
 
 

Jimma University 

Jimma Institute of Technology 

School of Biomedical Engineering 

Bioinstrumentation Engineering Stream 

 

Detection and Grade Identification of Neonatal Seizure Using Deep Convolutional 

Neural Networks  

By: Biniam Seifu Debelo 

 

 

 

 

A thesis submitted to the School of Graduate Studies of Jimma Institute of 

Technology in partial fulfillment of the requirements for the Degree of Master of 

Science in Biomedical Engineering (Bioinstrumentation Engineering). 

 

 

                                                                                                        April 30, 2022 

Jimma, Ethiopia. 



 

Jimma University 

Jimma Institute of Technology 

School of Biomedical Engineering 

Bioinstrumentation Engineering Stream 

 

Detection and Grade Identification of Neonatal Seizure Using Deep Convolutional 

Neural Networks  

 

By: Biniam Seifu Debelo 

Main advisor: T. Bheema Lingaiah (Ph.D.) 

Co-advisor: Mr. Ahmed Ali (M.Sc.) 

 

A thesis submitted to the School of Graduate Studies of Jimma Institute of 

Technology in partial fulfillment of the requirements for the Degree of Master of 

Science in Biomedical Engineering (Bioinstrumentation Engineering). 

 

 

April 30, 2022 

Jimma, Ethiopia



MSc. Thesis Report 

 

 
I JU, JIT, BME, MSc. In Biomedical Engineering (Biomedical Instrumentation) 

 

Declaration 

I declare this thesis research entitled “Detection and Grade Identification of Neonatal Seizure 

Using Deep Convolutional Neural Networks” is my original work and has not been presented 

for a degree in any other University and I assure it with my signature. 

Mr. Biniam Seifu 
  

4/30/2022 

 Signature  Date 

We the advisors this thesis with title “Detection and Grade Identification of Neonatal Seizure 

Using Deep Convolutional Neural Networks” Confirm that this research is approved as a M.Sc. 

for the student. 

T. Bheema Lingaiah 

(Ph.D.) 
 

4/30/2022 

Main Advisor Signature  Date 

 

Mr. Ahmed Ali (M.Sc.) 
 

4/30/2022 

Co-Advisor Signature  Date 

 

 

 

 

 

 

 

 

 

 



MSc. Thesis Report 

 

 
II JU, JIT, BME, MSc. In Biomedical Engineering (Biomedical Instrumentation) 

Approval sheet 

The undersigned certify that the thesis entitled: “Detection and Grade Identification of Neonatal 

Seizure Using Deep Convolutional Neural Networks” is the work of Biniam Seifu and we here 

by recommend for the acceptance by school of Post Graduate Studies of Jimma University in 

partial fulfillment of the requirements for Degree of Masters of Science in Bioinstrumentation 

Engineering. 

T. Bheema Lingaiah 

(Ph.D.) 
 

4/30/2022 

Main Advisor Signature  Date 

 

Mr. Ahmed Ali (M.Sc.) 
 

4/30/2022 

Co-Advisor Signature  Date 

As a member of Board of Examiners of the MSc. Thesis Open Defense Examination, we certify 

that we have read, evaluated the thesis prepared by Biniam Seifu and examined the candidate. 

We recommended that the thesis could be accepted as fulfilling the thesis requirement for the 

Degree of Master of Science in Bioinstrumentation Engineering.  

Melkamu Hunegnaw 

Asmare (Ph.D) 
 

6/10/2022 

External Examiner  Signature  Date 

Solomon Gebru (M.Sc.) 

  10/10/2022 

Internal Examiner  Signature  Date 

 

____________________  __________________  ______________________ 

Chair name  Signature  Date 

 

 



MSc. Thesis Report 

 

 
III JU, JIT, BME, MSc. In Biomedical Engineering (Biomedical Instrumentation) 

Abstract 

Neonatal seizures are one of the most frequent neurological events in newborn infants which 

reflects a variety of pre or postnatal disorders of central nervous systems and usually indicates 

serious neurological dysfunction. These seizures may have nonexistent or subtle clinical 

manifestations, patterns like oscillatory or spike train start with very low amplitude and gradually 

increase over time. This makes neonatal seizure detection very difficult and inaccurate if it solely 

relies upon clinical observation. Although, it has been shown that the most accurate method for 

their detection or diagnosis is visual interpretation of continuous multi-channel neonatal 

Electroencephalogram (EEG) along with video by an expert clinical neurophysiologist, such 

interpretation is extremely labor intensive, time-consuming, and importantly relies on special 

expertise which is not available continuously around hospital neonatal intensive care units 

(NICUs). 

A reliable and accurate automated neonatal seizure detection and classification using multi-

channel EEG can be a very important supportive tool, particularly for the NICUs. However, 

identifying a core set of features is one of the most challenges in the development of an automated 

neonatal seizure detection. In most of the published studies describing features and seizure 

classifiers, the features were hand-engineered (feature selected manually), which may not be 

optimal and the results claimed from previously proposed automation techniques are less accurate 

and unreliable. Furthermore, the system that can detect neonatal seizure and identification of the 

seizure grade from neonatal EEG dataset has not been previously done.  

In this thesis, the detection and grade identification of neonatal seizure from multi-channel EEG 

signal was proposed using deep convolutional neural network models. The proposed system was 

developed using MATLAB software. The multi-channel neonatal EEG became preprocessed, 

segmented and the two dimensional matrix changed to raw waveform image with defined size prior 

to feeding to the custom CNN and pre-trained Alexnet models. The developed system was capable 

of detecting the neonatal seizure using binary classification as well as grade level identification 

using multiple classification techniques. The test result showed that the Alexnet perform better 

result during binary classification with accuracy of 92.6% and custom CNN performs better result 

on grade level identification (multi-classification) with accuracy of 88.6%.Keywords: Alexnet; 

CNN; Grade; Multi-channel EEG; NICUs; Neonatal Seizure. 



MSc. Thesis Report 

 

 
IV JU, JIT, BME, MSc. In Biomedical Engineering (Biomedical Instrumentation) 

Acknowledgments 

First of all, I would like to thank God for his limitless help throughout my life and for blessing 

me much more than I deserve. Next, I would like to acknowledge my advisors T. Bheema Lingaiah 

(Ph.D.) And Mr. Ahmed Ali (M.Sc.) for their essential guidance on every aspect of the work. 

I would also like to thank my clinical collaborators Dr. Tegegn Mengistu (Neurologist working at 

WUNEMMCSH), Dr. Eseyas (neonatologist working at WUNEMMCSH) and Dr. Adene Desta 

(Surgeon and chief Clinical Director of WUNEMMCSH) for their unlimited assistance and 

support throughout the research period. I would also want to give my great gratitude to Mr. 

Solomon Gebru (M.Sc.), Ms. Elbetel Taye (M.Sc.) and Mr. Bruk Ayele (M.Sc.) for their advice 

and assistance during the proposal preparation for this research. 

Finally, I would like to express my deepest gratefulness to my families and friends who 

supported me in every direction of my life and for their encouragement. 

 

 

 

 

 

 

 

 

 

 

 

  



MSc. Thesis Report 

 

 
V JU, JIT, BME, MSc. In Biomedical Engineering (Biomedical Instrumentation) 

Preface 

In this thesis, the diagnosis of neonatal seizure from EEG signal using deep convolutional neural 

network model using custom CNN which is trained from scratch and the pre-trained Alexnet 

models were proposed. The objectives of the models were detection of neonatal seizure and 

classification of grade levels for the resulting seizures based on binary and multi-class 

classification methods respectively. The main activities done in this thesis involves collecting 

neonatal EEG data, preprocessing EEG, splitting EEG dataset, forming equivalent temporal EEG 

waveform image with defined size, and training using custom CNN and pre-trained Alexnet 

models. The study has a positive impact on clinical practice of professional’s decisions accuracy 

and efficiency of EEG based diagnosis and treatment systems in neonatal intensive care unit. 

The first chapter of this thesis describes the background of the study, clinical significance, existing 

solutions and their gaps, problem statement, objectives of the study and the scope of these work. 

The second chapter focuses on related works (literature reviews). The third chapter describes the 

method proposed including the procedures followed, techniques and materials used. Results and 

discussion are discussed in chapter four. The fifth or last chapter concludes the main findings of 

this thesis. A sample Matlab source code and clinical information of neonates are provided in the 

appendices. 
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CHAPTER ONE 

1. Introduction  

1.1. Background of the Study 

Neonatal seizures are common emergency condition in intensive care unit, occurring in about 1-7 

per 1,000 neonates born at full-term or FT (37 to 42 weeks gestation), more common in pre-term 

or PT neonates (less than 37 weeks gestation) about 57-132 per 1000 [1]. The children brought to 

hospitals in resource poor nations frequently have acute seizures. In Sub-Saharan Africa, however, 

there is limited information on prevalence, causes, and outcomes of newborn seizures. The lowest 

incidence, aetiology, and immediate outcome of seizures in neonates hospitalized to a Kenyan 

rural district hospital were determined. Seizure were documented in 142/1572 (9%) of neonatal 

admissions. The incidence was 39.5 per 1000 live births (95 percent confidence interval (CI) 26.4 

– 56.7) [2]. One hospital based study in Ethiopia found a rate of 13.6% per 1000 live births [3].  

They are epileptic fits occurring from birth to the end of the neonatal period, the incidence 

increases as gestational age (GA) and birth weight of the infant decrease [4]. The neonatal period 

is the most vulnerable of all periods of life for developing seizures particularly in the first 1–2 days 

to the first weeks from birth. They may be short-lived events lasting for a few days only. However, 

they often signify serious malfunction or damage to the immature brain and constitute a 

neurological emergency demanding urgent diagnosis and management. 

Based on clinical and experimental data, the longer the duration of seizure, the greater the difficulty 

in controlling the seizure. Furthermore, seizures can have immediate and long term serious 

consequences on the immature and developing brain [5]. Irrespective of immediate actions to 

suppress the neonatal seizure with antiepileptic drugs (AEDs), the risk for subsequent neuro-

developmental deficits and early death is substantial.  

Newborn infants with seizures are at risk for death, whereas survivors are at risk for neurological 

impairment, developmental delay, later epilepsy and cognitive impairment [6]. Therefore, it is 

important to conduct early diagnosis using simple, low cost, accessible, and automated methods 

to determine the optimal treatment regimens for the management of neonatal seizures.  
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1.2. Characteristics of Neonatal Seizure 

Neonatal seizures as with any other type of seizure are paroxysmal, repetitive and stereotypical 

events. The Neonatal seizures can be difficult to diagnose because the seizure may be short and 

difficult to distinguish. The duration of neonatal seizures is usually brief (10 s to 1-2 min), the 

voltage must be larger than 2µV, frequency between 0.1Hz and 12Hz and repetitive with a median 

of 8 min in between each seizure [7]. In addition, symptoms of neonatal seizures may mimic 

normal movements and behaviors seen in healthy babies. The seizures often are fragmentary 

because the infant's brain is still developing, thus unable to make the coordinated responses seen 

in a typical generalized seizures. 

Neonatal seizures differ from those of older children and adults. During this stage, the neonatal 

brain is immature. Therefore, neonatal seizures have unique pathophysiology and electrographic 

findings resulting in clinical manifestations that can be different when compared to older age 

groups [8]. The most frequent neonatal seizures described as subtle occurrence with probability 

51%, thus the clinical manifestations are frequently overlooked. Subtle seizures are far more 

common than other types of neonatal seizures, they imitate normal behaviors and reactions [9].  

Some specific characteristics of neonatal seizure are:- 

 Ocular movements, which range from random and roving eye movements to sustain 

conjugate tonic deviation with or without jerking. Eyelid blinking or fluttering, eyes rolling 

up, eye opening, fixation of a gaze or nystagmus may occur alone or with other ictal 

manifestations. 

 Oral-buccal-lingual movements (sucking, smacking, chewing and tongue protrusions). 

 Progression movements (rowing, swimming, pedaling, bicycling, thrashing or struggling 

movements). 

 Complex purposeless movements (sudden arousal with episodic limb hyperactivity and 

crying). 

 The baby's facial expression, breathing, and heart rate may change. 

  Impairment of responsiveness (which is critical in defining many types of seizures) is 

difficult to assess in newborns. 
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1.3. Main Types of Disorder which Causes Neonatal Seizures 

The main cause of neonatal seizure are described in the table 1 below. 

Table 1: Main types of disorders which causes neonatal seizures. 

Type of disorders   Causes  

Hypoxia-ischaemia [10].  Prenatal (toxaemia, fetal distress, abruption placentae, 

cord compression) and (iatrogenic, maternal 

haemorrhage, fetal distress). 

 Postnatal (cardio-respiratory causes such as hyaline 

membrane disease, congenital heart disease, 

pulmonary hypertension). 

Haemorrhage and 

intracerebral infarction [10]. 

 Intraventricular and periventricular (mainly preterm 

neonates). 

 Intracerebral (spontaneous, traumatic), Subarachnoid, 

Subdural haematoma, Cerebral artery and vein 

infarction. 

Trauma [10].  Intracranial haemorrhage, cortical vein thrombosis 

Infections [10].  Encephalitis, meningitis, brain abscess 

 Intrauterine (rubella, toxoplasmosis, syphilis) 

Metabolic [10].  Hypoglycemia (glucose levels <20 mg/d in preterm 

and, <30 mg/d in full-term babies 

 Neonates of diabetic and toxemic mothers, Pancreatic 

disease, Glucagon storage disease (idiopathic) 

Malformations of cerebral 

development [10]. 

 All disorders of neuronal induction, segmentation, 

migration, myelination and synaptogenesis  

Neuro cutaneous syndromes 

[10]. 

 Tuberous sclerosis, incontinentia pigmenti 
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Drug withdrawal and toxic 

[10]. 

 Withdrawal from narcotic analgesics, sedative- 

hypnotics, and alcohol; heroin and methadone-

addicted mothers; barbiturates. 

 

1.4. Neonatal Seizure Diagnosis  

Major diagnostic systems include:- 

I.  Differential diagnosis: 

Differential diagnosis for neonatal seizure includes the followings: 

 During the neonatal period any unusual repetitive or stereotypic movement 

may represent a seizure. 

 Alteration in automatic functions such as blood pressure or heart rate may 

represent seizure activity. 

 Distinguishing seizure from jitteriness and benign neonatal sleep myoclonus.   

