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Abstract

In this thesis, accelerated �tted mesh �nite di�erence method is presented for solving

Singularly perturbed Self-adjoint boundary value problems. First, the derivatives of the

di�erential equation are transformed into �nite di�erence approximations that make lin-

ear system of algebraic equations in the form of a three-term recurrence relation which

can easily be solved by Thomas algorithm. And then, Richardson extrapolation method

is applied to accelerate the convergence. Second, establish the convergence of the pro-

posed method very well. Finally, validate results using numerical model examples and

compared with other methods listed in the literature and exact solution. Maximum

absolute error for each model example shown by tables and behavior of graphs with dif-

ferent perturbation parameters and mesh sizes which shows the betterment of the present

method.
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Chapter 1

Introduction

1.1 Background of the study

A di�erential equation(DE) is an equation which contains the derivatives of one or more

dependent variables, with respect to one or more independent variables.A DE contains

derivatives which are either ordinary or partial derivatives. If an equation contains only

partial derivatives of one or more dependent variables with respect to a single indepen-

dent variable, it is said to be partial di�erential equation(PDE). where as if an equation

contains only ordinary derivatives of one or more dependent variables with respect to

a single independent variable, it is said to be ordinary di�erential equation(ODE). Any

ODE obtained from a given DE and having the property that its solution is an integrating

factor of the other is known as adjoint DE (Siraj et al., 2019). If the coe�cients a0(x),

a1(x) and a2(x) in the DE of the form:

a0(x)y
′′(x) + a1(x)y

′(x) + a2(x)y(x) = 0, (1.1)

are continuous and a0(x) ̸= 0 with the given domain, the obtained DE can be transformed

into the equivalent self-adjoint equation of (a(x)y′(x))′ + b(x)y(x) = 0

for the functions a(x) = e
∫ a1(x)

a0(x)
d(x)

and b(x) = a2(x)
a0(x)

a(x). A self-adjoint DE, whose highest
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order derivative is multiplied by a small positive parameter, and of the form:

− ε(a(x)y′(x))′ + b(x)y(x) = f(x) (1.2)

is called second order self-adjoint SPP. A SPP is a problem containing a small positive

parameter that cannot be approximated by setting the parameter value to zero ( Siraj et

al., 2019).

In singularly perturbed di�erential problem, small positive parameter a�ecting the high-

est order derivative(s) of the DE which gives rise to large gradients in the solution over

narrow regions of the domain. So that, the presence of a small perturbation parame-

ter in the di�erential equation typically leads to boundary layers in the solution, which

makes the convergence analysis very di�cult (Suayip and Niyazi, 2013). As Miller (1996),

boundary layer is a region of the independent variable over which the dependent variable

changes rapidly.

Singularly perturbed second order two-point BVP occur very frequently in �uid motion,

chemical reactor theory, elasticity, di�usion in polymer, reaction- di�usion equation, con-

trol of chaotic system and so on (Kadalbajoo and Kumar, 2008). If the order of SPDEs of

the reduced problem is decreased by one, then the problem called as convection-di�usion

type and if the order is reduced by two it is called reaction-di�usion type. Hence, second

order SP self-adjoint ODEs are types of convection-di�usion problem.

Due to the importance of these problems in real life situations, the need to develop nu-

merical methods(NMs) for approximating its solution is advantageous. But, numerically

solving the singularly perturbed di�erential equations depends upon the small positive

parameters. So that, the solution varies rapidly in some parts of the domain and varies

slowly in some other parts of the domain because of the existence of boundary layer (Siraj

et al., 2019).

The solution of second order SP self-adjoint two-point BVP exhibits one or two layers.

For solving this problem having two layers, the existing numerical methods give good
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results when the mesh size is smaller than the perturbation parameter. But it is ex-

pensive and time-consuming process (Fasika et al., 2017). If we take the mesh size is

greater than the perturbation parameter, the classical NMs produce oscillatory solution

and pollute the solution in the entire interval, because of boundary layer behavior. As

a result, developing NMs for solving SP self-adjoint problems yield consideration of the

researches.

Recently, di�erent scholars such as Fasika et al., (2016), and (2017) and Feyisa and Gem-

chis, (2017) have developed a higher (fourth, sixth, eighth and tenth) order compact FDM

to solve SP reaction di�usion problems. These authors developed higher order compact

FDMs, by considering the condition for the coe�cients of di�usion and reaction terms

are constant only. Thus, even if their methods produce more accurate numerical solution,

it is restricted to treat the problems with constant coe�cients of di�usion and reaction

term.

Also, other scholar's, Terefe et al., (2016) and Yitbarek et al., (2017) have presented

fourth and sixth order stable central di�erence method for solving self-adjoint SP two-

point BVP. Further (Murad et al., 2020) have presented NM solution of Sp self-adjoint

BVP using Galarkin method and also (Siraj et al, 2019) have also presented fourth order

stable central di�erence method with Richardson extrapolation method for second-order

singularly perturbed self-adjoint BVPs. So far, some of those recently developed methods

works for non-constant coe�cient and produce good accurate solution. As well in all of

these currently developed NMs, the perturbation parameter is comparable with the mesh

size of the solution domain.

However, the numerical solutions are in a good agreement with the exact one for which

most classical numerical methods do not give good result. Yet, it needs to improve the

accuracy of the solution when the perturbation parameter is smaller than the mesh size

of the solution domain with higher order of convergence.

