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ABSTRACT  
Human pregnancy is carrying a developing fetus within the female body which can be tested by many 

techniques. Pregnancy lasts for about nine months which is divided into three trimesters. Labor is when 

changes in anatomy and physiology occur in the female reproductive tract to prepare a fetus and placenta 

for delivery at the end of pregnancy. After the three stages of labor, birth will occur in two ways that is 

preterm/premature birth or term birth. Diagnosis of labor depends on the availability of uterine contraction 

and contraction monitoring devices that range from simple to complex electronics pressure sensors. But 

these monitoring/diagnosing devices are uncertain or they are applied for estimation of the date for 

term/preterm birth. The most common diagnosing device currently applicable is ultrasound, with an 

estimation date of 14 days range (the best estimation) to two months range (the worst estimation). Due to 

the poor accuracy of today’s maternal monitoring devices to diagnose labor and predict delivery, women 

admitted with the diagnosis of term or preterm labor are subsequently found not to be in true labor with 

misjudgments. If a wrong prediction of term/preterm is made by a physician, it makes many things difficult 

including tocolytic therapy, administration of steroids, and admission or transport to a hospital. The current 

study was able to demonstrate for the first time clinically that uterine electromyography (EMG) with age 

classification is another alternative to current human monitoring techniques. In addition, the riskiness of 

very young and old age pregnancy is demonstrated by considering maternal age as a major factor to predict 

term and preterm labor. In this work, the range of the estimation date has been reduced to one week. The 

research is implemented using an algorithm that utilizes a notch filter, Savitzky-Golay, and a band-pass 

Butterworth filter for preprocessing and wavelet transform for feature extraction. After feature extraction, 

three classification algorithms which are Support vector machine, Linear discriminant analysis, and 

Decision Tree were applied. The research used the Physio net database of labeled uterus EMG signals with 

different age levels at term or preterm labor. Using the wavelet transform, eight features were extracted and 

feed to the three classifiers. Two experiments were performed, age dependent and age independent 

classification. The overall accuracy attained were 88.78%, 100%, and 89.8% in the first experiment and 

90.59%, 100% and 84.71% in the second experiment using Support vector machine, Linear discriminant 

analysis, and Decision Tree respectively. It was also found that the performances of the classifiers 

significantly depend on whether or no we take age of the pregnant into account.  

Keywords: Pregnancy, Labor, Term Birth, Preterm Birth, Power Spectrum. 
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CHAPTER ONE 

INTRODUCTION 

In this chapter, the overall introduction of the research is explained. Some of them are, the 

background, problem statement, the scope the study, significance of this research thesis, 

objectives, motivations and organization of the thesis. Additionally, diagnosis of labor, Uterine 

Electromyography and treatments of Labor and Pregnancy are elaborated in detail. 

1.1 Background  

The medical definition of human pregnancy is carrying a developing fetus within the female body 

which can be confirmed by a blood test, ultrasound, detection of the fetal heartbeat, and X-ray. 

Pregnancy lasts for about nine months, measured from the date of the woman’s last menstrual 

period (LMP). It is conventionally divided into three trimesters, each roughly three months long. 

The American College of Obstetricians and Gynecologists is trying to refine the definition of a 

term pregnancy as the time at the end of the last trimester or a little more time in the womb that 

can be better for a baby’s health and development. At the end of the pregnancy period between 37 

and 40 weeks, the baby is fully developed and this period is known as labor. Labor is when changes 

in anatomy and physiology occur in the female reproductive tract to prepare a fetus and placenta 

for delivery[1]. Labor can begin at any time before 37 weeks of gestation in the abnormal case 

which is an indefinite nature of it so that it is expected in a wide range of weeks with an ultrasound 

scan in hospitals. 

The human labor can be classified as follows[1]: 

• Early Term: between 37 weeks and 38 weeks 6 days. 

• Full Term: between 39 weeks and 40 weeks 6 days. 

• Late-Term: the 41st week. 

• Post Term: after 42 weeks. 

According to mayo clinic, labor can have three stages. 

I. Early and active labor: Used to move the baby to the birth canal and it is the longest of the 

stages. It can also be: 

• Early labor - unpredictable duration usually before 37 weeks of gestation. 

• Active labor - duration of four to eight hours or more. 



2 
 

II. Baby birth: used to push the baby to the environment and lasts a few minutes to a few hours 

or more. 

III. Removal of the placenta: five to 30 minutes but the process may be longer than an hour.  

Figure 1 presents a rough schematic of the different stages of pregnancy over nine months. At the 

end of pregnancy, birth will occur in two ways: preterm birth (or premature birth) and term birth 

which occur before 37 weeks of gestation and between 37 and 42 weeks respectively[2]. 

 

Figure 1. Stages of pregnancy over nine months[3]. 

The first three pictures show the first trimester, the second three pictures show the second trimester, 

and the last three pictures the last trimester. Generally, three stages of labor are there in the process 

of labor. The beginning and end of the first stage are regular uterine contractions and complete 

cervical dilatation at 10 cm respectively. The phase can be active or latent and the active one has 

a frequency of four contractions per 10 minutes and five contractions per 10 minutes for the latent 

phase. When it begins with complete cervical dilatation and ends with the delivery of the fetus, we 

call it the second stage. The third stage is the period between the delivery of the fetus and the 

delivery of the placenta or fetal membranes. 

1.1.1 Current Diagnosis of Labor 

The diagnosis of labor depends on manifestations and measurement of uterine contraction. The 

amplitude and frequency of human labor contractions are higher than normal human uterine 

contractions. The contractions also happen in normal pregnant women and pregnant women need 

continuous follow-up in health centers. In Ethiopia, the last menstruation period is the most 

common way of estimation of delivery but with limited predictive accuracy.  
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Uterine contraction measuring devices range from simple to complex electronics pressure sensors. 

Currently, Tocodynamometers (TOCO) and intrauterine pressure catheters (IUPC) are used to 

evaluate uterine contractility. TOCO is an indirect method of detection of uterine contraction by 

measuring abdominal activity, but it is uncomfortable and mostly inaccurate. Whereas IUPC has 

better accuracy than TOCO and provides good information, it is invasive and can lead to infections.  

A partogram is a graphical representation of the head station and cervical dilatation in centimeters 

against the duration of labor in hours. This graph is used by labor medical staff and is based on the 

assumption that it facilitates early recognition of dystocia, and then optimizing the timing of 

appropriate intervention, such as amniotomy, oxytocin augmentation, or, most importantly, 

Caesarean section. The total score is another method used which is based on vaginal examination 

and is composed of 5 components: fetal station, cervical dilation, cervical effacement, cervical 

position, and cervical consistency. But these two methods are mostly manual and time-consuming. 

Ultrasound is also used to replace hands and fingers to determine size as well as structure and 

mass. Fetal heart rate, fetal head position, and configuration of the cervix are monitored by 

ultrasonic devices. The drawback of ultrasound is the reduction of image resolution due to the 

growing fetus which acts as opaque for ultrasound waves[4]. Figure 2 presents a preterm baby 

under medication and action of an ultrasound probe monitoring uterine contraction of a woman 

while Figure 3 depicts the relationship between labor stages and ultrasound prediction errors from 

plot of excel sheet.  

                                                                                          

Figure 2. Preterm birth medication (left), and ultrasound monitoring of uterine contraction of 

pregnant woman (right)[5]. 
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Figure 3. Relationship between labor stage and ultrasound prediction error at excel sheet. 

Proper follow up of labor instances is essential for the wellbeing of both the fetus as well as the 

mother. Figure 4 below presents maternal mortality due to obstructed labor or uterine rupture in 

different public hospitals in Ethiopia between the years 1980 and 2012. The figure shows that 

Jimma and Adigrat hospitals reported the highest obstructed labor/uterine rupture related maternal 

deaths in the 1980s-1990s and early 2000s. 

 

Figure 4.  Maternal mortality due to obstructed labor or uterine rupture in different public 

hospitals in Ethiopia between 1980 and 2012[6]. 
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1.1.2 Uterine Electromyography (EMG) 

Much research on animals and few on human labor show that another method of monitoring uterine 

activity is electromyography (EMG), which can quantitatively measure uterine activity invasively 

or non-invasively. EMG or Electro hysterography (EHG) is the output of diagnostics in obstetrics 

like EEG and ECG. The measurement is achieved due to uterine contractions to generate action 

potentials. Voltage-dependent Ca+2 channels will be opened by the propagation of action potential 

on the surface of the myometrium cell which leads to the entrance of Ca+2 into the muscle cell by 

the electrochemical gradient that causes contraction of the uterine muscle. The signal can be 

recorded internally with endo-uterine electrodes and externally with abdominal surface electrodes. 

The signal obtained by the surface electrode is much smaller than that of endo-uterine electrodes 

which ranges in amplitude from 50 to 200µV at spikes/bursts[7][8]. Figure 5 compares the 

amplitude and frequency composition of typical labor and non-labor signals captured on an EMG 

device. Figure 5 demonstrates that both amplitude and frequency are low in non-labor cases and 

both are very high during labor.     

 

 

 

 

 

 

Figure 5. Difference between labor and non-labor signals by amplitude and frequency[9]. 

1.1.3 Treatments of Labor and Pregnancy  

Magnesium sulfate is one of the drugs used as a treatment for short preterm up to 48hrs in some 

conditions. This is done in the prolongation of pregnancy for the administration of antenatal 

corticosteroids in pregnant women who are at risk of preterm delivery within 7 days or to protect 

the fetal nerve when birth occurs before anticipated early preterm delivery. Tocolytics are drugs 

given to inhibit uterine contractions. Acute tocolysis is used to stop uterine contractions and slow 

or halt cervical change in women during preterm labor. Tocolytic therapy is effective in inhibiting 

preterm delivery for women with threatened extremely preterm birth, multiple gestations, growth-
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restricted babies, and their infant’s outcomes[10]. Factors for preterm human labor are maternal 

age, maternal weight, maternal body mass index, and parity. Additionally, the hormonal action is 

considered since progesterone is recognized as a controller to uterine quiescence. It is also 

important to consider maternal age in the measurement of preterm with an EMG device because it 

is common in youngsters and old women than in adults. Figure 6 below shows us that preterm 

scenarios are more common at ages less than 20 and above 40 years[11]. 

 

         Figure 6. The relation between age and preterm births[11]. 

1.2. Problem Statement 

Women admitted with the diagnosis of term or preterm labor can subsequently be found not to be 

in true labor due to misjudgments. In the context of the black lion hospital, preterm and term labors 

are monitored with an ultrasound device by measuring the cervical length of the pregnant and 

comparing it with the length of time at the end of the menstruation cycle of the pregnant if the 

pregnant don’t have continuous follow up form first week. In this case, they manage the situation 

by taking the end of menstruation as a reference and measuring the cervical length of the pregnant. 

Those admitted as preterm may be term or vice versa because of prediction of ultrasound is not 
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specific (i.e. one week before or one week after the predicted date), so that 3 pregnant out of 10 

are wrongly predicted. Based on the number of patients data file, recorded /documented from Mar. 

11, 2019 to Apr. 09, 2019 at black lion hospital for need assessment, the average encounter is six 

preterm per week and 24 term per week.   

If a wrong prediction of term/preterm labor/delivery is made by a physician, it is difficult to give 

early tocolytic therapy (a synthetic drug used to prolong early birth), administration of steroids, 

and admission or transport to a hospital with facilities for neonatal intensive care[12]. In short, it 

increases infant mortality and the increment of hospital admission days which has a very bad 

consequence for mothers’ and infants’ outcomes. Preterm has long-term adverse consequences for 

health and is a major determinant of neonatal mortality and morbidity[13]. Preterm births (PTBs) 

are significant global health issues worldwide and a leading cause of perinatal morbidity and 

mortality. The incidence of preterm birth has not changed during the last 50 years.  

Neonatal complications and consequences can be reduced by early identification of the pregnant 

woman at risk for PTB and timely implementation of appropriate intervention and treatment. 

Compared with children born at term, those who are born prematurely have higher rates of cerebral 

palsy, sensory deficits, learning disabilities, and respiratory illnesses[14]. The current study aims 

to reduce the range of estimation days by applying uterine EMG contraction analysis. The study 

reduces ultrasound estimation date which ranges from 14 days to two months to a week or less. In 

this case, age of maternity is considered a major factor that can affect the prediction of labor as 

term and preterm. 

1.3 Research Objectives 

1.3.1. General Objective  

The general objective of this study is to predict term and preterm labor by analyzing uterine EMG 

signals and to show that age of the pregnant is a major factor that affects term and preterm labor. 

1.3.2 Specific Objectives 

• To predict term labor from uterine EMG signal. 

• To predict preterm labor from uterine EMG signal. 