II. Assessment method: 

Assessment method for neonatal seizure diagnosis involves: 

 Review family history of seizures, maternal diabetes, maternal drug use, 

infections, and evidence of fetal destress in labour and history of birth trauma 

to provide vital clues to the etiology of the seizures. 

 Perform physical and neurological examinations. 

III.  Pathology test: 

Pathology test for neonatal seizure diagnosis include: 

 Blood glucose level (BGL). 

 Serum electrolytes, calcium and magnesium. 

 Full blood examination (FBE), Blood cultures and arterial blood gas (ABG). 

IV. Neuroimaging:  

Appropriate neuroimaging used for neonatal seizure diagnosis includes the following: 

 Cranial ultrasound to exclude intracranial haemorrhage. 

 MRI (or CT if MRI is unavailable) is required if there are seizures following 

traumatic delivery, particularly if there is significant head trauma or if the 

seizure type are clonic [11].  
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 Magnetoencephalography (MEG) or nuclear magnetic resonance spectroscopy 

(NMR or MRS). 

V. Neurophysiology: 

 If seizures are difficult to control, and/or requires the use of multiple anticonvulsants, an 

EEG or electrocorticography (ECoG) device assist to determine the cause of seizure as well 

as guiding treatment. 

1.5. Introduction to Electroencephalography 

1.5.1. Definition of EEG 

Electroencephalography (EEG) is an electrophysiological monitoring method to record electrical 

activity of the brain. It is typically noninvasive, with the electrodes placed along the scalp. EEG 

measures voltage fluctuations resulting from ionic current within the neurons of the brain. 

Clinically, EEG refers to the recording of the brain's spontaneous electrical activity over a period 

of time, as recorded from multiple electrodes placed on the scalp [12]. 

EEG is used in clinical circumstances to determine changes in brain activity that might be useful 

in diagnosing brain disorders, especially epilepsy or another seizure disorder. An EEG might also 

be helpful for diagnosing or treating the disorders such as brain tumor, brain damage from head 

injury, brain dysfunction that can have a variety of causes (encephalopathy), inflammation of the 

brain (encephalitis), stroke, and sleep disorders. All frequency bands of EEG signal are described 

in the table 2 below. 

1.5.2. Comparison of EEG bands  

Table 2: Comparison of EEG frequency bands [13]. 

Band  Frequency(Hz) Location 

Delta  <4 Frontally in adults, posteriorly in children; high-amplitude waves 

Theta  4-7 Found in locations not related to task at hand 

Alpha  8-15 Posterior regions of head, both sides, higher in amplitude on 

dominant side. Central sites (c3-c4) at rest 

Beta  16-31 Both sides, symmetrical distribution, most evident frontally; low-

amplitude waves 
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Gamma  >32 Somatosensory cortex 

 

Figure 1: All frequency bands of EEG signal [14]. 

1.5.3. Characteristics of neonatal EEG 

One of the most application areas of EEG are neonatal intensive care unit (NICU) through visual 

interpretation of long-duration measurements EEG signal by specialized expertise. Neonatal EEG 

is an objective test to measure the functional integrity of the immature neonatal brain. The 

indications of EEG in neonates in general includes assessment of neonatal seizure caused by 

different types of disorders listed on section 1.3.  

There are some prominent differences in EEG recording methods in the neonate as compared to 

adults. These differences are primarily because neonates have a smaller head size and there is a 

relative lack of EEG activity noted in the extreme front polar head regions, the patient's inability 

to cooperate, and fragile nature make electrode application and running these test difficult. The 

sensitivity are 70µV/mm and filter settings for the various channels are 0.1 to 1Hz low frequency 

filter (LFF) and 70Hz high frequency filter (HFF) [15].  

Some unique considerations in the technical aspects of performing a neonatal EEG are discussed 

in the following section: 

1)  Equipment: 

There are some important difference in EEG recording methods in the neonate as compared to 

adults. These differences are primarily because neonates have a smaller head size and also 

there is a proportional lack of EEG activity noted in the extreme front polar head regions. Due 
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to these differences, the international 10-20 system of electrode placement has done 

modification for neonatal EEG recordings.  

 

Figure 2: Electrode location of international 10-20 system for EEG [16]. 

2) Electrodes and Montages: The standard neonatal montage includes at least eight scalp 

electrodes (FP2, C4, T4, O2, FP1, C3, and O1), EKG, and respiration efforts. Additional three 

electrodes (Fz, Cz, Pz) may be included to improve coverage. Electrode location of 

international 10-20 system for EEG is described in the figure 2 above.  

3) Recording time: Neonatal EEG should be recorded for a longer period than the routine adult 

pattern. It is more suitable if the neonate cycles through wakefulness, active sleep, and quiet 

sleep during the tracing. Since particularly a neonate takes 50 to 60 minutes to cycle through 

all three stages, a neonatal EEG should be run for at least 60 minutes. If possible, the EEG 

should be scheduled near the feeding time of the neonate [15]. Sample Multi-channel EEG 

electrode placed to detect neonatal seizure shown in the figure 3 below. 
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Figure 3: Multi-channel EEG electrode placed to detect neonatal seizure [17]. 

1.5.4. Advantage of using EEG over other diagnostic techniques  

Despite the relatively poor spatial sensitivity of EEG, it possesses multiple advantages over other 

techniques: 

 Hardware costs are significantly lower than those of most other techniques [18]. 

 EEG has very high temporal resolution, on the order of milliseconds rather than seconds. 

This high temporal resolution allows for neural dynamics analyses to be made on 

neurologically-relevant timescales, e.g. calculation of high-fidelity signal analysis methods 

[19]. 

 Extremely non-invasive, unlike electrocorticography, which actually requires electrodes to 

be placed on the surface of the brain. 

 EEG does not involve exposure to radio ligands. 

 EEG does not involve exposure to high-intensity (>1 tesla) magnetic fields, as in some of 

the other techniques, especially MRI and MRS (nuclear magnetic resonance spectroscopy). 

 EEG is relatively tolerant of subject movement, unlike most other neuroimaging 

techniques. There even exist methods for minimizing, and even eliminating movement 

artifacts in EEG data [20]. 

 EEG is a powerful tool for tracking brain changes during different phases of life. 
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1.6. Introduction to EEG Data Analysis 

1.6.1. Machine Learning Based EEG Analysis 

The machine learning is a subfield of artificial intelligence (AI). The goal of machine learning 

generally is to understand the structure of data and fit that data in to models that can be understood 

and utilized by people. It used to automatically solve classification problems by computing and 

encoding hand crafted features of a data (shape, texture, color, etc.) [21]. The Figure 4 shows the 

schematic representation of terms of AI, machine learning and deep learning techniques. 

 

 

 

 

 

 

 

 

 

 

1.6.2. Deep Learning Based EEG Analysis 

Deep learning is a branch of machine learning which has ability to learn completely based on 

artificial neural networks with many layers.  As neural networks deep learning imitates the way 

human brain gain certain type of knowledge.  

Neural networks are layers of nodes, similarly the human brain also made up of neurons. Nodes 

within individual layers are connected to adjacent layers. The network is called deeper based on 

the number of layers it has. A single neuron in the human brains receives thousands of signals 

from other neurons. In an artificial neural network, signals travel between nodes and assign 

corresponding weights.  A signal with heavier weight node will exert more effect on the next layer 

 Deep learning 

Artificial intelligence 

Machine learning 

Neural network 

Figure 4: Schematic representation of terms of AI, machine learning and deep 

learning techniques 
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of nodes. The final layers compiles the weighted input to produce the output. Finally, output layer 

is used to classify the image and obtain the output class label. 

Deep learning techniques include convolutional neural networks (CNN) which are highly 

applicable in medical image classification problems.  Figure 5: shows schematics of deep learning 

based EEG processing pipeline and related terminology. 

 

Figure 5: Deep learning based EEG processing pipeline and related terminology [22] 

1.6.2.1.Convolutional neural networks which train from scratch 

Convolutional neural networks are usual neural networks that assume that the input to the network 

are image. They are used to analyze and classify images. Cluster images by similarity and perform 

object recognition by frame. The input images are made up of pixels, each pixel is represented by 

a number between 0 and 255. Therefore the image has digital representation which is how 

computers can understand and work with images. There are four operations in CNN image 

detection or classification such as, convolution, activation map, max pooling and fully connected 

layer. Example of two dimensional convolutional neural network architecture are described in the 

figure 6 below. 
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Figure 6: Two dimensional convolutional neural network architecture 

1.6.2.2.Transfer Learning Approach 

Transfer learning is generally refers to a process in which model trained on one problem is used in 

the same way on the second related problem. In deep learning, transfer learning is a technique 

where by a neural network model is first trained on a certain task similar to the problem that is 

being solved. One more layers from trained model are then used in new model trained on the 

problem of interest.  

The weights in layer used again may be used as the starting point for the training process and 

adapted in response to the new problem. These usage behave toward transfer learning as a type of 

weight initialization scheme. Transfer learning has advantage of decreasing the training time for a 

deep neural network model and can result in lower generalization error.  

Currently, there are different pre-trained models which can be used for image classification, 

prediction, feature extraction and fine-tuning (with weights trained on ImageNet). Example, 

Alexnet, Squeeznet, Resnet, and etc [23].  . General description on transfer learning approaches 

are depicted in the figure 7 below.  

10-seconds of EEG 
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Figure 7: General description on transfer learning approaches [24]. 

1.6.2.3.Hyper-Parameters and Parameters of deep Learning Models 

When training a neural network, there are two key things that need to be considered. These are 

Hyper-parameters and parameters. Hyper-parameters are parameters whose values control the 

learning process and determine the value of model parameters that a learning algorithm end up 

learning. Hyper-parameters are said to be external to the model because the model cannot change 

its values during learning or training. Some common hyper-parameters are: train/test split ratio, 

activation function, cost or loss function, number of hidden layer, the drop-out rate, number of 

iteration, number of clusters, kernel or filter size and batch size. 

Parameters on the other hand are internal to the model. Because, they are learned purely from the 

data during training as the algorithm used tries to learn the mapping between the input features 

and the labels/targets. Some examples of parameters are: the coefficients (or weights) of linear and 

logistic regression models, weights and biases of a neural networks and the clusters and centroids 

in clustering. 

1.7. Statement of the Problem 

Neonatal seizure are one of the most frequent neurological events in newborn infants which reflects 

a variety of pre or postnatal disorders of central nervous systems and usually indicates serious 

neurological dysfunction. These may range from hypoxic ischemic encephalopathy, stroke, 

epilepsy, meningitis, benign, haemorrhage and intracerebral infarction, potentially worsen brain 

injury to sever prolonged of life threatening disorders. Recognition of seizures is vital because they 

often show characteristic sign of an underlying neurological condition, false treatments for non-
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seizure events exposes infants to unnecessary harmful drugs. On the other hand early detection 

allow medical practitioners to begin treatment promptly, potentially preventing further injuries. 

The diagnosis and interpretation of neonatal seizures is challenging for clinicians because, unlike 

the epileptic seizures observed in older children and adults majority of neonatal seizures are acute 

symptomatic events, have nonexistent or subtle clinical manifestations, and the patterns 

(oscillatory or spike) train start with a very low amplitude and gradually increase over time. These 

seizures may have difficult to analyze precisely clinical manifestations and hard to distinguish 

from the normal and clinical signs.  

Despite the availability of EEG in some neonatal intensive care units (NICUs) and the growth of 

neonatal neuro critical care systems and accurate diagnosis of seizures and prompt treatment 

remain a challenge. One of the other seizure burden is a measure of the percentage of time spent 

or duration in a seizure state. Common available method for detection and visual interpretation of 

continuous multichannel EEG (cEEG) and amplitude integrated EEG (aEEG) along with video by 

an expert clinical neurophysiologist. However, such interpretation was extremely labor-intensive, 

time-consuming, expensive, and importantly needs special expertise which is not available around 

the clock in many hospital neonatal intensive care units (NICUs) as a worldwide, especially in 

developing countries.  

A practical current attempts for the current progress in multi-channel conventional EEG based 

neonatal seizure diagnosis or newborn brain monitoring in general has been automated by machine 

learning to support clinical diagnostic and treatment methods. Although there have been many 

attempts to develop neonatal seizure detection algorithms, the outputs of these methods have not 

achieved the benchmark of inter observer agreement between human experts. 

1.8. Objectives of the Study 

1.8.1. General Objectives 

 To develop a model for detection and grade level classification of neonatal seizure from 

continuous multi-channel EEG signals using deep convolutional neural network 

techniques.  

1.8.2. Specific Objectives  

 To collect, pre-process and window raw neonatal multi-channel EEG  signals  
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 To classify the preprocessed signal as neonatal seizure or non-seizure using deep 

convolutional neural networks.  

 To classify the grade of neonatal seizure using deep convolutional neural networks. 

 To measure specific characteristics and compare accuracy of different neural network 

models 

1.9. Motivation  

There are several facts that motivates the interest in automatic clinical EEG for the diagnosis of 

neonatal seizure these are: 

 The development of automated system for screening neonatal seizure could support 

clinicians by reducing the workload and allows for earlier detection. 

 Interpretation of neonatal EEG requires years of training to assess abnormality in clinical 

EEG recordings.  

 The clinically, expert interpretation of continuous EEG without computer aid is frequently 

a time consuming, exhausting process and erroneous [25]. 

1.10. Significance of the Study 

Some of the importance of using automatic detection technique for neonatal seizure diagnosis are 

but, not limited to: 

 Reduce diagnosis time. 

 Detect neonatal seizure automatically. 

 Prevent misdiagnosis due to over fatigue of neurologist. 

 Enable clinical practice of professional’s decisions accuracy and efficiency of EEG based 

diagnosis and treatment systems in neonatal intensive care unit. 

