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Abstract 

In this study, accelerated nonstandard finite difference method is presented for solving 

singularly perturbed parabolic reaction diffusion initial boundary value problems. 

Richardson extrapolation technique applied to improve accuracy of the solution and 

accelerates its rate of convergence from second-order to fourth-order and fourth-order to 

sixth-order. The consistency and stability of the proposed method have been established 

very well to guarantee to the convergence of the method. Model examples were 

considered to illustrate conformation of the theoretical description with experimentation 

results. The numerical experimentation is carried out some model problems and both the 

results are presented in tables and graphs. The present method is stable, convergent and 

gives more accurate solution than some methods existing the literature.  
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CHAPTER ONE 

INTRODUCTION 

1.1. Background of the Study 

Due to the difficulties in finding the exact solution or analytical solution of a 

mathematical problems such as, the exact solution of differential equation, the root of 

non-linear equation, the evaluation of integration involving complex expression and etc., 

leads to the development of numerical analysis. Numerical analysis is the branch of 

mathematics that creates analyses and implements algorithms for solving numerically the 

problems of continuous mathematics (Pal, 2007).   

Many physical laws and relations of the real world appear mathematically in the form of 

a differential equation (DE). A differential equation is an equation that contains the 

derivative(s) of one/more dependent variable(s) with respect to one/more independent 

variable(s). If the number of independent variable in the differential variable is one, then 

the DE is called Ordinary differential equation (ODE) and. If the numbers of independent 

variables are two/more, then the differential equation is called partial differential equation 

(Burg&Erwin, 2009). 

 Many real life problems are modeled by parameter dependent differential equations 

whose solution behavior depends on the magnitude of the parameter. A PDE in which the 

highest order derivative is multiplied by a small positive parameter  0 1    is 

called singularly perturbed partial differential equation and the parameter   is called the 

perturbation parameter (Gowrisankar &Natesan, 2013). A second order parabolic 

differential equation is called Convection-diffusion type, if the order of the differential 

equation is reduced by one whenever the perturbation parameter set zero and it is called 

reaction-diffusion type .If the order of the differential equation is reduced by two, 

whenever the perturbation parameter set to zero and it is the main interest of this 

research.  
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That is, a singularly perturbed partial differential equation of the form:  

2

2

( , ) ( , )
( , ) ( , ) ( , ), ( , ) (0,1) (0,1]

u x t u x t
b x t u x t f x t x t D

x t

 

     
  , 

(1.1)                                                                  

subjected to the initial-boundary conditions: 

1

( ,0) ( ),0 1,

(0, ) ( )

(1, ) ( ), 0,

o

u x s x x

u t q t

u t q t T

  



 

                                                                                   (1.2) 

where (0 1)    is the perturbation parameter, ( , )b x t  and ( , )f x t are smooth 

functions such that ( , ) 0b x t  , is a second order singularly perturbed partial differential 

equation of reaction-diffusion type. A Partial differential problems in which a small 

parameter multiplied to the highest derivative arise in various field of science and 

engineering, such as fluid mechanics, elasticity, quantum mechanics, chemical reactor 

theory, reaction diffusion process hydrodynamics’ and etc. (Kumar & Ramos ,2021). 

The numerical solution of such problem exhibits a multi-scale character. That is there is 

(are) a thin layer(s) of the domain where the solution changes rapidly or jumps suddenly 

forming a boundary layer(s), while away from the layer(s) the solution behaves regularly 

or changes slowly in the outer region. As a result such problems are called boundary 

layer problems (Gowrisankar&Natesan, 2014). Due to this multi-scale character of the 

solution, classical numerical methods which are effective in solving most mathematical 

problems on uniform mesh, fails to provide reliable numerical result unless the mesh 

discretization used is extremely refined. Even in this context, careful numerical 

experiments show that the classical computational methods fail to decrease the maximum 

point-wise error as the mesh is refined; until the mesh size and the perturbation parameter 

have the same order of magnitude. Subsequently, the size of the system of algebraic 

equations was growing more as the dimension of the problem increases. Hence, this 

results a huge computational cost. This drawback motivates the researcher to develop and 

analyze different numerical methods (Tesfaye et al., 2019). 

The numerical methods for SPPs are broadly classified into fitted operators and fitted 

mesh methods. In fitted operator methods, exponential fitting factors or artificial 
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viscosity is used to control the rapid growth or decay of the numerical solution in the 

boundary layer regions. While, fitted mesh methods use non-uniform meshes, which   

was dense in the boundary layer regions and coarse outside the layer regions (Miller et 

al., 1996). For the reason that small values of the perturbation parameter, the boundary 

layer may appear to give rise to difficulties when classical methods are applied on a 

uniform mesh. Moreover, the error in the approximate solution depends on the variable 

perturbation parameter. An adapted placement of the nodes or artificial viscosity is 

needed to ensure that the error is independent of the parameter value and depends only on 

the number of nodes in the mesh.  

