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 ABSTRACT 

The fractional reduced differential transform method (FRDTM) was a well-known method for 

finding an approximate analytic solution for linear and nonlinear fractional partial differential 

equations. FRDTM is an effective tool to solve partial differential equations analytically. This 

method provides the solution in the form of a convergent series with easily calculable terms.  In this 

study FRDTM has been successfully applied on one dimensional time fractional Fornberg-Whitham 

equation subjected to the given initial condition. The efficacy and accuracy of FRDTM is 

demonstrated by two examples, which indicate that the presented method is very effective, accurate 

and easy to emplement.The plotted graphs illustrate the behavior of the solution for different values 

of order    

Keywords: Fractional Reduced Differential Transform Method (FRDTM), Time Fractional order 

Fornberg-Whitham Equation, convergence. 
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CHAPTER ONE 

INTRODUCTION 

 

          1.1 BACKGROUND OF THE STUDY 

An equation involving one or more dependent variable and its derivatives with respect to one or more 

independent variables is called Differential Equation (DE). Differential equations occur in connection 

with numerous problems that are encountered in the various branches of science and engineering. 

Some of these are: the problem of determining the motion of projectile, rocket, satellite, or planet, the 

problem of determining the charge or current in an electric circuit etc.  Partial differential equations 

(PDEs) have broad applications in various branches of sciences and engineering such as fluid 

mechanics, thermodynamics, heat transfer as well as many other areas of physics (Debtnath.  L, 1997).  

PDEs have an enormous applications compared to Ordinary Differential Equations (ODEs), to mention 

some of these: dynamics, electricity, heat transfer, electromagnetic theory, quantum mechanics and so 

on ( Erwin, 2006). For many nonlinear PDEs, it is rather challenging to manage the nonlinear terms of 

these equations. Despite the fact that most researchers utilized numerical methods to obtain the 

approximate solution of the equations, being able to solve such equations analytically is significant due 

to the fact that manipulation are easier if the approximation is analytical in nature. A fractional partial 

differential equation (FPDE) is a general form of a partial differential equation by replacing the integer 

order derivatives with the fractional order. Due to the extensive application of fractional differential 

equations in various fields of engineering and science, many researchers have paid attention to find the 

solutions of fractional Fornberg-Whitham equation. Fractional Fornberg-Whitham equation is an 

example of fractional partial differential equation. The Fornberg-Whitham equation is a type of 

traveling wave solutions called kink-like or ant kink like wave solutions variety of application in 

physics and engineering arise, for example, in the propagation of electrical signals and optimization of 

guided communication systems. To obtain the approximate analytical solution of fractional Foremberg-

Witham equation, many effective methods have been developed, such as Homotopy perturbation 

method (HPM) by (Gupta, P.K., 2011), Variational iteration method (VIM) by (Saka, M.G., Erdogan, 

2012), combination Laplace transform and HPM (Singh, D. Kumar,S., 2013), Homotopy analysis 

method (HAM) and (Saberinik, H., Buzhabadi,R., 2011), differential transform method (DTM),  

(Merdan, M. et al, 2012) and fractional Homotopy analysis transform method (FHATM)by (Kumar,S, 

2014). One of the most known methods to solve partial differential equation is the integral transform 

method by (Hazewinkel, M. 2001)  
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Fractional calculus used in many phenomena in engineering, physics, biology, fluid mechanics, and 

other sciences (Kumar, S;A 68a,1-7 2013)  can be described very successfully by models using 

mathematical tools from fractional calculus. Fractional derivatives provide an excellent instrument for 

the description of memory and hereditary properties of various materials and processes (kilbas, A.A., 

2006). The fractional derivative has been occurring in many physical and engineering problems such as 

frequency-dependent damping behavior materials, signal processing and system identification, 

diffusion and reaction processes, creeping and relaxation for viscoelastic materials.  

In modeling of many chemical processes, mathematical biology and many other problems of 

engineering (Mohsen and Seyedeh, 2018). Due to its extensive applications in various fields of 

engineering and science, many researchers have paid attention to find their solutions. Physical 

phenomena are best described by partial differential equations (PDEs), which were first developed in 

the 18
th

 century for describing heat and wave phenomena by Fourier theory (Fourier, J.B.J., 1878). 

Since then, PDEs have found applications almost in every fields of: chemistry, fluid dynamics, 

quantum mechanics, classical mechanics, biology, electrostatics and electrodynamics (Jagdev, S., 

2016) and many more. PDEs are described in one, two or three dimensions depending on independent 

variables. Since PDEs describe the complex situations mathematically, it is quite tricky to find the 

exact solution of every PDE.  

  Nonlinear partial differential equations are widely used to describe many important phenomena and 

dynamic processes in physics, mechanics, chemistry, biology, etc. the study of nonlinear partial 

differential equations plays an important role in physical sciences and Engineering fields. The 

investigation of exact solutions of nonlinear partial differential equations plays an important role in the 

study of nonlinear physical phenomena. Many methods, exact, approximate, and purely numerical are 

available in the literature for the solution of nonlinear partial differentials (Mahmoud Rawashden, 

2013). Solving partial differential equations (PDEs) is completely important in the context of Applied 

Mathematics, Theoretical Physics and Engineering Sciences. It is expected that PDEs will appear while 

conducting research in these areas (Jafari, S. Sadeghi et al., 2012). (Murat et al., 2016) solved 

combined KdV- mKdV numerically by cubic B-Spline collocation method.   