 The study will provide information and recommendations for future researches. 
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1.11. Scope of the Research 

The research aim is to develop neonatal seizure diagnosis system from multi-channel EEG with at 

least 19 scalp electrodes signals using deep learning algorithm. The research started by gathering 

relevant data from different sources. The data will be acquired from local hospitals neonatal 

intensive care units (NICUs) by trained professionals during normal clinical procedures under 

supervision of neurologists, and more data collected from publicly available dataset which was 

annotated by international experts. The gathered neonatal EEG recordings are used as input to train 

and test the proposed deep neural network.  
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CHAPTER TWO 

2. Related Works  

2.1. Introduction  

Unlike in older children and adults, seizure symptoms are not sometimes clinically visible in babies 

or neonates which makes them difficult to detect. The detection of seizures in newborn babies are 

a clinically important task which has motivated a large body of work in the area of developing and 

testing automated seizure detection algorithms to support clinical decision making. Deferent 

researchers had done development of computer based automated seizure detection algorithms [26] 

[27] [28]. Although these automated seizure detection algorithms can raise an alarm system and 

provide objective decision support to clinicians aiding the prompt detection and treatment of 

seizures, the performance was determined by the quality of the chosen features and finding 

appropriate features was a big challenge, which was typically performed by trial and error, signal 

stationarity assumed over small intervals. 

Early automated seizure detection routines relied on heuristic rules and thresholds. W. 

Deburchgraeve et al. [29] Developed heuristic model that mimics a human EEG reader, the 

complete algorithm was tested on multi-channel EEG recordings of 21 patients with and 5 patients 

without electrographic seizures, totaling 217 h of EEG. Sensitivity of the combined algorithms 

was found to be 88%, Positive Predictive Value (PPV) 75% and the false positive rate 0.66 per 

hour. Even if the algorithm significantly improves neonatal seizure detection and monitoring 

comparing with previously available systems, there are also some limitations, output of the 

heuristic algorithm is not continuous, due sensitivity to spikes or artifact related high amplitude 

signals the false alarm rate is high. The performance of the trainable classifiers will be improved 

by adding more training datasets, while the heuristic algorithm are untrainable methods or will not 

be improved easily. 

2.1.1. Related works for Neonatal Seizure Detection Using Machine Learning Techniques 

Several feature based study has done to detect and classify neonatal seizures [30] [31] [32], the 

features are usually extracted from the time, frequency and information theory domains to provide 

energy, frequency, temporal and structural descriptors of the neonatal EEG, giving an informative 

characterization of each segment of EEG. Most algorithms used the same feature set including 28 
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features from the frequency domain, 23 from the time domain, and four from information theory 

(in total 55 features). However all the algorithms relies on pre-defined features and, these features 

needs strong and precise labels in each channels during the training stage that means seizure events 

annotated both time and space and some weak label signals could be missing. Feature based 

algorithms has large computational load or time and chaos theory on time-frequency analysis. Due 

to neonatal seizure has subtle characteristics, weak amplitude and inaccessible signals the feature 

based system is ineffective. Slow processing time, challenging for automatic or real time 

applications.  

Temko et al. [33] Presents a multi-channel patient-independent neonatal seizure detection system 

based on the Support Vector Machine (SVM) classifier, a machine learning algorithm (SVM) is 

used as a classifier to discriminate between seizure and non-seizure EEG epochs. In total, 55 

features are extracted and the resulting system was validated on a large clinical dataset of 267 h of 

EEG data from 17 full-term newborns with seizures. The performance of the system using event-

based metrics was reported. The system was able to achieve an average detection rate of 89% with 

one false seizure detection per hour. Although the proposed system has showed the best up-to-date 

performance of a neonatal seizure detection system, allow for its practical application in neonatal 

intensive care units there some gaps found such as the algorithms are dependent on previously 

defined feature, needs strong and precise labeling of experts in each channels. The number of 

subject in which study has done was small and the number of channel of EEG electrode used was 

not enough because as a channel increase the information recorded also increases, thus the 

characteristics of seizure information could lost as a number of channel minimized. The algorithm 

relies on recording long hour duration of signals which is also gold standard for resource limited 

countries. 

2.1.2. Related Works for Neonatal Seizure Detection Using Deep CNN Techniques 

Progress in deep learning based research has been utilized in the development of new EEG 

classification algorithms that do not require a feature extraction stage. These deep learning models 

can take temporal or spectral EEG as input and using back propagation, they can learn both feature 

extraction and segment classification routines in one end-to-end optimization procedure. Deep 

learning algorithms have been applied to pediatric and adult EEG for a variety of different tasks, 

such as brain computer interfaces, seizure detection and feature extractions [34] [35] [36]. 
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O’Shea et al. [37]. Proposed a single-channel based CNN for neonatal seizure detection. In this 

method, the network uses 8 s of a single-channel EEG signal as input to the CNN. Then, a post-

processor was applied on the outputs of the CNN. However measurement period 8 s are not enough 

for extracting evolutionary features of EEG, which have been shown to be important EEG 

characteristics for discrimination of brief-lasting seizures (<10 s) from short artifacts. Other gaps 

found in this study was using single channel EEG, due to some basic information regarding to 

diagnosis treatment  neonatal seizure cases  missing comparing with multi-channel EEG recorded 

data.  

A.H. Ansari et al. [38]. Also proposed Neonatal Seizure Detection Using Deep Convolutional 

Neural Networks, The main goal of the present paper was using deep Convolutional neural 

networks (CNNs) and random forest to automatically optimize feature selection and classification. 

The input of the proposed classifier was raw multi-channel EEG and the output was the class label: 

seizure or non-seizure. This resulted false alarm rate of 0.9 per hour and seizure detection rate of 

77% using a test set of EEG recordings of 22 neonates that also included dubious seizures. 

Although proposed classifier takes the raw multi-channel EEG data and automatically optimizes 

the features and classifier at the same time, there is still needs more works to be done due to low 

performance due to  small number of datasets and small number of subjects, which decreases the 

performances of neural networks, the scored or annotated seizures used for training and testing 

were labeled by only one expert clinical neurophysiologist, The data used in this paper were 

recorded from one center only. The system don’t have a more generalizable comparison, because 

the methods did not tested on an extensive and multi-rated, multi-center database.  

Gordon Lightbody et al. [39] Proposed Neonatal seizure detection from raw multi-channel EEG 

using a fully convolutional neural networks. This architecture was designed to detect seizure 

events from raw electroencephalogram (EEG) signals of 834h in duration using only convolutional 

layers in order to process the time domain signal and was designed to exploit the large amount of 

weakly labelled data in the training stage. The developed system had achieved a 56% relative 

improvement with respect to a feature-based algorithms, reaching an AUC of 98.5%; this also 

compares favorably both in terms of performance and run-time. Although, presented work was a 

novel way of developing a neonatal seizure detection algorithm through end-to-end optimization 

of the feature extraction and classification, the convolutional layer applied was too shallow to get 



MSc. Thesis Report 

 

 

19 JU, JIT, BME, MSc. In Biomedical Engineering (Biomedical Instrumentation) 

various features from limited datasets, the number of subject the study had done was small, the 

method did not tested on an extensive and multi-rated, multi-center database. The neonatal seizure 

grade level classification was not done in this work.  

2.2. Major Gaps on the Previous Works 

Major gaps in the previous researches are summarized as follows: 

 Machine learning algorithms are dependent on only manually defined features, and has 

large computational load and chaos theory on time-frequency analysis. 

 The scored seizures used for training and testing were labeled by less than two expert 

clinical neurophysiologists.  

 The number of subject the study had done was small. 

 Pre-term neonates are excluded from most of the studies and the grade level identification 

study was not done in neonatal level. 
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CHAPTER THREE 

3. Materials and Methodology 

3.1. Research Methods  

3.1.1. Introduction  

This chapter presents the proposed scheme for diagnosis of neonatal seizure from multichannel 

EEG signals using deep learning techniques. In this work, data has been collected from publicly 

available online datasets called Zenodo. It was taken from 79 term and some preterm neonates 

admitted to the NICU at the Helsinki University Hospital, Finland [40], additionally some local 

datasets were collected from Wachamo University Collage of Health Science Nigist Eleni 

Mohamed Memorial Compressive Specialized Hospital Department of Neurology. The 

preprocessed EEG waveforms used to train and test the proposed deep neural network models. The 

overall methodology of the system is summarized in Figure 8.  

 

 

     

  

  

 

  

  

    

 

 

Figure 8: The overall methodology of the proposed system 
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3.1.2. Dataset 

The source of multi-channel EEG signal datasets used in this study were: 

A. Publicly available online datasets. 

This dataset contains 19-channel recorded using the 10-20 placement system EEG which was 

recorded from 79 neonates admitted to the NICU at the Helsinki University Hospital. All the 

recordings were performed between 2010 and 2014, Finland. The median recording duration was 

74 min (IQR: 64 to 96min), signals are sampled at 256Hz [40].  

The presence of seizures in the EEGs was annotated independently by three international experts. 

This event was defined as a seizure if it was over 10 s in duration. Initial settings were a paper 

speed of 30mm/sec (~12s per screen), a sensitivity of 100μV/cm with frequency cut-offs of 0.5Hz 

(low) and 70Hz (high), but experts were permitted to alter these settings for each recording to 

achieve the best possible performance. An average of 994 seizures were annotated per expert in 

the dataset; 57 neonates had seizures and 22 were seizure free, by consensus. A summary of the 

annotations of three reviewers is described table 3 below. 

Table 3: A summary of the annotations of three reviewers. 

 A (n = 46) B (n = 45) C (n = 53) 

Seizure Burden (mins) 10.2 (4.3-23.7) 15.0 (6.6-30.3) 8.6 (2.1-22.5) 

Mean Seizure duration (s) 98 (48-246) 103 (67-288) 82 (38-175) 

Seizures 5 (2-12) 6 (2-13) 6 (3–11) 

 

A bipolar montage was generated for annotation according to the standard longitudinal bipolar 

layout (a.k.a. ‘double banana’): Fp2-F4, F4-C4, C4-P4, P4-O2, Fp1-F3, F3-C3, C3-P3, P3-O1, 

Fp2-F8, F8-T4, T4-T6, T6-O2, Fp1-F7, F7-T3, T3-T5, T5-O1, Fz-Cz and Cz-Pz [40]. (See Fig. 

2).  
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The clinical data, extracted from patient reports, are presented in a spreadsheet (CSV file format) 

which are attached on appendix 2. Furthermore, the Annotations were stored in a Matlab MAT 

format and CSV file format. The MAT file contains a cell array with 79 elements, where each 

element corresponds to a study neonates ID number. Each element of the cell array was an M by 

N array, where M is the number of experts (M = 3), N was the duration of the annotation in seconds 

(variable) and each second described by 1 (denoting seizure) or 0 (denoting non-seizure). There 

are three CSV files (A, B, C), where each file contains the annotations of an expert. The overall 

structure of database shown in the figure 9. 

 

 

 

 

 

 

 

  

 

 

 

 

The dataset can be used as a reference set of neonatal seizures, in studies of inter-observer 

agreement and for the development of automated methods of seizure detection and other EEG 

analyses [40]. 

B. Locally acquired data. 

The Data acquired using EEG machine with brand EEG-1200 which is 10-20 electrode 

based arrangement, provides up to 256 channels, and sampling rate 256 Hz. The data was 

Figure 9: The overall structure of public database 
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taken from Wachamo University School of health science Nigist Eleni Mohamed Memorial 

Compressive Specialized hospital’s neonatal intensive care units (NICU) by trained 

professionals during normal clinical procedures. The conformation letter of data and 

corresponding clinical information collection for this research work is attached on 

appendix 4.  

Comparison between public and locally collected datasets discussed in table 4 below. 

Table 4: The comparison between public and local datasets 

 Public dataset (Zenodo) Local collected dataset 

Sampling frequency  256Hz 256Hz 

Average recorded time  74min 40min 

Number of electrode  19 19 

Electrode placement system 10-20 10-20 

Number of subject  79 17 

 

3.1.3. Preprocessing  

In general, preprocessing is a series of actions of transforming raw data in to a format that is more 

appropriate for further analysis and interpretable for user. In case of EEG signals, preprocessing 

usually refers to removing noise or unwanted portion of signals from whole data to get closer to 

the true neural signals.  

There are reasons why preprocessing is necessary for EEG data these are: 

 The signals that are picked up from the scalp are not necessarily an accurate depiction of 

the signals originating from the brain, as spatial information of the signal gets lost. 

 EEG signals tends to contain a lot of noise which cannot discovered weaker EEG signals 

and artifacts such as blinking or muscle movement can contaminate the data and distort the 

pictures. 

 Furthermore, separate the relevant neural signals from random neural activities that occurs 

during EEG recordings.  
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In this work the main preprocessing steps involves band pass filtering, down-sampling, removing 

bad signals, removing bad or unwanted channels and re-referencing the electrodes.  

The overall preprocessing steps shown in figure 10 below. The pre preprocessing was done using 

MATLAB library or toolbox called EEGLAB.  

 

 

 

 

 

 

 

Figure 10: Overall preprocessing steps 

 

EEGLAB is an interactive MATLAB toolbox distributed under the free (Berkeley Software 

Distribution) BSD license for processing continuous data in about 20 binary file formats from EEG 

and other electrophysiological signals. Together with all the basic processing tools, EEGLAB 

implements ICA (Independent Component Analysis), time-frequency analysis, artifact rejection 

and several modes of data visualization of singe trial or multichannel data. It also incorporates 

extensive tutorial and help windows, plus a command history function that facilitates user 

transition from GUI based data exploration to building and running or custom data analysis scripts 

[41]. The sample EEGLAB window is shown in the figure 11 below. 
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Figure 11: EEGLAB toolbox window 

3.1.4. Down-sampling  

It is a technique to reduce the number of samples used, while performing down-sampling hopefully 

maintaining the information that is needed. To make clear description the EEG system with 19 

channels, and a sampling rate of 256 samples per second (256 Hz). If we are representing each 

sample as a 32-bit float, this is (19 * 256 * 32) = 524,288 bits per second, or 530kb/sec of data.  

Let as consider Fx be the input function and Fy be the output function, Fx is greater than Fy 

because, Fy is the down-sampled version Fx by the rate of D.  

     

Fx > Fy, Fy = Fx/D 

 

D Fx Fy 

Figure 12: Down-sampling relation between input and output variables 
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Due to neonatal seizure characterized by very low amplitude (>100μV/cm) as well as low 

frequency (0.1 to 12 Hz) compared with adults and in order to decrease the complexity of the CNN 

network 256 Hz multichannel EEG signal became down-sampled to 32 Hz [42] [43].  

3.1.5. Filtering  

When looking at the frequencies of digital signal, such as EEG or other signals, a popular thing to 

do is to filter certain frequencies, such that either some frequencies are removed or possibly some 

frequencies remain. There are number of type of filters applied in this work such as: 

 Low pass filter: Frequencies below a certain value are kept (they pass), while high 

frequencies are removed. This is called high cut filter. 

