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Abstract

In this research, work we introduced common fixed point theorems for a pair of con-
tractive mappings in partially ordered b-metric spaces involving simulation func-
tions. Our results extend and generalize related fixed point results in the literature,
in particular that of Rao et al. (2020). In this research undertaking, we followed an-
alytical study design and used secondary sources of data, such as published articles
and related books. Finally, we provided examples in support of our main findings.

.
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Chapter 1

Introduction
Notation We need the following symbols and class of functions to prove certain
results in this section:

• ℜ+ = [0,∞);

• ℜ is the set of all real numbers;

• N is the set of all natural numbers;

• Z is the set of all simulation functions;

• ℜ+×ℜ+→ℜ is a simulation function.

1.1 Background of the study

Fixed point theory is a fundamental tool in nonlinear analysis and many other
branches of modern mathematics, in particular when we deal with the solvabil-
ity of a certain functional equation. This theory has many applications, particularly
in biology, chemistry, economics, game theory, optimization theory, physics; etc.

Banach contraction principle is the first important result on fixed point theory.
The famous Banach contraction principle introduced by Banach (1922) ensures the
existence and uniqueness of fixed points for a contraction mapping in a complete
metric spaces. Several researchers generalized and extended this principle by intro-
ducing various contractions in different ambient spaces. The contraction mapping
principle introduced by Banach in 1922 has wide range of application in the fixed
point theory. Due to its usefulness Banach contraction principle has been extended
and generalized in various spaces using different conditions either by modifying the
basic contractive condition or by generalizing the ambient spaces or both.

Khojasteh et al. (2015) introduced the notion of Z-contraction, that is, a nonlin-
ear contraction involving a new class of maps namely simulation functions. They
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studied the existence and uniqueness of fixed points for Z− contraction type op-
erators. This class of Z-contractions includes large types of nonlinear contractions
existing in the literature. That is, they introduced the notion of simulation function
in order to express different contractive conditions in a simple, unified way. Thus,
it is possible to treat several fixed point problems from a unique, common point
of view. Roldan-Lopez-de-Hierro et al. (2015) stretched out fixed point theorems
given in Khojasteh et al. (2015) to the coincidence point results. Consequently,
they illustrated an iterative technique to find a solution to the equation T x = gx,
where T and g are self-maps. As an outcome, the authors explored the existence
and uniqueness of coincidence points of two given mappings defined on complete
metric spaces employing the preconceived notion of simulation function, consisting
of the case of compatible mappings. The authors revised the definition of simula-
tion function to a certain extent. Later, Radenovic and Chandok (2018) obtained
some sufficient conditions for the existence and uniqueness of point of coincidence
by using simulation functions in the context of metric spaces and prove some re-
sults for generalized contractions. In 2018, Babu et al. introduced generalized Z−
contraction pair of maps with respect to a simulation function ζ in b-metric spaces
and studied the existence of common fixed points of such mappings in complete
b-metric spaces. In 2021, Alqahtani et al. combined the notions of simulation func-
tions and Proinov type contraction to get a more general framework to guarantee
the existence of a fixed point. They investigated common fixed point results of new
types mapping under this construction in the context of complete metric spaces. In
2020, Rao et al. establish some coincidence and common fixed point theorems for
monotone f-non decreasing self mappings satisfying certain rational type contrac-
tion in the context of a metric spaces endowed with partial order.

The purpose of this study is to prove some coincidence and common fixed point
results in the frame work of partially ordered b-metric spaces for a pair of self-
mappings satisfying a generalized contractive condition of rational type with simu-
lation function by extending the works of Rao et al. (2020). Our results improved,
extended and generalized several related fixed point results in the existing litera-
tures.
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1.2 Statements of the problem

In 2013, Chandok established some common fixed point results for f− nonde-
creasing mappings which satisfy some nonlinear contractions of rational type in the
framework of metric spaces endowed with a partial order. In 2020, Rao et al. estab-
lished some coincidence and common fixed point theorems for T monotone f -non
decreasing self mappings satisfying certain rational type contraction in the context
of a metric spaces endowed with partial order. In this research work, we concen-
trated in establishing and proving the existence and uniqueness of common fixed
point results for a pair of self-maps satisfying certain rational type contractive con-
dition involving a Simulation function in the setting of partially ordered b-metric
space so as to extend and generalize the works of Rao et al. (2020).

1.3 Objectives of the study

1.3.1 General objective

The general objective of this research work is to study common fixed point results
for a pair of self-maps satisfying a rational type contractive condition involving
simulation function in the setting of partially ordered b-metric spaces.

1.3.2 Specific objectives

This study has the following specific objectives:

• To prove the existence of common fixed points for a pair of contractive map-
pings involving simulation function in the setting of partially ordered b-metric
spaces.

• Showing uniqueness of common fixed points for a pair of contractive map-
pings involving simulation function in the setting of partially ordered b-metric
spaces.

• To Provide examples in support of the results obtained.
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1.4 Significance of the study

The study may have the following importance:

• It may give basic research skills to the researcher.

• It may be used as a reference for any researcher who has an interest in doing
research in this area of study.

• It may be applied to show existence and uniqueness of solution of some prob-
lems involving integral and differential equations.
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1.5 Delimitation of the Study

This study focuses only on establishing common fixed point theorems for pair of
self-maps satisfying a rational type contractive condition involving simulation func-
tion in the setting of partially ordered b-metric spaces.
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Chapter 2

Review of Related Literatures
Fixed point theory has fascinated many researchers since 1922 with the celebrated
Banach fixed point theorem. According to Banach, every contraction map of a
complete metric space into itself has a unique fixed point. In almost all scientific
disciplines, most of the problems/mathematical models can be converted into fixed
point equations in order to prove the existence and uniqueness of their solutions
with the aid of fixed point theorems. It also suggests a numerical algorithm for
computing solutions: take a guess at a fixed point, and then repeatedly apply the
function. Due to its usefulness Banach contraction principle has been extended and
generalized in various spaces using different conditions either by modifying the ba-
sic contractive condition or by generalizing the ambient spaces or both. there are so
many different types of metric fixed point results.

