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Abstract

In this thesis the Structural and electronic properties of Cuprous Oxide (Cu2O) is

investigated with density functional theory (DFT) using Quantum Espresso package.

Our study is based on Density Functional Theory (DFT) with the Perdew-Burke-

Ernzerhof (PBE) exchange-correlation functional, Vanderbilt (ultra soft) pseudopo-

tentials and the plane wave basis set implemented in the Quantum-ESPRESSO pack-

age. The total minimum energy and the total minimum force of Cu2O is calculated

as a function of cutoff energy and K-points sampling. The total minimum energy

per cell is monotonically decreased with increased cutoff energy due to variational

principle. However, this trend can not be predicted from increasing the k-points sam-

pling. Moreover, the equilibrium lattice constant is calculated using results obtained

from energy convergence test (i.e., 50 Ry and 7 × 7 × 7 ). The computational value

of the equilibrium lattice constant is 4.32 Å. This result is in good agreement with

experimental value which is 4.27 Å. Finally, discussing band structure and density of

state of three dimensional Cu2O, the electrical property of three dimensional Cu2O

is determined based on energy band gap.

Keywords: Density Functional Theory, Cuprous oxide, Structural and electronic

properties.
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Chapter 1

Background of the Study

1.1 Introduction

Copper (I) Oxide or Cuprous Oxide is the inorganic compound with the formula

Cu2O. It is one of the principal oxides of copper, the other being CuO or cupric oxide.

Cu2O is composed of two Cu and an Oxygen atoms which has 1s22s22p63s23p63d104s1

or [Ar]3d104s1 and 1s22s22p4 or [He]2s22p4 electron configurations respectively. It

found as the reddish mineral cuprite. This red colored solid is a component of some

antifouling paints. The compound can appear either yellow or red, depending on

the size of the particles [1]. Copper (I) Oxide may be produced by several methods

[2]. Most straight forwardly, it arises via the oxidation of copper metal. The solid

of Cu2O is diamagnetic. In terms of their coordination spheres, copper centers are

2-coordinated and the oxides are tetrahedral. It dissolves in HCl to give solution of

Cucl2. Cu2O degrades to copper (II) Oxide in moist air. It crystallizes in a cubic

structure with a lattice constant a1 = 4.2696Å [3].

Cu2O is one of the most studied materials, and many experimental semiconductor

applications have been demonstrated first in semiconductor, semiconductor diodes

1
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[4] and Phonoritons [5]. The lowest exciton in Cu2O are extremely long lived; ab-

sorption line shaped have been demonstrated with nano eV line widths, which is the

narrowest bulk exciton resonance over observed [6]. It is important and useful ma-

terial for many technological applications, from gas sensors to nano-electronics and

nano-catalysis [7]. Cu2O is a well examined binary oxide of copper, especially for

harvesting solar energy. Schottky junctions, homo junctions and heterojunctions up

to nano-composite structures based on Cu2O have all been studied extensively during

the last two decades. Density functional theory (DFT) is one of the most convenient

computational tools for the prediction of the properties of different classes of materi-

als. Based on this we studied the structural and electronic properties of Cu2O using

density functional theory implementing Quantum Espresso open source code.
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1.2 Statement of the Problem

It is known that the schrödinger equation of many body problems are difficult to solve

analytically. Cu2O is a system with many electrons. Today first principle calculation

which is based on solving the fundamental equations of quantum mechanics have

become ubiquitous in science and condensed matter physics. So the purpose of this

study was to investigate the structural and electronic property of Cu2O using density

functional theory with the help of Quantum Espresso packages.

1.3 Research Questions

I What is the total minimum energy of Cu2O per cell with respect to cutoff

energy ?

I What is the total minimum energy of Cu2O per cell with respect to K-points

sampling ?

I What is the minimum force of Cu2O per cell with respect to cutoff energy ?

I What is the minimum force of Cu2O per cell with respect to K-points sampling ?

I What is the lattice constant of Cu2O ?

I What is the band structure Cu2O ?

I What is the density state of Cu2O ?

1.4 Objectives of the Study

1.4.1 General Objectives

The general objective of this study is to predict the electronic and structural proper-

ties of Cu2O using density functional theory .
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1.4.2 Specific Objectives

I To calculate the total minimum energy of Cu2O per cell with respect to cutoff

energy;

I To calculate the total minimum energy of Cu2O per cell with respect to K-points

sampling;

I To calculate the total minimum force of Cu2O per cell with respect to cutoff

energy;

I To calculate the total minimum force of Cu2O per cell with respect to K-points

sampling;

I To calculate the lattice constant of Cu2O;

I To calculate band structure and density state of Cu2O.

1.5 Significance of the Study

This study will serve as a guide for interested learners on structure and electronic

properties of many body electron system of Cu2O using new computational tech-

nique known as ab initio technique. Moreover it helps to give additional data on

the electrical property of three dimensional Cu2O. It also helps to compare the ex-

perimental results with respect to our calculation. It will give additional data on

the electronic properties. It can be used as a reference material for any one who is

interested to do research in this area.
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1.6 Scope of the Research

Due to time and budget constraint, the study is limited to determine the total min-

imum energy, force, theoretical lattice constant, band structure and density state of

Cu2O using density functional theory.



Chapter 2

Review of Related Literatures

2.1 Introduction

The Schrödinger equation including time, is covered any problem in the electronic

structure of matter. In most cases however, one is concerned with atoms and molecules

without time-dependent interaction, so we may focus on the time-independent Schrödinger

equation [8]. Solving the Schrödinger equation to obtain energies and forces, require

only the number of atomic constituents as input, and should describe the chemical

properties of the system with high accuracy.

2.2 Schrödinger Equation

The ultimate goal of most approaches in solid state physics and quantum chemistry

is the solution of the time-independent, non-relativistic Schrödinger equation.

