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Abstract

In this thesis, we have studied the squeezing, entanglement and statistical properties of

the cavity light beams produced by a coherently driven nondegenerate three-level laser

with an open cavity and coupled to a two-mode vacuum reservoir via a single-port mir-

ror.

We have carried out our analysis by putting the noise operators associated with the vac-

uum reservoir in normal order. Applying the solutions of the equations of evolution for

the expectation values of the atomic operators and the quantum Langevin equations

for the cavity mode operators, we have calculated the mean and variance of the photon

number as well as the quadrature squeezing of the cavity light.

We have found that a large part of the mean and the variance of the photon number are

confined in a relatively small frequency interval. The analysis showed that the intracav-

ity quadrature squeezing is enhanced due to the absence of spontaneous emission. It

is revealed that the squeezing and entanglement in the two-mode light are directly re-

lated. Moreover, We have observed that the degree of cavity-atomic state entanglement

is greater than the photon entanglement of light.
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Introduction

Quantum optics deals mainly with the quantum properties of the light generated by

various optical systems such as lasers with the effects of light on the dynamics of the

atoms. squeezing is one of the nonclassical features of light that have attracted a great

deal of interest [1, 2, 3, 4, 5, 6]. In squeezed light, the noise in one quadrature is below

the vacuum-state level at the expense of enhanced fluctuations in the other quadrature,

with the product of the uncertainties in the two quadratures satisfying the uncertainty

relation [5, 6]. Squeezed light has potential applications in low-noise optical commu-

nications and weak signal detection [6, 7, 8, 9].

There has been a considerable interest in the analysis of the squeezing and statistical

properties of the light generated by three-level lasers [9, 10, 11, 12, 13, 14, 15, 16, 17].

A three-level laser may be defined as a quantum optical system in which three-level

atoms in a cascade configuration, initially prepared in a coherent superposition of the

top and bottom levels, are injected into a cavity coupled to a vacuum reservoir via a

single-port mirror. A three-level laser may have additional or modified features. One

interesting additional feature of a three-level laser involves the coupling of the top and

bottom levels of the atoms injected into the cavity by a strong coherent light. When

a three-level atom in a cascade configuration makes a transition from the top to the

bottom level via the intermediate level, two photons are generated. If the two photons

have the same frequency, then the three-level atom is called a degenerate three-level

atom otherwise it is called nondegenerate.

1



2

The squeezing and statistical properties of the light produced by three-level lasers

when the atoms are initially prepared in a coherent superposition of the top and bottom

levels or when these levels are coupled by a strong coherent light have been studied by

several authors [18, 19, 20, 21, 22]. These authors have found that these quantum opti-

cal systems can generate squeezed light under certain conditions. The squeezing prop-

erties of the cavity modes produced by a nondegenerate three-level laser have been

studied [23]. It has been found that the two-mode cavity light exhibits squeezing if the

atoms are initially prepared with more atoms in the bottom than in the upper level, and

the degree of squeezing increases with the linear gain coefficient [22, 23]. A three-level

laser, in which the top and bottom levels of three-level atoms are injected into a cavity

and coupled by a strong coherent light can also generate light in a squeezed state [23].

Moreover, Fesseha [6] has studied the squeezing and the statistical properties of the

light produced by a three-level laser with the atoms in a closed cavity and pumped by

electron bombardment. He has shown that the maximum quadrature squeezing of the

light generated by the laser, operating below the threshold, is found to be 50% below

the vacuum-state level. In addition, he has also found that the quadrature squeezing of

the output light is equal to that of the cavity light. On the other hand, this study shows

that the local quadrature squeezing is greater than the global quadrature squeezing. He

has also found that a large part of the total mean photon number is confined in a rela-

tively small frequency interval. In addition, Fesseha [5] has studied the squeezing and

the statistical properties of the light produced by a degenerate three-level laser with the

atoms in a closed cavity and pumped by coherent light. He has shown that the maxi-

mum quadrature squeezing is 43% below the vacuum-state level, which is slightly less

than the result found with electron bombardment.

Furthermore, detailed analysis of the time evolution of the two-mode squeezing,

entanglement, and intensity of the cavity radiation of a two-photon correlated emis-
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sion laser initially seeded with a thermal light is studied by Tesfa [22]. In this work, he

found that the two-mode squeezing, entanglement, and intensity of the radiation are

independent of the strength of the initial thermal light. This is due to the effect of the

thermal light being sucked from the cavity to an extent that it does not affect the non-

classical features of the radiation.

Entanglement is one of the fundamental features of quantum information process-

ing and communication protocols. The generation and manipulation of the entangle-

ment have attracted a great deal of interest with wide applications in quantum telepor-

tation, quantum dense coding, quantum computation, quantum error correction, and

quantum cryptography [24, 25, 26, 26]. Recently, much attention is given to the gener-

ation of a continuous-variable entanglement to manipulate the discrete counterparts

and quantum bits and to perform the quantum information processing. In general,

the degree of entanglement decreases, when it interacts with the environment. But the

quantum information processing efficiency highly depends on the degree of entangle-

ment. Therefore, it is necessary to generate strongly entangled states which can survive

under the external noise.

This thesis aims to analyze the quantum and statistical properties of the light gener-

ated by a coherently driven nondegenerate three-level laser with an open cavity cou-

pled to a two-mode vacuum reservoir via a single-port mirror. These properties of

light are local and global Photon Statistics of the System, entanglement, and quadra-

ture squeezing for both single-mode and two-mode cavity light produced by the coher-

ently driven non-degenerate three-level laser. To get the results of these properties of

the light, we carry out our calculation by putting the noise operators associated with

the vacuum reservoir in normal order. We thus first determine the master equation for

a coherently driven nondegenerate three-level laser in an open cavity coupled to a two-

mode vacuum reservoir and the quantum Langevin equations for the cavity mode op-

erators. In addition, employing the master equation and the large-time approximation
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scheme, we obtain equations of evolution of the expectation values of atomic operators.

Moreover, we determine the solutions of the equations of evolution of the expectation

values of the atomic operators and the quantum Langevin equations for cavity mode

operators. Then applying the resulting solutions, we calculate the quadrature squeez-

ing and the entanglement of the two-mode cavity light.

The findings of this study can contribute to developing knowledge in the field of

quantum optics and information. In addition to this, the study can also provide clear

mathematical procedures with their physical explanations for those who wish to carry

out related investigations. Moreover, this study can demonstrate the various entangle-

ment quantification criteria which can apply to another optical device.



2

Model and Hamiltonian of the System

In this chapter we consider a nondegenerate three-level laser driven by coherent light

and with the cavity modes coupled to a two-mode vacuum reservoir via a single-port

mirror as shown in Fig. (2.1). We first obtain the master equation for a coherently driven

nondegenerate three-level atom with the cavity modes and the quantum Langevin

equations for the cavity mode operators. In addition, employing the master equation

κ

ω
a

ω
b

|b>k

|c>k

|a>k

a

b

ε

N-atoms

Figure 2.1: Schematic representation of a coherently driven nondegenerate three-level

laser coupled to a two-mode vacuum reservoir.
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2.1 Hamiltonian Formulations 6

and the large-time approximation scheme, we drive the equations of evolution of the

expectation values of the atomic operators. Finally, we determine the steady-state so-

lutions of the resulting equations of evolution. Here we carry out our calculation by

putting the noise operators associated with the two-mode vacuum reservoir in normal

order.

2.1 Hamiltonian Formulations

We consider here the case in which N nondegenerate three-level atoms in cascade con-

figuration are available in an open cavity. We denote the top, intermediate, and bottom

levels of the three-level atom by |a〉k, |b〉k, and |c〉k, respectively. As shown in Fig. (2.1)

for nondegenerate cascade configuration, when the atom makes a transition from level

|a〉k to |b〉k and from levels |b〉k to |c〉k two photons with different frequencies are emit-

ted. The emission of light when the atoms makes the transition from the top level to the

intermediate level is light mode a and the emission of light when the atoms makes the

transition from the intermediate level to the bottom level is light mode b. We assume

that the cavity mode a is at resonance with transition |a〉k → |b〉k and the cavity mode b is

at resonance with the transition |b〉k → |c〉k, with top and bottom levels of the three-level

atom coupled by coherent light. The coupling of top and bottom levels of a nondegen-

erate three-level atom by coherent light can be described by the Hamiltonian[6]

Ĥ
′
=

iΩ

2

[
σ̂†kc − σ̂k

c

]
, (2.1)

where

σ̂k
c = |c〉k k〈a|, (2.2)

is lowering atomic operator and

Ω = 2ελ. (2.3)

Here ε, considered to be real and constant, is the amplitude of the driving coherent

light and λ is the coupling constant between the driving coherent light and the three-
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level atom. In addition, the interaction of a three-level atom with the cavity modes can

be described by the Hamiltonian [6]

Ĥ
′′

= ig
[
σ̂†ka â− â†σ̂k

a + σ̂†kb b̂− b̂†σ̂k
b

]
, (2.4)

where

σ̂k
a = |b〉k k〈a|, (2.5)

σ̂k
b = |c〉k k〈b|, (2.6)

g is the coupling constant between the atom and cavity mode a or b, and â and b̂ are

the annihilation operators for light modes a and b. Thus upon combining Eqs. (2.1)

and (2.4), the interaction of a three-level atom with the cavity modes and the driving

coherent light can be described by the Hamiltonian

ĤS = ig
[
σ̂†ka â− â†σ̂k

a + σ̂†kb b̂− b̂†σ̂k
b

]
+

iΩ

2

[
σ̂†kc − σ̂k

c

]
. (2.7)

2.1.1 Dynamics of the System

The quantum analysis of the interaction of a system such as a cavity mode or a three-

level atom with the external environment is a relatively complex problem. The exter-

nal environment, usually referred to as a reservoir, can be thermal light, ordinary or

squeezed vacuum. We are interested in the dynamics of a system and this is describ-

able by the master equation, the Fokker-Planck equation, or quantum Langevin equa-

tions. Here, we obtain the above set of dynamical equations for a cavity mode coupled

to a vacuum reservoir via a single-port mirror. We then focus our study when the cavity

mode is couple to a vacuum reservoir. A system coupled with a vacuum reservoir can

be described by the Hamiltonian

Ĥ = ĤS + ĤSR, (2.8)
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where ĤS is the Hamiltonian of the system and ĤSR describes the interaction between

the system and reservoir. Suppose χ̂(t) is the density operator for system and reservoir.

