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Abstract

In this paper, the conditions for the existence and uniqueness of solution of lower and

upper solutions of second order non- linear ordinary di�erential equations were consid-

ered. New de�nitions of upper and lower solutions for our problems are presented. Also

considered was the technique for constructing lower and upper solutions of the second

order non-linear ordinary di�erential equation for two point boundary value problem.

The existence of solution for two point second order Sturm Liouvill problem bound-

ary value problem determined. The uniqueness of solution for two point second order

Sturm Liouvill problem boundary value problem was also determined. the examples

illustrating the use of lower and upper solutions were given.

Key Words: lower and upper solution, existence and uniqueness, two point second

order Sturm Liouvill boundary value problem .
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1 INTRODUCTION

1.1 Background of the Study

The study of di�erential equations date back to the mid-seventeenth century, when

Di�erential and Integral Calculus was discovered independently by Newton, 1665 and

Leibnitz 1676. Newton had laid the foundation stone for the study of di�erential equa-

tions (DEs). He was followed by Leibnitz who coined the name of di�erential equations

in 1676 to denote relationships between di�erentials and two variables x and y. Bound-

ary value problem consists of �nding an unknown solution which satis�es an ordinary

di�erential equation and appropriate boundary conditions at two or more points.

When ordinary di�erential equations are required to satisfy boundary conditions at

more than one value of the independent variable, the resulting problem is called a two

point boundary value problem (TynMyint-U 1978).

However, constant coe�cient linear two point BVP might have unique solution might

have no solution or might have in�nitely many solutions. Boundary condition is the set

of conditions speci�ed for the behavior of the solution to a set of di�erential equations

at the boundary of its domain. Boundary conditions are important in determining the

mathematical solutions to many physical problems.

Boundary value problems arise in almost all branches of science and engineering. The

methods commonly used in solving two-point boundary value problems are based on

the idea of construction of Green's functions Grossinho & Minhós (2001).

Since then, a lot of work has been done on existence and uniqueness of certain BVP's

for third order or higher order di�erential equations, or di�erential equations on time

scales by matching solutions. The theory of nonlinear boundary value problems is an

important and interesting area of research in di�erential equations. Due to the entirely

di�erent nature of the underlying physical processes, its study is more di�cult than

that of initial value problems.

A variety of techniques are employed in the theory of nonlinear boundary value prob-

lems for existence results. One of the most powerful tools for proving existence of

solutions is the method of upper and lower solutions, Dobkevich et al. (2014).

Boundary value problems associated with linear as well as non-linear ordinary di�er-
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ential equations or �nite di�erence equations have great deal of interest and play an

important role in many �elds of applied mathematics such as Engineering and Technol-

ogy, major industries like automobile, aerospace, optimization theory, electromagnetic

potential and heat power transmission theory are few on the boundary value problems

to simulate complex phenomena at di�erent scales for designing and manufacturing of

heat-technological products.

In these applied setting, positive solutions are meaningful. Earlier the existence and

uniqueness of positive solutions for Caputo fractional order boundary value problem is

studied by using �xed point theorem, and other methodDhaigude et al. (2021).

The existence of positive solutions of boundary value problems was studied by many

researchers: L.H and Haiyan Wang 1994, Erbe, Hu and Wang 1994,Lian, Wong and

Yah 1996, Henderson and Wang in 1997, Karakostas and Tsamatosin 2002,Hederson,

Ntouyas and Purnaras in 2008, Dang Quang and Ngo Thi KimQuy in 2018, Bai et al.

(2020). The method of lower and upper solutions deals mainly with existence results

for boundary value problems.

In this study, the researcher restrict attention to second order boundary value problems

with separated boundary conditions. Although some of the ideas can be traced back

to in Picard (1890), the method of lower and upper solutions was �rmly established by

G. ScorzaDragoni considered upper and lower solutions the same author extended his

method .

The �rst steps in the theory of lower and upper solutions have been given by Picard

in 1890 for Partial Di�erential Equations and, three years after, in Picard (1890), for

Ordinary Di�erential Equations. In both cases, the existence of a solution is guaran-

teed from a monotone iterative technique.

Dragoni (1931),introduces in 1931 the notion of the method of lower and upper so-

lutions for ordinary di�erential equations with Dirichlet boundary value conditions.

In particular, by assuming stronger conditions than now a days, the author considers

the second-order boundary value problem Upper and lower solutions with corners were

considered by De Coster & Habets (2006) . Since then a multitude of variants have

been introduced.
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The existence of a metric projection and the uniqueness of its point images on to

closed convex sets in Banach spaces require at least re�exivity of the Banach space

and strict convexity of the norm. Furthermore, higher-order boundary value problems

(BVPs) have been studied in many authors, such as Graef et al. (2011) for two-point

BVP, Du et al. (2007) for multi point BVP, and R. Agarwal & O'Regan (2003) for

in�nite interval problem. However, most of these works have been done either on �nite

intervals or for bounded solutions on an in�nite interval. The authors, R. Agarwal &

O'Regan (2003): Nonlinear boundary value problems on the semi-in�nite interval an

upper and lower Solution approach.

Assumed one pair of well-ordered upper and lower solutions, and then applied some

�xed point theorems or a monotone iterative technique to obtain a solution. In�nite

interval problems occur in the study of radially symmetric solutions of nonlinear elliptic

equations R. Agarwal & O'Regan (2003).

.

Knobloch & Schmitt (1977), nonlinear boundary value problems on semi-in�nite in-

tervals. During the last few years, �xed point theorems, shooting methods, upper and

lower technique, etc.

Have been used to prove the existence of a single solution or multiple solutions to in�-

nite interval problem .When applying the upper and lower solution method to in�nite

interval problems, the solutions are always assumed to be bounded. R. P. Agarwal &

O'Regan (2001), they employed the technique of lower and upper solutions and the

theory of �xed point index to obtain the existence of at least three solutions.

The problems related to global solutions, especially when the boundary data are pre-

scribed asymptotically and the solutions may be unbounded, have been brie�y dis-

cussed. By using the upper and lower solutions method and a �xed point theorem,

they presented su�cient conditions for the existence of unbounded positive solutions

however; their results are suitable only to positive solutions. Lian & Ge (2006), ex-

istence of unbounded solutions for a third-order boundary value problem on in�nite

intervals.