 High pass filter (low cut): Only high frequencies remain, and only those below a certain 

value are removed.  

 Band pass filter: Combining the two, this keeps only frequencies between a lower and 

bound and upper bound. In this proposed work the multi-channel EEG signal is band-pass 

filtered between 0.1 Hz and 15 Hz. Because, the neonatal seizure appears at frequency 

range from 0.1Hz to 12Hz [42]. 

3.1.6. Re-referencing 

In EEG signal, the voltage for each electrode is recorded relative to the other electrodes. The 

reference, which can be one or a combination of electrodes, is what voltage will be relative to 

electrodes. When picking a reference consideration important that the electrodes that we are 

selecting as reference have as little influence on the locations of our signal of interest as possible. 

Some common choices of reference include: 

 Mastoids (electrodes placed roughly behind a person’s ears): because of being relatively 

far from the brain yet to close to the other electrodes. 

 The average of the two earlobes is also commonly used, for similar reasons as the mastoids. 

 Cz (the central electrode) is frequently chosen, when looking at activity that is distant from 

that location.  

 The average of all electrodes 

In this work average referencing technique was applied to local neonatal EEG signals due to the 

following reasons. 
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 Most recording collected during sleep stages  

 The anti convulsant drugs administered before start of recording  

3.1.7. Removing Bad Signals or Bad (Unwanted) Channels  

Sometimes EEG signals contains bad channels that do not allow accurate information. It is 

important to remove those from analysis because, keeping that data will affect further analysis. 

There are few reasons why a channel might be excluded: 

 The channel is not functioning well for some reason 

 The electrode was not properly placed or didn’t have contact with the scalp. 

 (If working with wet electrodes) Two or more channels are bridged  

 (If working with wet electrodes) The electrode got saturated 

3.1.8. Split (window) EEG data 

Signal Segmenting is one of the signal processing techniques in which the raw continuous EEG 

signal become split into specified time intervals. Initially EEG signal was recorded at sampling 

frequency of 256 Hz. Seizure appears in EEG as sudden, repetitive, stereotyped, evolving 

waveforms that last at least 10s and have the definite beginning, middle and end [44]. 

Manual segmentation refers to the process in which an experts put segments and labels an EEG 

signals file by hand, referring only to the spectrogram and/or waveform. In this work each of these 

segments includes 10 second of EEG data was prepared using manual segmentation from all 

available channels. The manual segmentation of multichannel EEG signal has been performed 

based experts annotated data.  

3.1.9. 2D Image generation from Multichannel EEG Time Series Signals 

The segmented EEG signal has 19 electrodes of 10 second lengths with sampling frequency of 32 

Hz, resulting 19 * 320 array, where the first and second terms correspond to number of the input 

channel and number of sample in specified time interval respectively. These raw waveform images 

are the inputs to the proposed CNN. Before using these images data as input to train or test deep 

neural networks, 19*320 must be rescaled based on requirements of proposed deep CNN models.  

3.1.10. Convolutional Neural Network  

Convolutional neural networks (CNNs / ConvNets) are made up of neurons that have learnable 

weights and biases. Each neuron receives some inputs, performs a dot product of the convolution 
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kernel with layers input matrix and optionally follow it with a non-linearity. As the convolution 

kernel slides along the input matrix for the layer, the convolution operations generates feature map, 

which in turn provides to input of the next layer. This followed by other layers such as pooling 

layers, fully connected layers and normalization layers. Generally CNNs consists of an input 

layers, hidden layers which performs convolution and an output layers which performs 

classification tasks. The architecture overviews are described below. 

 Layers used to build CNNs/ConvNets 

 Convolution Layer (CONV) 

The Convolutional layer is the building block of the convolutional neural network that does 

most of computational activities. It is the first layer which can extract features from images 

of dimension (Height) x (Breadth) x (Number of channel, e.g., RGB). These layer will 

compute the output of neurons that are connected to local regions in the input, each 

computing a dot product between their weights and a small regions. An example of input 

5x5 image (left) going to convolve with a laplacian kernel (right) is shown in the figure 13.  

 

 

 

 

 

 

 

Figure 13: The sample convolution operation 

To summarize, the CONV layer 

 Accepts an input volume of size W(input) x H(input) x D(input), the input size are 

normally square 

 Requires four parameters: 

 The number of filters K (which controls the depth of the output volume). 

 The receptive field size F (the size of the K kernels used for convolution 

and is early always square, which means yielding FxF kernel). 

  The stride S. 

0 1 0 1 1 

0 1 1 0 1 

0 0 0 0 1 

1 1 1 1 0 
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 The amount of zero-padding P. 

 The output of the CONV layer is then W(output) x H(output) x D(output), where: 

 W(output) = ((W(input) – F  + 2P) / S) + 1 ---------------------------------- (1) 

 H(output) = ((H(input) – F + 2P) / S) + 1 and ------------------------------  (2) 

 D(output) = K  ------------------------------------------------------------------  (3) 

 

 Pooling Layer (POOL) 

Pooling layers reduce the dimension of the data by combining the outputs of neuron 

clusters at one layer in to a single neuron in the next layer, help with overfitting problem. 

An example of max pooling operation, with input 4x4 volume, Right: Applying 2x2 max 

pooling with a stride of S = 1, Bottom: Applying 2x2 max pooling with S = 2 is 

demonstrated in the figure 14 below. 

 

 

 

                             

   

Figure 14: Sample max pooling operation 

The POOL layers accepts an input volume of size W(input) x H(input) x D(input), they 

require two parameters, these are the pool size F and the stride S.  Applying POOL operation 

yields an output volume of size W(output) x H(output) x D(output), where: 

 W(output) = ((W(input) – F) / S) + 1, --------------------------------------------------(4) 

 H(output) = ((H(input) – F) / S) + 1 and ---------------------------------------------- (5) 

 D(output) = D(input). ------------------------------------------------------------------- (6) 

 The ReLU activation (RELU) 

ReLU (Rectified Linear Units) refers to the real non-linear function defined by  

ReLU(x) = max(0,x) ------------------------------------------------------------------------------- (7) 

Visually, represented in the figure 15 below: 
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Figure 15: Graphical representation of activation ReLU [45]. 

An activation layer accepts an input volume of size W (input) x H (input) x D (input) and 

applies the given activation function as shown in the figure 16. The ReLU correction layer 

replaces all negative values received as inputs by zeros. It also act as an activation function. 

 

 

 

 

 

 

 

Figure 16: An example of an input volume going through a ReLU activation, max(0,x). 

 Fully-Connected Layers (FC) 

The fully connected layer is always the last layer of a neural network, classifies the image 

as an input to the network. It’s common to use one or two FC layers before applying the 

softmax classifier which will compute our final output probabilities for each class.  

 Batch Normalization layers (BN) 

Batch normalization layers, as the name indicates, are used to normalize the activation of 

a given input volume before passing it into the next layer in the network.  

If we consider x to be our min-batch of activations, then we compute the normalized ẋ via 

the following equations: 

-6 -91 -7 

250 -145 101 

27 61 -153 

 

 

0 0 0 
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ẋ = 
(𝑥𝑖−𝜇𝛽) 

√𝜎𝛽
2+𝜀

 ---------------------------------------------------------------------------------------- (8) 

During training, we compute the 𝜇𝛽 and 𝜎𝛽 over each mini-batch β, where 

𝜇𝛽 =  
1

𝑀
∑ 𝑥𝑖m

i=1  , 𝜎𝛽
2 =  

1

𝑀
∑ (𝑥𝑖 − 𝜇𝛽)2𝑚

𝑖=1  -------------------------------------------------- (9) 

We set 𝜀 equal to a small positive value such as 1𝑒−7 to avoid dividing by zero. Applying 

this equation implies that the activations leaving a batch normalization layer will have 

approximately zero mean and unit variance (i.e., zero-centered). 

At testing time we take place of the min-batch 𝜇𝛽 and 𝜎𝛽 with running averages of 𝜇𝛽 and 

𝜎𝛽 computed throughout the course of the training process. This ensures that we can pass 

images through our network and still obtain accurate predictions without being biased by 

the 𝜇𝛽 and 𝜎𝛽 from final mini-batch passed through the network at training time.  

 Dropout: 

Dropout is actually a form of regularization that aims to keep from overfitting by increasing 

testing accuracy, perhaps at the expense of training accuracy.  

3.1.11. Customized CNN Model 

In this section, a deep convolutional neural network (CNN) which train from scratch was proposed 

to recognize seizures in neonates. Constructed CNN consists of 5 convolution layer, 3 * 3 filters 

and 1 * 1 strides. The network used ReLU activation function, maximum pooling layer, and fully 

connected layer to compute final output probabilities for each classes. To normalize the outputs of 

fully connected layer a softmax layer was used, cross entropy loss function was used for learning, 

for training the proposed deep CNN the gradient descent with momentum, and a learning rate was 

fixed to 0.001. The maximum epoch number set to 30.  

3.1.12. Alexnet Model 

Alexnet is the name of a convolutional neural network (CNN) architecture in which designed by 

Alex Krizhevsky in together with Ilya Sutskever and Geoffery Hinton [46]. The architecture was 

developed in 2012, and was major breakthrough in CNN development.  

The major advantage in using Alexnet architecture are, because of major innovations were made 

through the use of training on multiple GPU’s using augmented version of the image data for 

training, using the ReLU activation function, using overlapping pools, and utilized dropout. 
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Therefore, these method reduces complex adaptations of neurons and forces the model to learn 

more robust features.  

The architecture of Alexnet contains 61 million total parameters within 8 total layers: five 

convolutional layers, and three fully connected layers. We can load a pertained version of the 

network trained more than million images from the image database [46]. The pertained network 

can classify images in to 1000 object categories, such as mouse, keyboard, pencil, coffee, many 

animals. Therefore, the network has learned rich features representations for wide range of images. 

The pre-trained Alexnet architecture is shown in figure 17.   

 

Figure 17: The Alexnet architecture [47]. 

Transfer learning achieved by taking pertained network and use it as a starting point to learn a new 

task. Fin-tuning a network with transfer learning is usually much faster and easier than training 

network with randomly initialized weights from scratch. To use pertained network Alexnet we 

have to replace last three layers with a fully connected layer, a softmax layer, and a classification 

layer. The options of the new fully connected have to be the same size as a number of classes in 

the new data. The network requires input image of size 227-by-227. The pretrained Alexnet 

architecture for Binary classification is shown in the figure 18 below. 
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Figure 18: The proposed Alexnet architecture (Binary classification) 

3.1.13. Hyper Parameters of the Proposed Models  

The hyper-parameters of the network considered and modified during training were summarized 

in the following table 5. 

Table 5: The hyper parameters of proposed models 

 Custom CNN Alexnet 

Number of layer 5 8 

Activation function ReLU ReLU 

Learning rate 0.001 0.001, 0.0001 

Maximum epoch 30 10 

Input image size 256-by-256 227-by-227 

Batch number 1 to 30 1 to 50 

 

3.1.14. Performance Evaluation Metrics  

After building a model and training the network, its performance must be evaluated so as to 

know the actual result. There are different ways of evaluating a model. The first one is by using a 

confusion matrix and getting the TP, TN, FP and FN rates of the predicted values. The second is 

by calculating and getting the precision, recall, F1-score and over all accuracy values of a model. 

Customized final layers 

layers 
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For example: Given a binary classifier of class A and class B, a model can be evaluated using 

confusion matrix. Table 6 indicates the TP, TN, FP and FN components for class A. From the 

table we can see that the green shaded part indicates the TP and TN part [48]. 

 A TP (True Positive) value indicates that what is predicted is true. 

 A TN (True Negative) value indicates that the predicted class is truly negative. 

 A FP (False Positive) value indicates that a thing is predicted as if it is part of the class 

while it is not. 

 FN (False Negative) the prediction indicates that it is not part of the class while it is. 

Table 6: Example of confusion matrix 

 

  

A 

 

B 

 

A 

 

TP 

 

FN 

 

B 

 

FP 

 

TN 

 

Once the confusion matrix is ready, the classification report containing the precision, recall and 

f1-score can be done. So, given a class prediction from the classifier, the precision is the one 

which answers the question “how likely is it to be correct?” It is calculated using equation (10),  

recall or sensitivity will indicate the answer for “will the classifier detect it?” It is calculated 

using equation (11); F1-score is the harmonic mean of precision and recall. It is calculated using 

equation (12). The model is said to be performing good if we have high F1-score and specificity 

is the one which determines the proportion of actual negatives that are correctly identified. 

To measure the proportion of actual negatives that are correctly identified, the specificity of the 

model was calculated using equation (13). Finally, the models performance was measured using 

the accuracy metrics using equation (14). The performance metrics were calculated using the 

equations given below [48]: 
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Precision = TP / (TP + FP) ------------------------------------------------------------------------------ (10) 

Recall = TP / (TP + FN) --------------------------------------------------------------------------------- (11) 

F1-score = (2 * Precision * Recall) / (Precision + Recall) ------------------------------------------ (12) 

Specificity = TN / (TN + FP) ---------------------------------------------------------------------------- (13) 

Accuracy = (TP + TN) / (TP + TN + FN + FP) -------------------------------------------------------- (14) 

3.2. Materials Used in this Research 

MATLAB (“MATrix LABoratory”) is a proprietary multi-paradigm programming language and 

numeric computing environment developed by MathWorks. MATLAB allows matrix 

manipulations, plotting of data and functions, implementation of algorithms, creation of the user 

interfaces and interfacing with programs written in other languages. It is an interactive system 

whose basic data element is an array that does need dimensioning. This helps us to solve many 

technical problems, especially those with matrix-based languages and vector formulations, in a 

fraction of time it could take to write a program in scalar non-interactive language such as C or 

FORTRAN.  

Additionally, with MATLAB, we can code and debug a new capability much faster than with other 

programing languages and specifically, MATLAB allows deep learning easy in terms of tools and 

functions for managing large datasets with just few lines of code and allows to perform deep 

learning without being an expert. It also offers specialized toolboxes for working with machine 

learning, neural networks, computer vision and automated driving Therefore, MATLAB is easiest 

and most productive computing environment for engineers and scientists [49]. 