The discretization with this property is stated as a uniformly convergent numerical 

method. Here, both fitted operators and fitted mesh methods help to get uniformly 

convergent numerical methods.  Recently, different scholars outlined in the literature like 

Clavero and Gracia, (2012), Gowrisanker and Natesan Gowrisankar, (2013) and 

Munyakazi and Patidar , (2013) formulated a numerical method for singularly perturbed 

parabolic differential equation of reaction-diffusion type. 

More recently, Tesfaye et al., (2021) presented accelerated fitted operator FDM for SPP 

reaction-diffusion problems. They developed the method by introducing a fitting 

parameter into the asymptotic solution and applying average finite difference 

approximation. To improve the accuracy of the developed method they had applied 

Richardson extrapolation technique. They established the consistent and stability of the 

method to ensure the convergence of the method. Further they concluded that the method 

is consistent, stable and produced an accelerated solution for SPPPDE of the reaction 

type. Mbroh and Munyakazi, (2021) also proposed a parameter-uniform numerical 

scheme to solve problem under consideration. The continuous problem is first discretized 

in the space variable using a fitted operator finite difference method. The partial 

differential equation is thus transformed into a system of initial value problems which are 

then integrated in time with the Crank–Nicolson finite difference method. They obtained 

scheme is second-order  -uniform convergent in space and time. Richardson 

extrapolation of the space variable results in a fourth order  -uniform convergence.  
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However, the obtained accelerated solution is improved. Thus, this study focused with 

numerical treatment of such problem under consideration via non-standard finite 

difference method. 

1.2. Objectives of Study 

1.2.1 General Objective 

The general objective of this study is to formulate accelerated nonstandard finite 

difference method for solving singularly perturbed parabolic Reaction-Diffusion 

Problems. 

1.2.2 Specific Objectives 

The specific objectives of this study are: 

 To construct accelerated nonstandard finite difference method for solving singularly 

perturbed parabolic reaction diffusion problem type. 

 To establish the convergence of the constructed method 

 To validate the constructed method by numerical illustration. 

1.3.Significance of the Study 

The outcome of this study had the following importance: 

 Used as a reference material for researchers who works on this area 

 Able the graduating students to acquire research skill and scientific procedure. 

 Provide a numerical method for the numerical solution of the considered problem. 
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1.4 Delimitation of the Study 

The study is delimited to formulate accelerated nonstandard finite difference method for 

solving singularly perturbed parabolic reaction-diffusion problems of the form: 

2

2
( , ) ( , ) ( , ), ( , ) : (0,1) (0,1].

u u
b x t u x t f x t x t D

x t

  
       
  

,  

subjected to the initial - boundary conditions: 

0 1

( ,0) ( ), 0 1,

(0, ) ( ), (1, ) ( ), 0 1,

u x s x x

u t q t u t q t t

  

   
 

where   is a perturbation parameter which satisfies 0 1  . Assume that the 

coefficient function ( , ) 0b x t    and the source function ( , )f x t  are sufficiently 

smooth. Under sufficient smoothness and compatibility conditions imposed on the 

functions 0 1( ), ( ), ( )s x q t q t  and ( , )f x t , the problem has a unique solution which exhibits 

twin boundary layer of width ( )O   neighboring the boundaries 0x  and 1x   
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CHAPTER TWO 

REVIEW OF RELATED LITERATURE 

2.1 Singular Perturbation Theory 

Lundwing Prandtl was the first to introduce the concept of boundary layer in 1904 at the 

Third International Congruence of Mathematics in Heidelberg Germany. His hypothesis 

was in the setting of fluid dynamics, fluid adjacent to the boundary sticks to the edge in a 

thin boundary layer due to friction but this friction has no effect to the flow of the fluid 

on the interior (Tesfaye et al., 2019).The term singular perturbation appears to have been 

first coined by (Frendricks and Wasow in,1946) in their paper "Singular Perturbation of 

Non-linear Oscillation"(Friedrichs & Wasow, 1946).  A brief survey for the historical 

development of perturbation and singular perturbation problems is covered in recent 

books by (Gowrisankar & Natesan, 2013) and(Wasow, 2018) respectively. More 

precisely, a perturbation problem is a problem that contains a small parameter , called 

perturbation parameter. If the solution of the problem can be approximated by setting the 

value of the perturbation parameter equals to zero, then the problem is called regular 

perturbation problem, otherwise it is called singular perturbation problem. That is, if it is 

impossible to approximate the solution by an asymptotic expansion as the perturbation 

parameter tends to zero, then the problem is called singular. 

