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a b s t r a c t   

Half Heusler(hH) compounds have demonstrated exceptional capability in a wide range of functional ap-
plications as semiconductors. Although there are theoretical predictions about newer compounds and their 
thermodynamic stability, experimental validation is often missing. In this study, we report two quaternary 
multicomponent Zr-based hH alloy systems, namely ZrNi0.5Fe0.5Sb and ZrNiIn0.5Sb0.5, designed by com-
bining 19 and 17 VEC (valence electron count) alloy systems. The structural features, including the crystal 
structures and compositions, were established using multiple techniques like X-ray diffraction, scanning 
and transmission electron microscopy. Both these systems crystallized in signature hH cubic structure 
(F43m) having lattice parameters 0.6091 nm and 0.6104 nm, respectively. The measurement of Seebeck 
coefficients over a wide temperature range showed p-to n-type semiconductor transition in ZrNi0.5Fe0.5Sb at 
around 888 K due to bipolar conduction. Subsequently, the partial substitution of Co for Fe sites 
(ZnNi0.5Fe0.3Co0.2Sb) completely suppressed the bipolar conductivity, making it a n-type semiconductor and 
increased the absolute value of Seebeck coefficient, by an order of magnitude, to − 133μV/K. The alloy 
ZrNiIn0.5Sb0.5 showed n-type semiconductor behavior throughout the measurement temperature range. 
This study conducts an in-depth examination of the microstructural phase evolution, chemical environment 
of the elements forming the novel hH phase and demonstrates the tunability of electronic properties 
through aliovalent substitutions at various lattice sites. 

© 2022 Elsevier B.V. All rights reserved.    

1. Introduction 

Half-Heusler (hH) alloys are an emerging group of materials with 
a wide range of applications such as spintronics [1–3], topological 
insulators, [4,5] and, in the green energy-related fields of solar cells  
[6–8] or thermoelectrics (TEs) [9,10]. The cause of these versatile 
multifunctional applications from the same class of materials is due 
to the unique cubic crystal structure (Space group no. 216, F43m, 
C1b) that can accommodate various elements. The structure of a 
ternary equiatomic hH crystal XYZ can be viewed as three 

interpenetrating FCC lattices (hence, stoichiometry 1:1:1) occupied 
by different kinds of atoms [11]. It provides the flexibility of sub-
stituting atoms at different lattice sites by changing the chemical 
composition enabling a wide combinatorial space of ternary com-
pounds. Consequently, the band gaps can be tuned in a wide range 
(0–4 eV) to optimize electronic, optical, and magnetic properties. It 
is widely acknowledged that alloys with 18 valence electron count 
(VEC) are stable semiconductors such that all of their bonding 
electronic states are filled, while all antibonding states are unfilled  
[12,13]. This VEC 18 criterion has been profusely employed for de-
signing as well as predicting newer hH compounds [14,15]. Subse-
quently, two major designing strategies can be identified in the 
recent development of newer hH compounds. First, adjusting the 
chemical stoichiometry of ternary systems (having 17 and 19 VECs) 
such that the effective VEC comes closer to 18. These off- 
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stoichiometric compounds are called defective half Heuslers owing 
to the presence of large point defects like vacancies. Nb0.8 ± xFeSb, 
and TiFe1.5 ± xSb from NbCoSb [16] (19 VEC) and TiFeSb [17] (17 VEC) 
ternary systems, respectively, are the classical examples of these 
defective hHs. Theoretical studies based on first-principle calcula-
tions further predicted 16 newer defective hHs [18–22]. However, 
most of these ternary phases contain rare or precious elements that 
preclude any practical functional applications. Second, fulfilling the 
valence balance criterion (18 VEC) through a combination of 19 and 
17 VEC systems. Anand et al.[23] explored such possibility theore-
tically and predicted a large phase space for the 131 quaternary hH 
crystals. This relatively newer strategy was based on the premise 
that such phases already existed in the early report of Skolozdra 
et al.[24], who reported cubic hH quaternary compounds 
(Sc0.5Nb0.5FeSb, ZrNiIn0.5Sb0.5, HfNiIn0.5Sb0.5). These compounds can 
be thought of as the combination of two such 17 and 19 VEC systems. 
However, the electronic properties of such compounds were not yet 
measured. To assess and extend the applicability of this strategy, we 
synthesized three Zr-based multicomponent alloy systems and in-
vestigated their microstructural, crystallographic, and electronic 
properties. 