In recent years, fractional differential equations have received considerable attention owing to their 

applicability in different fields of sciences such as chemistry, biology, diffusion, control theory, 

rheology, viscoelasticity, and so on (Chatibi et al., 2019). Consequently, the solution of FPDEs 

represents nowadays a vigorous research area for scientists, and finding approximate and exact 

solutions to FPDEs is an important task (Bishehniasar et al., 2017). However, PDEs are commonly hard 

to tackle, and their fractional order types are more complicated (Chatibi et al., 2020). Therefore, several 
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methods such as the Homotopy perturbation method (He et al., 2003), sub-ODE method (Tchier et al., 

2019 and Yusuf et al., 2019), residual power series method and generalized tanh method (Aliyu et al., 

2018), and so on (Akgul et al., 2018) are developed to obtain solutions of some nonlinear fractional 

differential equations.   

Most of these methods sometimes require complex and huge calculation in order to obtain approximate 

solutions. To overcame such difficulties and drawbacks, an alternative method, the so called the 

fractional reduced differential transform method (FRDTM), has been developed by (Keskin and 

Oturanc, 2010). FRDTM plays a vital role among all the listed methods because it takes small size 

computation, easy to implement as compared to other techniques (Srivastava et al., 2013). Using this 

method, it is possible to find both exact and approximate solutions in a rapidly convergent power series 

form. FRDTM is a very reliable, efficient, and effective powerful computational technique for solving 

physical problems (Srivastava et al., 2014).  

Recently, by (Mohamed S.M., 2018) the nonlinear Fornberg-Whitham equation is solved numerically 

to analyze its behavior by Residual power series method and results have been compared with the exact 

solution. However, the solutions of time fractional nonlinear Fornberg-Whitham equations with the 

given initial condition by using fractional reduced differential transform method (FRDTM) is not 

studied yet. Therefore, the main purpose of this study will be to develop a scheme to find approximate 

analytical solutions of   nonlinear time-fractional Fornberg –Whitham equations of the form:   

   

   
 

   

     
  

  

  

   

   
  

   

   
 

  

  
  

  

  
                                                                            

Subjected to the initial condition: 

                                                                                                                                                             (1.2) 

where        is the fluid velocity,  is constant and lies in the interval         the time 

and   is the spatial coordinate. (Mehmet Merdan et al. 2012).   
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1.2. Statement of the problem 

Recently, an approximate analytical solution of some nonlinear time fractional order Fornberg-

Whitham equation was obtained by using the new iteration method (NIM). Even though time fractional 

Fornberg- Whitham equation can be found in a wide variety of engineering and scientific application, 

solving nonlinear time fractional order Fornberg-Whitham equation represented by eq. (1.1) by 

applying FRDTM is not presumably presented in the existing literature. Therefore, the aim of this study 

is solving time fractional order Fornberg-Whitham equation with the given initial condition by applying 

fractional reduced differential transform method. As a result, this study mainly focuses on the following 

problems related with time fractional order Fornberg-Whitham equation given by (1.1) 

 Apply FRDTM to obtain analytical solutions of time fractional order nonlinear Fornberg –

Whitham equation with the given initial condition.  

 Verify the applicability of fractional reduced differential transform method (FRDTM) for 

solving nonlinear time fractional order Fornberg –Whitham equations to obtain analytical 

solutions by using specific examples. 



5 
 

1.3 Objective of the study 

1.3.1 General objective 

The general objective of this study is to find analytical solutions for nonlinear time fractional order 

Fornberg-Whitham equations represented by (1.1) under the given initial condition represented by (1.2) 

using fractional reduced differential transform method (FRDTM).  

1.3.2 Specific Objectives. 

  The specific objectives of the study are:- 

 To apply FRDTM for obtaining analytical solutions of time fractional order nonlinear Fornberg 

– Whitham equation with the given initial condition.  

 To show the convergence of the solution obtained by FRDTM. 

 To verify the applicability of FRDTM by considering supportive examples.                                                                            

1.4. Significance of the Study 

This research is considered to have vital importance for the following reasons:- 

 It provides technique of solving time fractional order Fornberg-Whitham equations with the 

given initial conditions by using FRDTM.  

 It familiarizes the researcher with the scientific communication in mathematics and develops 

the skills of mathematical research.  

 It can be used as reference material for other researchers in the same area.  

1.5. Delimitation of the study 

The FRDTM is a powerful mathematical technique for solving wide range of problems arising in 

sciences and engineering fields. This study is delimited to study analytical solutions of time 

fractional order one dimensional nonlinear Fornberg-Whitham equations with the given initial 

condition by using FRDTM.  
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CHAPTER -TWO 

REVEIW LITERATURE 

Differential equations are mathematical expressions that are used to model real life problems arise in 

different fields of science and engineering on the world. Due to these reasons many equations are 

represented by using Differential Equations. Differential Equations DEs can be classified as ordinary 

differential equations, when the unknown function depends on one independent variable, and Partial 

Differential Equations, when the unknown function depends on two and more than two independent 

variables. The most important PDE are the wave equations that can model the vibrating string and the 

vibrating membrane, the heat equation for temperature in a bar or wire and the Laplace equation for 

electro static potentials. Partial differential equations are very important in dynamics, electricity, heat 

transfer, electromagnetic theory and quantum mechanics. A variety of numerical and analytical 

methods have been developed to obtain accurate approximate and analytic solutions for the problems. 