2.2. Finite Difference Method 

Among the different classification of numerical methods: like finite difference method, 

finite element method, finite volume method, spline approximation method and so on; the 

finite difference method seems to be the simplest approach for the numerical solution of 

linear differential equation (O'Malley, 1991).  Finite difference methods are one of the 

most widely used numerical methods to solve differential equations.  It proceeds by 

replacing the derivatives appearing in the differential equation by finite difference 

approximations (Pal, 2007). The replacement of the differential equation into finite 

difference approximations and incorporating the boundary conditions in the difference 

equations gives a large algebraic system of equations to be solved by different possibly 

iterative techniques (Clavero& Gracia,2013). Hence, the solution obtained by solving 
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finite difference approximation indicates that the solution of differential equation at the 

grid points rather than the continuous solution, so that finite difference method is also 

called discretization methods. 

2.3. Recent Development 

Clavero and Gracia,(2012) constructed a high order uniformly convergent finite 

difference scheme which combines the implicit Euler method to discretize in time, 

together with the Richardson extrapolation technique, and a higher order via differential 

identity expression scheme to discretize in space. They splinted the analysis of the 

uniform convergence completely the contribution to the global error of both the time and 

the space discretization’s. They show numerical results for different test problems 

confirming in practice the order of uniform convergence proved. 

Gowrisankar and Natesan, (2013) presented at a numerical method for the solution of 

singularly perturbed parabolic reaction–diffusion problems with boundary layers. To 

solve these problems, they used a modified backward Euler finite difference scheme on 

layer adapted non-uniform meshes at each time level. The non-uniform meshes are 

obtained by equidistribution of a positive monitor function, which involves the second-

order spatial derivative of the singular component of the solution. The equidistributing 

monitor function at each time level allows us to use this technique to non-linear parabolic 

problems. They also analyzed the truncation error and the stability of the method. The 

proposed scheme is parameter-uniform convergent of order  (      ). 

Munyakazi and Patidar, (2013) treat a time-dependent singularly perturbed reaction-

diffusion problem. They semi discretize the problem in time by means of the classical 

backward Euler method. They developed a fitted operator finite difference method 

(FOFDM) to solve the resulting set of linear problems (one at each time level). The 

method is shown to be first order convergent in time and second order convergent in 

space, uniformly with respect to the perturbation parameter.  

Gracia andRiordan,(2015) presented a numerical approximation to the solution of a linear 

singularly perturbed parabolic problem using a classical finite difference operator on a 
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piecewise-uniform Shishkin mesh. First order convergence of these numerical 

approximations in an appropriately weighted -norm is established. 

 Tesfaye et al., (2019) studied a fitted operator average finite difference method for 

solving singularly perturbed parabolic convection-diffusion problems with boundary 

layer at right side. After discretizing the solution domain uniformly, the differential 

equation is replaced by average finite difference approximation which gives system of 

algebraic equation at each time levels. The stability and consistency of the method 

established very well to guarantee the convergence of the method. 

Kumar et al., (2021) developed a parameter-uniform numerical method on equidistributed 

meshes for solving a class of singularly perturbed parabolic reaction-diffusion problems 

with Robin boundary conditions. The discretization consists of a modified Euler scheme 

in time, a central difference scheme in space, and a special finite difference scheme for 

the Robin boundary conditions. A uniform mesh is used in the time direction while the 

mesh in the space direction is generated via the equi-distribution of a suitably chosen 

monitor function and the method is parameter-uniformly convergent of order two in 

space and order one in time.  

More recently, Tesfaye et al., (2021), presented accelerated fitted operator FDM for SPP 

reaction-diffusion problems. They developed the method by introducing a fitting 

parameter into the asymptotic solution and applying average finite difference 

approximation. To improve the accuracy of the developed method they had applied 

Richardson extrapolation technique. They established the consistent and stability of the 

method to ensure the convergence of the method. Further they concluded that the method 

is consistent, stable and produced an accelerated solution for SPPPD of the reaction type. 

Mbroh and Munyakazi, (2021) also proposed a parameter-uniform numerical scheme to 

solve problem under consideration. The continuous problem is first discretized in the 

space variable using a fitted operator finite difference method. The partial differential 

equation is thus transformed into a system of initial value problems which are then 

integrated in time with the Crank–Nicolson finite difference method. They obtained 

scheme is second-order ε-uniform convergent in space and time. Richardson 

extrapolation of the space variable results in a fourth order ε-uniform convergence.  
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However, the obtained accelerated solution is improvement. Thus, this study focused 

with numerical treatment of such problem under consideration via non-standard finite 

difference method. 

2.4 Richardson Extrapolation Method 

Richardson extrapolation is a methodology for improving the order of accuracy of 

numerical solutions that involve the use of a discretization size h. By combining the 

results from numerical solutions using a sequence of related discretization sizes, the 

leading order error terms can be methodically removed, resulting in higher order accurate 

results. Richardson extrapolation is commonly used within the numerical approximation 

of partial differential equations to improve certain predictive quantities such as the drag 

or lift of an airfoil, once these quantities are calculated on a sequence of meshes, but it is 

not widely used to determine the numerical solution of partial differential equations. 