In this work, MATLAB 2019b with deferent add-on or libraries such as EEGLab, Biosignal 

interface, Alexnet architecture were used to design the proposed deep neural networks. In addition, 

EDF browser software were used to view, highlight and annotate EEG signals from .edf or .edf+ 

format. The Nicolet EEG Viewer to view, highlight and annotate the EEG signal from different 

formats. In addition to the above mentioned software’s, the EEG machine connected with desktop 

computer and other miscellaneous hardware’s were used. The summary of hardware and software 

materials used for this research are shown in the table 7 below.  
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Table 7: hardware and software materials used for the research 

Hardware Software 

 Laptop Computer 

 4GB RAM 

 128GB SSD and 500GB HDD 

 TOSHIBA, Satellite C855, Intel(R) 

Core(TM) i3-2370M CPU @ 2.40GHz    

 MATLAB 2019b with 

 EEGLab2021 

 Bio-signal interface 

 Alexnet Architecture 

 

 32GB USB and 1TB hard disc 

 

 EDF Browser2021 

 EEG Machine 

 Model: JE-921A 

 Brand: NIHON CODEN 

 Accessories used: Desktop computer, 

Electrode junction box, Flash lamp 

assembly, Photic stimulator control 

unit, Cart, Stand and LCD display 

 

 

 Nicolet EEG Viewer2021 
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CHAPTER FOUR 

4. Results and Discussion  

4.1. Data collection, Preparation and Annotation Results  

Firstly EEG signals collected from publicly available dataset of neonatal EEG recordings with 

annotations of seizures from multiple experts [40]. Each EEG file was annotated for seizures by 

three experts using the Nicolet Reader software (Natus, USA). Annotations were then exported 

into a text file using the start and duration of each seizure, considering all available derivations, 

with one second resolution. Each EEG recording lasted approximately one hour; median recording 

duration was 74 mins. In this study EEG recordings from 79 neonates are used to training, testing 

and validation of proposed deep neural networks.  

The EEG signal of 30s segments from the dataset are shown in the figure 19 below. (19a) The 

onset of a neonatal seizure discharge in a neonate with a right temporal hemorrhage (neonate 50; 

at 37 min 39 s), (19b) The cessation of a widespread seizure discharge in a neonate with severe 

asphyxia (neonate 44; at 5 min 53 s), (19c) a period of burst suppression in a neonate with non 

ketotic hyperglycinemia interrupted by a high amplitude artefact at approximately 10 s on the T4-

T6 and T6-O2 derivations (neonate 26; at 1hr 2 min 34 s), (19d) Recording pause expressed as 

zero EEG amplitude for approximately 8 s (neonate 42; at 38 min 6 s). In (a) and (b), annotations 

are plotted above the EEG signals (red, purple and green bars). Each bar denotes an independent, 

blinded annotation of the seizure by one expert. 

 

 

19 (a) 19 (b) 
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Figure 19: Sample 30 second segments from public dataset 

The EEG signals were recorded with a NicOne EEG amplifier (sampled at frequency 256 Hz; with 

model of machine Natus, USA) and EEG caps (sintered Ag/AgCl electrodes; Waveguard, ANT-

Neuro, Germany) with 19 electrodes positioned as per the international 10 – 20 standard, including 

a recording reference at midline. 

In addition local EEG data was collected by using machine with model EEG-1200 from Wachamo 

University Compressive Specialized Hospital. The EEG data were collected from 17 neonates, the 

recording was done approximately 40 min. 21 scalp electrodes were applied to collect EEG signals. 

The collected signals were annotated by three neurologist. Furthermore, the clinical data was also 

accessed based on permission from department as well as hospital governments. The details of 

clinical data as well as other information are shown in the appendix 3. A sample of 30 sec segment 

from locally collected dataset is described in the figure 20 bellow.  

19 (c) 19 (d) 
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Figure 20: A sample segment of locally collected neonatal EEG with clinical card name 706905 

between from time range 30 sec to 60 sec.  

4.2. Preprocessing Results 

4.2.1. Filtering Result 

In this proposed work the neonatal multi-channel EEG signal was filtered between 0.1Hz as lower 

cut frequency (high pass filter), whereas 15Hz as higher cut frequency (low pass filter) with 

transition band width 0.5 Hz. figure 21 shows the frequency response of the EEG signal from 

public dataset with clinical information moderate asphyxia (neonate 1; at 1 min 54 s to 2 min 3 s), 

figure 22 shows the original neonatal EEG signal before band pass filtered (neonate 1; at 1 min 54 

s to 2 min 3 s), and  figure 23 shows the neonatal EEG signal filtered between 0.1Hz and 15Hz 

(neonate 1; at 1 min 54 s to 2 min 3 s).   
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Figure 21: The frequency response of bandpass filtering of the continuous neonatal EEG 

(Neonate 1) 

 

Figure 22: The neonatal EEG signal (neonate 1; at 1 min 54 s (114s) to 2 min 3 s(124s))) with 

clinical information moderate asphyxia before filtered 
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Figure 23: The neonatal EEG signal filtered between 0.1Hz and 15Hz (neonate 1; at 1 min 54 s 

to 2 min 3 s). 

4.2.2. Down-Sampling Result 

In order to decrease the complexity of the CNN network, the EEG is down-sampled to 32 Hz. The 

down-sampling was done based on Nyquist sampling theorem which provides a prescription for 

the nominal sampling interval required to avoid aliasing. It stated simply as follows.  “The 

sampling frequency should be at least twice the highest frequency contained in the signal” [50].  

Or mathematical terms: 

𝑓𝑠 ≥ 2𝑓𝑐, ---------------------------------------------------------------------------------------------------- (15) 

Where 𝑓𝑠 is sampling frequency (how often samples are taken per unit of time or space), and 𝑓𝑐 is 

the highest frequency contained in the signal.  

Figure 24 shows the EEG signal record of neonate (neonate 1; 5 min 29 s to 5 min 39 s) with 

mild/moderate asphyxia with sampled at 256Hz, and figure 25 shows the neonatal EEG signal 

down-sampled from 256Hz to 32Hz (neonate 1; 5 min 29 s to 5 min 39 s). 
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Figure 24: The EEG signal record of neonate with moderate asphyxia with sampled at frequency 

256Hz 

 

 

Figure 25: The neonatal EEG signal down-sampled from 256Hz to 32Hz 
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4.2.3. Re-referencing Result 

Due to local EEG recording was stimulated by hyperventilation, photic stimulation and drug 

administration there is large amplitude variation in the EEG. Therefore average referencing 

technique was done on locally collected datasets. When applying the common average reference, 

the new reference is average electrical activity measured all scalp electrode channels. In this case, 

re-referencing was achieved by creating an average of all scalp channels and subtracting the 

resulting signal from each channel. Figure 26 shows the neonatal EEG before referencing (neonate 

1; 1 min 1 s to 1 min 31 s) and figure 27 shows the neonatal EEG after referencing (neonate 1; 1 

min 1 s to 1 min 31 s).  

 

Figure 26: The neonatal EEG before referencing (neonate 1from local data) 
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Figure 27: The neonatal EEG after referencing (neonate 1, from local data) 

4.2.4. Removing Bad Signals and/or Unwanted Channel  

Neonatal EEG signal is low voltage signal which are contaminated by various types of noises or 

artifacts such as electrical interference, physiological noise, ECG movement of muscle (EMG), 

ocular signal (EOG). Although, these all noises are not preventable, there are some signals full of 

noises which could affects the interpretation of wave forms.  Additionally there are also deferent 

sensors connected together with scalp electrodes to monitor other physiological variables such as 

Pulse-oximetry (SPO2), Electrocardiography and more. Therefore, removing bad signals as well 

as unwanted channels is important to focus on specific targeted applications. In this work, spo2 

and ECG signals were removed from both public and local datasets to focus on signals only 

generated from head of neonates. On the other hand 24 empty signals removed from locally 

collected datasets.  Figure 28 shows the neonatal EEG signal before removing any signal or 

channels (neonate 1(public dataset); 1 min 33 s), figure 29 shows the neonatal EEG signal after 

removing spo2 and ECG channels (neonate 1(public dataset); 1 min 33 s).  
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Figure 28: The neonatal EEG signal before removing any signal or channels (neonate 1 from 

public dataset) 

 

Figure 29: The neonatal EEG signal after removing spo2 and ECG channels (neonate 1 from 

public dataset) 

4.2.5. Signal Segmenting Result 

In order to view distinct characteristics of EEG signal, the continuous EEG segmented in to small 

portion of time. In this thesis EEG recorded approximately 1 hour became segmented in to 10 sec 

which used as input to deep neural network models. Figure 30 shows the neonatal EEG signal 

segment of 60 s (neonate 1; from 1 min, 33 sec to 2 min 33 s, figure 31 shows the neonatal EEG 

signal segment of 10 s (neonate 1; from 1 min, 33 sec to 1 min 43 sec).  
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Figure 30: The neonatal EEG signal segment of 60 s 

 

Figure 31: The neonatal EEG signal segment of 10 s 

4.2.6. 2D Image generation from Multichannel EEG Time Series Signal Result 

For the proposed deep neural networks each segment of EEG, which is 19 channels, 10 second 

sampled at 32Hz window resulting 19 * 320 array, where the first and second terms corresponds 

to number of the input channel and number of sample in specified time interval respectively. These 

raw waveform images are the inputs of the proposed CNN. The CNN can be the most suitable 

network structure for automated seizure detection when applied to the images of raw EEG 

waveforms, since CNN can effectively learn a general spatially-invariant representation of seizure 

patterns in 2D representations of raw EEG [51]. The networks with raw waveform inputs showed 

the ability to learn the underlying characteristics of EEG [37]. Figure 32 shows the corresponding 
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raw waveform image of 19 channel and 10 s segment sampled at 32Hz i.e., (19 * 320) of (neonate 

1 public dataset; 1 min, 54 s to 2 min, 4 s), and figure 33 shows the rescaled raw waveform image 

from 19 * 320 to 227 * 227 of (neonate 1 from public dataset; 1 min, 54 s to 2 min, 4 s). 

 

Figure 32: The corresponding equivalent raw waveform image of 19 channel and 10 s window 

sampled at 32Hz i.e., 19 * 320 (neonate 1 from public dataset; 1 min 54 s to 2 min 4 s) 

 

Figure 33: The rescaled raw waveform image from 19 * 320 to 227 * 227 sampled at 32Hz i.e., 

(19 * 320) (neonate 1 from public dataset; 1 min 54 s to 2 min 4 s) 

To train proposed models the pre-processed continuous EEG data segmented or windowed then 

raw waveform saved in .jpg image format. The image became rescaled to 256-by-256 for custom 

CNN whereas, 227-by-227 for pre-trained Alexnet models. The number of image data to train, 



MSc. Thesis Report 

 

 

48 JU, JIT, BME, MSc. In Biomedical Engineering (Biomedical Instrumentation) 

validate and test the proposed models during binary and grade classification is described in the 

table 8 and 9 respectively. 

Table 8: The training, test and validation image data for binary classification 

 Train data Validation data Test data 

Public dataset Seizure 1009 202 202 

Normal 1001 200 200 

Local dataset Seizure 200 40 40 

Normal 200 40 40 

Total 2410 482 482 

Grand total 3374  

 

Table 9: The training, test and validation image data for grade classification 

 Train data Validation data Test data 

Public dataset Grade_1 329 82 52 

Grade_2 273 68 30 

Grade_3 208 52 22 

Total  810 202 104 

Grand total    1116 

 

4.3. Model Training Results  

4.3.1. Training result of binary classification for seizure detection 

In this study, binary classification indicates the classification of given input neonatal EEG in the 

form of image with pre-defined size into normal or seizure type. As per the data split ratio used, 

the number of data used for training the systems were one thousand two hundred one (1201) images 

for normal class and one thousand two hundred nine (1209) images for seizure class. That was, a 

total of two thousand four hundred ten (2410) image data taken as a training set. And two hundred 

forty two (242) images taken as a validation data from seizure class and 240 images from normal 

class. Likewise, for the test set a total of two hundred forty (240) images taken for each class as a 

test set.  
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Once data split and other preprocessing procedures were complete custom convolutional neural 

network, Alexnet models were trained to perform the classification task. Hence, the models were 

trained using the training dataset and validated with the validation dataset. Finally the learning and 

generalizability performance of the models were measured using a learning curve. Figure 34 and 

figure 35 show the training and validation accuracy plot on epoch versus accuracy and loss of 

Alexnet and custom CNN respectively.  

 

Figure 34: The Binary classification training and validation accuracy plot on epoch versus 

accuracy and loss of Alexnet model 
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Figure 35: The Binary classification training and validation accuracy plot on epoch versus 

accuracy and loss of custom CNN model 

In this phase, better validation loss was achieved using Alexnet at the 8𝑡ℎ epoch with validation 

loss of 0.141. Therefore, the model was saved the weight value acquired at the last epoch for doing 

the classification task. As a result, 98.6% training accuracy and 92.6% validation accuracy were 

achieved. On the other hand custom CNN also trained and the validation loss was achieved at the 

20𝑡ℎ epoch with loss validation of 0.25. Therefore, the model was saved the weight value acquired 

at the last epoch for doing the classification task. As a result, 99.8% training accuracy and 90.66% 

validation accuracy was achieved. 

4.3.2. Training phase of multi classification for neonatal seizure 

The grade indicates the particular level of rank or aggressiveness of the neonatal seizure type. It 

was classified into three classes Grade 1, Grade 2 and Grade 3. Of the total (810) images, three 

hundred twenty nine (329), two hundred seventy three (273) and two hundred eight (208) images 

were taken for grade 1, grade 2 and grade 3 classes as a training set respectively. Moreover, eighty 

two (82) from grade 1, sixty eight (68) images from grade 2, and fifty two (52) images from grade 

3 were taken as a validation set for both models. 
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Finally the data was fed to the models and their learning and generalization ability performance 

were measured using the training and validation curve respectively. During training pre-trained 

Alexnet the lowest validation loss was realized at the 10𝑡ℎ epoch, that was, 0.4 validation loss 

values attained. At this point, a validation accuracy of 86.54 percent was achieved.  Whereas, 

during training custom CNN the lowest validation loss was realized at the 30𝑡ℎ epoch, that was, 

0.3 validation loss values was attained. At this point, an accuracy of 88.6 percent validation 

accuracy was achieved. Figure 36 and Figure 37 shows the results obtained during training phase 

of epoch versus accuracy or loss for the grade level of Alexnet and custom CNN classification 

respectively.  