ĤΨi(~x1, ~x2, ..., ~xN , ~R1
~R2, ..., ~RM) = Eiψi(~x1, ~x2, ..., ~xN , ~R1, ~R2, ..., ~RM) (2.2.1)

Ĥ is the Hamiltonian for a system consisting of M nuclie and N electrons.

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

MA

∇2
A −

N∑
i=1

M∑
A=1

ZA

riA

+
N∑
i

N∑
j>i

1

rij

+
M∑

A=1

M∑
B>A

ZAZB

RAB

(2.2.2)

6
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A separable solution of time independent Schrödinger equation has the property that

every measurement of the total energy is certain to return the value E. Here, atomic

units are used, me = e = ~ = 4πε0 = 1. A and B run over the M nuclei while i

and j denote the N electrons in the system. The first two terms describe the kinetic

energy of the electrons and nuclei. The other three terms represent the attractive

electrostatic interaction between the nuclei and the electrons and repulsive potential

[9] due to the electron-electron and nucleus-nucleus interactions.

2.3 The Variational Principle for the Ground State

For a system in the state Ψ, the expectation value of the energy is given by:

E[Ψ] =
〈Ψ | Ĥ | Ψ〉
〈Ψ | Ψ〉

(2.3.1)

where, 〈Ψ | Ĥ | Ψ〉 =
∫

Ψ∗ĤΨd~x

The variational principle states that the energy computed from a guessed ψ is an

upper bound to the ground-state energy E0. Full minimization of the functional E[ψ]

with respect to all allowed N-electrons wave functions will give the true ground state

ψ and energy E[ψ0] = E0.

E0 = minΨ→NE[Ψ] = minΨ→N〈Ψ | ~T + ~VNe + ~Vee | Ψ〉 (2.3.2)

For a system of N electrons and given nuclear potential Vext, the variational principle

defines a procedure to determine the ground-state wave function ψ0, the ground-state

energy E0[N, Vext], and other properties of interest [10]. In other words, the ground

state energy is a functional of the number of the electrons N and the nuclear potential

Vext:

E0 = E[N, Vext] (2.3.3)
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2.4 Quantum Many-Body Theory

The dynamics of a quantum system is governed by the Hamiltonian Ĥ. particularly

the ground state of the system, are obtained as solutions of the eigenvalue equation

Ĥ | Ψ〉 = E | Ψ〉, (2.4.1)

〈Ψ | Ψ〉 = 1

Alternatively they are obtained as stationary solutions of the variational problem

〈Ψ | Ĥ | Ψ〉
〈Ψ | Ψ〉

(2.4.2)

The variation (with respect to | Ψ〉) of the numerator on the left-hand side with the

denominator kept fixed equal to unity leads immediately to eq. (2.4.1), the energy,

E, thereby appearing as a Lagrange multiplier corresponding to the latter constraint.

We are interested in systems of N electrons moving in a given external field and

interacting with each other with pair forces. The Hamiltonian for this case consists

of the kinetic energy operator T̂ , the potential operator Û of the interaction of the

particles with the external field, and the two-particle interaction operator Ŵ :

Ĥ = T̂ + Û + Ŵ (2.4.3)

The case Ŵ = 0, of particles which do not interact with each other, i.e.

Ĥ0 = T̂ + Û (2.4.4)

2.4.1 Born-Oppenheimer Approximation

The Born-Oppenheimer approximation [9] plays a very important role in electronic

structure calculations. The underling rationalization of this approximation is that
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the mass of nuclei are much heavier than electrons. Thus in most cases the nuclei

move much more slowly than electrons. Hence, in many cases, one can consider the

electrons are moving in a field produced by the fixed nuclei.This is the qualitative

rationalization to separate the movement of electrons and nuclei.

Under this approximation the electronic Hamiltonian (Ĥelec),

Ĥelec = −
N∑

i=1

1

2
∇2

i −
N∑

i=1

M∑
A=1

ZA

riA

+
N∑

i=1

N∑
j>i

1

rij

(2.4.5)

The solution to a Schrödinger equation involving the electronic Hamiltonian,

ĤelecΨelec = EelecΨelec (2.4.6)

is the electronic wave function,

Ψelec = Ψelec(ri, RA) (2.4.7)

which describes the motion of the electrons and explicitly depends on the electronic

coordinates (ri) but parametrically on the nuclear coordinates (RA). Furthermore, to

completely specify an electron, it is necessary to assign the corresponding spin (ω),

so together with the spatial coordinates, we denote these four coordinates collectively

by x,

X = (r, ω) (2.4.8)

and the wave function for an N-electron system is written as

Ψ(x1, x2, ..., xN). The total energy of fixed nuclei will also include the constant

nuclear repulsion term leading to,

Etot = Eelec +
M∑

A=1

M∑
B>A

ZAZB

RAB

(2.4.9)

where∑M
A=1

∑M
B>A

ZAZB

RAB
= Enuc
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2.5 The Hartree-Fock approximation

The Hartree-Fock(HF) method has a prominent status as it often paves the way to-

ward more accurate calculations in modern quantum chemistry. At the same time,

the HF method is also used extensively by itself to study various materials science

problems, such as adsorption [11], defects in solids [12], and electronic structure of

insulators [13].The Hartree-Fock method starts from using the single Slater determi-

nant as an approximation of the wave function of the ground state of the N-electron

system:

| Ψ〉 =| x1, x2, ..., xa, xb, ..., xN〉 (2.5.1)

The HF energy expression,

EHF = 〈ψHF | Ĥ | ψHF 〉 =
∑

a

∫
x?

a(1)(−1

2
∇2 − ZA

riA

)Xa(1)dx1

+
1

2

∑
ab

∫
X?

a(1)xa(1)r−1
12 x

?
b(2)xb(2)dx1dx2

−1

2

∑
ab

∫
X?