Within this article, Richardson extrapolation is applied directly to the solution algorithm 

used within existing numerical solvers of partial differential equations to increase the 

order of accuracy of the numerical result without referring to the details of the 

methodology or its implementation within the numerical code. Only the order of accuracy 

of the existing solver and certain interpolations required to pass information between the 

mesh levels are needed to improve the order of accuracy and the overall solution 

accuracy. Using the proposed methodology, Richardson extrapolation is used to increase 

the order of accuracy of numerical solutions of the linear heat and wave equations and of 

the nonlinear. 

Difference solution of partial differential equation can in certain cases be expanded by 

even power of a discretization parameter h. If we have n solutions corresponding to 

different mesh width                  . We can improve the accuracy by Richardson 

extrapolation and get a solution of order   , yet only on the intersection of all grids used. 

That is normally on the coarsest grid. To interpolate this high order solution   with the 

same order accuracy in points not be longing to all grids, we need second points in an 

interval of length(    )  (Burg & Erwin, 2009).  

  



 

12 | P a g e  
 

CHAPTER THREE 

METHODOLOGY 

3.1 Study Area and Period 

This study was conducted at Jimma University, College of Natural Science, Department 

of Mathematics from August 2020 to January 2022 

3.2 Study Design 

This study applied both the document at review and numerical experimentation or mixed 

design 

3.3 Source of Information 

The source of information required to conduct this study were: 

 Related reference books. 

 Published articles. 

 Journals, etc. 

3.4 Mathematical Procedures 

 To achieve the stated objectives, the researcher followed the following procedures: 

 Defining the problem. 

 Discretizing the solution domain. 

 Constructing the non-standard finite difference scheme for the defined problem. 

 Applying Richardson extrapolation technique to accelerate the order of convergence into 

higher order. 

 Establish the stability and consistency the constructed scheme 

 Writing MATLAB code for the scheme. 

 Providing numerical illustrations and conclusion 
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CHAPTER FOUR 

DESCRIPTION OF THE METHOD AND NUMERICAL RESULT  

4.1 Description of the Method 

We consider the singularly perturbed parabolic reaction-diffusion initial boundary value 

problem.  

               

2

2

( , ) ( , )
( , ) ( , ) ( , ), ( , ) (0,1) (0,1]

u x t u x t
b x t u x t f x t x t D

x t

 

     
             

(1), 

subject to the initial and boundary conditions: 

                            (   )   ( )                                                           (2) 

 (   )    ( )  (   )    ( )      , 

where  is perturbation the perturbation parameter that satisfies 0      and assume 

that the coefficient function  (   )      is sufficiently smooth. Under sufficient 

smoothness and compatibility conditions imposed on the functions  ( )   ( )    ( ) and 

 (   ) the initial boundary value problem admit a unique solution  (   ), which exhibits 

twin boundary layer of width O(√ ) neighboring the boundaries     and    of    

To formulate the method, let us take the singularly perturbed homogenous differential 

equation. 

                                          

2

2

( , )
0

u x t
u

x
 


 
                                                           

(3), 

subject to the boundary conditions  ( )       ( )     and its solution is 

                 
 

 
    √

 

 
  

                                      ( )      ( √
 

 
 )                                                               (4) 

for arbitrary constant  . 

 Here Eq. (3) has two linear independent solutions namely,     and       with    √
 

 
  

For ordinary differential equation case, representing the approximate solution  ( ) at the 

grid point   by    with the mesh size  
 

 
and we have  
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                                      , for   been positive 

integer. We denote the approximate solution to  ( ) at the grid points     by   . The 

theory of difference given by Jean et al, (2006) shows that the second order linear 

difference equation 

|
                 

           

                 

|    

Since            and we have  

      (        )    (          )      ( 
       )     

Using the relation (          )  (        )(        ) and 

 2    (  )  (        ) the above equation can be written as  

                                           (  )                                                        (5) 

Now, Eq. (4) is the exact difference scheme of Eq. (3) and the sense that the difference 

equation given in Eq. (4) has the same general solution  (  )      
       

     as 

the differential equation of Eq. (3) Jean et al., (2006). 

 Using the identity     (  )     .    .
  

 
//

 

, Eq. (5) can be transformed to  

                                
           

 

  (    .
  

 
/*

                                                                 (6) 

This implies that the exact scheme of the non-homogenous equation 

                                                                ( )                                                         (7),                   

where    assumed to be constant, then Eq. (7)  is given by  

  
             

 

  (    .
  