To the best of our knowledge, this is the �rst attempt to �nd the unbounded solutions

to higher-order in�nite interval problems by using the upper and lower solution tech-
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nique. Since, the half-line is non compact, the discussion is rather involved.

We begin with the assumption that there exists a pair of upper and lower solutions for

problem. Graef, Graef et al. (2011), and the nonlinear function f satisfy a Nagumo-type

condition. Then, by using the truncation technique and the upper and lower solutions,

we estimate a-priori bounds of modi�ed problems. Next, the Schäuder �xed point the-

orem is used which guarantees the existence of solutions.

A drawback of Scorza Dragon's approach is that, assuming the existence of ordered

lower and upper solutions alpha and beta, hides the di�culty.

In practical problems there is no clue to �nding these functions. This drawback mo-

tivated further work to indicate how they can be found. Constructions of lower and

upper solutions appear in various proofs (see for exampleEpheser (1954).

The Nagumo condition is to assume some global existence of the solutions, i.e every

solution u of

u′′ = f(t, u, u
′
) ,

such that α(t) ⩽ u(t) ⩽ β(t),

on its maximal interval of existence exists on the whole interval [a, b]. Such an ap-

proach has been used in Heidel (1974). Since 1970, Jackson and several other authors

have made a substantial study for the existence and uniqueness of the solutions for

the two-point boundary value problems for third order nonlinear ordinary di�erential

equations.

A long history going back to Picard (1890),the existence and uniqueness of solutions

of the two point boundary value problem.

y′′ + f(t, y
′
) = 0,

y(a) = A,

y(b) = B,

f(t, y, y
′
),

satis�es a Lipschitz conditions. However, we discuss in the present paper the existence

and uniqueness of the solutions for two-point second order Sturm Liouville boundary

value problems for second order nonlinear ordinary di�erential equations by applying

the method of upper and lower solutions.
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And there are some related presented by others as follow. In Knobloch & Schmitt

(1977), had considered the general separated boundary value problem .

u′′ = f(t, u, u
′
),

a1u(a)− a2u
′
(a) = A,

b1u(b) + b2u
′
(b) = B,

assuming [a1 + a2 > 0], ai ≥ 0, bi ≥ 0.

This problem contains both the Dirichlet and the Neumann problem.

The major breakthrough was due to Dragoni (1931).

In a �rst, extended and improved, this author considers the Dirichlet boundary value

problem.

u′′ = f(t, u, u
′
),

u(a) = A, u(b) = B.

He assumes the existence of functions α and β ∈ C2([a, b]) such that:

α(t) ⩽ β(t) on [a, b],

and

α′′(t) + f(t, α(t), y) ≥ 0 , if t ∈ [a, b], y ⩽ α
′
(t) (resp.y ≥ α

′
(t),

α(a) ⩽ A,α(b) ⩽ B.

β′′(t) + f(t, β(t), y) ⩽ 0, if t ∈ [a, ], y ≥ β
′
(t) (resp y ⩽ β

′
(t)),

β(a) ≥ A, β(b) ≥ B.

He then obtains existence of a solution u of together with its localization α ⩽ u ⩽ β.

The regularity assumptions were that f is continuous and bounded on.

E = (t, u, v) ∈ [a, b]×R2 \ α(t) ⩽ u ⩽ β(t).

Paul, W. EloeB,Johnny Henderson and Je�rey T. Neugebauer, (2020), studied three

point boundary value problems for ordinary di�erential equations, uniqueness implies

existence.

He et al. (2018). Studied existence and asymptotic analysis of positive solutions by

constructing suitable upper and lower solutions and employing Schauder's �xed point
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theorem, for

−Dα
(t)(t) = f(t, x(t), Dγ

t x(t)),

Dγ
t x(0) = D

(γ+1)(0)
t = 0,

Dµ
t (t) =

∫ 1

0

Dµ
t x(s)dx(s),

where 2 < α ⩽ 3 with 0 < γ ⩽ µ < α − 2, Dα
t is de�ned as the Riemann�Liouville

derivatives.

Dong & Yan (2018). Studied the existence and uniqueness of positive solutions for a

singular nonlinear three point boundary value problem.

x′′(t) + k(t)x−q(t) = λxp(t), t ∈ [0, 1],

x(0) = 0, x(1) = αx(η), 0 < a < 1, 0 < η < 1,

and x is positive parameters.

Motivated by the above mentioned results, in this paper, we investigate the existence

and uniqueness of solutions for two point second order Sturm-Liouville boundary value

problem by upper and lower solution method.

−u′′ + k2u(t) = f(t, u(t), u
′
(t)), (1.1)

au(0)− bu
′
(0) = 0,

cu(1) + du
′
(1) = 0,

(1.2)

where f : [0, 1]× (0,∞)× [0,∞) → R, is a continuous function.

a, c ∈ (0,∞), b, d ∈ [0,∞), k > 0, by using upper and lower solution method.
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1.2 Statement of the Problem

This study was focus on establishing the existence and uniqueness of solutions for

two point second order Sturm Liouville boundary value problem by upper and lower

solution method (1.1)− (1.2).

1.3 Objective of the study

1.3.1 General Objective

The main objective of this study is to establish the existence and uniqueness of solutions

for two point second order Sturm Liouville boundary value problems by upper and lower

solution method (1.1)− (1.2).

1.3.2 Speci�c Objectives

The speci�c objectives of the study:

� To de�ne two point second order Sturm Liouville boundary value problem.

� To determine the existence of solution for two point boundary value problem.

� To determine the uniqueness of solution for two point boundary value problem.

� To give related the example

1.4 Signi�cance of the Study

The result of this study may have the following importance:

� It will give a better understanding about research for the researchers.

� It may provide some background information for other researchers who want to

conduct a research on related topics.

� Furthermore, this study would be useful for graduate program of the department

and built the research skill and scienti�c of the researchers.
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1.5 Delimitation of the Study

This study was delimited to �nding the existence and uniqueness of solution for two

point second order Sturm Liouville boundary value problem by applying upper and

lower method solution.
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2 LITERATURE REVIEW

Boundary value problems associated with linear as well as non-linear ordinary di�er-

ential equations or �nite di�erence equations have great deal of interest and play an

important role in many �elds of applied mathematics.