In order to understand the physical behavior of these problems it is necessary to have some knowledge 

about the mathematical character, properties and the solutions of the governing partial differential 

equations. Since the investigation of exact solution of fractional differential equations is interesting and 

important, in the past several decades many authors mainly had paid attention to study the solution of 

such equations by using various developed methods. The Vibrational Iteration Method (VIM) has been 

applied to handle various kinds of nonlinear problems, for example, fractional differential equations, 

nonlinear differential equations, nonlinear thermos elasticity and nonlinear wave equations. Adomain’s 

Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Homotopy Analysis Method 

(HAM) and Variation of Parameter Method (VPM) are successfully applied to obtain the exact solution 

of differential equations Muhammad S. & Syed T. M., (2012).  

Fractional differential equations arise in almost all areas of physics, applied and engineering sciences. 

In order to better understand these physical phenomena, as well as further applications in practical 

scientific research, it is important to find the analytical solutions. The investigation of analytical 

solution to these equations is interesting and important. In the past, many authors had studied the 

solutions of such equations. Recently, several analytical and numerical techniques were successfully 

applied to deal with differential equations and fractional differential equations. Studies shows that the 

Adomian decomposition method (ADM) (Cherruauit.Y, 1993), Homotopy perturbation method (HPM) 

(He.J.H, 2004), Homotopy analysis method (HAM), (Matinfar.M, and Saeidy.M, 2010) and variation 

of parameter method (VPM), (Biazar.J, and Ghazvini.H, 2009) are successfully applied to obtain the 

exact solutions of differential equations. 
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Fractional calculus theory is more than 200 years old to be presented in the literature. Several 

definitions of fractional integrals and derivatives have been proposed but the first contribution to give 

proper and most meaning full definition is due to Riemann-Liouville. Application of fractional calculus 

to dynamics of particles, fields and media, (Luo.AC, et al, 2006). Reduced differential transform 

method has been applied to solve many physical problems; in particular it is applied in solving the heat 

and wave like equations. The method is applied in direct way without using linearization, 

transformation, discretization or restrictive assumptions.     

The reduced differential transform technique is an iterative procedure for obtaining Taylor series 

solution of differential equations. This method reduces the size of computational work and is easily 

applicable to many physical problems. Nonlinear Fornberg-Whitham equation is solved numerically to 

analyze its behavior by Residual Power Series Method and results have been compared with the exact 

solution.  The Foremberg-Whitham equation (FWE) has been found to require peak on results as 

simulation for limiting wave heights as well as the frequency of wave breaks. In fractional calculus 

(FC) has gained considerable significance and popularity, primarily because of its well-shown 

applications in a wide range of apparently disparate areas of engineering and science (Purohit, S.D., 

2013). Many scholars, such as (Singh et al., 2013), (Kumar et al., 2018), (Gupta and Singh, 2011) etc., 

have therefore researched the fractional extensions of the Foremberg-Whitham model for the Caputo 

fractional-order derivative (Abidi and Omrani, 2011). FDEs are widely utilized to model in a variety of 

fields of study, including an analysis of fractional random walking, kinetic control schemes theory, 

signal processing, electrical networks, reaction and diffusion procedure (Senol et al., 2019). Fractional 

derivative provides a splendid method for characterizing the memories and genetic properties of 

different procedures (Akinyemi et al., 2020).  Many scholars have recently solved different types of 

fractional-order PDEs, for example heat and wave equations by ( Khan et al., 2019), coupled Burger 

equations by (Rawashdeh et al., 2014), hyperbolic telegraph equations by (Baleanu et al., 2019), Harry 

Dym equations by (Rawashdeh et al., 2017) and diffusion equations by (shah et al., 2019).                                                                     

   Recently, the new iteration method is applied to solve the time fractional Fornberg-Whitham 

equation. However, solutions of time fractional Fornberg-Whitham equation.by using FRDTM have 

not been discussed so far. Therefore, the main objective of this study is to apply FRDTM to find the 

analytical solution of time fractional Fornberg-Whitham equation subject to the given initial condition. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Study Area and Period 

The study is conducted on the topic from PDE which will deal with how to solve time fractional order 

Fornberg-Whitham equations by using FRDTM in Jimma University, under Mathematics department 

from August 2021 to February 2022.  

3.2 Study Design 

Mixed design was used for this study.  

3.3. Sources of Information 

The source of data for this study is secondary data which can be collected through reference books, 

internet, reading online books and different published research articles (or journals).  

3.4. Mathematical procedures 

In order to achieve the objective of the study the following mathematical procedures are applied.  

Step 1. Applying fractional reduced differential transform to both sides of equations     and (1.2)  

to obtain a recursion relation. 

Step 2. Using step 1, obtaining the values of unknown functions                     

Step 3. Applying inverse fractional reduced differential transform on the sequence {     }   
  

to determine the solution of        

Step 4.Testing convergence of approximated solution. 

Step 5.Mathematica version     software is used to sketch the solution curves. 
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CHAPTER FOUR 

RESULT AND DISCUSSION 

  4.1. Preliminaries 

This section presents basic definitions and operations or properties related to fractional calculus theory. 

4.1.1 Gamma function 

Definition 4.1.1(Gamma function, Zahid et.al, 2015): The Gamma function is defined via a convergent 

improper integral 

     ∫           
 

 
                                                                                                                          (4.1) 

Provided that          

(Batir, 2008): For nonnegative integer   and complex number   such that        , one can derive 

the following useful properties. 

                     

                   

     (
 

 
)  √         

 4.1.2. Basic definitions and notations of Fractional Calculus theory 

Some essential definitions of fractional order integrals and derivatives that are presented in this study 

are respectively given by Riemann-Liouville and Caputo.  