In 2015 Khojasteh et al. introduced the notion of Z-contraction, that is, a nonlin-
ear contraction involving a new class of maps namely simulation functions. They
studied the existence and uniqueness of fixed points for Z-contraction type oper-
ators. This class of Z-contractions includes large types of nonlinear contractions
existing in the literature. That is, they introduced the notion of simulation function
in order to express different contractive conditions in a simple, unified way.The
main idea of the simulation function is very simple, but also very useful and effec-
tive. By letting d(x,y) = u and d(T x,Ty) = r, the corresponding simulation func-
tion for Banachs fixed point theorem ζ (u,r) = ku− r where K ∈ [0,1). In other
words, simulation function can be considered a generator of different contraction
type inequalities Z-contraction generalize the Banach contraction and unify several
known type of contraction involving the combination of d(T x,Ty) and d(x,y) sat-
isfies some particular condition in complete metric space. The advantage of this
notion is in providing a unique point of view for several fixed point problems. It is
clear that for many other well-known results, one can find a corresponding simula-
tion function. In other words, simulation function can be considered a generator of
different contraction type inequalities. After this remarkable result several authors
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extended and generalized in many directions.
Several research works have done to investigate fixed point results by carrying

forward the notion of simulation functions blending with the ideas of α− admissi-
bility, lower semi-continuity, wt-distance mappings, almost contraction, and hybrid
contraction. In 2016, Olgun et al. introduced the concept of generalized Z− con-
traction on metric spaces by modifying the contractive condition of Khojasteh et
al. (2015) and proved a fixed point theorem for this contraction. Isik et al. (2018)
investigated the existence and uniqueness of a fixed point of almost contractions
via simulation functions in metric spaces. Moreover, they provided an application
to integral equations. Aydi et al. (2018), unified several fixed point results in the
set-up of a quasi-metric space by the help of both simulation functions and admis-
sible mappings. Melliani et al. (2020) introduced a new concept of α− admissible
almost type Z− contraction and proved the existence of fixed points for admissible
almost type Z− contractions in a metric space. Chifu and Karapinar (2019) intro-
duced a new type of contraction, namely admissible hybrid contraction, in order to
unify several linear, nonlinear and interpolative contractions in the set-up of metric
and b-metric spaces. Moreover, they unified several existing results in the literature
by combining the interesting notions: admissible mappings, simulation functions,
and hybrid contractions in the setting of a b-metric space.

Roldn-Lpez-de-Hierro et al. (2015) stretched out fixed point theorems given
in Khojasteh et al. (2015) to the coincidence point of view. Consequently, they
illustrated an iterative technique to find a solution to the equation Tx = gx, where
T and g both are self-maps. As an outcome, the authors explored the existence
and uniqueness of coincidence points of two given mappings defined on complete
metric spaces employing the preconceived notion of simulation function for a pair
of compatible mappings. The authors revised the definition of simulation function
to a certain extent. Later, Radenovic and Chandok (2018) obtained some suffi-
cient conditions for the existence and uniqueness of point of coincidence by using
simulation functions in the context of metric spaces and prove some results for gen-
eralized contractions. In 2021, Alqahtani et al. combined the notions of simulation
functions and Proinov type contraction to get a more general framework to guaran-
tee the existence of a fixed point. They investigated the common fixed point of new
types mapping under this construction in the context of complete metric space.
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Chapter 3

Methodology
In this section, we present the study area and period, mathematical study design,
sources of information, and the mathematical procedures.

3.1 Study area and period

The study was conducted from September, 2019 to Apr, 2022 G.C in Jimma Uni-
versity under Research and Post Graduate Coordinating Office, College of Natural
Sciences.

3.2 Study Design

In this study, we followed analytical method of design.

3.3 Source of Information

The relevant sources of information are secondary data such as published articles,
different mathematics books related to the research topic, and M.Sc thesis works
available in department of mathematics.

3.4 Mathematical Procedure of the Study

In this study, we followed the procedures stated below:

• Establishing common fixed point theorems.

• Constructing sequences.

• Showing the constructed sequences are b-Cauchy .

• Showing the b-convergence of the sequences.
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• Proving the existence of common fixed points.

• Showing uniqueness of common fixed points.

• providing examples in support of our main findings.
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Chapter 4

Preliminaries and Main Result
4.1 Preliminaries

Definition 4.1.1 (Czerwik, 1993). Let X be a (nonempty) set and s ≥ 1 be a given

real number. A function d : X×X→ℜ+ is said to be a b-metric if for all x,y,z ∈ X,

the following conditions are satisfied:

(a) d(x,y) = 0 if and only if x = y;
(b) d(x,y) = d(y,x);

(c) d(x,z)≤ s[d(x,y)+d(y,z)].

The pair (X ,d) is called a b-metric space.

It should be noted that, the class of b-metric spaces is effectively larger than that of

metric spaces, But, in general, the converse is not true.

Example 4.1.1 Let X = ℜ (the set of real numbers) define d : X × X → R+by

d(x,y) = |x− y|2. Thend is a b-metric with S=2 and the pair (X ,d)is a b-metric

space. but it d is not a metric on X since for x = 3,y = 5, and z = 7, we get

d(3,7)� d(3,5)+d(5,7).
Hence the triangle inequality for a metric does not hold.

Definition 4.1.2 (Boriceanu et al., 2010). Let X be a b-metric space and {xn} be a

sequence in X, we say that:

1. {xn} is b-converges to x ∈ X if d(xn,x)→ 0 as n→ ∞.

2. {xn} is a b-Cauchy sequence if d(xn,xm)→ 0 as n,m→ ∞.

3. (X ,d) is b-complete if every b-Cauchy sequence in X is b-convergent.

Definition 4.1.3 A partially ordered set (poset) is a system (X ,�) where X is anonempty

set and is a binary relation of X satisfying for all x,y,z ∈ X ;
(a) x� x ( reflexive);

(b) if x� y and y� x then x = y (ant symmetry);

(c) ifx� y and y� z then x� z (transitive).
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Example 4.1.2 If X is any set (P(X),⊆) is a partially ordered set, where P(X) =

the power set of X.

Definition 4.1.4 Let X is a non-empty set. Then (X ,d,�) is called partially ordered

b− metric spaces if

(a) (X ,d) is a b− metric space;

(b) (X ,�) is partially ordered set.

Definition 4.1.5 (Rao and Kalyeni, 2020). Let (X ,�) be a partially ordered set

and T : X → X is a self- mapping, we say T is monotone f non-decreasing with

respect to � if for x,y ∈ X , f x� f y =⇒ T x� Ty.

Definition 4.1.6 (Rao et al., 2020). Let (X �) be a partially ordered set and x,y ∈
X then x and y are said to be comparable elements of X if x� y or y� x.

Definition 4.1.7 Let A be a non-empty subset of partially ordered set (X ,�). If

every two elements of A are comparable, then it is called well ordered set.

Definition 4.1.8 (Rao et al., 2020). Two self-mapping T and f defined over a sub-

set A of a metric space (X ,d) are called commuting if f T x = T f x for all x ∈ A.

Example 4.1.3 Let X = ℜ+ and d : X×X →ℜ+ be defined by

d(x,y) = |x− y| for all x,y ∈ X.Define f ,T : X → X by

f x = x+1 and T x = x+2 for all x,∈ X.