• To indicate that age of maternity is a major factor that affect uterus contraction. 
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1.4. Significance of the Study 

An accurate prediction of term/preterm labor/delivery from cervical ripening and myometrial 

contractility could identify term/preterm patients who benefit from early tocolytic therapy, 

administration of steroids, and admission or transport to a hospital with facilities for neonatal 

intensive care[12]. In short, the use of uterine EMG to diagnose preterm labor would significantly 

narrow the range of days deviation from the expected delivery date. Ultrasound has good predictive 

ability of preterm delivery in the first trimester (weeks 1-12) than that of the second trimester 

(weeks 13-27) and third trimester (weeks 28-40). On average, the range of days deviation during 

the first trimester is seven days before or after the expected delivery date. This variation could 

extend up to fourteen days for the second trimester and much higher for the third trimester. In other 

words, it is almost impossible to predict preterm delivery based on ultrasound examinations taken 

in the third trimester. 

Table 1. Guidelines for redating based on ultrasonography[15]. 

Gestational Age Rang  Method of 

Ultrasound 

Measurements  

Discrepancy Between Ultrasound Dating 

and LPM Dating that Supports Redating 

≤13 6/7wk 

    ≤8 6/7wk 

       9 0/7wk to 13 6/7wk 

     CRL                                

More than 5d 

More than 7d 

14 0/7wk to 15 6/7wk BPD, HC, AC, FL More than 7d 

16 0/7wk to 21 6/7wk BPD, HC, AC, FL More than 10d 

22 0/7wk to 27 6/7wk BPD, HC, AC, FL More than 14d 

27 0/7wk and beyond  BPD, HC, AC, FL More than 21d 

AD=abdominal circumference, BPD=biparietal diameter, CRL =crown-rump length, FL=femur 

length, HC= head circumference, LPM=last menstruation period. 

The Bishop score or an ultrasound cervical length are the current methods used in clinical practice 

to diagnose preterm labor which have high negative predictive values but not positive ones. The 

performance of computationally efficient classification algorithms, based on electro 

hysterographic recordings (EHG), as random forest (RF), extreme learning machine (ELM) and 
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K-nearest neighbors (KNN) for imminent labor (<7days) prediction in women with threatened 

preterm labor, using the 50th or 10th–90th percentiles of temporal, spectral and nonlinear EHG 

parameters with and without obstetric data inputs is evaluated[16]. For pregnant women, 

particularly those who don’t have regular follow-ups, the EMG option could be significantly better, 

because the fetus is an opaque for ultrasound waves after second trimester[17]. As a result, uterine 

EMG can lead to significant saving of time, effort, and money when researching new methods or 

drugs to prevent preterm delivery[18]. 

1.5. Scope of the Study 

The research mainly focuses on developing a signal processing system implemented in a 

MATLAB environment that can classify term labor and preterm labor, as a result of which, preterm 

and term delivery is predicted more accurately. The prediction of preterm and term delivery is also 

performed considering the age of the pregnant women. No consideration was given to the hardware 

parts of the EMG device like electrode design and other biological conditions including maternal 

weight, body mass index, and hormonal actions.  

1.6. Motivation 

In Ethiopia, about 67% of all deaths of children aged less than 5 years take place before their first 

birthday due to a low resource setting[19]. The sensitivity of ultrasound-based diagnosis (one week 

before and after 11-13 weeks) of a nuchal cord is low before the induction of labor at term. A 

nuchal cord doesn’t appear to increase the risk of Cesarean section or poor neonatal outcomes. The 

low ultrasound detection rate of a nuchal cord limits its use in decision-making before the induction 

of labor in high-risk pregnancies[20]. In this regard, the EMG based system proposed in the current 

study will have multi-functions and can solve many problems. Some of the problems that can be 

solved include: reduction of infant mortality, reduction of hospital admission days, frequency of 

hospital visits and wrong decisions to predict preterm delivery, which could have very bad 

consequences for the mother as well as the infant in her womb[21].  
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1.7 Organization of the thesis  

To understand the work easily this thesis in segregated into six chapters. From chapter 1, 

The reader will get the overall introduction, the base problem, the scope and significance of 

this research thesis. The next chapter, Chapter 2, discusses the anatomical, physiological and 

clinical background of uterus. Literature survey that discusses the works performed in the area of 

uterine EMG are also covered in chapter 3. Chapter 4 explains the materials and methods used 

in the research and machine learning algorithms for classifications. The tests performed in this 

thesis are discussed and analyzed in detail in Chapter 5. The last chapter, chapter 6 summarizes 

all the chapters or discusses the main achievements of the research and leaves a clue to be 

addressed in the future. To make the reader fully satisfied code is included in the form of Appendix 

at the end of the document.  
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CHAPTER TWO 

ANATOMICAL, PHYSIOLOGICAL AND CLINICAL 

BACKGROUND OF UTERUS 

This section is dealing with the anatomical, physiological and clinical background of uterus with 

respect to uterus contraction and the EMG signal generated due to that contraction. Part of the 

uterus, Origin of the Uterus Contraction and Human Labor and Pregnancy are basically explained. 

2.1. The Uterus   

For a non-pregnant adult woman, part of the uterus in between the bladder and the rectum weighs 

around 60g. The uterus is found at the center of the pelvis which represents a volume of 56 to 120 

cm3. It has three parts namely: cervix, corpus, and fundus, as also been shown in Figure 7. The 

thickest musculature is seen in the corpus and fundus. The myometrium is one of the three layers 

in the middle which increases by hypertrophy of the existing cells and by multiplication of the cell 

number during pregnancy to expel the fetus. Interaction of myosin and actin filaments creates 

contractions of smooth muscle cells[22]. 

 

Figure 7. The three major subdivisions of the uterus are identified: cervix, corpus, and 

fundus[23].  

2.2. The Origin of Monitoring the Uterus Contraction  

Uterine excitability and propagation of the uterine electrical activity are the two properties of the 

uterine used to analyze the contraction of the uterus for predicting labor. Action potential and 

resting potential describe the electrical activity or excitability of the uterine cells[24]. At the time 

of pregnancy, uterine cells are characterized by a resting membrane potential varying slightly 

under hormonal influence. It ranges from -60 mV at mid-term to -45 mV at term during 

pregnancy[25]. When the variation of these attains a certain threshold, we call it burst or bursting 
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behavior and its duration is shorter at delivery (21.5sec) when compared to earlier stages of 

pregnancy (32 sec)[25]. Uterine cell excitability is regulated by the sodium voltage-dependent 

channels, calcium voltage-dependent channels, potassium channels, chloride channels, and also 

the intracellular calcium (Ca+2) which is important for repolarization of the membrane. 

The organization of the uterine muscle is important in its contractility which is mainly myogenic 

i.e., the muscle is solely responsible for its contraction. Studies indicate that myometrial cells are 

electrically coupled by gap junctions (GJ). A GJ is a structure composed of two symmetrical 

portions of the plasma membrane from two adjacent cells. GJ proteins within the opposed cell 

membranes are thought to align themselves and create channels between the cytoplasm of the two 

cells for sites of electrical and metabolic coupling between cells. Contractile uterine activity during 

the term or pre-term labor is invariably associated with the presence of a large number of GJs 

between myometrial cells[24]. The presence of GJs is controlled by changing estrogen and 

progesterone concentration in the uterus. Increased GJ number is therefore associated with 

improved propagation of electrical impulses, increased conduction velocity, and coordinated 

contractility of the myometrium. As action potentials are conducted to neighboring myometrial 

cells through GJ, a group of cells contract, leading to what is perceived by the woman as a uterine 

contraction[26]. During pregnancy, uterine activity is weak, localized, and limited propagation due 

to the lack of GJ. At term, before delivery, an abrupt increase in GJ is significantly observed, 

allowing a faster propagation of action potentials and increasing the coordination of contractility. 

EHG is also controlled by two types of calcium waves namely, intracellular calcium waves and 

intercellular calcium waves. 

2.3. Human Labor and Pregnancy  

Labor is the term for the changes in anatomy and physiology in the female reproductive tract that 

prepare the fetus and the placenta for delivery. In the majority of cases, this happens when the 

baby is fully developed at full term, between 37-40 weeks gestation. Labor defines the end of the 

baby’s time in the uterus and the beginning of adaptation to life outside the mother. Labor has an 

indefinite nature that nobody knows labor starting time. The normal window for the normal onset 

of labor is anticipated in a wide range of approximately 37-40 weeks/37-42 weeks with close 

follow-up using ultrasound scanning. Usually, the expected date of delivery is calculated as 40 



13 
 

weeks from the mother’s last normal menstrual period (LNMP). Generally, normal labor has the 

following characteristics: 

✓ Spontaneous onset; 

✓ Regular uterine contraction; 

✓ Vertex presentation (baby’s head is presented to the opening cervix); 

✓ Vaginal delivery occurs without active intervention in less than 12 hours for a multigravida 

mother and less than 18 hours for a primigravida (first birth) mother, and  

✓ No maternal or fetal complications.  

If any labor doesn’t satisfy one of these conditions, then it is considered as abnormal labor that 

needs referral or specialist[27]. 

2.3.1 Uterine Contraction 

Adequate uterine contraction during true labor progressing is evaluated based on three features 

namely frequency, duration, and intensity of contraction. The frequency of uterine contraction is 

about 3-5 times every 10 minutes and the duration of each contraction lasts for about 40-60 

seconds. In addition, the intensity of the contraction will be found by asking the mother when they 

feel strong and it can be found by palpating the women’s abdomen in the area of the fundus of the 

uterus. Table 1 below shows that false labor can happen before the beginning of true labor and the 

mother can feel it one or two weeks ahead of true labor. This condition has its characteristics which 

is used to distinguish it from true labor[27]. 

Table 2. Comparison of  true and false labor 

Characteristics  True labor False labor 

Uterine 

contractions  

Contraction occurs at regular intervals, but the 

interval between each contraction gradually 

becomes shorter 

Contractions occur at irregular 

intervals 

The duration of each contraction gradually 

increases 

Duration remains unchanged -

either long or short  

The intensity of contractions becomes stronger 

and stronger 

Intensity remains unchanged 

Cervical 

dilation 

Cervix progressively dilates Cervix does not dilate, remains 

less than 2cm 

Pain  Discomfort at the back in the abdomen, cannot 

be stopped by strong anti-pain medication 

Discomfort is non-specific (has 

no particular location) and is 

usually relieved by strong anti-

pain medication 
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CHAPTER THREE 

LITERATURE REVIEW 

Some research papers related to the areas of uterine, electromyogram signal pregnancy and labor, 

as well as some of labor and pregnancy monitoring or measuring device are reviewed. In this case 

more than fifteen articles are reviewed from which some of them are dealing with animal’s 

experiment and some of them are human labor EMG signals.  

3 .1 Related Works in the Area of Uterine EMG Analysis           

The basic factor for neonatal morbidity and mortality is preterm birth, which is a birth before 37 

weeks or 259 days of gestation. It usually affects 5-7% of births while most of such cases happen 

in developing countries. According to a report published in 2010, 11% of births were preterm, but 

survival rates have increased due to technological advancement in prenatal and neonatal medicine. 

The identification of pregnant women at risk of preterm can avoid complications by applying 

appropriate and timely interventions and treatments [28].  In this regard, several studies have been 

carried out to identify term and preterm labor since the 1950s. In this thesis work, different 

researches carried out in the prediction of term and preterm labor have been reviewed while 

emphasis has been given to those that utilize concepts of digital signal processing.    

According to the study by Garfield et al., the capability to diagnose labor and predict delivery of 

maternal/fetal monitoring lacks much accuracy. In the study, uterine EMG was monitored 

noninvasively and trans-abdominally from pregnant women using surface electrodes and many 

aspects of the uterine EMG were investigated. Uterine EMG could be a valuable tool for 

obstetricians if implemented on a routine basis in the clinics. Their result showed that PDS peak 

frequency was higher for the 24-or-fewer-hours-to-delivery at term than 4-or-fewer-days-to-

delivery at preterm. Numerically, PDS peak frequency at term is 0.5Hz for the last 24 hours and 

0.5Hz for the last 10 days at preterm[29]. 

Maul et al. developed a non-invasive trans-abdominal uterine EMG system as predictive of labor 

and delivery. In this method, the EMG signal of a laboring woman from the abdominal surface is 

recorded while intrauterine pressure catheters or TOCO are monitoring at the same time. The 

authors analyzed a randomly selected 3 to 5 contraction per patient and electrical bursts and 

significantly higher EMG bursts were found in patients who delivered within 24hrs than those who 

delivered later, whereas none of the TOCO parameters were changed[30].   
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In another study, Garfield et al. developed a method utilizing uterine EMG and cervical light-

induced fluorescence (LIF) by applying at term and pre-term animals and humans so that the state 

and function of the uterus and cervix are evaluated, and the predictive capability of measurements 

made using these new technologies is determined. According to the authors, malaria, and 

hyperpyrexia, HIV suppression of the immune system leading to additional infection with 

tuberculosis, syphilis, and intestinal parasites, and bacterial vaginosis increased preterm labor risks 

in undeveloped countries[31]. This study and those of others demonstrated that myometrial cells 

are coupled together electrically by gap junctions composed of connexin proteins. The grouping 

of connexins provides channels of low electrical resistance between cells that facilitate pathways 

for the efficient conduction of action potentials. These cell junctions increase and form an electrical 

syncytium required for effective contractions at term which is controlled by changing estrogen and 

progesterone levels in the uterus. The authors believed that it gives an opportunity to effectively 

treat the uterus with tocolytics (to prevent pre-term labor) by reversing the process. 

