

 JIMMA UNIVERSITY

JIMMA INSTITUTE OF TECHNOLOGY

 FACULTY OF COMPUTING AND INFORMATICS

 By

 Mendasa Tesfa Hirkisa

A Thesis Submitted to School of Graduate Studies in Partial Fulfillment

for the Degree of Master of Science in Information Technology

 Jimma, Ethiopia

 June 2022

Jimma University

Jimma Institute of Technology

 Faculty of Computing and Informatics

 By

 Mendasa Tesfa Hirkisa

ADVISOR: Dr. Getachew Mamo (Ph.D.)

CO-ADVISOR: Mr. Mizanu Zelalem (MSc)

i

APPROVAL FORM

This is to confirm that the thesis prepared by Mendasa Tesfa, entitled Afaan Oromoo

Dependency Parser Using RNN, submitted in partial fulfillment of the requirement for the

Master’s Degree of Science in Information Technology compiles with university regulation and

meets the acceptance necessities with worthy to originality and quality.

This work was approved by the university advisors and board examiners.

Advisor: Getachew Mamo (Ph.D.) 11/11/2022

 Name Signature Date

Co-Advisor: Mizanu Zelalem 11/11/2022

 Name Signature Date

Chairperson: Muluken Yohannis _______________ 11/11/2022

Name Signature Date

Internal examiner: Mamo Fideno ____________ 11/11/2022

ii

DECLARATION

I state that the work which is being presented in this research entitled Afaan Oromoo

Dependency Parser Using RNN, provided for evaluation and this thesis is my own, original

work at school of computing, Information Technology department, and in no university or

institute has been awarded for degree and that it has not been previously evaluated, and all the

resource materials used for this thesis had been accordingly acknowledged.

 MENDASA TESFA ____________

 Signature Date

iii

DEDICATION

This work is dedicated to my loving parents, particularly my father Tesfa Hirkisa, mother

Boggale Terefa, and grandfather Tefera Hika, for their constant love, support, and words of

encouragement.

iv

ACKNOWLEDGMENT

In life, three sects of persons are most important, first the almighty God, the second parent, and

the third friend. God almighty for the wisdom he bestowed upon me, the strength, peace of my

mind, infinite grace, unfailing love, unwavering faith, good health, and for his shower of

blessing throughout my thesis work to complete successfully. So, I thank my, GOD, forever.

I would like to convey my heartfelt gratitude to my research advisor, Dr. Getachew Mamo

(Ph.D.), for inspiring me with his vision, sincerity, energy, and enthusiasm. He also educated

me on how to conduct research and present my thesis work most straightforwardly and

concisely possible. I also greatly full thank my co-Advisor Mr. Mizanu Zelalem(MSc), for

his limitless effort in showing directions through my work and for providing me with useful

materials. I'd like to express my appreciation to all members of the school of computing,

especially Mr. Hambisa Mitiku (Ass. professor), chair of the Information Technology

department.

Dear all, I am very grateful to you who have shared your insights on the AO language.

Particularly, I appreciate Mr.Dereje Regassa(DEd candidate), for your explanations of the

AO morpheme and its structure.

The greatest blessing, I enjoyed in all these years is the selfless, unwavering, and unconditional

love, strength, and support given to me by my parents especially my mother Bogale Terefa,

my father Tesfa Hirkisa, and my relatives to complete this work. My thanks also to my caring

siblings whose advice worked for this thesis paper.

At the last, but not least, I am thankful to everyone who assisted me directly or indirectly to

complete this work.

v

TABLE OF CONTENTS

APPROVAL FORM ... i

DECLARATION ... ii

DEDICATION ... iii

ACKNOWLEDGMENT... iv

TABLE OF CONTENTS ... v

LIST OF FIGURES .. ix

LIST OF TABLES ... x

LIST OF ABBREVIATIONS AND ACRONYMS ... xi

DEFINITIONS ... xiii

ABSTRACT .. xiv

CHAPTER ONE .. 1

1. INTRODUCTION .. 1

1.1 Background ... 1

1.2 Motivation ... 3

1.3 Statement of the problem .. 4

1.3.1 Research questions ... 5

1.4 Objectives of the study .. 5

1.4.1 General objective ... 5

1.4.2 Specific objectives ... 5

1.5 Methodologies ... 6

1.5.1 Literature review .. 6

1.5.2 Data collection and preparation ... 6

1.5.3 Developmental tools .. 6

1.5.4 Experimentation and testing .. 6

1.5.5 Evaluation .. 7

1.6 Scope and Limitation .. 7

vi

1.7 Application of results .. 7

1.8 Research Organization .. 8

CHAPTER TWO ... 9

2. LITERATURE REVIEW ... 9

2.1 Morphology ... 9

2.2 Dependency Parsing .. 9

2.2.1 Approaches of dependency parsing ... 11

2.3 Classifiers for transition types and relation types ... 12

2.3.1 Artificial Neural Networks .. 12

2.4 RNN model development phases .. 16

CHAPTER THREE ... 17

3. RELATED WORKS... 17

3.1 Universal dependency parsers ... 17

3.2 Morpheme-based dependency parsers .. 18

3.3 Deep learning and Transition-Based Dependency Parsers 18

3.4 Summary ... 19

CHAPTER FOUR .. 21

4. AFAAN OROMOO OVERVIEWS ... 21

4.1 Afaan Oromoo Word formation ... 21

4.1.1 Afaan Oromoo morphology ... 21

4.1.2 Compounding ... 26

4.2 AO Treebank ... 26

4.2.1 Afaan Oromoo POS .. 26

4.2.2 Afaan Oromoo Relations ... 28

4.3 Sentence structure ... 29

CHAPTER FIVE ... 30

5. AODP MODEL DESIGN .. 30

vii

5.1 AO Treebank ... 31

5.1.1 Configurations.. 31

5.1.2 Head-dependents dataset .. 32

5.1.3 Data Collections ... 32

5.1.4 Data Preprocessing... 32

5.1.4.1.1 One-hot encoding.. 33

5.2 Transition predictor model development .. 34

5.3 Relation predictor model development ... 36

5.4 Parsing phase System .. 37

5.4.1 How does the arc-standard transition system work? .. 38

CHAPTER SIX .. 40

6. IMPLEMENTATION AND EVALUATION .. 40

6.1 AO Treebank ... 40

6.1.1 Word to vector representations of the data .. 40

6.2 Hyper-parameters used in the two sub-models ... 41

6.3 Transition predictor model development .. 42

6.3.1 Data set (features) used .. 42

6.3.2 Developing the RNN model... 42

6.4 Relation predictor model development ... 43

6.4.1 Data set (features) used .. 43

6.4.2 Developing the RNN model... 43

6.5 Parsing phase ... 44

6.6 Experimentations and Models Evaluation... 45

6.6.1 Sample output for input sentences ... 47

6.7 Result and Discussion ... 47

6.7.1 Results .. 47

6.7.2 Discussions .. 48

viii

CHAPTER SEVEN ... 50

7. CONCLUSION AND RECOMMENDATION ... 50

7.1 Conclusions ... 50

7.2 Recommendations ... 51

7.2.1 Contributions of the study .. 51

7.2.2 Future works .. 51

8. REFERENCES ... 52

9. APPENDIX .. 59

9.1 Arc standard algorithm .. 59

9.2 Sample Afaan Oromoo treebank ... 61

9.3 AOPOS tags .. 62

9.4 Afaan Oromoo Relations ... 64

9.5 Configurations for first model POS part ... 67

9.6 Head dependent for second model POS part ... 68

9.7 Algorithm to convert treebank data to initial configurations 68

ix

LIST OF FIGURES

Figure 2-1: Sample dependency structure.. 10

Figure 2-2: Architecture of ANN (Perceptron) .. 12

Figure 2-3: How deep learning models work .. 13

Figure 2-4: An unrolled recurrent neural network. ... 13

Figure 2-5: A block of LSTM at any timestamp {t} .. 14

Figure 2-6: Forward and backward propagations in BILSTM .. 15

Figure 2-7: Steps in RNN model development using Keras ... 16

Figure 4-1: Nominalization of word formation rules ... 23

Figure 4-2: Verbalization word formation rules ... 24

Figure 4-3: Adjectivization word formation rules ... 24

Figure 4-4: AO features representations ... 25

Figure 4-5: AO compound word formation rules .. 26

Figure 5-1: General architecture for the AODP system.. 30

Figure 5-2: Generalized parsing steps(phases) ... 38

Figure 6-1: Compile transition prediction model... 43

Figure 6-2: Fit transition prediction model ... 43

Figure 6-3: Compile relation prediction model ... 44

Figure 6-4: Fit relation prediction model ... 44

Figure 6-5: Sample configuration generated Ci to Cf with its transitions 44

Figure 6-6: Sample head, dependent generate ... 45

Figure 6-7: Show result of using LSTM for transition predictions 45

Figure 6-8: Show result of using BI LSTM for transition predictions 45

Figure 6-9: Show the result of using LSTM for relation predictions. 46

Figure 6-10: Show result of using BILSTM for relation predictions 46

Figure 6-11: shows the results of labeled and unlabeled attachment score 46

x

LIST OF TABLES

Table 3-1 : Summary of related works .. 20

Table 4-1: Lists of some AO independent morphemes .. 22

Table 4-2: Sample-derived nominals ... 23

Table 4-3: Sample-derived verbs ... 23

Table 4-4: Sample-derived adjectives .. 24

Table 4-5: Sample feature information in AO ... 25

Table 4-6: Sample AO compound words... 26

Table 4-7: Specific and Stream AOPOS tag .. 27

Table 4-8: Afaan Oromoo sample relation types ... 28

Table 5-1: Sample AO Treebank ... 31

Table 5-2: Sample input features for the model ... 35

Table 5-3: Sample input features for the mode2 .. 36

Table 5-4: Arc-standard transition system on configurations .. 39

Table 6-1: Hyper-Parameter used .. 41

Table 6-2: Sample output for input sentences .. 47

Table 6-3: Accuracy for the two models using LSTM and BILSTM 47

xi

LIST OF ABBREVIATIONS AND ACRONYMS

AO: Afaan Oromoo

AODP: Afaan Oromoo dependency parser

AOTB: Afaan Oromoo treebank

POS: Part of speech

AOPOS: Afaan Oromoo part of speech

SOP: Statement of the problem

SOV: subject-object-verb

NLP: Natural language process

CONLL: Conference on computational natural language learning

NLU: Natural language understanding

NLTK: Natural Language Tool-Kit

CP: Constituent parsing

DP: Dependency parsing

XDP: Extendable dependency

DG: Dependency grammar

RA: Right arc

LA: Left arc

σ: Stack

β: Buffer

S: Shift

Ci: initial configurations

Cm: intermediate configurations

Cf: Final configurations

xii

Ti: Initial transition

Tm: Intermediate transitions

Tf: Final transitions

H/h: head

D/d: dependent

R: Relations

IT: Information Technology

JU: Jimma University

RNN: Recurrent neural network

LSTM: long short-term memory

BI-LSTM: Bi-directional long short term memory

it= Input gate

ft= Forget gate

ot= Output gate

GD: Gradient descent

VGD: Vanishing gradient decent

LAS: Labeled attachment score

UAS: Unlabeled attachment score

DEd: Doctor of education

xiii

DEFINITIONS

The first model (model one (1)): Transition predictor model

The second model (model two (2)): Relation predictor model

Stream POS: Particular part of speech represented as one

Specific POS: Represents each particular part of speech

Stream Relations: Particular relations types are represented as one

Specific Relations: Represents each relations types

Sub-model: either transition predictor or relation predictor model

M1: model one

M2: model two

xiv

ABSTRACT

Dependency parsing is an act of extracting the relations among the words or morphemes using

dependency type to resolve ambiguities among the head and its modifiers. Humans use facial

expressions, tone of speech, body language, and others to make a natural language more clear

and understandable. Unlike humans, machines need well-formed and studied language

structures for both natural language understanding and generations. This was achieved through

developing natural language processing applications. Hence Afaan Oromoo dependency parser

was developed to resolve and clarify misunderstandings among Afaan Oromoo morphemes.