It is easy that to see that the pair ( f ,T ) is committing.

Definition 4.1.9 (Rao et al., 2020). Two self-mapping T and f defined over A⊂ X

are said to be compatible,if for any sequence {xn} with lim
n→∞

f xn = lim
n→∞

T xn = µ for

someµ ∈ A,then

lim
n→∞

d( f T xn,T f xn) = 0.

Definition 4.1.10 Let f ,T : X → Xbe two given mappings. We say that x ∈ X .

1. is a coincidence point of f and T if f x = T x;

2. is a common fixed point of f and T if x = f x = T x;

3. is a fixed point of f if f x = x;
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4. a point u in X is said to be a point of coincidence of f and T if f x = T x = u.

Definition 4.1.11 (Rao et al., 2020). Two self-mapping T and f defined over A⊆X

are said to be weakly compatible, if they commute at their coincidence points.

Example 4.1.4 Let X = ℜ and d : X ×X →ℜ+ be defined by d(x,y) = |x− y| for

all x,y∈ X . Define f ,T : X→ X by f x = 2x−1 and T x = 3x−2 for all x∈ X. Then

f and T are weakly compatible.

Example 4.1.5 Let X = ℜ define f ,T : X → X by f x = x3 and T x =−6x2 + x+6
for all x ∈ X, then

1. −6,−1,1 are coincidence point of f and T .

2. −1,1 are common fixed point of f and T .

Definition 4.1.12 (Rao et al., 2020). A partially ordered metric space (X ,d,�) is

called an ordered complete if for each convergent sequence {xn}∞
n0
⊂ X, one of the

following condition hold.

1. If {xn} is non-decreasing sequence in X such that {xn} → x implies xn � x

for all n ∈ Nthat is x=sup{xn}.

2. If {xn} is nonincreasing sequence in X such that {xn}→ x implies x� xn for

all n ∈ N that is x=inf{xn}.

Definition 4.1.13 (Khojasteh et al. 2015). A simulation function is a mapping

ζ : ℜ+× ℜ+ →ℜ satisfying the following conditions.

ζ1 : ζ (t,s)< s− t for all t,s > 0.
ζ2 : if {tn} and {sn} are sequence in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn = l ∈ (0,∞)

then limsupn→∞ ζ (tn,sn)< 0.

Definition 4.1.14 (Harjani and Sadarangani, 2009). Let (X ,d) be a metric space

and T : X → X is called Z− contraction with respect to certain simulation function

ζ satisfying the following condition

ζ (d(T x,Ty),d(x,y))> 0 for all x,y ∈ x.

Then T has a unique fixed point.

Moreover, for every x0 ∈ X the Picard sequence {T nx0} converges to this fixed

point.
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Definition 4.1.15 (Demma et al. 2016). We say that ζ : ℜ+× ℜ+ → ℜ is a b−
simulation function, if there exits such that:

ζ1 : ζ (t,s)< s− t for all t,s > 0.
ζ2 : if {tn} and {sn} are sequence

0 < lim
n→∞

tn 6 lim
n→∞

sn 6 b lim
n→∞

tn < ∞, then limsupn→∞ ζ (btn,sn)< 0.

Lemma 4.1.1 (Roshan et al. 2014). Suppose (X ,d) is a b-metric space with coef-

ficient s≥ 1 and {xn} is a sequence in X such that d(xn,xn+1)−→ 0 as n−→ ∞. If

{xn} is not a Cauchy sequence, then there exist an ε > 0 and sequences of positive

integers {mk} and {nk} with nk >mk > k such that d(xmk ,xnk)≥ ε ,d(xmk ,xnk−1)< ε

and the following results hold:

(i) ε ≤ limd(xmk ,xnk)≤ limd(xmk ,xnk)< sε,

(ii) ε

s ≤ limd(xmk+1,xnk)≤ limd(xmk+1,xnk)< s2ε,

(iii) ε

s ≤ limd(xmk ,xnk+1)≤ limd(xmk ,xnk+1)< s2ε,

(iv) ε

s2 ≤ limd(xmk+1,xnk+1)≤ limd(xmk+1,xnk+1)< s3ε .

Theorem 4.1.2 (Harjani and Sadarangani, 2009). Let(X ,d,S) be a complete b−
metric space and let f : X→X be a mapping. Suppose that there exists a b−simulation

function ζ suchthat Holds, that is,

ζ (sd( f x, f y),d(x,y))> 0

for all x,y ∈ x. Then f has a unique point.

Theorem 4.1.3 (Rao et al. 2020). Let(X ,d,�) be a complete partially ordered

metric space. Suppose that the self-mappings f and T on X are continuous, T is a

monotone f non-decreasing, T (X)⊆ f (X)and satisfying the following condition;

d(T x,Ty)6 α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y)

for all x,y ∈ X With f x 6= f y are comparable where α,β ,γ ∈ [0,1)with 0 < α +

2β + γ < 1.If there exists a point x0 ∈ Xsuch that f (x0) � T (x0) and {xn} is a

nondecreasing sequence in X such that xn→U, then xn � u for all n ∈ N.
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Then T and f have a coincidence point in X.

Further, if T and f are weakly compatible, then T and f have a common fixed point

in X. Moreover, the set of common fixed points of T and f is well ordered if and

only if T and f have one and only one common fixed point inX.

4.2 Main Results

Theorem 4.2.1 Let (X ,d,�) be a complete partially ordered b- metric space and

T, f : X → X be mappings on X satisfying;

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0 (1)

for all x,y ∈ X, with f x 6= f y are comparable, where ζ ∈ Z and α,β ,γ ≥ 0 with

0≤ α +2β + γ < 1
s such that

(a) T (X)⊆ f (X);

(b) there exists a point x0 ∈ X with f x0 � T x0;

(c) T is a monotone f non-decreasing;

(d) T and f are b−continuous;

(e) T and f are compatible.

Then T and f have a coincidence point in X.

(f) If T and f are weakly compatible.

Then T and f have a common point in X.

Moreover, the set of common fixed points of T and f is well ordered if and only if T

and f have one and only one common fixed point in X.

Proof: By (b), there exists x0 ∈ X such that f x0 � T x0. Since by the hypothesis
of the theorem, we have T (X) ⊆ f (X); there exists x1 ∈ X such that f x1 = T x0.
Since T (X)⊆ f (X) we have T x1 ∈ f (X). Hence there exists point x2 ∈ X such that
f x2 = T x1. By continuing the same way, we can construct a sequence {xn} in X ,
such that

f xn+1 = T xn,
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for all n≥ 0.
Since T is monotone f non-decreasing and f x0 � T x0 = f x1, we have T x0 � T x1.
By continuing the same procedure, we obtain that

T x0 � T x1 � T x2 � ·· · � T xn � T xn+1 � ·· · .