Definition 4.1.2 let          A function       belongs the space C  if there exists a real 

number    with     such that             where           . 

Moreover,      whenever   and    
  if                          

Definition 4.1.3let   
  be Riemann-Liouville fractional integral operator and    then 

I.   
      

 

    
∫                   
 

 
                                                    (4.2) 

II.   
                                                                                                  (4.3) 

For                           the operator   
 satisfy the following properties: 

I.   
   

        
          

   
                                                                     (4.4) 

II.   
    

      

        
                                                                                    (4.5) 

Remark : The Riemann-Liouville derivative has certain limitations when someone tries to model some 

real physical problems. In their work, Caputo & Mainaridi proposed a modified fractional differential 
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operator xD
to the theory of viscoelasticity to overcome the inconsistency of Riemann-Liouville 

derivative. The proposed Caputo fractional derivative permits us to use initial and boundary conditions 

involving integer order derivatives, which have clear physical interpretations in formulation of 

problem. 

Definition4.1.4.If                then Caputo fractional derivative of     (Carpinteri 

and Mainaridi, 1997) is defined as 

  
        

     
      

 

      
∫                    
 

 
                             (4.6) 

The basic properties of the Caputo fractional derivative xD
are presented in the following Lemma. 

Lemma 1: - If                        
       then    

1.   
   

 
       

   
       

 
  

                                                                                (4.7) 

2.   
    

      

        
                                                                                                           (4.8) 

3. {
                                                              

               ∑          
  

  

   
              

                                                                  (4.9) 

       4.2 Fractional Reduced Differential Transform Method (FRDTM) 

In this section, the basic properties of the fractional reduced differential transform method are 

described.The FRDTM is the most easily implemented analytical method which provides both 

approximate and the exact solution for both linear and nonlinear fractional differential equations, is 

very effective, reliable and efficient, and very powerful analytical approach, refer (Gupta, 2011); 

(Srivastavaet al., 2013); (Srivastava, et al., 2014) ;(Singh et al., 2013) and (Singh and Kumar, 2016). 

Therefore, this study presents the solution of time fractional Fornberg –Whitham equation by using 

FRDTM. Consider a function of two variables        and suppose that it can be represented as a 

product of two single-valued functions, i.e.                  

Based on the properties of one-dimensional differential transform method, the function        can be 

represented as: 

       (∑        
   )(∑        

   )  ∑       
   

   ,                                                                    ) 

where       is called t-dimensional spectrum function of        which is also called the reduced 

transformed function of         

 In fact, the above definition shows that, the concept of fractional reduced differential transform is 

derived from the power series expansion (Keskin and Oturanc, 2010).  

The basic definition and operation of FRDTM as introduced in (Srivastavaet al., 2013); (Babaei and 

pour, 2015) and (Miller and Ross, 1993) were given bellow:- 
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Definition 4.2.1 If        is analytic and continuously differentiable with respect to space variable x 

and time variable t in the domain of interest, then the t-dimensional spectrum function or the fractional 

reduced transformed function of        is given by 

                 
 

       
0
   

    
      1

    

                                                                                     

where  is a parameter which describes the order of time fractional derivative in a Caputo sense an 

      is the transformed function of the       .              

Definition 4.2.2The inverse FRDT of       is defined as 

                   ∑           
  

 

   

                                                                                                 

 Now combining Eq. (4.11) and (4.12), we obtain: 

       ∑
 

       
0
   

    
      1

    

      
  

 

   

 

Which in practical application can be approximated by a finite series. 

        = ∑            
   

    

Where n is the order of this approximate solution, Therefore, the exact solution can be obtained as:- 

           
   

        ∑            
   

                                                                                 (4.13) 

If       equation (4.13) reduces the form  

           
   

        ∑         
   

                                                                                         (4.14) 

Moreover, if   0 the FRDTM of (4, 14) reduce to classical RDTM. 

Applying the fractional reduced differential transformed operator on both sides of equation

   ,0u x f x and              we get respectively              and              

Hence using equation (4, 12) the function        can therefore be written in a finite series as   

        ∑            
          

 
   , 

where    represents order of estimated solution. Here the tail function         is negligibly small. 

In particular, if 
0 0t  this equation takes the form  

        ∑      
  

 

   

  

Finally, the accurate solution is found by taking limit of the function, i.e. 
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                     ∑       
   

     =            
        

         
  …            

Based on the definition and properties of time fractional reduced differential transform of one 

dimensional Fornberg -Whitham equations we have the following results (Theorems). 

Table 4. 1 Basic properties of one dimensional fractional reduced differential transform, 

(Srivastavaet al., 2013) and (Abuteen et al., 2016) 

 

Here we have the detail of some of the theorems with their proofs from table 4.1. 

Theorem.4.1.If        
  

          then,       
  

         

Proof: let       and       t-dimensional spectrum functions of        and        respectively and 

is analytic and  -time continuous differentiable function with respect to time   and   in the domain of 

our interest. Now applying FRDT operator to the left side of the equation        
  

          we get 

      
 

       
0
   

    
      1

    

 
 

       
0
   

    
  

   
      1

    

 

 
  

   
(

 

       
0
   

    
      1

    

)  
  

   
      

Hence       
  

        .This completes the proofs of the theorem. 