Some of the limitations of current methods that make use of EMG and LIF are:  

i. Current methods are subjective and/or inaccurate[32]. 

ii. Intrauterine pressure catheters are limited by invasiveness and the need for ruptured 

membranes[33]. 

iii. Uterine contraction monitors (e.g. Toco-dynamometer TOCO) are uncomfortable, inaccurate, 

and/or subjective[33]. 

iv. No method has been successful at predicting pre-term labor. 

v. No method has led to effective treatment of pre-term labor, and 

vi. No method makes the objective measurement of both the function and state of the uterus or the 

cervix during pregnancy. 

In short current methods do not predict preterm labor accurately except for signs of impending 

labor[18]. 

Another method proposed by Moslem et al. was multi-channel uterine EMG signal classification 

with 16 recording electrodes in which an artificial neural network (ANN) was applied for the 

classification of each signal followed by the decision fusion method. 4x4 electrode matrix EMG 

signals were used in the study and each contraction had a 12-channel resolution. The method 
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extracts the first two classically used features from signals corresponding to each channel. Analysis 

of the paper was based on digitized uterine EMG signals recorded on 32 women: 22 were recorded 

during pregnancy and 7 were during labor while 3 were during both pregnancy and labor. Signals 

were sampled and filtered at 200 Hz and 100Hz respectively by selecting only two features, power 

of contraction and median frequency. At the end, 82.65% overall classification accuracy was 

achieved[34].    

Luc OVnik et al. proposed an EMG method much more accurate in diagnosing preterm labor than 

all the methods currently used clinically. Based on this study, EMG burst, power-spectrum (PS), 

and propagation velocity (PV) were observed as good EMG parameters. The combination or the 

rescaled sum of PV and PS peak frequency yielded higher predictive values for preterm delivery 

than any EMG parameter alone[35].  

3.2.  Summary of Related Works and Their Gaps 

Table 2 below presents a summary of previous works on EMG based uterine contraction analysis 

approaches proposed by different researchers.    

Table 3. Summary of some related works and their gaps/limitations. 

N

o  

Method  Author/s # of cases  

 

Problem 

addressed 

Parameters 

taken 

Limitation/gap 

1 Non-invasive 

EMG as predictive 

of labor delivery 

Maul et 

al. 

13 labor 

24 pregnant 

Prediction 

of preterm 

delivery 

Power 

spectrum(PS), 

from 0.34 

to1Hz 

Depends on single 

parameter 

 

2 Uterine EMG and 

cervical light-

induced 

fluorescence (LIF) 

Garfield 

et al. 

11 pregnant 

Labor 

prediction 

Power 

Density 

spectrum 

(PD) 

Depends on 

single parameter; 

Doesn’t include 

preterm delivery 

3 Multi-channel 

uterine 

EMG signal 

classification 

Moslem 

et al. 

22 pregnant 

7 labor 

3 both 

Pregnancy 

contractions 

and labor 

contraction 

Power of 

contraction 

and median 

frequency 

Low accuracy of 

labor contraction  

(72.3%) 

4 Use of None 

Invasive Uterine 

Electromyography 

in the Diagnosis 

of Preterm Labor 

Luc 

OVnik 

et al. 

100 pregnant Pregnancy 

contractions 

and labor 

contraction 

EMG burst, 

power 

spectrum (PS) 

and 

propagation 

velocity (PV) 

 

Delivery is not 

considered. 

Low number of 

parameters. 
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5 Feature Extraction 

and Classification 

of EHG between 

Pregnancy and 

Labour Group 

Using Hilbert-

Huang Transform 

and Extreme 

Learning Machine 

LiliChen 

and 

YaruHao

/2017 

112 pregnant  

10 labor 

Classificatio

n of 

Pregnancy 

and Labor 

Amplitude of  

EHG 

Low accuracy 

88% [36] 

6 Electromyogram 

Signal Analysis in 

Frequency 

Domain of 

Uterine Muscle 

Contraction 

During Childbirth 

NikoFah

adi et 

al./2017 

2 patients  Term 

delivery 

prediction 

Mean Power 

Mean 

Frequency 

and Total 

Power 

Small sample data 

[37] 

7 Classification of 

Fractal Features of 

Uterine 

EMG Signal for 

the Prediction of 

Preterm Birth 

P. 

Shanibai

ba Asmi 

et al. 

/2018 

38 term  

38 preterm 

Classificatio

n of term 

and preterm 

pregnancy 

Fractal 

features  

Low input data-

ANN, less feature, 

only time domain 

[38] 

Different research has been carried out to show that uterine EMG signal has the potential to predict 

pregnancy, preterm labor, term labor, preterm delivery, and term delivery separately or 

individually but not collectively at the same time. Almost all of them did not take enough 

parameters and data sources, and biological conditions like age, maternal weight, maternal body 

mass index[39] and parity. In addition, the hormonal action and uterine stages of labor were not 

considered even though progesterone is recognized as a controller to uterine quiescence. 

So, the current thesis work proposed a new diagnostic method which is an analysis of uterine 

contraction using EMG signal with age classification. The method predicts the date of birth for a 

human pregnant as a term or preterm labor depending on the amplitude and frequency of uterine 

contraction by analyzing EMG signals of age classification.  
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CHAPTER FOUR 

MATERIALS AND METHODS 

This chapter explains mainly the materials used for implementing the experiment and the proposed 

methodologies of the research. The data set from Physio net Toolkit, MATLAB software personal 

computer are the main materials used in this research work. Under methodology, Electromyogram 

diagnostic techniques, Signal Processing Techniques, Machine Learning algorithms and EMG 

signal processing methods or steps of EMG signal processing like EMG Signal Acquisition, 

preprocessing, feature extraction classification are mentioned. The classifiers which support vector 

machine (SVM), linear discriminant analysis (LDA) and decision tree (DT) are explained in detail. 

4.1 Materials Used 

It is known that uterine contraction gives valuable information about the labor condition. The EMG 

signal of uterine contraction is capable of diagnosing a pregnant woman whether she is at term or 

preterm state at an earlier stage. Signal processing techniques can be employed to process the EMG 

signals towards improving the accuracy of diagnosis[40]. In this thesis work, two essential 

materials were employed. Publicly available database for researchers, Physio Toolkit, and physio 

net: Components of a New Research Resource for Complex physiologic Physio Bank Signals[41] 

and MATLAB were used to develop an algorithm to classify the human labor into two classes: 

term and preterm labor. The database is taken from physio net ATM with the signal sampling rate 

of 20 samples per second from 1997 to 2005 at the University Medical Centre Ljubljana, 

Department of Obstetrics and Gynecology. The dataset contains 300 uterine EMG records from 

300 pregnancies, 262 records were obtained during pregnancies where the delivery was on the 

term (duration of gestation at delivery > 37 weeks) and 38 records were obtained during 

pregnancies that ended prematurely (pregnancy duration ≤ 37 weeks)[42].  

4.2. Methodology 

The methodology used in this study to classify human pregnancy into term and preterm labor 

classes consist of four stages: data collection, preprocessing, feature extraction, and classification 

as shown in Figure 8. The EMG signals were taken from uterine muscle midway between 

symphysis and uterus fundus of healthy pregnant women. The EMG signals are filtered to reduce 

noise by applying a band pass filter using Butterworth and IIR Notch Filter before extraction of 

features using MATLAB. Finally, after wavelet analysis, classification is done by three classifiers: 

SVM, LDA and Decision Tree to give an output of term and preterm prediction.        
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Figure 8. Proposed methodology: data collection, preprocessing, feature extraction. 

As shown in the figure, EMG data is recorded with Ag/AgCl electrode from the pregnant uterine 

surface and digital filters like Butterworth, Savitzky-Golay and IIR Notch are applied to preprocess 

the signal before extraction of feature with wavelet. The extracted features are given to the three 

classifiers to separate the two classes.  

 

4.2.1 EMG Diagnostic Techniques of Labor and Pregnancy 

Some of the techniques applied to the diagnosis of human labor are ultrasound, testing fetal 

fibronectin, and oral assessment (LMP) evaluation. During ultrasound assessment, the pregnant 

woman is assumed to be in term when the cervical length is greater than 15mm whereas it is in 

preterm labor when the cervical length is less than or equal to 15mm. But these and most other 

techniques that are adapted for the measurement/monitoring of pregnancy and detection of labor 

are subjective with low accuracy, most importantly in prediction of preterm labor. Currently, one 

of the advanced methods of monitoring pregnancy is EMG which is a non-invasive method of 

measuring device taking uterine EMG signals from the abdominal surface[43]. A typical EMG 

device that is found in most hospitals is depicted in Figure 9. Uterine EMG is applied for the 

measurement of labor and pregnancy non-invasively from the abdominal surface and uterine part 

of the pregnant woman for certain time duration, mostly for 30 minutes, to record the 

signal/electrical activities of uterine contraction[21]. The frequency domain of the recorded signal 

is suitable for analysis of the signal due to the time domain activity/signal of uterine is continuous 

or change over time. Power spectrum density analysis is the easiest way to extract features that can 

be evaluated or calculated for monitoring/prediction of labor and preterm delivery. The main 

concept of uterine EMG application for monitoring pregnancy and labor is that there is a gradual 

increment of power along the gestational period from pregnancy to labor. In other words, the 

frequency of uterine contractions during labor is much higher than the contraction of the uterine 

during pregnancy (see also Figure 10)[43].  

Feature 

Extraction 

Wavelet is 

applied  

Classificatio

n SVM, 

LDA& DT 

are applied  

Preprocessing 

Butterworth 

Savitzky-Golay 

IIR Notch 

EMG Data collection   

Ag/AgCl electrode is 

applied  
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Figure 9. Typical EMG device available in most hospitals. 

 

  
Figure 10. The change of contraction from pregnancy to labor (a) power of contraction, (b) 

frequecny[43]. 

4.2.2 Signal Processing Techniques 

Signals carry a large amount of data in which extracting useful information is more difficult. It is 

necessary to process the signal in such a way that only a few coefficients reveal the necessary 

information. In the current work, to extract valuable information from the uterus contraction EMG 

signal, an extension of methods based on time-frequency will be investigated. To have a successful 

classification algorithm, it is necessary to understand the basic concepts behind the techniques, 

which constitute fundamentals of Fourier theory followed by time-frequency analysis and also 

wavelet analysis in general.  
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 Figure 11. Block diagram of the typical stages of signal processing and analysis. 

 

Figure 11 presents a general block diagram of the typical stages involved in signal processing and 

analysis. These steps are signal acquisition, pre-processing, proper analysis, classification, and 

result. According to the block diagram, an operator is a person operating a signal processing 

device, in this case, midwifery or a gynecologist is an operator, who is also responsible for 

positioning the pregnant during labor/delivery. An expert is a person or a gynecologist who 

indicates specific areas in the signal and classifies patients into two classes (term and preterm) 

based on his/her expert knowledge. A programmer is a person who proposes an appropriate 

algorithm that enables automatic measurement or classification after training with the expert 

system[44].  

 

a) The Fourier Transform 

Before dealing with the topic wavelet transform, it is better to see some of the basics of the Fourier 

transform (FT). FT decomposes a signal to complex exponential functions of different frequencies. 

The FT and its inverse are given by:  

                        X(f)=∫ 𝒙(𝒕). 𝒆−𝟐𝒋𝝅𝒇𝒕𝒅𝒕 … … … … … . (𝟏)
∞

−∞
 

                             𝒙(𝒕) = ∫ 𝑿(𝒇). 𝒆𝟐𝒋𝝅𝒇𝒕𝒅𝒇 … … … … … . (𝟐)
∞

−∞
 

In the above equation, t stands for time, f stands for frequency, and x denotes the signal at hand. 