Then the equation of evolution of this density operator is given by

d

dt
χ̂(t) = −i

[
ĤS(t) + ĤSR, χ̂(t)

]
. (2.9)

We are interested in the quantum dynamics of the system alone. Hence taking into ac-

count (2.9), we see that the density operator for the system, also known as the reduced

density operator,

ρ̂(t) = TrRχ̂(t) (2.10)

evolves in time according to

d

dt
ρ̂(t) = −i

[
ĤS(t), ρ̂(t)

]
− iT r

[
ĤSR(t), χ̂(t)

]
, (2.11)

in which TrR indicates the trace over the reservoirs variables only. On the other hand, a

formal solution of Eq. (2.9) can be written as

χ̂(t) = χ̂(0)− i

∫ t

0

[
ĤS(t′) + ĤSR(t′), χ̂(t′)

]
dt′. (2.12)

In order to obtain mathematically manageable that χ̂(t′) by some approximately valid

expression, first we would arrange the reservoir in such a way that its density operator

R̂ remains constant in time. This can be achieved by letting a beam of light in a vacuum

state of constant intensity fall continuously on the system. Moreover, we decouple the

system and reservoirs density operators, so that

χ̂(t′) = ρ̂(t′)R̂. (2.13)

Therefore, with the aid of this, one can rewrite Eq. (2.12) as

χ̂(t′) = ρ̂(t′)R̂−
∫ t

0

[
ĤS(t′) + ĤSR(t′), ρ̂(t′)R̂

]
dt′. (2.14)



2.1.1 Dynamics of the System 9

Now on substituting (2.14) in to (2.11) there follows

d

dt
ρ̂(t) = −i

[
ĤS(t), ρ̂(t)

]
− i

[
〈ĤSR(t)〉R, ρ̂(0)

]
−

∫ t

0

[
R̂ĤSR(t),

[
ĤSR(t′), ρ̂(t′)

]]
dt′

−
∫ t

0

TrR

[
ĤSR(t′),

[
ĤSR(t′), ρ̂(t′)R̂

]]
dt′, (2.15)

where the subscript R indicates that the expectation value is to be calculated using the

reservoirs density operator R̂. Furthermore, the master equation for a system coupled

to a reservoir takes the form

dρ̂(t)

dt
= −iT rA[ĤS, ρ̂AR(t, t′)]− h〈Ĥ2

SRR̂〉Rρ̂(t)

+2hTrR(ĤSRρ̂(t)R̂ĤSR)− hρ̂(t)〈Ĥ2
SRR̂〉R, (2.16)

A light mode confined in a cavity, usually formed by two mirrors, is called a cavity

mode. A commonly used cavity has a single-port mirror[3]. One side of each cavity is

a mirror through which light can enter or leave the cavity. We now proceed to obtain

the equation of evolution of the reduced density operator, in short the master equa-

tion, for the atoms coupled to a two-mode vacuum reservoir via a single port-mirror.

We consider the reservoirs to be composed of large number of submodes. Thus, the

interaction Hamilitonian for N nondegenerate three-level atoms coupled to vacuum

reservoir is written as

ĤSR = iλ(σ̂†ka âin − â†inσ̂
k
a + σ̂†kb b̂in − b̂†inσ̂

k
b ), (2.17)

where λ is the coupling constant, âin and b̂in are the annihilation operators of the two-

mode vacuum reservoir. By employing Eq. (2.17), we then see that

hTrR(Ĥ2
SRR̂) = hTrR〈(iλ(σ̂†ka âin − â†inσ̂

k
a + σ̂†kb b̂in − b̂†inσ̂

k
b )2〉. (2.18)
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This can be rewritten as

hTrR(Ĥ2
SRR̂) = −hλ2TrR

[
(σ̂†ka âinσ̂

†k
a âin)R − (σ̂†ka âinâ

†
inσ̂

k
a)R + (σ̂†ka âinσ̂

†k
b b̂in)R

−(σ̂†ka âinb̂
†
inσ̂

k
b )R − (â†inσ̂

k
a â

†kâin)R + (â†inσ̂
k
a â

†
inσ̂

k
a)R − (â†inσ̂

k
a σ̂

†k
b b̂in)R

+(â†inσ̂
k
a b̂
†
inσ̂

k
b )R + (σ̂†kb b̂inσ̂

†k
a âin)R − (σ̂†kb b̂inâ

†
inσ̂

k
a)R + (σ̂†kb b̂inσ̂

†k
b b̂in)R

−(σ̂†kb b̂inb̂
†
inσ̂

k
b )R − (b̂†inσ̂

k
b σ̂

†k
a âin)R + (b̂†inσ̂

k
b â

†
inσ̂

k
a)R − (b̂†inσ̂

k
b σ̂

†k
b b̂in)R

+(b̂†inσ̂
k
b b̂
†
inσ̂

k
b )R

]
. (2.19)

The atomic and reservoir operators are commute to each other. Then we observe that

hTrR(Ĥ2
SRR̂) = −hλ2

[
σ̂†k2

a 〈â2
in〉R − σ̂†ka σ̂k

a〈âinâ
†
in〉R + σ̂†ka σ̂†kb 〈âinb̂in〉R − σ̂†ka σ̂k

b 〈âinb̂
†
in〉R

−σ̂k
a σ̂

†k
a 〈â

†
inâin〉R + σ̂†k2

a 〈â†2in〉R − σ̂k
a σ̂

†k
b 〈â

†
inb̂in〉R + σ̂k

a σ̂
k
a〈â

†
inb̂

†
in〉R

+σ̂†kb σ̂†ka 〈b̂inâin〉R − σ̂†kb σ̂k
a〈b̂inâ

†
in〉R + σ̂†k2

b 〈b̂2
in〉R − σ̂†kb σ̂k

b 〈b̂inb̂
†
in〉R

−σ̂k
b σ̂

†k
a 〈b̂

†
inâin〉R + σ̂k

b σ̂
k
a〈b̂

†
inâ

†
in〉R − σ̂k

b σ̂
†k
b 〈b̂

†
inb̂in〉R + σ̂†k2

b 〈b̂†2in〉R
]
. (2.20)

Now using the density operator of the vacuum reservoir

R̂ = |0, 0〉〈0, 0|, (2.21)

one can easily check that

〈â2
in〉R = TrR(|0, 0〉〈0, 0|â2

in). (2.22)

It then follows that

〈â2
in〉R = 〈n|â2

in|n− 2〉 = 0. (2.23)

Following the same procedure, we obtain

〈â2
in〉 = 〈b̂2

in〉 = 〈â†2in〉 = 〈b̂†2in〉 = 0, (2.24)

〈â†inb̂in〉R = 〈âinb̂
†
in〉R = 〈b̂†inâin〉R = 〈b̂inâ

†
in〉R = 0, (2.25)

〈âinb̂in〉R = 〈b̂inâin〉R = 〈b̂†inâ
†
in〉R = 〈â†inb̂

†
in〉R = 0. (2.26)
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In addition, applying the commutation relation [âin, â
†
in] = 1, we then note that

〈âinâ
†
in〉 = 1, (2.27)

〈â†inâin〉 = 0, (2.28)

Hence on account of Eqs. (2.24), (2.25), (2.26), (2.27), and (2.28) into Eq. (2.20), there

follows

hTrR(Ĥ2
SRR̂)ρ̂(t) = hλ2[σ̂†ka σ̂k

a ρ̂ + σ̂†kb σ̂k
b ρ̂]. (2.29)

In the same manner, one can readily verify that

hρ̂(t)TrR(Ĥ2
SRR̂) = hλ2[ρ̂σ̂†ka σ̂k

a + ρ̂σ̂†kb σ̂k
b ]. (2.30)

In addition, one can readily find

2hTrR[ĤSRρ̂(t)R̂ĤSR] = −2hλ2
[
â†ρ̂â†〈â2

in〉R − σ̂†ka ρ̂σ̂k
a〈â

†
inâin〉R + σ̂†ka ρ̂σ̂†kb 〈b̂inâin〉R

−σ̂†ka ρ̂σ̂k
b 〈b̂

†
inâin〉R − σ̂k

a ρ̂σ̂†ka 〈âinâ
†
in〉R + σ̂k

a ρ̂σ̂k
a〈â

†2
in〉R

−σ̂k
a ρ̂σ̂†kb 〈b̂inâ

†
in〉R + σ̂k

a ρ̂σ̂k
b 〈b̂

†
inâ

†
in〉R + σ̂†kb ρ̂σ̂†ka 〈âinb̂in〉R

−σ̂†kb ρ̂σ̂k
a〈â

†
inb̂in〉R + σ̂†kb ρ̂σ̂†kb 〈b̂

2
in〉R − σ̂†kb ρ̂σ̂k

b 〈b̂
†
inb̂in〉R

−σ̂k
b ρ̂σ̂†ka 〈âinb̂

†
in〉R + σ̂k

b ρ̂σ̂k
a〈â

†
inb̂

†
in〉R − σ̂k

b ρ̂σ̂†kb 〈b̂inb̂
†
in〉R

+σ̂†kb ρ̂σ̂k
b 〈b̂

†2
in〉R

]
, (2.31)

so that applying Eqs. (2.24), (2.25), (2.26), (2.27), and (2.28) in Eq. (2.31) leads to

2hTrR[ĤSRρ̂(t)R̂ĤSR] = 2λ2h[σ̂k
a ρ̂σ̂†ka + σ̂k

b ρ̂σ̂†kb ]. (2.32)

Taking into account Eq. (2.29), (2.30), and (2.32), the expression in Eq. (2.16) takes the

form

d

dt
ρ̂(t) = −i

[
ĤS, ρ̂(t)

]
+

γ

2

[
2σ̂k

a ρ̂σ̂†ka − σ̂†ka σ̂k
a ρ̂− ρ̂σ̂†ka σ̂k

a

]
+

γ

2

[
2σ̂k

b ρ̂σ̂†kb − σ̂†kb σ̂k
b ρ̂− ρ̂σ̂†kb σ̂k

b

]
, (2.33)
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where γa = γb = γ = 2hλ2, considered to be the same for levels |a〉 and |b〉, is the spon-

taneous emission decay constant. In addition, a nondegenerate three-level atom in an

open cavity is coupled to a two-mode vacuum reservoir. Therefore, the master equation

for a coherently driven nondegenerate three-level atom in an open cavity and coupled

to a two-mode vacuum reservoir, with the aid of (2.7), is found to be

d

dt
ρ̂(t) = g

[
σ̂†ka âρ̂− â†σ̂k

a ρ̂ + σ̂†kb b̂ρ̂− b̂†σ̂k
b ρ̂− ρ̂σ̂†ka â + ρ̂â†σ̂k

a − ρ̂σ̂†kb b̂ + ρ̂b̂†σ̂k
b

]
+

Ω

2

[
σ̂†kc ρ̂− σ̂k

c ρ̂− ρ̂σ̂†kc + ρ̂σ̂k
c

]
+

γ

2

[
2σ̂k

a ρ̂σ̂†ka − σ̂†ka σ̂k
a ρ̂− ρ̂σ̂†ka σ̂k

a

]
+

γ

2

[
2σ̂k

b ρ̂σ̂†kb − σ̂†kb σ̂k
b ρ̂− ρ̂σ̂†kb σ̂k

b

]
. (2.34)

This is the master equation for a coherently driven nondegenerate three-level atom in

an open cavity and coupled to a two-mode vacuum reservoir.

2.2 Quantum Langevin Equations of the System

We recall that the laser cavity is coupled to a two-mode vacuum reservoir via a single-

port mirror. In addition, we carry out our calculation by putting the noise operators

associated with the vacuum reservoir in normal order. Thus the noise operators will not

have any effect on the dynamics of the cavity mode operators [3]. We can therefore drop

the noise operators and write the quantum Langevin equations for the cavity operators

â and b̂ as

dâ

dt
= −κ

2
â− i[â, ĤS], (2.35)

db̂

dt
= −κ

2
b̂− i[b̂, ĤS], (2.36)

where κ is the cavity damping constant. Then in view of Eq. (2.7), the quantum

Langevin equations for cavity mode operators â and b̂ turns out to be

dâ

dt
= −κ

2
â− gσ̂k

a , (2.37)

db̂

dt
= −κ

2
b̂− gσ̂k

b . (2.38)
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2.3 Equations of evolution of the atomic Operators

Here we seek to derive the equations of evolution of the expectation values of the atomic

Operators by applying the master equation and the large-time approximation scheme.