Therefore, the purpose of this study is to develop an accelerated FMFDM that gives a

more accurate solution for solving SP self-adjoint BVPs.
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1.2 Objectives

1.2.1 General objective

The general objective of this study is to develop an accelerated �tted mesh �nite di�erence

method for singularly perturbed self-adjoint boundary value problems.

1.2.2 Speci�c objectives

The speci�c objectives of the present study are:

* To formulate accelerated �tted mesh �nite di�erence method for solving singularly

perturbed self-adjoint boundary value problems.

* To establish the convergence of the method.

* To investigate the accuracy of the method

1.3 Signi�cance of the study

The outcomes of this study may have the following importance:

* Help the graduate students to acquire research skills and scienti�c procedures.

* To introduce the application of numerical methods in di�erent �eld of studies.

* Serve as a reference material for scholars who works on this area.

* Provide a numerical method for solving self-adjoint singularly perturbed boundary

value problems.
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1.4 Delimitation of the study

This study is delimited to develop and analysis the accelerated �tted mesh �nite di�erence

method for singularly perturbed self-adjoint boundary value problem of the form:

−ε(a(x)y′(x))′ + b(x)y(x) = g(x), x ∈ (0, 1),

with the boundary conditions:

y(0) = α and y(1) = β,

where, ε is a perturbation parameter that satis�es, 0 < ε << 1 and α, β are arbitrary

constants. Functions a(x) ≥ a > 0, b(x) ≥ b > 0, and g(x) are assumed to be su�ciently

continuous functions on the stated domain.
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Chapter 2

Review of Related Literature

2.1 Boundary value problem

In the �eld of di�erential equations, a BVP is a DE together with a set of additional

restraints, called the boundary conditions. A solution to a BVP is a solution to the

di�erential equation which also satis�es the boundary conditions. It arises in several

branches of physics as any physical di�erential equation will have them. Problems in-

volving the wave equation, such as the determination of normal modes, are often stated

as boundary value problems.

A boundary value problem of an ordinary di�erential equations with solution and deriva-

tive values speci�ed at more than one point. Most commonly, the solution and derivatives

are speci�ed at just two points (the boundaries) de�ning a two-point boundary value

problem.A boundary value problem for a given di�erential equation consists of �nding a

solution of the given di�erential equation subject to a given set of boundary conditions. A

boundary condition is a prescription some combinations of values of the unknown solution

and its derivatives at more than one point.
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2.2 Singular Perturbation Problem

Singular perturbation problem was �rst introduced by (Prandtl, 1904) during his talk

on �uid motion with small friction in a seven-page report presented at the Third Inter-

national Congress of Mathematicians in Heidelberg in 1904 in which he demonstrated

that �uid �ow past over a body can be divide in two regions, a boundary layer and outer

region. However, the term singular perturbation was �rst used by (Friedrichs and Wasow,

1946) in a paper presented at a seminar on non-linear vibrations at New York University.

The solutions of singular perturbation problems typically contain layers. Originally

(Prandtl, 1904) introduced the term boundary layer, but this term came into more gen-

eral following the work of (Wasow, 1942).

A brief survey for the historical development of singular perturbation problems is covered

in the recent book by (O'Malley, 1991) and (Roos, 2008). More precisely, a perturbation

problem is problem that contains a small parameter called perturbation parameter. If

the solution of the problem can be approximated by setting the value of the perturbation

parameter equal to zero, then the problem is called regular perturbation problem, other-

wise it is called singular perturbation problem. That is, if it is impossible to approximate

the solution by asymptotic expansion as the perturbation parameter tends to zero, then

the problem is called singular.

In real life, we often encounter many problems which are described by parameter de-

pendent di�erential equations. The behavior of the solution of these types of di�erential

equation depends on the magnitude of the parameter. Any di�erential equation in which

the highest order derivative is multiplied by a small positive parameter is called singular

perturbation problem and the parameter is known as the perturbation parameter. Sin-

gular perturbation problems (SPPs) have always played prominent role in the theory of

di�erential equation.

If the perturbation parameter is present at other places other than highest derivative,

then the problem is called regular perturbation problem (RPPs). In fact, any di�erential
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equation whose solution changes rapidly in some parts of the solution domain/interval is

generally known as singular perturbation problem and also called boundary layer prob-

lem. (Miller, 1996) said that �boundary layer is a region of the independent variable over

which the dependent variable changes rapidly�.

In numerical analysis, Richardson extrapolation is a sequence acceleration method, used

to improve the rate of convergence of a sequence. The basic idea behind extrapolation

is that whenever the leading term in the error for an approximation formula is known,

we can combine two approximations obtained from that formula using di�erent values of

the parameter mesh size h to obtain a higher-order approximation and the technique is

known as Richardson extrapolation.

2.3 Fitted Mesh method

A Fitted mesh can be incorporated into both a �nite di�erence and a �nite element

method. In �nite di�erence method it has two major ingredients: the �nite di�erence

operator that is used to approximate the di�erential operator L and the mesh that replaces

the continuous domain W.The numerical method with a �tted �nite di�erence scheme on

a piecewise uniform mesh with specially chosen transition points separating the coarse

and �ne mesh are known as �tted mesh methods.

