r ≥ 0 such that

lim
n→∞

d(Sxn,Sxn+1) = r. (4.17)
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Assume that r > 0,taking the limits as n→ ∞ in (4.16), we have

ψ(r)≤ ψ(r)− kφ(r)< ψ(r).

Which is a contradiction.
Hence, for all n≥ 0

lim
n→∞

d(Sxn,Sxn+1) = 0. (4.18)

We now show that sequence {Sxn} is a b-Cauchy sequence in X .Assume on contrary
that the sequence {Sxn} is not a b-Cauchy.By Lemma (4.1.1) there exists ε > 0 for
which we can find two subsequences {Sxnk} and {Sxmk} of {Sxn} with nk > mk > k

such that
d(Sxmk ,Sxnk)≥ ε implies d(Sxmk ,Sxnk−1)< ε ,and (a)-(d) of lemma (4.1.1) hold.
By setting x = Sxmk and y = Sxnk we have;

1
2s

d(Sxmk ,T xmk) =
1
2s

d(Sxmk ,Sxmk+1)

≤ d(Sxmk ,Sxnk),

which implies
ψ(s3d(Sxmk+1,Sxnk+1)) = ψ(s3d(T xmk ,T xnk))

≤ ψ(M(Sxmk ,Sxnk))− kφ(N(Sxmk ,Sxnk))+Lφ(N1(Sxmk ,Sxnk)), (4.19)

where,

M(Sxmk ,Sxnk) = max{d(Sxmk ,Sxnk),d(Sxmk ,T xmk),d(Sxnk ,T xnk),
d(Sxmk ,T xnk)+d(Sxnk ,T xmk)

2s
}

= max{d(Sxmk ,Sxnk),d(Sxmk ,Sxmk+1),d(Sxnk ,Sxnk+1),

d(Sxmk ,Sxnk+1)+d(Sxnk ,Sxmk+1)

2s
}.
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N(Sxmk ,Sxnk) = max{d(Sxmk ,Sxnk),d(Sxnk ,T xnk),

d(Sxmk ,T xmk)d(Sxmk ,T xnk)+d(Sxnk ,T xnk)d(Sxnk ,T xmk)

1+d(Sxmk ,T xnk)+d(Sxnk ,T xmk)
,

d(Sxmk ,T xmk)d(Sxmk ,T xnk)+d(Sxnk ,T xnk)d(Sxnk ,T xmk)

1+ s[d(Sxmk ,Sxnk)+d(T xmk ,T xnk)]
}

= max{d(Sxmk ,Sxnk),d(Sxnk ,Sxnk+1),

d(Sxmk ,Sxmk+1)d(Sxmk ,Sxnk+1)+d(Sxnk ,Sxnk+1)d(Sxnk ,Sxmk+1)

1+d(Sxmk ,Sxnk+1)+d(Sxnk ,Sxmk+1)
,

d(Sxmk ,Sxmk+1)d(Sxmk ,Sxnk+1)+d(Sxnk ,Sxnk+1)d(Sxnk ,Sxmk+1)

1+ s[d(Sxmk ,Sxnk)+d(Sxmk+1,Sxnk+1)]
}.

N1(Sxmk ,Sxnk) = min{d(Sxmk ,Sxnk),d(Sxmk ,T xmk),d(Sxnk ,T xnk),d(Sxmk ,T xnk),d(Sxnk ,T xmk)}

= min{d(Sxmk ,Sxnk),d(Sxmk ,Sxmk+1),d(Sxnk ,Sxnk+1),d(Sxmk ,Sxnk+1),d(Sxnk ,Sxmk+1)}.

Applying the upper and lower limits as k→ ∞, (4.19) becomes

lim
k→∞

infψ(s3d(Sxmk+1,Sxnk+1)) = lim
k→∞

infψ(s3d(T xmk ,T xnk))

≤ lim
k→∞

supψ(M(Sxmk ,Sxnk))− k lim
k→∞

supφ(N(Sxmk ,Sxnk))

+L lim
k→∞

supφ(N1(Sxmk ,Sxnk)).