Note that x denotes the signal in the time domain and the X denotes the signal in the frequency 

domain. This convention is used to distinguish the two representations of the signal. Equation (1) 

is the FT of x(t) and equation (2) is called the inverse FT of X(f), which is x(t). Note that the FT 

Operator  

Pre-

processing  

Programmer 

 

Processing  

Result  

Classification  

Expert  

Data 

acquisition  
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tells whether a certain frequency component exists or not. This information is independent of 

where in time this component appears. It is therefore very important to know whether a signal is 

stationary or not, before processing it with the FT. 

b) The Short-Term Fourier Transform 

There is only a minor difference between the short time Fourier transform (STFT) and FT. In 

STFT, the signal is divided into small enough segments, where these segments (portions) of the 

signal can be assumed to be stationary. For this purpose, a window function "w" is chosen. The 

width of this window must be equal to the segment width size of the signal where its stationary is 

valid. 

c) The Continuous Wavelet Transform (CWT) 

The continuous wavelet transform (CWT) was developed as an alternative approach to the STFT 

to overcome the fixed resolution problem. The wavelet analysis is done in a similar 

way to the STFT analysis, in the sense that the signal is multiplied with a function (the 

wavelet) similar to the window function in the STFT, and the transform is computed separately for 

different segments of the time-domain signal. However, there are two main differences. 

(a) The Fourier transforms of the windowed signals are not taken, and therefore single peak will 

be seen corresponding to a sinusoid, i.e., negative frequencies are not computed and (b) the width 

of the window is changed as the transform is computed for every single spectral 

component, which is probably the most significant characteristic of the wavelet transform. 

d) The Discrete Wavelet Transform (DWT) 

The main idea is the same as it is in the CWT. A time-scale representation of a digital signal is 

obtained using digital filtering techniques. Recall that the CWT is a correlation between a 

wavelet at different scales and the signal with the scale (or the frequency) being used as  

a measure of similarity. The CWT was computed by changing the scale of 

the analysis window, shifting the window in time, multiplying by the signal, and integrating over 

all times. In the discrete case, filters of different cutoff frequencies are used to analyze the signal 

at different scales. The signal is passed through a series of high pass filters to analyze the high 

frequencies, and it is passed through a series of low pass filters to analyze the low frequencies. 

Figure 12 presents the algorithm that is used to compute the DWT. Note that the band width of the 

signal at every level is marked on the figure as “f” 
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   Figure 12. The wavelet sub band coding Algorithm[45]. 

4.2.3 Frequency-Time Analysis     

The frequency content of the EMG may convey different information, and perhaps be 

diagnostically distinct from the information in the linear envelope of the signal. The problem here 

is that the “classical” approach to frequency analysis is to find the power spectrum of the entire 

signal, from start to finish. If the muscle is not at a steady level of activation for the entire recording 

period, then taking the power spectrum of the whole signal is not appropriate. Instead, we need to 

calculate the frequency content of the signal for short, perhaps overlapping, time segments. This 

is what a (joint) time-frequency analysis does. A moving window slides across the recording, and 

at each position, the power spectrum of the signal inside the window is computed. This generates 

a whole family of power spectra – one for each time position of the window. The power spectrum 

describes the frequency content of the signal at the time corresponding to the “center” of the 

window, plus some time (the window half-width) before and after that time. The user must decide 

what window to use, how wide to make it, and the step size for moving the window. A non-

rectangular smooth window is a reasonably good choice like Gaussian and Hamming. The width 

of the window determines the frequency resolution: the wider the window the more the frequency 

resolution, but a wider window means averaging together a longer signal segment, which is more 

likely to include dissimilar portions. A wider window also means that there is poorer resolution in 

the time domain of changes in the frequency content of the signal. For example, a 50 msec wide 

window will do a good job of resolving a change in frequency content that occurs over 200 msec, 

and which takes another 200 msec to change back again. However, that same 50 msec wide 

window will do a poor job of resolving a change in frequency content that occurs over 20 msec, 
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and in another 20 msec changes back again. A step size of one-quarter to one-tenth of the window 

width is reasonable. Smaller step sizes yield little new information since successive window steps 

will “see” virtually the same input data. The frequency resolution (in Hz) is ∆f = 1/Tw, where Tw 

is the window width in seconds[46]. An example is shown in Figure 13 where a time-frequency 

analysis was done for a given time series. 

      
 

Figure 13. Time-frequency analysis of EMG signal[47].  

4.2.4 Machine Learning   

Machine learning utilizes computer algorithms for learning to do activities where humans do 

naturally. We can learn to accomplish a task, that makes correct predictions, or to act intelligently. 

As illustrated in Figure 14 below, it is about learning to do better in the future depending on what 

was experienced in the past. Learning is based on some observation, instruction, direct experience, 

or data. The emphasis of machine learning is on automatic methods, and the goal is to build 

learning algorithms that do the learning automatically without human interference or help. It uses 

computational methods to learn information directly from data without depending on a 

predetermined equation as a model. The algorithms find natural patterns in data that generate 

insight and help to make better decisions and predictions[48].          

 

 

 

 

 

 

 

 

                

   Figure 14. Typical learning problem. 
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As shown in Figure 15, machine learning uses two types of techniques:   

• Supervised learning: which trains a model on known input and output data so it can predict 

the future output. 

• Unsupervised learning: which finds hidden patterns or natural structures in input data.   

                                           

 Figure 15. Machine learning technique[48].     

4.2.5 Supervised Learning  

Verification and discovery are the two methods in data mining. Discovery-oriented methods 

automatically find new rules and identify patterns in the data. These include clustering, 

classification, and regression techniques. Supervised learning methods attempt to discover the 

relationship between input attributes and the target attribute. Once the model is constructed, it can 

be used for predicting the value of the target attribute for new input data. The objective of 

supervised machine learning is to construct a model that predicts based on facts 

when there is uncertainty. A supervised learning algorithm uses a known set of input data and 

known output or response to the input data and then it trains a model to generate reasonable 

predictions as a response to new data. 

There are two main supervised models: classification models, which is our interest in the current 

study, and regression models. Some of the techniques classified under a supervised machine 

learning algorithm are support vector machine (SVM), naïve Bayes, decision tree, and linear 

discriminant analysis (LDA).                        

Regression  Clustering  

Machine Learning 

Unsupervised Learning: Group and 

interpret data based on input data 

Classification   

Supervised Learning: Develop predictive 

data based on input and output data 
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a. Classification: Classification models build a classifier that maps the input space (features) 

into one of the predefined classes. Classification models are used to classify data based on their 

training. These models can be used in different application areas like signal processing, 

medical imaging, credit scoring, and speech recognition.     

b. Regression: This type of technique is usually used to predict continuous responses like the 

change in temperature or variation in power demand. Its typical application area includes 

electricity load forecasting. 

4.2.6 Unsupervised Learning  

Unsupervised learning finds hidden patterns or vital structures in data. It is used to draw 

inferences from datasets that consist of input data without labeled responses. Clustering is a widely 

used unsupervised learning technique. It is used to find hidden patterns or 

for exploratory data analysis to group data. Gene sequence analysis, market research, and object 

recognition can be mentioned in the application areas of clustering[48].    

4.2.7 EMG Signal Acquisition 

The uterine EMG signal acquisition can be done by reusable Ag/AgCl electrodes from healthy 

pregnant women. The skin carefully prepared using an abrasive paste (an ultrasound gel) and 

alcoholic solution which decreases the interelectrode impedance by obtaining informed consent to 

the women[49]. The electrodes were aligned directly above the median axis of the uterine muscle, 

on the epidermis, midway between symphysis and uterus fundus, and the reference electrode is 

located on the patient’s hip[50]. The resulting uterine EMG signal is amplified and filtered by 

using the acquisition system. The electrodes will be placed on the abdominal wall according to 

Figure 16. 

 

Figure 16. Position of electrodes on the pregnant women[38]. 
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In this study, the database of uterine EMG signals was taken from a physio net ATM with a signal 

sampling rate of 20 samples per second. The Electro Hysterogram records (uterine EMG records) 

included in the Term-Preterm Electro Hysterogram Database (TPEHG-DB) were obtained from 

1997 to 2005 at the University Medical Centre Ljubljana, Department of Obstetrics and 

Gynecology. The dataset contains 300 uterine EMG records from 300 pregnancies, 262 records 

were obtained during pregnancies where the delivery was on the term (duration of gestation at 

delivery > 37 weeks) and 38 records were obtained during pregnancies that ended prematurely 

(pregnancy duration ≤ 37 weeks)[42]. But since the two classes are not balanced, oversampling 

technique is applied to the minority class which is 38 preterm signals. This is implemented by 

varying the original sampling frequency, that means 20Hz with different factors, like ¼, 2/4, ¾, 

1/3, 2/3, …2. The math code is attached at the end of paper in Appendix-C 

 

Figure 17.The relation between the original (blue) and the resampled (resampled) signals 

As shown from figure 17 above, the two signals have the same feature. But the two signals are 

sampled at different sampling rate, that is the first one which is the original one was sampled at a 

frequency of 20Hz whereas, the second one is sampled at a frequency of 3/2 times the original 

signal (20*3/2).    
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Table 4. Data sets after oversampling technique. 

Activity one Activity two 

Class  Original data Oversampled  Class  Original data Oversampled  

Term  262 262 Term  262 262 

Preterm  38 228 Preterm  11 165 

4.2.8 EMG Signal Preprocessing  

In both engineering and medical fields, EMG is a very useful signal that has a wide range of 

applications such as sport activities, Evolvable Hardware Chip (EHW) development, robotics and 

modern human computer interaction[51][52]. EMG signal is a typical biomedical signal, which 

has strong background noise. In the process to record EMG signals, it is vulnerable to other 

external signals and electrical noise interference; in particular, the noise caused by subjects 

breathing or body movement. Artifacts and muscular electrical activity are the two main sources 

of noises in EMG signal processing. Hence filtering is done for this recorded data before it is used 

in the designed system[49]. For this study, IIR Notch Filter and a Butterworth bandpass filter have 

been applied.  

A time-varying model of EMG signal is given by: 

                           x(n)=∑ ℎ(𝑟)𝑒(𝑛 − 𝑟) + 𝑤(𝑛) … … … … (1)𝑁−1
𝑟=0                                                                          

where x(n) is the EMG signal, e(n) is the firing impulse, h(r) represents the MUAP, w(n) is the 

zero-mean additive white Gaussian noise and N is the number of motor units firing.  

Butterworth filter is used for maximally flat response in minimizing passband ripple and 

transmission passband. As the order of the filter increases, the response of Butterworth achieves 

the ideal one when we see in magnitude response. Specifying the maximum limit for the passband 

allows us to determine the recommended order and amplitude. The linearity in the passband area 

for many applications makes Butterworth an ideal filtering method. It is also preferable to other 

methods since Butterworth is suitable for dynamic/non-stationary signal processing. Figure 18 

presents a low pass, high pass, band pass and stop band Butterworth filters.  
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Figure 18. Characteristics of Butterworth filters: Low Pass, High Pass, Band Pass and Stop 

Band[53]. 

As shown in the figure, the order of the Butterworth filter indicates the slop/flatness of the filter’s 

transition zone. In this particular study, a fourth-order Butterworth filter is applied with a cut-off 

frequency 0.3Hz to 3Hz at a sampling frequency of 20 samples per second[54]. Figure 19 shows 

an EMG signal and a filtered version using a fourth-order Butterworth filter for the three channels 

in MATLAB.    

 

Figure 19. EMG filtered signal using the fourth-order Butterworth filter of the three 

channels. 

A fourth-order Butterworth filter is recommended since it has an average transition band to obtain 

the best signal of uterine contraction. The signal is also notch filtered (0.25-0.35 Hz) to suppress 

the prominent maternal breathing around 0.33 Hz. 

4.2.9 Feature Extraction 

Any parameter which has the potential to discriminate between different classes is termed 

as a feature. Various features have been extracted to discriminate between term and preterm EMG 

signals. A total of 8 features are extracted in the current study and the features are of various 

domains including time domain, frequency domain, and statistical domain. The extracted feature 

values are recorded and compiled in Microsoft Excel. Nature is full of non-deterministic 
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(stochastic) processes like the weather and other dynamic conditions all over the world. 

Biomedical signals such as ECG/EKG, EEG, and EMG are also stochastic indicating that an 

appropriate analysis method should be used. The discrete wavelet transform (DWT) with band 

width of 0.3Hz to 3Hz was used to extract characteristics from a signal on various scales proceeded 

by successive high pass and low pass filtering. The wavelet coefficients are the successful 

continuation of the approximation and detail coefficients. The basic feature extraction procedure 

consists of decomposing the signal by DWT into N levels using filtering and decimation to obtain 

the approximation and detailed coefficients. The features extracted from the inverse discrete 

wavelet transform (IDWT) of signals are considered useful features for input into classifiers due 

to their effective, time-frequency representation of the non-stationary signal. 

 

 

 

 

Figure 20. Feature extraction process. 

Figure 20 depicts the basic processes involved in feature extraction. About four steps are involved 

during feature extraction as briefly described below.  

Step1: The uterine EMG signal is decomposed into two detail sub bands which are high-frequency 

detail coefficients and low-frequency approximation coefficients using DWT. 