Clearly, the simplest form of �tted mesh is a piecewise uniform mesh with specially chosen

transition points separating the coarse and �ne meshes. These piecewise uniform �tted

meshes were �rst introduced by and the corresponding numerical methods were further

developed, in the book (Shish kin,1992). The �rst numerical results using a �tted mesh

method were presented in (Miller,1991).
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2.4 Recent development

Kadalbajoo and Patidar, (2003) are presented, `Spline approximation method for solving

self-adjoint singular perturbation problems on non-uniform grids. In this article, a nu-

merical method based on cubic spline with adaptive grid was given for the self-adjoint

singularly perturbed two-point boundary value problems of the form:

Ly ≡ −ε(a(x)y′(x))′ + b(x)y(x) = g(x), 0 < x < 1 (2.1)

Subject to the boundary conditions:

y(0) = α and y(1) = β (2.2)

Where α, β are given constants and ε is a small positive parameter. Further, the coe�-

cients of di�usion term a(x) and the coe�cient of reaction term b(x) are smooth functions

and satisfy the condition a(x) ≥ a > 0, a′(x) ≥ 0 and b(x) ≥ b > 0. The scheme derived

in this method is second order accurate and model numerical examples are given to sup-

port the predicted theory.

Kailash (2005) developed, `Higher order �tted operator numerical method for self-adjoint

SPPs. Here, authors consider self-adjoint SP two-point BVPs in conservation form. Re-

ducing the original problem into the normal form and then using the theory of inverse

monotone matrices, a �tted operator �nite di�erence method is derived via the stan-

dard Nemerov's method. The scheme thus derived is fourth order accurate for moderate

values of the perturbation parameter ε whereas for very small values of this parameter

the method is e-uniformly convergent with order two. Numerical examples are given in

support of the theory.

Kadalbajoo and Kumar (2010), Proposed `Variable mesh �nite di�erence method for self-

adjoint singularly perturbed two-point boundary value problems. In this article, a nu-

merical method based on �nite di�erence method with variable mesh is given self-adjoint
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singularly perturbed two-point boundary value problems. To obtain parameter- uniform

convergence, a variable mesh is constructed, which is dense in the boundary region and

coarse in the outer region. The uniform convergence analysis of the method discussed.

The original problem is reduced to its normal form and the reduced problem solved by

�nite di�erence method taking variable mesh. To support the e�ectiveness of the method,

several numerical examples have been considered.

Aruna and Kanth (2012),suggested `A spline based computational simulations for solving

self-adjoint singularly perturbed two-point BVPs. Those proposed a spline based compu-

tational simulations for solving self-adjoint SP two-point BVPs. The original problem is

reduced to its normal form and the reduced boundary value problem is treated by using

di�erence approximations via cubic splines in tension. The convergence of the method

is analyzed. Some numerical examples are given to demonstrate the computational e�-

ciency of the present method.

Khuri and Sayfy (2014), proposed �A patching approach for Self-adjoin SP second-order

two-point BVPs. In this article, the basic aim is to introduce and describe a patching

approach based on a novel combination of the varational iterative method and adap-

tive cubic spline collocation scheme for the solution of a class of self-adjoin SP second-

order two-point boundary value problems that model various engineering problems. The

domain of the problem is decomposed into two subintervals: the varational iterative

method is implemented in the area (vicinity) of the boundary layer while in the outer

region the resulting problem is tackled by applying an adaptive cubic spline collocation

scheme, which comprises the use of mapping/transformation redistribution functions or

constructed grading functions.

Numerical results, computational comparisons, appropriate error measures and illustra-

tions are provided to testify the convergence, e�ciency and applicability of the method.

Performance the method examined through test examples that reveal that the current

approach converges to the exact solution rapidly with accurate solution and that the

convergence is uniform across the domain. The proposed technique yields numerical so-
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lutions in very good agreement with and/or superior to existing exact and approximate

solutions.

More recently, Fasika et al., (2016), Fasika et al., (2017) and Feyisa and Gemechis, (2017),

have o�ered the higher (fourth, sixth, eighth and tenth) order compact �nite di�erence

method for solving singularly perturbed 1D reaction�di�usion problems. But these meth-

ods are developed and applicable only for the coe�cient of reaction and di�usion terms

are constant in case of second order self-adjoin SPPs.

Besides Terefe et al., ( 2016), Yitbarek et al., ( 2017) and Siraj et al, ( 2019) have pro-

posed, fourth and sixth-order stable central di�erence methods for solving self-adjoin

SPPs. And Murad et al., (2020) have also proposed NM solution of SP self-adjoint BVP

usin Galarkin method. Yet, these methods treated the stated problem, for comparable

perturbation parameter with the mesh size of the solution domain and till the obtained

numerical solution needs to improve accuracy.

Thus, it is necessary to improve the accuracy with higher order of convergence for solving

second order self-adjoint singularly perturbed boundary value problems which involves

variable coe�cient of reaction and di�usion terms. Furthermore, for self-adjoint singu-

larly perturbed boundary value problems with two boundary layers essential to develop

numerical method which concerns more accurate numerical solution.
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Chapter 3

Methodology

3.1 Study Area and Period

The study was conducted in Jima University under the department of Mathematics from

May 2021 to January 2022. Conceptually the study focuses on accelerated �tted mesh

�nite di�erence method for singularly perturbed self-adjoint boundary value problems

3.2 Study Design

This study would employ mixed design (documentary review design and numerical ex-

perimentation design).