The purpose of this paper is two-fold. First, to explore new Zr- 
based half Heusler alloy systems that are designed to achieve a VEC 
of 18, synthesized by mixing ternary alloys of 17 and 19 VECs. The 
ternary system ZrNiSb having 19 VEC, is alloyed with 17 VEC systems 
of ZrFeSb and ZrNiIn such that the quaternary alloy stoichiometries 
can be conveniently expressed as ZrNimX0.5Sb1.5−m (X = Fe, m=0.5; 
X]In, m=1). While transition elements Fe and Ni both occupy Y 
elemental site [Wyckoff site 4c (1/4,1/4,1/4)] in ZrNi0.5Fe0.5Sb 
system, p-block heavier elements In and Sb both occupy Z elemental 
site [Wyckoff site 4b (1/2,1/2,1/2)] in ZrNiSb0.5In0.5, respectively, of 
the cubic hH lattice (space group F43m). Second, to investigate the 
phase stability and electronic properties of the achieved 18 VEC 
ZrNi0.5Fe0.5Sb quaternary hH phase when alloyed with another 
ternary hH ZrCoSb system having 18 VEC. The same occupancy site 
[Wyckoff position 4c (1/4,1/4,1/4)] of Ni and Fe in ZrNi0.5Fe0.5Sb 
lattice and Co in ZrCoSb lattice along with similar atomic sizes of 
these transition elements make ZrCoSb system suitable choice for 
alloying in the quaternary hH phase. 

2. Experimental details 

2.1. Sample preparation 

Stoichiometric amounts of elements with 4 N purity were used 
for the synthesis of the alloys. Ingots (approximately 10 g) of desired 
compositions were prepared through conventional arc melting on a 
water-cooled copper heath under an inert gas atmosphere (Ar, 5 N). 
Prior melting, the chambar was pumped to vacuum (< 10−5mbar) and 
purged with Ar. These steps were repeated three times to remove 
any contaminating gases. Additionally, the titanium sponge was used 
as gettering material to reduce oxygen contamination. The initial 
melted buttons were repeatedly re-melted after flipping the buttons 
several times to ensure homogenized ingot. Samples were then 

sealed in quartz ampoules under vacuum (< 10−5mbar) and heat- 
treated at 900 °C for 7–9 days. 

2.2. Sample characterization 

The annealed samples were sectioned by Isomet slow speed 
cutter for various characterizations and measurement. For SEM and 
EPMA Characterizations, samples were embedded in epoxy resin and 
polished following the standard metallographic procedures using SiC 
grit papers from P800 to P4000 numbers. Final cloth polishing was 
carried out using 0.05 µm colloidal silica suspension. The micro-
structures of the phases were examined by scanning electron mi-
croscope (SEM, JEOL IT 300). Composition analysis was carried out 
using a Electron Probe Microanalyzer (EPMA, JEOL JXA-8530 F) 
equipped with a field-emission source. For overall alloy composi-
tions, analysis was carried out using by EDS detector (area count) 
from a minimum of five different representative locations. The 
quantitative analysis of the composition of the local phases were 
conducted employing wavelength dispersive spectroscopy (WDS). 
Standard deviations on a minimum of five points measured per 
phase were less than ±  1 mass%. The structures of the phases present 
in the samples were investigated by powder X-ray diffraction with a 
Cu Kα radiation source (XRD, PANalytical X′pert PRO diffractometer). 
Quantitative Rietveld refinement protocol was used to determine the 
atom sites and lattice parameters employing the program FULLPROF. 
Detailed crystallographic and microstructural analysis was carried 
out using transmission electron microscopy (TEM, FEI Tecnai G2 T20 
S-Twin). The TEM samples were prepared using a focused dual ion 
beam microscope (FIB, FEI Helios NanoLAB 600i) operating at 30 kV 
with final thinning at 5 kV. The selected–area diffraction patterns 
from the phases were indexed using JEMS software. For the mea-
surement of the Seebeck coefficient and electrical resistivity, cu-
boidal bars of approximately 3 mm × 3 mm × 11 mm dimensions 
were directly cut from the ingots. The measurements were carried 
out in the ULVAC ZEM-3 system in the temperature range of 
300–1000 K. The respective errors in the measurement of electrical 
resistivity and Seebeck coefficient are 10% and 7%, respectively. 