 

 

No Original Function Transformed function ( FRDTM ) 

1                                            

2 
               
 

             , for arbitrary constant a 

3                         (
  

  
)sin (    

  

 
 )                             

4                         (
  

  
)    (    

  

 
 ) where                       

5        
  

   
                                       

      

  
        

6        
 

  
             

 

  
      

7        
  

   
             

  

   
      

8        
   

    
             

          

       
        

9 w( x, t )=u(x, t)v(x, t)       ∑         
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Theorem 4.2.If          
   

             then       
          

       
        

Proof: let       and       be t -dimensional spectrum functions of        and        respectively 

and is analytic and K-time continuous differentiable function with respect to time t and x in the domain 

of our interest. Applying FRDTM operator to the left side equation        
   

    
          we obtain 

      
 

       
*
   

    
      +

    
, 

      
 

       
*
   

    
(
   

          )+, 

      
 

       
*
      

             +
    

, 

      
          

          
{

 

       
*
      

       
      +

    
}, 

      
          

       
{

 

          
*
       

              +
    

} , 

      
          

       
       . 

Theorem 4.3.If                     , then the fractional reduced differential transform of g is  

       
  

  
           

  

 
 Where  and   are constants. 

Proof: - Using definition (4.2.1) and properties of fractional reduced differential transform method, we 

have  

       
 

       
*
   

    
      +

    
, 

      
 

       
*
   

    
            +

    
, 

         

       
*
   

    
          +

    
, 

                                          
  

  
          

  

 
 , for k=0, 1, 2… 

Theorem 4.4.If                    , then the fractional reduced differential transform of f is  

       
  

  
          

  

 
 ,where  and  are constants. 

Proof: - Using definition (4.2.1) and properties of fractional reduced differential transform method, we 

have  

       
 

       
*
   

    
      +

    
, 

      
 

       
*
   

    
            +

    
, 
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*
   

    
          +

    
, 

        
  

  
          

  

 
 Where k=0, 1, 2… 

Lemma 1: If       
        

     
, then      

       

       

  

   
        ,where           

Proof:By definition 4.2.1, we have 

      
 

       
*
   

    
      +

    
, 

      
 

       
*
   

    
      +

    
, 

      
 

       
*
   

    
,
        

     
-+

    
, 

      
 

       
*
  

   
,
           

      -+
    

, 

      
       

       

  

   
*

 

       
,
           

      -+
    

, 

      
       

       

         

   
,where           

Lemma 3: If        
        

   

        

   ,then       ∑
    

   
 
   

      

    ,where           

Proof:By using equation (4.14),weget 

       ∑
    

           ∑
    

              
   

 
   , 

           = (
    

    
    

      
    

       
    

       
    

        ) 

               (
    

    
    

      
    

       
    

       
    

        ), 

           = (
    

   

    

     
    

   

    

    
    

   

    

     
   

    

   

    

    
    

   

    

    
    

   

    

     
  ) 

                                
    

   

    

    
    

   

      

      
      

   

    

    
    

   

    

     
  , 

           = ∑
    

   
 
   

      

      , 

Therefore, we obtain 

               ∑
    

   
 
   

      

      . 

    4.3. Description of the Method 

The aim of this research is to obtain analytical solution of one dimensional time fractional Fornberg -

Whitham equation by using fractional reduced differential transform method. This is done based on the 

works of (Keskin and Oturanc, 2010) that was used to solve fractional partial differential equations. So, 
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the definitions, theorems and some derivations related to FRDTM mentioned in the preceding section 

were applied here.  

I.  Consider the one dimensional time fractional homogeneous Fornberg –Whitham equation in Caputo   

sense: 

   

   
 

   

     
  

  

  

   

   
  

   

   
 

  

  
  

  

  
                                                                       (4.16) 

Subjected to the initial condition: 

                                                                                                                                               (4.17) 

Applying properties of FRDTM on equation (4.16), we get the following recurrence relation: 

           

       
     

       

       

  

        
 

  
       ∑   

 
   

  

        ∑   
 
   

 

  
     

  ∑
 

  
  

 
   

  

                                                                                       

where       . 

     
       

           
{

       

       

  

        
 

  
   ∑   

 
   

  

         ∑   
 

  
    

 
   

  ∑
 

  
  

  

       
 
   

}                (4.18) 

Again applying FRDTM on both sides equation (4.17), we obtain 

                                                                                                                                                   (4.19) 

 Using equations (4.18) and (4.19), we get the values      for different values of 

 k = 0, 1, 2, 3, 4 … recursively. i.e. 

            For k=0, 

   
    

      
,
    

    

  

   
   

 

  
     

  

   
     

 

   
    

 

   
  

  

    
  -,  

   
    

      
,
    

    

  

      
 

  
        

  

              
 

   
       

 

   
     

  

         -, 

         For k=1, 

   
      

       
{

      

      

  

         
      

  
 ∑        

 
   

   

  
 ∑   

          
       

   

  ∑   
   

     

  

       

   

} , 

   
      

       
{

      

      

  

      
 

  
   (  

  

        
  

     )

 (  
 

   
     

 

   
  )   (

 

   
  

  

       
 

   
  

  

      )
}   

   For k=2, 
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{

       

       

  

         
 

  
   ∑   

          
   

  
  ∑   

          
       

   

   (∑   
   

     

  

       

   )
} , 

   
       

       
{

       

       

  

      
 

  
   (  

  

        
  

        
  

     )

 (  
 

   
     

 

   
     

 

   
  )   (

 

   
  

  

       
 

   
  

  

       
 

   
  

  

      )
} , 

         For k=3  

     
       

       
{

       

       

  

         
 

  
   ∑   

          
   