By taking the upper and lower limits as k→ ∞ and using lemma (4.1.1) we get,

ψ(sε) = ψ(s3 ε

s2 )

≤ ψ(s3 lim
k→∞

infd(Sxmk+1,Sxnk+1)),

which implies that
ψ(sε)≤ ψ(sε)− kφ(sε)< ψ(sε),

which is a contradiction.
Hence, {Sxn} is b- Cauchy.
Since S(Y ) is a b-complete, then there exists say x ∈S(Y) such that

lim
n→∞

Sxn = x.
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More so, we can find y ∈ Y such that Sy = x.
Now, suppose that for every n ∈ N, we have

d(Sxn−1,y)<
1
2s

d(Sxn−1,Sxn) and d(Sxn,y)<
1
2s

d(Sxn,Sxn+1).

Now, observe that

d(Sxn−1,Sxn) ≤ sd(Sxn−1,y)+ sd(y,Sxn)

<
1
2s

sd(Sxn−1,Sxn)+
1
2s

sd(Sxn,Sxn+1)

≤ 1
2
[d(Sxn−1,Sxn)+d(Sxn−1,Sxn)]

= d(Sxn−1,Sxn),

which is a contradiction.
Hence, we have
1
2s

d(Sxn−1,Sxn)≤ d(Sxn−1,y) and
1
2s

d(Sxn,Sxn+1)≤ d(Sxn,y) for all n ∈ N.

It then follows that

1
2s

d(Sxn−1,T xn−1) =
1
2s

d(Sxn−1,Sxn)

≤ d(Sxn−1,y),

which implies
ψ(s3d(Sxn,Ty)) = ψ(s3d(T xn−1,Ty))

≤ ψ(M(Sxn−1,Sy))− kφ(N(Sxn−1,Sy))+Lφ(N1(Sxn−1,Sy)). (4.20)

where
M(Sxn−1,Sy)=max{d(Sxn−1,Sy),d(Sxn−1,T xn−1),d(Sy,Ty),

d(Sxn−1,Ty)+d(Sy,T xn−1)

2s
},

N(Sxn−1,Sy)=max{d(Sxn−1,Sy),d(Sy,Ty),
d(Sxn−1,T xn−1)d(Sxn−1,Ty)+d(Sy,Ty)d(Sy,T xn−1)

1+d(Sxn−1,Ty)+d(Sy,T xn−1)
,

d(Sxn−1,T xn−1)d(Sxn−1,Ty)+d(Sy,Ty)d(Sy,T xn−1)

1+ s[d(Sxn−1,Sy)+d(T xn−1,Ty)]
},

N1(Sxn−1,Sy)=min{d(Sxn−1,Sy),d(Sxn−1,T xn−1),d(Sy,Ty),d(Sxn−1,Ty),d(Sy,T xn−1)}.
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Taking the limits as n→ ∞ in (4.20), we get

ψ(s3d(x,Ty))≤ ψ(d(x,Ty))− kφ(d(x,Ty)),

which implies

ψ(d(x,Ty))≤ ψ(d(x,Ty))− kφ(d(x,Ty))< ψ(d(x,Ty)),

which is a contradiction.
This implies that x = Ty.

It follows that
limn→∞ d(Sxn,Ty) = 0 and limn→∞ d(Sxn,Sy) = 0.
Thus, we have x = Sy = Ty,which is a coincidence point of T and S. 2

Now we give an example in support of Theorem 4.2.2.

Example 4.2.2 Let X = [0,1] and defined d : X×X →ℜ+ as follows

d(x,y) =

0 if x = y,

(x+y)2 if x 6= y.

T hen(X,d) is a b− complete b− metric space with s=2.