3.3 Source of Information

The relevant sources of information for this study are books, published articles and related

studies from Internet services.
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3.4 Mathematical Procedure

In order to achieve the stated objectives, the study followed the following steps:

1. De�ning the problem.

2. Discretizing the solution domain/interval.

3. Formulating �tted mesh numerical scheme for the de�ned problem

4. Applying the Richardson extrapolation technique.

5. Establishing the convergence analysis of the formulated problem.

6 Writing MATLAB code for the formulated schemes.

7. Valideting the scheme using numerical illustration.

13



Chapter 4

Description of the Method and

Numerical Results

4.1 Description of the method

In this section, the description of FDM on piecewise uniform mesh has been presented.

Consider the sp self-adjoint BVP of the form:

− ε(a(x)y′(x))′ + b(x)y(x) = g(x), 0 < x < 1, (4.1)

with the boundary conditions,

y(0) = α and y(1) = β, (4.2)

where, ε is a perturbation parameter that satis�es, 0 < ε << 1 and a(x), b(x) and f(x)

are assumed to be su�ciently continuous di�erentiation functions. By product rule of

di�erentiation, Eq.(4.1) can be re-written as:

−εa(x)y′′(x)− εa′(x)y′(x) + b(x)y(x) = g(x)

14



This can be written as

−εy′′(x) + p(x)y′(x) + q(x)y(x) = f(x) (4.3)

where, p(x) =
−εa′(x)

a(x)
, q(x) =

b(x)

a(x)
, and f(x) =

g(x)

a(x)
.

Now, to discretized the solution domain for N ≥ 8 to be an integer such that consider

the transition parameter τ is chosen as:

τ = min(
1

4
, 2
√
ε ln(N)), (4.4)

In such discretization,the solution domain is divided into three sub-intervals: [0, τ ], [τ, 1−

τ ] and [1−τ, 1]. Where τ is the width of boundary layer. The intervals [0, τ ] and [1−τ, 1]

are each divided into
N

4
equal mesh elements, while the intervals [τ, 1− τ ] is divided into

N

2
equal mesh elements.Therefore, we have

N

4
+1 equidistant grid points in the intervals

[0, τ ] and [1− τ, 1] and
N

2
− 1 equidistant in [τ, 1− τ ].

We have, h = hi + 1− hi or hi = hi + 1− h, where the mesh spacing is given by:

hi =


4τ
N
, i = 1, 2, ...,

N

4
, i =

3N

4
+ 1, ..., N

2(1− 2τ)

N
, i =

N

4
+ 1, ...3

N

4
.

(4.5)

For convenience,let p(xi) = pi, q(xi) = qi, y(xi) = yi, y
′(xi) = y′i,....., y

n(xi) = yni .

Assume that y(x) has continuous higher order derivatives on [0,1], and to develop the

�tted mesh �nite di�erence (FMFD) scheme, we use Taylor's Series expansion in order

to get central di�erence formula for y′′i and y′i

yi+1 = yi + hi+1y
′
i +

h2
i+1

2
y′′i +

h3
i+1

6
y′′′i +O(h4

i+1) (4.6)

15



Re-arranging Eq.(4.6) and solving for y′i, we get

δ+yi = y′i =
yi+1 − yi
hi+1

− hi+1

2
y′′i + TE1, (4.7)

where, TE1 = −
h2
i+1

6
y′′′i .

yi−1 = yi − hiy
′
i +

h2
i

2
y′′i −

h3
i

6
y′′′i +O(h4

i ) (4.8)

Re-arranging Eq.(4.8) and solving for y′i, we get

δ−yi = y′i =
yi − yi−1

hi

+
hi

2
y′′i + TE2, (4.9)

where, TE2 =
−h2

i

6
y′′′i .

From Eq(4.6) and Eq (4.8) taking the di�erence of the two we get the central �nite

di�erence, and solving for y′i, we get

δoyi = y′i =
yi+1 − yi−1

hi+1 + hi

+ TE3, (4.10)

where, TE3 = −hi+1 − hi

2
y′′i .

Subtracting Eq.(4.9) from Eq.(4.7) and re-aranging gives:

yi+1 − yi
hi+1

− yi − yi−1

hi

=
(hi+1 + hi)

2
y′′i + TE2 − TE1, (4.11)

Multiplying both sides by
2

hi+1 + hi

and solving for y′′i , we get

δ2yi = y′′i =
2

hi+1 + hi

(
yi+1 − yi
hi+1

− yi − yi−1

hi

) + TE4, (4.12)

where, TE4 =
2

hi+1 + hi

(TE2 − TE1).

Denoting this discretization of the solution domain by ΩN , and yi is the approximation
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of y(xi) , so that the discretization form of Eq. (4.1) on ΩN , for i = 1, 2, ...N −1 is given

by:

− εy′′i + piy
′
i + qiyi = fi, (4.13)

−2ε

hi+1 + hi

(δ+yi − δ−yi) + piδ
oyi + qiyi = fi (4.14)

where, δ+yi =
yi+1 − yi
hi+1

, δ−yi =
yi − yi−1

hi

and δoyi =
yi+1 − yi−1

hi+1 + hi

.