Moreover, we find the steady-state solutions of the equations of evolution of the atomic

Operators. To this end, employing the relation[3]

d

dt
〈Â〉 = Tr

(
dρ̂

dt
Â

)
(2.39)

along with the master equation (2.34), one can readily establish that

d

dt
〈σ̂k

a〉 = g[〈η̂k
b â〉 − 〈η̂k

a â〉+ 〈b̂†σ̂k
c 〉] +

Ω

2
〈σ̂†kb 〉 − γ〈σ̂k

a〉, (2.40)

d

dt
〈σ̂k

b 〉 = g[〈η̂k
c b̂〉 − 〈â†σ̂k

c 〉 − 〈η̂k
b b̂〉]−

Ω

2
〈σ̂†ka 〉 − γ〈σ̂k

b 〉, (2.41)

d

dt
〈σ̂k

c 〉 = g[〈σ̂k
b â〉 − 〈σ̂k

a b̂〉] +
Ω

2

[
〈η̂k

c 〉 − 〈η̂k
a〉

]
− γ〈σ̂k

c 〉, (2.42)

d

dt
〈η̂k

a〉 = g[〈σ̂†ka â〉+ 〈â†σ̂k
a〉] +

Ω

2

[
〈σ̂k

c 〉+ 〈σ̂†kc 〉
]
− γ

2
〈η̂k

a〉, (2.43)

d

dt
〈η̂k

b 〉 = g[〈σ̂†b b̂〉+ 〈b̂†σ̂k
b 〉 − 〈σ̂†ka â〉 − 〈â†σ̂k

a〉]− γ[〈η̂k
a〉 − 〈η̂k

b 〉], (2.44)

where

η̂k
a = |a〉k k〈a|, (2.45)

η̂k
b = |b〉k k〈b|, (2.46)

η̂k
c = |c〉k k〈c|. (2.47)

We see that Eqs. (2.40) - (2.44) are nonlinear differential equations and hence it

is not possible to find exact time-dependent solutions of these equations. We intend

to overcome this problem by applying the large-time approximation [7,8]. Therefore,

employing this approximation scheme, we get from Eqs. (2.37) and (2.38) the approxi-

mately valid relations

â = −2g

κ
σ̂k

a , (2.48)

b̂ = −2g

κ
σ̂k

b . (2.49)
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Evidently, these turn out to be exact relations at steady-state. Now introducing Eqs.

(2.48) and (2.49) into Eqs. (2.40)-(2.44), the equations of evolution of the atomic opera-

tors take the form

d

dt
〈σ̂k

a〉 = −(γ + γc)〈σ̂k
a〉+

Ω

2
〈σ̂†kb 〉, (2.50)

d

dt
〈σ̂k

b 〉 = −1

2
(γ + γc)〈σ̂k

b 〉 −
Ω

2
〈σ̂†ka 〉, (2.51)

d

dt
〈σ̂k

c 〉 = −1

2
(γ + γc)〈σ̂k

c 〉+
Ω

2

[
〈η̂k

c 〉 − 〈η̂k
a〉

]
, (2.52)

d

dt
〈η̂k

a〉 = −(γ + γc)〈η̂k
a〉+

Ω

2

[
〈σ̂k

c 〉+ 〈σ̂†kc 〉
]
, (2.53)

d

dt
〈η̂k

b 〉 = (γ + γc)[〈η̂k
b 〉 − 〈η̂k

a〉], (2.54)

where

γc =
4g2

κ
(2.55)

is the stimulated emission decay constant. We next , introducing Eqs.(2.48) and (2.49)

into Eqs. (2.50) - (2.54) and summing over the N three-level atoms, so that

d

dt
〈m̂1〉 = −(γ + γc)〈m̂1〉+

Ω

2
〈m̂†

2〉, (2.56)

d

dt
〈m̂2〉 = −1

2
(γ + γc)〈m̂2〉 −

Ω

2
〈m̂†

1〉, (2.57)

d

dt
〈m̂3〉 = −1

2
(γ + γc)〈m̂3〉+

Ω

2

[
〈N̂c〉 − 〈N̂a〉

]
, (2.58)

d

dt
〈N̂a〉 = −(γ + γc)〈N̂a〉+

Ω

2

[
〈m̂3〉+ 〈m̂†

3〉
]
, (2.59)

d

dt
〈N̂b〉 = (γ + γc)[〈N̂b〉 − 〈N̂a〉], (2.60)
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in which

m̂1 =
N∑

k=1

σ̂k
a , (2.61)

m̂2 =
N∑

k=1

σ̂k
b , (2.62)

m̂3 =
N∑

k=1

σ̂k
c , (2.63)

N̂a =
N∑

k=1

η̂k
a , (2.64)

N̂b =
N∑

k=1

η̂k
b , (2.65)

N̂c =
N∑

k=1

η̂k
c , (2.66)

with the operators N̂a, N̂b, and N̂c representing the number of atoms in the top, in-

termediate, and bottom levels, respectively. In addition, employing the completeness

relation

η̂k
a + η̂k

b + η̂k
c = Î , (2.67)

where η̂k
a , η̂k

b and η̂k
c are the probabilities of the atoms on the top, middle, and bottom

levels, respectively.

we easily arrive at

〈N̂a〉+ 〈N̂b〉+ 〈N̂c〉 = N. (2.68)

Furthermore, using the definition given by Eq. (2.61) and setting for any k

σ̂k
a = |b〉〈a|, (2.69)

we have

m̂1 = N |b〉〈a|. (2.70)
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Following the same procedure, one can also easily establish that

m̂2 = N |c〉〈b|, (2.71)

m̂3 = N |c〉〈a|, (2.72)

N̂a = N |a〉〈a|, (2.73)

N̂b = N |b〉〈b|, (2.74)

N̂c = N |c〉〈c|. (2.75)

Using the definition [6, 28]

m̂ = m̂1 + m̂2 (2.76)

and taking into account Eqs. (2.70)-(2.75), it can be readily established that [8]

m̂†m̂ = N(N̂a + N̂b), (2.77)

m̂m̂† = N(N̂b + N̂c), (2.78)

m̂2 = Nm̂3. (2.79)

In the presence of N three-level atoms, we rewrite Eqs. (2.37) and (2.38) as [6]

dâ

dt
= −κ

2
â + θm̂1, (2.80)

db̂

dt
= −κ

2
b̂ + βm̂2, (2.81)

in which λ and β are constants whose values remain to be fixed. We note that the steady-

state solutions of Eqs. (2.37) and (2.38) are

â = −2g

κ
σ̂k

a , (2.82)

b̂ = −2g

κ
σ̂k

b . (2.83)

Now employing Eqs. (2.82) and (2.83), the commutation relations for the cavity mode

operators are found to be

[â, â†]k =
γc

κ

[
η̂k

b − η̂k
a

]
, (2.84)

[b̂, b̂†]k =
γc

κ

[
η̂k

c − η̂k
b

]
, (2.85)
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and on summing over all atoms, we have

[â, â†] =
γc

κ

[
N̂b − N̂a

]
, (2.86)

[b̂, b̂†] =
γc

κ

[
N̂c − N̂b

]
, (2.87)

where

[â, â†] =
N∑

k=1

[â, â†]k, (2.88)

[b̂, b̂†] =
N∑

k=1

[b̂, b̂†]k. (2.89)

We note that Eqs. (2.88) and (2.89) stand for the commutators â and â†, and for b̂ and

b̂† when the light modes a and b are interacting with all the N three-level atoms. On

the other hand, using the steady-state solutions of Eqs. (2.80) and (2.81), one can easily

verify that

[â, â†] = N

(
2θ

κ

)2(
N̂b − N̂a

)
, (2.90)

[b̂, b̂†] = N

(
2β

κ

)2(
N̂c − N̂b

)
. (2.91)

Thus on account of Eqs.(2.55), (2.86) and (2.90), we see that

θ = ± g√
N

. (2.92)

Similarly, inspection of Eqs. 2.55), (2.87) and (2.91) shows that

β = ± g√
N

. (2.93)

Hence in view of these two results, the equations of evolution of the light modes a and

b operators given by Eqs. (2.80) and (2.81) can be written as [6, 28]

dâ

dt
= −κ

2
â +

g√
N

m̂1, (2.94)

db̂

dt
= −κ

2
b̂ +

g√
N

m̂2. (2.95)
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Now adding Eqs. (2.86) and (2.87) as well as Eqs. (2.94) and (2.95), we get

[ĉ, ĉ†] =
γc

κ

[
N̂c − N̂a

]
(2.96)

and

dĉ

dt
= −κ

2
ĉ +

g√
N

m̂, (2.97)

in which

ĉ = â + b̂. (2.98)

We next proceed to obtain the expectation value of the cavity mode operators. One

can rewrite Eq. (2.56) and the ad-joint of (2.57) as

d

dt
〈m̂1〉 = −(γ + γc)〈m̂1〉+

Ω

2
〈m̂†

2〉, (2.99)

d

dt
〈m̂†

2〉 = −Ω

2
〈m̂1〉 −

1

2
(γ + γc)〈m̂†

2〉. (2.100)

To solve the coupled differential equations (2.99 and (2.100), we write the single-matrix

equation then analyze the eigenvalues and eigenvectors of the matrix. After that, we

can get the solution of the differential equation.

 〈m̂1(t)〉

〈m̂†
2(t)〉

 =

 〈m̂1(0)〉e−βt 0

0 〈m̂†
2(0)〉e−βt

 . (2.101)

It then follows that

〈m̂1(t)〉 = 〈m̂1(0)〉e−βt (2.102)

and

〈m̂†
2(t)〉 = 〈m̂†

2(0)〉e−βt. (2.103)

Furthermore, the adjoint of Eq. (2.103) can be written as

〈m̂2(t)〉 = 〈m̂2(0)〉e−βt. (2.104)
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With the atoms considered to be initially in the bottom level, Eqs. (2.102) and (2.104)

reduce to

〈m̂1(t)〉 = 0, (2.105)

〈m̂2(t)〉 = 0. (2.106)

The expectation value of the solution of Eq. (2.94) is expressible as

〈â(t)〉 = 〈â(0)〉e−κt/2 +
g√
N

∫ t

0

eκt′/2〈m̂1(t
′)〉dt′. (2.107)

With the help of Eq. (2.105) and the assumption that the cavity light is initially in a

vacuum state, Eq. (2.107) turns out to be

〈â(t)〉 = 0. (2.108)

In view of the linear equation described by Eq. (2.94) and the result given by Eq. (2.108),

we claim that â(t) is a Gaussian variable with zero mean. Following a similar procedure,

one can readily obtain the expectation value of the solution of Eq. (2.95) to be

〈b̂(t)〉 = 0. (2.109)

Then on account of the linear equation described by Eq. (2.95) and the result given by

Eq. (2.109), we realize b̂(t) to be a Gaussian variable with zero mean. Now with the aid

of Eqs. (2.108) and (2.109) together with (2.98), we have

〈ĉ(t)〉 = 0. (2.110)

In view of Eqs. (2.110) and (2.97), we see that ĉ(t) is a Gaussian variable with zero mean.