Even though, constituent parsers and universal dependency parsers exist they are not effective

to handle morpheme information. Among dependency parser approaches, data driven approach

was selected in Afaan Oromoo dependency parser to obtain morphemes and word order

features in Afaan Oromoo. From a data-driven approach transition system was selected for its

simplicity and fast performance than graph-based dependency parsers. Particularly arc-

standard is used to generate an unlabeled dependency graph. Afaan Oromoo dependency parser

was developed from two sub-models that work self-reliantly. The first one is used to predict

the transition and then generates an unlabeled dependency graph (tree). The second one is used

to predict the relation types and generate a labeled dependency graph. RNN algorithm was

selected to handle sequences of Afaan Oromoo morphemes and extract the language patterns.

The treebank was constructed from 500 sentences and in the first model 3480 and 1740

instances of configurations were used for training and test data. In the second model 1000 and

415 (head-dependents) were used for training and test purposes. Consequently, LSTM and

BILSTM had experimented and the BILSTM has shown better accuracy for classifications of

both transitions and relations. The first model performs an accuracy of 90% using BILSTM

and 89% using LSTM. Next, the second model scored 71% for BILSTM and 69% for LSTM.

Additionally, using BILSTM the model scores 60% for UAS and 40% for LAS. To sum up,

the performance of the deep learning models is directly proportional to corpus size. And also

increasing dependency labels enhances clarifications between the morphemes.

 Keywords: Transition predictor, Relation predictor, Root

1

CHAPTER ONE

1. INTRODUCTION

1.1 Background

Language is a means of communication mainly used for transmitting ideas, persuading,

opinions expression, giving orders, asking for information, and also it serves as a symbol of

national identity [1]. Languages are broadly categorized as artificial languages and natural

languages. Artificial languages are created for a specific purpose while natural language is any

ordinary language used by humans to coordinate with each other in their day-to-day daily

activities [2]. Communication is carried out in the form of spoken which is the primary medium

for human beings and written mainly used to pass the knowledge from one generation to the

next [2]. The level of development of the language matters for effective use of the language. In

today's world, not only humans but machines can understand and generates natural languages

if well studied. Linguists are responsible to study and state the implicit and explicit structures

of the language. Natural language processing is a branch of computer science and artificial

intelligence that studies how computers and humans interact in natural language [3].

 NLP's ultimate goal is to enable computers to understand language as humans do. Today’s

natural language processing applications are more powerful using deep learning algorithms and

possible to handle the language patterns and solve the misunderstanding or presence of two or

more possible meanings of the relations between the AO morphemes [4]. Virtual assistants,

speech recognition, sentiment analysis, automatic text summarization, and machine translation

are all excellent NLP applications that are employed in developed languages. So, lower-level

NLP applications are utilized to feed higher-level NLP applications. Due to AO's limited

computing resources, additional study is needed at phases of NLP such as lexical, syntactic,

semantic, discourse, and pragmatic analysis [5]. Consequently, resolving ambiguity at the

syntactic level is critical for AO. Parsing is a method of analyzing the sentence structure,

content, and meaning for a better understanding of the meaning, structure, content, and

syntactical or semantic relationship of constituents within a sentence [5]. It is possible to see

the parsing concept in two major classes syntactic and semantic parsing. Particularly, syntactic

parsing is the task of recognizing a sentence and assigning a syntactic structure to it while

semantic analysis refers to meaning representations assigned to sentences solely based on

knowledge gained from the lexicon and grammar. There are two common types of syntactic

2

parsing: dependency and constituency parsing [6]. A constituency parser breaks a sentence into

sub-phases based on phrase structure grammar while a dependency parser links words in a

sentence and assigns labels to these relations based on dependency grammar [6]. So, the focus

of this research is on dependency parsing for Afaan Oromoo sentences.

Dependency parsing characterizes the head-dependent relationship between words in a

sentence classified by functional categories or dependency relation type [7]. This enhances

semantic information and is better for ambiguity resolution because of the labeled relation

among the words. AO is a morphologically rich language [8]. Then, it is not simple to

understand the relations between AO morphemes. For instance, in “Caalaa n sang oota bit e.”

the issue of understanding each morpheme feature is not easy. But the relation types explicitly

clarify them as Caalaa n: NCM (noun class marker), sang oota: NUM (number), bit e: TNS

(tense) [8]. Additionally, words may represent different meanings in a given sentence based on

their arrangement. This implies the prevalence of misinterpretations of the word within a

sentence. Here, ‘Caalaa’ is in subject place, ‘sang’ is in object place and ‘bit’ is the Root

word of the sentence [9] [8].

The dependency parsing follows data-driven or grammar-based approaches [7]. The grammar-

based approach requires more knowledge of rules about the grammar of the language. In a data-

driven approach, the language patterns are obtained from the data set of the language. In this

approach, two methods are used to develop the dependency parser. Those are transition-based

methods and graph-based methods. The transition method is fast, simple, has less storage, and

works for projective languages [10]. While graph-based is more accurate than transition

systems [7]. In the case of the transition-based methods, transition techniques such as arc

standard, arc eager, arc hybrid, and arc swifts are seen. This arc standard uses three transition

actions and is faster and more effective than others [10]. A recurrent neural network that is

state of the art for relation and transition classifier is used. It learns from and performs on AO

sequential data. Additionally, among the RNN algorithms, the one which improves accuracy is

experimented with and identified for Afaan Oromoo dependency parser.

As a whole, it is fast as parsing is straightforwardly done on words without considering the

phrase structure of the sentences, grammar rules of words, or sentence formation [11]. It has

great advantages in other NLP application developments.

3

1.2 Motivation

Afaan Oromoo has a higher number of speakers [12]. It is also a regional working language.

Additionally, it is going to be the second working language in the federal working language.

So many peoples are also eager to learn the language. The relationships between words, and

among components of the words, have to be clearly stated for simplicity in learning. Also, it is

a good start to make or develop into computational language, hence upper levels used this

parser which states the relations between the words and within the word. Hence, developing

applications that clarify misunderstanding is very important. Furthermore, Google company

has recently recognized the importance of this language, and Google Translator has been

developed just for it. This is a decent start, but it isn't quite enough for the development of the

language. More effective NLP applications will be necessary to advance the language [3]. As

a result, the researcher motivated and conducted his study with syntactic analysis using AODP.

4

1.3 Statement of the problem

Afaan Oromoo is a popular language that is spoken by over 50 million people [12]. Currently,

it is the official language of the Oromia regional state. Both governments and societies are

attempting to develop the language to be added to the country's official language. The attempt

is to make both conventional and computer language. Even though Afaan Oromoo has a high

number of speakers, it is not matured enough and requires further study [12]. Many are

enthusiastic to learn the language but it is difficult to understand the details of the morphemes

information in the language. Knowing the patterns or cores of morpheme features is key to

mastering the language. Although constituent parsers were developed earlier, no one has tried

the dependency parser for Afaan Oromo previously. So the relations between the words and

within the words (at morpheme level) were unable to be clear for the language users. Hence

AODP was developed to fill the gaps in constituent parsers, and universal dependency parsers

by handling AO morphemes features. Next, in comparison with other parsers, compatible,

effective, and fast transition system (arc-standard transitions technique) was selected.

Additionally, in terms of the methodology using BILSTM for AODP makes it special in

handling the detailed relations in sequences of morphemes in the past and future [13]. The

details are discussed as follows by comparing with the previous works.

In syntactic analysis, there were earlier constituent parsers. It's slower because it's based on

phrase structure principles to analyze sentence structure [14]. Its relation isn't properly

represented by relation types, therefore it's difficult to provide the precise meaning between

words [15]. The relations between the morphemes and words are not stated using this parsing

technique but as phrase structure the way it works to form a sentence.

Language independent (universal dependency parsers) exist but are ineffective for

morphologically complex languages such as AO [16]. It was developed for English languages

and shows the ineffective result for such languages [17]. For morphologically rich languages,

adapting corresponding morphemes POS and the corresponding relationship is critical. If so

possible to handle the relationship between the morphemes.

Some morpheme-based parsers [18] were ineffective for local languages as it is not effective

to handle the details of language-dependent morpheme features. As a result, is not possible to

handle all the relations among the morphemes of the languages using other language-oriented

relations types. A limited number of the relationship between the morphemes restrict the

prediction of relations effectively for morphologically rich languages [15].

5

Some parsers [19] used rule-based traditional techniques in parsing, it is unable to extract the

language patterns and exhaustive to have the whole knowledge of the language to derive rules.

Some parsers used machine learning algorithms that are poor in feature extractions and less

language pattern recognition. The data-driven graph-based is used but not fast as a transition

based [20]. Here arc-standard transition technique is more effective from AO SOV word

arrangements, as the core word or root is found at the end of the sentence.

Eventually, dependency parsing acts as a prerequisite for NLP applications such as semantic

role labeling, relation extraction, machine translation, and language users can use it starting

from individuals to the whole society, etc. For instance, the grammar checker used it as input

and enhances its effectiveness both in social media and in organizations. [7]. As it has clear

which element is the head and which element is the dependent one explicitly through labels.

More semantic information.

1.3.1 Research questions

1. To what extent arc-standard transition system handles AO morphemes?

2. Why BILSTM is more effective than LSTM in AODP?

1.4 Objectives of the study

1.4.1 General objective

The general objective of the study is to develop Afaan Oromoo dependency parser using RNN

1.4.2 Specific objectives

To achieve the general objective stated above the following specific tasks are required.

 To review literature

 To develop the dependency Treebank.

 To develop a model for Afaan Oromoo dependency parser.

 To train and test the model.

 To evaluate the result of model performances

6

1.5 Methodologies

1.5.1 Literature review

Reviewing papers enables the researcher to understand the level of knowledge in the area of

the study and identify the gap that is not covered by previous works. Journal articles, books,

conference papers, and websites were kinds of literature reviewed.

1.5.2 Data collection and preparation

The data source was identified and collected to construct Afaan Oromoo treebank. So The data

was collected from various domains such as newspapers (FBC, VOA, OBN), books, websites,

magazines, etc [21]. Then, Afaan Oromoo words and sentences were collected from Afaan

Oromoo books such as sanyii, caasluuga, furtuu, and catrina [8] [9]. The books also served us

to get a better understanding of Afaan Oromoo language structure as well as to derive sentences

for our corpus. The data was prepared and tagged based on linguists' advice [22] [23] [2] [24].

First AO treebank was developed, then from the treebank, both configurations and head-

dependent corpus were constructed. It was classified into training and test data. Then, it was

used in the transition predictor and relation predictor sequentially.

1.5.3 Developmental tools

The model development tools include both hardware and software tools. Anaconda platform

with Python 3.7 programming language was used [25]. Deep learning framework, TensorFlow

is used at the back end and the Keras library is used at the front end [26]. Tensorflow stores

tensor data and have the flexible numerical computation core and flow of the operation which

can be useful in our case [26]. Keras library is very useful to work with RNN and convolutional

neural networks [25] [27]. It provides a clean and easy way to create deep learning models

based on Tensor flow. Additionally, we used python libraries such as Numpy, Matplotlib, etc

in the study. Ms word, notepad++, and Jupiter notebooks were editors used in this study. Edraw

max to design the model. Computer hardware CPU with Windows 10 OS was used.

1.5.4 Experimentation and testing

The models were constructed using prepared training and test data sets for both models. The

features were extracted and prepared for the models. RNN algorithms were used and we

experimented with LSTM and BILSTM to classify the transition type in model one and classify

the relation type in the relation predictor model [4].

7

1.5.5 Evaluation

Accuracy is used to measure the effectiveness of transition prediction and relation prediction.

The evaluation metrics such as Un labeled attachment score and labeled attachment score were

used to evaluate the results head, dependent from the first model, and head-dependents, the

label from the second model [7].

1.6 Scope and Limitation

The scope of the research includes dependency parsing for Afaan Oromoo projective

morphemes types. It is good at parsing inflectional and derivational morphemes. Not includes

non-projective and transitivity property of AO adjectives. This parser is not very effective for

special case morphemes. The model is unable to parse hyphened words and punctuation marks.