LetS, T:X→ X and φ ,ψ : ℜ+→ℜ+ be defined by ;

T (x) =

0 if x ∈ [0, 1
2)

x2

4 if x ∈ [1
2 ,1],

Sx = x2,

ψ(t) =
t
2
,

φ(t) =
t
4
.

Then for any k ∈ (0, 1
2
] and L≥ 0,S,T is generalized (ψ,φ)-Jungck-Suzuki contrac-

tion type mappings.

To verify we consider the following cases.
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Case I: Let x,y ∈ [0, 1
2) and x≥ y.

1
2s

d(Sx,T x) =
1
4

d(x2,0) =
x4

4
≤ (x2 + y2)2 = d(Sx,Sy),

and

d(T x,Ty) = d(0,0) = 0 ,

d(Sx,Ty) = d(x2,0) = x4,

d(Sy,T x) = d(y2,0) = y4,

d(Sy,Ty) = d(y2,0) = y4.

Therefore, we have

M(Sx,Sy) = (x2 + y2)2,

N(Sx,Sy) = (x2 + y2)2,

N1(Sx,Sy) = y4,

and

ψ(s3d(T x,Ty)) ≤ ψ(M(Sx,Sy))− kφ(N(Sx,Sy))+Lφ(N1(Sx,Sy)),

0 ≤ (x2 + y2)2

2
− k

(x2 + y2)2

4
+L

y4

4
.

Thus, we have

1
2s

d(Sx,T x)≤ d(Sx,Sy)⇒ψ(s3d(T x,Ty))≤ψ(M(Sx,Sy))−kφ(N(Sx,Sy))+Lφ(N1(Sx,Sy)).

Case II: Let x ∈ [0, 1
2) and y ∈ [

1
2
,1].

1
2s

d(Sx,T x) =
1
4

d(x2,0) =
x4

4
≤ (x2 + y2)2 = d(Sx,Sy),

and
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d(T x,Ty) = d(0,
y2

4
) =

y4

16
,

d(Sx,Ty) = d(x2,
y2

4
) =

(4x2 + y2)2

16
,

d(Sy,T x) = d(y2,0) = y4,

d(Sy,Ty) = d(y2,
y2

4
) =

25y4

16
.

Therefore, we have

M(Sx,Sy) =
25y4

16
,

N(Sx,Sy) =
25y4

16
,

N1(Sx,Sy) = x4,

and

ψ(s3d(T x,Ty)) ≤ ψ(M(Sx,Sy))− kφ(N(Sx,Sy))+Lφ(N1(Sx,Sy)),
y4

4
≤ (25y4)

32
− k

(25y4)

64
+L

x4

4
.

Thus, we have

1
2s

d(Sx,T x)≤ d(Sx,Sy)⇒ψ(s3d(T x,Ty))≤ψ(M(Sx,Sy))−kφ(N(Sx,Sy))+Lφ(N1(Sx,Sy)).

Case III: Let x,y ∈ [
1
2
,1] and x≥ y.

1
2s

d(Sx,T x) =
1
4

d(x2,
x2

4
) =

25x4

64
≤ (x2 + y2)2 = d(Sx,Sy),

and

d(T x,Ty) = d(
x2

4
,
y2

4
) =

(x2 + y2)2

16
,

d(Sx,Ty) = d(x2,
y2

4
) =

(4x2 + y2)2

16
,
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d(Sy,T x) = d(y2,
x2

4
) =

(4y2 + x2)2

16
,

d(Sy,Ty) = d(y2,
y2

4
) =

25y4

16
.

Therefore, we have

M(Sx,Sy) = (x2 + y2)2,

N(Sx,Sy) = (x2 + y2)2,

N1(Sx,Sy) =
25y4

16
,

and

ψ(s3d(T x,Ty)) ≤ ψ(M(Sx,Sy))− kφ(N(Sx,Sy))+Lφ(N1(Sx,Sy)),
(x2 + y2)2

4
≤ (x2 + y2)2

2
− k

(x2 + y2)2

4
+L

25y4

64
.