Di�erent authors have proved the existence and uniqueness of solutions for boundary

value problems by using di�erent methods and conditions.

From those some of them are given below.

De Coster & Habets (2006). Upper and lower solutions with corners. Since then a

multitude of variants have been introduced. For the boundary value problem.

u′′ = f(t, u, u
′
),

a1u(a)− a2u
′
(a) = A,

b1u(b) + b2u
′
(b) = B.

(2.1)

Cabaniss (1974). Found existence and uniqueness conditions for the boundary value

problem.

y′′ = f(x, y, y
′
),

aoy(a) + a1y
′
(a) = α,

boy(b) + b1y
′
(b) = β,

(2.2)

using the sub function concept, they also showed that the unique solution y(x, α, β) of

this boundary value problem depends continuously on the boundary data α and β.

Lian & Ge (2006). Studied the existence of at least one positive solution and multiple

positive solutions for the two-point boundary value problem.

u′′(t) + f(t, u(t)), 0 < t < 1,

αu(0)− βu
′
(0) = 0,

δu(1) + γu
′
(1) = 0.

(2.3)

Cherpion et al. (2001). Studied α and β be lower and upper solutions of

u
′
(t) = f(t, u(t)),

u(a) = u(b),
(2.4)
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such that α ⩽ β. Assume f is continuous on,

(t, u(t)) ∈ [a, b]×R; α(t) ⩽ u(t) ⩽ β(t) and solution of the Cauchy problems

u
′
(t) = f(t, u(t)), u(a) = u0, with u0 ∈ [α(a), β(a)], is unique.

The problem u
′
(t) = f(t, u(t)), u(a = u(b)) has at least one solution u ∈ C1(A,B)such

that for all t ∈ [a, b], α(t) ⩽ u(t) ⩽ β(t).

Bai et al. (2004). Studied lower solution a function α ∈ C1([a, b]) is a lower solution of

the periodic problems.

u
′
(t) = f(t, u(t)),

u(a) = u(b),
(2.5)

where, a < b and f : [a, b]×R is a continuous function.

If for all (a) t ∈ [a, b], α
′
(t) ⩽ f(t, α(t)),

(b) α(a) ⩽ α(b).

Bai et al. (2004). Studied upper solutions a function β ∈ [a, b] is an upper solution of

the periodic problems.

u
′
(t) = f(t, u(t)),

u(a) = u(b),
(2.6)

if (a) For all t ∈ [a, b], β
′
(t) ≥ f(t, β(t)) and

(b) β(a) ≥ β(b).

He et al. (2018). Studied the existence of solutions of the following BVPs.

y′′ = f(t, y, y
′
) + e(t), 0 ⩽ t ⩽ 1,

y(0) = 0, y
′
(1) = αy(η),

(2.7)

where η ∈ [0, 1], α ∈ R, f : [0, 1]×R2 → R is a continuous function.

Dobkevich et al. (2014). Solutions of the second order nonlinear boundary value prob-

lem,

x′′ = f(t, x, x
′
),

a1x(a) + a2x
′
(a) = A,

b1x(b) + b2x
′
(b) = B,

L[Y ] = 0,

U1[Y ] = 0, U2(0) = 0,

(2.8)

10



has non trivial solution.

Heidel (1974). Studied existence of solutions to second order problems with nonlinear

boundary conditions.

u′′(t) = f(t, u, u
′
),

t ∈ [0, T ], T ≥ 0,
(2.9)

and

u′′(t) = f(t, u(t), u′(t)), t ∈ I, Satisfying the conditions

g(u(0), u
′
(T )u

′
(0)) = 0, u(T ) + h(u(0)) = 0,

where f : I × R → R (or f : I × R × R → R), R3 → Rg : R and h : R → R are

continuous functions.

Hu & Zhang (2017). Studied "upper and lower solution method for boundary value

problems at resonance".

y′′(t) = f(t, y, y
′
), 0 < t < 1,

y
′
(0) = 0, y

′
(1) = 0,

(2.10)

where f : [0, 1]×R → R is continuous and y′′ = f(t, y, y
′
), 0 ⩽ t ⩽ 1,

y(0) = 0, y
′
(1) = 0. Where f : [0, 1]×R2 → R is continuous.

Alanazi et al. (2021). Studies Quasilinearization and boundary value problems at res-

onance.Consider the second order boundary value problem for the di�erential equation.

y′′(t) = f(t, y(t)),

0 ⩽ t ⩽ 1,
(2.11)

with homogeneous Neumann boundary condition y
′
(0) = 0, y

′
(1) = 0, where f :

[0, 1]×R×R is continuous.

The boundary value problem is at resonance, since constant functions are solutions of

the homogeneous problem y′′ = 0 and satisfy the boundary conditions.

We begin with the assumption that f : y > 0 on [0, 1] × R, and obtain the result on

the uniqueness of solutions.

Knobloch & Schmitt (1977). Studies uniqueness of solutions of boundary value prob-

lems at resonance.
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Assume f : [0, 1]×R2 → R f : is continuous. Consider the boundary value problem

y′′(t) = f(t, y(t), y
′
(t)), 0 ⩽ t ⩽ 1, 0 ⩽ t ⩽ 1,

y(0) = 0, y
′
(0) = y

′
(1).

(2.12)

The boundary value problem is at resonance since the linear functions,y = ct, c ∈ R, are

solutions of the homogeneous problem y
′′
= 0 and satisfy the homogeneous boundary

conditions.

Aniaku et al. (n.d.). Studies lower and upper solutions of second order non- linear

ordinary di�erential equations.

Consider the boundary value problem.

u′′ = f(t, u, u
′
),

a1u(a)− a2u
′
(a) = A,

b1(b) + b2u
′
(b) = B,

(2.13)

where F : [a, b]×R2 is continuous.

Cabada (2011). Studies an overview of the lower and upper solutions method with

nonlinear boundary value conditions.

The author considers the second-order boundary value problem

u′′(t) = f(t, u(t),

u
′
(t), t ∈ [a, b] = I, u(a) = A, u(b) = B,

(2.14)

for f : I ×R2 → R a continuous function and A,B ∈ R.
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3 Methodology of the Study

This chapter contains study period and site, study design, source of information and

mathematical procedures.