3. Results and discussion 

3.1. Microstructure and phase identification 

The nominal compositions of all the alloys are given in Table 1 
along with the nomenclature, which will be used henceforth to 
address the alloys. Fig. 1(a)-(c) show scanning electron micrographs 
in the backscattered electron mode of the annealed samples. Since 
cast ingots were used for heat treatment, voids are observed inside 
the grains, at triple points corners and grain boundaries of annealed 
samples shown by dashed red circles. The polycrystalline single 
phase can be observed with average composition ~ ZrNi0.5Fe0.5Sb 
(Fig. 1a). Due to the valency balance requirement of 18 electrons for 
phase stability of hH alloys, ZrNi0.5Fe0.5Sb can be thought of as an 
alloy mixture of 17 electron ZrFeSb and 19 electron ZrNiSb system. 
The off-stoichiometric composition (having VEC 18) of these 17- 

Table 1 
Compositional analysis of phases obtained in different alloy systems after annealing employing wavelength dispersive spectroscopy (WDS). Actual chemical formulae and VEC are 
computed from the measured composition of half Heusler phases.              

Sample Targeted Formulae Targeted VEC Phases Calculated Formulae  Measured Composition (at%) Obtained 
VEC (hH 
phase) 

Zr Ni Co Fe Sb In  

ZNFS ZrNi0.5Fe0.5Sb 18 hH Zr0.98Ni0.48Fe0.48Sb0.99 32.8  ±  0.8 16.1  ±  0.2  15.9  ±  0.4 33.2  ±  0.5  17.7 
ZNFS-Co ZrNi0.48Fe0.3Co0.2Sb 18 hH Zr0.99Ni0.49Fe0.3Co0.2Sb1.01 33.1  ±  0.2 16.2  ±  0.1 6.8  ±  0.1 10  ±  0.2 33.8  ±  0.8  18.1 
ZNIS ZrNiIn0.5Sb0.5 18 hH Zr0.98Ni0.97Sb0.52In0.47 32.8  ±  0.7 32.4  ±  0.3   17.2  ±  0.4 15.6  ±  1.0 17.6 

μ1 ZrNi2In 25  ±  0.1 49.5  ±  0.4  25.1  ±  0.6  
μ2 ZrNi0.78Sb1−xInx 35.9  ±  0.1 28.4  ±  0.2 32.4  ±  1.2 3.25  ±  0.6  
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electron and 19-electron hH compositions would have been 
ZrFe1+xSb and Zr1−xNiSb. In the recently discovered Ti-based system  
[23,25], the analogous off-stoichiometric alloys; TiFe1+xSb and 
Ti1−xNiSb [26–28] have been experimentally synthesized and their 
physical properties reported. However, for the present quaternary 
Zr-based hH alloy, related ternary Zr-based compositions have not 
been reported yet. Therefore, synthesis of Zr1−xNiSb (Zr0.75NiSb, VEC 
18) was also attempted. Quantitative analysis showed the presence 
of two phases with composition Zr3Ni3Sb4 and ZrNi2Sb for this 
composition (Fig. S1 in supplementary information). This is con-
sistent with the report by Romaka et. al [29] where the Zr-deficient 
side of compositional point ZrNiSb (1:1:1) is characterized by 
pseudo-binary phase field of Zr3Ni3Sb4 and ZrNi2Sb. For the case of 
ZrFe1+xSb, the phase is absent in the available Zr-Fe-Sb ternary dia-
gram. Melnyk et al. [30] have reported three ternary compounds of 
ZrFe1–xSb, Zr6Fe1–xSb2+x, and Zr5Fe0.44Sb2.56 in the Zr-Fe-Sb system 
while attempts by Kleinke and Felser [31] to synthesize Fe-rich 
ternary compound by overcompensation Fe did not succeed. Hence 
no attempt of synthesizing ZrFe1+xSb was tried. In Co substituted 
ZNFS alloy (Fig. 1b), polycrystalline grains of hH single phase can be 
observed after annealing, having an average composition of 