This can be Re-written in 3-term recurrence relation as:

[
−2ε

hi(hi+1 + hi)
− pi

hi+1 + hi

]yi−1 + [
2ε

hihi+1

+ qi]yi + [
−2ε

hi+1(hi+1 + hi)
+

pi
hi+1 + hi

]yi+1 = fi,

(4.15)

− Eiyi−1 + Fiyi −Giyi+1 = Hi, (4.16)

where,

Ei =
2ε

hi(hi+1 + hi)
+

pi
hi+1 + hi

, Fi =
2ε

hihi+1

+ qi,

Gi =
2ε

hi+1(hi+1 + hi)
− pi

hi+1 + hi

, Hi = fi.
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4.2 Thomas Algorithm

In this section, the stability of solving the tri-diagonal system is provided. A brief descrip-

tion for solving the tri-diagonal system using the discrete invariant embedding algorithm,

also called the Thomas Algorithm, is presented as follows. Consider the scheme above

in Eq. (4.16), for i = 1, 2, ....N − 1 and subject to the boundary conditions in Eq. (4.2)

that can be re-written as: y(0) = y0 = α and y(1) = yN = β

Assume that the solution of Eq.(4.16), is given by:

yi = Wiyi+1 + Ti, i = N,N − 1, N − 2, ..., 2, 1, (4.17)

where Wi and Ti are to be determined.

Considering Eq.(4.17) at the nodal point xi−1, we have

yi−1 = Wi−1yi + Ti−1, (4.18)

Substituting Eq.(4.18) in to Eq.(4.16) gives:

−Ei(Wi−1yi + Ti−1) + Fiyi −Giyi+1 = Hi,

which leads to obtaining the equation

yi =
Gi

Fi − EiWi−1

yi+1 +
Hi + EiTi−1

Fi − EiWi−1

, (4.19)

Comparing Eq.(4.19) with Eq.(4.17), the two values determined as:

Wi =
Gi

Fi − EiWi−1

, Ti =
Hi + EiTi−1

Fi − EiWi−1

, (4.20)

To solve these recurrence relations i = 1, 2, ...N − 1 , we need the initial conditions for

W0 = 0 and we take T0 = y0 = y(0) = α. With these starting points of initial values,

we compute Wi and Ti for i = 1, 2, ...N − 1 from Eq. (4.19) in the forward process, and

then obtain yi in the backward process from Eq. (4.16) and from the boundary condition
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y(1) = yN = β . Further, the conditions for the discrete invariant embedding algorithm

to be stable, (See Fasika et. al., (2017)) if and only if:

|Ei| = | 2ε

hi(hi+1 + hi)
+

pi
hi+1 + hi

| > 0, |Gi| = | 2ε

hi+1(hi+1 + hi)
− pi

hi+1 + hi

| > 0,

|Fi| = | 2ε

hihi+1

+ qi| ≥ 0, and, |Fi| ≥ |Ei|+ |Gi|
(4.21)

Hence, the Thomas Algorithm is stable for the proposed method.

4.3 Truncation error

In this section, the truncation error for the described method will be investigated. The

local truncation error is given by:

T (hi) = −εy′′(xi) + p(xi)y
′(xi) + q(xi)y(xi)− [

−2ε

hi+1 + hi

(δ+yi − δ−yi) + piδ
oyi + qiyi]

T (hi) = −εy′′(xi) + p(xi)y
′(xi) + q(xi)y(xi) +

2ε

hi+1 + hi

(
yi+1 − yi
hi+1

− yi − yi−1

hi

)− pi(
yi+1 − yi−1

hi+1 + hi

)− qiyi,

(4.22)

Using Taylor's series expansion to yi around xi, we have the approximation for yi±1 as:

yi+1 = yi + hi+1y
′
i +

h2
i+1

2
y′′i +

h3
i+1

6
y′′′i +

h4
i+1

24
y4i +O(h5

i+1) (4.23)

yi−1 = yi − hiy
′
i +

h2
i

2
y′′i −

h3
i

6
y′′′i +

h4
i

24
y4i +O(h5

i ) (4.24)

From these two basic equations, we obtain:


yi+1 − yi
hi+1

= y′i +
hi+1

2
y′′i +

h2
i+1

6
y′′′i +

h3
i+1

24
y4i +O(h4

i+1)

yi − yi−1

hi

= y′i −
hi

2
y′′i +

h2
i

6
y′′′i − h3

i

24
y4i +O(h4

i )

(4.25)
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Substituting Eq.(4.25) in to Eq. (4.22), we get:

T (hi) =
ε(hi+1 − hi)

3
y′′′(xi) +

ε(h2
i+1 + h2

i − hihi+1)

12
y4(xi) + ... (4.26)

Since at the nodal point xi, we have:

y′′(xi) = y
′′
i , y

′(xi) = y′i and q(xi)y(xi) = qiyi.