3.1 Study Site and period

The study was conducted from October 2021 to June 2022 in Jimma University under

the department of mathematics.

3.2 Study Design

In order to achieve the objective of the study employed analytical method of design by

using lower and upper solution method.

3.3 Source of Information

The relevant sources of information for this study were di�erent mathematics books,

published articles, journals and related studies from internet.

3.4 Mathematical Procedures

In this study we have followed the procedures stated below:

� De�ning two point second order Sturm Liouville boundary value problem.

� Determining the existence of solution for two point second order Sturm Liouville

boundary value problem by using upper and lower solution method.

� Determining the uniqueness of solution for two point second order Sturm Liouville

boundary value problem by using upper and lower solution method.

� Give the related example.
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4 RESULT AND DISCUSSION

4.1 Preliminaries

De�nition 4.1.1 Gladwell (2008). We say that α is a lower solution of

x′′ = f(t, α(t), α
′
(t)) on an interval I provided,

α′′(t) ≥ f(t, α(t, )α
′
(t)), for t ∈ I. (4.1)

Similarly,we say that β is an upper solution of

x′′ = f(t, x, x
′
), on an interval I provided,

β′′(t) ⩽ f(t, β(t), β
′
(t)), for t ∈ I.

(4.2)

De�nition 4.1.2 Coddington & Levinson (1955). We say that T : X → X is a

contraction mapping on a normed linear space X provided there is a constant α ∈ (0, 1).

such that ∥Tx − Ty∥ ⩽ α∥x− y∥ For all x, y ∈ X.

We say x̄ ∈ X is a �xed point of T provided T x̄ = x̄.

Theorem 4.1.1 Coddington & Levinson (1955).(Existence solution) Let α and β be

C2 -lower and upper solutions of the problem , Consider the periodic boundary value

problem.

u′′ = f(t, u, u
′
),

u(a) = u(b),

u
′
(a) = u

′
(b).

(4.3)

The dependence of f in the derivative u
′
does not really change the de�nitions of lower

and upper solutions. such that α ⩽ β, E be de�ned in ,

ϕ : R+ → R be a positive continuous function and F : E → R be a continuous function.

Then the problem (4.3) has at least one solution u ∈ C2([a, b]) such that for all t ∈ [a, b],

α(t) ⩽ u(t) ⩽ β(t).

Theorem 4.1.2 Coddington & Levinson (1955). (Contraction Mapping Theorem) If

T is contraction mapping on a Banach space x with contraction constant α with 0 <

14



α < 1, then T has a unique �xed point x̄ in X if x0 ∈ X and we set.

x(n+1) = Txn, for n ≥ 0, then

lim(n→∞)xn = x̄,

then furthermore

∥xn − x∥ ⩽
an

(1− n)
∥x1 − x0∥ for, n ≥ 1.

(4.4)

Theorem 4.1.3 Cabada (2011). Assume f : [a, b]×R → R is continuous and satis�es

a uniform Lipschitz condition with respect to x on [a, b]×R with Lipschitz constant K

; that is ,

|f(t, x)− f(t, y)| ⩽ k|x− y|,

for all (t, x), (t, y) ∈ [a, b]×R, if b− a ⩽
π√
k
,

then BV Ps x′′ = f(t, x),

x(a) = A,

x(b) = B,

(4.5)

has a unique solution.

Theorem 4.1.4 Coddington & Levinson (1955). Assume f : [a, b]×R×R is contin-

uous and satis�es a uniform Lipschitz condition with respect to x and x
′

|f(t, x, x′
)− f(t, y, y

′
)| ⩽ k|x− y|+ L|x′ − y

′| for (t, x, x
′
), (t, y, y

′
) ∈ [a, b]×R2,

where L ≥ 0, K ≥ 0 are constants,

if K (b−a)2

8
+ L (b−a)

2
< 1,

then the BVP f(t, x, x
′
), x(a) = A, X(b) = B, has a unique solution.

Theorem 4.1.5 Aniaku et al. (n.d.). (Uniqueness Theorem) Assume that f : [a, b]×

R2 → R is continuous and for each �xed,

(t, x
′
) ∈ [a, b] × R, f(t, x, x

′
) is strictly increasing with respect to x, then the

BVP f(t, x, x
′
), x(a) = A, x(b) = B has at most one solution.

Theorem 4.1.6 Cherpion et al. (2001). If there exist α(t) and β(t) upper and lower

solutions respectively for the problem satisfying:

β(t) ⩽ α(t) and β′′(t) ≥ α′′(t)
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and if f : [0, 1]×R×R → R is continuous and satis�es

f(t, u1, v)− f(t, u2, v) ⩽ 0,

for β(t) ⩽ u1 ⩽ α(t), v ∈ R, t ∈ [0, 1],

f(t, u1, v)− f(t, u2, v) ≥ 0,

for α′′ ⩽ v1 ⩽ v2 ⩽ β”(t), u ∈ R, t ∈ [0, 1].

Then there exist two function sequences αn(t) and βn(t) that converge uniformly to the

solutions of the boundary value problem.

Theorem 4.1.7 De Coster & Habets (2006). Assume that α, β are coupled lower and

upper solutions for the problems.

u′′ = f(t, u(t, u
′
(t))), t ∈ I satisfies condition,

(g(u(0), u
′
(T ), u

′
(t))) = 0,

u(T ) + h(u(0)) = 0,

(4.6)

also assume that f satis�es a Nagumo condition relative to the interval[α, β] . Suppose

that g is no decreasing in the second variable. In addition, suppose that the function

h in [α(0), β(0)] is monotone (either none increasing or non-decreasing) and that the

functions.

gα(x) = g((α(0)), α
′
(0), x) ∈ R,

gβ(x) = g(β(0)β
′
(0), x) ∈ R, have got the same kind of monotonicity as h. Then there

exists at least one solutions,

u ∈ [a, b] of u′′(t) = f(t, u(t), u
′
(t)), t ∈ I of satis�es condition,

g(u(0)), u
′
(T ), u

′
(t)) = 0,

u(T ) + h(u(0)) = 0,

Moreover −M < u
′
(t) < M, t ∈ I.