Zr33.1Ni16.2Fe10Co6.8Sb33.8. This quinary phase can be interpreted as 
an alloy mixture of ZrNiSb, ZrFeSb, and ZrCoSb ternary systems. 
ZrCoSb is an established ternary 18 VEC hH alloy whose crystal 
structure and properties are well studied [32,33]. Therefore, part Fe 
substitution with Co can be deduced as replacing 17 VEC ZrNiSb 
system with 18 VEC ZrCoSb system, thereby bringing the overall VEC 
closer to 18 and stabilizing this Co containing quinary phase. Fig. 1(c) 
show micrographs of annealed ZrNiIn0.5Sb0.5 (ZNIS) sample con-
taining multiple phases, the compositions of which are given in  
Table 1. It was noted that the measured bulk alloy composition 
contained less amount of In than the stoichiometric amount taken 
before melting. This composition deviation is attributed to loss of In 
(vapor pressure of In melt increases rapidly above 1000 °C (0.05 
mbar) to 11 mbar at 1400 °C) [34] during arc melting. However, the 
hH ZrNiIn0.5Sb0.5 phase is still the majority phase having a volume 
fraction ~65% coexisting with a darker Ni-rich ZrNi2In phase (de-
noted by μ1) and a ternary μ2 phase with volume fractions of ~21% 
and ~14% respectively (calculated through X-ray diffraction analysis). 
Minor amounts of InSb were also found in isolated regions. The 
ternary phase μ2 (ZrNi0.78Sb1−xInx) is In-deficient while enriched 
with Sb. No literature has been reported on this phase or any phase 
closer to this composition in Zr-Ni-Sb ternary system. The two 
ternary components that can lead to fulfilling the 18 VEC require-
ment in the alloy ZNIS are ZrNiSb and ZrNiIn. Three ternary com-
pounds have been reported in the Zr-Ni-In system; ZrNi2In [35], 
Zr2Ni2In [36], and Zr2NiIn5 [37]. Based on the phase diagrams from 
the Open Quantum Materials Database, [38,39] ZrNiIn is thermo-
dynamically unstable and decomposes into Zr2NiIn5 + Zr2Ni2In and 
ZrNi2In. Off-stoichiometric compositions crystallizing in hH crystal 
structure in ZrNiIn ternary system comparable to those like in TiFeSb 
are not yet reported. 

Table 1 shows the experimental VEC values calculated from the 
average composition of hH phases obtained in these alloy systems. 
The computed values are close to the targeted 18 VEC for all the hH 
phases. Such small variations occur due to compositional changes 
occurring during arc-melting of elements which have large differ-
ences in their melting points. These minor VEC deviations however, 
indicates the availability of phase space in which the hH phases are 
thermodynamically stable. This is advantageous for tuning and op-
timizing carrier concentrations. A similar strategy of moving slightly 
away from 18 VEC to optimize semiconducting transport properties 
has already been reported in ternary hHs such ZrNiSn, Nb0.8CoSb  
[40,41]. The substitution of Fe with Co in ZNFS-Co leads to an ad-
ditional valence electron contribution in the hH phase. This resulted 
in an increase in VEC of ZNFS-Co phase. 