Then, Eq.(4.26) can be simpli�ed as:

T (hi) =
ε(hi+1 − hi)

3
y′′′i +

ε(h2
i+1 + h2

i − hihi+1)

12
y4i + ... (4.27)

From the considered piecewise discretization of the solution domain in Eq.(4.5), and from

the values of τ = 2
√
ε ln(N), we have:

Case 1: In the layer region, we have:

hi = hi+1 = hs and hs =
4τ

N
=

8
√
ε ln(N)

N
, that gives the truncation error from

Eq.(4.27)as:

T (hi) =
ε(hi+1 − hi)

3
y′′′i +

ε(h2
i+1 + h2

i − hihi+1)

12
y4i + ... (4.28)

T (hi) =
ε(h2

i+1 + h2
i − hihi+1)

12
y4i + ... (4.29)

T (hi) =
εh2

s

12
y4i + ... =

16ε2 ln(N2)

3N2
y4i + ... (4.30)

Case 2: In the outer layer region, we have:

hi = hi+1 = hb and hb =
2

N
− 4τ

N
=

2

N
− 8

√
ε ln(N)

N
, that gives the truncation error

from Eq.(4.27) as:

T (hi) =
ε(hi+1 − hi)

3
y′′′i +

ε(h2
i+1 + h2

i − hihi+1)

12
y4i + ... (4.31)

T (hi) =
ε(h2

i+1 + h2
i − hihi+1)

12
y4i + ... (4.32)
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T (hi) = ε
h2
b

12
y4i + ... =

ε(2− 8
√
ε ln(N2))

12N2
y4
i
+ ... (4.33)

Case 3: In the neighborhoods between the inner and outer layer region, we have:

hm = hi+1 − hi, or hm = hi − hi+1. Hence,for the �rst point,we have:
hm = hi+1 − hi =

2(1− 2τ)

N
− 4τ

N
= 2

((1− 8
√
ε ln(N)))

N
, Similarly,

hm = hi − hi+1 =
4τ

N
− 2(1− 2τ)

N
= 2

(8
√
ε ln(N)− 1)

N
.

Thus the truncation error in Eq.(4.27) become:

T (hi) =
ε(hi+1 − hi)

3
y′′′i + ...

T (hi) =
2ε(1− 8

√
ε) ln(N)

3N
y

′′′

i + ...

(4.34)

Hence, one can observe from the three cases that the �rst truncation error for the de-

scribed method is provided in Eq. (4.34). Moreover, due to the considered problem

exhibits two boundary layers, the described scheme on piecewise discretization. Thus, we

have to consider the values of the perturbation parameter ε ≤ 4

N
.

Substituting these values into Eq.(4.34) gives:

T (hi) =
2ε(1− 8

√
ε) ln(N)

3N
y′′′i + ...

T (hi) ≤
2(

4

N
)

3N
(1− 8

√
4

N
lnN)y′′′i + ... ≤ 8

3N2
y′′′i + ...

(4.35)

Thus, the norm of this truncation error is given by:

||T (hi)|| ≤ CN−2, (4.36)

where, C =
8

3
||y′′′i ||∞ is arbitrary constant.

Furthermore, within each sub-interval [0, τ ], [1−τ, 1] , and [τ, 1−τ ] , we have the uniform
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mesh length h ≤ 1

N
. Thus, h2 ≤ N−2.

Therefore, the described method is second-order convergent. Truncation errors refer to

the di�erences between the original di�erential equation and its �nite di�erence approx-

imations at grid points. This error measure how well a �nite di�erence discretization

approximates the di�erential equation,(Siraj et al., 2019).Thus, the developed scheme is

second-order accurate.

As a book by Zhilin et al., (2008), a �nite di�erence scheme is called consistent if the limit

of truncation error is equal to zero as the mesh size goes to zero. Hence, this de�nition

of consistency on the described method with the local truncation error in Eq. (4.36) is

satis�ed as:

lim
hi→0

T (hi) = lim
hi→0

8

3N2
y′′′i = lim

hi→0
Ch2

i = 0

Therefore, the proposed method is consistent.

4.4 Richardson extrapolation

The basic idea behind extrapolation is that whenever the leading term in the error for

an approximation formula is known, we can combine two approximations obtained from

that formula using di�erent values of the mesh sizes hi,
hi

2
,
hi

4
,
hi

8
,... to obtain a higher-

order approximation and the technique is known as Richardson extrapolation. This

procedure is a convergence acceleration technique which consists of considering a linear

combination of two computed approximations of a solution (on two nested meshes). The

linear combination turns out to be a better approximation.

From Eq.(4.36), we have

|y(xi)− yN | ≤ C(h2), (4.37)

where, y(xi) and yN are exact and approximate solutions respectively, C is constant

independent of mesh sizes h and perturbation parameter.
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Let Ω2N be the mesh obtained by bisecting each mesh interval in ΩN and denote the

approximation of the solution on Ω2N by y2N .

Consider Eq.(4.37) works for any h ̸= 0, which implies:

y(xi)− yN ≤ C(h2) +RN , xi ∈ ΩN . (4.38)

So that, it works for any
h

2
̸= 0 yields:

y(xi)− y2N ≤ C(
h

2
)2 +R2N , xi ∈ Ω2N , (4.39)

where, the remainders RN and R2N are O(h4).

A combination of inequalities in Eq.(4.38) and (4.39) leads to 3y(xi) − (4y2N − yN) =

O(h4), which suggests that:

(yN)
ext =

1

3
(4y2N − yN), (4.40)

is also an approximation of y(xi). Using this approximation to evaluate the truncation

error, we obtain:

|y(xi)− (yN)
ext| ≤ Ch4 (4.41)

Now,using these two di�erent solutions which are obtained by the same scheme given

by Eq.(4.16), we get another third solution in terms of the two by Eq.(4.41). This

is Richardson extrapolation method for the second-order �nite di�erence scheme only to

accelerate the rate of convergence to fourth-order. Similar to these procedures eliminating
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the constant from the system of equations:



y(xi)− yNi ≈ C1h
2 + C2h

4 + C3h
6 + ...

y(xi)− y2Ni ≈ C1(
h

2
)2 + C2(

h

2
)4 + C3(

h

2
)6 + ...

y(xi)− y4Ni ≈ C1(
h

4
)2 + C2(

h

4
)4 + C3(

h

4
)6 + ...

y(xi)− y8Ni ≈ C1(
h

8
)2 + C2(

h

8
)4 + C3(

h

8
)6 + ...