Finally, we seek to determine the steady-state solutions of the expectation values of

the atomic operators. We note that the steady-state solutions of Eqs. (2.58), (2.59), and

(2.60) are given by

〈m̂3〉ss =
Ω

(γ + γc)

[
〈N̂c〉ss − 〈N̂a〉ss

]
, (2.111)

〈N̂a〉ss =
Ω

2(γ + γc)

[
〈m̂3〉ss + 〈m̂†

3〉ss
]
, (2.112)

〈N̂b〉ss = 〈N̂a〉ss, (2.113)
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where ss stands for steady-state. Furthermore, with the help of Eq. (2.68) together with

(2.113), we see that

〈N̂c〉ss = N − 2〈N̂a〉ss. (2.114)

With the aid of Eq. (2.114), Eq. (2.111) can be written as

〈m̂3〉ss =
Ω

(γ + γc)

[
N − 3〈N̂a〉ss

]
(2.115)

and in view of Eq. (2.115), we observe that

〈m̂3〉ss = 〈m̂†
3〉ss. (2.116)

Now taking into consideration this result, Eq. (2.116) can be put in the form

〈N̂a〉ss =
Ω

(γ + γc)
〈m̂3〉ss. (2.117)

Using Eqs. (2.115) and (2.117), one readily gets

〈N̂a〉ss =

[
Ω2

(γc + γ)2 + 3Ω2

]
N. (2.118)

Substitution of Eq. (2.118) into Eqs. (2.113), (2.114), and (2.115) results in

〈N̂b〉ss =

[
Ω2

(γc + γ)2 + 3Ω2

]
N, (2.119)

〈N̂c〉ss =

[
(γc + γ)2 + Ω2

(γc + γ)2 + 3Ω2

]
N, (2.120)

〈m̂3〉ss =

[
Ω(γc + γ)

(γc + γ)2 + 3Ω2

]
N. (2.121)

These equations represent the steady-state solutions of the equations of evolution of

the atomic operators for a coherently driven nondegenerate three-level atom in an

open cavity and coupled to a two-mode vacuum reservoir. Furthermore, upon setting

γ = 0, for the case in which spontaneous emission is absent, the steady-state solutions
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described by Eqs. (2.118)-(2.121) take the form

〈N̂a〉ss =

[
Ω2

γ2
c + 3Ω2

]
N, (2.122)

〈N̂b〉ss =

[
Ω2

γ2
c + 3Ω2

]
N, (2.123)

〈N̂c〉ss =

[
γ2

c + Ω2

γ2
c + 3Ω2

]
N, (2.124)

〈m̂3〉ss =

[
γcΩ

γ2
c + 3Ω2

]
N. (2.125)

These represent the steady-state solutions of the equations of evolution of the expec-

tation values of the atomic operators for a closed cavity. The results described by Eqs.

(2.122)-(2.125) are exactly the same as those obtained by Fesseha and Yeshiwas[5, 29].

In addition, we note that for Ω � γc, Eqs. (2.122)-(2.125) reduce to

〈N̂a〉ss =
1

3
N, (2.126)

〈N̂b〉ss =
1

3
N, (2.127)

〈N̂c〉ss =
1

3
N, (2.128)

〈m̂3〉ss = 0. (2.129)

Finally, in the absence of the deriving coherent light, when Ω = 0, Eqs. (2.122)-(2.125)

turns out to be

〈N̂a〉 = 0, (2.130)

〈N̂b〉 = 0, (2.131)

〈N̂c〉 = N, (2.132)

〈m̂3〉 = 0. (2.133)

These results shows that initially, when the deriving coherent light (Ω = 0), all the atoms

to be in bottom level.
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Quantum Features of Light

Photon Statistics of the System

In this chapter we seek to study the statistical properties of the light produced by the

coherently driven N non degenerate three-level laser with an open cavity and coupled

to a two-mode vacuum reservoir via a single-port mirror. Applying the solutions of

the equations of evolution of the expectation values of the atomic operators and the

quantum Langavin equations for the cavity mode operators, we obtain the global and

local photon statistics for light modes a and b. In addition, we determine the global

photon statistics of the two-mode cavity light.

3.1 Generation of Single-mode photon statistics

In this section we obtain the global and local mean as well as variance of the photon

numbers for light modes a and b.

3.1.1 Global mean photon number light mode a and b

Here we seek to calculate the global mean photon numbers of light mode a, produced

by the system under consideration. The mean photon number of light mode a, repre-

sented by the operators â and â†, is defined by

n̄a = 〈â†â〉. (3.1)

22
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We note that the steady-state solution of Eq. (2.94) is

â =
2g

κ
√

N
m̂1, (3.2)

so that introducing Eq. (3.2) and its adjoint into (3.1), we see that

n̄a =
γc

κN
〈m̂†

1m̂1〉. (3.3)

With the help of Eq. (2.70), one can write

m̂†
1m̂1 = NN̂a. (3.4)

On account of Eq. (3.4), Eq. (3.3) can be expressed as

n̄a =
γc

κ
〈N̂a〉. (3.5)

In view of Eq. (2.118), there follows

n̄a =
γc

κ
N

[
Ω2

(γc + γ)2 + 3Ω2

]
. (3.6)

This is the steady-state mean photon number of light mode a produced by the coher-

ently driven non-degenerate three-level laser with an open cavity and coupled to a two-

mode vacuum reservoir.

The plots on Fig. (3.1) describes the global mean photon number of light mode a

versus Ω for the values of γc = 0.4, κ = 0.8, N = 50, γ = 0.2, and different values of γ. In

addition, when we observe the plots on the same figure, as the spontaneous emission

decay constant, γ, increases the mean photon number decreases. On the other hand,

when the parameter of pumping, Ω, increases the mean photon number also increases.

When we consider the case in which spontaneous emission is absent (γ = 0), the

mean photon number of light mode a for this case has the form

n̄a =
γc

κ
N

[
Ω2

γ2
c + 3Ω2

]
. (3.7)
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Figure 3.1: Plots of the mean photon number of light mode a [Eq. (3.6)] versus Ω.

This is the mean photon number of light mode a in the absence of spontaneous emis-

sion. In addition, we note that for Ω � γc, Eq. (3.7) reduces to

n̄a =
γc

3κ
N. (3.8)

When we observe the plots on Fig. (3.2) that the global mean photon number of light

mode a versus the spontaneous emission decay constant (γ) for the values of γc = 0.4,

κ = 0.8, N = 50, and different values of Ω. As we seen that when the spontaneous emis-

sion decay constant, γ, increases, the global mean photon number decreases. More-

over, as Ω increases the mean photon number increases. This must be due to the atomic

coherence induced by the atoms in coherent coupling of the top and bottom levels.

Here we seek to determine the mean photon number of light mode b in the entire

frequency interval produced by the system under consideration. The mean photon

number of light mode b, represented by the operators b̂ and b̂†, is defined by

n̄b = 〈b̂†b̂〉. (3.9)

We note that the steady-state solution of Eq. (2.95) is

b̂ =
2g

κ
√

N
m̂2, (3.10)
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Figure 3.2: Plots of the mean photon number of light mode a [Eq. (3.6)] versus γ.

so that introducing Eq. (3.10) and its adjoint into (3.9), we see that

n̄b =
γc

κN
〈m̂†

2m̂2〉. (3.11)

With the help of Eq. (2.71), one can write

m̂†
2m̂2 = NN̂b. (3.12)

On account of Eq. (3.11), Eq. (3.12) can be expressed as

n̄b =
γc

κ
〈N̂b〉. (3.13)

Now on substituting Eq. (2.119) into (3.13), the mean photon number of light mode b

takes, at steady-state, the form

n̄b =
γc

κ
N

[
Ω2

(γc + γ)2 + 3Ω2

]
. (3.14)

This is the steady-state mean photon number of light mode b produced by the coher-

ently driven non-degenerate three-level laser with an open cavity and coupled to a two-

mode vacuum reservoir.
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Furthermore, we consider the case in which spontaneous emission is absent (when

γ = 0). Then the mean photon number of light mode b for this case has the form

n̄b =
γc

κ
N

[
Ω2

γ2
c + 3Ω2

]
. (3.15)

This is the mean photon number of light mode b in the absence of spontaneous emis-

sion. We would like to point out that this result is exactly the same as that described by

Eq. (3.15). In addition, we note that for Ω � γc, Eq. (3.15) reduces to

n̄b =
γc

3κ
N. (3.16)

Finally, we observe that the global mean photon number of light mode a is equal to

global mean photon number of light mode b.

3.1.2 Local mean photon number of light mode a and b

Here we seek to determine the local mean photon numbers of light modes a and b,

produced by the coherently driven nondegenerate three-level laser with an open cavity

and coupled to a two-mode vacuum reservoir. We now proceed to obtain the mean

photon number of light mode a in a given frequency interval. To determine the local

mean photon number of light mode a, we need to consider the power spectrum of light

mode a. The power spectrum of light mode a with central frequency ω0 is expressible as

[6]

Pa(ω) =
1

π
Re

∫ ∞

0

dτei(ω−ω0)τ 〈â†(t)â(t + τ)〉ss. (3.17)

Upon integrating both sides of Eq. (3.17) over ω, we readily get∫ ∞

−∞
Pa(ω)dω = n̄a, (3.18)

in which n̄a is the steady-state mean photon number of light mode a. From this result,

we observe that Pa(ω)dω is the steady-state mean photon number of light mode a in the

frequency interval between ω and ω + dω [6].
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We now proceed to determine the two-time correlation function that appears in Eq.

(3.17). To this end, we realize that the solution of Eq. (2.94) can be written as

â(t + τ) = â(t)e−κτ/2 +
g√
N

e−κτ/2

∫ τ

0

eκτ ′/2m̂1(t + τ ′)dτ ′. (3.19)

Applying the large time approximation on Eq. (2.100), we have

〈m̂†
2〉 =

Ω

γ + γc

〈m̂1〉. (3.20)

Employing this result, Eq. Eq. (2.99) takes the form

d

dt
〈m̂1〉 = −1

2
η〈m̂1〉. (3.21)

On the basis of Eq. (3.21), we see that

d

dt
m̂1(t) = −1

2
ηm̂1(t) + F̂a(t), (3.22)

in which F̂a(t) is a noise operator with a vanishing mean and η is given by

η =

[
Ω2 + 2(γ + γc)

2

(γ + γc)

]
. (3.23)

The solution of Eq. (3.22) can be put in the form

m̂1(t + τ) = m̂1(t)e
−ητ/2 + e−ητ/2

∫ τ

0

eητ ′/2F̂a(t + τ ′)dτ ′, (3.24)

so that on introducing this into Eq. (3.19), there follows

â(t + τ) = â(t)e−κτ/2 +
g√
N

e−κτ/2m̂1(t)

∫ τ

0

e(κ−η)τ ′/2dτ ′

+
g√
N

e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−η)τ ′+ητ ′′]/2F̂a(t + τ ′′). (3.25)

Thus on carrying out the first integration, we arrive at

â(t + τ) = â(t)e−κτ/2 +
2gm̂1(t)√
N(κ− η)

[
e−ητ/2 − e−κτ/2

]
+

g√
N

e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−η)τ ′+ητ ′′]/2F̂a(t + τ ′′). (3.26)
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Now multiplying on the left by â†(t) and taking the expectation value of the resulting

expression, we have

〈â†(t)â(t + τ)〉 = 〈â†(t)â(t)〉e−κτ/2 +
2g〈â†(t)m̂1(t)〉√

N(κ− η)