 

Figure 36: The grade level classification training and validation progress using Alexnet model  
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Figure 37: The grade level classification training and validation progress curve of custom CNN 

4.3.3. Summary of training results 

The overall result of training phase of the system including the training accuracy, validation 

accuracy, training loss and validation loss for the binary classifiers using Alexnet and custom CNN 

summarized in the Figure 38 below and table 10. The training accuracy, validation accuracy, 

training loss and validation loss for the multi classifiers using Alexnet and custom CNN 

summarized in the table 11 and Figure 39 below. 

Table 10: The summary of training accuracy, validation accuracy, training loss and validation 

loss of the binary classifiers 

 Training accuracy Training loss Validation accuracy Validation loss 

Alexnet 0.99 0.09 0.94 0.16 

Custom CNN 0.98 0.08 0.92 0.23 
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Figure 38: The summary chart of training accuracy, validation accuracy, training loss and 

validation loss of the multi classifiers 

Table 11: The summary chart of training accuracy, validation accuracy, training loss and 

validation loss of the multi(grade) classifiers 

 Training accuracy Training loss Validation accuracy Validation loss 

Alexnet 0.96 0.25 0.89 0.4 

Custom CNN 0.98 0.15 0.9 0.25 
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Figure 39: The summary chart of training accuracy, validation accuracy, training loss and 

validation loss of the multi(grade) classifiers 

4.4. Testing Phase Results 

4.4.1. Testing Phase of binary classification for Seizure Detection 

In the binary classification, the models were expected to categorize given images into normal or 

seizure classes. “Normal” represents the normal class whereas, “Seizure” represents the seizure or 

abnormal class. To do this, 242 images for normal and 240 images for seizure were considered 

from each class. Based on the actual and predicted values a confusion matrix was generated. The 

binary classifier using Alexnet model confusion matrix shown in the table 12 below.  Out of the 

242 images in the normal class, 218 images were correctly classified as normal types, while 24 of 

the images were predicted as seizure class. On the other hand, for the seizure class, out of the 240 

images, 229 images were correctly classified as seizure, whereas 11 of the images were predicted 

as non-seizure or normal types. 
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Table 12: The resulted confusion matrix for the binary classifier (normal or seizure) using 

Alexnet 

 

Once the confusion matrix was done, the TP, TN, FP and FN values were easily known. And from 

those values the precision, recall, specificity, f1-score and test accuracy were calculated. Table 13 

shows the overall result of binary classification using Alexnet. 

Table 13: The overall result of binary classification using Alexnet 

 Precision  Recall  F1-score  Specificity  Accuracy 

Seizure 95.4 90.05 92.6 95.2 92.6 

Normal 90.4 95.2 92.9 90.5 92.6 

 

Finally average test accuracy of the model for binary classification was calculated using the 

average of the accuracies of the two classes. As a result, 92.6% test accuracy, 92.9% 

precision, 92.62% recall, 92.7% F1-score and 92.85% specificity was achieved. 
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The binary classifier using custom CNN model confusion matrix shown in the table 14.  Out of 

the 242 images in the normal class, 215 images were correctly classified as normal types, while 27 

of the images were predicted as seizure class. On the other hand, for the seizure class, out of the 

240 images, 222 images were correctly classified as seizure, whereas 18 of the images were 

predicted as non-seizure or normal types. 

Table 14: The resulted confusion matrix for the binary classifier (normal or seizure) using 

custom CNN 

 

The values of precision, recall, specificity, f1-score and test accuracy were calculated. Table 15 

shows the overall result of binary classification using custom CNN. 

Table 15: The overall result of binary classification using custom CNN 

 Precision  Recall  F1-score  Specificity  Accuracy 

Seizure 92.5 92.3 90.82 89.1 90.66 

Normal 88.8 89.2 90.51 92.2 90.66 
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Finally average test accuracy of the model for binary classification was calculated using the 

average of the accuracies of the two classes. As a result, 90.66% test accuracy, 90.65% 

precision, 90.75% recall, 90.7% F1-score and 90.65% specificity was achieved. 

4.4.2. Testing phase of multi classification for neonatal seizure grade 

In the confusion matrix, the grade levels were labeled as, “𝐺1” representing grade 1, “𝐺2”,  

representing grade 2 and “𝐺3” representing grade 3. The training result of Alexnet model for multi 

classification indicated using a confusion matrix shown in the table 16. Out of the 82 images in 

the grade_1 class, 73 images were correctly classified as grade_1 types, while 7 of the images were 

predicted as grade_2 and 2 images as grade_3 classes. Out of 68 images in grade_2 class, 55 

images were correctly classified as grade_2 types, while 10 images wrongly classified as grade_1 

classes and 3 images as grade_3 classes. Out of 52 images in grade_3 classes, 46 images were 

correctly classified as grade_3, while 2 images wrongly classified as grade_1 and 4 images as 

grade_2 classes. 
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Table 16: The resulted confusion matrix for the neonatal seizure grade level classifier using 

Alexnet 

 

From the result found using the confusion matrix, the precision, recall, specificity, F1-score and 

test accuracy results were calculated. Table 17 shows the grade classification results using Alexnet 

model. 

Table 17: The overall grade classification results using Alexnet model 

 Precision  Recall  F1-score  Specificity  Accuracy 

Grade 1 89.0 85.9 87.4 86.18 86.1 

Grade 2 80.9 83.3 82.08 91.02 86.1 

Grade 3 88.5 90.2 89.34 99.35 86.1 

 

Finally, the general performance of the developed model for classifying the grade of a given 

image was assessed and an average test accuracy of 86.1%, precision rate of 86.13%, recall rate of 

86.5%, f1 score of 86.27% and specificity of 92.18% was achieved. 
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The training result of custom CNN model for multi classification indicated using a confusion 

matrix shown in the table 18. Out of the 82 images in the grade_1 class, 74 images were correctly 

classified as grade_1 types, while 7 of the images were predicted as grade_2 and 1 images as 

grade_3 classes. Out of 68 images in grade_2 class, 56 images were correctly classified as grade_2 

types, while 10 images wrongly classified as grade_1 classes and 2 images as grade_3 classes. Out 

of 52 images in grade_3 classes, 49 images were correctly classified as grade_3, while 1 images 

wrongly classified as grade_1 and 2 images as grade_2 classes. 

Table 18: Confusion matrix of multi classification using custom CNN model 

 

From the result found using the confusion matrix, the precision, recall, specificity, F1-score and 

test accuracy results were calculated. Table 19 shows the grade classification results using custom 

CNN model. 
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Table 19: The overall grade classification results using custom CNN 

 Precision  Recall  F1-score  Specificity  Accuracy 

Grade 1 90.2 87.1 88.6 86.18 88.6 

Grade 2 82.4 86.2 84.3 91.02 88.6 

Grade 3 94.2 94.2 94.2 80.35 88.6 

 

Finally, the general performance of the developed model for classifying the grade of a given 

image was assessed and an average test accuracy of 88.6%, precision rate of 88.93%, recall rate of 

89.16%, f1 score of 89.03% and specificity of 85.85% was achieved. 

4.5. Discussion 

Neonatal seizure is a sudden, abnormal and excessive electrical activity in the brain caused by 

deferent metabolic disorders listed in section (1.2) during neonatal periods. It is a common 

emergency intensive care condition, occurring in about 1 to 7 out of 1,000 neonates born at full-

term, more common in pre-term neonates 57 to 132 out of 1000[1]. 

Neonatal seizure can be diagnosed using deferent method such as the differential diagnosis applied 

to distinguish seizure from jitteriness and benign neonatal sleep myoclonus by comparing 

movement and some body functioning tests blood pressure or heart rate activities, the assessment 

method which involves reviewing family history of seizures, maternal diabetes, maternal drug use, 

infections, and evidence of fetal destress in labour and history of birth trauma to provide vital clues 

to the etiology of the seizures, the pathology test method uses blood glucose level (BGL), serum 

electrolytes, calcium and magnesium, the neuroimaging techniques which includes cranial 

ultrasound, MRI, MEG or NMR, and the neurophysiology techniques such as EEG and ECoG. 

EEG is an electrophysiological monitoring method to record electrical activity of the brain. One 

of the most application areas of EEG are neonatal intensive care unit (NICU) through visual 

interpretation of long-duration measurements EEG signal by specialized expertise. Neonatal EEG 

is an objective test to measure the functional integrity of the immature neonatal brain. However, 

EEG has relatively poor spatial sensitivity of EEG, it possesses multiple advantages over some of 

these techniques some are hardware costs are significantly lower than those of most other 

techniques, EEG has very high temporal resolution, on the order of milliseconds rather than 
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seconds which allows for neural dynamics analyses to be made on neurologically-relevant 

timescales, e.g. calculation of high-fidelity signal analysis methods, EEG is extremely non-

invasive, unlike Electrocorticography (ECoG), which actually requires electrodes to be placed on 

the surface of the brain.  

Although, EEG is advantageous tool to monitor or diagnose neonatal seizure, the interpretation of 

the EEG data are extremely labor-intensive, time-consuming, expensive, and importantly needs 

special expertise which is not available around the full hours in many hospital neonatal intensive 

care units (NICUs) as a worldwide, especially developing countries. Therefore automated system 

supports the general care giving personnel in terms of making decision or interpretation on EEG 

based clinical activities around NICU.  

In this study the diagnosis of neonatal seizure from EEG signal using deep convolutional neural 

networks were done. The objectives of the models were detection of neonatal seizure and 

classification of grade levels of resulting seizures based on binary and multi-class classification 

methods respectively. For model training and testing were acquired from two online data sets (the 

Zenodo from Helsinki University Hospital) and local data from WUNEMMCSH. The main 

activities done in this thesis involves collecting neonatal EEG data, preprocessing EEG, splitting 

EEG dataset to specific time window, forming equivalent raw waveform image with defined size, 

training using custom CNN and pre-trained Alexnet models.  

The aim of preprocessing EEG signal was to improve the signal quality by suppressing 

unwanted distortions and/or enhancing some important neonatal EEG features, so that the model 

can take advantages from improved data which was used for further analysis. Deep learning 

models performance are highly dependent on the type of the data and the total number of training 

data. As the number of data used for training and the quality, the number of features to be learnt 

by the model increases and boosting the classification performance.  Furthermore, the EEG signal 

was segmented or split into 10 second long data, then the raw waveforms of each segmented EEG 

data scaled and saved in image .jpg format so that, the deep CNN trained and classify after training 

on these images. 

The size of input image for the proposed networks are 227 * 227 where first and second terms 

corresponding to row of matrix, column of matrix respectively. In this work the number of data 

for each class were prepared separately based on expert annotation and clinical data. Therefore, a 
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total of two thousand four hundred ten 2410 images were generated from all the classes of the EEG 

data for training and validation. Out of these, 1209 images prepared for seizure class and 1201 

images for normal used for binary classification. Whereas, four hundred twelve 412, three hundred 

forty two 342 and two hundred sixty 260 images were taken for grade 1, grade 2 and grade 3 

classes generated for training and validation.  

The major aim of this study was to classify neonatal seizure into normal or abnormal/seizure 

classes and to determine the grade level of resulting seizure. To achieve this, two different 

classifying models were developed these are custom CNN and Alexnet. Better result was achieved 

by training a fine tuned Alexnet for binary classification and custom CNN for grade classification. 

The hyper parameters for the proposed network custom CNN and Alexnet are described in the 

section (3.7).  

The learning performance of the model over 8 epochs for Alexnet and 30 epochs for custom CNN 

were evaluated by plotting a learning curve during each training phase as shown in the figure 34 

and 35 for binary classification and whereas, figure 36 and 37 for neonatal seizure grade 

classification. During the performance evaluation of the model using learning curve, two different 

metrics were used. These are the accuracy and loss metrics. These metrics help to see how the 

models were optimized according to cross-entropy loss and to evaluate the model according to the 

classification accuracy. Good result was obtained when the accuracy curve increases and the loss 

curve decreases with increasing number of epochs for both training and validation datasets. As a 

result both metrics plots were created for each training task. As a result, from the plots it was 

concluded that the model has learned well and has good generalizability performance for all 

classification tasks. 

To classify the grade level of neonatal seizure, the first step was classifying a given image of 

neonatal EEG data segment into binary class (Normal or Seizure). This was achieved by using the 

developed binary class classifying model. The models’ performance was tested using a separate 

dataset and a good result was achieved. Finally average test accuracy of the model for binary 

classification was calculated. Hence, 92.6% test accuracy, 92.6% precision, 92.9% recall, 92.59% 

F1-score and 92.9% specificity was achieved. After binary class classification, the identified 

seizure type has been further classified into their subtypes (grade levels). After model training for 

seizure grade classification, the performance was measured in terms of accuracy, precision, recall 
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and specificity, and a result of an average test accuracy 88.6%, precision 88.06%, recall 83.67%, 

F1 score 85.61% and specificity 92.18% was achieved. This will have significant advantage in 

aiding physicians to have good treatment plans.  

Generally, based on the test results, the final model of this research work is prepared by taking 

best preformed networks. As result Alexnet perform better during binary classification, the 

network will be used as final binary classifier. And custom CNN perform better result during multi 

classification therefore it will be used as final multi classifier. In other word the network of binary 

classification by pre-trained Alexnet and multi classification by custom CNN to be taken as final 

model of this work. The performance of the final Alexnet and custom CNN models are summarized 

in Table 20 and figure 40 below. 

Table 20: The summery of the performance of the Alexnet for binary classification and custom 

CNN 

 Precision  Recall  F1-score  Specificity  Accuracy 

Binary 

Classification 

92.9 92.62 92.59 92.9 92.6 

Grade Level 

Identification 

88.93 89.16 89.0 85.38 88.6 

 

Figure 40: The summery of the performance of the final custom CNN and Alexnet models chart 
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Comparing the result of this study with the studies done using the Zenodo dataset [52] [53] as 

benchmark, we can conclude that, the developed system can classify neonatal EEG dataset in the 

form of images with better classification accuracy. Furthermore, the developed system has 

overcome the gap of further classification of neonatal EEG (seizure classes) into their grade level 

(G_1, G_2 or G_3). 

4.6. Limitations of the Study 

In this study, data has been collected from online available dataset and local data from 

WUNEMMCSH. But while collecting the local data, it was difficult to find variety of neonatal 

EEG data having seizure and as well as different grade types. This has been one challenge that 

hinders the study from being trained by variety of data sources.  