3.2. Crystal structure analysis 

XRD powder patterns of the annealed alloy ZNFS, ZNFS-Co, and 
ZNIS are shown in Fig. 2(a) that corresponds to the typical cubic half- 
Heusler(hH) crystal structure (Space group F43m, C1b) with char-
acteristic (111) and (220) reflections. Trace amount of the secondary 
FeSb phase can also be identified in the pattern of ZNFS. Rietveld 
refinements were performed for all three annealed alloys using a 
structural model (Space group F43m). Atomic positions of Zr and Sb 
were fixed at Wyckoff sites 4a and 4b, respectively. It has been re-
ported earlier that hH alloys show different kinds of anti-site defects 
involving elements at Wyckoff positions 4a, 4b, 4c and 4d [12]. The 
presence of such defects are reflected in the change/absence of 
specific X-ray peak intensities. Since, the aliovalent substitution of Ni 
with Fe has been carried out in ZrNi0.5Fe0.5Sb system at site 4c, 
possibilities of such anti-site defects were examined. The most 
commonly occurring defect in such cases is the non-stoichiometric 
distribution of elements at sites 4c occupying some vacant 4d sites 
as has been reported in the case of ternary hH ZrNiSn [42–46]. Si-
mulated X-ray patterns of Ni and Fe occupying 4c and 4d sites 

Fig. 1. BSE micrographs showing annealed microstructures of (a) ZNFS; (b) ZNFS-Co 
and (c) ZNIS alloys. 
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showed significantly higher ratios of (I200) / (I111) (refer to supple-
mentary information, Fig. S2) which is consistent with the patterns 
generated for various atomic disorder [12]. Therefore, in absence of 
any change in peak intensity ratios (signature of anti-site defects), it 
was concluded that Ni and Fe both occupied 4c site. The final 

refinement is shown in Fig. 2(b). The lattice parameter was found to 
be 6.091 Å. In the case of ZNFS-Co alloy, similar possibilities for 
various occupancies of Co at different Wyckoff sites were also in-
vestigated. The refinement showed Co occupying 4c Wyckoff site 
substituting Fe and lattice parameter was found to be 6.071 Å. The 

Fig. 2. (a) Powder XRD pattern of annealed ZNFS, ZNFS-Co and ZNIS alloys. (b) Reitveld refinement of ZrNi0.5Fe0.5Sb (ZNFS) half Heusler phase. (chi2 =2.11; Rbragg =5.07) (c) Lattice 
parameter comparison of various Half Heusler phases, Schematic of atomic structure of (d) ZNFS, ZNFS-Co and (e) ZNIS half Heuslers. 
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absence of any superlattice peaks rules out the possibility of Ni/Fe/ 
Co ordering. The schematic of the atomic arrangement of 
ZrNi0.5Fe0.5Sb and ZNFS-Co is shown in Fig. 2(d). In the case of 
ZrNiIn0.5Sb0.5 (ZNIS) alloy with aliovalent substitution of Sb with In, 
the strongest reflections of the patterns can be indexed in terms of a 
cubic half-Heusler phase together with a phase ZrNi2In. ZrNi2In has 
been previously reported to have a full-Heusler L21 crystal structure 
having Space group no. 225(Fm3m) [35]. Besides, the pattern ex-
hibits few additional peaks which could not be indexed. These re-
flections most likely originated from the μ2 phase since the volume 
fraction of the binary InSb phase is very low and unlikely to be de-
tected by the powder X-ray technique. In Reitveld refinement of the 
hH phase, the best fit was obtained with positions of Zr and Ni fixed 
at Wyckoff sites 4a and 4c, respectively. Sb and In both were fixed at 
4b site. Schematic of the atomic arrangement of ZrNiIn0.5Sb0.5 is 
shown in Fig. 2(e). The lattice parameters were calculated to be 
6.104 Å for ZrNiIn0.5Sb0.5 phase and 6.286 Å for ZrNi2In phase. The 
observed lattice parameter for ZrNi2In phase is in good agreement 
with the reported value of 6.288 Å [47]. The variation of lattice 
parameters of these various hH phases is shown in Fig. 2(c). 

Fig. 3(a) shows the bright-field TEM image of a triple point grain 
boundary junction of hH phase having ZNFS composition. The dark 
field image was formed under two-beam condition using (202) re-
flection of [101] zone axis direction of hH phase shown in Fig. 3(b). 