1.7 Application of results

The result of the developed model helps or acts as a preprocessor for higher-level Afaan

Oromoo NLP applications. Among them, semantic role labeling, identifies the argument,

especially, in the very first stage the pruning stage [3]. Next, it also helps in question answering

how a question is phrased and how sentences in documents are structured and potentially

provides important clues for the matching of the question and answer candidates in the

sentences. It also plays a great role in Grammar checking as it identifies whether a given

sentence will be parsed or not according to the grammar of the language. The messages between

the morphemes are seen, if correct accept, if not possible to understand from explicit relations

and have to be corrected accordingly. So, if parsed it is grammatically correct for that language.

Else, it has some errors [15].

8

1.8 Research Organization

The thesis is organized into seven chapters comprising an Introduction, Literature review,

related works, an overview of Afaan Oromoo dependency parser design, Experimentation &

Evaluation, and Conclusion & Recommendations. The first chapter gives a general introduction

to the study. The second chapter presents a review made on different works(literature)

regarding dependency parser (gives elaborations, knowledge on study area) together with its

approaches and different machine learning techniques. The third chapter discusses the related

works, the family of the study stated here to gain gab and fill it. The fourth chapter discusses

the overview of Afaan Oromo’s background knowledge and details of the language structures.

All about techniques of word-formation are mainly seen. The fifth chapter discusses AODP

design. It presents the algorithms and techniques used for parser development. Chapter six

tells about the experimentation and discusses the results. Chapter seventh presents the

conclusion and the recommendations as well as some directions for future works.

9

CHAPTER TWO

2. LITERATURE REVIEW

In this chapter, literature reviews elaborate on basic concepts in dependency parsing. Then it

enables the reader to understand the knowledge in dependency parsing. Later it guides to select

the articles and find out the research gap in the related work.

2.1 Morphology

Morphology is the study of the way words are built up from smaller meaning-bearing units,

and morphemes [35]. Words are produced by bringing together base forms and affixes (stems

and affixes). Affixes are also classified according to the result they produce. Derivational

affixes produce new words that may change the part of speech. They are usually also distinct

semantically from the original word [3]. Inflectional affixes produce new surface forms of a

given word. They don’t change its part of speech; they annotate the word with additional

syntactic information [2]. Languages generally vary in the degree to which they use word order

and morphological markers to highlight syntactic relationships.

2.2 Dependency Parsing

Dependency Parsing is the process to analyze the grammatical structure in a sentence and find

out related words as well as the type of relationship between them [7] [3]. The speakers of the

language have rules for calling morphemes with their patterns and the order of the words in

their minds. This implies that there is grammar in the speaker’s mind traditionally, Linguistics

has stated these rules earlier as the relationship between the words has been stated based on

some conditions or behaviors stated as characters of the head, dependents. hence the traditional

grammarians started to state forms for syntactic representation as paniaias [3] [15].

Unlike traditional grammar, today some languages are computational languages and machines

extract the relationships accordingly. Consequently, our final goal is also to enable machines

to generate the dependency tree or graph for a given sentence. Dependency structure is used to

show the head and modifiers for a given sentence [6]. If it was labeled it tells more about the

relation type among the head and modifiers.

10

Figure 2-1: Sample dependency structure

In the above figure, the arrows represent the dependency between two words in which the word

at the arrowhead points to dependent, and the word at the end of the arrow is head. The root

word can act as the head of multiple words in a sentence but is not a child of any other word.

You can see above that the word ‘bit’ has multiple outgoing arrows but none incoming.

Therefore, it is the root word. ‘Tolaa’ head for modifier ‘n’, ‘e’ is a modifier for root ‘bit’ [36]

[8] [2]. Constraints must be fulfilled by Dependency structures including Connectedness,

single-headiness, rooted, acyclicity, and projectivity behaviors of the words [15].

A dependency relation is a binary relation where a word, the dependent, depends on another

word, the head [37]. These dependency relations can be further divided into various types of

dependency, thus used to label the dependencies. Every word must have exactly one head and

can have zero or more dependents. To satisfy this requirement, an artificial word called root is

always added to each sentence which then acts as the head to the real head.

In dependency parsing, the tags represent the relation type between two words in a sentence.

Among word-formation morphemes, compounding, and word order not only rules but explicit

relation types are used. The number of tags is language-dependent. As of now, there are 37

universal dependency relations used in Universal Dependency, but languages can develop their

tags in addition to universal tags based on the language structures [17]. In the above figure, the

dependency relation is shown using the labeled graph. The relation type

between ‘bit’ and ‘Tolaa’ is nominal subject (‘NSUBJ’), ‘bit’ and ‘Hoolaa’ is the direct object

(‘DOB’), ‘bit’ and ‘e’ is tense (‘TNS’) [2]. As a whole, the dependents modify the headwords

through the labels and the root word from a given sentence is ‘bit’. Binary, directed or

antisymmetric, and anti-reflexive anti-transitive are conditions that must be fulfilled by the

relation types [15].

11

2.2.1 Approaches of dependency parsing

The approaches used in dependency parsing are roughly classified into grammar-based and

data-driven approaches [38]. The grammar-based is the traditional one. But today as deep

learning techniques using data-driven is preferable. The details will be as follows.

2.2.1.1 Grammar-based versus data-driven

 In contrast to the data-driven methods, grammar-based methods rely on explicitly defined

formal grammar [11]. It is exhaustive and requires more knowledge about the language

grammar to generate head, dependent relations among a given sentence [7].

2.2.1.2 Data-driven approach

The language structure and patterns will be obtained from the data. Dependency parser follows

either transition-based method or graph-based method with such working techniques [10]. Due

to this data-driven approach transition-based method performs well for projective languages

and the graph-based method works for non-projective ones [39]. The sequences of

configurations and transitions were used in the transition-based systems. Contrary, in the

graph-based method, the global information or the weight of the edge or arc is in consideration

and the optimal weight is selected [15]. An arc from a head to a dependent is said to be

projective if there is non-cross a path from the head to every word that lies between the head

and dependent in the sentence [15]. While projective is crossing arc pairs in a sentence. Mainly

seen in long sentences in which modifiers further head rather than nearby words in sequential

order of modifying [38].

2.2.1.2.1 Transition systems

A transition system is an abstract machine, consisting of a set of configurations (or states) and

transitions between configurations [40]. In such a manner the dependency graph is constructed

starting from the initial configuration to the final configuration by applying the sequences of

transition actions. The four frequently raised transition techniques used are arc standard, arc

eager, arc swift, and arc hybrid. They perform in different ways and their selection depends on

the structures of the languages [10].

Arc standard transition system is a simple, effective, and fast transition technique when the

operation is carried out within the stack only [10]. It uses 3 transition types shift, left arc, and

right arc [10].

12

The arc eager uses 4 transition types particularly shift, right arc, left arc, and reduce [40]. The

operation is carried out between the top of the stack and the buffer. Shift operation from the

word on top of the buffer to the top of the stack when the word has no relationship. The left

arc removes the word on top of the stack which is dependent on the headword. The right arc

shifts the word on top of the buffer to the top of the stack if there is a relation between the top

of the stack word and the top of the buffer. Reduce operation helps to remove already predicted

relation from the stack and is used to arrive at the root word [10].

2.3 Classifiers for transition types and relation types

The researcher focused on a neural network (RNN) that handles the natural language patterns

unlike the traditional techniques (rule-based and other machine learning techniques).

2.3.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a mathematical model that tries to simulate the

structure and functionalities of natural neural networks [27]. At the entrance of an artificial

neuron, the inputs are weighted. The next section of the artificial neuron is a sum function that

sums all weighted inputs and biases. At the end of the artificial neuron, the sum of previously

weighted inputs and bias is passed through an activation function and output is generated [41].

Figure 2-2: Architecture of ANN (Perceptron)

Deep learning algorithms are based on the concept of artificial neural networks. When many

hidden layers of the neural networks are used its performance also increases [26] [32]. The

deep learning approach is preferable as it can learn patterns from the data without explicit

feature extractions like other machine learning algorithms [42]. A deep neural network

provides state-of-the-art accuracy in many tasks. Deep Learning works in two phases forward

propagation to generate the output and backward propagation improving the model by updating

13

the weight by applying a mathematical method known as derivative techniques. The general

deep learning models follow the following pipelines [26].

Figure 2-3: How deep learning models work

At first, understand the problem you are going to solve using a deep learning approach. Next,

identify sources and develop a dataset. Select the best performing deep learning algorithm for

your data. Then, develop and train the deep learning model. Finally, test it and use it if it does

well.

2.3.1.1 Recurrent neural networks

 Traditional neural networks such as multilayer neural networks have a major limitation in

considering sequential data [13]. There are dependencies among the words in a sentence. But

multilayer neural network accepts them as independent of each other. To solve this constraint

recurrent neural networks (RNN) are proposed. Recurrent neural networks (RNNs) have been

widely used for processing sequential data [4]. Recurrent neural networks are multi-layered

neural networks that can store information in context nodes, allowing them to learn data

sequences and output a number or another sequence [41] [13]. Recurrent neural networks have

a memory about what has been calculated so far and use it on current output computation. RNN

works more based on nearby information while the initially inserted information will not

mostly be considered. This indicates that RNNs suffer from long-term dependency problems

[41].

Figure 2-4: An unrolled recurrent neural network.

14

2.3.1.1.1 LSTM

But there are also cases where we need more context information. Initially, LSTMs handle the

problems of long-term dependency, vanishing gradient, and exploding gradient in recurrent

neural networks [43]. The heart of a network is its cell state which provides a bit of memory to

the LSTM so it can remember the past. The LSTM can remove or add information to the cell

state, which is prudently regulated by configurations called gates [29]. They are composed of

an appoint-wise multiplication operation and a layer of sigmoid neural nets. Three of these

gates are present in LSTMs to monitor and adjust the cell state, and the sigmoid layer produces

numbers between 0 and 1 that indicate how much of each component should be permitted to

move [43]. LSTM's first step is to choose which information from the cell state to reject. The

forget gate layer, a sigmoid layer, decides on this activity. A number between 0 and 1 is output

for each number in the cell state Ct-1 after checking at ht-1 and xt. 1 characterizes ‘completely

preserve this’ while a 0 represents ‘completely get clear of this ‘. In the forget gate, a sigmoid

function takes in xt and ht−1 to decide how much information should be kept or dropped.

ft= 𝝈(wf([ht-1,xt]+bf)……………………………….……………………….2

Figure 2-5: A block of LSTM at any timestamp {t}

Among the types of cells forget gate cell determines to what extent to forget the previous data.

The input gate determines the extent of information being written onto the internal cell State

The next step is to decide what new information we’re going to store in the cell state [13].

it= 𝜎(wi([ht-1,xt]+bi)……………….……………..………….…………….1

15

Finally, the output gate determines what output (next hidden state) to generate from the current

internal cell state. Here are equations of gates that describe how it takes input and gives the

final output [13] [29].

ot= 𝜎(wo([ht-1,xt]+bo)………………………….……………..…………….3

2.3.1.1.2 BILSTM

Bidirectional LSTM is based on the idea that the output at the time may not only depend on the

preceding elements in the sequence, but also on future elements. It [29] resolves the problem

by having two different LSTM(BILSTM). From the two, the first LSTM is fed with the input

sequence while the second LSTM is fed with the input sequence in reverse. Next, the hidden

state is composed of both the forward and backward states. Each state representation consists

of the token information along with sentential context from both directions which has exposed

improved results than LSTM [13].

Figure 2-6: Forward and backward propagations in BILSTM

16

2.4 RNN model development phases

This gives the general pipelines to develop the RNN model in a simple way using the Keras

framework [4]. The network architectures have to be clearly stated and have to be configured.

So as indicated in deep learning model development the first step is to identify the data, based

on the data going to be trained, the deep learning algorithm was selected which can handle the

problem at hand [13]. Then the network or algorithm will be configured. Next, the designed or

configured network will be trained with the data and tested for performance. In addition to this

hyper-parameter are used and tuned in the training phase of model development. The models

accept different input features and follow Keras functional API model development techniques.