  
 ∑   

          
       

   

  ∑   
   

     

  

       

   

}, 

    
       

       

{
 
 

 
 

       

       

  

         
      

  
 (  

  

        
  

        
  

        
  

     )

 (  
 

   
     

 

   
     

 

   
     

 

   
  )

  (
 

   
  

  

       
 

   
  

  

       
 

   
  

  

       
 

   
  

  

      ) }
 
 

 
 

, 

and so on 

 Applying inverse FRDTM on      , we find 

       ∑       
   

          
     

      
      

      
      

 

                     +   
 +   

      
      

      
     

   4.4. Convergence of reduced differential transform method 

In this section, we survey the sufficient condition for convergence of reduce differential transform 

method, and extend this idea for the convergence of the fractional reduced transform method  

First, we discuss the fundamental theorem associated with the convergence of RDTM as in  (Roodabeh 

et al., 2021) for the solution of the problem include ascertaining power series expansion with initial 

time    

       ∑            
  

     , t                                                                                                 (4.20) 

        = (       ),   . 

The important results are proposed in the following theorems 

Theorem 4.5: If                    
 , then the series solution∑        

 
   , stated in equation 

(4.20)      { }   

1. It is convergent, if        such that                           , 

2. It is divergent, if       such that                           . 

Using the Banach’s fixed point theorem a brief description of its proof. We investigate the truncation 

error of the series solution equation (4.20), as follow: 
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Proof: Let              be the Banach space of all continuous function on   with the 

norm                             
   . Also, assume that            , where    is a positive 

number. 

Define the sequence of partial sum {  }
 

   
 as 

                   .                                                                                                           (4.21) 

We want to show that {  }
 

   
 is a Cauchy sequence in this Banach space. To reach this goal, we take  

||          =                                        .                                                    (4.22) 

Therefore, for any n, m    n   , using equation (4.22) and the triangle inequality successively, we 

have  

                 ||        =  ||                                      

                                       ||                                              

                                         
      

   
           ,                                                                                     (4.23) 

and because      , we obtain                        .                                                     (4.24) 

Hence,  {  }
 

   
 is a Cauchy sequence in the Banach space            . Thus the series solution 

∑        
 
    defined in equation (4.20), is convergent. 

Remark 1: According to the assumption in No. 2 and by using the ratio test, we have  

                                
    

  
                                                                                                            (4.25)                                   

As a result, the series is divergent. 

Remark 2: If the series solution ∑            
  

   of the nonlinear equation (4.16) convergence 

than it is an exact solution.   

Theorem 4.6: Suppose the series solution ∑        
 
   where                    

 , converges 

to the solution u(x, t). If the truncated series ∑        
 
    is used as an approximation to the solution 

w(x, t), then the maximum absolute truncated error is estimated as (Roodabeh et al., 2021), 

‖       ∑        
 
   ‖  

 

   
     ‖  ‖                                                                                       (4.26) 

Proof: According to Theorem (4.5), we have the inequality equation (4.23) as follows 

‖     ‖    
      

   
    ‖  ‖                                                                                                       (4.27) 

For      Also, since      , in the numerator, we have         , therefore the inequality 

equation (4.27) can be reduced to ||         
 

   
                                                                            

it is clear when    ,           

Thus, inequality equation (4.26) is obtained and the Theorem is proved. 
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In generally, Theorem (4.5) and (4.6) state that the reduced differential transform solution of equation 

(4.16), obtained using the iteration formula (4.18), converges to an exact solution under the condition 

that         such that                        { }. In other words, if we define, for every    

    { }, the parameters,  

   {

        

      
                            

                                          
                                                                                                    (4.28) 

Then the series solution ∑        
 
    equation (4.16) converges to an exact solution u(x, t),   

when              { }. In addition, the maximum absolute truncation error, as discussed 

Theorem (4.6) is estimated to be  

‖       ∑        
 
   ‖  

 

   
           ,                                                                                      (4.29 

Where      {       i=0, 1, 2… j}, 

Remark 3: The first finite terms have no effect on the convergence of the series solution. In other 

words if the first finite   ’s, i=0, 1, 2… L are not less than one and             , then, the series 

solution ∑        
 
    of equation (4.16) converges to an exact solution. Because according to 

Theorem (4.5), we have  ‖     ‖    
      

   
              , and since        for      and fixed  , 

we get, 

        ‖     ‖          In this case, the convergence of RDTM approach depends                        

on                . 

    4.5. Convergence of the fractional reduced differential transforms method 

In this section, we survey the sufficient condition for convergence of fractional reduce differential 

transform method, according to the approach described by this method for solving equation (4.16), in 

the previous section. Below are some important theorems for convergences of the method are proved. 

The fundamental point views of FRDTM for the solution of the problem include ascertaining power 

series expansion with initial time    

          ∑            
    

   t                                                                                                (4.30) 

      l= (       ),   . 

The important results are proposed in the theorems below which were modified form of the above 

theorem 4.5 and 4.6, according to the fractional reduced differential transform method procedure. 

Theorem 4.7. If                     
  , then the series solution∑        

 
   , stated in equation 

(4.30)      { }  (Seyedeh al., 2021). 

  (i). It is convergent, if        such that |           |    |         |  
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 (ii). It is divergent, if       such that                           . 

Using the Banach’s fixed point theorem a brief description of its proof. We investigate the truncation 

error of the series solution equation (4.30), as follow: 

Proof: Let              be the Banach space of all continuous function on   with the norm            

                          
    . Also, assume that              ,where    is a positive number. 