a(1)xb(1)r
−1
12 x

?
b(2)xa(2)dx1dx2

(2.5.2)

Each term at the right hand side in eq.(2.5.2)will be explained in the following. The

first term, ∫
x?

a(1)(−
1

2
∇2 − ZA

riA

)xa(1)dx1 = 〈xa(1) | h | xa(1)〉 (2.5.3)

h = −1

2
∇2 − ZA

riA

, (2.5.4)

is the kinetic energy and potential energy for the attraction to the nuclei of a single

electron. The last two terms in eq. (2.5.2) are involving two electrons, and the first

one is the Coulomb term and the other one is the exchange term which arises from

the antisymmetric nature of the Slater determinant. For the Coulomb term,it has
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the classical interpretation that it represents the Coulomb interactions between two

electrons, It is convenient to define a Coulomb operator,

Jb(1) =

∫
| x− b(2) |2 r−1

12 dx2 (2.5.5)

Then the Coulomb term can be written as,∫
x?

a(1)xa(1)r
−1
12 x

?
b(2)xb(2)dx1dx2 = 〈xa(1)|Jb(1)|xa(1)〉 (2.5.6)

The exchange term, has no simple classical interpretation like the Coulomb term, but

we can define an exchange operator by its effects when operating on xa(1):

Kb(1)xa(1) = [

∫
X?

b (2)r−1
12 xa(2)dx2]xb(1) (2.5.7)

Kb(1) leads to an exchange of the variable in the two spin orbital. Furthermore, the

exchange operator,Kb(1) is said to be a nonlocal operator, as the results of Kb(1)

operating on the spin orbital xa will depend on the value of xa throughout all space.

Then the exchange term can be written as,∫
X?

a(1)xb(1)r
−1
12 x

?
b(2)xa(2)dx1dx2 = 〈xa(1) | Kb(1 |)xa(1)〉 (2.5.8)

we can write the Hartree-Fock equation as an eigenvalue equation:

[h(1) +
∑
b6=a

Jb(1)−
∑
b6=a

Kb(1)]xa(1) = EaXa(1) (2.5.9)

The Fock operator is the sum of the operator h(1) and an effective one-electron

potential operator called the Hartree-Fock potential υHF
(1) =

∑
b Jb(1)−Kb(1).

So that the Hartree-Fock equation becomes:

f | xa〉 = Ea | xa〉. (2.5.10)
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2.6 Density Functional Theory (DFT)

The density functional theory (DFT) is presently the most promising and also the

most successful approach to compute the electronic structure of matter. Its applica-

bility ranges from atoms, molecules and solids to nuclei and quantum and classical

fluids. The DFT provides the ground state properties of a system, and the electron

density plays a key role in original formulation. DFT differs from the wave func-

tion based methods by using the electron density ρ(r) as the central quantity. The

advantage of using the electron density over the wave function is the much reduced

dimensionality. Regardless of how many electrons one has in the system, the density

is always 3 dimensional. This enables DFT to be applied to much larger systems,

hundreds or even thousands of atoms become possible. Partly for this reason, DFT

has become the most widely used electronic structure approach today, particularly

in the condensed matter physics community. Authoritative and comprehensive dis-

cussions of DFT can be found in a range of excellent review articles [14 , 15] and

textbooks [16].

2.6.1 The electron density

The electron density is the central quantity in DFT. It is defined as the integral over

the spin coordinates of all electrons and over all, but one of the spatial variables

(~x ≡ ~r, s)

ρ(~r) = N

∫
...

∫
|ψ(~x1, ~x2, ..., ~xN)|2d~x1, d~x2...d~xN. (2.6.1)

ρ(~r) determines the probability of finding any of the N electrons within volume ele-

ment d~r.
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2.6.2 The Thomas-Fermi Model

In this section, we briefly discuss the first density functional theory (1927) [17], its

successes, and its limitations. In the Thomas-Fermi theory, Based on the uniform

electron gas, they proposed the following functional for the kinetic energy:

TTF [ρ(~r)] =
3

10
(3π2)

2
3

∫
ρ

5
3 (~r)d~r (2.6.2)

The energy of an atom is finally obtained using the classical expression for the nuclear

nuclear potential and the electron-electron potential:

ETF [ρ(~r)] =
3

10
(3π2)

2
3

∫
ρ

5
3 (~r)d~r − Z

∫
ρ(~r)

r
d~r +

1

2

∫ ∫
ρ(~r1)ρ(~r2)

r12
d~r1d~r2 (2.6.3)

The energy is given completely in terms of the electron density. In order to determine

the correct density to be included in Eq.(2.6.3), they employed a variational principle.

They assumed that the ground state of the system is connected to the ρ(~r) for which

the energy is minimized under the constraint of
∫
ρ(~r)d~r = N .

F[n] is approximated by the local approximation for the (non-interacting) kinetic

energy of a uniform gas, plus the Hartree energy

F TF [n] = AS

∫
d3rn5/3 (r) +

1

2

∫
d3r

∫
d3r′n(r)n(r′)

| r − r′ |
(2.6.4)

Several points need to be clarified.First, these expressions were developed for a spin

unpolarized system, i.e., one with equal numbers of up and down spin electrons, in

a spin independent external potential. Second, in the kinetic energy the power of n

can be deduced by dimensional analysis, while the coefficient is chosen to agree with

that of a uniform gas, yielding AS = ( 3
10

)(3π2)2/3. Insertion of this approximate F

into the Euler-Lagrange equation yields the Thomas-Fermi equation:

5

3
ASn

2/3(r) +

∫
d3r′ n(r′)

r − r′
+ vext(r) = µ (2.6.5)
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2.6.3 The Hohenberg-Kohn theorem

Modern density-functional theory was born in 1964 with the paper of Hohenberg and

Kohn [18]. The Hohenberg-Kohn formalism of DFT is based on two theorems:

The first Hohenberg-Kohn Theorem:

The first Hohenberg-Kohn theorem demonstrates that the electron density uniquely

determines the Hamiltonian operator and thus all the properties of the system. This

first theorem states that the external potential Vext(~r) is (to within a constant) a

unique functional of ρ(~r); since, in turn Vext(~r) fixes Ĥ we see that the full many

particle ground state is a unique functional of ρ(~r).