Figure 2-7: Steps in RNN model development using Keras

Based on this flow RNN model was developed. Defining the model is the initial step. Input and

output layers will be defined. The first layer becomes an input for the second one and arrives

at the output layer in the functional model [26] [25]. The next step is compiling the model

which refers to transforming the layers into a matrix to be executed by CPU or GPU. Next,

fitting the model is adapting the weight on a training dataset. Finally, evaluate the performance

of our model on a separate dataset that is unseen. Once satisfied with the performance of our

model then use it for the prediction of new data [25].

17

CHAPTER THREE

3. RELATED WORKS

Earlier, several studies have been carried out for both foreign language and local language

dependency parsers. It is possible to see the others work under universal dependency parsers,

morpheme-based dependency parsers, and transition-based dependency parsers using deep

learning as follows.

3.1 Universal dependency parsers

Stanford dependency parser [17] was implemented using a graph-based method which is not

as fast as the transitions system. It used LSTM for word embedding techniques and BILSTM,

baffiane classifier is used for relation predictions. It also used a single model, unlike others that

use two models in transition systems. Phase structure to dependency structure conversion takes

a long time and makes it not fast [44]. But it acts as a baseline in dependency parsers for others.

Those parsers can’t support morpheme information for morphologically rich languages. So,

scores less performance for such languages.

MST parser is also another graph-based parser. Those parsers can’t support morpheme

information for morphologically rich languages [39]. It scores less performance for such

languages. It is implemented using complex machine learning techniques which affect its

speed.

In malt parser a manual feature selection mechanism and adjusted by the user. It is machine

learning, not deep learning, and can’t support morphemes [16]. But, it can solve issues of

projective and non-projectivity as a strong side.

It(ensemble) [45] combines the parsing algorithms such as nivres arc eager, Nivre’s arc-

standard, and Covington’s non-projective model parses from left or right and vice versa. Seven

different models are used and each parser runs in its thread. It performs voting mechanisms

after parsing for the result. Then well-formed dependency tree is returned. This makes different

it different from malt parser. This indicates that it can’t support morphemes.

It(Clear Parser) [40] is more efficient and accurate than the malt parser because Clear Parser

differentiates between projective and non-projective structures and can avoid unnecessary

18

searches. Gold-standard annotation and automatically parsed trees increase the corpus. Hence

differ from malt parser.

3.2 Morpheme-based dependency parsers

Hebrew dependency parser is constructed from both transitions-based and graph-based parsers

[18]. They used POS features and morphological information but doesn’t show significant

improvement. Morpheme information has to be more and more for the sake of increasing its

performance.

It(Turkish) [19]is Rule-based dependency parsers are very restricted and can’t be applied to

other languages. But more performs if the rules are settled for the language accordingly. This

technique is not state of the art in terms of methodology hence deep learning can handle the

learn the features by itself. Setting the rules for the languages is also exhaustive.

The (Amharic) [20] investigated by using the arc eager transition system and LSTM network.

The study introduced another technique of building a labeled dependency structure by using a

separate network model to predict dependency relations. Evaluation of the parser model results

in 91.54 and 81.4 unlabeled and labeled attachment scores respectively on the Amharic

dependency tree bank.

Gasser [46] tried to develop the first dependency parser which is rule-based for the Amharic

language for the first language. but it was not implemented. The work introduced the grammar

of Amharic with the extensible dependency grammar framework of Debusmann.

3.3 Deep learning and Transition-Based Dependency Parsers

The researcher [47]introduced bidirectional transition-based dependency parsing. As a result,

Transition-based dependency parsing is a fast and effective approach for dependency parsing.

Bidirectional transition-based parsing learns a left-to-right parser and a right-to-left parser

separately. To parse a sentence, they perform joint decoding with the two parsers. Finally,

Experimental results show that this method leads to competitive parsing accuracy and this

method based on dynamic oracle consistently achieves the best performance.

Two models were used in this parser [48]. It is a transition-based parser using LSTM. and it

achieves competitive results with minimal features. But, the issue of considering future

sequences is not considered which initiates others to try BILSTM [48].

19

A Simple LSTM model for Transition-based Dependency Parsing was implemented using

LSTM and achieved a 93.06% unlabeled and 91.01% labeled attachment [49]. Additionally,

LSTMs were also replaced with GRUs and Elman units in the model to explore the

effectiveness methods [49].

Graph-based dependency parsing with a graph neural network was a powerful dependency tree

node representation that captures high-order information concisely and efficiently [50]. The

researcher has used use graph neural networks (GNNs) to learn the representations and discuss

several new configurations of GNN’s updating and aggregation functions. Then, the

experiments on PTB show that our parser achieves the best UAS and LAS on PTB (96.0%,

94.3%) among systems without using any external resources [50].

3.4 Summary

From the wholes, the earlier parsers don’t fulfill Afaan Oromoo dependency parser considered

factors such as morpheme information, Afaan Oromoo word order, fast and accurate transition

system particularly arc standard technique and better state of the art classifier BILSTM. So

Afaan Oromoo dependency parser was developed to fill the gap seen in such points of view.

The number of relation types that helps to tag the relations also increased in our study.

20

Table 3-1 : Summary of related works

No Articles Category Approach Method Performance

2 Stanford

dependency parser

Universal DL Graph-based 81.30%,

unlabelled

76.30% labelled

2 Malt-parser Universal ML Transition

based

 80–90%

3 A Dependency

Grammar for

Amharic

 - Rule-

based

- Not implemented

4 Transition-based

dependency parser

for Amharic using

DL

Morpheme DL Transition

system

91.54 and 81.4

ULAS,LAS

5 A Simple LSTM

model for

Transition-based

Dependency

Parsing

Transition DL Transition

system

93.06% , 91.01%

ULAS,LAS

6 Hebrew Both

Transitions-

based and

graph-

based

 - Transitions-

based and

graph-based

Doesn’t show

significant

improvement

7 Graph-based

dependency

- DL Graph 96.0%, 94.3%

UAS and LAS

21

CHAPTER FOUR

4. AFAAN OROMOO OVERVIEWS

Afaan Oromoo is a member of the Cushitic branch of the Afro-Asiatic language family ranking

the third most widely spoken language in Africa, next to Hausa and Arabic [36] [2]. It was

mainly spoken in parts of Ethiopia and neighboring countries. It is also the regional working

language of Oromia as well as the educational language for elementary schools. Additionally,

it was given as a field of study in the universities. Currently, it is pending to be added to the

national working language next to Amharic [51]. Despite Afaan Oromoo having a long history

and well-developed oral tradition, it remained an unwritten language for a long period [9]. But,

today, Afaan Oromoo is a written language, public media, social issues, religion, political

affairs, technology, and a working language, and then it is further under study to make a

computational language. For instance,Afaan Oromoo Google Translate is applied. Afaan

Oromoo uses Latin letters (qubee) for writing purposes [24]. In addition to 26 English

alphabets, Qubee uses a combination of characters (Qubee dachaa), which is pronounced as a

single character with the tongue curled back slightly. Those Afaan Oromoo Qubee dachaa are

‘ch’, ‘dh’, ‘ny’, ‘ph’, ‘sh’, and ‘ts’ [24]. Like English, Qubee uses consonants and vowels (a,

e, i, o, and u) [24]. next, Afaan Oromoo words are formed using those letters based on the

language details.

4.1 Afaan Oromoo Word formation

Morphology and compounding are the two main ways Afaan Oromoo words are formed.

Derivational morpheme changes the word class and enhances the vocabulary of the languages

[36] [23]. While inflectional morphemes add features to the word class but don’t change it.

4.1.1 Afaan Oromoo morphology

Afaan Oromoo is morphologically-rich as it has a high morpheme-per-word ratio. This implies

the number of both derivational and inflectional morphemes added to the base morpheme or

lexicon is very high and needs more linguists to study [8]. The corpus is developed based on

this ground then machines enable to train and understand the language. For more

understanding, the following AO morpheme types are very important. The two main types of

AO morphemes [8].

22

4.1.1.1 Free morphemes (independent morphemes)

Those are the types of morphemes that can’t be derivate or inflected but are used to Keep

language structures. An independent morpheme is composed of one morpheme hence it can be

subdivided [22].

Table 4-1: Lists of some AO independent morphemes

NO Morphemes NO Morphemes

1 Copula 10 Adverbs

2 Cardinal numbers 11 Comparative

3 Indefinite quantifiers 12 Superlative

4 Pronouns 13 Adjectives

5 Pre-positions 14 Indefinite pronoun

6 Postpositions 15 Independent parapositions

7 Jussive 16 Pre-positions

8 Conjunctions 17 Negation

9 Independent conjunctions 18 Cardinal numbers

4.1.1.2 Dependent morphemes

 Those are the types of morphemes that can be subdivided into stems and affixes. The affixes

will be either derivational or inflectional morphemes [8].

4.1.1.2.1 Derivational Affixes in Afaan Oromoo

Afaan Oromoo word classes mainly derived are nouns, verbs, and some adjectives. It is helpful

to increase the vocabulary of the language [23]. The process of word-formation from nouns,

verbs, and adjectives is termed nominalization, verbalization, and adjectivization in order.

Different root words and affixations result in various types of nouns, verbs, and adjectives [8].

4.1.1.2.1.1 Nominalization

Nominalization is the process of forming nominals from different word categories. In Afaan

Oromoo, there is a large stock of nominal derived from adjectival, verbal, and nominal bases

[23]. The noun root or stem will be from a noun, verb, or adjective hence called a stream root,

and the suffix will be stream suffixes. The relation generated between the root word and suffix

will be described as a stream. As the types of nouns differ, the noun formation suffixes also

differ. For instance, an Abstract noun has abstract forming suffixes. nort represents all types

23

of words formed from words with a noun, verbal and adjective parts of speech and serve root

words in noun formation and nofsu are suffixes used on those root words, and the details are

described in the following table [36].

Table 4-2: Sample-derived nominals

No Types of noun Root word Nofsu Examples

1. Abstract noun

Adjectives

-ummaa

-uma

-ennaa

Gaar- ummaa: Gaarummaa

Gamn- uma: Gamnuma

Add-eenna : Addeenna

2. Process or action noun Verbal -icha

-aatii

-sa

Fiigicha: Fiigicha

Dhug-aatii: Dhugaatii

Qot-iisa : Qotiisa

3. Result nominals Verbal -sa

-aatii

-aa

Abaar-sa: Abaarsa

Dhug-aatii: Dhugaatii

Kenn-aa: Kennaa

Here, representing nominalization using the following word formation rules.

Figure 4-1: Nominalization of word formation rules

4.1.1.2.1.2 Verbalization

Verbalization is a process of forming verbs using various Afaan Oromoo word categories.

Verbs are mainly derived from nouns, verbs, and adjectives [23]. Then it is possible to get

various types of verbs which include causatives, states, reflexives, passives, etc.

Table 4-3: Sample-derived verbs

No Types of verb Root word Nofsu Examples

1. Auto benefective Verbal -at- Bit-ate : Bitate

2. Causative Verbal

Nominal

Adjectival

-siis-

-is-

-s

Mur-siis : Mursiis

Raff-is : Raffis

Malaa-s : Malaas

24

Here, representing Verbalization using the following word formation rules

Figure 4-2: Verbalization word formation rules

4.1.1.2.1.3 Adjectivization

Adjectivization is a process of forming adjectives from different word categories. In Afaan

Oromoo, Adjectives will be derived from adjectival, verbal, and nominal bases[23]. The

problem is how to determine the category of the roots or base to which suffixes are attached.

Table 4-4: Sample-derived adjectives

No Types of adjectives Root word Nofsu Examples

1. Nominal adjective Noun

 -essa-

-ttii

Soor-essa : Sooressa

Soor-ettii : Soorettii

2. Verbal adjectives Verbal -at- Diim-at-aa : Diimataa

Here, representing Adjectivization using the following word formation rules

Figure 4-3: Adjectivization word formation rules

4.1.1.2.2 Inflectional affix, number, gender, and tense are seen

4.1.1.2.2.1 Inflectional affixes in Afaan Oromoo

Those are morphemes that add features or information to the root words but can’t change the

word category [2]. The features will give the needed messages based on the root they attached.