The equality T xn+1 = T xn is impossible because f xn+1 6= f xn for all n ∈ N.
Thus d(T xn+1,T xn)> 0 for all n.
Using (1) with x = xn and y = xn+1, we get

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0.

It follows that by (ζ1)

sd(T xn,T xn+1) < α
d( f xn,T xn)d( f xn+,T xn+1)

d( f xn, f xn+1)
+β [d( f xn,T xn)+d( f xn+1,T xn+1)]+

γd( f xn, f xn+1)

< αd(T xn,T xn+1)+βd(T xn,T xn+1)+βd(T xn,T xn−1)+ γd(T xn,T xn−1)

= (α +β )d(T xn,T xn+1)+(β + γ)d(T xn,T xn−1).

That is,

(S− (α +β ))d(T xn,T xn+1)< (β + γ)d(T xn,T xn−1).

Finally, we get

d(T xn,T xn+1) <
(β + γ)

(s− (α +β ))
d(T xn,T xn−1)

< Kd(T xn,T xn−1)< d(T xn,T xn−1)

where K = (β+γ)
(s−(α+β )) ∈ [0, 1

s ).
Therefore, the sequence {d(T xn,T xn−1)} is non-decreasing sequence of positive

15



real numbers and it converges to some real number r ≥ 0 such that

lim
n→∞

d(T xn,T xn−1) = r.

We show that r = 0. Suppose to the contrary that r > 0.
Applying (ζ2) with tn = d(T xn+1,T xn) and sn = d(T xn,T xn−1), we get

0 < lim
n→∞

tn 6 liminf
n→∞

sn ≤ limsup
n→∞

sn ≤ b lim
n→∞

tn.∞

It follow that

0≤ limsup
n→∞

ζ (sd(T xn,T xn+1,d(T xn,T xn−1))< 0,

which is a contradiction.
Hence, we conclude that

lim
n→∞

d(T xn,T xn−1) = 0.

Now, we show that {T xn} is a b-Cauchy sequence in X . Suppose {T xn} is not b-
Cauchy sequence. Then there exists an ε > 0 and sequence positive integer {mk}
and {nk} with nk > mk ≥ k such that

d(T xmk ,T xnk)≥ ε,d(T xmk ,T xnk−1)< ε.

Now, we consider

ζ (sd(T xmk ,T xnk),α
d( f xnk ,T xnk)d( f xmk ,T xmk)

d( f xnk , f xmk)
+β [d( f xnk ,T xnk)+d( f xmk ,T xmk)]

+γd( f xnk , f xmk))≥ 0

By (ζ1), we have

sd(T xmk ,T xnk) < α
d( f xnk ,T xnk)d( f xmk ,T xmk)

d( f xnk , f xmk)
+β [d( f xnk ,T xnk)+d( f xmk ,T xmk)]

+γd( f xnk , f xmk).
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Let

Sn = α
d( f xnk ,T xnk)d( f xmk ,T xmk)

d( f xnk , f xmk)
+β [d( f xnk ,T xnk)+d( f xmk ,T xmk)]+ γd( f xnk , f xmk)

tn = sd(T xmk ,T xnk).

Letting k→ ∞ and using lemma 1,

limsup
k→∞

tn = limsup
k→∞

sd(T xmk ,T xnk) = s(sε).

limsup
k→∞

Sn = limsup
k→∞

α
d( f xnk ,T xnk)d( f xmk ,T xmk)

d( f xnk , f xmk)
+β [d( f xnk ,T xnk)+d( f xmk ,T xmk)]+

γd( f xnk , f xmk)

= γs3
ε.

It follows that

0 ≤ limsup
k→∞

ζ (stn,Sn)

< limsup
n→∞

sn− limsup
n→∞

stn

= γs3
ε− s2

ε < 0,

which is a contradiction
Hence {T xn}is a b− Cauchy sequence in X .

Since X is b− complete there exists u ∈ X such that T xn→ u as n→ ∞.
By the b− continuity of T , we have

lim
n→∞

T (T xn) = T lim
n→∞

f (T xn) = Tu.

Also by the b−continuity of f , we have

lim
n→∞

f ( f xn+1) = f u.

Since f and T are compatibility, we have

lim
n→∞

d(T f xn, f T xn) = 0.
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By the triangular in equality, we have

d(Tu, f u)≤ S[d(Tu,T f xn)+d(T f xn, f T xn)+d( f T xn, f u)].

On taking limit as n→ ∞ on both sides of the above inequality, we get

Tu = f u.

So that, u is a coincidence point of T and f .
Now, suppose that T and f are weakly compatible. Let w be a coincidence point of
T and f then,

T (w) = f (w) =⇒ T ( f w) = f (Tw).

There exists z∈ Xsuch that T z= f z=w. It follows that Tw= T ( f z) = f (T z) = f w.
Now by (1) and (ζ1) , we have

sd(T (z),T (w)) < α
d( f z,T z)d( f w,Tw)

d( f z, f w)
+β [d( f z,T z)+d( f w,Tw)]+ γd( f z, f w)

<
0×0

d( f z, f w)
+β [0+0]+ γd( f z, f w).

Since f z = T z and f w = Tw we have,

Sd(T (z),T (w)) < γd(T z,Tw)

d(T (z),T (w)) <
γ

s
d(T (z),T (w))

d(T (z),T (w)) < d(T (z),T (w)),

which is a contradiction
Hencee

T z = Tw.

From above, we have

Tw = f w = w.
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Hence w is a common fixed point of T and f in X .
Now, suppose that the set of common fixed points of T and f is well ordered, we
have to show that the common fixed point of T and f is unique.
Let u and v be two common fixed points of T and f such that u 6= v, then from (1)
we have,

ζ (sd(Tu,T v)),α
d( f u,Tu)d( f v,T v)

d( f u, f v)
+ [d( f u,Tu)+d( f v,T v)]+d( f v, f u))≥ 0.

By using (ζ1), we have,

sd(Tu,T v)< α
d( f u,Tu)d( f v,T v)

d( f u, f v)
+ [d( f u,Tu)+d( f v,T v)]+d( f v, f u).

That is,

sd(u,v)< α
d(u,u)d(v,v)

d(u,v)
+β [d(u,u)+d(v,v)]+ γd(v,u) = γd(v,u).

It follow that

d(u,v)<
γ

s
d(u,v)< d(u,v).

which is a contradiction
Thus, we have u = v.