Proof : let us assume that there were two external potential Vext(~r) and V ′
ext(~r) dif-

fering by more than a constant, each giving the same ρ(~r) for its ground state, we

would have two Hamiltonians Ĥ and Ĥ ′ whose ground-state densities were the same

although the normalized wave functions Ψ and Ψ′ would be different. Taking Ψ′ as a

trial wave function for the Ĥ problem;

E0 < 〈Ψ′ | Ĥ | Ψ′〉 = 〈Ψ′ | Ĥ ′ | Ψ′〉+〈Ψ′ | Ĥ−Ĥ ′ | Ψ′〉 = E ′
0+

∫
ρ(~r)[Vext(~r)−V ′

ext(~r)]d~r,

(2.6.6)

where E0 and E ′
0 are the ground-state energies for Ĥ and Ĥ ′, respectively. Similarly,

taking Ψ as a trial function for the Ĥ ′ problem,

E ′
0 < 〈Ψ | Ĥ ′ | Ψ〉 = 〈Ψ | Ĥ | Ψ〉+〈Ψ | Ĥ ′−Ĥ | Ψ〉 = E0+

∫
ρ(~r)[Vext(~r)−V ′

ext(~r)]d~r,

(2.6.7)

Adding Eq. (2.6.6) and Eq. (2.6.7), we would obtain E0 + E ′
0 < E ′

0 + E0, a contra-

diction, and so there cannot be two different Vext(~r) that give the same ρ(~r) for their

ground state. Thus, ρ(~r) determines N and Vext(~r) and hence all the properties of the
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ground state, for example the kinetic energy T [ρ], the potential energy V [ρ], and the

total energy E[ρ]. Now, we can write the total energy as

E[ρ] = ENe[ρ] + T [ρ] + Eee[ρ] =

∫
ρ(~r)VNe(~r)d~r + FHK [ρ], (2.6.8)

FHK [ρ] = T [ρ] + Eee[ρ] (2.6.9)

The first Hohenberg-Kohn theorem asserts that the density of any system deter-

mines all ground-state properties of the system, that is,

E = E[ρ] (2.6.10)

where ρ is the ground-state density of the system. The First Hohenberg-Kohn the-

orem demonstrates that the density may be used in place of the potential as the

basic function uniquely characterizing the system. It may be stated as: the ground-

state density n(r) uniquely determines the potential, up to an arbitrary constant. In

the original Hohenberg-Kohn paper, this theorem is proven for densities with non-

degenerate ground states. The proof is elementary, and by contradiction. Suppose

there existed two potentials differing by more than a constant, yielding the same

density. These would have two different ground-state wavefunctions, Ψ1 and Ψ2.

Consider Ψ2 as a trial wavefunction for potential vext,1(r). Then, by the variational

principle,

〈Ψ2 | T̂ + V̂ext,1 | Ψ2〉〈Ψ1 | T̂ + V̂ee + ˆVext,1 | Ψ1〉. (2.6.11)

But since both wavefunctions have the same density, this implies

〈Ψ2 | T̂ + V̂ee | Ψ2〉 ≥ 〈Ψ1 | T̂ + V̂ee | Ψ1 (2.6.12)
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But we can always swap which wave function we call 1 and which we call 2, which

reverses this inequality, leading to a contradiction, unless the total energies of the two

wave functions are the same, which implies they are the same wave function by the

variational principle and the assumption of non-degeneracy. An elegant constructive

proof was found later by Levy [19], which automatically includes degenerate states.

consider all wave fanctions Ψ which yield a certain density n(r). Define the functional

F [n] = min
Ψ→n

〈Ψ | T̂ + V̂ee | Ψ〉 (2.6.13)

where the search is over all antisymmetric wave functions yielding n(r). Then, for

any n(r), any wave function minimizing T̂ + V̂ee is a ground-state wave function, since

the ground-state energy is simply

E = min
n

(
F [n] +

∫
d3rυext(r)n(r)

)
, (2.6.14)

from the variational principle, where the search is over all normalized positive densi-

ties. We denote the minimizing wavefunction in Eq. (2.6.13) by Ψ[n]. This gives us a

verbal definition of the ground-state wavefunction. The exact ground-state wavefunc-

tion of density n(r) is that wavefunction that yields n(r) and has minimizes T + Vee.

We may also define the exact kinetic energy functional as

T [n] = 〈Ψ[n] | T̂ | Ψ[n]〉 (2.6.15)

and the exact electron-electron repulsion functional as

Vee[n] = 〈Ψ[n] | V̂ee | Ψ[n]〉 (2.6.16)

.
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The Second Hohenberg-Kohn Theorem:

The second Hohenberg-Kohn theorem states that FHK [ρ], the functional that delivers

the ground state energy of the system, delivers the lowest energy if and only if the

input density is the true ground state density. This is nothing but the variational

principle:

E0 ≤ E[ρ̃] = T [ρ̃] + ENe[ρ̃] + Eee[ρ̃] (2.6.17)

In other words this means that for any trial density ρ̃(~r), which satisfies the necessary

boundary conditions such as ρ̃(~r) ≥ 0,
∫
ρ̃(~r)d~r = N , and which is associated with

some Ṽext, the energy obtained from the functional of Eq. (2.6.8) represents an upper

bound to the true ground state energy E0. E0 results if and only if the exact ground

state density is inserted in Eq. (2.6.2).