(4.42)

Eliminating C1 from Eq.(4.42), we obtain


y(xi)− yNi ≈ C1h

2 + C2h
4 + C3h

6 + ...

y(xi)− y2Ni ≈ C1(
h

2
)2 + C2(

h

2
)4 + C3(

h

2
)6 + ...

y(x)− 1

3
[4y2Ni − yNi ] = −1

4
C2h

4 − 5

16
C3h

6 + ... (4.43)

Similarly, 
y(xi)− y2Ni ≈ C1(

h

2
)2 + C2(

h

2
)4 + C3(

h

2
)6 + ...

y(xi)− y4Ni ≈ C1(
h

4
)2 + C2(

h

4
)4 + C3(

h

4
)6 + ...

y(xi)−
1

3
[4y4Ni − y2Ni ] = − 1

64
C2h

4 − 5

1024
C3h

6 + ... (4.44)

And also, 
y(xi)− y4Ni ≈ C1(

h

4
)2 + C2(

h

4
)4 + C3(

h

4
)6 + ...

y(xi)− y8Ni ≈ C1(
h

8
)2 + C2(

h

8
)4 + C3(

h

8
)6 + ...

y(xi)−
1

3
[4y8Ni − y4Ni ] = − 1

1024
C2h

4 − 5

65536
C3h

6 − 21

4194304
C4h

8... (4.45)
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Thus, the approximations


(yNi )4ext =

1

3
[4y2Ni − yNi ]

(y2Ni )4ext =
1

3
[4y4Ni − y2Ni ]

(y4Ni )4ext =
1

3
[4y8Ni − y4Ni ]

in Eq.(4.43) Eq.(4.44) and Eq.(4.45) are O(h4) approximations to y(xi)

Eliminating C2 from Eq. (4.43) and Eq. (4.44), gives:


y(x)− 1

3
[4y2Ni − yNi ] = −1

4
C2h

4 − 5

16
C3h

6 + ...

y(xi)−
1

3
[4y4Ni − y2Ni ] = − 1

64
C2h

4 − 5

1024
C3h

6 − 21

16384
C4h

8...

y(xi)−
1

45
[16(4y4Ni − y2Ni )− (4y2Ni − yNi )] = − 1

64
C3h

6 +
21

1024
C4h

8 + ... (4.46)

Eliminating C2 from Eq. (4.44) and Eq. (4.45), gives:


y(xi)−

1

3
[4y4Ni − y2Ni ] = − 1

64
C2h

4 − 5

1024
C3h

6 − 21

16384
C4h

8...

y(xi)−
1

3
[4y8Ni − yi4N ] = − 1

1024
C2h

4 − 5

65536
C3h

6 − 21

4194304
C4h

8...

y(xi)−
1

45
[16(4y8Ni − y4Ni )− (4y4Ni − y2Ni )] = − 1

4096
C3h

6 +
21

262144
C4h

8 + ... (4.47)

Thus, the approximations


(yNi )6ext =

1

45
[16(4y4Ni − y2Ni )− (4y2Ni − yNi )]

(y2Ni )6ext =
1

45
[16(4y8Ni − y4Ni )− (4y4Ni − y2Ni )]

in Eq.(4.46) and Eq.(4.47) are O(h6) approximation to y(xi).

This is Richardson extrapolation method for the fourth order FDS only to accelerate the

rate of convergence to sixth order.
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4.5 Numerical Examples and Results

To validate the applicability of the method, two model examples of second order self-

adjoint singularly perturbed boundary value problems have been considered.

Example 1: Consider the singularly perturbed problem (Terefe et al., 2016, Seraj et

al., 2019)


−ε((1 + x2)y′(x))′ + (1 + x− x2)y(x) = f(x), 0 < x < 1,

y(0) = 0 = y(1),

where f(x) is chosen such that the exact solution is given by:

y(x) = 1 + (x− 1)

−x√
ε − x

1− x√
ε

. Example 2: Consider the singularly perturbed problem (Yitbarek et al., 2017),


−ε((1 + x2)y

′
(x))

′
+ (

cosx

3− x3
)y(x) = 4(3x2 − 3x+ 1)((x− 0.5)2) + 2), 0 < x < 1,

y(0) = −1,

y(1) = 0.

The exact solution for this problem is not available. The numerical results are obtained

by using the double mesh principle (Yitbarek et al., 2017) and tabulated in terms of

maximum absolute errors in Tables and Figures as follow.