Thus, we have

1
2s

d(Sx,T x)≤ d(Sx,Sy)⇒ψ(s3d(T x,Ty))≤ψ(M(Sx,Sy))−kφ(N(Sx,Sy))+Lφ(N1(Sx,Sy)).

Hence, from all these cases S,T satisfies all hypothesis of Theorem (4.2.2) and

0 is unique point of coincidence of S and T .

The following Corollaries follow the main result.

Corollary 4.1: Let (X ,d) be a b-metric space , s ≥ 1 and a mapping T : X → X

is generalized (ψ,φ)-Suzuki contraction type mapping. If for all x,y ∈ X ,
1
2s

d(x,T x)≤ d(x,y)⇒ψ(s3d(T x,Ty))≤ψ(M(x,y))−kφ(N(x,y))+Lφ(N1(x,y)),

where
0 < k ≤ 1

s
,L≥ 0 and ψ,φ are altering distance functions,
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M(x,y) = max{d(x,y),d(x,T x),d(y,Ty)},
N(x,y) = max{d(x,y),d(y,Ty)},
N1(x,y) = min{d(x,Ty),d(x,T x),d(y,T x)} and ψ,φ altering distance functions.
Then T has unique fixed point.

Remark 4.1 The proof of Corollary 4.1 is in line with the proof of Theorem 4.2.1

and it is equivalent to the result of (Mebawondu and Mebawondu, 2021) when s= 1.

Corollary 4.2: Let (X ,d) be a b-metric space , s ≥ 1 and a mapping T : X → X is
generalized (ψ,φ)-Suzuki contraction type mapping. If for all x,y ∈ X ,
1
2s

d(x,T x)≤ d(x,y)⇒ ψ(s3d(T x,Ty))≤ ψ(M(x,y))− kφ(N(x,y)).

where

0 < k ≤ 1
s
,L≥ 0,ψ,φ ∈Ψ,

M(x,y) = max{d(x,y),d(x,T x),d(y,Ty),
d(x,Ty)+d(y,T x)

2s
},

N(x,y) = max{d(x,y),d(y,Ty),
d(x,T x)d(x,Ty)+d(y,Ty)d(y,T x)

1+d(x,Ty)+d(y,T x)
,

d(x,T x)d(x,Ty)+d(y,Ty)d(y,T x)
1+ s[d(x,y)+d(T x,Ty)

]}, and ψ , φ are altering distance functions.

Then T has unique fixed point.

Remark 4.2 Corollary 4.2 is equivalent to Theorem 4.2.1 when L = 0.
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Chapter 5

Conclusion and Future scope
5.1 Conclusion

Mebawondu and Mebawondu, (2021) established fixed point theorems for general-

ized Suzuki (ψ,φ)-type mapping and generalized (ψ,φ)-Jungck-Suzuki contraction

type mappings in complete metric spaces and proved the existence, uniqueness and

coincidence results of fixed points.In this research work,we introduced fixed point

results for generalized Suzuki (ψ,φ)-contraction and coincidence point result for

generalized (ψ,φ)-Jungck-Suzuki contraction type mappings in the context of com-

plete b-metric spaces and proved the existence and uniqueness of fixed point for the

mappings introduced. Our results extend and generalize related fixed point results

in the literature in particular that of Mebawondu and Mebawondu, (2021). We have

also supported the main results of this research work by applicable examples.

5.2 Future scope

There are some published results related to the existence of fixed point theorems of

mappings defined on b-metric spaces. The researcher believe that the search for

the existence and uniqueness of fixed points of self-mappings satisfying generalized

Suzuki (ψ,φ)- type contraction in b-metric spaces is an active area of study. So,

any interested researchers can use this opportunity and conduct their research work

in this area.
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