For example, the tense can support tense, number and gender features, and the like.

25

Table 4-5: Sample feature information in AO

No Root word Suffixes Features Examples

1. noun -oota, -lee, -ota, -wwan

-n

Number

Case

Hool-ota: Hoolota

Tolaa-n : Tolaan

2. verb -an

-t-

-e

Number

Gender

Tense

Deem-an: Deeman

Bit-t-e: Bitte

Figure 4-4: AO features representations

4.1.1.2.3 Afaan Oromoo Special morphemes

It was categorized as it is not familiar in the above cases but used in this study. Afaan Oromoo

free morphemes are inclusive under this category [22]. Independent morphemes and

dependents other than derivational and inflectional are seen here. For instance, particles,

comparatives, and focus markers are the few ones [22].

 26

4.1.2 Compounding

Compounding is the second way of Afaan Oromoo word formation as combining various Afaan

Oromoo word classes [23]. The following table shows sample Afaan Oromoo compound word

formations.

Table 4-6: Sample AO compound words

No Compound words First word Next word Examples

1. Noun noun Noun Noun Abbaa buddeenaa

2. Noun adjective Noun Adjective Sanbata guddaa

3. Verb noun Verbal Noun Qotee bulaa

Figure 4-5: AO compound word formation rules

4.2 AO Treebank

AO treebank was constructed from those details of morphemes, POS, relations, features, etc.

Developing Afaan Oromoo treebank requires more study, time, and budget.

4.2.1 Afaan Oromoo POS

It is mandatory to tag each morpheme with the intended part of the speech. Then later it is used

as one feature in the development of AO dependency parser. It is possible to develop a more

specific POS which represents each morpheme or generalize related morphemes with one

representative POS as stream POS. The following specific POS tags are derived from each first

word while the stream AOPOS generalizes the related morphemes into a single POS.

 27

Table 4-7: Specific and Stream AOPOS tag

No Specific AOPOS Abbreviations Stream AOPOS

1. Abstract noun abno nort

2. Process or action noun acno

3. Result noun reno

4. Gerundive noun geno

5. Manner noun mano

6. Instrumental noun inno

7. Agentive noun agno

8. Auto benefective verb auv vert

9. Causative verb cav

10. Stative verb stv

11. Passive verb pav

12. Noun noun nncon cono

13. Noun adjective nacon

14. Adposition noun ancon

15. Verb noun vncon

16. Noun noun Nncoa coad

17. Noun adjective nacoa

18. Noun numeral nucoa

 28

4.2.2 Afaan Oromoo Relations

Generated based on the above morphemes POS and word orders. It will be either stream

relations or specific ones. Here are some of AO relations in the following tables.

Table 4-8: Afaan Oromoo sample relation types

No Relations Abbreviations

1. Personal pronoun PEPN

2. Interrogative pronoun WHPR

3. Pronoun PRON

4. Negative NEG

5. Focus class marker FCM

6. Person PERS

7. Adjective complement ADCOM

8. Adposition ADP

9. Adverb ADV

10. Order ORDER

11. Demonstrative pronoun DEPR

12. Auxiliary AUX

13. Cardinal number CANO

14. Case CASE

15. Coordinating conjunction CCONJ

16. Conjunct CNJT

17. Compound noun CNON

18. Compound adposition COAP

19. Copula COPULA

20. Definite article DART

21. Direct object DOB

22. Double genitive DOGE

23. Gender GEND

24. Interjection INJ

25. Instrument INST

26. Indirect object IOBJ

 29

4.3 Sentence structure

Afaan Oromoo sentence structures follow subject-object-verb (SOV) word arrangements [2].

In this case, the subject comes first, the object second, and the third verb [22]. Here it is possible

to predict the relations ship based on the word sequences. For instance,’ Margaan re’ee qale.’,

‘Margaa’ is a subject place, ‘re’ee’ is the object place and the ’qale‘ verb which carries the

messages of the sentence comes at the final place [8]. This implies the Afaan Oromoo Root

word comes at the end of the sentence

 30

CHAPTER FIVE

5. AODP MODEL DESIGN

This chapter describes the architecture of the overall AODP system. The parser was developed

from the two sub-models transition predictor model and the relation predictor model. Next,

each model was developed from both Afaan Oromoo dataset and RNN models configured. The

dataset is both word and POS parts and it was represented in vectors. Then, the first model was

trained for transition prediction while the second was trained for relation prediction. In the first

model, it was trained using an arc-standard transition system. Finally, both models were tested

to check their performance. Generally, the models, input features, output features, RNN

algorithm, and the flows of activities were shown as follows.

Figure 5-1: General architecture for the AODP system

 31

5.1 AO Treebank

AO treebank was constructed from the details of AO morphemes types and features, POS,

Relations, etc. [8]. The data was collected, preprocessed, and converted into vectors input

features for the two models as configurations and head-dependents. It was more understandable

when it was represented using the CONLL format [7]. Unlike universal parsers, the researcher

used a few attributes of CONLL as NO, WORD, POS, HEAD, and RELATIONS. So, ‘No’

represents lists of index numbers for words or morphemes. ‘Word’ shows the words or

morphemes used. Part of the speech of each word was stated under the ‘POS’ column. The

numbers under the ’HEAD’ columns indicate the index number of a word it modifies, Finally,

the relation between the word and its head was stated under the ‘RELATION’ field [7]. Both

models' feature was extracted from this AOTB and described in the following manner.

Table 5-1: Sample AO Treebank

5.1.1 Configurations

Configurations are constructed from stack, buffer, and transitions [49]. For the sake of training

the first model, the configurations are derived from the general AOTB and input features are

stated using stack, buffer, and its corresponding transitions. The set of configurations (Ci to

 32

Cf) and the set of corresponding transitions (Ti to Tf) were used for model development. But,

for the test model, the configurations were used without having transitions.

5.1.2 Head-dependents dataset

Here the labeled head-dependents are extracted from the AOTB for training the second model.

Head is the governing or the basic word while dependents are the modifiers of the headwords

within a given sentence. In the test phase the head, dependent features without relation type are

used. The number of relation types varies in different dependency parsers. So, the relation

predictor model predicts the relations for a new sentence from the given alternatives of relation

types.

5.1.3 Data Collections

A balanced corpus is very important to handle the details of morphemes. So, the data was

collected from diversified sources such as newspapers (FBC, VOA, OBN), books, websites,

magazines, etc. [21] [22]. For instance, FBC (fana broad casting corporate) includes sport,

health, business, technology domains, etc. Additionally, exemplary sentences are obtained

from Afaan Oromoo books such as Furtuu, Semmoo, Catrina, and Sanyii which represent

morpheme types [8] [9]. In summary, AOTB was developed from 500 sentences. From the

treebank around 5220 configurations and 1415 head–dependents were generated.

5.1.4 Data Preprocessing

Both features for the two sub-models have to be represented accordingly in both training and

test phases. In the training phase, the features were derived from the AOTB. But for parsing a

new sentence, the sentences have to be morphologically analyzed, POS tagged and represented

into vectors before being fed to the models. In this study, sentences were manually tokenized

into their morphemes and tagged. But, the existing AO morphological analyzers and POS

taggers have been seen and referred as a preliminary point. But, it is not fully comprehensive

to handle the issues in this study [52] [53].

5.1.4.1 Word to vectors

The main goal of word-to-vector representation is to increase network capacity for learning

from textual data [4]. The two major types of word representation means are prediction-based

approaches that assign probabilities to measure the degree of relatedness and frequency or

 33

count-based approaches that use co-occurrence of words [13] [4]. Particularly one-hot

encoding and word embedding (Keras embedding layer) was applied for this study as follows.

5.1.4.1.1 One-hot encoding

The words are encoded into a one-hot vector using this encoding method [54]. The one-hot

vector, which is a series of one and zero, indicates words that are the same size as the

vocabulary size of the input data. If the word is available, one is allotted; otherwise, zero is

given to all sequences. These are sparse, high-dimensional vectors [4].

5.1.4.1.2 Word embedding

Word embedding is also used to convert words into their corresponding vectors [4]. These

methods are employed to produce low-dimensional models. Low-dimensional vectors are those

in which the vocabulary size, as opposed to the dimensionality size, can be specified. In contrast

to one-hot vectors, dense vectors have no zeros in any of their components (features).

5.1.4.1.2.1 Keras embedding layer

Words were transformed into their appropriate vector representations using the word

embedding layer of the Keras Python package [39]. The word embedding layer was created in

Keras as a component of deep learning. With each iteration, the representation of all words is

gradually learned by assigning a random value to the first layer. This layer is used to create

dense representations and low-dimensional models [4].

 34

5.2 Transition predictor model development

This was the first sub-model from the general AODP. The model was developed from both

configurations and designed RNN algorithm. The transition predictor model is not only

configured RNN but when designed RNN was trained with the dataset then it makes the

transition predictor model. For this model development, Afaan Oromoo treebank was

developed. From this general treebank, specific input features for this model were derived. This

feature is configurations. The configurations used for the model training include both word and

part of speech part of the morphemes. The words are stored in elements of configurations

(stack, buffer) based on the types of transitions applied to each configuration. The training and

test data were prepared from such Configurations. Hence, it was split into training and test data.

So input features for the model developments are specifically, stack word, stack POS, buffer

word, buffer POS with the types of transitions. Then, the features were represented into vectors

as the deep learning model understands the numeric representations (vector) form of words. As

a result, it enables the model to extract the features from the language patterns. So, the model

trains from the given data set, using parameterized RNN algorithm, and in such a way transition

predictor model was developed. On another hand, the trained model was tested for unlabeled

configurations and the model performance was seen. The model was tuned with hyper

parameters and saved with effective performance. Then evaluate the model performance using

accuracy to measure the effectiveness of transitions predictions and Unlabeled attachment

score (UAS) to measure the number of correctly attached head-dependents for a given sentence

[7]. Finally, the model was seen as effective in transition predictions for new input sentences.

The first model's overall output is used as input for the second one to gain the needed relation

type between the words.

 35

Table 5-2: Sample input features for the model

Stack Buffer Transitions

[]

[Caaltuu]

[Caaltuu n]

[Caaltuu]

[Caaltuu dheengadda]

[Caaltuu dheengadda huccuu]

[Caaltuu dheengadda huccuu

haphii]

[Caaltuu dheengadda huccuu]

[Caaltuu dheengadda huccuu

bit]

[Caaltuu dheengadda bit]

[Caaltuu bit]

[bit]

[bit t]

[bit]

[bit e]

[bit]

[bit .]

[bit]

[]

[Caaltuu n dheengadda huccuu haphii bit t e .]

[n dheengadda huccuu haphii bit t e .]

[dheengadda huccuu haphii bit t e .]

[dheengadda huccuu haphii bit t e .]

[huccuu haphii bit t e .]

[haphii bit t e .]

[bit t e .]

[bit t e .]

[t e .]

[t e .]

[t e .]

[t e .]

[e .]

[e .]

[.]

[.]

[]

[]

S

S

RA

S

S

S

RA

S

LA

LA

LA

S

RA

S

RA

S

RA

RA

 36

5.3 Relation predictor model development

This was the second sub-model in AODP which was designed to predict the relationship

between the morphemes and tag them with relation type. The Relation predictor model is not

only configured RNN but when configured RNN was trained with (head, dependent: label)

which generates a Relation predictor model. This model development activity follows similar

pipelines to the first model but input features used in this model are lists of the labeled heads

and dependent words with their POS tag. From this general Afaan Oromoo treebank, specific

input features (head, dependent: label) were derived. This feature contains lists of both words

and parts of speech from the data. The training and test data were prepared from such a dataset.