Therefore the common fixed point T and f is unique.
Conversely suppose T and f have only one common fixed point then the set of
common fixed points of T and f is {u}, which is well ordered being a singleton.
2

Theorem 4.2.2 Let (X ,d,�) be a complete partially ordered b- metric space and

T, f : X → X be mappings onX satisfying:

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0 (2)

for allx,y ∈ X, with f x 6= f y are comparable, where ζ ∈ Z and α,β ,γ ≥ 0 with

0≤ α +2β + γ < 1
s such that
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(a) T (X)⊆ f (X);

(b) there exists a point x0 ∈ X with f x0 � T x0 ;

(c) T is a monotone f non-decreasing;

(d){xn} is a non-decreasing sequence in X such that xn → u ,then xn � u for all

n ∈ N.

(e) f (X) is a b− complete subset of X.

Then T and f have a coincidenpce oint in X;

(f) if T and f are weakly compatible. Then T and f have a common fixed point in

X.

Moreover, the set of common fixed points of T and f is well ordered if and only if T

and f have one and only one common fixed point in X .

Proof: Following as in the proof of Theorem (2) we construct a sequence {T xn}.
The constructed sequence is b−Cauchy sequence and hence { f xn} is also b-Cauchy
sequence in ( f (X),d) as f xn+1 = T xn and T (X)⊆ f (X).
Since f (X) is b− complete subset of X , there exist f (u) ∈ f (X) such that

lim
n→∞

T xn = lim
n→∞

f xn = f u

{ f xn} is non-decreasing, f xn � f u and T xn � f u.

But T is monotone f non decreasing T xn � Tu for all n,
letting n→ ∞,we obtain f u� Tu.

Since f u� Tu, define a sequence by u0 = u and f un+1 = Tun for all n ∈ N.
{ f un} is a non-decreasing sequence and

lim
n→∞

f un = lim
n→∞

Tun = f v.

for some v ∈ X .

It is clear that
sup f un � f v and sup Tun � f v, for all n ∈ N.

Notice that

f xn � f u� f u1 � ...� f un � ...� f v.
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We consider two cases:
Case: 1 Suppose that f xn0 = f un0, then we have

f xn0 = f u = f un0 = f u1 = Tu.

Hence u isa coincidence point of T and f in X .
Case: 2 Suppose that f xn0 6= f un0 .
Then from (2)

ζ (Sd(T xn,Tun),
d( f xn,T xn)d( f un,Tun)

d( f xn, f un)
+β [d( f xn,T xn)+d( f un,Tun)]+ γd( f xn, f un))≥ 0.

By (ζ1),we get

sd( f xn+1, f un+1) = sd(T xn,Tun)

< α
d( f xn, f xn+1)d( f un, f un+1)

d( f xn, f un)
+β [d( f xn, f xn+1)+d( f un, f un+1)]+

γd( f xn, f un).

Taking limit as n→ ∞ on both sides of the above inequality and { f xn}, { f un} are
nondecreasing sequence i.e., f v = sup f un and f u = sup f xn.

limsup
n→∞

sd( f xn+1, f un+1)< limsup
n→∞

γd( f xn, f un).

It follows that

sd( f u, f v)< γd( f u, f v)

d( f u, f v)<
γ

S
( f u, f v),

which is a Contradiction
Thus ,we have f u = f v

But

f u� f v = f u1 = Tu.
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From the above, we get
f u = f v = f u1 = Tu.

Hence

f u = Tu.

We conclude that u is a coincidence point of T and f in X .
Now, suppose that T and f are weakly compatible. Let w be a coincidence point
then,we have

T (w) = f (w) =⇒ T ( f w) = f (Tw).

There exists z ∈ Xsuch that T z = f z = w (w is point of coincidence Tand f ).
By condition Tw = T ( f z) = f (T z) = f w. Now by (2), we have

sd(T (z),T (w)) < α
d( f z,T z)d( f w,Tw)

d( f z, f w)
+β [d( f z,T z)+d( f w,Tw)]+ γd( f z, f w)

<
0×0

d( f z, f w)
+β [0+0]+ γd( f z, f w)

Since f z = T z and f w = Tw, we have

Sd(T (z),T (w)) < γd(T z,Tw)

d(T (z),T (w)) <
γ

s
d(T (z),T (w))

d(T (z),T (w)) < d(T (z),T (w)),

which is a contradiction.
Hence

T z = Tw.

From above,we have

Tw = f w = w.
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Hence w is a common fixed point of T and f in X .
Now, suppose that the set of common fixed points of T and f is well ordered, we
have to show that the common fixed point of T and f is unique.
Let u and v be two common fixed points of T and f such that u 6= v, then from (2)
we have.

ζ (sd(Tu,T v)),α
d( f u,Tu)d( f v,T v)

d( f u, f v)
+ [d( f u,Tu)+d( f v,T v)]+d( f v, f u))≥ 0.

By using (ζ1), we have

sd(Tu,T v)< α
d( f u,Tu)d( f v,T v)

d( f u, f v)
+ [d( f u,Tu)+d( f v,T v)]+d( f v, f u).

That is,

sd(u,v)< α
d(u,u)d(v,v)

d(u,v)
+β [d(u,u)+d(v,v)]+ γd(v,u) = γd(v,u).

It follows that

d(u,v)<
γ

s
d(u,v)< d(u,v),

which is a contradiction
Thus, we have u = v.

The common fixed point T and f is unique.
Conversely suppose T and f have only one common fixed point, then the set of
common fixed points of T and f is {u}, being a singleton it is well ordered.
This completes the proof.

2

4.3 Consequences

In this section, we give some consequences of the main results.

Corollary 4.3.1 Let (X ,d,�) be a complete partially ordered b−metric space and
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T, f : X → Xbe mappings on X satisfying:

ζ (sd(T x,Ty),β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0

for allx,y ∈ X, with f x 6= f y are comparable, where ζ ∈ Z and α,β ,γ ≥ 0 with

0≤ α +2β + γ < 1
s such that

(a) T (X)⊆ f (X);

(b) there exists a point x0 ∈ X with f x0 � T x0;

(c) T is a monotone f non-decreasing;

(d) T and f are b−continuous;

(e) T and f are compatible. Then T and f have a coincidence point in X.

(f) If T and f are weakly compatible, then T and f have a common point in X.

Moreover, the set of common fixed points of T and f is well ordered if and only if T

and f have one and only one common fixed point inX

Proof: The proof follows from Theorem (1) by setting α = 0.

Corollary 4.3.2 Let (X ,d,�) be a complete partially ordered b−metric space and

T, f : X → X be mappings on X satisfying:

ζ (sd(T x,Ty),
d( f x,T x),d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)])≥ 0

for allx,y ∈ X, with f x 6= f y are comparable, where ζ ∈ Z and α,β ,γ ≥ 0 with

0≤ α +2β + γ < 1
s such that

(a) T (X)⊆ f (X);

(b) there exists a point x0 ∈ X with f x0 � T x0 ;

(c) T is a monotone f non-decreasing;

(c) T and f are b−continuous ;

(d) T and f are compatible.