Proof : the proof of Eq. (2.6.17) makes use of the variational principle established

for wave functions. We recall that any trial density ρ̃ defines its own Hamiltonian
˜̂
H

and hence its own wave function Ψ̃. This wave function can now be taken as the trial

wave function for the Hamiltonian generated from the true external potential Vext.

Thus,

〈Ψ̃ | Ĥ | Ψ̃〉 = T [ρ̃]+Eee[ρ̃]+

∫
ρ̃(~r)Vextd~r = E[ρ̃] ≥ E0[ρ] = 〈Ψ̃0 | Ĥ | Ψ̃0〉. (2.6.18)

The second Hohenberg-Kohn theorem states that the functional F[n] is universal,

i.e., it is the same functional for all electronic structure problems. This is evident

from Eq. (2.6.13), which contains no mention of the external potential. The kinetic

energy functional, T [φ] = 1
2

∫
dx | φ′(x) |2, is the same functional for all one-electron

problems. When we evaluate the kinetic energy for a given trial orbital, it is the same

for that orbital, regardless of the particular problem being solved.
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second Hohenberg-Kohn theorem states that there is a single F [n] which is exact

for all electronic problems. The last part of the Hohenberg-Kohn theorem is the

Euler-Lagrange equation for the energy. We wish to mininize E[n] for a given υext(r)

keeping the particle number fixed. We therefore minimize E[n] − µN , and find the

Euler-Lagrange equation:

δF

δn(r)
+ υext(r) = µ (2.6.19)

We can identify the constant µ as the chemical potential of the system, since µ = ∂E
∂N

.

The exact density is such that it makes the functional derivative of F exactly equal

to the negative of the external potential (up to a constant). Note that it would

be marvelous if we could find an adequate approximation to F for our purposes, so

that we could solve Eq. (2.6.19) directly. It would yield a single integro differential

equation to be solved, probably by a self-consistent procedure, for the density, which

could then be normalized and inserted back into the functional E[n], to recover the

ground-state energy. Note also that insertion of FHF [n] will yield an equation for the

density equivalent to the orbital HF equation.

2.6.4 The Kohn-Sham Equation

A major breakthrough in this area is provided by the Kohn-Sham construction of

non-interacting electrons with the same density as the physical system, because solu-

tion of the Kohn-Sham equations produces the exact non-interacting kinetic energy,

which includes almost all the true kinetic energy. We now have the theoretical tools

to immediately write down these KS equations. The KS system is simply a ficti-

tious system of non-interacting electrons [20], chosen to have the same density as the
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physical system. Then its orbitals are given by,(
−1

2
∇2 + Vs(r)

)
φi(r) = εiφi(r), (2.6.20)

Vs(~r1) =

∫
ρ(~r2)

r12
d~r2 + Vxc(~r1)−

M∑
A

ZA

r1A

(2.6.21)

and yield

n(r) =
N∑

i=1

| φi(r) |2 . (2.6.22)

The subscript s denotes single-electron equations. But the Euler equation that is

equivalent to these equations is

δTS

δn(r)
+ VS(r) = µ, (2.6.23)

where

TS[n] = min
φ→n

〈Φ | T̂ | Φ〉 (2.6.24)

is the kinetic energy of non-interacting electrons.The Kohn-Sham wavefunction of

density n(r) is that wave- function that yields n(r) and has least kinetic energy.

Obviously TS[n] = 〈Φ[n] | T̂ | Φ[n]〉 which differs from T [n].

2.7 Exchange-Correlation Energy Functional

Obviously to decompose the total xc-energy functional Exc[n] into an exchange part

Ex[n] and a correlation functional Ec[n], in analogy to conventional many-body the-

ory. the total energy EHF and density nHF of the Hartree-Fock (HF) approximation

are reproduced if the correlation functional is completely neglected. The correspond-

ing HF-only ground state energy functional Ẽ[n] ,

E[n] = Ts[n] + Eext[n] + EH [n] + Ex[n], (2.7.1)
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is hence to be minimized by nHF ,

EHF = Ẽ[nHF ], (2.7.2)

while for any other density one must have

EHF < Ẽ[n], (2.7.3)

∀n 6= nHF

2.7.1 The Local Density Approximation:

This is simplest approximation, and can be written as

Exc−LDA[ρ(r)] =

∫
ρ(r)εxc−unif (ρ(r))d(r) (2.7.4)

where εxc−unif is the exchange-correlation energy per particle of the homogeneous

electron gas of density (ρ(r)), i.e. the exchange-correlation energy density is taken to

be that of a uniform electron gas of the same density. The exchange energy is known

exactly and the correlation energy is obtained by fitting to the many body studies of

Gell-Mann and Brueckner and Ceperly and Alder [21]. Modern LDA functional tend

to be exceedingly similar, differing only in how their correlation contributions have

been fitted to the many-body free electron gas data. The LDA is valid only for slowly

varying densities. Experience with calculations of atoms, molecules, and solids shows

that Eq.(2.7.4) can in general also be applied to these systems.

2.7.2 The Generalized Gradient Approximation

These are the second generation functionals (sitting on the second rung of Jacob’s

ladder) in which the gradient of the density, ∇ρ(r), at each coordinate is taken into
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account as well as the density itself:

Exc−GGA[ρ(r)] =

∫
ρ(r)εxc−unif (ρ(r))∇ρ(r)d(r) (2.7.5)

Thus GGAs are ”semi-local” functionals, comprising corrections to the LDA while

ensuring consistency with known sum rules. For many properties, for example ge-

ometries and ground state energies of molecules, GGAs can yield better results than

the LDAs. Although for the properties of metals and their surfaces, GGA results

are not necessarily superior to LDA results. The most widely used GGAs in surface

physics are the PW91 [22] functional, and its close relative PBE [23].