Additional major zone axis patterns were also gathered from this 
phase and can be indexed in terms of [001] and [111]. These dif-
fraction patterns are shown in Fig. 3(c)-(f). Similar TEM investiga-
tions were also performed on hH phases from the other two alloys 
and are shown in the supplementary information (refer to supple-
mentary information, Figs. S3-10). These electron diffraction pat-
terns further confirm the cubic nature of hH phases formed in 
various alloy compositions. Additionally, no superlattice spots were 
observed in any of the major zone axes patterns confirming the 
absence of long-range ordering arising out of aliovalent substitutions 
carried out at various lattice sites. A common, occurring feature 
observed in all BF and DF images is the observation of contrast 
fringes along the grain boundaries. Such features occur in images 
where an inclined grain boundary is imaged under the dynamical 
two-beam condition in one grain and kinematical in the other [48]. 

3.3. Electronic properties 

To determine the semiconducting type of these alloys, Seebeck 
coefficients were measured in a wide temperature range. Fig. 4(a)- 
(b) shows the Seebeck coefficients (S) and electrical resistivity of the 
alloys as a function of temperature, respectively. For the alloy 
ZrNi0.5Fe0.5Sb, initially, S is positive, indicating p-type semi-
conducting behavior. The Seebeck coefficient gradually rises with 

Fig. 3. (a) TEM BF image showing grain boundary triple junction of ZrNi0.5Fe0.5Sb hH phase, (b) DF image formed under two-beam condition using (202) reflection of [101] zone 
axis direction. Major zone axis patterns indexed to (c) [101], (d) [100], and [111] directions. 
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temperature till ~673 K. Thereafter, S declines with sign reversal 
occurring at ~888 K. To examine if such p to n type transition is 
occurring because of the evolution of any new phase or structural 
changes, DSC measurement was carried in that temperature range. 
No transformation peak could be detected in the DSC curve till 
1073 K. The decrease in S, therefore, might be due to bipolar con-
duction. Similar bipolar behavior is also reported in TiNi0.5Fe0.5Sb 
quaternary system [25,49]. Fig. 5(a) illustrates the effect of bipolar 
conduction on Seebeck coefficient as a function of temperature. The 
partial substitution of Co for Fe makes the alloy ZNFS-Co 
(ZrNi0.5Fe0.3Co0.2Sb) behave as a n-type semiconductor as indicated 
by negative Seebeck coefficient throughout the entire range of 
measurement. A dramatic increase in the Seebeck coefficient was 
observed for ZNFS-Co alloy with a maximum value reaching − 133 
μV/K at 973 K. 

The Seebeck coefficient for the alloy ZNIS is negative, indicating 
an n-type semiconducting behavior, and it increases with tempera-
ture ruling out any bipolar conduction in this sample. In this alloy, 
the powder diffraction as well as the back scattered SEM micro-
structure indicates the phase ZrNiIn0.5Sb0.5 having the highest phase 
fraction, its contribution to the overall Seebeck value will also be the 

highest. A maximum Seebeck coefficient of − 48.7 μV/K was observed 
at 973 K for ZNIS. The contribution of the other impurity phases like 
ZrNi2In, ZrNi0.78Sb1−xInx, are smaller. It has been reported that the 
ZrNi2In is a metallic conductor with low resistivity at room tem-
perature [47]. However, the type of charge carriers has not been 
reported so far. 

As seen from Fig. 4(b), for the alloy ZNFS, there is a slight increase 
in ρ initially till 673 K, and then it starts to decrease with an increase 
in temperature. As has been observed in the temperature-dependent 
Seebeck coefficient, bipolar conduction commences around 673 K. 
Therefore, due to increase in the minority charge carriers, the overall 
resistivity starts to decrease on the onset of the bipolar conduction 
as governed by the relation, = µ µ+bipolar n e n p

1

e e p p
, where ne and np are 

the concentration of electrons and holes respectively, µe and µp are 
the mobility of electrons and holes respectively [50]. The bandgap 
from the resistivity plot was estimated using Arrhenius relation ρ ~ 
exp(Eg/kBT) [51]. The plot ln (ρ) as a function of (1/T) is shown in  
Fig. 5(b) with the slope from the linear part of the curve at lower (1/ 
T) yield a bandgap (Eg)= 0.1 eV. For Co substituted alloy, resistivity 

Fig. 4. Plots showing temperature dependence of (a) Seebeck coefficient, and (b) 
Resistivity all the half Heusler alloys. 