[
e−ητ/2 − e−κτ/2

]
+

g√
N

e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−η)τ ′+ητ ′′]/2〈â†(t)F̂a(t + τ ′′)〉. (3.27)

Applying the large-time approximation scheme, one gets from Eq. (2.94)

â(t) =
2g

κ
√

N
m̂1(t), (3.28)

so that in view of this result, we get

m̂1(t) =
κ
√

N

2g
â(t). (3.29)

Thus substitution of Eq. (3.29) into Eq. (3.27) results in

〈â†(t)â(t + τ)〉 = 〈â†(t)â(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
+

g√
N

e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−η)τ ′+ητ ′′]/2〈â†(t)F̂a(t + τ ′′)〉. (3.30)

Since a noise operator at a certain time should not affect a light mode operator at an

earlier time [6], we note that

〈â†(t)F̂a(t + τ ′′)〉 = 0. (3.31)

It then follows that

〈â†(t)â(t + τ)〉 = 〈â†(t)â(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
(3.32)

and at steady-state, we have

〈â†(t)â(t + τ)〉ss = n̄a

[
κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
. (3.33)

Thus on combining Eq. (3.33) with (3.17), the power spectrum of light mode a with

central frequency ω0 is expressible as

Pa(ω) =
1

π

[
n̄a

κ− η

]
Re

[
κ

∫ ∞

0

dτe−[η/2−i(ω−ω0)]τ − η

∫ ∞

0

dτe−[κ/2−i(ω−ω0)]τ

]
, (3.34)
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so that on carrying out the integration, we readily arrive at

Pa(ω) =
1

π

[
n̄a

κ− η

]
Re

[
κ

[η/2− i(ω − ω0)]
− η

[κ/2− i(ω − ω0)]

]
. (3.35)

This can be rewritten as

Pa(ω) =
κn̄a

κ− η

[
η/2π

[η/2]2 + (ω − ω0)2

]
− ηn̄a

κ− η

[
κ/2π

[κ/2]2 + (ω − ω0)2

]
. (3.36)

We realize that the mean photon number of light mode a in the interval between ω′ =

−λ and ω′ = λ is expressible as [6]

n̄a±λ =

∫ λ

−λ

Pa(ω
′)dω′, (3.37)

in which ω′ = ω − ω0. Therefore, upon substituting Eq. (3.36) into (3.37) and carrying

out the integration by employing the relation∫ λ

−λ

dx

x2 + a2
=

2

a
tan−1

(
λ

a

)
, (3.38)

the local mean photon number of light mode a produced by the coherently driven non-

degenerate three-level laser with an open cavity and coupled to a two-mode vacuum

reservoir is found to be

n̄a±λ = n̄aza(λ), (3.39)

where za(λ) is given by

za(λ) =
2κ/π

κ− η
tan−1

(
2λ

η

)
− 2η/π

κ− η
tan−1

(
2λ

κ

)
. (3.40)

We see from Eq. (3.39) along with the plot of za(λ) that n̄a±λ increases with λ until it

reaches the maximum value of the global mean photon number. The plots on Fig. (3.3)

describes za(λ) versus λ for γc = 0.4, κ = 0.8, N = 50, Ω = 2, and for different values of

γ. From these plots, we find the values indicated below:

Furthermore, in the absence of thermal light the local mean photon number indi-

cated by Eq. (3.40) plotted on Fig. (3.3). From the plots in Fig. (3.3), we find the values

indicated below:
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Figure 3.3: Plots of za(λ)[Eq. 3.40] versus λ.

za(0.5) za(1) za(2)

γ = 0.2 0.63 0.82 0.94

γ = 0 0.61 0.80 0.92

Table 3.1: Values of za(λ) for γc = 0.4, κ = 0.8, and Ω = 2.

We see from these results, za(λ) in the absence of spontaneous emission (γ = 0) is less

than in the presence of spontaneous emission (γ = 0.2). Moreover, using the above

results of za(λ) and on account of Eq. (3.39) along with Eq. (3.6), we have

n̄a±0.5 n̄a±1 n̄a±2

γ = 0.2 5.09 6.63 7.61

γ = 0 5.01 6.58 7.57

Table 3.2: Values of n̄a±λ for N = 50, γc = 0.4, κ = 0.8, and Ω = 2.

We see from Table 3.2 These results n̄a±λ in the absence of spontaneous emission (γ = 0)

is less than in the presence of spontaneous emission (γ = 0.2).

We therefore observe that a large part of the total mean photon number is confined

in a relatively small frequency interval.
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We now proceed to obtain the mean photon number of a light mode b in a given

frequency interval produced by the system under consideration. To determine the local

mean photon number of light mode b, we need to consider the power spectrum of light

mode b. The power spectrum of light mode b with central frequency ω0 is expressible as

Pb(ω) =
1

π
Re

∫ ∞

0

dτei(ω−ω0)τ 〈b̂†(t)b̂(t + τ)〉ss. (3.41)

Upon integrating both sides of Eq. (3.41) over ω, we readily get∫ ∞

−∞
Pb(ω)dω = n̄b, (3.42)

in which n̄b is the steady-state mean photon number of light mode b. From this result,

we observe that Pb(ω)dω is the steady-state mean photon number of light mode b in the

frequency interval between ω and ω + dω. We now proceed to calculate the two-time

correlation function that appears in Eq. (3.41). To this end, we realize that the solution

of Eq. (2.95) can be written as

b̂(t + τ) = b̂(t)e−κτ/2 +
g√
N

e−κτ/2

∫ τ

0

eκτ ′/2m̂2(t + τ ′)dτ ′. (3.43)

Applying the large time approximation on Eq. (2.99), we have

〈m̂1〉 =
Ω

γ + γc

〈m̂†
2〉. (3.44)

Employing this result, Eq. Eq. (2.100) takes the form

d

dt
〈m̂†

2〉 = −1

2
µ〈m̂†

2〉. (3.45)

On the basis of Eq. (3.45), we see that

d

dt
m̂2(t) = −1

2
µm̂2(t) + F̂b(t), (3.46)

in which F̂b(t) is a noise operator with a vanishing mean and µ is given by

µ =

[
Ω2 + 2(γ + γc)

2

2(γ + γc)

]
. (3.47)
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The solution of equation (3.46) can be put in the form

m̂2(t + τ ′) = m̂2(t)e
−µτ ′/2 + e−µτ ′/2

∫ τ ′

0

e−µτ ′′/2F̂b(t + τ ′′)dτ ′′, (3.48)

so that on introducing this into Eq. (3.43), we have

b̂(t + τ) = b̂(t)e−κτ/2 +
g√
N

e−κτ/2m̂2(t)

∫ µ

0

e(κ−µ)τ ′/2dτ ′

+
g√
N

e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−µ)τ ′+µτ ′′]/2F̂b(t + τ ′′). (3.49)

Thus on carrying out the first integration, we arrive at

b̂(t + τ) = b̂(t)e−κτ/2 +
2gm̂b(t)√
N(κ− µ)

[
e−µτ/2 − e−κτ/2

]
+

g√
N

e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−µ)τ ′+µτ ′′]/2F̂b(t + τ ′′). (3.50)

Now multiplying both sides on the left by b̂†(t) and taking the expectation value of the

resulting equation, we have

〈b̂†(t)b̂(t + τ)〉 = 〈b̂†(t)b̂(t)〉e−κτ/2 +
2g〈b̂†(t)m̂2(t)〉√

N(κ− µ)

[
e−µτ/2 − e−κτ/2

]
+

g√
N

e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−µ)τ ′+µτ ′′]/2〈b̂†(t)F̂b(t + τ ′′)〉. (3.51)

Applying the large-time approximation scheme, one gets from Eq. (2.95)

b̂(t) =
2g

κ
√

N
m̂2(t). (3.52)

In view of Eq. (3.52), we see that

m̂2(t) =
κ
√

N

2g
b̂(t). (3.53)

With this substituted into Eq. (3.51), there follows

〈b̂†(t)b̂(t + τ)〉 = 〈b̂†(t)b̂(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
+

g√
N

e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−µ)τ ′+µτ ′′]/2〈b̂†(t)F̂b(t + τ ′′)〉 (3.54)
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and taking into account the fact that

〈b̂†(t)F̂b(t + τ ′′)〉 = 0, (3.55)

we arrive at

〈b̂†(t)b̂(t + τ)〉 = 〈b̂†(t)b̂(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
. (3.56)

Therefore, at steady-state, Eq. (3.56) takes the form

〈b̂†(t)b̂(t + τ)〉ss = n̄b

[
κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
. (3.57)

Thus on combining Eq. (3.57) with (3.41), the power spectrum of light mode b with

central frequency ω0 can be put in the form

Pb(ω) =
1

π

[
n̄b

κ− µ

]
Re

[
κ

∫ ∞

0

dτe−[µ/2−i(ω−ω0)]τ − µ

∫ ∞

0

dτe−[κ/2−i(ω−ω0)]τ , (3.58)

so that on carrying out the integration, we readily arrive at

Pb(ω) =
κn̄b

κ− µ

[
µ/2π

[µ/2]2 + (ω − ω0)2

]
− µn̄b

κ− µ

[
κ/2π

[κ/2]2 + (ω − ω0)2

]
. (3.59)

We realize that the mean photon number of light mode b in the interval between

ω′ = −λ and ω′ = λ is expressible as

n̄b±λ =

∫ λ

−λ

P (ω′)dω′, (3.60)

in which ω′ = ω−ω0. Therefore, upon substituting Eq. (3.59) into (3.60), and performing

the integration by using the relation given by Eq. (3.38), we readily get

n̄b±λ = n̄bzb(λ), (3.61)

where zb(λ) is given by

zb(λ) =
2κ/π

κ− µ
tan−1

(
2λ

µ

)
− 2µ/π

κ− µ
tan−1

(
2λ

κ

)
. (3.62)

We see from Eq. (3.14) along with the plot of za(λ) that n̄a±λ increases with λ until it

reaches the maximum value of the global mean photon number.
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Figure 3.4: Plots of zb(λ)[Eq. 3.62] versus λ.

We see from Eq. (3.14) along with the plot of zb(λ) that n̄b±λ increases with λ until it

reaches the maximum value of the global mean photon number.

The plots on Fig. (3.4) describes zb versus λ for γc = 0.4, κ = 0.8, N = 50, Ω = 2, and

for different values of γ. From these plots, we find the values indicated below:

zb(0.5) zb(1) zb(2)

γ = 0.2 0.67 0.87 0.97

γ = 0 0.64 0.84 0.95

Table 3.3: Values of zb(λ) for γc = 0.4, κ = 0.8, and Ω = 2.

We see from these results zb(λ) in the absence of spontaneous emission (γ = 0) is less

than in the presence of spontaneous emission (γ = 0.2). Moreover, using the above

results of zb(λ) and on account of Eq. (3.61) along with (3.14), we have

n̄b±0.5 n̄b±1 n̄b±2

γ = 0.2 5.57 7.16 7.98

γ = 0 5.26 6.91 7.81
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Table 3.4: Values of n̄b±λ for N = 50, n̄th = 0, γc = 0.4, κ = 0.8, and Ω = 2.

We see from Table 3.4 These results n̄b±λ in the absence of spontaneous emission (γ = 0)

is less than in the presence of spontaneous emission (γ = 0.2).

From the plots in Fig. (3.4), we therefore observe that a large part of the total mean

photon number is confined in a relatively small frequency interval.