Theorem 4.1.8 Coddington & Levinson (1955). Assume that f : [a, b] × R2 → R is

continuous and bounded. Then the boundary value problem,

x′′ = f(t, x, x
′
),

x(a) = A,

x(b) = B,

(4.7)

where A and B constants has a solution .
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De�nition 4.1.3 De Coster & Habets (2006). We say that f : [a, b]×R2 → R satis�es

a Nagumo condition with respect to the pair α(t), β(t) on [a, b] provided α, β : [a, b] → R

are continuous α(t) ⩽ β(t) on [a, b] and there is a function.

h : [0,∞) → (0,∞), such that |f(t, x, x′
)| ⩽ |(x′

)|,

for all t ∈ [a, b], α(t) ⩽ x ⩽ β(t), x
′ ∈ R

with

∫ ∞

λ

sds

h(s)
> maxa⩽t⩽bβ(t) ≥ mina⩽t⩽b,α(t), where

λ = max

{
|β(b)− α(a)|

b− a
,
|α(b)− β(a)|

b− a

}
.

Theorem 4.1.9 Coddington & Levinson (1955). Assume that f : [a, b] × R2 → R

continuous and α, β are lower and upper solutions, respectively of x′′ = f(t, x, x
′
) on

[a, b] with α(t) ⩽ β(t) on [a, b] .

Further assume that f satis�es a Nagumo condition with respect to α, β on [a, b] assume

A,B are constants satisfying

α(t) ⩽ A ⩽ β(t), α(t) ⩽ B ⩽ β(t);

then the BVP

x′′ = f(t, x, x
′
),

x(a) = A, x(b) = B,
(4.8)

has a solution satisfying

α(t) ⩽ x(t) ⩽ β(t), for t ∈ [a, b].

Lemma 4.1.1 Aniaku et al. (n.d.). Let there exist a constant M > 0 such that

|f(t, u, u′
)| ⩽M for all (t, u, u

′
) ∈ I ×R2. Then the boundary value problem

u′′ = f(t, u, u′),

a1u(a)− a2u(a) = A,

b1u(b) + b2u(b) = B.

Where f : [a, b]×R2 → R, is continuous A,B ∈ R; a1, b1 ∈ R; a2, b2 ∈ R+

has a solution .

Theorem 4.1.10 Aniaku et al. (n.d.). Assume f is continuous on [a, b] × R and α

and β are lower and upper solution of x′′ = f(t, x), respectively with α(t) ⩽ β(t) on
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[a, b].

A and B are constants such that α(a) ⩽ A ⩽ β(a), and α(b) ⩽ B ⩽ β(b),then BVP

x′′ = f(t, x),

x(a) = A,

x(b) = B,

has a solution x satisfying α(t) ⩽ x(t) ⩽ β(t), on [a, b].

(4.9)
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Main Result

4.2 The Existence of Solution

In this section, we study existence results of the BVP (1.1)−(1.2) , using the method of

upper and lower solutions. We show that in the presence of lower and upper solutions,

we recall the concept of lower and upper solution for the BVP.

Consider the two point boundary value problem.

−u′′ + k2u = f(t, u, u
′
),

au(0)− bu
′
(0) = 0,

cu(1) + du
′
(1) = 0,

where f : [0, 1]× (0,∞)× [0,∞) → R

is continuous. a, c ∈ (0,∞), b, d ∈ [0,∞), k > 0.

The interest of this study is existence of solution of (1.1)−(1.2) by the method of lower

and upper solution technique.

De�nition 4.2.1 (lower solution) A function α ∈ C2[0, 1] Will be called a lower

solution of (1.1)− (1.2), if

α′′ ≥ k2α− f(t, α, α
′
), on [0, 1], and

aα(0)− bα
′
(0) ⩽ 0,

cα(1) + dα
′
(1) ⩽ 0.

De�nition 4.2.2 (upper solution ) A function β ∈ C2[0, 1] will be called an upper

solution of (1.1)− (1.2), if

β′′ ⩽ k2β − f(t, β, β
′
), on [0, 1], and

aβ(0)− bβ
′
(0) ≥ 0,

cβ(1) + dβ
′
(1) ≥ 0.
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Some Conditions;

Nagumo condition (Xiping Lim ,2018);let h;R+ → R be positive continuous function

satisfying∫∞
0

s
h(s)

ds = ∞.

Then function f : E → R is said to be satisfying a Nagumo condition if

|f(t, u, u′
)| ⩽ h(|u′ |), for all (t, u, u′

) ∈ E.

E :=
{
(t, u, u

′
) ∈ [0, 1]× (0,∞)× [0,∞); α(t) ⩽ u(t) ⩽ β(t)

}
.

And other conditions:

(A1) : f(t, u, u
′
) satis�es a Lipschitz condition with respect to u u

′
on the set of E.

(A2) : f(t, u, u
′
) satis�es a Nagumo condition on the set of E.

(A3) : For any (t0, u0, u
′
0) ∈ E, the solution of (1.1)− (1.2) satis�es the initial condition

u(t0) = u0, u
′
(t0) = u

′
0 is unique.

Theorem 4.2.1 Suppose there exist a lower solution α(t) and upper solution β(t) of

(1.1)− (1.2) such that α(t) ⩽ β(t) for all t ∈ [0, 1], and the condition A1 andA2 hold,

then there exist at least one solution u(t) of (1.1)− (1.2) satisfying,

α(t) ⩽ u(t) ⩽ β(t).

Proof: De�ne the function k2u− F (t, u, u
′
) on [0, 1]× (0,∞)× [0,∞) → R. by setting

k2u− F (t, u, u
′
) =


k2β − f(t, β, u

′
) + u−β(t)

1+u2 , if u > β(t),

k2u− f(t, u, u
′
), if α(t) ⩽ u(t) ⩽ β(t),

k2α− f(t, α, u
′
) + u−α(t)

1+u2 , if u < α(t).

Since f is bounded, F is also bounded . Hence by lemma 4.1.1, there exist a solu-

tion u(t) of (1.1)− (1.2). We now show that (t, u, u
′
) ∈ E.