26



Table 4.1: The comparison of maximum absolute errors of Example 1
ε ↓ N → 16 32 64 128 256

Present Method
2−8 3.0246e-06 5.4027e-08 9.1254e-10 1.4391e-11 2.2626e-13
2−12 1.9527e-04 3.5828e-06 5.7493e-08 2.4432e-09 8.7385e-11

Seraj et al., (2019)
2−8 1.6978e-06 2.8399e- 08 4.5168e-10 7.0878e-12 1.0836e-13
2−12 4.1790e-04 2.1462e-05 9.9671e-07 1.8913e-08 3.0955e-10

Terefe et al., (2016)
2−8 1.65e-03 2.33e-04 6.09e-05 1.73e-05 4.37e-06
2−12 3.76e-02 7.40e-03 6.17e-04 3.54e-05 4.74e-06

Table 4.2: The comparison of maximum absolute errors of Example 2
ε ↓ N → 32 64 128 256

Present Method
2−6 6.2489e-11 3.0926e-12 1.0786e-11 2.8320e-11
2−8 2.8815e-10 6.8070e-12 1.9501e-11 7.0386e-11
2−10 9.9511e-08 2.1603e-10 9.8623e-11 3.9485e-11
2−12 5.1278e-05 4.9372e-07 4.1857e-09 1.1885e-10
2−14 5.0581e-03 7.3639e-05 8.5161e-07 9.1729e-09

Yitbarik et al., 2017
2−6 6.1739e-04 1.5402e-04 3.8510e-05 9.6262e-06
2−8 1.2821e-03 3.2272e-04 8.0755e-05 2.0193e-05
2−10 1.4094e-03 3.9358e-04 1.0097e-04 2.5404e-05
2−12 3.1577e-03 3.2669e-04 9.0865e-05 2.3923e-05
2−14 8.1928e-02 5.0797e-03 2.6048e-04 2.6985e-05
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Table 4.3: Computed maximum absolute errors and Rate of convergence for Example 1
ε ↓ N → 32 64 128 256

Sixth order
2−8 5.4027e-08 9.1254e-10 1.4391e-11 2.2626e-13

5.8876 5.9866 5.9910
2−10 1.2446e-06 4.8857e-08 8.2758e-10 1.3062e-11

4.6710 5.8835 5.9855
2−12 3.5828e-06 5.7493e-08 2.4432e-09 8.7385e-11

5.9616 4.5565 4.8052
Fourth order

2−8 3.3700e-05 2.1492e-06 1.3501e-07 8.4491e-09
3.9709 3.9927 3.9981

2−10 2.4113e-04 2.8615e-05 1.8253e-06 1.1467e-07
3.0750 3.9706 3.9926

2−12 2.2043e-04 3.0584e-05 3.5790e-06 3.8759e-07
2.8495 3.0951 3.2070

Second order
2−8 6.3033e-03 1.6011e-03 4.0354e-04 1.0099e-04

1.9770 1.9883 1.9985
2−10 1.6052e-02 5.7063e-03 1.4527e-03 3.6623e-04

1.4921 1.9738 1.9879
2−12 1.5208e-02 5.8687e-03 2.0339e-03 6.6725e-04

1.3737 1.5288 1.6079

Figure 4.1: Numerical solution for Example 1, when ε = 2−10 and N = 64 .
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Figure 4.2: Numerical solution for Example 1, when ε = 2−8, 2−10, 2−14 and N = 64.

Figure 4.3: Numerical solution for Example 2, when ε = 2−12 and N = 64
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Figure 4.4: Numerical solution for Example 2, when ε = 2−8, 2−10, 2−14 and N = 64.
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Chapter 5

Conclusion,Discussion and

Recommendation

5.1 Discussion and Conclusion

In this paper, we described an accelerated �tted mesh �nite di�erence method for singu-

larly perturbed self-adjoint boundary value problems. To demonstrate the competence

of the method, we applied it on two model examples by taking di�erent values for the

perturbation parameter, ε and mesh size h.

The results obtained can be obtained from the tables that the present method gives bet-

ter results than the �ndings of the existing methods' in the literature. Moreover, the

maximum absolute errors decrease rapidly as the number of mesh points N increases.

Further, as shown in Figs. 4.1 and 4.3, the proposed method approximates the exact

solution very well for h ≥ ε, for which most of the current methods fail to give good

results. To further verify the applicability of the planned method, graphs are plotted

aimed at Examples 1 and 2 for exact solutions versus the numerical solutions obtained.

As Figs. 4.1 and 4.3 indicate good agreement of the results, presenting exact as well as

numerical solutions, which proves the reliability of the method. Also, Figs. 4.2 and 4.4

specify the e�ects of perturbation parameter and mesh sizes of the solution domain.
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Further, the numerical results presented in this paper validate the improvement of the

proposed method over some of the existing methods described in the literature. Both the

theoretical and numerical error bounds have been established for the fourth and sixth-

order methods.

Hence, the Richardson extrapolation method accelerates fourth order into sixth order

convergent as given in Table 4.3. The results in Table 4.3 further con�rmed that the

computed maximum absolute errors, rate of convergence and theoretical estimates are in

agreement(Table 4.3).

Generally, the present method is consistent, stable, and gives more accurate numerical

solution for solving second-order singularly perturbed self- adjoint boundary value prob-

lems.

5.2 Recommendation

In this thesis, an accelerated �tted mesh �nite di�erence method for singularly perturbed

self-adjoint boundary value problems. The scheme proposed in this study can also be

extended to fourth order to six or more orders accelerated �tted mesh �nite di�erence

method for singularly perturbed self-adjoint boundary value problems.
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