 
/*

           (8) 

The non-standard finite scheme is one the difference equation that used to determine the 

approximate solution   to the solution  ( ) of the given differential equation. If the 

classical denominator    of the discrete second order derivative is replaced by anon-

negative function    such that  

  ( )      (  ) as 0     
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As Jean et al., (2006) provided important observation that the complex structure of the 

denominator of   discrete derivative in Eq. (8) constitutes a general property of these 

schemes, is useful designing reliable schemes for such problems. To demonstrate the 

procedure, let N be a positive integer when working on  ̅ we custom a rectangular grid 

    
 whose nodes are  (     ) for              . 

Here 0                 and              
 

 
                

.Accordingly, let denote the approximate solution   

  
 

   (    
  

 

 

) at an arbitrary 

point (    
  

 

 

). 

Then we can consider Eq. (1) at a fixed node (    
  

 

 

) and write it 

                         
   

 

  
 
 

      

  
 

   

  
 

  
  

 

  
 
 

  
   

  
 

  (    
  

 

 

)   
                            (9) 

For the derivative concerning t by Taylor series expansion yields: 

   
      

  
 

  
 

 

  
 

  
 
 

  
 .

 

 
/

    
 

  
 
 

     
 .

 

 
/

    
 

  
 
 

     
  (  )                 (10) 

          
    

  
 

  
 

 

  
 

  
 
 

  
 .

 

 
/

    
 

  
 
 

   
 .

 

 
/

    
 

  
 
 

   
  (  )                    (11), 

 subtracting Eq. (11) from Eq. (10) 

  
      

   
   

  
 

 

  
  (

 

 
*

     

  
 

 

   
 

                                              
  

      
 

 
    

  
 

  
 
 

  
                          (12), 

 where the truncation term     
     

 

  
 
 

     
 

Again taking the other terms in Eq. (9) related to the points (m, n) and (m, n+1) on the 

( )      (   )   time level, average as: 

 
 
    

   

     
    

 

      
     

      
   

    
      

 

 
 

  
 

  
 
 

  
 (13) 
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substituting Eq. (12) into Eq. (13) and then it becomes  

 
    

   

   
  

    
 

   
   

     
      

   
    

      
  

 

 
(  

      
 ) 

        
    

   

      
     

    
 

 
  

      
      

  
 

 
  

    
    

      
   

                (14), 

Now, inserted of Eq. (8), we may approximate Eq.  (14) by the non-standard scheme as 

 
    

       
        

   

  
 

   
     

    
 

 
  

      
      

  

                                          
   

  
 

 
  

    
    

     
      

 

  
        (15), 

 where     
 

  
     .

   

 
/ ,   √

  

 
. 

For clarity, the obtained scheme can be -written as the three term recurrence relation  

  
       

      
     

      
       

      
          (16), 

where  
    

 

  
    

   ,  
    

  

  
    

    
 

 
and 

  
      

    
      

  
 

 
  

    
    

     
      

 

  
                                                                                                  

4.1.1 Thomas Algorithm 

In this section, the stability of solving tri-diagonal system concerning to the space 

direction at each (   )  - time level is provided. A brief description for solving the 

system using the discrete invariant imbedding algorism, also called the Thomas algorism, 

is presented as follows. Consider the scheme above in Eq. (16) for             

and subject to the boundary condition in Eq. (2) that can be written as: 

 (      )    (    )  (      )    (    ),          

Assuming that the solution of Eq. (16) is given by    

                 
       

       
       

                    (17), 

 where   
    and   

   are to be determined. 

Considering Eq. (17) at the nodal point    , we have   

                                 
        

     
        

                                                     (18) 

Substitute Eq. (18) in Eq.  (16) gives: 

  
   (    

     
        

   )    
     

      
       

      
    

This leads to obtain the equation  
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                               (19) 

Comparing Eq. (17) with Eq. (19) the values determine as: 

 

  {
  

    
  

   

  
     

       
    

  
    

  
       

      
   

  
      

       
   

 (20) 

 To solve these recurrence relations for           , we need the initial condition 

for   
      and we take  

      
     (  ). With these stating points of initial 

values, we compute   
          

    for             using Eq. (20) in the forward 

process, and then obtain   
    in the backward process by Eq. (17) and the boundary 

condition  
      (    ). Further, the conditions for the discrete invariant imbedding 

algorithm to be stable, if and only if: 

|  
     

 

  
     

   |  
     

 

  
     (21) 

 |  
     |

  

  
    

    
 

 
|    and |  |            

Hence, the Thomas Algorithm is stable for the proposed method in Eq.  (16). 

4.1.2. Stability of the method  

The analysis of the proposed method is easily accomplished by the used Fourier analysis. 

As Zhilin et al., (2018)provides detail reasons, the Von Neumann stability method is 

applied to investigate the stability of the developed scheme in Eq. (15)or Eq. (16) , by 

assuming that its solution at the grid point (      ) is given by; 

                                
                                                                                               (22), 

where   √                                   is the amplitude factor. 