2.7.3 Meta- GGA Functionals

These are the third generation functionals (third rung of Jacob’s ladder) and use the

second derivative of the density, ∇2ρ(r), and or kinetic energy densities,

τσ(ρ(r)) = 1
2

∑
i | ∇φi |2, as additional degree of freedom. In gas phase studies of

molecular properties meta-GGAs such as the TPSS [24] functional have been shown

to offer improved performance over LDAs and GGAs. However, a side from some

benchmark studies of bulk materials and jellium surfaces, these functionals have not

yet been exploited to any great extend in the solid state.

2.7.4 Hybrid Exchange Functionals

There is an exact connection between the non-interacting density functional system

and the fully interacting many body system via the integration of the work done in

gradually turning on the electron-electron interactions. The exact energy could be

computed if one knew the variation of the density-density correlation function with the

coupling constant, l. The LDA is recovered by replacing the pair correlation function
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with that for the homogeneous electron gas. The adiabatic integration approach

suggests a different approximation for the exchange-correlation functional [25]. At

l = 0 the non-interacting system corresponds identically to the Hartree-Fock ansatz,

while the LDA and GGA functionals are constructed to be excellent approximations

for the fully interacting homogeneous electron gas that is, a system with l = 1. It is

therefore not unreasonable to approximate the integral over the coupling constant as

a weighted sum of the end points that is, we might set:

Exc ≈ aEFock + bEGGA
xc (2.7.6)

Becke adopted this approach in the definition of a new functional with coefficients

determined by a fit to the observed atomization energies, ionization potentials, proton

affinities and total atomic energies for a number of small molecules [26]. The resultant

(three parameter) energy functional is,

Exc = ELDA
XC + 0.2(EFock

x − ELDA
X ) + 0.72∆EB88

x + 0.81∆EPW91
C (2.7.7)

Here ∆EB88
X and ∆EPW91

c are widely used GGA corrections [27] to the LDA exchange

and correlation energies respectively.

2.8 Self consistence on the electron density

Self consistece fields are started from Solving the Kohn-Sham Equations here as,(
−1

2
∇2 + vext(r) + vh[ρ

in(r)](r) + vxc[ρ
in(r)](r)φi(r)

)
= εiφi(r), (2.8.1)

ρout(r) =
∑

iεoccupied

|φi(r)|2, (2.8.2)
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assuming a local exchange-correlation potential. In constructing the non-interacting

KS system of electrons, the fundamental structure of the quantum mechanical equa-

tions has changed due to the introduction of the Hartree and exchange-correlation

potentials. That is, the input to the KS equations now depends explicitly on the

output non-linearly via the electron density. Therefore, in order to even begin solving

the above system of equations, one must estimate an initial electron density to use as

input, ρin. Once an initial input density has been specified, the (linear) KS equations

can be solved Eq. (2.8.1) this involves digitalization of the KS Hamiltonian in some

basis to find the occupied single particle orbitals. From these single particle orbital,

the output electron density, ρout, is constructed using Eq. (2.8.2). The input and

output densities are (in general) only equal if one has found the ground state electron

density that solves the KS system. The computational journey one takes starting

from an initial guess electron density, arriving at an electron density that solves the

KS system is precisely what it means to achieve self-consistency. The above set of

equations defines a non-linear system. That is, a map that takes an input ρin and

generates an output ρout that is non-linearly related to the input,

F [ρin] = ρout, (2.8.3)

where F hereafter defines the KS map. Solving this system amounts to finding a fixed

point of the non-linear KS map, ρ∗ = ρin = ρout, which is typically done using an

iterative procedure. This iterative procedure acts to define a sequence, {ρin
1 , ..., ρ

in
n },

such that ρ∗ = ρin
n within some defined tolerance. Ideally, this sequence is generated

as robustly and efficiently as possible, which is to say, the sequence will eventually

converge, and it does so such that n is minimized. In literature, this is often referred

to as the self-consistent field (SCF) process, where here the self-consistent field is the
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density of a 3 dimensional real scalar field. It should be noted that self-consistency can

be equivalently treated by defining a converging sequence of potentials, or wave func-

tions; density has simply been chosen here. The reason being that, within CASTEP,

the default method for achieving self-consistency explicitly operates by updating the

electron density. This is not required, and indeed a reliable fall back method within

CASTEP updates the single particle orbital directly in such a way that minimization

in error is guaranteed between iterations [28]. and is extremely robust due to its vari-

ational nature, but not nearly as efficient as rivalling techniques. The default method

for achieving self-consistency within castep is called density mixing, and combines

the input and output densities at each iteration to estimate a new input density.

However, before defining and exploring density mixing, a brief discussion of how KS

DFT is implemented in software will be given. This will serve to motivate the need

for and scope of improved density mixing methods.

2.9 Beyond the Local Density Approximation

At first sight a very natural extension of the LDA would be to recognize that in many

systems the exchange contribution to the energy is dominant over the correlation

energy and to compute the non-local exchange potential exactly as in Hartree Fock

theory whilst approximating the correlation potential within the LDA [29]. This

would yield a functional of the form:

Exc(ρ) = EFock + ELDA
c (2.9.1)

The greater complexity [30] associated with the calculation of the non-local exchange

potential would be offset by potentially significantly greater accuracy. However, the

performance of the LDA is, in part, based on rather delicate cancelations between the
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exchange and correlation interactions and, in general, the use of the exact exchange

interaction produces rather poor results. In the homogeneous electron gas the non-

local exchange potential has effectively infinite range and its contribution to the

electron-electron interaction diverges at the Fermi surface [31].