Hence, it was split into training (head, dependent: label) and test (head, dependent). Then, the

features were represented into vectors using a one-hot encoding and embedding layer before

being fed to the RNN algorithms for training and testing. Next, the model trains from the given

data set, using parameterized RNN algorithm, and in such a way Relation predictor model was

developed. On another hand, the trained model was tested for unlabeled heads-dependents and

the model performance was seen. Then evaluate the model performance using accuracy to

measure the effectiveness of relation predictions and labeled attachment score(LAS) to

measure the number of correctly attached head-dependents: relations types for a given sentence

[15] [38]. Finally, the model was seen as effective in relation prediction of new input sentences

accordingly.

Table 5-3: Sample input features for the mode2

List of head-dependent POS of head-dependents Relation type

[caaltuu n]

[huccuu haphii]

[bit huccuu]

[bit dheengadda]

[bit caaltuu]

[bit t]

[bit e]

[bit .]

[prno noca]

[noun adjb]

[vert noun]

[vert adv]

[vert prno]

[vert gnd]

[vert tens]

[vert punc]

NCM

ADJ

DOB

ADV

NSUBJ

GNDR

TNS

PNC

 37

5.4 Parsing phase System

This phrase describes the actual process to extract the relationships types among the words for

a given new sentence. To realize this phase, a given sentence has to be morphologically

analyzed. Each detail of the morpheme information within the words has to be handled. Next,

it was very important to assign part of the speech tag for those morphemes. Currently, the

researcher used manual techniques for both morphological analysis and tagging due to the lack

of an Afaan Oromo natural language processor in the case. The configurations include features

such as stack, buffer, and the relation types used. So the first configurations are obtained from

input sentences. Then, parsing starts from initial configurations.

Deep learning algorithms only deal with vector representations of words [4]. Hence, those

features (first model and second model) were represented in the numeric form using the one-

hot encoding technique [4]. Each Vocabulary in the features was represented in vector form.

Later it was embedded using embedding layers also [4]. After formatting the features for the

model accessible, the first configurations Ci (test feature) is sent for the first model. Then, the

model predicts the transition types going to be applied to the configuration. Next, using the arc

standard transition system the next configuration (Cm) was generated. Then, the processes

follow similar conditions until to get the final configurations (Cf). Eventually, from the first

model full configurations (Ci to Cf) and transitions (Ti to Tf) were obtained. In the end, an

unlabeled tree (dependency graph) was generated from the first model. Then the task of relation

types predictions for head-dependents generated by the first model was performed by the

second sub-model. Finally labeled head, dependent with relation was generated as the final

output for AODP as follows.

 38

Figure 5-2: Generalized parsing steps(phases)

5.4.1 How does the arc-standard transition system work?

Arc standard transitions system works on sets of configurations and transitions [10]. It applies

the transitions to arrive from Ci to Cf. From this to gain the next configuration or intermediate

configurations we use the selected transitions. Among them we may use three types of

transitions do so. The initial configurations have an empty stack, but an artificial root (ROOT)

is added to it. The buffer has a list of words (w1, w2, w3…wn). It has no arc or transitions(Ti)

assigned at this level. From this Ci feature, the transition is predicted and the next

configurations (Cm) were constructed. Finally, the last configurations were generated as it has

artificial Root only in its stack, empty buffer ([]), and no transitions also [10]. Generally, the

three transition types used in arc-standard works are as follows. Assuming i, and j are the two

nodes on the top of the stack and the types of arcs l (transitions) are stored to A (arc).

A. LEFT-ARC (LA) adds a dependency arc (j, l, i) to A, where i is the node on top of the

stack (σ) and j is the second node on top of the stack. So it pops the second node j from

the stack.

 39

B. RIGHT-ARC (RA) adds a dependency arc (i, l, j) to A, where i is the second node on

top of the stack(σ) and j is the first node on top of the stack. So it pops the first node j

from the stack.

C. The transition SHIFT removes the first node i in the buffer β and pushes it on top of

the stack (σ).

In such a way, for each Ci to Cf, the corresponding Ti to Tf was predicted. Based on this

the arc standard algorithm generates an unlabeled tree with a head-dependents.

Representations of transitions in the following table (0: SHIFT, 1:LA and 2 : RA).

Table 5-4: Arc-standard transition system on configurations

Stack Buffer Transitions

[ROOT] [margaa n foon dheedhii hin nyaat u .] 0

[ROOT margaa] [n foon dheedhii hin nyaat u .] 0

[ROOT margaa n] [foon dheedhii hin nyaat u .] 2

[ROOT margaa] [foon dheedhii hin nyaat u .] 0

[ROOT margaa foon] [dheedhii hin nyaat u .] 0

[ROOT margaa foon dheedhii] [hin nyaat u .] 2

[ROOT margaa foon] [hin nyaat u .] 0

[ROOT margaa foon hin] [nyaat u .] 0

[ROOT margaa foon hin nyaat] [u .] 1

[ROOT margaa foon nyaat] [u .] 1

[ROOT margaa nyaat] [u .] 1

[ROOT nyaat] [u .] 0

[ROOT nyaat u] [.] 2

[ROOT nyaat] [.] 0

 40

CHAPTER SIX

6. IMPLEMENTATION AND EVALUATION

The designed Afaan Oromoo dependency parser was implemented and evaluated in this

chapter. This phase describes ways to arrive at the result. Moreover, implementation setups

used in this study are dataset(features), word to vector representations algorithms, hyper-

parameters, RNN algorithms, etc. Initially, from AO treebank features were derived and

represented into features for the two models. Next, the features were represented into vectors

and then fed to the models. RNN algorithms (LSTM and BILSTM) had been experimented and

the best performing one was selected for the two sub-models. In the end, the result was

discussed in comparison with other parsers using evaluation metrics.

6.1 AO Treebank

From the Afaan Oromoo developed treebank input features for the two models were extracted

and used. The first model uses a set of configurations while the second one uses a labeled head,

dependent. The data was split into the training and test data for the two sub-models.

6.1.1 Word to vector representations of the data

One hot encoder and word embedding specifically the Keras embedding layer was used in this

study for the two sub-models of AODP.

6.1.1.1 One hot-encoding

All vocabularies found in the features are represented into vectors using Keras one-hot

encoding library. This results in sparse dimension representations of the vocabularies [43] [4].

6.1.1.2 The embedding layer

This embedding layer takes one-hot encoding features and minimizes the sparse dimensions of

vector representations into dense ones. So this layer is used to extract the semantic relationships

among the vocabularies(words) [4] [13].

 41

6.2 Hyper-parameters used in the two sub-models

Hyper-parameters are variables that verify the structure of the neural network models and

determine their performance [48] [10]. The hyper-parameter used for the two sub-models of

AODP is summarized in the following table.

Table 6-1: Hyper-Parameter used

Hyper-parameter value

LSTM units 256

BLSTM units 256

Epoch 100

Dropout rate 0.5

Word embedding dimensions 100

Loss functions Categorical cross-entropy

Optimization algorithm Adam

Activation function out-put layer softmax

Activation function hidden layer Relu

Batch size 32

 42

6.3 Transition predictor model development

This sub-model was the result of both dataset and deep learning algorithms configured(RNN).

To gain this model first, the training data sets were identified and represented. Next, the RNN

model was defined and trained with the prepared data.

6.3.1 Data set (features) used

Neural network or deep learning algorithms works with numeric values only. There were 3840

instances configurations for training data and 1170 for evaluation purposes. Hence, the features

were represented with numbers using various techniques. For instance, one hot encoder is used

in this study. Configurations were converted to features such as stack word, stack POS, buffer

word, and buffer POS, with corresponding transitions converted to numeric values using a one-

hot encoder [4]. Next, the sequences were padded and represented with a Numpy array.

6.3.2 Developing the RNN model

Next to data preparations the network model was developed through the following steps [13].

6.3.2.1 Define the model

Defining the model means, selecting, arranging, parameterizing, and tuning the neural network

algorithm as its optimal for problem-solving [4]. So, here were the details for AODP using

Keras functional API. The input layer was defined and the dimensions of input features with

their sequence length are used as a parameter. Next to embedding layer accepts input features

from input layers. Then, Keras embedding layers were also used to represent the words into

vectors. The dot product of word and POS parts of each feature (stack, buffer) was obtained.

Then the stack and buffer of those features are fed to independent RNN algorithms (LSTM or

BILSTM). Then, they concatenated and generates another hidden layer output. Finally, this

was fed to the output layer TDD for transition predictions. Through this, important parameters

for the RNN algorithms were used. The number of nodes (256), Relu-activation functions for

hidden layers, and softmax activation for the output layer was used.

6.3.2.2 Compile the model

In this phase, the Adam optimizer was used for weight updating, and the categorical cross-

entropy loss function to calculate the difference between target output and model output [54].

 43

Figure 6-1: Compile transition prediction model

6.3.2.3 Fit the model

Fit the model with four configuration features and its label transitions, 100 epochs used,

validation data (unlabeled configurations with transitions were used), etc. Hence with such

tuning parameter of the model then saved it with its better performance [54].

Figure 6-2: Fit transition prediction model

6.4 Relation predictor model development

This model development follows transition predictor model development pipelines except for

the types of input features and parameters used in RNN development [4]. Under this model

development, input features were a set of head-dependents labeled with relations for training.

6.4.1 Data set (features) used

There were 1000 instances labeled (head, dependents) for training and 415 for evaluation

purposes. Features were converted to lists of the word, POS of the (head, dependents) features

with corresponding relations. Then it was converted to numeric values using a one-hot encoder

and represented with a Numpy array [13].

6.4.2 Developing the RNN model

This follows the same steps as done in the transition predictor model.

6.4.2.1 Define the model

The model was defined using Keras functional API [13]. The word, POS features of the head,

POS was fed to the input layer. The input layer was defined and the dimensions of input features

(1000 for training and 415 for the test were used) with their sequence length (20) are used as a

parameter. Next to embedding layer accepts it. The dot product of the word and POS parts of

each feature was obtained. Then, the dot product of word and POS was obtained and fed to

 44

RNN algorithms (LSTM or BILSTM). Next, it generates another hidden layer output. Finally,

this was fed to the output layer TDD for relation predictions.

6.4.2.2 Compile the model

 In this case, Adam optimizer for weight updating, and the categorical cross-entropy loss

function were used to calculate the difference between target output and model output [25].

Figure 6-3: Compile relation prediction model

6.4.2.3 Fit the model

Fit the model with head, dependents feature, and its relation, epochs 100, and validation data

(unlabeled head, dependents used) [25].

Figure 6-4: Fit relation prediction model

6.5 Parsing phase

The sequence of input words has to be synthesized into morphemes and tagged accordingly.

The first configuration (Ci) is generated initially. Then, the transition predictor model uses

these features and predicts the next transition. Furthermore, using the arc standard transition

system, the next configuration is constructed. Again the configuration is sent for the transition

predictor model. The process continues in such a manner until final configurations are gained.

Figure 6-5: Sample configuration generated Ci to Cf with its transitions

 45

Based on the above-generated configurations the following un-labeled trees were generated. It

is used as input for the second model for predicting its relations. Next, head and dependents

are obtained as output from this model and used by the relation predictor model as input.

Finally, it was labeled and (Head, dependent, relation) was obtained.

Figure 6-6: Sample head, dependent generate

6.6 Experimentations and Models Evaluation

 Here experimentations were carried out among RNN algorithm LSTM and BILSTM using the

same parameters and input features for the two models. Hence in the two models, the accuracy

of predicting the transition type and relation type increased using BILSTM. For transition

prediction, the experiment was carried out using 3840 instances of training data and 1170

evaluation data. For relations predictions, 1000 labeled (head, dependents) for training and

415 (head, dependents) were used for evaluation. Even though RNN algorithms was effective

in transition prediction models the experimental result shows the following differences in using

LSTM and BILSTM.

Figure 6-7: Show result of using LSTM for transition predictions

The first model or transition predictor shows more effective results using BILSTM than using

LSTM as indicated below.

Figure 6-8: Show result of using BI LSTM for transition predictions

 46

On the other hand, the effectiveness of relation prediction in the second model was shown using

accuracy as evaluation metrics as follows.

Figure 6-9: Show the result of using LSTM for relation predictions.

On another hand, like the transition predictor model, using BILSTM is more effective in

relation predictions also.