Step 2: The approximation coefficients are further decomposed using DWT to extract localized 

information from the sub band of detail coefficients using Daubechies wavelet (db20) in two 

levels. 

Step 3: After decomposition, signals are reconstructed using IDWT.  

Step 4: The features are computed either by using syntax or by implementing the formula. They 

are variance, standard deviation, root means square, median frequency, mean power, power 

spectrum, maximum frequency, and SSI, and the extracted features for the two classes of EMG 

Butterworth 

Filtered 

EMG  

Wavelet 

decomposition 

using Db20  

All 

Features 

Extracted 

Features 

Tabulated 

Wavelet 

Co-efficient 

Reconstruction 
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signals are tabulated and analyzed for classification. The extracted features from the signal are as 

follows: 

Variance: A small variance indicates that the data points tend to be very close to the mean and 

hence to each other, while a high variance indicates that the data points are very spread 

out around the mean and from each other. 

Standard Deviation (SD): In general, it is defined as the amount of variation in the set of data 

values. Standard deviation measures the spread of data from the mean. In signal processing, SD 

represents noise and other interference. It is used in comparison to the mean. This leads to the 

term: signal-to-noise ratio (SNR), which is equal to the mean divided by the standard deviation. 

Better data means a higher value for the SNR. 

Root Mean Square (RMS): it is defined as the root mean square value of the signal. Root mean 

square is another feature that is popular in EMG signal analysis. Normal signals should have a 

lower value for this feature as compared to the uterine EMG. RMS is defined as the square root of 

the mean over time of the square of the vertical distance of the graph from the rest state, related to 

the constant force and non-fatiguing contraction of the muscle. In most cases, it is similar to the 

standard deviation. The root-mean-square of a vector x is:  

                                         XRMS=√
𝟏

𝑵
∑ |𝒙|𝟮𝑵

𝒏=𝟏  

with the summation performed along the specified dimension[55]. 

Median Frequency: it is the frequency value that is obtained when the power spectral 

density is at its maximum value. Analysis of EMG signals in the frequency domain is made by 

measuring and computing the parameters that define the characteristics of these signals. To 

determine the power spectral densities of the signals often fast Fourier transform is used. 

Mathematically:  

∫ 𝑺𝒎(𝒇)𝒅𝒇 = ∫ 𝑺𝒎(𝒇)𝒅𝒇 −
𝟏

𝟐
∫ 𝑺𝒎(𝒇)𝒅𝒇

∞

𝟎

∞

𝒇𝒎𝒆𝒅

𝒇𝒎𝒆𝒅

𝟎

 

where Sm(f) is the power spectrum density of the signal. 
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Median and average frequency is the most reliable parameters in EMG analysis. Median 

frequency is less sensitive to noise compared to average frequency. This condition occurs in low-

leveled contraction with the low valued signal to noise ratio. Bandwidth characterizes the 

spectrum and defines time and variation with force. Also, it gives important information about 

filtering processes on EMG signals. It’s not useful for real-time pieces of training because it can 

be only computed with the power spectrum. 

Maximum Frequency: it is the maximum frequency value of the energy in the spectrum. 

Mean Power: it is the average value of power that shows the total power of the signal. 

Power: the feature that shows the total power of the signal. The uterine contraction is a higher 

amplitude signal, which is expected to have a higher value of this feature. 

Simple Square Integral (SSI): is used to capture the energy of the EMG signal and is given by:  

𝑺𝑺𝑰 = ∑|𝑿𝒏|

𝑵

𝒏=𝟏

𝟐 

These features have the potential to discriminate between the two classes of signals namely, term 

and preterm signals. Table 5 below summarizes the different features.   

Table 5. Feature variables for class identification.  

No Feature Feature Domain 

1 Variance Statistical 

2 Standard deviation Statistical 

3 Root Mean Square Statistical 

4 Median frequency Frequency  

5 Maximum frequency Frequency  

6 Mean power Time  

7 Power Time  

8 Simple Square Integral Statistical 
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4.3 Classification 

All of the above features are computed from three channel EMG device separately from each 

channel and later combined using different statistical operators to give best classification accuracy. 

Some of the operations are mean, median, summation, maximum value, and product of the features 

from the three channels. The best classification accuracy was achieved when using the product of 

the features from the three channels. Hence, the product of the features from the three channels is 

taken and inputted to the training model. Finally, the features data was fed to the classifiers both 

for training and testing without any feature reduction techniques since dimensionality, redundancy 

and computational load are preserved for features number less than 10. The working principle of 

the classifiers which are selected based on the number of data that I have is discussed below. 

4.3.1 Support Vector Machine 

The support vector machine (SVM) is classified under a supervised machine learning algorithm. 

It can be used for classification and regression purposes. In this method, each data item is plotted 

as a point in n-dimensional space, where n is the number of features that we have. The value of 

each feature is the value of each coordinate. The classification is performed by finding the 

hyperplane that differentiates the two classes very well. There may be many possible linear 

classifiers that can separate two classes, but the preferred one is that maximizes the distance 

between it and the nearest data point of each class. This linear classifier is called the best separating 

hyperplane[56]. 

In Figure 21, there is a small margin that minimizes the distance between it and the nearest data 

point of each class and in Figure 22 there is a large margin that maximizes the distance 

between it and the nearest data point of each class. A SVM classifier is designed for binary 

classification problems.  But real-world problems often require discrimination for more than two 

categories so that multi-class pattern recognition has a wide range of applications including optical 

character recognition, intrusion detection, speech recognition, and bioinformatics[57]. In practice, 

the multi-class classification problems are commonly decomposed into a series of binary problems 

such that the standard SVM can be directly applied.                                                                                                                                                
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Figure 21. Small margin of separating hyperplane.     

                                                                                         Figure 22. Large margin of separating hyperplane. 

4.3.2 Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is a commonly used technique for data classification and 

dimensionality reduction. It keeps classing discriminatory information. This technique efficiently 

manages the case where the within-class frequencies are unequal and their performance has been 

checked on randomly generated test data. This method increases the ratio of the between-class 

variance to the within-class variance in any particular dataset thereby ensuring maximum 

separability. 

Using LDA provides better classification compared to principal component analysis (PCA). The 

difference between LDA and PCA is that PCA is usually used for feature classification and LDA 

for data classification. In PCA, the shape and location of the original data set are to change when 

transformed to another space whereas LDA does not change the location, but it gives detail 

information on class separability and draws a decision region between the given classes. This 

method also helps to understand the distribution of the feature data. LDA is of great importance 

in the current study since uterine contraction is a randomly generated signal with a high variance 

of each class. 

 

 

 

Figure 23.Data sets and test vectors. 
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Figure 23 illustrates the theory of LDA showing datasets and test vectors[58]. The decision 

boundary between the two classes, i.e. set1 and set2, indicates the ability to separate classes with 

LDA analysis. 

4.3.3 Decision Tree 

It is a simple yet widely used classification technique. Just as a normal tree, a decision tree structure 

has a root, branches, and leaves. Decision tree followed the same structure. It contains the root 

node, branches, and leaf nodes. Testing an attribute is on every internal node, the outcome of the 

test is on branch and class label, as a result, is on leaf node[59]. A root node is the parent of all 

nodes and as the name suggests it is the topmost node in tree. A decision tree is a tree where each 

node shows a feature (attribute), each link (branch) shows a decision (rule) and each leaf shows an 

outcome (categorical or continuous value)[60]. As decision trees mimic human-level thinking, it’s 

so simple to grab the data and make some good interpretations. The whole idea is to create a tree-

like this for the entire data and process a single outcome at every leaf[61]. An example of a decision 

tree structure is shown in Figure 24.  

 

Figure 24. Example of a decision tree structure. 

In the decision tree, each leaf node is assigned a class label. The non-terminal node, that contains 

attribute tests conditions to identify records with several characteristics. Once a decision tree is 

constructed, classification is very easy.  
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CHAPTER FIVE 

RESULTS AND DISCUSSIONS 

The proposed method has been tested on the publicly available dataset. The EMG signals are 

classified into term and preterm labor using the algorithm. The method has been implemented on 

a Toshiba Laptop (Intel Core i5 with a speed of 2.50 GHz, 2501 MHz, 6.51GB RAM, and 

Windows 10 operating system) using MATLAB R2018a platform. This chapter presents the results 

that were derived, an objective evaluation of the simulated dataset, and a qualitative comparison 

of the proposed algorithm making use of different classifiers.  

5.1. Preprocessing 

The aim here is to preprocess the EMG uterine contraction signals aiming for a more effective 

classification of the signals into term and preterm labor. The results are greatly influenced by the 

selection of digital filters in removing noise from signals.  

 

   Figure 25. Unfiltered EMG raw data derived from three EMG channels. 

Figure 25 presents a raw EMG signal derived from three channels. Figure 26 depicts the signals 

shown in Figure 25 together with the resulting signal generated after a baseline removing 

algorithm, Savitzky-Golay, was implemented. Clearly the baseline drifts have been removed from 
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the original signals. But the three channels have different scales or different features because they 

are taken from three different parts of the body.  

 

Figure 26. EMG signal after removal of baseline drift.   

After the baseline drift is removed, a band-pass filter using a Butterworth digital filter is selected 

and applied to it with a band frequency of 0.3-3.0Hz. It is known that 0 to 5Hz is the range of 

frequencies for uterine EMG content. The reason why Butterworth band-pass filter was chosen is 

the smooth frequency response and a computationally fitting dynamic signal character of the filter. 

Figure 27 presents the resulting signals after the Butterworth band pass filter is applied. Note that 

a Butterworth filter of order 4 has been used in the current study.   
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Figure 27. Filtered EMG signal using band-pass Butterworth filter.  

5.2. Feature Extraction 

This is a step where a certain signal is expressed in its statistical parameters. Features have been 

extracted in different domains, i.e. time domain, frequency domain, and statistical domain. A total 

of 8 features have been extracted for 98 signals and MATLAB built-in functions and formulas 

were used to calculate the 8 features namely: SSI, Standard Deviation, RMS, Variance, Medfreq, 

Fmax, Power Spectrum and Mean Power. A sample of the features extracted in this study and their 

numerical values are shown in Figure 28.  
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Figure 28. Sample features extracted from 18 selected EMG signals. 

5.3. Classification  

The classification is done using the set of selected feature values. The feature set is divided into 

training set and testing set. Following the training stage, the test samples are given as input to the 

classifier and classification is performed. The output of the algorithm is the class of the signal. The 

accuracy is then calculated according to how many test signals are classified correctly and based 

on the confusion matrix developed, which allows computation of different performance matrices.  

5.3.1. Confusion Matrix  

The confusion matrix is the visualization of the performance of an algorithm. It reports the number 

of false positives, false negatives, true positives, and true negatives. True Positive (TP) detection 

is when the algorithm correctly detects a woman with the term, True Negative (TN) detection is 

when the algorithm correctly detects a woman without term, False Positive (FP) detection is when 

a woman with preterm is labeled as a woman with term by the detection algorithm and False 

Negative (FN) detection is when a woman with the term is labeled as a woman with preterm by 

the detection algorithm. Each column of the confusion matrix represents the instances in a 

predicted class, while each row represents the instances in an actual class. Hence, by using the 
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confusion matrix, the performance parameters accuracy, sensitivity, and precision can be 

calculated to properly analyze the efficiency of the algorithm. 

a) Accuracy: Classification accuracy is the percentage of correctly classified samples to the total 

sample. In other words, accuracy describes the closeness of the number of predicted signals to 

the actual number of signals and is calculated as follows. 

Accuracy =
TP+TN

𝑃+𝑁
  =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+True Negative+ F𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+F𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

where P is the total number of positive values and N denotes the total number of negative values 

in the test dataset. 

b) Sensitivity: Sensitivity is one parameter to evaluate the rate of true positive predictions, or 

sensitivity describes the fraction of true prediction over the total number of signals present.  

Accuracy =
TP

𝑇𝑃+𝐹𝑁
  = 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+F𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 

c) Precision: Precision or positive predictive value (PPV) describes the proportion of positive or 

correct classification of term labor (true positives) from all cases as predicted positive. 

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + F𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Table 6 presents the general structure of the confusion matrix where we have predicted values in 

the vertical axis and actual values in the horizontal.  

Pred/Actual   Term               Preterm  

Term 

 

Preterm  

Table 6. The general structure of the confusion matrix for a binary classifier.  

In this study, the EMG signals were used and divided into training and testing data sets for both 

age-dependent pregnant and all range of age pregnant activities. In the first case, 392 signals (210 

for term labor and 182 for preterm labor) for training and 98 signals (52 for term and 46 for preterm 

labor) for testing were used. In the second case, 342 signals (132 preterm and 210 terms) for 

TP FP 

FN TN 
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training and 85 signals (33 preterm and 52 terms) for testing were used. The performance of the 

feature classification is thoroughly studied by three types of classifiers. The MATLAB code used 

to perform the feature classification task is attached in Appendix-A.  