Now, substituting Eq. (22) into the homogeneous part of Eq. (15) yields the amplitude 

factor: 

(    )(  
       

      
     

      
       

   )= ( ) .  
   

  
 

 
  

  

                                           
    

     
      

 

  
 / 
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(    )(  
       

      
     

      
       

   )

 (  ) ((  
   

  
 

 
  

   
    

     
      

 

  
 

)+ 

  
  

   
  

 

 
  

    
    

     
      

 

  
 

  
       

      
     

      
       

   
 

  
   

   
         

        (  (   )          (   ) )
 

  
   (   )  .

  

  
    

    
 

 
/     

 

  
   (   ) 

 

  
   

   
         

        (  (   )          (   ) )

    (   )     
   

           
                  (   ) 

 

For sufficiently small k, the condition of stability is       that can be satisfied as: 

  |
 (   

          (  (   )          (   ) ))     
     

 (   (   )    
   

                  (   ) )    
   (   ) 

| 

                                           |
    

     

    
     |   . 

   Thus,     . Hence, the scheme given in Eq. (17) is stable and, we can say the 

formulated scheme is unconditionally stable. 

4.1.2 Truncation Error and consistency of the method 

In this section, the truncation error for the described method will be investigated. 

Truncation error   (   )between the exact solutions(     )the approximation   
     is 

given by:  

  (   )     
    

  
 

 

   
   

  
 

   

  
 

  
   

  
 

 

  
 

                                                     *  
       

      
     

      
       

   + 

                                                            *  
   

  
 

 
  

    
    

     
      

 

  
 } 

  (   )   
   

 

  
 
 

      

  
 

   

  
 

  
  

 

  
 
 

  
 *

 

  
 (    

       
        

   +  

               (  
     

       
   

 )  
 

  
 (    

     
      

 )  
 

 
(  

      
 )+         (23) 
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Using Taylor’s series expansion to   
  around (     )      respect to the spatial 

direction, we have the approximation for     
  as: 

    
    

   
   

 

  
 

  

 

    
 

   
 

  

 

    
 

   
 

  

  

    
 

   
  (  ) 

    
    

   
   

 

  
 

  

 

  

 

    
 

   
 

  

 

    
 

   
 

  

  

    
 

   
  (  ) 

From these two basic equations, we obtain    

                       
       

      
        

 

    
  

  

    
 

     ( )                           (24) 

Similarly, we have  

                            
       

        
          

   

    
  

  

    
 

     ( )                         (25)                                     

Also, using Taylor’s series expansion to   
 around (     )with respect to the temporal 

direction, we have the approximation   

  
 

 as: 
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 (
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( ) 

   

    

  
 

 

   
  (  ) 

From these two basic equations, we get: 

   
      

   
  

 

  
 
 

  
 

( ) 

  

   
 

  
 
 

     
  (  )   (26) 

Substitute Eq. (24) - Eq. (26) into Eq. (23)    
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where    
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/

  
 

    (  )  
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   . 

Again  
    

   

    
 

 
 .

    
   

    
    

 

   / 

             (   )  
    

  
0
    

   

    
    

 

   1  
  

  
(

   
 

  
 
 

   +                                        (28) 

                (   )     
     

   (     ) , 

where    
 

  
‖

    
   

    
    

 

   ‖
 

 and     ‖
   

 

  
 
 

     ‖ 

Since at the nodal point    , we have:       

   (  )

   
           (  ) (  )        

Therefore the described method is second - order convergent. Truncation error refers to 

the difference between the original differential equation and the finite difference 

approximation at the grid points. Thus the developed scheme is second-order accurate. As 

book of Zhilin et al.,(2008) a finite difference scheme is called consistent if the limit of 

the truncation error is equal to zero as the mesh size goes to zero. Hence, this definition 

of the consistency on the described method with the truncation error in Eq. (28)is 

satisfied as: 

   
(   )  

  (   )     
(   ) (   )

 (     )    

Therefore, by Lax equivalence theorem the constructed scheme convergent. 

 

4.1.3. Richardson Extrapolation 

The basic idea of i Richardson extrapolation is that whenever the leading term is the error 

for an approximation formula is known. By combing two or more approximation 

obtained from those formula using different value of meshes lengths: 

(   ) 
(   )

 
  
(   )

 
 
(   )

 
  

to obtain a higher - order approximation and the technique is known as Richardson 

extrapolation.  
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This procedure is a convergence acceleration technique which consists of considering a 

linear combination of two computed approximations of a solution. The linear 

combination turns out to be a better approximation. 