Let E :=
{
(t, u, u

′
) ∈ [0, 1]× (0,∞)× [0,∞)

}
; α(t) ⩽ u(t) ⩽ β(t).

Which of course mean that u(t) is solution of (1.1) − (1.2). Assume u(t) > β(t) on

t ∈ [0, 1].

Then there exist 0 ⩽ t1 < t2 ⩽ 1 such that u(t1) = β(ti), i = 1, 2 and u(t) > β(t), t1 <

t < t2.

The di�erence u(t)−β(t) therefore will assume a positive maximum at a point t0, t1 <

t0 < t2.
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We see u
′
(t0) = β

′
(t0) and u′′(t0)− β′′(t0) = 0.

But a computation, however show that

u′′(t)− β′′(t) ≥ (k2u(t0)− F (t0, u(t0), u
′
(t0)))− (k2β(t0)− F (t0), β(t0), β

′
(t0))

u′′(t0)− β′′(t0) ≥ k2β(t0)− f(t0, β(t0), u
′
(t0)) +

u(t0)− β(t0)

1 + u2(t0)
− (k2β(t0)− f(t0, β(t0), u

′
(t0)))

≥ k2β(t0)− f(t0, β(t0), u
′
(t0))− k2β(t0) + f(t0, β(t0), u

′
(t0)) +

u(t0)− β(t0)

1 + u2(t0)

> 0 +
u(t0)− β(t0)

1 + u2(t0)

=
u(t0)− β(t0)

1 + u2(t0)
> 0.

Which is contradiction.

Next we show that α(t) ⩽ u(t), t ∈ [0, 1] we assume by contradiction that u(t) <

α(t), t ∈ [0, 1], then there exist points 0 ⩽ t1 < t2 ⩽ 1, such that u(t) = α(ti), i = 1, 2

and u(t) < α(t), t1 < t < t2.

The di�erence u(t) − α(t) therefore we will assume a negative maximum value at a

point t0,

t1 < t0 < t2, and

u
′
(t0) = α

′
(t0),

u′′(t0)− α′′(t0) ≥ 0.

A computation, however show that

u′′(t0)− α′′(t0) = (k2u− F (t0, u(t0), u
′
(t0)))− (k2α(t0)− F (t0, α(t0), α

′
(t0)))

⩽ (k2α(t0)− f(t0, α(t0), α
′(t0))) +

u(t0)− α(t0)

1 + u2(t0)
− (k2α(t0, )− f(t0, α(t0), α

′
(t0)))

⩽ (k2α(t0)− k2α(t0)− f(t0, α(t0), α
′
(t0))) + f(t0, α(t0), α

′
(t0)) +

u(t0)− α(t0)

1 + u2(t0)

= 0 +
u(t0)− α(t0)

1 + u2(t0)
< 0.

This also contradiction. These show that α(t) ⩽ u(t) ⩽ β(t).

So, with regards to the above theorem ,we shall interested in the existence of such lower

solution α(t) and upper solution β(t). □

21



4.3 The Uniqueness of Solution

Consider the two point boundary value problem (1.1)− (1.2)

−u′′ + k2u = f(t, u, u′),

au(0)− bu
′
(0) = 0,

cu(1) + du
′
(1) = 0.

De�nition 4.3.1 Assume α and β are continuous function on [0, 1] with α(t) ⩽ β(t)

on [0, 1] , and assume c > 0 , is a given constant ;then we say that k2u− F (t, u, u
′
) is

modi�cation of k2 − f(t, u, u
′
) associated with the triple α(t), β(t), c provided,

k2u− F (t, u, u
′
) =


k2β − g(t, β(t), u

′
) + u−β(t)

1+|u| , if u ≥ β(t),

k2u− g(t, u, u
′
), if α(t ⩽ u(t) ⩽ β(t)),

k2α− g(t, α(t), u
′
(t)) + u−α(t)

1+|u| , if u ⩽ α(t).

where

k2u− g(t, u, u
′
) =


k2u− f(t, u, c), if u

′ ≥ c,

k2 − f(t, u, u
′
), if |u′| ⩽ c,

k2u− f(t, u,−c), if u
′
⩽ −c.

F are continuous on [0, 1]× (0,∞)× [0,∞).

F is bounded on [0, 1]× (0,∞)× [0,∞),

k2u− F (t, u, u
′
) = k2u− f(t, u, u

′
), if t ∈ [0, 1], α(t) ⩽ u ⩽ β(t), and |u′ | ⩽ c.

Consider the two point boundary value problem (1.1)− (1.2)

−u′′ + k2u = f(t, u, u′),

au(0)− bu
′
(0) = 0,

cu(1) + du
′
(1) = 0,

where a continuous function on [0, 1] × (0,∞) × [0,∞) by upper and lower solution

method.

Theorem 4.3.1 Assume f is continuous on [0, 1] × (0,∞) × [0,∞) and α and β are

lower and upper solution of (1.1) respectively with α(t) ⩽ β(t) on [0, 1]. Further assume
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that solution of initial value problem for (1.1) are unique.

If there is t0 ∈ [0, 1], such that

α(t0) = β(t0),

α
′
(t0) = β

′
(t0), then

α(t) ≡ β(t), on [0, 1].

Proof: Assume α(t), β(t), t0 are as in the statement of this theorem and it is not that

α(t) ≡ β(t) on [0, 1] .

We will only consider case where there are points t1, t2 such that 0 ⩽ t0 ⩽ t1 < t2 ⩽ 1,

α(t1) = β(t1),

α
′
(t1) = β

′
(t1), and

α(t) < β(t), on t1, t2.

Pick c > 0 , so that |α′
(t)| < c, |β ′

(t)| < c.

For t ∈ [t1, t2]. Let F be the modi�cation of f with respect to the triple α, β, c for the

interval [t1, t2]. By theorem 4.1.8 the boundary value problem

−u′′ + k2u = F (t, u, u
′
), u(t1) = α(t1), u(t2) = u2,

where α(t2) < u2 < β(t2) has a solution u.

We claim that u(t) ⩽ β(t) on [t1, t2]. Assume not, then there is a d ∈ (t1, t2) such that

w(t) := u(t)− β(t) has a positive maximum on [t1, t2] at d. It follow that

w(d) > 0, w
′
(d) = 0, w′′(d) ⩽ 0, and so

u(d) > β(d), u
′
(d) = β

′
(d), u′′(d) ⩽ β′′(d).