5.3.2. Activity one: classification without considering the age of the pregnant 

Test 1:  

Input data: Combined data set  

Classifier: SVM 

The classification performance of the EMG signal in uterus contraction is studied using 392 (182 

preterm & 210 term) labor signals for training and 98 (46 preterm & 52 term) labor signals for 

testing purpose. Table 7 presents the confusion matrix that shows the classification performance 

of labor prediction using SVM without considering the age of the pregnant. Based on the confusion 

matrix, one can calculate the accuracy, sensitivity, and precision of the algorithm.  

Table 7. Confusion matrix of SVM classifier in the first test of activity one. 

                                                             Term            Preterm                                               

                                  Term                                                                                                                                 

                                         

                     Preterm 

 A snapshot of the Matlab output is shown below.  

                             

Accordingly, the performance matrices are computed as: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
=

44+43

98
= 88.78%, 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP+FN
=

44

44+3
= 93.62%, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑖𝑜𝑛 =

TP

TP+FP
=

44

44+8
= 84.62%. 

 

44 8 

 3 43 
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Test 2:  

Input data: Combined data set  

Classifier: LDA  

The classification performance of the EMG signal in uterus contraction is studied using 392 (182 

preterm & 210 term) labor signals for training and 98 (46 preterm & 52 term) labor signals for 

testing purpose. Table 8 presents the confusion matrix that shows the classification performance 

of labor prediction using LDA without considering the age of the pregnant. Based on the confusion 

matrix, one can calculate the accuracy, sensitivity, and precision of the algorithm.  

Table 8. Confusion matrix of LDA in the second test of activity one.                                       

                                                                   Term            Preterm 

                                                            Term 

                                                                                                             

                                                          Preterm 

A snapshot of the Matlab output is shown below.  

                                                  

Accordingly, the performance matrices are computed as: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
=

52+46

98
= 100%, 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP+FN
=

52

52+0
= 100%, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑖𝑜𝑛 =

TP

TP+FP
=

52

52+0
= 100%.      

Test 3:  

Input data: Combined data set  

Classifier: Decision Tree 

The classification performance of the EMG signal in uterus contraction is studied using 392 (182 

preterm & 210 term) labor signals for training and 98 (46 preterm & 52 term) labor signals for 

52 0 

 0 46 



43 
 

testing purpose. Table 9 presents the confusion matrix that shows the classification performance 

of labor prediction using Decision tree without considering the age of the pregnant. Based on the 

confusion matrix, one can calculate the accuracy, sensitivity, and precision of the algorithm. 

Table 9. Confusion matrix of decision Tree in the third test of activity one 

                                                             Term              Preterm                                               

                                         Term 

                                        Preterm 

 

A snapshot of the Matlab output is shown below.  

                                                

Accordingly, the performance matrices are computed as: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
=

45+43

98
= 89.8%, 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP+FN
=

45

45+3
= 93.75%, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑖𝑜𝑛 =

TP

TP+FP
=

45

45+7
=

86.54%.                                                                                                                                                                                                  

5.3.3. Activity two: classification considering the age of the pregnant 

Test 1:  

Input data: Age-dependent data set 

Classifier: SVM  

The classification performance of the EMG signal in uterus contraction is studied using 342 

(132preterm and 210 terms) labor signals for training and 85 (33 preterm and 52 terms) labor 

signals for testing purposes. Table 10 presents the confusion matrix that shows the classification 

performance of labor prediction using SVM considering the age of the pregnant. Based on the 

confusion matrix, one can calculate the accuracy, sensitivity, and precision of the algorithm. 

45 7 

 3 43 
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Table 10. Confusion matrix of SVM in the first test of activity two 

                                                               Term          Preterm                                               

                                  

   Term                                                                                                                                 

                                           Preterm 

A snapshot of the Matlab output is shown below.               

                             

Accordingly, the performance matrices are computed as: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
=

46+31

85
= 90.59%, 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP+FN
=

46

46+2
= 95.83%, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑖𝑜𝑛 =

TP

TP+FP
=

46

46+6
= 88.46%.   

Test 2:                   

Input data: Age-dependent data set  

Classifier: LDA  

The classification performance of the EMG signal in uterus contraction is studied using 342 

(132preterm and 210 terms) labor signals for training and 85 (33 preterm and 52 terms) labor 

signals for testing purposes. Table 11 presents the confusion matrix that shows the classification 

performance of labor prediction using LDA considering the age of the pregnant. Based on the 

confusion matrix, one can calculate the accuracy, sensitivity, and precision of the algorithm. 

Table 11. Confusion matrix of Linear discriminant analysis in the second test of activity two 

                                                              Term            Preterm 

                                                              Term 

                                                          

          Preterm 

46 6 

 2 31 

52 0 

 0 33 
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A snapshot of the Matlab output is shown below.               

                                               

Accordingly, the performance matrices are computed as: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
=

52+33

85
= 100%, 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP+FN
=

52

52+0
= 100%, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑖𝑜𝑛 =

TP

TP+FP
=

52

52+0
= 100%.   

Test 3: 

Input data: Age-dependent data set.  

Classifier: Decision Tree 

The classification performance of the EMG signal in uterus contraction is studied using 342 

(132preterm and 210 terms) labor signals for training and 85 (33 preterm and 52 terms) labor 

signals for testing purposes. Table 12 presents the confusion matrix that shows the classification 

performance of labor prediction using Decision tree considering the age of the pregnant. Based on 

the confusion matrix, one can calculate the accuracy, sensitivity, and precision of the algorithm. 

Table 12. Confusion matrix of decision Tree in the third test of activity two. 

                                                                                 Term             Preterm                                               

                                                              Term 

                                                      

                                                          Preterm 

A snapshot of the Matlab output is shown below.               

                                             

41 11 

 2 31 
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Accordingly, the performance matrices are computed as: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
=

41+31

85
=

84.71%, 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP+FN
=

41

41+2
= 95.35%, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑖𝑜𝑛 =

TP

TP+FP
=

41

41+11
= 78.85%.   

                                                                                                                                                                                                                                                           

Table 13.   Summary of the performance of the different classifiers.  

Activity  Classifier Performance in % 

Combined data set Support vector machine Accuracy =88.78 

Sensitivity =93.62 

Precision =84.62 

Linear discriminant 

analysis 

Accuracy =100 

Sensitivity =100 

Precision =100 

Decision Tree Accuracy =89.8 

Sensitivity =93.75 

Precision =86.54. 

Age-dependent 

data set 

Support vector machine Accuracy =90.59 

Sensitivity =95.83 

Precision =88.46 

Linear discriminant 

analysis 

Accuracy =100 

Sensitivity =100 

Precision =100 

Decision Tree Accuracy =84.71 

Sensitivity =95.35 

Precision =78.85 

 

 

Figure 29. Performance analysis of activity one expressed in bar chart.  
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Figure 30. Performance analysis of activity two expressed in bar chart. 

From the above results we could derive two major conclusions. One is that the performances of 

the different classifiers depend on the type of data we use for training, i.e., whether or not we do 

an age dependent classification. The age dependent classification results are generally superior to 

the age independent cases. Another is the comparison between the three classifiers that are used to 

group the given EMG samples in term and preterm. In all cases considered, LDA outperformed 

both SVM and decision tree showing its effectiveness in doing the binary classification. More data 

may be needed to prove that 100% performance of LAD isn’t due to over fitting.   

As we have discussed above, the uterus contraction becomes higher and higher as the delivery date 

of the pregnant closer and closer so that the potential EMG device to predict term and preterm 

labor becomes more accurate. To the reverse as the delivery date of the pregnant is closer and 

closer, the fetus inside the uterus become bigger and bigger which is considered as an opaque that 

attenuates ultrasound wave to pass and to give good images. 
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CHAPTER SIX 

CONCLUSION AND FUTURE WORK 

6.1. Conclusion 

In this thesis, an attempt was made to study and analyze the characteristic features of uterine EMG 

signal for the detection of human labor as term and preterm during diagnosis of human labor and 

also the influence of maternal age on uterine contraction as well as human labor. The algorithms 

proposed in this study were time-efficient, simple, and require only uterine contraction EMG as an 

input signal. EMG signals of uterine contraction are capable of indicating the labor state of human 

pregnancy at an earlier stage which is very useful to prevent maternal death most commonly for 

young and old age pregnant. Research in this area can be very helpful for easy and earlier diagnosis 

of human labor in the gynecology department. 

Since the data is taken at a sampling frequency of 20 Hz, it is not exposed to other external noises 

or external disturbances. Because of this, only a fourth-order, Butterworth filter is applied at a 

range of 0.3 to 3.0 Hz bandpass to filter out the external disturbances/external noises from the 

recorded raw data. In addition, a notch filter is applied to suppress the prominent maternal 

breathing around 0.33 Hz. 

In this thesis, the human uterus EMG signals were studied and classified into two classes, namely 

term labor and preterm labor for all age pregnant in one experiment and also specifically the young 

and old age pregnant in other experiments. By applying the wavelet transform, many features in 

time, frequency, and statistical domains have been extracted from each of the three EMG channels 

separately and the product of the three channels is taken for the next step. Then, the product of 

features is applied to the classification using three classifiers: Support vector machine, Linear 

discriminant analysis, and Decision Tree. Finally using these optimal features and three classifiers, 

the first experiment (all age groups) resulted in overall accuracy of 88.78%, 100%, and 89.8% for 

Support vector machine, Linear discriminant analysis, and Decision Tree, respectively. In the 

second experiment, where the samples were categorized based on the age of the pregnant a prior, 

an accuracy of 90.59%, 100%, and 84.71% for Support vector machine, Linear discriminant 

analysis, and Decision Trees respectively.   
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A comparison of the results obtained using different classifiers reveals the performance difference 

among them. In all cases, Linear discriminant analysis appeared to be more reliable than Support 

vector machine and Decision Tree. Based on the second experiment, the results shows that very 

old and young human pregnant were more exposed to preterm labor than adult stage human 

pregnant and generally, more accurate classification results were obtained when age is considered 

during the training stage[62].   

Finally, EMG devices have a good and better potential to predict term and preterm delivery than 

ultrasound device which is good if the diagnosis is taken at the first three months (1st trimester).  

6.2. Future Work  

Further validation of the proposed classification algorithm requires acquiring more number of 

EMG samples other than the limited data used in the current study. In principle, the proposed 

method can also be implemented without the need to have an EMG device, such as using wearable 

nanotechnology, that can detect the uterus contraction of human pregnancy. The proposed 

classification algorithm could be generalized to determine the most suitable parameters for the 

determination of term and preterm labor considering other biological/physical factors like the 

weight of pregnant. Also, investigating the applicability of other artificial intelligent systems, such 

as Artificial Neural Network, which could potentially result in better classification performance, 

requires further studies.  
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APPENDICES 

Appendix- A 

 

A.1 Implementation code for combined data set using SVM 
% In this Math code, age is not concidered & implemented including all 

preterms: 
     % 392 traing(182 preterm and 210 term)data 
     % 98 testing(46 preterm and 52 term)data 
% For class leveling 
     %Preterm=0 
     %Term=1 
clc 
close all 
% calculate time 
tic 
disp('--- start ---') 

  
% preprocessing  
% c1 
feture1 = zeros(392,8); 
for i=1:392 
M=csvread(['C:\Users\Leale\Desktop\Ttrainingresampled\' num2str(i) '.csv']); 
N=M(:,1); 
fs=20; 
l=length(N); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N,5,21); 
y=N-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
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MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture1(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture1; 
% c2 
clc 
feture2 = zeros(392,8); 
for i=1:392 
M=csvread(['C:\Users\Leale\Desktop\Ttrainingresampled\' num2str(i) '.csv']); 
N1=M(:,2); 
fs=20; 
l=length(N1); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 

  
%removing baseline 
p=sgolayfilt(N1,5,21); 
y1=N1-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y1); 
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture2(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture2; 
% c3 
clc 
feture3 = zeros(392,8); 
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for i=1:392 
M=csvread(['C:\Users\Leale\Desktop\Ttrainingresampled\' num2str(i) '.csv']); 
N2=M(:,3); 
fs=20; 
l=length(N2); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N2,5,21); 
y2=N2-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y2); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture3(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture3; 
feture=feture1.*feture2.*feture3; 
% Training an SVM model  
class=importdata('Tovragetrainclass.mat'); 
test=importdata('Tagevestclass.mat'); 
SVMModel = fitcsvm(feture,class,'Standardize',true,'KernelFunction','RBF',... 
'KernelScale','auto'); 