Particularly in our case, the described numerical method is almost second over 

convergent as verified Eq. (28) So that, from this equation, we have 

                                              (     )    
    (     )                                         (29), 

where  (     ) and   
  exact and approximate solutions respectively,   is constant in 

dependent of mesh sizes in   and perturbation parameter. Let    
   be the mesh obtained 

by bisecting each mesh interval in    
 and denote the approximation of the solution on 

   
   by    

  . Consider Eq. (28) works for any (   )     which implies: 

    (     )    
   (     )    

                 (30) 

So that it works for any (
 

 
 
 

 
)    yields: 

  (     )    
   (

  

 
 

  

 
)     

     (31), 

where the remainder,  
 and     

   are   (     )).  

Eliminating the constant from Eq. (30) and Eq. (31) 

Leads to    (     )  (    
     

 )   (     ) , which suggests that 

 (  
 )    

 

 
(    

     
 ) (32) 

is also an approximation  (  )  

Using this approximation to evaluate the truncation error we obtain: 

   (  )  (  
 )      (     ) (33) 

Now, using these two different solutions which are obtained by the same scheme given 

by Eq. (16), we get another third solution in terms the two by Eq. (33).  
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This is the Richardson exploration technique to accelerate the second –order to fourth - 

order convergent.  

In similarly manner accelerating this fourth order approximation to six orders, we choose 

the system of equations 

2

 (     )    
    ( 

    )    ( 
    )   ( 

    )   

 (     )     
     (

     

  
)    (

     

   
)    (

     

    
)  

 

  ( (     )  (     
     

 ))   (     ) , 

which leads to    

                          (   
  )     

 

  
(  (   

  )     (   
  )    )                                      (34) 

Now, using the two different solutions which are obtained the scheme given Eq. (16 ) we 

get another third solution in terms of the two by  Eq. (34).  This is the Richardson 

extrapolation methods to accelerate the fourth order to six order convergence. 
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4.2 Numerical illustration  

In this section, we provide numerical examples and results to validate the applicability of 

the describe schemes 

Example1: Consider the singularly perturbed parabolic initial value boundary problem: 

                                  
   

    (      ) (   )  
  

  
  (   ) (   ) (   )  (   -, 

subject to the initial boundary conditions: 

                                   (   )      ,   -  (   )     (   )   ,   -, 

where the source functions  (   ) is fitted such that the exact solution is 

                               (   )  (      (  )(
   .

  

√ 
/    .

 (   )

√ 
/

     .
  

 
/

 (   (  )) ) 

Example 2: Consider the singularly perturbed parabolic problem: 

 
   

   
  (   ) (   )  

  

  
  (   )  (   ) (   )  (   -  

where  (   )            ( )       (   )     ( )       (  )  subject to initial 

boundary condition  

 (   )      (,   -  (   )     (   )   ,   - 

For this example the exact solution is not accessible, so that it’s maximum absolute error 

calculated by double mesh size principle (Tesfaye et al., 2021). 

  
       (       )  ̅ 
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4.3 List of tables 

Table 4.1: Maximum absolute error for Example 1, when      

5

6

7

8

ε N 16 32 64 128 256

Present Method

6.7162e-09 2.4174e-10 3.9219e-11 3.1199e-12 1.8279e-13

1.6260 08 3.0971 10 1.0865 11 1.7436 12 1.3995 13

5.0027 08 8.7617 10 1.5752 11 5.4736 13 8.7397 14

1.6164 0

2

2

2

2

e e e e e

e e e e e

e









 

    

    



 

9

5

6

7 3.0206 09 5.0137 11 8.7010 13 3.0108 14

4.7537 07 1.0856 08 1.8376 10 2.9633 12 5.0780 14

., 2021

2.9109e-06 2.1164e-07 1.3395e-08 8.4080e-10 4.5679e-11

6.6145 06 4.1973 07 2.6385 08 1.6

2

2

2

e e e e

e e e e e

Tesfaye et al

e e e







   

    

  

7

8

9

535 09 1.0346 10

1.2425 05 8.5139 07 5.3716 08 3.3727 09 2.1095 10

2.4780 05 1.6801 06 1.0710 07 6.7530 09 4.2260 10

4.4030 05 3.1975 06 2.1164 07 1.3395 08 8.4080 10

2

2

2

e e

e e e e e

e e e e e

e e e e e







 

    

    

      
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Table 4.2:Computed maximum absolute errors for Example 1,when     

 

7

8

9

7

ε N 16 32 64 128 256

Sixth  order

5.0027e-08 8.7617e-10 1.5752e-11 5.4736e-13 8.7397e-14

1.6164 07 3.0206 09 5.0137 13 8.7010 13 3.0108 14

4.7537 07 1.0856 10 1.8376 10 2.0633 12 5.0780 14

2

2

2

e e e e e

e e e e e

Fourthorder









 

    

    