Figure 6-10: Show result of using BILSTM for relation predictions

On another hand, evaluation metrics such as unlabeled attachment score (UAS) and labeled

attachment scores (LAS) were used to measure the output of both the first and second models

sequentially. From the transition predictor model, it was evaluated how many heads are

attached to their dependents correctly using the unlabeled attachment score. Then, the relation

predictor was evaluated for the number of correctly attached heads, and dependents with their

label.

LAS =
 The number of correctly predicted heads,dependents with their dependency relations

Total heads,dependents,and dependency relations.
 *100 [7]

UAS =
 The number of correctly predicted heads,dependents

Total heads,dependents
*100 [7]

On the whole, the following result using BILSTM.

Figure 6-11: shows the results of labeled and unlabeled attachment score

 47

6.6.1 Sample output for input sentences

Here is a sample output for sentences the first six were correctly parsed and assigned

relationships but the last two were incorrect. The first four relations correctly parsed represent

adjectives (ADJ), and the next two relations represent the tense (TNS). The last two were

incorrectly parsed as noun class modifiers but the first one actual relation type represents tense

and the last one represents gender.

Table 6-2: Sample output for input sentences

6.7 Result and Discussion

6.7.1 Results

Generally, from the experimentation, we have got the following results. The result has summarized in

the following table for the two models and values obtained by applying the RNN algorithm to them. On

the whole, BILSTM is seen as it performs better and the score for the head-dependent attachment

without relation is 60% UAS, and for the correctly labeled head-dependents score is 40% LAS.

Table 6-3: Accuracy for the two models using LSTM and BILSTM

No RNN Algorithms Transition predictor model

(first model) accuracy

Relation predictor model

(second model) accuracy

1 LSTM algorithm 89% 69%

2 BILSTM algorithm 90% 71%

 48

6.7.2 Discussions

In this study, the Afaan Oromoo dependency parser was implemented using RNN. The model

was created to solve the ambiguity of the morphemes at the syntax level. So, two sub-models

were implemented separately for the success of the parser. Afaan Oromoo treebank was

developed from scratch, and input features configurations and labeled (head-dependent) were

derived from the treebank for the sub-models development. In this study, the number of Afaan

Oromoo POS tags and relation types used was increased. Although the model performance

decreased with increasing the number of relation types, the parser used 61 relation types.

Universal dependency parsers and others are not effective for Afaan Oromoo. They used fewer

relation types than the Afaan Oromoo dependency parser. It also works at a word level, this

decreased the level of morpheme clarity or ambiguity resolutions.

Amharic [20] transition-based dependency parser used LSTM algorithm, arc-eager transition

system. But Afaan Oromoo word order is more related to arc-standard algorithm. Both Afaan

Oromoo word orders and most Afaan Oromoo morphemes types did not show transitivity

properties [8] [2]. Transitivity properties are seen if the head of the morpheme has another head

[15]. For instance, this behavior was seen in some Afaan Oromoo morphemes especially in

derivational Afaan Oromoo adjectives [8]. For such seldom cases, the arc-standard transitions

system is not effective. Moreover, using such a transition system enhances its importance in

the study for its effectiveness and simplicity [10].

In this sub models , RNN algorithm were used and overcomes the limitations of multilayer

neural networks by capturing the information in the sequences of words [4] [13]. Hence, the

RNN algorithm which is state of the art to learn sequential data was implemented [4]. The

experimental result shows using BILSTM for the Afaan Oromoo dependency parser is more

effective than using LSTM. LSTM has memory or cells which are called gates to manipulate

the input and output information [55]. This enables it to manage long-term dependency more

than RNN. Next, using BILSTM enhances LSTM performance by considering the past and

future information of the morphemes [29]. The effectiveness of the model increases with the

amount of Afaan Oromoo treebank. Additionally, increasing the number of relations in this

study enables the model to predict the relations among the morphemes specifically more [8].

The effectiveness of the transition predictor model affects the results of relation predictions.

From model one, if the trees are generated correctly, it enhances the quality of the next model

for relation predictions. At the end correctly attached head-dependents generated from model

 49

one leads model two to predict correct relations. The developed model performs 60% UAS

from model one and 40% LAS from the second model. Generally, Afaan Oromoo dependency

parser is a competitive parser as it is applied on AO morphologically rich language by

experimenting with RNN algorithm and identified that BILSTM is best performing algorithm.

It scores 90% accuracy in first model and 71% accuracy in the second model using BILSTM.

 50

CHAPTER SEVEN

7. CONCLUSION AND RECOMMENDATION

7.1 Conclusions

Afaan Oromoo dependency parser was developed using RNN. The parser was developed via a

data-driven approach, particularly by implementing an arc-standard transition system. It is a

fast, effective for projective part of the language. As a result, it is suitable to generate a

dependency graph among the morphemes. The characters of Afaan Oromoo morphemes and

their word order allow the arc-standard transitions system to perform more for Afaan Oromoo

dependency parser than the others.

Two sub-models were used in AODP. The first one is the transition predictor model while the

second is a relation predictor. The two models were trained independently on different features.

The first model was trained on a set of configurations and used to create a dependency graph.

While the second model was trained on the head-dependent labeled with its relations, and used

to predict relations for the unlabeled dependency graphs. Next, an experiment was conducted

on the two RNN algorithms (LSTM and BILSTM) to identify the better-performing algorithm

for AODP. As a result, BILSTM shows better performance for the two sub-models.

Specifically, the first model has scored 89% accuracy for LSTM and 90% for BILSTM. Then,

the second model scored 69% accuracy for LSTM and 71% for BILSTM. Generally, AODP

performs 40% for labeled attachments score and 60% for unlabeled attachment scores using

BILSTM. In general, RNN captures the patterns from the morphemes without explicit manual

feature extraction or setting rules for the morphemes. Furthermore, it was seen that deep

learning approaches work more for natural languages. Particularly, in this study, RNN works

more than multilayer neural networks and BILSTM is the best algorithm in comparison to

simple RNN and LSTM for AODP.

Eventually, the result of AODP will also increase with increasing the corpus size. Additionally,

the details of morphemes with their specific POS and corresponding specific relations enhances

clarity although it is challenging to include all detail of morpheme in AOTB.

 51

7.2 Recommendations

As a recommendation, a clear Afaan Oromoo POS tagger and morphology analyzer are very

important as low-level NLP applications for Afaan Oromoo dependency parsers. Because,

Afaan Oromoo morphology analyzer is very useful to partition words into their meaningful

constituents. Based on this, effective POS tagger is used to assign word class for the morpheme

parts. This makes AODP robust to parse the details in AO morphemes. There is directly

proportional relation among Afaan Oromoo morphology analyzer, POS tagger, Transition

predictor model, and Relation predictor model in terms of performance. As a result, the more

the details of morphemes identified, POS tag assigned, transitions predicted indicates the more

effective relation types predicted for a given sentence. Although deep learning algorithms are

the state of the arts in NLP, it requires huge data in model development. But, Afaan Oromoo

treebank was developed from scratch in this study. So the researcher strongly recommends

developing a large and standardized tree bank for Afaan Oromoo is crucial. In general, using

effective NLP applications for preprocessing and standardized AO tree bank makes the AODP

powerful.

7.2.1 Contributions of the study

 The best performing RNN algorithm for AODP was identified.

 Afaan Oromoo morphemes which are handled with an arc-standard transition system

have been identified.

 Afaan Oromo treebank was developed from the scratch

7.2.2 Future works

 Non-projective part of Afaan Oromoo language will be implemented using graph

methods.

 Afaan Oromoo treebank is developed by us from scratch but it is not enough and has to

be developed.

 The basic issue is considering other special morphemes other than inflections and

derivations and representing relation types for each of them.

 Trying the parser in other transition methods.

 52

8. REFERENCES

[1] T. G. Ayana, "Afaan Oromo Parser using Hybrid Approach," JU, Jimma, 2017.

[2] SEENSA AFAANIIFI XIINQOOQAA, FINFINNEE, ITOOPHIYAA, 2008.

[3] S. B... H. M. Daniel Jurafsky, Speech and Language Processing: An Introduction to,

Prentice-Hall, 2006.

[4] J. Brownlee, Deep Learning for Natural Language Processing, 2017.

[5] B. Plank, "Domain adaptation for parsing," University of Groningen.

[6] L. Kohorst, "Constituency vs. Dependency Parsing," 12 december 2019. [Online].

Available: https://medium.com/@lucaskohorst/constituency-vs-dependency-

parsing8601986e5a52. [Accessed 28 1 2020].

[7] R. M. a. J. N. Sandra Kübler, Dependency Parsing, Graeme Hirst, University of

Toronto, 2009.

[8] A. Barkeessaa, Sanyii, Finfinnee, 2013.

[9] A. Barkeessaa, Semmoo, Finfinnee, 2016.

[10] R. M. E. P. a. J. M. Bernd Bohnet, "Generalized Transition-based Dependency

Parsing".

[11] G. T. R. M. Alymzhan Toleu, "Comparison of Various Approaches," OPCS, Almaty,

Kazakhstan, 2019.

[12] B. Erena, "Afaan Oromoo," [Online]. Available:

https://scholar.harvard.edu/erena/oromo-language-afaan-oromoo. [Accessed 23 4

2022].

 53

[13] J. Brownlee, Long Short-Term Memory Networks With Python, 2017.

[14] G. H. DABALO, "AUTOMATIC SYNTACTIC PARSER FOR AFAAN OROMO

COMPLEX," AAU, Addis Abeba, 207.

[15] A. Volokh, "Performance-Oriented," vol. 37.

[16] J. N. J. H. J. Nilsson, "MaltParser: A Data-Driven Parser-Generator for Dependency

Parsing".

[17] T. Dozat, "Stanford’s Graph-based Neural Dependency Parser," 2017.

[18] Y. G. a. M. Elhadad, "Hebrew Dependency Parsing: I," 2014.

[19] J. Nivre∗∗, "Dependency Parsing of Turkish".

[20] M. Zelalem, "TRANSITION BASED DEPENDENCY PARSER FOR AMHARIC

LANGUAGE USING DEEP LEARNING," Bahirdar University, Bahirdar, 2019.

[21] "FBC," [Online]. Available: https://www.fanabc.com/afaanoromoo/. [Accessed 29 4

2021].

[22] Catrina, Afaan Oromoo language structure, Addis Abeba.

[23] T. Negassa, "word formation in Oromo".

[24] G. Rabbirraa, Furtuu.

[25] " keras tutorial point," 2020. [Online]. Available:

https://www.tutorialspoint.com/keras/index.htm. [Accessed 20 may 2020].

[26] "tensorflow tutorails point," 2020. [Online]. Available:

https://www.tutorialspoint.com/tensorflow/index.htm. [Accessed 21 may 2020].

 54

[27] Oinkina, "Understanding LSTM Networks," colah's blog, 2015. [Online]. Available:

file:///C:/Users/user/Downloads/Understanding%20LSTM%20Networks%20--

%20colah's%20blog.htmldd.html. [Accessed 7 5 2020].

[28] J. L. ¨. 1 and 2. a. R. Collobert∗, "Deep Neural Networks for Syntactic Parsing of

Morphologically Rich," Idiap Research Institute, Martigny, Switzerland.

[29] K. M. Kurniawan, "Exploring Recurrent Neural Network," University of Edinburgh,

2017.

[30] K. a. Klein, "Constituency Parsing with a Self-Attentive Encoder," University of

California, Berkeley, 2018.

[31] L. a. Zhang, "In-Order Transition-based Constituent Parsing," Transactions of the

Association for Computational Linguistics, vol. Volume 5, no. 10.1162/tacl_a_00070,

p. 413–424, 2017.

[32] K. Rajasekaran, "Deep Learning techniques," Koblenz Landau, 2020.

[33] M. e. al, "Rethinking Self-Attention: An Interpretable Self-Attentive Encoder-Decoder

Parser," University of California, 22019.

[34] Z. a. Zhao, "Head-Driven Phrase Structure Grammar Parsing on Penn Treebank,"

Shanghai Jiao Tong University, Shanghai, China, 2019.