2.10 Pseudopotential

Pseudopotentials is well established that most physically interesting properties of

solids are determined by the valence electrons rather than the core electrons. Mean

while, the deeply bound core electrons within plane-wave basis sets, require a huge

amount of basis functions for their description. To relieve this problem, the pseudopo-

tential approximation replaces the strong ionic potential with a weaker pseudopoten-

tial. In general, there are two main purposes of the pseudopotential formalism [32].

First, to use a much weaker pseudopotential to replace core electrons which due to

their deep potential need to be described by many plane-wave basis functions. Sec-

ond, to eliminate the rapid oscillations of the valence electron wave function in the

core region. we can see the pseudopotential is much weaker than the all-electron one

and pseudo wave function has no radial node inside the core region. It is essential

within the pseudopotential scheme that outside the core region, the pseudo potential

and wave function becomes the same with the corresponding all electron ones. The

most common general form of a pseudopotential is,

Vps =
∑
lm

| Ylm〉Vl(r)〈Ylm | (2.10.1)

where Ylm are the spherical harmonics. One important class of pseudopotentials are

so called norm-conserving pseudopotential. It require that the all-electron and pseudo

wave function agree beyond a chosen radius (rc) and the integrated density inside rc
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for the all electron wave function and pseudo wave function are the same (”norm

conservation”). ∫ rc

0

drr2ψ∗ps(~r) =

∫ rc

0

drr2ψ∗(~r)ψ(~r) (2.10.2)

Figure 2.1: Schematic illustration of the replacement of the all-electron wave function
and core potential by a pseudo-wave function and pseudopotential

.



Chapter 3

Research Methodology

3.1 Methodology

In this section we study based on Density Functional Theory (DFT) with the Perdew-

Burke- Ernzerhof (PBE) exchange-correlation functional, Vanderbilt ultra-soft pseu-

dopotentials [33] together with the generalized gradient approximation and was calcu-

lating by using the Quantum-Espresso software package. Quantum-ESPRESSO is an

integrated suite of computer codes for electronic-structure calculations and materials

modeling based on density-functional theory (DFT), plane waves basis sets (PW) and

pseudo potentials. It is freely available and distributed as open-source software under

the terms of the GNU General Public License (GNU GPL or GPL).

27
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Firstly, an initial guess for the electron density ρ(r) is assumed, which is required

for the calculation of Veff (r), the diagonilization of the Kohn-Sham equations, and

the succeeded evaluation of ρ(r) along with total minimum energy. As long as the

convergence criterion is not fulfilled, the numerical procedure is continued with the

last ρ(r) instead of the initial guess. When criterion is satisfied, various output

quantities [34] are computed.

Figure 3.1: Self Consistent Field of flow chart of the iteration scheme.



Chapter 4

Results and Discussion

In this chapter, the structural and electronic properties of cuprous oxide (Cu2O), is

calculated within the frame work of the density functional theory. The important

aspects in studied copper(I)oxide are the total minimum energy and total minimum

force, lattice constant, band structure and density of state of Cu2O. Results are

mainly presented in figures. The first results are the total minimum energy per

cell with respect to cutoff as well as K-points sampling and second results are total

minimum forces values for three dimensional Cu2O with respect to cutoff and K-

points. In addition to this the results for the equilibrium lattice constants, band

structure and density of state of Cu2O. Graphs were plotted to obtain the optimized

parameters for Cu2O structure with in the Perdew-Burke-Ernzerhof (PBE) exchange-

correlation functional, Vanderbilt (ultra soft) pseudopotentials and the plane wave

basis set.

29
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4.1 Atoms in primitive unit cell of Cuprous oxide

The primitive unit cell of 2Cu2O is shown in Fig.(4.1). A cubic unit cell with a

lattice constant of a1 = 4.27Å, i.e. the O ions are at the corners of the cube with

a tetrahedral Cu4O unit at the center, as shown in Figure(4.1) Cu2O is consisting

of two interpenetrating framework of copper ions in a face centered (Fcc) cube and

oxygen ions in body-centered cube (bcc).

Figure 4.1: Atoms in primitive unit cell of Cuprous oxide



31

4.2 Convergence Test of Total Minimum Energy

of Cu2O with Respect to Energy Cutoff

The total minimum energy of Cu2O is calculated as a function of energy cutoff. In

this case the input code has 3×3×3 K-points mesh and lattice constant of 4.27Å are

fixed values. The calculation was done using different cutoff values, from 20 Ry to

120 Ry. An increment of cutoff energy for wave function is do until the convergence

is achieved ( i.e., the place where the energy becomes nearly constant ). As we can

see from the Figure 4.2, the total minimum energy converges at 50 Ry plane wave

cutoff energy and the total ground state energy had its minimum at -935.56909926

Ry. Moreover, the total minimum energy is monotonically decreasing with increasing

energy cutoffs for wave function. The accuracy of the ground state energy depends

on the number of basis functions. However, we can get energy that close to ground

state energy as the number of basis functions approaches infinity.
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Figure 4.2: Total minimum energy of Cu2O with respect to energy cutoff

4.3 Convergence Test of Total Energy of Cu2O with

Respect to K-point grid

In this case, the calculation was done using different k-point values from 3 × 3 × 3

to 9 × 9 × 9 k-points. The other variables such as lattice constant, energy cutoff,

are kept constant. The total minimum energy of Cu2O is calculated as a function

of k-points grid size using PWSCF code. The total energy of Cu2O versus k-points

grid size is shown in Figure 4.3. It can be observed that the total minimum energy

of Cu2O converged at 7× 7× 7 K-points grid and the total ground state energy has

its minimum at -929.28263773 Ry.
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Figure 4.3: Total minimum energy of Cu2O with respect to k-point sampling

4.4 Convergence Test of Total Force of Cu2O with

Respect to Energy Cutoff

In this calculations, we see that the forces on Cu2O are zero in x, y and z directions.