Then T and f have a coincidence point in X.

Proof: The proof follows from Theorem (1) by setting γ = 0.
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Corollary 4.3.3 Let (X ,d,�) be a complete partially ordered b- metric space and

T, f : X → X be mappings onX satisfying:

ζ (sd(T x,Ty),β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0

for all x,y ∈ X, with f x 6= f y are comparable, where ζ ∈ Z and α,β ,γ ≥ 0 with

0≤ α +2β + γ < 1
s such that

(a) T (X)⊆ f (X);

(b) there exists a point x0 ∈ X with f x0 � T x0 ;

(c) T is a monotone f non-decreasing;

(d) {xn} is a non-decreasing sequence in X such that xn ,then xn � u for all n ∈ N;

(e) If f (X) is a b−complete subset of X then T and f have a coincidence point in

X;

(f) If T and f are weakly compatible, then T and f have a common fixed point in X.

Moreover, the set of common fixed points of T and f is well ordered if and only if T

and f have one and only one common fixed point in X .

Proof: The proof follows from Theorem (2) by setting α = 0.

Corollary 4.3.4 Let (X ,d,�) be a complete partially ordered b- metric space and

T, f : X → X be mappings onX satisfying:

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)])≥ 0

for allx,y ∈ X, with f x 6= f y are comparable, where ζ ∈ Z and α,β ,γ ≥ 0 with

0≤ α +2β + γ < 1
s such that

(a) T (X)⊆ f (X);

(b) there exists a point x0 ∈ X with f x0 � T x0 ;

(c) T is a monotone f non-decreasing;

(d) {xn} is a non-decreasing sequence in X such that xn ,then xn � u for all n ∈ N;

(e) If f (X) is ab− complete subset ofXthen T and f have a coincidence pointin X;
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(f) If T and f are weakly compatible, Then T and f have a common fixed point in

X.

Moreover, the set of common fixed points of T and f is well ordered if and only if T

and f have one and only one common fixed point in X .

Proof: The proof follows from Theorem (2) by setting γ = 0.
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Example 4.3.1 Let X = {5,6,7,8,9} with the usual b-metric space

d(x,y) = |x− y|2 for all x,y ∈ X. We define the partial ordered on X.

�= {(5,5),(6,6),(7,7),(8,8),(9,9),(7,8),(7,9),(8,9)}

Then (X ,�) is partially ordered set.

We define the two self-mapping f : X → X by

f (5) = f (6) = f (7) = 7, f (8) = 8 and f (9) = 9.

and

T (x) = 7,

for all x ∈ X.

and α = 1
36 ,β

1
37 =,γ = 1

38 .

Now we define ζ : ℜ+×ℜ+→ℜ+ by ζ (t,s) = s
2 − t and take x0 = 5.

Then T and f have coincidence point in X .
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Now, let us show that T is monotone f−non decreasing.

7 = f (5)� 7 = f (5) =⇒ 7 = T (5)� 7 = T (5)

7 = f (5)� 7 = f (6) =⇒ 7 = T (5)� 7 = T (6)

7 = f (5)� 7 = f (7) =⇒ 7 = T (5)� 7 = T (7)

7 = f (5)� 8 = f (8) =⇒ 7 = T (5)� 7 = T (8)

7 = f (5)� 9 = f (9) =⇒ 7 = T (5)� 7 = T (9)

7 = f (6)� 7 = f (6) =⇒ 7 = T (6)� 7 = T (6)

7 = f (6)� 7 = f (7) =⇒ 7 = T (6)� 7 = T (7)

7 = f (6)� 8 = f (8) =⇒ 7 = T (6)� 7 = T (8)

7 = f (6)� 9 = f (9) =⇒ 7 = T (6)� 7 = T (9)

7 = f (7)� 7 = f (7) =⇒ 7 = T (7)� 7 = T (7)

7 = f (7)� 8 = f (8) =⇒ 7 = T (7)� 7 = T (8)

7 = f (7)� 9 = f (9) =⇒ 7 = T (7)� 7 = T (9)

8 = f (8)� 8 = f (8) =⇒ 7 = T (8)� 7 = T (8)

8 = f (8)� 9 = f (9) =⇒ 7 = T (8)� 7 = T (9)

9 = f (9)� 9 = f (9) =⇒ 7 = T (9)� 7 = T (9).

Thus T is monotone f nondecreasing.

We have the following possible cases.

Case (i) when x = 5 and y = 8.
Then f (5) = 7, f (8) = 7, T (5) = 7,T (6) = 7.
in this case

d( f (5), f (8)) = |7−8|2 = 1.
d( f (5),T (5)) = |7−7|2 = 0.
d( f (8),,T (8)) = |8−7|2 = 1.
d(T (5),T (8)) = |7−7|2 = 0.

28



Now, we get

s = α
d( f (5),T (5))d( f (8),T (8))

d( f (8), f (5)
+β [d( f (5),T (5))d( f (8),T (8))]+ γd( f (8), f (5))

= α
|7−7|2|8−7|2

|7−8|2
+β [|7−7|2 + |8−7|2]+ γ|7−8|2

= β + γ

=
1

37
+

1
38

=
75

1406
.

t = d(T (5),T (8)) = |7−7|2 = 0.

Now, we consider

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))

=
1
2
[α

d( f x,T x)d( f y,Ty)
d( f x, f y)

+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))]− sd(T x,Ty)

=
1
2
[β + γ]− s×0 =

1
2
[

1
37

+
1

38
] =

75
2812

.

That is,

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0.

Case (ii) When x = 5 and y = 9
Then f (5) = 7 , f (9) = 9 and T (7) = T (9) = 7.

In this case

T (9) = 7,T (5) = 7.
d(T (9), f (9) = |7−9|2 = 4.
d(T (5),T (9)) = |7−7|2 = 0.
d( f (5), f (9)) = |7−9|2 = 4.
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d(T (5), f (5) = |7−7|2 = 0.

s = α
(d(T (5), f (5)d(T (9), f (9))

d( f (5), f (9))
+β [d(T (5), f (5)+d(T (9), f (9)]+ γd( f (5), f (9))

= α
|7−7|2)|7−9|2

|7−9|2
+β [|7−7|2)+ |7−9|2]+ γ)|7−9|2

= 4β +4γ

=
4

37
+

4
38

=
152+148

5406

=
300

5406
t = d(T (5),T (9)) = |7−7|2 = 0.

Now, we consider

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))

=
1
2
[α

d( f x,T x)d( f y,Ty)
d( f x, f y)

+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y)]− sd(T x,Ty)

=
1
2
[4β +4γ]−2(0) =

1
2
[

4
37

+
4
38

]−0≥ 0.