3.1.3 Global photon-number variance of light mode a and b

We now proceed to calculate the photon number variance of light mode a in the entire

frequency interval. The photon number variance of light mode a is expressible as

(∆n)2
a = 〈â†ââ†â〉 − 〈â†â〉2. (3.63)

Applying the fact that â is a Gaussian variable with zero mean, we arrive at

(∆n)2
a = 〈â†â〉〈ââ†〉+ 〈â†2〉〈â2〉. (3.64)

In view of Eq. (3.2), we see that

〈â2〉 = 0, (3.65)

〈ââ†〉 =
γc

κ
〈N̂b〉. (3.66)

Thus on account of Eqs. (3.5), (3.65) and (3.66), the photon number variance (3.64)

turns out to be

(∆n)2
a =

(
γc

κ

)2

〈N̂a〉〈N̂b〉. (3.67)

With the aid of Eqs. (2.118) and (2.119), the photon number variance of light mode a

takes, at steady-state, the form

(∆n)2
a =

[
γc

κ
N

]2 [
Ω2

(γc + γ)2 + 3Ω2

]2

. (3.68)
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This is the steady-state normally-ordered variance of the photon number for light mode

a produced by the coherently driven non-degenerate three-level laser with an open cav-

ity and coupled to a two-mode vacuum reservoir. Hence, in view of Eq. (3.6), we have

(∆n)2
a = n̄2

a. (3.69)

Furthermore, we consider the case in which spontaneous emission is absent (γ = 0).

Then the photon number variance for this case has the form

(∆n)2
a =

(
γc

κ
N

)2 [
Ω2

γ2
c + 3Ω2

]2

. (3.70)

This is the photon number variance of light mode a in the absence of spontaneous

emission. Therefore, in view of Eq. (3.7), we have

Figure 3.5: Plots of the photon number variance of light mode a [Eq. 3.68] versus Ω.

(∆n)2
a = n̄2

a. (3.71)
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We readily observe from the plots in Fig. (3.5) that the photon number variance of

light mode a versus Ω for γc = 0.4, κ = 0.8, N = 50, and for different values of γ. From

these plots, we observe that (∆n)2
a increases as γ decreases until Ω = 4.

In addition, we note that for Ω � γc, Eq. (3.70) reduces to

(∆n)2
a =

[
γc

3κ
N

]2

, (3.72)

so that with the aid of Eq. (3.8), we see that

Figure 3.6: Plots of the photon number variance of light mode a [Eq. 3.70] versus γ.

(∆n)2
a = n̄2

a. (3.73)

The plots in Fig. (3.6) show that the photon number variance of light mode a versus γ

for with values of γc = 0.4, κ = 0.8, N = 50, and for different values of Ω. As we observe

from the plots in Fig. (3.6) that the photon number variance of light mode a increases

with Ω. On the other hand, when the spontaneous emission decay constant increases

the photon number variance decreases.

Here we seek to obtain the photon number variance of light mode b in the entire fre-
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quency interval. The photon number variance of light mode b is defined as

(∆n)2
b = 〈b̂†b̂b̂†b̂〉 − 〈b̂†b̂〉2 (3.74)

and using the fact that b̂ is a Gaussian variable with zero mean, we readily get

(∆n)2
b = 〈b̂†b̂〉〈b̂b̂†〉+ 〈b̂†2〉〈b̂2〉. (3.75)

In view of Eq. (3.10), we have

Figure 3.7: Plots of the photon number variance of light mode b [Eq. 3.80] versus Ω.

〈b̂2〉 = 0, (3.76)

〈b̂b̂†〉 =
γc

κ
〈N̂c〉. (3.77)

Thus on account of Eqs. (3.13), (3.76) and (3.77), the photon number variance (3.75)

turns out to be

(∆n)2
b =

(
γc

κ

)2

〈N̂c〉〈N̂b〉, (3.78)

from which follows

(∆n)2
b = n̄b

[
γc

κ
N − 2n̄b

]
. (3.79)



3.1.3 Global photon-number variance of light mode a and b 39

With the aid of Eq. (3.14), the photon number variance of light mode b takes, at steady-

state, the form

(∆n)2
b =

(
γc

κ
N

)2 [
Ω2(γc + γ)2 + Ω4

[(γc + γ)2 + 3Ω2]2

]
. (3.80)

This is the global photon number variance of light mode b, produced by the coherently

driven nondegenerate three-level laser with an open cavity and coupled to a two-mode

vacuum reservoir.

The plots on Fig. (3.7) describes the photon number variance of light mode b versus

Ω for γc = 0.4, κ = 0.8, N = 50, and for different values of γ. We readily observe from

the plots in Fig. (3.7) that the photon number variance of light mode b in the absence

of spontaneous emission when γ = 0 is greater than in the presence of spontaneous

emission when γ = 0.2 until Ω = 4. In addition, the maximum photon number variance

(∆n)2
b = 78.12 when γ = 0, γ = 0.1, and γ = 0.2. These results occur when the three-level

laser is operating at Ω = 0.404,Ω = 0.505, and Ω = 0.606, respectively.

Furthermore, we consider the case in which spontaneous emission is absent (γ = 0).

Then the variance of photon number for this case has the form

(∆n)2
b =

(
γc

κ
N

)2[
Ω2(γ2

c + Ω2)

(γ2
c + 3Ω2)2

]
. (3.81)

This represents the variance of the photon number of light mode b in the absence of

spontaneous emission. In addition, we note that for Ω � γc, Eq. (3.81) reduces to

(∆n)2
b =

[
γc

3κ
N

]2

(3.82)

and in view of Eq. (3.16), there follows

(∆n)2
b = n̄2

b , (3.83)

which represents the normally-ordered variance of the photon number for chaotic

light.

The plots on Fig. (3.8) describes the photon number variance of light mode b versus

γ for the values of γc = 0.4, κ = 0.8, N = 50, with different values of Ω. We readily
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Figure 3.8: Plots of the photon number variance of light mode b [Eq. 3.80] versus γ.

observe from the plots in Fig. (3.8) that the photon number variance of light mode b for

Ω = 5 is greater than for Ω = 2. In addition, the maximum photon number variance is

found to be (∆n)2
b = 71.52 for Ω = 2 and it occurs at γ = 0. Moreover, the maximum

photon number variance is (∆n)2
b = 78.12 for Ω = 5 and it occurs at γ = 0.

3.1.4 Local photon-number variance of light mode a and b

Here we seek to study the local photon number variance of light modes a and b, pro-

duced by the coherently driven non degenerate three-level laser with an open cavity

and coupled to a two-mode vacuum reservoir. To determine the local photon number

variance of light mode a, we need to consider the spectrum of photon number fluctu-

ations of light mode a. The spectrum of photon number fluctuations of light mode a

with central frequency ω0 is expressible as [7]

Sa(ω) =
1

π

∫ ∞

0

dτei(ω−ω0)τ 〈n̂a(t), n̂a(t + τ)〉ss, (3.84)
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where

n̂a(t) = â†(t)â(t), (3.85)

n̂a(t + τ) = â†(t + τ)â(t + τ). (3.86)

Upon integrating both sides of Eq. (2.89) over ω, we find∫ ∞

−∞
Sa(ω)dω = (∆n)2

a, (3.87)

in which (∆n)2
a is the steady-state photon number variance of light mode a. From this

result, we realize that Sa(ω)dω is the photon number variance of light mode a in the

frequency interval between ω and ω + dω [7].

We now proceed to evaluate the two-time correlation function that appears in Eq.

(3.84). Applying the notation [7]

〈Â, B̂〉 = 〈ÂB̂〉 − 〈Â〉〈B̂〉, (3.88)

we see that

〈n̂a(t), n̂a(t + τ)〉 = 〈n̂a(t)n̂a(t + τ)〉 − 〈n̂a(t)〉〈n̂a(t + τ)〉. (3.89)

On account of Eqs. (3.85) and (3.86) and using the fact that a is a Gaussian variable with

zero mean given by Eq. (2.108), we have

〈n̂a(t)n̂a(t + τ)〉 = 〈â†(t)â(t)〉〈â†(t + τ)â(t + τ)〉

+ 〈â(t)â(t + τ)〉〈â†(t)â†(t + τ)〉

+ 〈â†(t)â(t + τ)〉〈â(t)â†(t + τ)〉. (3.90)

Thus substitution of Eq. (3.90) into Eq. (3.89) results in

〈n̂a(t), n̂a(t + τ)〉 = 〈â†(t)â†(t + τ)〉〈â(t)â(t + τ)〉

+ 〈â†(t)â(t + τ)〉〈â(t)â†(t + τ)〉. (3.91)
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With the help of Eq. (3.25), one can readily establish that

〈â†(t)â†(t + τ)〉 = 〈â†2(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
, (3.92)

〈â(t)â(t + τ)〉 = 〈â2(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
, (3.93)

〈â(t)â†(t + τ)〉 = 〈â(t)â†(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
. (3.94)

Now employing Eqs. (3.33), (3.92), (3.93), and (3.94), we obtain

〈n̂a(t)n̂a(t + τ)〉 =

[
〈â†(t)â(t)〉〈â(t)â†(t)〉+ 〈â2(t)〉〈â†2(t)〉

]
×

[(
η

κ− η

)2

e−κτ +

(
κ

κ− η

)2

e−ητ − 2κη

(κ− η)2
e−(κ+η)τ/2

]
. (3.95)

This can be rewritten as

〈n̂a(t)n̂a(t + τ)〉ss =
(∆n)2

a

(κ− η)2

[
η2e−κτ + κ2e−ητ − 2κηe−(κ+η)τ/2

]
, (3.96)

in which (∆n)2
a is the steady-state photon number variance of light mode a given by Eq.

(3.68). Therefore, in view of Eq. (3.96), the spectrum of photon number fluctuations

can be put in the form

Sa(ω) =
(∆n)2

a

π(κ− η)2
Re

[
η2

∫ ∞

0

dτe−[κ−i(ω−ω0)]τ

+ κ2

∫ ∞

0

dτe−[η−i(ω−ω0)]τ − 2kη

∫ ∞

0

dτe−[
(κ+η)

2
−i(ω−ω0)]τ

]
. (3.97)

Thus on carrying out the integration, the spectrum of photon number fluctuations of

light mode a turns out to be

Sa(ω) =
(∆n)2

a

(κ− η)2

[
η2κ/π

κ2 + (ω − ω0)2
+

κ2η/π

η2 + (ω − ω0)2
− 2κη(κ + η)/2π

(κ+η
2

)2 + (ω − ω0)2

]
. (3.98)

Now we realize that the photon number variance in the frequency interval between

ω′ = −λ and ω′ = λ is expressible as [3]

(∆n)2
a±λ =

∫ λ

−λ

Sa(ω
′)dω′, (3.99)
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Figure 3.9: Plots of z
′
a(λ)[Eq. 3.102] versus λ.

in which ω′ = ω − ω0. Therefore, substituting Eq. (3.98) into Eq. (3.99) leads to

(∆n)2
a±λ =

(∆n)2
a

π(κ− η)2

[ ∫ λ

−λ

η2κdω′

κ2 + ω′2
−

∫ λ

−λ

2κη(κ + η)dω′

(κ+η
2

)2 + ω′2
+

∫ λ

−λ

ηκ2dω′

η2 + ω′2

]
. (3.100)

Employing the relation given by Eq. (3.38), the local photon number variance of light

mode a produced by the coherently driven nondegenerate three-level laser with an

open cavity and coupled to a two-mode vacuum reservoir is found to be

(∆n)2
a±λ = (∆n)2

az
′

a(λ), (3.101)

where z
′
a(λ) is given by

z
′

a(λ) =
2η2/π

(η − κ)2
tan−1

(
λ

κ

)
+

2κ2/π

(κ− η)2
tan−1

(
λ

η

)
− 4κη/π

(κ− η)2
tan−1

(
2λ

κ + η

)
. (3.102)

We see from Eq. (3.101) along with the plot z
′
a(λ) that (∆n)2

a±λ increases with λ until it

reaches the maximum value of the global photon number variance.