This is because of symmetry, which cancels out forces. However, it is possible to create

forces by displacing a Cu atom +0.05Å in the z directions (fractional coordinates).

Here we calculated total force on Cu2O as a function of plane wave cutoff energy by

keeping other parameters constant. For this calculation, we used the lattice constants

a = 4.27Å and 3× 3× 3 k-points grid.

In this simulation convergence is achieved when the energy cutoff is equal to 60 Ry.
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A total force value at this energy cutoff is 0.174587Ry/Å.

Figure 4.4: Total force of Cu2O with respect to energy cutoff
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4.5 Convergence Test of Total Force of Cu2O with

Respect to K-point grid

In this case, the calculation was done using different k-points value from 3× 3× 3 to

10× 10× 10. Here the other parameters are kept fixed. As it is plotted in Figure 4.5,

the total force converges at the grid size of 9 × 9 × 9 k-point mesh; and its value is

0.166427 Ry/Å. Generally, it is true that different structural geometries will require

different k-point meshes in order to reach convergence.

Figure 4.5: Total minimum force of Cu2O with respect to k-point sampling
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4.6 The Equilibrium Lattice Constant of Cu2O

In figure 4.6 we show the equilibrium lattice constant of Cu2O. To find the equilibrium

lattice constant of Cu2O we estimated serious of lattice parameters from 4.16 to 4.52.

In this calculation the energy cutoff and the K-points sampling are made fixed (50 Ry

and 7×7×7 k-point) using the cutoff and k-point grid criteria for energy convergence

respectively. The numerical calculation shows that the equilibrium lattice constant is

4.32Å. This result is 1.17% larger than the experimental value. This value in good

agreement with experimental value of 4.27Å.

Figure 4.6: Total energy of Cu2O versus lattice constant
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4.7 Band Structure of Cu2O

In this work, the energy cutoff and the BZ sampling were chosen to converge the total

energy with a value of 30 Ry and we generated 71 K-points in crystal coordinate. The

energy band structure of the primitive unit cell of Cu2O is presented in Figure 4.7.

Figure 4.7: Band Structure of primitive unit cell of 3D Cu2O

Energy gap between occupied and unoccupied energy levels is among the ways

that we can determine the difference between electrical properties of semiconductor,

insulator and metal. The calculated band gap of Cu2O is a narrow gap semiconduc-

tor, with a direct band gap of 0.81 eV at Γ point. This value is smaller than the
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experimental values [3] which is 2.02 eV. It is well known that local density calcu-

lation always underestimate the band gap of a semiconductor. But, in the case of

Cu2O, the size of the gap is not settled until a much more careful analysis of optical

data is performed. Our calculated value of this gap has an error of 59.9% relative to

experimental value. So, Our calculation of energy gap of Cu2O is failed in Density

functional theory.

4.8 Density of State (DOS) of Cu2O

The main issue of that calculating the density of states (DOS) of Cu2O is the inves-

tigation of electronic transport properties of Cu2O. The calculated DOS is displayed

in Figure 4.8. It is clear that the valence band is dominated by the Cu 3d states.

Cu 4p and 3s states are negligible components, while O 2s states are almost entirely

absent. we see that before the Fermi level enters the conduction band. The Fermi

level (Ef ) was referenced at 8.6595 eV. The calculated energy gap of primitive unit

cell of Cu2O between the occupied and unoccupied energy levels was

almost 1 eV. This value is indicates our system is semiconducting materials. Semi-

conductor materials are a sub-class of materials distinguished by the existence of a

range of disallowed energies between the energies of the occupied level (valence band)

and the energies of unoccupied level (conduction band).
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Since so, our calculated value shows as our system is semiconductor.

Figure 4.8: Density of state of Cu2O



Chapter 5

Conclusion

In this thesis, we investigated structural and electronic properties of three dimen-

sional Cu2O using DFT. The electronic and structural properties of Cuprous Oxide

Cu2O was investigated within the frame work of the density functional theory (DFT)

with the Perdew Burke-Ernzerhof (PBE) exchange-correlation functional, Vander-

bilt (ultra soft) pseudopotentials and the plane wave basis set implemented in the

Quantum-ESPRESSO open source code. All calculations have been carried out with

Quantum Espresso package. The total minimum energy calculation is performed as

a function of cutoff energy and K-points sampling, respectively. And the other pa-

rameters fixed. The total energy convergence test is achieved, at the energy cutoff

50 Ry for the energy cutoff case and at 7 × 7 × 7 k-point grid size for the K-point

sampling case. The total minimum energy is -935.56909926 Ry for the cutoff energy

with respect to total energy and -929.28106386 Ry for the k point grid with respect

to total energy. The total minimum force on Cu2O as a function of cutoff energy and

k-point(Monkhorst-Pack grid) is calculated by displacing Cu atom by +0.05Å. Total

force convergence test is achieved for the cutoff energy 60 Ry and for Monkhorst-Pack

40
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grid at 9× 9× 9 k-point grid size. The numerical calculation shows that the equilib-

rium lattice constant is 4.32Å.

This result is 1.17% larger than the experimental value. This value is in good agree-

ment with existing experimental value [3] which is 4.27Å.

In the case of investigating the band gap of Cu2O, we shown that direct band gap of

Cu2O. This makes it interesting for applications in nanoelectronics. Also, experimen-

tally the band gap of 3D Cu2O is about 2.02-2.17 eV [3] and our numerical calculation

shows 0.81 eV, This value is smaller than the experimental values 2.02 eV which has

59.9% of error. It is well known that Local density approximation underestimate the

band gaps of semiconductor. Finally, the calculated density of states (DOS) of Cu2O

determines its electrical property. The calculated energy gap of primitive unit cell of

Cu2O between the occupied and unoccupied energy levels in case of DOS is 1 eV.

This value shows as this system is semiconductor materials.
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