Fig. 5. (a) Schematic diagram showing the onset of bipolar conductivity; (b) Bandgap 
calculation from resistivity plot. 
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remains almost invariant till 700 K, after which a slight increase is 
observed till the end of the measurement. The overall resistivity 
values of Co substituted ZNFS alloy (ZrNi0.5Fe0.3Co0.2Sb) are observed 
to be an order lower than the pristine ZNFS alloy as Co supplies an 
additional d-orbital electron. Therefore, substitution of Fe by Co has 
a positive effect on decreasing the electrical resistivity in addition to 
increasing the absolute Seebeck coefficient value. 

The alloy ZNIS, in both the lower temperature regime 
(300–500 K) as well as in the high-temperature regime 
(800–1000 K), exhibit an increase in resistivity with temperature, 
indicating a metal-like behavior. In the intermediate range 
(500–800 K), the value remains largely constant. Since multiple 
phases are contributing to overall transport property, such behavior 
is the outcome of an interplay among various charge carrier me-
chanisms operating at different temperature regimes in these 
phases. 

4. Conclusions 

This study reports two new quaternary Zr-based half Heusler(hH) 
alloy systems ZiNi0.5Fe0.5Sb, and ZiNiIn0.5Sb0.5 having space group 
F43m with lattice parameters of 0.6091 nm and 0.6104 nm, respec-
tively. Their structural and electronic properties are evaluated. 
Following are the important conclusions drawn from this study.  

1. The hH quarternary alloys are designed by appropriate valence 
balanced aliovalent substitutions, by combining ternary systems 
ZrNiSb having VEC of 19 with ZrXSb (X]Fe or In) having VEC of 
17 to yield quaternary compounds with effective VEC of 18. A 
simple arc melting and consequent annealing route was adopted 
for the alloy synthesis. Microalloying ZrNi0.5Fe0.5Sb with Co 
preserve the hH cubic crystal (Lattice parameter 0.6071 nm) 
structure demonstrating the possibility of tuning the system for 
getting desirable properties.  

2. The structural characterizations through Rietveld refinements 
and electron diffraction pattern analyses confirm the absence of 
long-range ordering arising out of aliovalent substitutions carried 
out at various lattice sites (4c in ZrNi0.5Fe0.5Sb, 
ZrNi0.5Fe0.3Co0.2Sb; 4b in ZrNiIn0.5Sb0.5). Additionally, no indica-
tions of any kinds of anti-site defects could be found.  

3. ZrNi0.5Fe0.5Sb exhibits p-type conduction at lower temperatures 
with a reversal of Seebeck sign owning to bipolar conduction at 
around 888 K. Upon substituting a part of the Fe sites of 
ZrNi0.5Fe0.5Sb with Co having a nominal composition, 
ZrNi0.5Fe0.3Co0.2Sb, the bipolar conductivity could be suppressed, 
making it n-type with a maximum Seebeck coefficient value of 
− 133 μV/K at 973 K. However, the ZrNiSb0.5In0.5 alloy displays an 
n-type behavior in the entire temperature range of measure-
ments (room temperature to 973 K). The specific site aliovalent 
substitutions, therefore, can be used as an effective designing tool 
for tuning electronic property.  

4. Simultaneous enhancement of electrical conductivity and 
Seebeck coefficient values of ZrNi0.5Fe0.3Co0.2Sb alloy makes it a 
suitable candidate for thermoelectric applications in mid-high 
temperature range. Furthermore, since ZrNi0.5Fe0.5Sb is a novel 
quaternary half-Heusler system it can be taken up for thermo-
electric material development employing strategies such as 
heavy doping and band gap engineering to suppress bipolar 
conductivity. 
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