The plots on Fig. (3.9) describes z
′
a(λ) versus λ for γc = 0.4, κ = 0.8, N = 50, Ω = 2,and

for different values of γ. From these plot, we find the values indicated below:
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z
′
a(0.5) z

′
a(1) z

′
a(2)

γ = 0.2 0.42 0.66 0.86

γ = 0 0.40 0.64 0.84

Table 3.5: Values of z
′
a(λ) for γc = 0.4, κ = 0.8, and Ω = 2.

We see from these results that z
′
a(λ) in the absence of spontaneous emission (γ = 0) is

less than in the presence of spontaneous emission (γ 6= 0). Moreover, using the above

results of z
′
a(λ) and on account of Eq. (3.102), we have

(∆n)2
a±0.5 (∆n)2

a±1 (∆n)2
a±2

γ = 0.2 27.49 43.20 56.29

γ = 0 26.18 41.89 54.98

Table 3.6: Values of (∆n)2
a±λ for γc = 0.4, κ = 0.8, N = 50, and Ω = 2.

We therefore observe that a large part of the total variance of photon number is con-

fined in a relatively small frequency interval.

We now proceed to obtain the photon number variance of light mode b in a given fre-

quency interval produced by the system under consideration. To determine the local

photon number variance of light mode b, we need to consider the spectrum of pho-

ton number fluctuations of light mode b. We define the spectrum of photon number

fluctuations of light mode b with central frequency ω0 by

Sb(ω) =
1

π
Re

∫ ∞

0

dτei(ω−ω0)τ 〈n̂b(t), n̂b(t + τ)〉ss, (3.103)

where

n̂b(t) = b̂†(t)b̂(t), (3.104)

n̂b(t + τ) = b̂†(t + τ)b̂(t + τ). (3.105)

Upon integrating both sides of Eq. (3.103) over ω, we easily find∫ ∞

−∞
Sb(ω)dω = (∆n)2

b , (3.106)
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in which (∆n)2
b is the steady-state photon number variance of the light mode b. We can

then assert that Sb(ω)dω is the steady-state photon number variance of light mode b in

the frequency interval between ω and ω + dω.

We now proceed to evaluate the two-time correlation function that appears in Eq.

(3.106). Applying the relation given by Eq. (3.88), we see that

〈n̂b(t), n̂b(t + τ)〉 = 〈n̂b(t)n̂b(t + τ)〉 − 〈n̂b(t)〉〈n̂b(t + τ)〉. (3.107)

On account of Eqs. (3.104) and (3.105), we have

〈n̂b(t)n̂b(t + τ)〉 = 〈b̂†(t)b̂(t)〉〈b̂†(t + τ)b̂(t + τ)〉

+ 〈b̂(t)b̂(t + τ)〉〈b̂†(t)b̂†(t + τ)〉

+ 〈b̂†(t)b̂(t + τ)〉〈b̂(t)b̂†(t + τ)〉. (3.108)

Thus substitution of Eq. (3.107) into Eq. (3.108) results in

〈n̂b(t), n̂b(t + τ)〉 = 〈b̂†(t)b̂†(t + τ)〉〈b̂(t)b̂(t + τ)〉

+ 〈b̂†(t)b̂(t + τ)〉〈b̂(t)b̂†(t + τ)〉. (3.109)

With the help of Eq. (3.50), one can readily obtain the following equations

〈b̂†(t)b̂†(t + τ)〉 = 〈b̂†2(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
, (3.110)

〈b̂(t)b̂(t + τ)〉 = 〈b̂2(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
, (3.111)

〈b̂(t)b̂†(t + τ)〉 = 〈b̂(t)b̂†(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
. (3.112)

Hence on account of Eqs. (3.52), (3.110), (3.111), and (3.112), Eq. (3.109) can be put in

the form

〈n̂b(t)n̂b(t + τ)〉 =

[
〈b̂†(t)b̂(t)〉〈b̂(t)b̂†(t)〉+ 〈b̂2(t)〉〈b̂†2(t)〉

]
×

[(
µ

κ− µ

)2

e−κτ +

(
κ

κ− µ

)2

e−µτ − 2κµ

(κ− µ)2
e−(κ+µ)τ/2

]
.(3.113)
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This can be rewritten as

〈n̂b(t)n̂b(t + τ)〉ss =
(∆n)2

b

(κ− µ)2

[
µ2e−κτ + κ2e−µτ − 2κµe−(κ+µ)τ/2

]
, (3.114)

in which (∆n)2
b is the steady-state photon number variance of light mode b given by Eq.

(3.80). With the help of Eq. (3.114), the spectrum of photon number fluctuations can

be put in the form

Sb(ω) =
(∆n)2

b

π(κ− µ)2
Re

[
µ2

∫ ∞

0

dτe−[κ−i(ω−ω0)]τ

+ κ2

∫ ∞

0

dτe−[µ−i(ω−ω0)]τ

− 2κµ

∫ ∞

0

dτe−[
(κ+µ)

2
−i(ω−ω0)]τ

]
(3.115)

and carrying out the integration, we obtain

Sb(ω) =
(∆n)2

b

(κ− µ)2

[
µ2κ/π

κ2 + (ω − ω0)2
− 2κµ(κ + µ)/2π

(κ+µ
2

)2 + (ω − ω0)2
+

κ2µ/π

µ2 + (ω − ω0)2

]
. (3.116)

Now we realize that the photon number variance in the frequency interval between

ω′ = −λ and ω′ = λ is expressible as

(∆n)2
b±λ =

∫ λ

−λ

Sb(ω
′)dω′, (3.117)

in which ω′ = ω − ω0. Therefore, substitution of Eq. (3.116) into Eq. (3.117) leads to

(∆n)2
b±λ =

(∆n)2
b

π(κ− µ)2

[ ∫ λ

−λ

µ2κdω′

κ2 + ω′2
−

∫ λ

−λ

2κµ(κ + µ/2)dω′

(κ+µ
2

)2 + ω′2
+

∫ λ

−λ

κ2µdω′

µ2 + ω′2

]
. (3.118)

Employing the relation given by Eq. (3.38), the local photon number variance of light

mode b produced by the coherently driven nondegenerate three-level laser with an

open cavity and coupled to a two-mode vacuum reservoir is found to be

(∆n)2
b±λ = (∆n)2

bz
′

b(λ), (3.119)

where z
′

b(λ) is given by

z
′

b(λ) =
2µ2/π

(µ− κ)2
tan−1

(
λ

κ

)
+

2κ2/π

(κ− µ)2
tan−1

(
λ

µ

)
− 4κµ/π

(κ− µ)2
tan−1

(
2λ

κ + µ

)
. (3.120)
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Figure 3.10: Plots of z
′

b(λ)[Eq. 3.120] versus λ.

We see from Eq. (3.119) along with the plot z
′

b(λ) that (∆n)2
b±λ increases with λ until it

reaches the maximum value of the global photon number variance.

We see from these results, z
′

b(λ) in the absence of spontaneous emission (γ = 0) is

less than in the presence of spontaneous emission (γ 6= 0). Moreover, the plots in Fig.

(3.10) shows that z
′

b(λ) versus λ and for the values of γc = 0.4, κ = 0.8, N = 50, Ω = 2,

and for different values of γ. From the plots in Fig. (3.10), we find the indicated below:

z
′

b(0.5) z
′

b(1) z
′

b(2)

γ = 0.2 0.47 0.73 0.92

γ = 0 0.44 0.70 0.89

Table 3.7: Values of z
′

b(λ) for γc = 0.4, κ = 0.8, and Ω = 2.

We see from these results, z
′

b(λ) in the absence of spontaneous emission (γ = 0) is less

than in the presence of spontaneous emission (γ 6= 0). Moreover, using the above re-

sults of z
′

b(λ) and on account of Eq. (3.119), we have
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(∆n)2
b±0.5 (∆n)2

b±1 (∆n)2
b±2

γ = 0.2 31.78 49.37 62.22

γ = 0 29.76 47.34 60.19

Table 3.8: Values of (∆n)2
b±λ for γc = 0.4, κ = 0.8, N = 50, and Ω = 2.

We therefore observe that a large part of the total variance of photon number is con-

fined in a relatively small frequency interval.

3.2 Generation of Two-mode photon statistics

In this section, applying the steady-state solutions of the equations of evolution of the

expectation values of the atomic operators and the quantum Langavin equations for the

cavity mode operators, we seek to obtain the mean and variance of the photon numbers

for the two-mode light beam.

3.2.1 Two-mode mean photon number

Here we seek to calculate the steady-state mean photon number of the two-mode cavity

light beam. The mean photon number of the two-mode light beam, represented by the

operators ĉ and ĉ†, is defined by

n̄ = 〈ĉ†ĉ〉. (3.121)

The steady-state solution of Eq. (2.97) is found to be

ĉ =
2g

κ
√

N
m̂. (3.122)

Hence at steady state the mean photon number goes over into

n̄ =
γc

κ

[
〈N̂a〉+ 〈N̂b〉

]
. (3.123)

We see from Eq. (3.123) that the mean photon number of the two-mode light beam is

the sum of the mean photon numbers of the separate single-mode light beams given
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Figure 3.11: Plots of mean photon number n̄ [Eq. 3.124] versus Ω.

by Eqs. (3.5) and (3.13). Therefore, on account of Eqs. (2.118) and (2.119), Eq. (3.123)

turns out to be

n̄ =
(γc

κ
N

) [
2Ω2

(γc + γ)2 + 3Ω2

]
. (3.124)

This is the steady-state mean photon number of the two-mode light beam, produced by

the coherently driven nondegenerate three-level laser with an open cavity and coupled

to a two-mode vacuum reservoir.

The plots on Fig. (3.11) describes the two-mode mean photon number n̄ Ω for

γc = 0.4, κ = 0.8, N = 50, and for different values of γ. When we see the plots on Fig.

(3.11) that as the spontaneous emission decay constant γ increases the global mean

photon number of two-mode cavity light decreases. In addition, the plots of Fig. (3.11)

indicates that as Ω increases, the mean photon number also increases.

We next proceed to consider the case in which spontaneous emission is absent (γ =
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Figure 3.12: Plots of mean photon number n̄ [Eq. 3.124] versus γ.

0). Then the mean photon number for this case takes the form

n̄ =
γc

κ
N

[
2Ω2

γ2
c + 3Ω2

]
. (3.125)

This represents the steady-state mean photon number of the two-mode light beam in

the absence of spontaneous emission. The result described by Eq. (3.125) is exactly the

same as the one obtained by Fesseha [1].

Furthermore, we note that for Ω � γc, Eq. (3.125) reduces to

n̄ =
2γc

3κ
N. (3.126)

The plots on Fig. (3.12) describes the two-mode mean photon number n̄ versus γ for

γc = 0.4, κ = 0.8, N = 50, and for different values of Ω. We observe from the plots in Fig.