  
% Test features extraction by using SVM 
% c1 
clc 
testfv1 = zeros(98,8); 
for i=1:98 
H=csvread(['C:\Users\Leale\Desktop\Ttest\' num2str(i) '.csv']); 
fs=20; 
N3=H(:,1); 
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l=length(N3); 
t=(0:l-1)/fs; 
subplot(3,3,1) 
plot(t,N3); 
grid on; 
title('original signal of c1'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N3,5,21); 
y3=N3-p;  
subplot(3,3,2) 
plot(t,y3); 
grid on; 
title('base line removed signal of c1'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y3); 
subplot(3,3,3) 
plot(x3); 
title('filltered signal of c1'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv1(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
testfv1; 
% c2 
clc 
testfv2 = zeros(98,8); 
for i=1:98 
H=csvread(['C:\Users\Leale\Desktop\Ttest\' num2str(i) '.csv']); 
fs=20; 
N4=H(:,2); 
l=length(N4); 
t=(0:l-1)/fs; 
subplot(3,3,4) 
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plot(t,N4); 
grid on; 
title('original signal of c2'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N4,5,21); 
y4=N4-p;  
subplot(3,3,5) 
plot(t,y4); 
grid on; 
title('base line removed signal of c2'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y4); 
subplot(3,3,6) 
plot(x3); 
title('filltered signal of c2'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv2(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
testfv2; 
% c3 
clc 
testfv3 = zeros(98,8); 
for i=1:98 
H=csvread(['C:\Users\Leale\Desktop\Ttest\' num2str(i) '.csv']); 
fs=20; 
N5=H(:,3); 
l=length(N5); 
t=(0:l-1)/fs; 
subplot(3,3,7) 
plot(t,N5); 
grid on; 
title('original signal of c3'); 
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% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N5,5,21); 
y5=N5-p;  
subplot(3,3,8) 
plot(t,y5); 
grid on; 
title('base line removed signal of c3'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y5); 
subplot(3,3,9) 
plot(x3); 
title('filltered signal of c3'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% Features computation 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv3(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
testfv3; 
testfv=testfv1.*testfv2.*testfv3; 
%prediction 
Label = predict(SVMModel,testfv); 
comat = confusionmat(test,Label); 
comat1=[comat(2) comat(4);comat(3) comat(1)]; 
acc1 = 100*sum(diag(comat1))./sum(comat1(:)); 
fprintf('SVMClassifier:\naccuracy = %.2f%%\n', acc1); 
fprintf('Confusion Matrix:\n'), disp(comat1) 
toc 
accuracy=acc1; 
time=toc; 

A.2 Implementation code for combined data set using LDA 
% In this Math code, age is not concidered & implemented including all 

preterms: 
     % 392 traing(182 preterm and 210 term)data 
     % 98 testing(46 preterm and 52 term)data 
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% For class leveling 
     %Preterm=0 
     %Term=1 
clc 
close all 
% calculate time 
tic 
disp('--- start ---') 

  
% preprocessing  
% c1 
feture1 = zeros(392,8); 
for i=1:392 
M=csvread(['C:\Users\Leale\Desktop\Ttrainingresampled\' num2str(i) '.csv']); 
N=M(:,1); 
fs=20; 
l=length(N); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N,5,21); 
y=N-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture1(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture1; 
% c2 
clc 
feture2 = zeros(392,8); 
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for i=1:392 
M=csvread(['C:\Users\Leale\Desktop\Ttrainingresampled\' num2str(i) '.csv']); 
N1=M(:,2); 
fs=20; 
l=length(N1); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 

  
%removing baseline 
p=sgolayfilt(N1,5,21); 
y1=N1-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y1); 
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture2(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture2; 
% c3 
clc 
feture3 = zeros(392,8); 
for i=1:392 
M=csvread(['C:\Users\Leale\Desktop\Ttrainingresampled\' num2str(i) '.csv']); 
N2=M(:,3); 
fs=20; 
l=length(N2); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N2,5,21); 
y2=N2-p;  
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% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y2); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture3(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture3; 
feture=feture1.*feture2.*feture3; 
% Training an LDA model  
class=importdata('Tovragetrainclass.mat'); 
test=importdata('Tagevestclass.mat'); 
LDAmodel=ClassificationDiscriminant.fit(feture, class); 
% Test features extraction by using LDA 
% c1 
clc 
testfv1 = zeros(98,8); 
for i=1:98 
H=csvread(['C:\Users\Leale\Desktop\Ttest\' num2str(i) '.csv']); 
fs=20; 
N3=H(:,1); 
l=length(N3); 
t=(0:l-1)/fs; 
subplot(3,3,1) 
plot(t,N3); 
grid on; 
title('original signal of c1'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N3,5,21); 
y3=N3-p;  
subplot(3,3,2) 
plot(t,y3); 
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grid on; 
title('base line removed signal of c1'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y3); 
subplot(3,3,3) 
plot(x3); 
title('filltered signal of c1'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv1(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
testfv1; 
% c2 
clc 
testfv2 = zeros(98,8); 
for i=1:98 
H=csvread(['C:\Users\Leale\Desktop\Ttest\' num2str(i) '.csv']); 
fs=20; 
N4=H(:,2); 
l=length(N4); 
t=(0:l-1)/fs; 
subplot(3,3,4) 
plot(t,N4); 
grid on; 
title('original signal of c2'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N4,5,21); 
y4=N4-p;  
subplot(3,3,5) 
plot(t,y4); 
grid on; 
title('base line removed signal of c2'); 
% Band pass filter lp & hp 
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[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y4); 
subplot(3,3,6) 
plot(x3); 
title('filltered signal of c2'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv2(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
testfv2; 
% c3 
clc 
testfv3 = zeros(98,8); 
for i=1:98 
H=csvread(['C:\Users\Leale\Desktop\Ttest\' num2str(i) '.csv']); 
fs=20; 
N5=H(:,3); 
l=length(N5); 
t=(0:l-1)/fs; 
subplot(3,3,7) 
plot(t,N5); 
grid on; 
title('original signal of c3'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N5,5,21); 
y5=N5-p;  
subplot(3,3,8) 
plot(t,y5); 
grid on; 
title('base line removed signal of c3'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y5); 
subplot(3,3,9) 
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plot(x3); 
title('filltered signal of c3'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv3(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 

  
end 
testfv3; 
testfv=testfv1.*testfv2.*testfv3; 
%prediction 
y=predict(LDAmodel,testfv); 
comat = confusionmat(test,y); 
comat1=[comat(2) comat(4);comat(3) comat(1)]; 
acc1 = 100*sum(diag(comat1))./sum(comat1(:)); 
fprintf('LDAClassifier:\naccuracy = %.2f%%\n', acc1); 
fprintf('Confusion Matrix:\n'), disp(comat1) 
toc 
accuracy=acc1; 
time=toc; 

 

A.3 Implementation code for combined data set using DT 
% In this Math code, age is not concidered & implemented including all 

preterms: 
     % 392 traing(182 preterm and 210 term)data 
     % 98 testing(46 preterm and 52 term)data 
% For class leveling 
     %Preterm=0 
     %Term=1 
clc 
close all 
% calculate time 
tic 
disp('--- start ---') 

  
% preprocessing  
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% c1 
feture1 = zeros(392,8); 
for i=1:392 
M=csvread(['C:\Users\Leale\Desktop\Ttrainingresampled\' num2str(i) '.csv']); 
N=M(:,1); 
fs=20; 
l=length(N); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 

  
%removing baseline 
p=sgolayfilt(N,5,21); 
y=N-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture1(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture1; 
% c2 
clc 
feture2 = zeros(392,8); 
for i=1:392 
M=csvread(['C:\Users\Leale\Desktop\Ttrainingresampled\' num2str(i) '.csv']); 
N1=M(:,2); 
fs=20; 
l=length(N1); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
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%removing baseline 
p=sgolayfilt(N1,5,21); 
y1=N1-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y1); 
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture2(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture2; 
% c3 
clc 
feture3 = zeros(392,8); 
for i=1:392 
M=csvread(['C:\Users\Leale\Desktop\Ttrainingresampled\' num2str(i) '.csv']); 
N2=M(:,3); 
fs=20; 
l=length(N2); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 

  
%removing baseline 
p=sgolayfilt(N2,5,21); 
y2=N2-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y2); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
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emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture3(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture3; 
feture=feture1.*feture2.*feture3; 
% Training a DT model  
class=importdata('Tovragetrainclass.mat'); 
test=importdata('Tagevestclass.mat'); 
DTModel=ClassificationTree.fit(feture, class); 

  
% Test features extraction by using DT 
% c1 
clc 
testfv1 = zeros(98,8); 
for i=1:98 
H=csvread(['C:\Users\Leale\Desktop\Ttest\' num2str(i) '.csv']); 
fs=20; 
N3=H(:,1); 
l=length(N3); 
t=(0:l-1)/fs; 
subplot(3,3,1) 
plot(t,N3); 
grid on; 
title('original signal of c1'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N3,5,21); 
y3=N3-p;  
subplot(3,3,2) 
plot(t,y3); 
grid on; 
title('base line removed signal of c1'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y3); 
subplot(3,3,3) 
plot(x3); 
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title('filltered signal of c1'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv1(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
testfv1; 
% c2 
clc 
testfv2 = zeros(98,8); 
for i=1:98 
H=csvread(['C:\Users\Leale\Desktop\Ttest\' num2str(i) '.csv']); 
fs=20; 
N4=H(:,2); 
l=length(N4); 
t=(0:l-1)/fs; 
subplot(3,3,4) 
plot(t,N4); 
grid on; 
title('original signal of c2'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N4,5,21); 
y4=N4-p;  
subplot(3,3,5) 
plot(t,y4); 
grid on; 
title('base line removed signal of c2'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y4); 
subplot(3,3,6) 
plot(x3); 
title('filltered signal of c2'); 

  
% wavelet transform 
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[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv2(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
testfv2; 
% c3 
clc 
testfv3 = zeros(98,8); 
for i=1:98 
H=csvread(['C:\Users\Leale\Desktop\Ttest\' num2str(i) '.csv']); 
fs=20; 
N5=H(:,3); 
l=length(N5); 
t=(0:l-1)/fs; 
subplot(3,3,7) 
plot(t,N5); 
grid on; 
title('original signal of c3'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N5,5,21); 
y5=N5-p;  
subplot(3,3,8) 
plot(t,y5); 
grid on; 
title('base line removed signal of c3'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y5); 
subplot(3,3,9) 
plot(x3); 
title('filltered signal of c3'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
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% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv3(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 

  
end 
testfv3; 
testfv=testfv1.*testfv2.*testfv3; 
%prediction 
y0=predict(DTModel,testfv); 
comat = confusionmat(test,y0); 
comat1=[comat(2) comat(4);comat(3) comat(1)]; 
acc1 = 100*sum(diag(comat1))./sum(comat1(:)); 
fprintf('DTClassifier:\naccuracy = %.2f%%\n', acc1); 
fprintf('Confusion Matrix:\n'), disp(comat1) 
toc 
accuracy=acc1; 
time=toc; 

 

Appendix- B 

A.4 Implementation code for age dependent data set using SVM 
% In this Math code, age is concidered & implemented including preterms only 

in the range: 
     % 342 traing(132 preterm and 210 term)data 
     % 85 testing(33 preterm and 52 term)data 
% For class leveling 
     %Preterm=0 
     %Term=1 
clc 
close all 
% calculate time 
tic 
disp('--- start ---') 

  
% preprocessing  
% c1 
feture1 = zeros(342,8); 
for i=1:342 
M=csvread(['C:\Users\Leale\Desktop\tTagetrainingresampled\' num2str(i) 

'.csv']); 
N=M(:,1); 
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fs=20; 
l=length(N); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N,5,21); 
y=N-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture1(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture1; 
% c2 
clc 
feture2 = zeros(342,8); 
for i=1:342 
M=csvread(['C:\Users\Leale\Desktop\tTagetrainingresampled\' num2str(i) 

'.csv']); 
N1=M(:,2); 
fs=20; 
l=length(N1); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 

  
%removing baseline 
p=sgolayfilt(N1,5,21); 
y1=N1-p;  
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% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y1); 
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture2(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture2; 
% c3 
clc 
feture3 = zeros(342,8); 
for i=1:342 
M=csvread(['C:\Users\Leale\Desktop\tTagetrainingresampled\' num2str(i) 

'.csv']); 
N2=M(:,3); 
fs=20; 
l=length(N2); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N2,5,21); 
y2=N2-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y2); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 



75 
 

%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture3(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture3; 
feture=feture1.*feture2.*feture3; 
% Training an SVM model  
class=importdata('Taresample.mat'); 
test=importdata('tTagevestclass.mat'); 
SVMModel = fitcsvm(feture,class,'Standardize',true,'KernelFunction','RBF',... 
'KernelScale','auto'); 