8

9

7

1.2425e-05 8.5139e-07 5.3716e-08 3.3727e-09 2.1094e-10

2.4780 05 1.6801 06 1.0710 07 6.7529 09 3.0108 10

4.4030 05 3.1975 06 2.1164 07 1.3395 08 8.4079 10

1.8440 03 4.7001 04 1.1807 04

2

2

2

2

e e e e

e e e e e

Second order

e e e







    

    

  

8

9

2.9555 05 7.3017 06

1.6579 03 4.3054 04 1.0867 04 2.7234 05 6.8138 06

1.5084 03 4.0599 04 4.0599 04 2.5982 05 6.5044 06

2

2

e e

e e e e e

e e e e e





 

    

      

 
 

 

The maximum absolute error 

               
       (       )  ̅ 

   (       )  (  
   )  and 

  
       (       )  ̅ 

   (       )  (  
   )    , whereu(     ) an exact 

solution,  
   is an approximate solution before extrapolation and(  

   )   is also an 

approximate solution after Richardson extrapolation (Tesfaye et al., 2021). 

The corresponding rate of convergence is determined by  

  
     

     
         

     

    
 

               

    
 

 

 



 

27 | P a g e  
 

Table 4.3: Computed Rate of Convergence for Example 1, When     

 

7

8

9

7

8

9

ε N 16 32 64 128

Sixth  order

5.8354 5.7976 4.8469 4.6468

5.7418 5.9128 5.8486 4.8530

5.4525 5.8845 5.9545 5.8668

3.8673 3.9864 3.9934 3.9990

3.8826 3.9715 3.9873 3.9982

3.7835 3.9173 3.9818 3.9938

2

2

2

2

2

2

Fourthorder

Se













 

7

8

9

1.9721 1.9930 1.9982 1.9994

1.9451 1.9862 1.9965 1.9989

1.8935 1.9728 1.9931 1.9980

2

2

2

cond order






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Table 4.4: Comparison of Maximum Absolute Errors for Example 2: 

4

8

12

16

128 256 512 1024

4 8 16 32

Pr

3.4191 05 7.9633 06 1.9294 06 4.7462 07

3.2698 05 7.7775 06 1.9115 06 4.6939 07

4.4756 06 5.3190 06 1.8283 06 4.1728 07

3.9622 05 6.73

2

2

2

2

N M M M M

N N N N

esent Method

e e e e

e e e e

e e e e

e











     

   

   

   

   



4

8

12

16

83 06 6.2755 07 8.6046 08

., (2021)

3.9138 04 9.5343 05 2.3353 05 5.8317 06

6.5366 04 1.6276 04 4.0499 05 1.0111 05

6.6576 04 1.6709 04 4.1915 05 1.0552 05

6.6691 04 3.1446 04 2

2

2

2

2

e e e

Tesfaye et al

e e e e

e e e e

e e e e

e e









  

   

   

   

  .7007 04 9.6167 05e e 
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4.4 List of Figures 

Figure 4.1 Surface plot of the solution behavior for Example 1, where              
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Figure 4.2 Surface plot of the solution behavior for Example 2, where              
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CHAPTER FIVE 

DISCUSSION, CONCLUSION AND SCOPE 

5.1   Discussion and Conclusion 

In this work, accelerate non-standard finite difference method described and analyzed for 

solving singularly perturbed parabolic reaction diffusion initial boundary value problem 

.Richardson extrapolation technique helps to improve accuracy of the solution and 

accelerate rate of convergence from second order to fourth order and fourth order to sixth 

order. Consistency and stability of the method established clearly to guaranty the 

convergence of the method.  We consider two model examples to illustrate the numerical 

results interims of maximum absolute error and rate of convergence for different values 

of the perturbation parameter and mesh size (see the table 1-4). Specifically 1 and 4 used 

to verify the betterment of present method by producing more accurate solution the 

existing methods in the literature. Table 2, shows that the confirmation of fourth and sixth 

order of convergence in the theoretical analysis with experiment results. Table 3, shows 

the effect of applying Richardson extrapolation method and improvement of the accuracy 

of solution. As the number of interval N increases accuracy of solution also increases.  

Additionally, fig 1 to illustrate the problem has two (left and right) boundary layers. Fig 2 

shows that the effect of mesh sizes and perturbation parameter with occurrence of 

maximum absolute errors in the layer regions.  At the end accelerated non-standard finite 

difference method is formulated for the class of singularly perturbed parabolic reaction-

diffusion initial boundary value problem which is stable, convergent and gives more 

accurate solution than some of the existing method in literature 

5.2 Scope of the Future Work 

In this thesis, accelerated non-standard finite difference method is introduced for solving 

singularly perturbed parabolic reaction-diffusion problem. Hence the scheme proposed in 

this thesis can also be extended to higher order finite difference method to solve 

singularly perturbed parabolic reaction-diffusion equation. 
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