But w′′(d) = u′′(d)− β′′(d)

≥ (k2u(d))− F (d, u(d), u
′
(d))− (−f(d, β(d), β ′

(d))) + k2β(d)

= k2β(d)− f(d, β(d), β
′
(d)) +

u(d)− β(d)

1 + |β(d)|
− k2u(d) + f(d, β(d), β

′
(d))

=
u(d)− β(d)

1 + |β(d)|
> 0.

Which is contradiction.

Hence u(t) ⩽ β(t) on [t1, t2].

Similarly, α(t) ⩽ u(t), on [t1, t2].

We claim that α(t) ⩽ u(t) on [t1, t2]. Assume not; then there is a d ∈ (t1, t2) such that
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w(t) := u(t)− α(t) therefore we will assume a negative maximum on a point [t1, t2] at

d, it follow that

w(d) > 0, w
′
(d) = 0, w′′(d) ⩽ 0.

and so u(d) > α(d), u
′
(d) = α

′
(d), u′′(d) = α′′(d).

But

w′′ = u′′(d)− α′′(d)

⩽ k2u(d)− F (d, u(d), u
′
(d))− (k2u(d)− f(d, α(d), α

′
(d)))

= k2α(d)− f(d, α(d), α
′
(d)) +

u(d)− α(d)

1 + |α(d)|
− (k2α(d)− f(d, α(d), α

′
(d)))

=
u(d)− α(d)

1 + |α(d)|
> 0.

Which is contradiction. Hence α(t) ⩽ u(t) on [t1, t2],

thus α(t) ⩽ u(t) ⩽ β(t), on [t1, t2]. Pick t3 ∈ [t1, t2],

so that u(t3) = α(t3), u
′
(t3) = α

′
(t3), and α(t) < u(t), α(t) ⩽ β(t), on (t3, t2].

Since |u′
(t3)| = |α′

(t3)| < c, we pick t4 ∈ (t3, t2), so that |x′ | < c, on [t3, t4].

Then u is a solution of (1.1) on [t3, t4] and hence u is upper solution of (1.1) on [t3, t4].

Let F1 be the modi�cation of f with respect the triple α, u, c for the interval [t3, t4].

Let u4 ∈ (α(t4), u(t4)).

Then by the theorem (4.1.8) the boundary value problem

−u+ k2u = F1(t, u, u
′
),

u(t3) = α(t3),

u(t4) = u4,

has a solution y on [t3, t4],

by a similar argument we can show that α(t) ⩽ y(t) ⩽ u(t), on [t3, t4].

Now we can pick t5 ∈ (t3, t4). So that u and y di�er at some points in [t3, t5], and

|y′
(t)| < c, for t ∈ [t3, t5],

then y is a solution of (1.1) on [t3, t5]. But now we have u and y are distinct solution

of the same IVP(same initial condition at t3) which contradict the uniqueness.

□
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4.4 Related Examples

Example 4.4.1 Consider the problem,

u′′ = −u− tu2; t ∈ [0, 1],

2u(0)− 2u
′
(0) = 0,

3u
′
(1) = 0.

We not that in this case ,we can de�ne g(t) = −k2u− f(t, u, u
′
) = −u− tu2

g(t, u, u
′
) = −u− tu2.

Since −u− tu2 is decreasing function. We see that

(−u− tu2) ⩽ 1, for all t ∈ [0, 1]. So for upper solution β(t) , we look for solution to

the boundary value problem.

u′′ = −1,

2u(0)− 2u
′
(0) = 0,

3u
′
(1) = 0.

Now we have to �nd β(t) upper solution .

To get this by applying integration for β′′(t) = −1 with respect to t.

∫
β′′(t)dt =

∫
−1dt

⇒ β
′
(t) = −t+ 1

and also integrating both side to get β(t) with respect to t .

∫
β

′
(t)dt =

∫
(−t+ 1)dt,

⇒ β(t) = −t
2

2
+ t+ 1,

which satis�es the given boundary value problem .

Next, we have to �nd the lower solution α(t), for lower solution α(t) we look for solu-

tion of the boundary value problem.
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u′′ = 1,

2u(0)− 2u
′
(0) = 0,

3u
′
(1) = 0.

Hence,

u′′ = 1.

Now, here apply the integration both side to get α(t) with respect to t.

∫
α′′(t)dt =

∫
1dt,

α
′
(t) = t− 1.

Again integrating both side with respect to t in order to get α(t)

∫
α(t)dt =

∫
(t− 1)dt

α(t) =
t2

2
− t− 1.

This also satis�es the given boundary condition so there is a lower and upper solution

. Therefore it satis�es the existence for the given boundary condition.

Note that

α(t) =
t2

2
− t− 1,

and

β(t) =
−t2

2
+ t+ 1,

are upper and lower solution respectively for the given problem satisfying α(t) ⩽ β(t) on [0, 1].

Assume that A and B are constants satisfying

α(t) ⩽ A ⩽ β(t)

⇒ t2

2
− t− 1 ⩽ A ⩽

−t2

2
+ t+ 1

α(0) = −1 ⩽ A ⩽ 1 = β(0).
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And

α(t) ⩽ B ⩽ β(t),

⇒ t2

2
− t− 1 ⩽ B ⩽

−t2

2
+ t+ 1,

α(1) ⩽ B ⩽ β(1)

α(1) =
12

2
− 1− 1 ⩽ B ⩽

−12

2
+ 1 + 1 = β(1)

α(1) =
1

2
− 2 ⩽ B ⩽

−1

2
+ 2 = β(1)

α(1) =
−3

2
⩽ B ⩽

3

2
= β(1).

Therefore by using upper and lower solution method there exist a solution for given

problem satisfying boundary condition

α(t) ⩽ u(t) ⩽ β(t), for t ∈ [0, 1].

Finally,

⇒ t2

2
− t− 1 ⩽ u(t) ⩽

−t2

2
+ t+ 1.
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5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

The use of lower solution α(t) and upper solution β(t) in the search of solution u(t) of

nonlinear second order ordinary di�erential equation (ODE) is possible provided such

function satis�es the Existence and Uniqueness of solution is also determined by upper

and lower method solution.