  
% Test features extraction by using SVM 
% c1 
clc 
testfv1 = zeros(85,8); 
for i=1:85 
H=csvread(['C:\Users\Leale\Desktop\tTtest\' num2str(i) '.csv']); 
fs=20; 
N3=H(:,1); 
l=length(N3); 
t=(0:l-1)/fs; 
subplot(3,3,1) 
plot(t,N3); 
grid on; 
title('original signal of c1'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N3,5,21); 
y3=N3-p;  
subplot(3,3,2) 
plot(t,y3); 
grid on; 
title('base line removed signal of c1'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y3); 
subplot(3,3,3) 
plot(x3); 
title('filltered signal of c1'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
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d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv1(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
testfv1; 
% c2 
clc 
testfv2 = zeros(85,8); 
for i=1:85 
H=csvread(['C:\Users\Leale\Desktop\tTtest\' num2str(i) '.csv']); 
fs=20; 
N4=H(:,2); 
l=length(N4); 
t=(0:l-1)/fs; 
subplot(3,3,4) 
plot(t,N4); 
grid on; 
title('original signal of c2'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N4,5,21); 
y4=N4-p;  
subplot(3,3,5) 
plot(t,y4); 
grid on; 
title('base line removed signal of c2'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y4); 
subplot(3,3,6) 
plot(x3); 
title('filltered signal of c2'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
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% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv2(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
testfv2; 
% c3 
clc 
testfv3 = zeros(85,8); 
for i=1:85 
H=csvread(['C:\Users\Leale\Desktop\tTtest\' num2str(i) '.csv']); 
fs=20; 
N5=H(:,3); 
l=length(N5); 
t=(0:l-1)/fs; 
subplot(3,3,7) 
plot(t,N5); 
grid on; 
title('original signal of c3'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N5,5,21); 
y5=N5-p;  
subplot(3,3,8) 
plot(t,y5); 
grid on; 
title('base line removed signal of c3'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y5); 
subplot(3,3,9) 
plot(x3); 
title('filltered signal of c3'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% Features computation 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
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%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv3(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
testfv3; 
testfv=testfv1.*testfv2.*testfv3; 
%prediction 
Label = predict(SVMModel,testfv); 
comat = confusionmat(test,Label); 
comat1=[comat(4) comat(2);comat(1) comat(3)]; 
acc1 = 100*sum(diag(comat1))./sum(comat1(:)); 
fprintf('SVMClassifier:\naccuracy = %.2f%%\n', acc1); 
fprintf('Confusion Matrix:\n'), disp(comat1) 
toc 
accuracy=acc1; 
time=toc; 

A.5 Implementation code for age dependent data set using LDA 
% In this Math code, age is concidered & implemented including preterms only 

in the range: 
     % 342 traing(132 preterm and 210 term)data 
     % 85 testing(33 preterm and 52 term)data 
% For class leveling 
     %Preterm=0 
     %Term=1 
clc 
close all 
% calculate time 
tic 
disp('--- start ---') 

  
% preprocessing  
% c1 
feture1 = zeros(342,8); 
for i=1:342 
M=csvread(['C:\Users\Leale\Desktop\tTagetrainingresampled\' num2str(i) 

'.csv']); 
N=M(:,1); 
fs=20; 
l=length(N); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N,5,21); 
y=N-p;  
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% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture1(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture1; 
% c2 
clc 
feture2 = zeros(342,8); 
for i=1:342 
M=csvread(['C:\Users\Leale\Desktop\tTagetrainingresampled\' num2str(i) 

'.csv']); 
N1=M(:,2); 
fs=20; 
l=length(N1); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 

  
%removing baseline 
p=sgolayfilt(N1,5,21); 
y1=N1-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y1); 
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
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stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture2(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture2; 
% c3 
clc 
feture3 = zeros(342,8); 
for i=1:342 
M=csvread(['C:\Users\Leale\Desktop\tTagetrainingresampled\' num2str(i) 

'.csv']); 
N2=M(:,3); 
fs=20; 
l=length(N2); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N2,5,21); 
y2=N2-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y2); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
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% avarage power 
meanpower=mean(emgg);  

  
feture3(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture3; 
feture=feture1.*feture2.*feture3; 
% Training an LDA model  
class=importdata('Taresample.mat'); 
test=importdata('tTagevestclass.mat'); 
LDAmodel=ClassificationDiscriminant.fit(feture, class); 
% Test features extraction by using LDA 
% c1 
clc 
testfv1 = zeros(85,8); 
for i=1:85 
H=csvread(['C:\Users\Leale\Desktop\tTtest\' num2str(i) '.csv']); 
fs=20; 
N3=H(:,1); 
l=length(N3); 
t=(0:l-1)/fs; 
subplot(3,3,1) 
plot(t,N3); 
grid on; 
title('original signal of c1'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N3,5,21); 
y3=N3-p;  
subplot(3,3,2) 
plot(t,y3); 
grid on; 
title('base line removed signal of c1'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y3); 
subplot(3,3,3) 
plot(x3); 
title('filltered signal of c1'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
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freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv1(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
testfv1; 
% c2 
clc 
testfv2 = zeros(85,8); 
for i=1:85 
H=csvread(['C:\Users\Leale\Desktop\tTtest\' num2str(i) '.csv']); 
fs=20; 
N4=H(:,2); 
l=length(N4); 
t=(0:l-1)/fs; 
subplot(3,3,4) 
plot(t,N4); 
grid on; 
title('original signal of c2'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N4,5,21); 
y4=N4-p;  
subplot(3,3,5) 
plot(t,y4); 
grid on; 
title('base line removed signal of c2'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y4); 
subplot(3,3,6) 
plot(x3); 
title('filltered signal of c2'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
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% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv2(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
testfv2; 
% c3 
clc 
testfv3 = zeros(85,8); 
for i=1:85 
H=csvread(['C:\Users\Leale\Desktop\tTtest\' num2str(i) '.csv']); 
fs=20; 
N5=H(:,3); 
l=length(N5); 
t=(0:l-1)/fs; 
subplot(3,3,7) 
plot(t,N5); 
grid on; 
title('original signal of c3'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N5,5,21); 
y5=N5-p;  
subplot(3,3,8) 
plot(t,y5); 
grid on; 
title('base line removed signal of c3'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y5); 
subplot(3,3,9) 
plot(x3); 
title('filltered signal of c3'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
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testfv3(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 

  
end 
testfv3; 
testfv=testfv1.*testfv2.*testfv3; 
%prediction 
y=predict(LDAmodel,testfv); 
comat = confusionmat(test,y); 
comat1=[comat(4) comat(2);comat(1) comat(3)]; 
acc1 = 100*sum(diag(comat1))./sum(comat1(:)); 
fprintf('LDAClassifier:\naccuracy = %.2f%%\n', acc1); 
fprintf('Confusion Matrix:\n'), disp(comat1) 
toc 
accuracy=acc1; 
time=toc; 

A.6 Implementation code for age dependent data set using DT 
% In this Math code, age is concidered & implemented including preterms only 

in the range: 
     % 342 traing(132 preterm and 210 term)data 
     % 85 testing(33 preterm and 52 term)data 
% For class leveling 
     %Preterm=0 
     %Term=1 

  
clc 
close all 
% calculate time 
tic 
disp('--- start ---') 

  
% preprocessing  
% c1 
feture1 = zeros(342,8); 
for i=1:342 
M=csvread(['C:\Users\Leale\Desktop\tTagetrainingresampled\' num2str(i) 

'.csv']); 
N=M(:,1); 
fs=20; 
l=length(N); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N,5,21); 
y=N-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
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% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture1(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture1; 
% c2 
clc 
feture2 = zeros(342,8); 
for i=1:342 
M=csvread(['C:\Users\Leale\Desktop\tTagetrainingresampled\' num2str(i) 

'.csv']); 
N1=M(:,2); 
fs=20; 
l=length(N1); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 

  
%removing baseline 
p=sgolayfilt(N1,5,21); 
y1=N1-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y1); 
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
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MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture2(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture2; 
% c3 
clc 
feture3 = zeros(342,8); 
for i=1:342 
M=csvread(['C:\Users\Leale\Desktop\tTagetrainingresampled\' num2str(i) 

'.csv']); 
N2=M(:,3); 
fs=20; 
l=length(N2); 
t=(0:l-1)/fs; 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N2,5,21); 
y2=N2-p;  

  
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y2); 

  

% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
% avarage power 
meanpower=mean(emgg);  

  
feture3(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
feture3; 
feture=feture1.*feture2.*feture3; 
% Training a DT model  
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class=importdata('Taresample.mat'); 
test=importdata('tTagevestclass.mat'); 
DTModel=ClassificationTree.fit(feture, class); 

  
% Test features extraction by using DT 
% c1 
clc 
testfv1 = zeros(85,8); 
for i=1:85 
H=csvread(['C:\Users\Leale\Desktop\tTtest\' num2str(i) '.csv']); 
fs=20; 
N3=H(:,1); 
l=length(N3); 
t=(0:l-1)/fs; 
subplot(3,3,1) 
plot(t,N3); 
grid on; 
title('original signal of c1'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N3,5,21); 
y3=N3-p;  
subplot(3,3,2) 
plot(t,y3); 
grid on; 
title('base line removed signal of c1'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y3); 
subplot(3,3,3) 
plot(x3); 
title('filltered signal of c1'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv1(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
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end 
testfv1; 
% c2 
clc 
testfv2 = zeros(85,8); 
for i=1:85 
H=csvread(['C:\Users\Leale\Desktop\tTtest\' num2str(i) '.csv']); 
fs=20; 
N4=H(:,2); 
l=length(N4); 
t=(0:l-1)/fs; 
subplot(3,3,4) 
plot(t,N4); 
grid on; 
title('original signal of c2'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N4,5,21); 
y4=N4-p;  
subplot(3,3,5) 
plot(t,y4); 
grid on; 
title('base line removed signal of c2'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y4); 
subplot(3,3,6) 
plot(x3); 
title('filltered signal of c2'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv2(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 
end 
testfv2; 
% c3 
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clc 
testfv3 = zeros(85,8); 
for i=1:85 
H=csvread(['C:\Users\Leale\Desktop\tTtest\' num2str(i) '.csv']); 
fs=20; 
N5=H(:,3); 
l=length(N5); 
t=(0:l-1)/fs; 
subplot(3,3,7) 
plot(t,N5); 
grid on; 
title('original signal of c3'); 
% filtering to suppress the prominent maternal breathing around 0.33 Hz. 
[b,a]=iirnotch(0.033,0.033,1); 
f=filter(b,a,N); 
%removing baseline 
p=sgolayfilt(N5,5,21); 
y5=N5-p;  
subplot(3,3,8) 
plot(t,y5); 
grid on; 
title('base line removed signal of c3'); 
% Band pass filter lp & hp 
[b,a]=butter(4,[0.015,0.15]); 
x3 = filtfilt(b,a,y5); 
subplot(3,3,9) 
plot(x3); 
title('filltered signal of c3'); 

  
% wavelet transform 
[C,L]=wavedec(x3,2,'db20'); 
d2=wrcoef('d',C,L,'db20',2); 
emgg=x3-d2; 

  
% SSI 
ssi=sum(abs(emgg).^2); 
%standard devation 
stdval=std(emgg); 
%RMS value 
RMSEMG=rms(emgg); 
%variance 
VAREMG1=var(emgg); 
% median frequency 
freq = medfreq(emgg); 
%Fmax 
MAXEMG2=max(emgg); 
% Power spectrum  
pwr = sum(emgg.^2)/length(emgg); % in watts 
meanpower=mean(emgg); 
testfv3(i,1:8) = 100*[RMSEMG,VAREMG1,freq,MAXEMG2,pwr,meanpower,stdval,ssi]; 

  
end 
testfv3; 
testfv=testfv1.*testfv2.*testfv3; 
%prediction 
y0=predict(DTModel,testfv); 
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comat = confusionmat(test,y0); 
comat1=[comat(4) comat(2);comat(1) comat(3)]; 
acc1 = 100*sum(diag(comat1))./sum(comat1(:)); 
fprintf('DTClassifier:\naccuracy = %.2f%%\n', acc1); 
fprintf('Confusion Matrix:\n'), disp(comat1) 
toc 
accuracy=acc1; 
time=toc; 

Appendix- C 

 
% math code for oversampling the data 
M=csvread(['C:\Users\Leale\Desktop\Ttrainingresampled\' num2str(i) '.csv']); 
N=M(:,1) 
fs=20; 
l=length(N); 
t=(0:l-1)/fs; 
y = resample(N,3,2) 
t2 = (0:(length(y)-1))*2/(3*fs); 
subplot(2,1,1); 

  
plot(t,N) 
xlabel('Time (s)') 
ylabel('Signal') 
legend('Original') 

  
subplot(2,1,2); 
plot(t2,y, 'r') 
% plot(t2,N,'-',t2,y,'--') 
xlabel('Time (s)') 
ylabel('Signal') 
legend('Resampled') 

 

 

 