Define the sequence of partial sum {  }
 

   
 as 

                    .                                                                                                           (4.31) 

We want to show that {  }
 

   
 is a Cauchy sequence in this Banach space. To reach this goal,               

we take  

||          =                                        .                                                    (4.32) 

Therefore, for any n, m    ,n    using equation (4.32) and the triangle inequality successively, we 

have     ||        = ||                                      

 ||                                              

 
      

   
            ,                                                                                                                        (4.33) 

and because      , we obtain                        .                                                     (4.34) 

Hence,  {  }
 

   
 is a Cauchy sequence in the Banach space            .Thus the series solution 

∑        
 
    defined in equation (4.30), is convergent. 

Remark 4: According to the assumption in (ii) and by using the ration test, we have  

            
    

  
                                                                                                                             (4.35)         

As a result, the series is divergent.                                                                                                             

Remark 5 .If the series solution ∑            
   

    of the nonlinear equation (4.16) convergence 

than it is an exact solution.   

Theorem 4.8: Suppose the series solution ∑        
 
    where                    

  , converges 

to the solution u(x, t). If the truncated series ∑        
 
    is used as an approximation to the solution 

u(x, t) and then the maximum absolute truncated error is estimated as (Seyedeh al., 2021) 

‖       ∑        
 
   ‖  

 

   
    ‖  ‖                                                                                       (4.36) 

Proof: According to Theorem (4.7), we have the inequality equation (4.33) as follows 

‖     ‖    
      

   
    ‖  ‖                                                                                                           (4.37)    
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For      Also, since      , in the numerator, we have        , therefore the inequality 

equation (4.37) can be reduced to ||         
 

   
           , it is clear when   ,           

Thus, inequality equation (4.36) is obtained and the Theorem is proved. 

In generally, Theorem (4.7) and (4.8) state that the fractional reduced differential transform solution of 

equation (4.16), obtained using the iteration formula (4.18), converges to an exact solution under the 

condition that         such that                        { }. In other words, if we define, 

for every i   { }, the parameters,  

   {

        

      
                            

                                          
                                                                                                   (4.38) 

Then the series solution ∑        
 
    equation (4.16) converges to an exact solution u(x, t), 

when                { }. In addition, the maximum absolute truncation error, as discussed 

Theorem (4.8) is estimated to be  

||       ∑        
 
      

 

   
            ,                                                                                   (4.39) 

 here      {       i=0, 1, 2,…,j}, 

Remark 6: The first finite terms have no effect on the convergence of the series solution. In other 

words , if the first finite   ’s, i=0,1,2,…L are not less than one  and             , then, the series 

solution ∑        
 
    of equation (4.16) converges to an exact solution. Because according to 

Theorem (4.7), we have ||         
      

   
           , and since        for      and fixed  , 

we get    

                       . In this case, the convergence of FRDTM approach depends                          

on               . 

    4.6 Illustrative examples 

In this part we deal with some examples to show the efficiency and accuracy of fractional reduced 

differential transform method (FRDTM) explained in the above sections for time fractional Fornberg-

Whitham equation. 

Example 4.1.Consider the fractional type Fornberg-Whitham equation stated as follows: 

             
   

   
                                                                                              (4.40) 

Subjected to the initial condition 

                       
 

                                                                                                                          (4.41) 
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Solution:  

Applying FRDTM operator to both sides of the equations (4.40) we obtain the following iteration as 

follow. 

           

       
     

       

       

  

        
 

  
      

  

        
 

  
    

 

  
  

  

      , 

where        

     
       

           
{

       

       

  

   
     

 

  
   ∑   

 
   

  

   
     ∑   

 

  
    

 
   

  ∑
 

  
  

  

   
    

 
   

} .               (4.42) 

Again applying FRDTM operator to both sides of the Eq. (4.41) we obtain the following 

iteration as follow. 

                
 

                                                                                                                      (4.43) 

Using equation (4.40) and (4.41), we get the following recursive relation:- 

For k=0, 

   
    

      
,
    

    

  

      
 

  
     

  

        
 

   
    

 

   
  

  

      - , 

   
      

 
 

            
 , 

   
  

 
 

         
 , 

            For k=1, 

   
      

       
{

      

      

  

      
 

  
   (  

  

        
  

     )  (  
 

   
     

 

   
  )

  (
 

   
  

  

       
 

   
  

  

      )
} , 

    
 

 (
           

(            )                 
) , 

    
 

 (
       

(         )                 
) , 

          For k=2, 

   
       

       
{

       

       

  

      
 

  
   (  

  

        
  

        
  

     )

  (  
 

   
     

 

   
     

 

   
  )   (
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} , 

    
 

 (
                  

(            )                                   
) , 

    
 

 (
              

(         )                                   
) , 
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In a similar manner we obtain 

     
 

 (
                          

(            )                                                     
) , 

     
 

 (
                      

(         )                                                     
) , 

and so on. 

Applying inverse FRDTM to     , it yields 

       ∑       
   

    =   +   
 +   

      
      

      
              . 

       ∑       
    

    
 

  .
  

 
 

         
/     . 

 

 (
       

(         )                 
)/       

 . 
 

 (
              

(         )                                   
)/       

. 
 

 (
                      

(         )                                                     
)/    + .  .  .                           (4.44) 

When    , equation (4.44) becomes 

        
 

    
 

 
  

 

 
   

 

  
   

 

   
        . 

The exact solution in the given problem is         
 

 
   

  

  as indicated in (4.40). 