That is,

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0.

Case (iii) When x = 8 and y = 9.

Then f (8) = 8 , f (9) = 9 and T (8) = 7 , T (9) = 7.

In this case ;

d(T (8), f (8) = |8−7|2 = 1.
d(T (8),T (9)) = |7−7|2 = 0.
d( f (8), f (9)) = |7−9|2 = 1.
d(T (9), f (9) = |7−9|2 = 4.
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Now

s = α
(d(T (8), f (8)d(T (9), f (9))

d( f (8), f (9))
+β [d(T (8), f (8)+d(T (9), f (9)]+ γd( f (8), f (9))

= α
|8−7|2|7−9|2

|7−9|2
+β [|8−7|2 + |7−9|2]+ γ|7−9|2

= 4α +5β + γ

=
4

36
+

5
37

+
1
38

=
13796
50616

t = sd(T x,Ty) = s|T x−Ty|2 = 2|7−7|2 = 0

Now, we consider

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))

=
1
2
[α

d( f x,T x)d( f y,Ty)
d( f x, f y)

+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))]− sd(T x,Ty

=
1
2
[4α +5β + γ]−2(0) =

1
2
[4× 1

36
+

5
37

+
1

38
] =

1
2
[
13796
50616

]−0≥ 0

That is,

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0

Hence all the hypothesis of the theorem are satisfied. Moreover, 5,6,7, are the

coincidence poiints of T and f , 7 is the common fixed point of T and f , and 7 is the

unique common fixed point of T and f .

Example 4.3.2 Let X = [0,20] and d : X×X → [0,∞) be defined by

d(x,y) = |x− y|2for all x,y ∈ X, s = 2 and let (x,�) is the usual partially ordered

set.

Define f ,T : X → X by

f (x) =


0 if x = 0

x+16 if 0 < x 6 4

x−4 if 4 < x 6 20.
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and

T (x) =

 0 if x = {0}∪ (4,20]

3 if 0 < x 6 4.

T and f are b− continuous functions.

We now define ζ : ℜ+×ℜ+→ℜ+by ζ (t,s) =
3
4

s− t for all t,s > 0.

and with the usual b-metric space

d(x,y) = |x− y|2 f orallx,y ∈ X.where α =
1
7
,β = 1

9 ,γ = 1
8 and xo = 0.

We have the following possible cases.

Case (i) : When x = 0 and y ∈ (0,4]
Then f x = 0, f y = y+16 ∈ (0,4],T x = 0 and Ty = 3
In this case;

d( f x,T x) = |0−0|2 = 0.
d( f y, f x) = |y+16|2.
d( f y,Ty) = |y+13|2.
d(T x,Ty) = |3−0|2 = 9.

Now

s = α
(d( f x,T x)d( f y,Ty)

(d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y)

= α
|0−0|2|y+13|2

|y+16|2
+β [|0−0|2 + |y+13|2]+ γ|y+16|2

= β |y+13|2 + γ|y+16|2

=
1
9
|y+13|2 + 1

8
|y+16|2

t = sd(T x,Ty) = s|Ty−T x|2 = 2|3−0|2 = 18.

32



Now, we consider

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))

=
3
4
(α

d( f x,T x)d( f y,Ty)
d( f x, f y)

+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))− sd(T x,Ty)

=
3
4
(β |y+13|2 + γ|y+16|2)− s|3−0|2

=
3
4
(
1
9
|y+13|2 + 1

8
|y+16|2)−2|3−0|2 ≥ 0.

That is,

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0.

Caes (ii): When x ∈ (0,4] and y = 0.

Then f x = x+16 ∈ (0,4] and f y = 0, T x = 3 and Ty = 0.

In thise case;

d( f x,T x) = |x+13|2.
d( f y, f x) = |x+16|2.
d( f y,Ty) = |0−0|2 = 0.
d(T x,Ty) = |3−0|2 = 9.

Now

s = α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y)

= α
|x+13|2|0−0|2

|x+16|2
+β [|x+13|2 + |0−0|2]+ γ||x+16|2

= β |x+13|2 + γ|x+16|2

=
1
9
|x+13|2 + 1

8
|x+16|2

t = sd(T x,Ty) = 2|3−0|2 = 18.
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now, we consider

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))

=
3
4
(α

d( f x,T x)d( f y,Ty)
d( f x, f y)

+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))− sd(T x,Ty)

=
3
4
(β |x+13|2 + γ|x+16|2− s|3−0|2]

=
3
4
(
1
9
|x+13|2 + 1

8
|x+16|2−2×9≥ 0.

That is ,

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0.

Case (iii): When x = 0 and y ∈ (4,20].
Then f x = 0,T x = 0, f y = y−4,Ty = 0.
In thise case;

d( f x,T x) = |0−0|2 = 0
d( f y, f x) = |y−4|2

d( f y,Ty) = |y−4|2

d(T x,Ty) = |0−0|2 = 0
Now,

s = α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y)

= α
|0−0|2|y−4|2

|y−4|2
+β [|0−0|2 + |y−4|2]+ γ|y−4|2

= β |y−4|2 + γ|y−4|2

=
1
9
|y−4|2 + 1

8
|y−4|2

t = s|T x−Ty|2 = 2|0−0|2 = 0
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now consider

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))

=
3
4
(α

d( f x,T x)d( f y,Ty)
d( f x, f y)

+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))− sd(T x,Ty)

=
3
4
(α
|0−0|2|y−4|2

|y−4|2
+β [|0−0|2 + |y−4|2]+ γ|y−4|2)−2|0−0|2

=
3
4
(β |y−4|2 + γ|y−4|2)−2|0−0|2 ≥ 0.

=
3
4
(
1
9
|y−4|2 + 1

8
|y−4|2)−2|0−0|2 ≥ 0

That is,

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0.

Case (iv): When x ∈ (4,20] and y = 0.

Then f x = x−4, f y = 0,T x = 0 = Ty .

In thise case;

d( f x,T x) = |x−4|2.
d( f y, f x) = |x−4|2.
d( f y,Ty) = |0−0|2 = 0.
d(T x,Ty) = |0−0|2 = 0.

Now,

s = α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y)

= α
|x−4|2|0−0|2

|x−4|2
+β [|x−4|2 + |0−0|2]+ γ|x−4|2

= β |x−4|2 + γ|x−4|2

=
1
9
|x−4|2 + 1

8
|x−4|2

t = s|T x−Ty|2 = 2|0−0|2 = 0.
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now consider

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))

=
3
4
(α

d( f x,T x)d( f y,Ty)
d( f x, f y)

+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))− sd(T x,Ty)

=
3
4
(α
|x−4|2|0−0|2

|x−4|2
+β [|x−4|2 + |0−0|2]+ γ|x−4|2)− s|0−0|2

=
3
4
(β |x−4|2 + γ|x−4|2)−0

=
3
4
(
1
9
|x−4|2 + 1

8
|x−4|2)−0≥ 0.