The other limitation was lack of highly trained EEG technicians with experience, because the 

quality of EEG data acquired from patient depends on proper arrangements and the noise 

minimization during recording. Therefore, the quality of acquired EEG signal was low. 

Furthermore, the number of EEG dataset in the form of image was not high enough to train deep 

CNN models to learn very deep features of the signals because limited annotated seizure class 

available in Zenodo dataset and small seizure class was available in locally collected datasets.  
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CHAPTER FIVE 

5. Conclusion and Recommendation 

5.1. Conclusion  

This study proposed system of detection and classification of neonatal seizure from multi-channel 

neonatal EEG signal which was pre-processed and segmented in to defined time (10sec) so that, 

to further characterize distinct features of the signal. The segmented signal was changed to 

equivalent two dimensional image with defined size which was input to the proposed deep CNN 

models.  

Two deferent models such as custom CNN which train from scratch and Alexnet which was 

pertained CNN are used to detect the neonatal seizure and classify the grade levels of the seizure. 

During training the Alexnet was performed better result in binary classifications (Normal or 

Seizure), whereas custom CNN perform better in multiclass or grade level classification (Grade 1, 

Grade 2 and Grade 3). Moreover, in case of binary class type the system has the ability to 

classify given image or segment of EEG signal into its class Normal and Seizure with accuracy of 

92.6% and in case of grade level classification of average accuracy 88.6%. 

This developed system can be used as a decision support system in the diagnosis of neonatal 

seizure, and this will have a great impact by helping neurologists, especially in those low resource 

settings where both the expertise and the means is in scarce. 
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5.2. Recommendation 

As a researcher I recommend different researchers at different level of education to see the 

opportunity of recent methods in detection and classification of Neonatal EEG abnormalities by 

corresponding with deferent causes or diseases. 

The dataset from online used in this research was the only available neonatal EEG dataset used for 

neonatal seizure studies. It can be seen from the literatures that most works were done using 

specifically private datasets. Even in this study only small amount of local data was included due 

to unavailability of similar cases and lack of local data repositories. So, I recommend the researcher 

can gather local data or form local repositories corresponding to different categories of studies 

prior to start the study in this areas. 
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Appendix 1: Sample MATLAB Codes 
Close all 
clc 
%==============================%%%%%%%%%%%%%%%%============================ 
% preprocessing The EEG signal using EEGLAB Library 
%==============================%%%%%%%%%%%%%%%%============================ 
% EEGLAB history file generated on the 27-Dec-2021 
% ------------------------------------------------------------------------- 
[ALLEEG EEG CURRENTSET ALLCOM] = eeglab; % Opening eeglab library 
EEG = pop_biosig('C:\Users\bin\Desktop\datasets.edf\eeg1.edf',.... 
    'importevent','off','importannot','off'); 
%loading the neonatal EEG dataset from .edf format 
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 0,'gui','off');  
%saving the corresponding EEG dataset in the form of .set format 
EEG = eeg_checkset( EEG ); 
pop_eegplot( EEG, 1, 1, 1);% ploting the channel data scroll 
EEG = eeg_checkset( EEG ); 
% removing unwanted signals in this case the ECG and Respiratory signals 
% removed 
EEG = pop_select( EEG, 'nochannel',{'ECG EKG-REF','Resp Effort-REF'}); 
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 1,'savenew',.... 
    'C: \\Users\\bin\\Desktop\\eeg1.set','gui','off'); % Data saved again 
EEG = pop_eegfiltnew(EEG, 'locutoff',0.1,'hicutoff',15,'plotfreqz',1); 
% the neonatal EEG dataset filtered b/n 0.1 and 15 hz 
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 2,'savenew',... 
    

'C:\\Users\\bin\\Desktop\\after_filtering_eeg1.set_0.5and15hz.set','gui','off

');  
EEG = eeg_checkset( EEG ); 
% The filtered neonatal EEG dataset downsampled at 32Hz 
EEG = pop_resample( EEG, 32); 
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 3,'savenew',... 
    

'C:\\Users\\bin\\Desktop\\after_filtering_eeg1.set_0.5and15hzand_sampledat32H

z.set','gui','off');  
EEG = eeg_checkset( EEG );% The downsampled EEG data set was saved 
% The EEG dataset performed Average re-referncing  
EEG = pop_reref( EEG, []); 
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 4,'savenew',... 
    

'C:\\Users\\bin\\Desktop\\after_filtering_eeg1.set_0.5and15hzand_sampledat32H

z.setand_average_referanced.set','gui','off');  
EEG = eeg_checkset( EEG );%The rereferenced data became saved 
pop_eegplot( EEG, 1, 0, 1); 
EEG = eeg_eegrej( EEG, [254 284] ); 
%Some unwanted portion of data became removed 
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 5,'savenew',... 
    'C:\\Users\\bin\\Desktop\\before_filtering and after 

removing_some_portion_ofdata__eeg1.set','gui','off');  

  
%===============================%%%%%%%%%%%%%%%%%========================== 
% %Program to recognize Neonatal Seizure  
% using Custom Convolutional Neural Network 
%===============================%%%%%%%%%%%%%%%%%========================== 

  
%Giving path of dataset folder 
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EEGDatasetPath='C:\Users\bin\Desktop\EEG_Neonate_Dataset_Normal_and_Seizure'; 

  
%Reading EEG Images from Image Database Folder 
EEGimages=imageDatastore(EEGDatasetPath,'IncludeSubfolders',true,... 
    'LabelSource','foldernames'); 

  
%Distributing Images in the set of training and testing  
numTrainFiles=800;%numTrainFiles=0.75(75%) 
[TrainImages,TestImages]=splitEachLabel(EEGimages,numTrainFiles,... 
    'randomize'); 

  

  
%----------------------Building CNN--------------------------------------- 

  
layers=[ 
    imageInputLayer([227 227 3],'Name','Input') 

     
    convolution2dLayer(3,8,'Padding','Same','Name','Conv_1') 
    batchNormalizationLayer('Name','BN_1') 
    reluLayer('Name','Relu_1') 
    maxPooling2dLayer(2,'Stride',2,'Name','Maxpool_1') 

     
    convolution2dLayer(3,16,'Padding','Same','Name','Conv_2') 
    batchNormalizationLayer('Name','BN_2') 
    reluLayer('Name','Relu_2') 
    maxPooling2dLayer(2,'Stride',2,'Name','Maxpool_2') 

     
    convolution2dLayer(3,32,'Padding','Same','Name','Conv_3') 
    batchNormalizationLayer('Name','BN_3') 
    reluLayer('Name','Relu_3') 
    maxPooling2dLayer(2,'Stride',2,'Name','Maxpool_3') 

     
    convolution2dLayer(3,64,'Padding','Same','Name','Conv_4') 
    batchNormalizationLayer('Name','BN_4') 
    reluLayer('Name','Relu_4') 

     
    fullyConnectedLayer(2,'Name','FC') 
    softmaxLayer('Name','SoftMax'); 
    classificationLayer('Name','Output Classification'); 
    ]; 

     
    lgraph = layerGraph(layers); 
    plot(lgraph);%Plotting Network Structore 

     
    %-------Training Options---------------------------------------------- 

     
    options = 

trainingOptions('sgdm','InitialLearnRate',0.01,'MaxEpochs',20,'Shuffle',... 
        'every-

epoch','ValidationData',TestImages,'ValidationFrequency',10,... 
        'Verbose',false,'Plots','training-progress'); 

     
    net = trainNetwork(TrainImages,layers,options);%Network Training 
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    YPred = classify(net,TestImages);%Recognizing digits 
    YValidation = TestImages.Labels;%Getting Labels 
    accuracy = sum(YPred == YValidation)/numel(YValidation);%Finding age 

accuracy 

     
    % Plotting Confusion Matrix 
plotconfusion(YValidation,YPred) 

  
%==============================%%%%%%%%%%%%%%============================== 
% The AlexNet Network 
%==============================%%%%%%%%%%%%%%============================== 

  
% Training and Validation using Alexnet 
DatasetPath = 'C:\Users\bin\Desktop\Grade_classification'; 
%Reading Images from image Database Folder 
images = imageDatastore(DatasetPath,'IncludeSubfolders',true,... 
    'LabelSource','foldernames'); 
%Distributing Images in the set of Training and Testing 
numTrainFiles = 200; 
[TrainImages,TestImages] = splitEachLabel(images,numTrainFiles,'randomize'); 
net = alexnet; %Importing pretreined Alexnet (Rquires support package) 
% layersTransfer = net.Layers(1:end-3); 
%Preservig all layers except last three 
numClasses = numel(categories(TrainImages.Labels)); 
% numClasses = 3; %Number of output classes: Seizure,Non-Seizure 
%Defining layers of Alexnet 

  
% layers = [layersTransfer 
%     fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,... 
% 'BiasLearnRateFactor',20) 
%     softmaxLayer 
%     classificationLayer]; 

  
params = 

load("C:\Users\bin\Desktop\Trial_EEG_neonate\params_2021_11_13__15_37_35.mat"

); 

  

  
layers = [ 
    imageInputLayer([227 227 3],"Name","data","Mean",params.data.Mean) 
    convolution2dLayer([11 11],96,"Name","conv1","BiasLearnRateFactor",2,... 
    "Stride",[4 4],"Bias",params.conv1.Bias,"Weights",params.conv1.Weights) 
    reluLayer("Name","relu1") 
    crossChannelNormalizationLayer(5,"Name","norm1","K",1) 
    maxPooling2dLayer([3 3],"Name","pool1","Stride",[2 2]) 
    groupedConvolution2dLayer([5 5],128,2,"Name","conv2",... 
    "BiasLearnRateFactor",2,"Padding",[2 2 2 2],"Bias",params.conv2.Bias,... 
    "Weights",params.conv2.Weights) 
    reluLayer("Name","relu2") 
    crossChannelNormalizationLayer(5,"Name","norm2","K",1) 
    maxPooling2dLayer([3 3],"Name","pool2","Stride",[2 2]) 
    convolution2dLayer([3 3],384,"Name","conv3","BiasLearnRateFactor",2,... 
    "Padding",[1 1 1 1],"Bias",params.conv3.Bias,"Weights",... 
    params.conv3.Weights) 
    reluLayer("Name","relu3") 
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    groupedConvolution2dLayer([3 3],192,2,"Name","conv4",... 
    "BiasLearnRateFactor",2,"Padding",[1 1 1 1],"Bias",params.conv4.Bias,... 
    "Weights",params.conv4.Weights) 
    reluLayer("Name","relu4") 
    groupedConvolution2dLayer([3 3],128,2,"Name","conv5",... 
    "BiasLearnRateFactor",2,"Padding",[1 1 1 1],"Bias",... 
    params.conv5.Bias,"Weights",... 
    params.conv5.Weights) 
    reluLayer("Name","relu5") 
    maxPooling2dLayer([3 3],"Name","pool5","Stride",[2 2]) 
    fullyConnectedLayer(4096,"Name","fc6_new","BiasLearnRateFactor",10,... 
    "WeightLearnRateFactor",10) 
    reluLayer("Name","relu6") 
    dropoutLayer(0.5,"Name","drop6") 
    fullyConnectedLayer(4096,"Name","fc7_new","BiasLearnRateFactor",10,... 
    "WeightLearnRateFactor",10) 
    reluLayer("Name","relu7") 
    dropoutLayer(0.5,"Name","drop7") 
    fullyConnectedLayer(3,"Name","fc8_new","BiasLearnRateFactor",15,... 
    "WeightLearnRateFactor",15) 
    softmaxLayer("Name","prob") 
    classificationLayer("Name","classoutput")]; 
plot(layerGraph(layers)); 

  
% Training options 
options = trainingOptions('sgdm',... 
    'MiniBatchSize',20,... 
    'MaxEpochs',8, ... 
    'InitialLearnRate',1e-4,... 
    'Shuffle','every-epoch', ... 
    'ValidationData',TestImages,... 
    'ValidationFrequency',10, ... 
    'Verbose',false,... 
    'plots','training-progress'); 

  
% Training the AlexNet 
netTransfer = trainNetwork(TrainImages,layers,options); 

  
% Classifying Images 
YPred = classify(netTransfer, TestImages); 
YValidation = TestImages.Labels; 
accuracy = sum(YPred == YValidation)/numel(YValidation); 

  
% Plotting Confusion Matrix 
plotconfusion(YValidation,YPred) 

 

%========================================================================= 
% ======================================================================== 
% BINIAM SEIFU 2022 
% Matlab Program to test CNN model for Neonatal Seizure detection and grade 

level identification 
%Read image for classification  
%========================================================================== 

%==========================================================================  
[filename,pathname]=uigetfile('*.*','Select the Input RGB Image'); 
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filewithpath=strcat(pathname,filename); 

  
I = imread(filewithpath); 
figure 
imshow(I) 
b = netgrade; 
c = netTransfer; 
%Classify the image using the network 

  
label1 = classify(c,I); 
label2 = classify(b,I); 
m = char(label1); 
n = 'Normal'; 
tf = strcmp(m,n); 
if tf == 1 
title(['Recognaized Signal is ' char(label1)]) 

  
else  
 title(['Recognaized Signal is ' char(label1) ' and grade type is ' 

char(label2) ])    
end 
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Appendix 2: Clinical Information from Zenodo Dataset 
ID EEG file Gender BW (g) GA (weeks)EEG to PMA (weeks)Diagnosis Neuroimaging FindingsPNA of Imaging (days)Number of Reviewers Annotating SeizurePrimary LocalisationOther

1 eeg1 f less than 2500g37 to 38 37 to 38 mild/moderate asphyxiawidespread ischemic changes0 to 4 3 both hemispheres; alternating

2 eeg2 m less than 2500g35 to 36 37 to 38 prematurity ultrasound normal0 to 4 1

3 eeg3 m N/A 40 to 41 41 to 42 N/A N/A 0

4 eeg4 m 3000 to 3500g39 to 40 39 to 40 mild/moderate asphyxiabilateral watershed area infarction4 to 7 3 right centro-parietal

5 eeg5 f 2500 to 3000g39 to 40 39 to 40 asphyxia (undefined grade); neonatal convulsionshaemorrhage in left lateral ventricle; subarachnoidea space0 to 4 3 left hemisphere