[35] "Natural Language Processing Tutorial," 2020. [Online]. Available:

https://www.tutorialspoint.com/natural_language_processing/index.htm. [Accessed 25

1 2020].

[36] "Afaan Oromo," wikibook, 7 june 2018. [Online]. Available:

https://en.wikibooks.org/wiki/Afaan_Oromo. [Accessed 25 11 2019].

[37] C. G.-R. Daniel Fernández-González, " Left-to-Right Dependency Parsing with Pointer

Networks," Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics, p. 710–716, June 2019.

 55

[38] S. K¨ubler, "Why is German Dependency Parsing More Reliable," Indiana University.

[39] R. M. F. Pereira, "Non-projective Dependency Parsing using Spanning Tree

Algorithms".

[40] M. P. Jinho D. Choi, "Getting the Most out of Transition-based Dependency Parsing,"

2011.

[41] Oinkina, "Understanding LSTM Networks," 27 August 2015. [Online]. Available:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed 15 may 2020].

[42] E. M. Ponti, "MACHINE LEARNING TECHNIQUES," University of Pavia.

[43] " Language Understanding with Recurrent Networks," Sphinx, 2017. [Online].

Available:

https://www.cntk.ai/pythondocs/CNTK_202_Language_Understanding.html. [Accessed

10 May 2020].

[44] †. B. M. Marie-Catherine de Marneffe, "Generating Typed Dependency Parses from

Phrase Structure Parses".

[45] P. D. D. J. N. Prof. Dr. Jonas Kuhn, "Ensemble Dependency Parsing," 28. September

2020.

[46] M. Gasser, "A Dependency Grammar for Amharic".

[47] Y. J. K. T. Yunzhe Yuan, "Bidirectional Transition-Based Dependency Parsing".

[48] M. ELKAREF, "DEEP LEARNING APPLICATIONS FOR," January 2018.

[49] B. B. E. B. B. Mohab Elkaref, "A Simple LSTM model for Transition-based

Dependency Parsing," vol. v1, 2017.

 56

[50] G.-b. D. P. w. G. N. Networks, "Tao Ji, Yuanbin Wu, Man Lan," Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics, p. 2475–2485,

July 2019.

[51] G. Melbaa, "Afaan oromoo language," Gadaa.com, [Online]. Available:

http://gadaa.com/language.html. [Accessed 11 12 2019].

[52] G. Mamo, "Parts of Speech Tagging for Afaan Oromo," IJACSA.

[53] R. Regasa, "MORPHOLOGICAL SEGMENTATION USING NEURAL," 2022.

[54] T. Point, Keras tutorials point, Pvt. Ltd., 2019.

[55] D. Thakur, "LSTM and its equations," 6 July 2018. [Online]. Available:

https://medium.com/@divyanshu132/lstm-and-its-equations-5ee9246d04af. [Accessed

2021 9 10].

[56] 2. Choe and Charniak, "Parsing as Language Modeling," Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing: Association for

Computational Linguistics, p. 2331–2336, November 2016.

[57] D. e. al, "Recurrent Neural Network Grammars," Proceedings of the 2016 Conference

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, p. 199–209, June 2016.

[58] E. C. a. M. J. David McClosky, "Effective Self-Training for Parsing," Brown

University, 2006.

[59] C. D. M. A. Y. N. Richard Socher, "Learning Continuous Phrase Representations and,"

Stanford University.

[60] J. A. a. D. Klein, "How much do word embeddings encode about syntax," University of

California, Berkeley.

 57

[61] B. Megyesi, "data-driven syntactic analysis methods and application for Swedish,"

Stockholm, Sweden.

[62] "What Is the Importance of Computer Technology in Everyday Life?," Techwalla, 19

September 2018. [Online]. Available: https://www.techwalla.com/articles/what-is-the-

importance-of-computer-technology-in-everyday-life. [Accessed 8 12 2019].

[63] B. E. Seyoum1, "Universal Dependencies for Amharic," Addis Ababa University1,3,

National Institute of Informatics.

[64] J. B. a. P. Liang, "Imitation Learning of Agenda-based Semantic Parsers," Transactions

of the Association for Computational Linguistics, vol. 3, p. 545–558, 2015.

[65] J. K. a. T. Mitchell, "Weakly supervised training of semantic parsers,"

EMNLP/CoNLL), p. 754–765., 2012.

[66] "HornMorpho: a system for morphological processing of Amharic, Oromo, and

Tigrinya".

[67] A. Sharma, "Analytics adhya : How Part-of-Speech Tag, Dependency and Constituency

Parsing Aid In Understanding Text Data?," 29 July 2020. [Online]. Available:

https://www.analyticsvidhya.com/blog/2020/07/part-of-speechpos-tagging-dependency-

parsing-and-constituency-parsing-in-nlp/. [Accessed 9 4 2021].

[68] A. Ö. Saziye Betül Özate¸, "A Hybrid Approach to Dependency Parsing," 2020.

[69] P. Q. C. D. Manning, "Arc-swift: A Novel Transition System for Dependency Parsing,"

2017.

[70] Y. W.. a. M. L. Tao Ji, "Graph-based Dependency Parsing with Graph Neural

Networks," 2017.

[71] "Hyperparameter Tuning for Machine Learning Explained," 6 Aug 2020. [Online].

Available: https://www.mygreatlearning.com/blog/hyperparameter-tuning-explained/.

[Accessed 4 October 2020].

 58

[72] "bb afaanoromoo," [Online]. Available: https://www.bbc.com/afaanoromoo. [Accessed

3 6 2021].

[73] "NLP," NLP, 5 May 2021. [Online]. Available: https://www.datarobot.com/blog/what-

is-natural-language-processing-introduction-to-nlp/. [Accessed 3 2 2022].

 59

9. APPENDIX

9.1 Arc standard algorithm

Based on transition predicted we can gain head and dependents from model1 and use as input

for model2.

conf_at_each_step.append([list_to_flat(test_word_stack),

 list_to_flat(test_word_buffer),

 list_to_flat(test_pos_stack),

 list_to_flat(test_pos_buffer),label_of_transition])

 if predicted_transition == 0:

 if len(test_word_buffer)==0:

 print('SHIFT cannot be applied for empty word buffer!')

 break;

 poped_word=test_word_buffer.pop(0)

 poped_pos=test_pos_buffer.pop(0)

 test_word_stack.append(poped_word)

 test_pos_stack.append(poped_pos)

 if predicted_transition == 1:

 if len(test_word_stack)<2:

 is_completed=False

 print ('LEFT_ARC cannot be applied for word stack with size less than two!')

 break;

 head_dependent_list_of_word.append([test_word_stack[len(test_word_stack)-

1],test_word_stack[len(test_word_stack)-2]]);

 head_dependent_list_of_pos.append([test_pos_stack[len(test_pos_stack)-

1],test_pos_stack[len(test_pos_stack)-2]]);

 poped_word=test_word_stack.pop(len(test_word_stack)-2)

 poped_pos=test_pos_stack.pop(len(test_pos_stack)-2)

 if predicted_transition == 2:

 if len(test_word_stack)<2:

 is_completed=False

 print ('RIGHT_ARC cannot be applied for empty word stack!')

 60

 break;

 head_dependent_list_of_word.append([test_word_stack[len(test_word_stack)-

2],test_word_stack[len(test_word_stack)-1]]);

 head_dependent_list_of_pos.append([test_pos_stack[len(test_pos_stack)-

2],test_pos_stack[len(test_pos_stack)-1]]);

 poped_word=test_word_stack.pop(len(test_word_stack)-1)

 poped_pos=test_pos_stack.pop(len(test_word_stack)-1)

for x in conf_at_each_step:

 print(x)

 print('')

print(head_dependent_list_of_word)

print(head_dependent_list_of_pos)

 61

9.2 Sample Afaan Oromoo treebank

 62

9.3 AOPOS tags

No Specific AOPOS Abbreviations Stream AOPOS

19. Abstract noun abno Nort

20. Process or action noun acno

21. Result noun reno

22. Gerundive noun geno

23. Manner noun mano

24. Instrumental noun inno

25. Agentive noun agno

26. Auto benefective verb auv Vert

27. Causative verb cav

28. Stative verb stv

29. Passive verb pav

30. Noun noun nncon Cono

31. Noun adjective nacon

32. Adposition noun ancon

33. Verb noun vncon

34. Noun noun Nncoa Coad

35. Noun adjective nacoa

36. Noun numeral nucoa

 63

37. Adjective noun ancoa

38. Positive copula poco Copula

39. Negative copula neco

40. Neutral sex noun neno Gnno

41. Masculine noun mano

42. feminine noun feno

43. Natural female gender nafe

44. Feminine verb feve Gnve

45. Masculine verb masve

46. Neutral sex verb neve

47. Masculine adjectives maad Gnadj

48. Feminine adjectives fead

49. Neutral sex adjective nead

50. Plural noun plno PL

51. Plural adjectives plad

52. Plural verb plve

53. Cardinal numbers Canu NUM

54. Ordinal numbers Ornu

55. Indefinite pronouns Inpr

56. Indefinite pronouns persons inpr(quan)

57. Post position popo ADP

 64

58. Prepositions prpo

59. Para positions papo

60. Coordinating conjunctions cconj CONJ

61. Subordinating conjunctions sconj

9.4 Afaan Oromoo Relations

No Relations Abbrevatiosn

27. Noun complement NCOM

28. Personal pronoun PEPN

29. Interrogative pronoun WHPR

30. Pronoun PRON

31. Negative NEG

32. Focus class marker FCM

33. Person PERS

34. Punctuation PNC

35. Adjective complement ADCOM

36. Adposition ADP

37. Adverb ADV

38. Order ORDER

39. Demonstrative pronoun DEPR

40. Auxiliary AUX

41. Cardinal number CANO

42. Case CASE

43. Coordinating conjunction CCONJ

44. Conjunct CNJT

45. Compound noun CNON

46. Compound adposition COAP

 65

47. Comparative case suffix COCS

48. Comparative degree CODR

49. Copula COPULA

50. Definite article DART

51. Direct object DOB

52. Double genitive DOGE

53. Gender GEND

54. Interjection INJ

55. Indefinite pronoun INPR

56. Instrument INST

57. Indirect object IOBJ

58. Jussive JUSS

59. Main verb MVER

60. Number NUM

61. Noun class marker for the pronoun NCMP

62. Nominalization NOMZ

63. Noun subject NSUBJ

64. Ordinal subject number ORNO

65. Part of the word PART

66. Passive PASS

67. Pronoun subject PSUBJ

68. Positive degree PODG

69. Positive POS

70. Quantifier INQU

71. Questions QUES

72. Subordinate conjunction SCONJ

73. Superlative adjective SUAD

74. Subject SUBJ

75. Superlative quantifier SUQU

76. Tense TNS

77. Verb formation VEF

 66

 67

9.5 Configurations for first model POS part

 68

9.6 Head dependent for second model POS part

9.7 Algorithm to convert treebank data to initial configurations

with open ('data/tabletree.txt') as f:

 lines=f.readlines()

new_sentence=True

words_pos=[]

words=[]

pos=[]

for line in lines:

 69

 line=line.strip()

 if line=='':

 new_sentence=True

 if len(words) >0:

 words_pos.append([words,pos])

 words=[]

 pos=[]

 continue;

 if line[0] == '-':

 continue;

 if line[0] == '#':

 continue;

 if line[0] == 'N' and line[1] == 'O':

 continue;

 splitted=line.split('|')

 words.append((splitted[1]).strip())

 pos.append((splitted[2]).strip())

if len(words) >0:

 words_pos.append([words,pos])

data=''

maxlen=0;

for x in words_pos:

 x[0]=flat_word=list_to_flat(x[0])

 x[1]=flat_word=list_to_flat(x[1])

 if len(x[0]) > maxlen:

 maxlen=len(x[0])

for x in words_pos:

 data=data+x[0]+(' '*(max len-len(x[0])))+x[1]+'\n\n'

fo=open('data/reversed_data.txt',"w")

fo.write(data)

fo.close(