That is,

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0.

Case (v) Whenx,y ∈ (0,4].
Then f x = x+16, f y = y+16
and T x = 3,Ty = 3 but f x 6= f y.

In this case;

d( f x,T x) = |x+13|2.
d( f y, f x) = |x− y|2.
d( f y,Ty) = |y+13|2.
d(T x,Ty) = |3−3|2 = 0.

Now

s = α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y)

= α
|x+13|2, |y+13|2

|x− y|2
+β [|x+13|2 + |y+13|2]+ γ|x− y|2

=
1
7
|x+13|2, |y+13|2

|x− y|2
+

1
9
[|x+13|2 + |y+13|2]+ 1

8
|x− y|2.

t = sd(T x,Ty) = 2|3−3|2 = 0.
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Now we consider

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))

=
3
4
(α

d( f x,T x)d( f y,Ty)
d( f x, f y)

+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))− sd(T x,Ty)

=
3
4
(α
|x+13|2|y+13|2

|x− y|2
+β [|x+13|2 + |y+13|2]+ γ|x− y|2)−2|3−3|2

=
3
4
(
1
7
|x+13|2|y+13|2

|x− y|2
+

1
9
[|x+13|2 + |y+13|2]+ 1

8
|x− y|2)−2|3−3|2 ≥ 0.

That is,

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0.

Case (vi) : Wwhen x,∈ (0,4] and y ∈ (4,20]
Then f x = x+16, f y = y−4,T x = 3,Ty = 0
In this case;

d( f x,T x) = |x+13|2.
d( f y, f x) = |x− y+20|2.
d( f y,Ty) = |y−4|2.
d(T x,Ty) = |3−0|2 = 9.

Now

s = α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y)

= α
(|x+13|2|y−4|2

|x− y+20|2
+β [|x+13|2 + |y−4|2]+ γ|x− y+20|2

=
1
7
(|x+13|2|y−4|2

|x− y+20|2
+

1
9
[|x+13|2 + |y−4|2]+ 1

8
|x− y+20|2

t = sd(T x,Ty) = 2|3−0|2 = 18.

37



Now consider

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))

=
3
4
(α

d( f x,T x)d( f y,Ty)
d( f x, f y)

+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))− sd(T x,Ty)

=
3
4
(α

(|x+13|2|y−4|2

|x− y+20|2
+β [|x+13|2|y−4|2]+ γ|x− y+20|2)− s|3−0|2

=
3
4
(
1
7
(|x+13|2|y−4|2

|x− y|2
+

1
9
[|x+13|2 + ||y−4|2]+ 1

8
|x− y+20|2)−2|3−0|2 ≥ 0.

That is,

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0.

Case (vii): When x ∈ (4,20] and y ∈ (0,4].
Then f x = x−4, f y = y+16,T x = 0,Ty = 3.
In this case;

d( f x,T x) = |x−4|2.
d( f y, f x) = |x− y−20|2.
d( f y,Ty) = |y+13|2.
d(T x,Ty) = |3−0|2 = 9.

Now

s = α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y)

= α
|x−4|2, |y+13|2

|x− y−20|2
+β [|x−4|2 + |y+13|2]+ γ|x− y−20|2

=
1
7
|x−4|2, |y+13|2

|x− y−20|2
+

1
9
[|x−4|2 + |y+13|2]+ 1

8
|x− y−20|2

t = sd(T x,Ty) = 2|3−0|2 = 18.
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Now we consider

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))

=
3
4
(α

d( f x,T x)d( f y,Ty)
d( f x, f y)

+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))− sd(T x,Ty)

=
3
4
(α
|x−4|2|y+13|2

|x− y−20|2
+β [|x−4|2 + |y+13|2]+ γ|x− y−20|2)− s|3−0|2

=
3
4
(
1
7
|x−4|2|y+13|2

|x− y−20|2
+

1
9
[|x−4|2 + |y+13|2]+ 1

8
|x− y−20|2)−2|3−0|2 ≥ 0.

That is,

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0.

Case (viii): When x,y ∈ (4,20].
Then f x = x−4, f y = y−4,T x = Ty = 0.
since f x 6= f y

In this case;

d( f x,T x) = |x−4|2.
d( f y, f x) = |x− y|2.
d( f y,Ty) = |y−4|2.
d(T x,Ty) = |0−0|2 = 0.

Now,

s = α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y)

= α
|x−4|2, |y−4|2

|y−4|2
+β [|x−4|2 + |y−4|2]+ γ|y−4|2

=
1
7
|x−4|2, |y−4|2

|x− y|2
+

1
9
[|x−4|2 + |y−4|2]+ 1

8
|x− y|2

t = sd(T x,Ty) = 2|0−0|2 = 0.
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Now consider

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))

=
3
4
(α

d( f x,T x)d( f y,Ty)
d( f x, f y)

+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))− sd(T x,Ty)

=
3
4
(α
|x−4|2|y−4|2

|x− y|2
+β [|x−4|2 + |y−4|2]+ γ|x− y|2)− s|0−0|2

=
3
4
(
1
7
|x−4|2|y−4|2

|x− y|2
+

1
9
[|x−4|2 + |y−4|2]+ 1

8
|x− y|2)≥ 0.

That is,

ζ (sd(T x,Ty),α
d( f x,T x)d( f y,Ty)

d( f x, f y)
+β [d( f x,T x)+d( f y,Ty)]+ γd( f x, f y))≥ 0.

Hence all the hypothesis of the theorem are satisfied. Moreover, 0 are coincidence

poiint of T and f , 0 is the common fixed point of T and f , and 0 is the unique

common fixed point of T and f .
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Chapter 5

Conclusion and Future scope
5.1 Conclusion

Rao et al. (2020) established common fixed point theorems for a pair of contractive
mappings in partially ordered metric space. In this research work ,we introduced
common fixed theorems for a pair of contractive mappings in partially ordered b-
metric space involving simulation functions and proved the existence and unique-
ness for the mappings introduced. Our results extended and generalized related
fixed point results in the literature, in particular that of Rao et al.(2020).we have
also supported the main results of this researches work by examples.

5.2 Future scope

The existence and uniqueness of common fixed point for a pair of contractive map-
pings in partially ordered b-metric space involving simulation functions is an active
area of research. Recently there are a some of published research papers related to
this area of the study. So any interested researchers can use this opportunity and
conduct their research work in this area.
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