6 eeg6 f 2500 to 3000g39 to 40 39 to 40 mild asphyxia ultrasound normal0 to 4 1

7 eeg7 m 2500 to 3000g38 to 39 38 to 39 infarction right arteria cerebri media and anterior infarction0 to 4 3 right hemisphere

8 eeg8 m 2500 to 3000g36 to 37 36 to 37 severe asphyxia left arteria cerebri media infarctiongreater than 72

9 eeg9 f greater than 4000g40 to 41 40 to 41 mild/moderate asphyxianormal 4 to 7 3 left fronto-centralleft hemisphere

10 eeg10 f 3000 to 3500g41 to 42 42 to 43 severe asphyxia diffuse edema in both cerebral parenchyma0 to 4 0

11 eeg11 N/A 3000 to 3500g38 to 39 39 to 40 kernicterus left side subdural posterior haemorrhage; small haemorrhage also in right temporal; left occipital and right cerebellum4 to 7 3 right posterior quadrant

12 eeg12 m N/A 34 to 35 38 to 39 N/A N/A 1

13 eeg13 m 3500 to 4000g38 to 39 39 to 40 cardiac anomaliesultrasound normal4 to 7 3 bilateral

14 eeg14 f 3000 to 3500g38 to 39 38 to 39 developmental brain anomalymicrocephaly; cortical abnormalities4 to 7 3 right; posterior quadrant

15 eeg15 m 2500 to 3000g36 to 37 36 to 37 asphyxia ischemic changes in left centrum semiovale; and bilaterally in peritrigonal area as well as posterior corpus callosum4 to 7 3 near vertex; central

16 eeg16 m 3000 to 3500g41 to 42 41 to 42 mild/moderate asphyxiasevere bilateral asphyxic changes in thalamus; capsula interna; basal ganglia and hippocampus0 to 4 3 right hemisphere

17 eeg17 f less than 2500g34 to 35 36 to 37 drug withdrawal syndrome; prematurityultrasound normal4 to 7 3 near vertex; central

18 eeg18 m N/A N/A 43 to 44 N/A N/A 0

19 eeg19 f N/A 40 to 41 44 to 45 N/A N/A 3 left hemisphere; alternating location

20 eeg20 m 2500 to 3000g38 to 39 38 to 39 severe asphyxia ultrasound normal0 to 4 3 left fronto-centralbilateral

21 eeg21 m less than 2500g36 to 37 40 to 41 hypoplastic left heart syndromeright side intraventricular haemorrhagegreater than 73 right hemispherebilateral

22 eeg22 f 3500 to 4000g40 to 41 43 to 44 meningitis cortical ischemic changes bilaterally frontally; parietal and occipitalgreater than 73 both posterior hemispheres; alternating

23 eeg23 f 2500 to 3000g35 to 36 36 to 37 congenital kidney illness; prematurityultrasound: right lateral ventricle wider0 to 4 2

24 eeg24 f 3500 to 4000g41 to 42 42 to 43 respiratory distress; sepsis suspectedultrasound normal0 to 4 1

25 eeg25 N/A N/A 38 to 39 40 to 41 N/A N/A 3 both hemispheres; alternating

26 eeg26 f 3500 to 4000g40 to 41 41 to 42 nonketotic hyperglycinemiaultrasound: hypoplastic corpus callosum (absent posterior)0 to 4 1

27 eeg27 m 2500 to 3000g36 to 37 38 to 39 mild prematurity; abdominal anomaliesultrasound normal0 to 4 0

28 eeg28 m N/A 37 to 38 39 to 40 not known ultrasound normal0 to 4 0

29 eeg29 f 3500 to 4000g38 to 39 38 to 39 respiratory distress; hypoglycemiaultrasound: abnormally narrow lateral ventricles0 to 4 0

30 eeg30 m greater than 4000g41 to 42 41 to 42 infarction left arteria cerebral media infarction;  laminar cortical necrosis0 to 4 0

31 eeg31 f greater than 4000g41 to 42 41 to 42 brain infarction; haemorrhageright arteria cerebri media infarction; subarachnoideal haemorrhage0 to 4 3 right hemisphere

32 eeg32 m 3500 to 4000g41 to 42 41 to 42 undefined brain development disorderhypoplasia of pons and cerebellum0 to 4 0

33 eeg33 m 3000 to 3500g36 to 37 37 to 38 congenital toxoplasmosis; newborn hypoglycemiaultrasound: periventricular cysts bilaterally; left lateral ventricle enlarged0 to 4 2

34 eeg34 f 3500 to 4000g41 to 42 41 to 42 severe asphyxia; infarctioninfarction 0 to 4 3 right hemispherebilateral

35 eeg35 f 3500 to 4000g40 to 41 41 to 42 N/A N/A 0

36 eeg36 m 3500 to 4000g38 to 39 40 to 41 status post cardiac operationultrasound normal0 to 4 3 bilateral

37 eeg37 m 3500 to 4000g38 to 39 39 to 40 status post resuscitation; cardiac causeultrasound normal0 to 4 0

38 eeg38 m greater than 4000g41 to 42 42 to 43 mild asphyxia; neonatal convulsionsultrasound normal0 to 4 3 left fronto-central; parietalbilateral

39 eeg39 m 3500 to 4000g41 to 42 41 to 42 moderate asphyxialarge infarctions; with emphasis on the left posterior quadrant0 to 4 3 left hemispherealternating; right hemisphere

40 eeg40 m greater than 4000g39 to 40 40 to 41 severe asphyxia ischemic changes bilaterally in thalamus; capsula interna (posterior); mesencephalon; pons and vermis0 to 4 3 left parieto-occipital

41 eeg41 f 2500 to 3000g37 to 38 38 to 39 mild/moderate asphyxianormal 0 to 4 3 right hemispherebilateral

42 eeg42 f 2500 to 3000g38 to 39 39 to 40 asphyxia small haemorrhage in the left lateral ventricle and posterior horn4 to 7 0

43 eeg43 m 2500 to 3000g38 to 39 38 to 39 newborn apnea and hypotoniamild subdural haemorrhage around tentorium and occipital regions4 to 7 1

44 eeg44 f 3500 to 4000g41 to 42 41 to 42 severe asphyxia severe bilateral asphyxic changes in thalamus and cortico-spinal tracts0 to 4 3 bilateral

45 eeg45 m 2500 to 3000g40 to 41 40 to 41 fetal severe intraventricular haemorrhage Right side water shed area and thalamus with ischemic changes. In addition; on the right side; hematoma in lateral ventricle and foramen Monroe; bilaterally also in posterior horns of ventricles and in the third ventricle; aqueduct and fourth ventricle.4 to 7 0

46 eeg46 f 2500 to 3000g36 to 37 36 to 37 severe asphyxia severe bilateral asphyxic changes in thalamus; putamen and hippocampus0 to 4 1

47 eeg47 f 3000 to 3500g40 to 41 41 to 42 severe asphyxia; neonatal convulsionsextracranial hematomas; bilateral4 to 7 3 bilateral

48 eeg48 m N/A 36 to 37 39 to 40 not known N/A 0

49 eeg49 f 3000 to 3500g37 to 38 39 to 40 undefined epilepsyN/A 0

50 eeg50 f 3500 to 4000g39 to 40 39 to 40 brain haemorrhageright temporal haemorrhage; subdural hematoma0 to 4 3 right hemisphere

51 eeg51 f 2500 to 3000g40 to 41 40 to 41 severe asphyxia bilateral symmetric ischemic changes in corona radiata; basal ganglia and thalami; extending to brain stem0 to 4 3 left hemisphere

52 eeg52 m N/A 35 to 36 43 to 44 N/A N/A 3 bilateral

53 eeg53 f 3500 to 4000g40 to 41 40 to 41 severe asphyxia normal 4 to 7 0

54 eeg54 m N/A 40 to 41 40 to 41 N/A N/A 2

55 eeg55 m 3500 to 4000g41 to 42 42 to 43 neonatal withdrawal symptomsultrasound normalgreater than 70

56 eeg56 m 3500 to 4000g40 to 41 40 to 41 severe asphyxia bilateral ischemic changes in basal ganglia and thalami4 to 7 1

57 eeg57 m 3500 to 4000g42 to 43 42 to 43 cranial anomaly; syndromicultrasound normal0 to 4 0

58 eeg58 m N/A 39 to 40 42 to 43 N/A N/A 0

59 eeg59 m N/A 42 to 43 43 to 44 not known N/A 0

60 eeg60 m 3500 to 4000g42 to 43 42 to 43 mild asphyxia; infarctionwidespread infarctions in left arteria cerebri media and posterior0 to 4 0

61 eeg61 f N/A 41 to 42 42 to 43 not known N/A 1

62 eeg62 m 3500 to 4000g40 to 41 40 to 41 severe asphyxia bilateral ischaemia; thalamus and nucleus lentiformis; cortico-spinal tracts0 to 4 3 bilateral

63 eeg63 f greater than 4000g39 to 40 39 to 40 severe asphyxia right arteria cerebri media infarction; left side thalamus ischaemia0 to 4 3 right hemisphere

64 eeg64 f 2500 to 3000g35 to 36 35 to 36 severe asphyxia severe bilateral asphyxia changes in thalamus; capsula interna and basal ganglia0 to 4 2

65 eeg65 f N/A 39 to 40 39 to 40 N/A N/A 1

66 eeg66 f 2500 to 3000g41 to 42 43 to 44 infarction; neonatal convulsionsright side infarction; involving parietal areagreater than 73 right centro-parietal; occipital

67 eeg67 f 3000 to 3500g40 to 41 40 to 41 severe asphyxia right frontal lobe haemorrhage0 to 4 3 both hemispheres; alternating

68 eeg68 m greater than 4000g39 to 40 40 to 41 infarction left arteria cerebri media infarctionN/A 2

69 eeg69 m N/A 40 to 41 42 to 43 sepsis sinus sagittalis sup.thrombosis; subdural effusions4 to 7 3 both hemispheres; alternating

70 eeg70 m greater than 4000g40 to 41 40 to 41 asphyxia MRI normal 0 to 4 0

71 eeg71 m less than 2500g36 to 37 39 to 40 hypothalamic hamartoma; developmental syndrometemporal lobe cysts (possible status post haemorrhage); ultrasound0 to 4 3 bilateral

72 eeg72 m N/A 37 to 38 37 to 38 N/A N/A 0

73 eeg73 f 3500 to 4000g39 to 40 39 to 40 severe asphyxia severe bilateral asphyxia changes 0 to 4 3 left fronto-centralbilateral

74 eeg74 m 2500 to 3000g34 to 35 35 to 36 severe asphyxia post-ischemic status (susp); minor thalamic findings in ultrasound0 to 4 2

75 eeg75 m greater than 4000g38 to 39 38 to 39 mild/moderate asphyxialeft parietal anteria cerebri media infarction4 to 7 3 left fronto-central;parietal

76 eeg76 m 3500 to 4000g41 to 42 41 to 42 ischaemia (classifies to HIE); infarctionRight infarction in arteria cerebri media (post/med limbs); also some in arteria cerebri post (occipit and thalamus)0 to 4 3 right; posterior quadrant

77 eeg77 f 3000 to 3500g41 to 42 41 to 42 mild/moderate asphyxiasevere bilateral asphyxic changes in thalamus; capsula interna and basal ganglia0 to 4 3 left centro-parietal

78 eeg78 f 3500 to 4000g41 to 42 41 to 42 acute ischaemia; infarctionright anteria cerebri media infarction; extends to basal ganglia and right side thalamus4 to 7 3 right hemisphere

79 eeg79 f 2500 to 3000g40 to 41 41 to 42 severe asphyxia; neonatal convulsionsright side ischaemia in nucleus caudatus (caput); nucleus lentiformis; capsula interna; thalamus and anterior pons4 to 7 3 right fronto-central; parietalleft hemisphere
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Appendix 3: Clinical Information from Local Dataset 

ID EEG file NumberGenderBW (g)GA (weeks)Discription(Nurologist) Interpretation(Nurologist)Number of Reviewers Annotating SeizurePrimary Localisationtime of recording 

706905 52 F 2600g moderate amount of delta to theta waves that suppress with eye opening were seen generalized epilepsy3 posterior electrodes40min

452912 75 M 2500g moderate amount of 7-Hz medium-voltage rhythmic alpha waves that suppress with eye opening were seenNORMAL 3 posterior electrodes50min

621661 89 M 3000g moderate amount of 11- to 12-Hz medium-voltage rhythmic alpha waves that suppress with eye opening were seenABNORMAL 3 maximally over the posterior electrodes and anteriorly bilaterally40min

730570 108 M 3200g normal wave form seen NORMAL 3 NA 40min

318400 100 M 2800g large amplitude 3 to 4 hz polymorphic delta waves. There was intermittent episode of generalized spike and wave discharge.ABNORMAL 3 anteriorly bilaterally40min

599171 74 F 3100g normal wave form seen NORMAL 3 NA 30min

692516 73 F 3000g normal wave form seen NORMAL 3 NA 40min

572414 39 M 3500g large amplitude, diffuse, polymorhic delta to theta waves that suppress with eye opening were seenABNORMAL 3 NA 40min

660322 28 F 2700g moderate amount of 8-Hz medium-voltage rhythmic alpha waves that suppress with eye opening were seenNORMAL 3 occipital electrodes40min

470015 31 M 2800g moderate amount of 9-Hz medium-voltage bilaterally symmetric rhythmic alpha waves that suppress with eye opening were seen NORMAL 3 anteriorly bilaterally40min

584891 46 M 3200g A small amount of symmetric 18–30 Hz low-voltage fast activity is seen NORMAL 3 anteriorly bilaterally40min

555234 110 M 3300g There are ample movement and lead artifacts seen during the recordingNORMAL 3 central and anterior 30min

719770 77 M 3500g moderate amount of 11- to 12-Hz medium-voltage rhythmic alpha waves that suppress with eye opening were seenABNORMAL 3 anteriorly bilaterally40min

431224 85 M 3300g moderate amount of 11-Hz medium-voltage rhythmic alpha waves that suppress with eye opening were seen NORMAL 3 posterior electrodes40min

725118 86 M 3000g moderate amount of 11- to 12-Hz medium-voltage rhythmic alpha waves that suppress with eye opening were seen NORMAL 3 posterior electrodes40min

555234 5 M 2600g A small amount of symmetric 18–30 Hz low-voltage fast activity is seenNORMAL 3 anteriorly bilaterally40min
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Appendix 4: Conformation letter of data and information collection  

 