It is expected that the solution obtained:∑      
 
   , converges to the exact solution.  

In addition, by computing      using theorem 4.8 for the problem (4.40), where      we obtain: 

   
    

    
 =0.6666 

   
    

    
 =0.3333 

   
    

    
 =0.2222 

   
    

    
 =0.1666 

… 

Hence, for    , 0      and    ,we conclude that     . This confirms that by theorem 4.8, the 

solution we made by FRDTM for time fractional Fornberg-Whitham equation converges to the exact 

solution.  

The solution curves of the time fractional Fornberg-Whitham equation given in Examples 4.1 for 

different values of fractional order   is depicted in Figures 1 and 2. 



23 
 

 

A B 

Figure 1: Solution behavior of Example 4.1:      a)   
 

 
,    b)   

 

 
 

 

 

A B 

Figure 2: Solution behavior of Example 4.1:   a)    ,    b) Absolute error 

 

Example 4.2.Consider the fractional Fornberg-Whitham equation stated as follows: 

   

   
                                                                                                            (4.45) 

Subjected to the initial condition 

             
 

 
                                                                                                                              (4.46) 

Solution:  

Applying FRDTM to both sides of the equations (4.45) we obtain  

           

       
     

       

       

  

        
 

  
      

  

        
 

  
    

 

  
  

  

       

where       



24 
 

     
       

           
{

       

       

  

        
 

  
   ∑   
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}                           (4.47) 

Again applying FRDTM to both sides of the Eq. (4.46) we obtain  

                     
 

 
                                                                                                          (4.48) 

Using equation (4.47) and (4.48), we get the following iterated values: 

       For k=0, 
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  ,                                                                                                                           
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         For k=2, 
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} , 
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   (          )(               )(                )
                        

      In a similar manner we obtain 

    
(         (

 

 
)                    )

(                                                                    )
      ,                      

    
                                      (

 

 
) 

                                                                                        
 , 

    
            (

 

 
)                                   

                                                                                                           
 ,  

and so on. 

Applying inverse FRDTM to     , it yields 

       ∑       
   

    =   +   
 +   
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{
 
 
 
 
 

 
 
 
 
     (

 

 
)
 

 
      (

 

 
)

          
   

       (
 

 
)      

  (          )(               )
   

 
                     (

 

 
)

   (          )(               )(                )
   

 
(         (

 

 
)                    )

(   (          )(               )(                )(                ))

 
                                      (

 

 
) 

(    (          )(               )(                )(                )(               ))

 
            (

 

 
)                                   
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            When    , equation (4.49) becomes 
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           (
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)

        

 
           (

 

 
)

          
         

The exact solution in the given problem is             (
 

 
 

  

  
 )as indicated in (4.45). 

It is expected that the solution obtained:∑      
 
   , converges to the exact solution. For that 

compute   using theorem (4.8) for the problem (4.45), i.e. 

   
    

    
 =

  

  
(    (

 

 
))

 

    (
 

 
)   

For    ,    
    

    
           , 

For   =2,   
    

    
            , similarly for     and 0    ,     . 

. . . . 

   
    

    
 =

  

  
     

 

 
    

For x=1,    
    

    
 0.991811 < 1, 

For x=2,     
    

    
 =0.6018074 < 1, similarly for     and 0     ,    . 

Hence, for    , 0       for all  , and    , we conclude that     . This confirms that by 

theorem 4.8, the solution we made by FRDTM for time fractional Fornberg-Whitham equation 

converges to the exact solution.  

The solution curves of the time fractional Fornberg-Whitham equation given in Examples 4.2 for 

different values of fractional order  is depicted in figures 3 and 4. 
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A B 

Figure 3: Solution behavior of Example 4.2:      a)   
 

 
,    b)   
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                                                     A B 

Figure 4: Solution behavior of Example 4.2:   a)    ,    b) Absolute error 
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4.7. Discussion 

 In this study the fractional reduced differential transform method (FRDTM) has been successfully 

applied on one dimensional time fractional Fornberg-Whitham equation subjected to the given initial 

condition and obtained a rapidly converging series solutions.  

The efficiency and capability of the present method have been checked via two examples. As it can be 

seen in the Figures 1 and 2 of example 1, as the value of the fractional order    approaches 1 the 

corresponding approximated solution curves are closer and closer to the curve of the exact solution. 

Further, a comparison of our solution for     (non fractional order) is in excellent agreement with 

the exact solution.  As seen in figures 2 (b) and 4 (b), the errors are very small for both examples. In 

general, our solutions for Examples 1 and 2 are in excellent agreement with the solution done by 

(Mehmet Merdan et al. 2012) and (A. A. Alderremy et al.2020). 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE SCOPE 

 5.1. Conclusions 

In this study, the fractional reduced differential transform method is effectively implemented to find 

approximate analytics solution of time fractional Fornberg-Whitham equation subject to appropriate 

initial condition. The fractional derivative used in this study is in the sense of Caputo. The main 

advantage of this scheme is that it can be used in a direct way without applying techniques of restriction 

conditions, convincing suppositions, and perturbations.  This shows that fractional reduced differential 

transform method is very simple to utilize and needs brevity of calculation. To check validity and 

efficiency of the method, two illustrative examples are carried out. The computed results reveal that the 

fractional reduced differential transform method is accurate and convergent.  

5.2. Future Scope 

This scheme can be applied to solve linear and non-linear time fractional higher order partial 

differential equation which arises in various fields of engineering and applied sciences. 
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