Lower solution α(t) and upper solution β(t) of second order ODE help a lot in the

search of the solution u(t) of such equation, provided α(t) ⩽ u(t) ⩽ β(t) for all t ∈ [0, 1].
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5.2 Future Work

In this work we gave focus to solving second order Sturm Lioviolle boundary value

problems using the method of upper and lower solutions further researchers can be

done such problems using other methods as contraction mapping theorem ,by using

Greens function, Lipschitz condition. In addition higher order Sturm Lioville boundary

value problems can be researched on such method of upper and lower solution.

29



References

Agarwal, R., & O'Regan, D. (2003). In�nite interval problems modeling phenomena

which arise in the theory of plasma and electrical potential theory. Studies in Applied

Mathematics , 111 (3), 339�358.

Agarwal, R. P., & O'Regan, D. (2001). Continuous systems. In In�nite interval

problems for di�erential, di�erence and integral equations (pp. 110�138). Springer.

Alanazi, K., Alshammari, M., & Eloe, P. (2021). Quasilinearization and boundary

value problems at resonance. Georgian Mathematical Journal , 28 (2), 173�184.

Aniaku, S., Mbah, E., Asogwa, C., & Nwokoro, P. (n.d.). Lower and upper solutions

of second order non-linear ordinary di�erential equations.

Bai, Z., Ge, W., & Wang, Y. (2004). The method of lower and upper solutions for some

fourth-order equations. Journal of Inequalities in Pure and Applied Mathematics ,

5 (1).

Bai, Z., Sun, S., Du, Z., & Chen, Y. (2020). The green function for a class of caputo

fractional di�erential equations with a convection term. Fractional Calculus and

Applied Analysis , 23 (3), 787�798.

Cabada, A. (2011). An overview of the lower and upper solutions method with nonlinear

boundary value conditions. Boundary value problems , 2011 , 1�18.

Cabaniss, H. E. (1974). Existence and uniqueness theorems for solutions of some two

point boundary value problems for y�=(x, y, y') (Unpublished doctoral dissertation).

Georgia Institute of Technology.

Cherpion, M., De Coster, C., & Habets, P. (2001). A constructive monotone iterative

method for second-order bvp in the presence of lower and upper solutions. Applied

Mathematics and Computation, 123 (1), 75�91.

Coddington, E. A., & Levinson, N. (1955). Theory of ordinary di�erential equations.

Tata McGraw-Hill Education.

30



De Coster, C., & Habets, P. (2006). Two-point boundary value problems: lower and

upper solutions. Elsevier.

Dhaigude, D., Gore, V., & Kundgar, P. (2021). Existence and uniqueness of solution

of nonlinear boundary value problems for ψ-caputo fractional di�erential equations.

Mala. J. Mate, 9 (1), 112�117.

Dobkevich, M., Sadyrbaev, F., Sveikate, N., & Yermachenko, I. (2014). On types of

solutions of the second order nonlinear boundary value problems. In Abstract and

applied analysis (Vol. 2014).

Dong, Y., & Yan, B. (2018). The existence and uniqueness of positive solutions

for a singular nonlinear three-point boundary value problems. Journal of Applied

Mathematics and Physics , 6 (12), 2600�2620.

Dragoni, G. S. (1931). Ii problema dei valori ai limiti studiato in grande per le equazioni

di�erenziali del secondo ordine. Mathematische Annalen, 105 (1), 133�143.

Du, Z., Liu, W., & Lin, X. (2007). Multiple solutions to a three-point boundary value

problem for higher-order ordinary di�erential equations. Journal of mathematical

analysis and applications , 335 (2), 1207�1218.

Epheser, H. (1954). Über die existenz der lösungen von randwertaufgaben mit

gewöhnlichen, nichtlinearen di�erentialgleichungen zweiter ordnung. Mathematische

Zeitschrift , 61 (1), 435�454.

Gladwell, I. (2008). Boundary value problem. Scholarpedia, 3 (1), 2853.

Graef, J. R., Kong, L., Minhós, F. M., & Fialho, J. (2011). On the lower and upper

solution method for higher order functional boundary value problems. Applicable

Analysis and Discrete Mathematics , 133�146.

Grossinho, M. D. R., & Minhós, F. M. (2001). Existence result for some third or-

der separated boundary value problems. Nonlinear Analysis: Theory, Methods &

Applications , 47 (4), 2407�2418.

31



He, J., Zhang, X., Liu, L., Wu, Y., & Cui, Y. (2018). Existence and asymptotic anal-

ysis of positive solutions for a singular fractional di�erential equation with nonlocal

boundary conditions. Boundary Value Problems , 2018 (1), 1�17.

Heidel, J. (1974). A second-order nonlinear boundary value problem. Journal of

Mathematical Analysis and Applications , 48 (2), 493�503.

Hu, L., & Zhang, S. (2017). Existence of positive solutions to a periodic boundary

value problems for nonlinear fractional di�erential equations at resonance. J. Fract.

Calc. Appl., 8 (2), 19�31.

Knobloch, H., & Schmitt, K. (1977). Non-linear boundary value problems for systems

of di�erential equations. Proceedings of the Royal Society of Edinburgh Section A:

Mathematics , 78 (1-2), 139�159.

Lian, H., & Ge, W. (2006). Solvability for second-order three-point boundary value

problems on a half-line. Applied Mathematics Letters , 19 (10), 1000�1006.

Picard, E. (1890). Memoire sur la theorie des equations aux derivees partielles et la

methode des approximations successives. Journal de Mathématiques pures et ap-

pliquées , 6 , 145�210.

32


	Declaration
	Acknowledgment
	List of Abbreviation and Acronyms
	Abstract
	INTRODUCTION 
	Background of the Study
	Statement of the Problem
	Objective of the study
	General Objective
	Specific Objectives

	Significance of the Study
	Delimitation of the Study

	LITERATURE REVIEW
	Methodology of the Study 
	Study Site and period
	Study Design
	Source of Information
	Mathematical Procedures

	RESULT AND DISCUSSION 
	Preliminaries
	The Existence of Solution 
	 The Uniqueness of Solution 
	Related Examples

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	Reference