(3.12) that the mean photon number of the two-mode light beam has greater value for

the case Ω = 2 than when Ω = 1. This indicates that the greater in mean photon number

is depending on the amplitude of pumping. This means more pumping gives more

bright light. On the other hand, Fig. (3.12) shows that as the spontaneous emission

decay constant, γ, increase the mean photon number decrease.
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Figure 3.13: Plots of the photon number variance (∆n)2 of [Eq. 3.132] versus Ω

3.2.2 Two-mode photon-number variance

Here we proceed to study the steady-state photon number variance of the two-mode

light beam, produced by the coherently driven nondegenerate three-level laser with an

open cavity and coupled to a two-mode vacuum reservoir.

The photon number variance for the two-mode cavity light is expressible as

(∆n)2 = 〈ĉ†ĉĉ†ĉ〉 − 〈ĉ†ĉ〉2. (3.127)

Since ĉ is Gaussian variable with zero mean, the variance of the photon number can be

written as

(∆n)2 = 〈ĉ†ĉ〉〈ĉĉ†〉+ 〈ĉ†2〉〈ĉ2〉. (3.128)

With the aid of Eq. (3.122), one can easily establish that

〈ĉĉ†〉 =
γc

κ

[
〈N̂b〉+ 〈N̂c〉

]
(3.129)

〈ĉ2〉 =
γc

κ
〈m̂3〉. (3.130)
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Since 〈m̂3〉 is real, then 〈ĉ2〉 = 〈ĉ†2〉. Therefore, with the aid of Eqs. (3.123), (3.129) and

(3.130), the variance of the photon number for the two-mode cavity light turns out to

be

(∆n)2 =

(
γc

κ

)2 [(
〈N̂a〉+ 〈N̂b〉

)(
〈N̂b〉+ 〈N̂c〉

)
+ 〈m̂3〉2

]
. (3.131)

We observe from Eq.(3.131) that the photon number variance of the two-mode light

beam does not happen to be the sum of the photon number variance of the separate

single-mode light beams given by Eqs. (3.67) and (3.78). Furthermore, upon substi-

tuting of Eqs. (2.118)-(2.119) into Eq. (3.131), the steady-state variance of the photon

number goes over into

(∆n)2 =

(
γc

κ
N

)2
[

4Ω4 + 3Ω2(γc + γ)2[
(γc + γ)2 + 3Ω2

]2

]
. (3.132)

This is the steady-state photon number variance of the two-mode light beam, pro-

duced by the coherently driven nondegenerate three-level laser with an open cavity

and coupled to a two-mode vacuum reservoir. Finally, we obtained Fig. (3.13), the plots

of global photon number variance of the two-mode cavity light beams versus Ω with

γc = 0.4, κ = 0.8, N = 50, and for different values of γ. From the plots we see that as

spontaneous emission decay constant γ increases the global photon variance increases

of two mode light beam increases. In addition, the plot of Fig. (3.13)indicates that Ω

increase, the two mode photon variance increases.

We next proceed to consider the case in which spontaneous emission is absent (γ = 0).

Then the variance of the photon number for this case takes the form

(∆n)2 =

(
γc

κ
N

)2 [
4Ω4 + 3Ω2γ2

c

(γ2
c + 3Ω2)2

]
. (3.133)

This represent the steady state variance of photon number in the absence of sponta-

neous emission. Furthermore, we note that for Ω � γc, Eq. (3.133) reduces to

(∆n)2 =

[
2γc

3κ
N

]2

(3.134)
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Figure 3.14: Plots of the photon number variance(∆n)2 of [Eq. 3.132] versus γ

and in view of Eq. (3.126), we have

(∆n)2 = n̄2, (3.135)

which represents the normally-ordered variance of the photon number for chaotic

light.

Finally, we obtained Fig. (3.14), the plots of global photon number variance of the

two-mode cavity light beams versus γ with γc = 0.4, κ = 0.8, N = 50, and for different

values of Ω. From these plots we see that the global photon variance decreases when

the spontaneous emission decay constant, γ, increases. On the other hand, when the

pumping increases the photon number variance of the two-mode cavity light beams in-

creases. This is due to the coupling of the top and bottom levels of the atom by coherent

light or the atomic coherence of the two-mode cavity light.



4

Generation of the System of Quadrature Squeezing

In this chapter we seek to study the quadrature variance and the quadrature squeezing

of the light produced by the coherently driven nondegenerate three-level laser with an

open cavity and coupled to a two-mode vacuum reservoir via a single-port mirror. Ap-

plying the steady-state solutions of the equations of evolution of the expectation values

of the atomic operators and the quantum Langevin equations for the cavity mode op-

erators, we obtain the global quadrature variances for light modes a and b. In addition,

we determine the global quadrature squeezing of the two-mode cavity light.

4.1 Single-mode quadrature variance

In this section we obtain the global quadrature variances of light modes a and b, pro-

duced by the system under consideration.

4.1.1 Global quadrature variance of light mode a

We now proceed to calculate the quadrature variance of light mode a in the entire fre-

quency interval. The squeezing properties of light mode a are described by two quadra-

ture operators

â+ = â† + â, (4.1)

â− = i(â† − â), (4.2)
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where â+ and â− are Hermitian operators representing physical quantities called plus

and minus quadratures, respectively, while â† and â are the creation and annihilation

oprators for light mode a. With the help of Eqs. (4.1) and (4.2), we can show that the

two quadrature operators satisfy the commutation relation

[â−, â+] = 2i
γc

κ

[
N̂a − N̂b

]
. (4.3)

In view of this result, the uncertainity relation for the plus and minus quadrature oper-

ators of mode a is expressible as

∆a+∆a− ≥ 1

2

∣∣∣∣〈[â+, â−]〉
∣∣∣∣

≥
∣∣∣∣〈ââ†〉 − 〈â†â〉

∣∣∣∣, (4.4)

so that using Eqs. (3.5) and (3.66), there follows

∆a+∆a− ≥
γc

κ

∣∣∣∣〈N̂a〉 − 〈N̂b〉
∣∣∣∣. (4.5)

On account of Eq. (2.113), the uncertainity relation for the quadrature operators can be

put in the form

∆a+∆a− ≥ 0. (4.6)

Next we proceed to calculate the quadrature variance of light mode a. The variance

of the plus and minus quadrature operators are defined by

(∆â+)2 = 〈â2
+〉 − 〈â+〉2, (4.7)

(∆â−)2 = 〈â2
−〉 − 〈â−〉2. (4.8)

With the aid of Eq. (4.1), Eq. (4.7) can be expressed in terms of the creation and annihi-

lation operators as

(∆â+)2 = 〈ââ†〉+ 〈â†â〉+ 〈â2〉+ 〈â†2〉 − 〈â〉2 − 〈â†〉2 − 2〈â〉〈â†〉. (4.9)

In addition, on account of Eqs. (4.2) and (4.8), we get

(∆â−)2 = 〈ââ†〉+ 〈â†â〉 − 〈â2〉 − 〈â†2〉+ 〈â〉2 + 〈â†〉2 − 2〈â〉〈â†〉, (4.10)
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so that inspection of Eqs. (4.9) and (4.10) shows that

(∆â±)2 = 〈ââ†〉+ 〈â†â〉 ± 〈â2〉 ± 〈â†2〉 ∓ 〈â〉2 ∓ 〈â†〉2 − 2〈â〉〈â†〉. (4.11)

Moreover, with the help of Eqs. (2.108) and (3.65), we have

(∆â±)2 = 〈ââ†〉+ 〈â†â〉 (4.12)

and in view of Eqs. (3.5) and (3.66), there follows

(∆â±)2 =
γc

κ

[
〈N̂a〉+ 〈N̂b〉

]
. (4.13)

On account of Eq. (2.113), we see that

(∆â±)2 =
2γc

κ
〈N̂a〉. (4.14)

Now substitution of Eq. (2.118) into Eq. (4.13) results in

(∆â±)2 =
γc

κ
N

[
2Ω2

(γc + γ)2 + 3Ω2

]
. (4.15)

This is the steady-state quadrature variance of light mode a produced by the coherently

driven non-degenerate three-level laser with an open cavity and coupled to a two-mode

vacuum reservoir.

Furthermore, we consider the case in which spontaneous emission is absent (γ = 0).

Then the quadrature variance for this case takes the form

(∆â±)2 =
γc

κ
N

[
2Ω2

γ2
c + 3Ω2

]
. (4.16)

In addition, we note that for Ω � γc, Eq. (4.16) reduces to

(∆â±)2 =
2γc

3κ
N. (4.17)

On account of Eq. (3.8), Eq. (4.17) can be put in the form

(∆â±)2 = 2n̄a, (4.18)

which is the normally ordered quadrature variance for chaotic light.
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4.1.2 Global quadrature variance of light mode b

Here we wish to calculate the quadrature variance of light mode b in the entire fre-

quency interval, produced by the system under consideration. The squeezing prop-

erties of light mode b are described by two quadrature operators

b̂+ = b̂† + b̂, (4.19)

b̂− = i(b̂† − b̂), (4.20)

where b̂+ and b̂− are Hermitian operators representing physical quantities called plus

and minus quadratures, respectively, while b̂† and b̂ are the creation and annihilation

oprators for light mode b. With the help of Eqs. (4.19) and (4.20), we can show that the

two quadrature operators satisfy the commutation relation

[b̂−, b̂+] = 2i
γc

κ

[
N̂b − N̂c

]
. (4.21)

In view of this result, the uncertainity relation for the plus and minus quadrature oper-

ators of mode b is expressible as

∆b+∆b− ≥ 1

2

∣∣∣∣〈[b̂+, b̂−]〉
∣∣∣∣

≥
∣∣∣∣〈b̂b̂†〉 − 〈b̂†b̂〉∣∣∣∣, (4.22)

so that using Eqs. (3.13) and (3.77), there follows

∆b+∆b− ≥
γc

κ

∣∣∣∣〈N̂b〉 − 〈N̂c〉
∣∣∣∣, (4.23)

On account of Eqs. (2.119) and (2.120), the uncertainity relation of the quadrature op-

erators can be put the form

∆b+∆b− ≥
γc

κ
N

∣∣∣∣ (γc + γ)2

(γc + γ)2 + 3Ω2

∣∣∣∣. (4.24)

Now setting γ = 0, one finds

∆b+∆b− ≥
γc

κ
N

∣∣∣∣ γ2
c

γ2
c + 3Ω2

∣∣∣∣. (4.25)
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Moreover, we consider the case in which the deriving coherent light is absent. Thus

upon setting Ω = 0 in Eq. (4.25), we readily get

∆b+∆b− ≥
γc

κ
N. (4.26)

We therefore notice that the product of the uncertainties in the two quadrature satisfies

the minimum uncertainty relation.

Next we proceed to calculate the quadrature variance of light mode b. The variance

of the plus and minus quadrature operators for light mode b are defined by

(∆b̂+)2 = 〈b̂2
+〉 − 〈b̂+〉2, (4.27)

(∆b̂−)2 = 〈b̂2
−〉 − 〈b̂−〉2. (4.28)

On account of Eq. (4.19), Eq. (4.27) can be expressed in terms of the creation and anni-

hilation operators as

(∆b̂+)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉+ 〈b̂2〉+ 〈b̂†2〉 − 〈b̂〉2 − 〈b̂†〉2 − 2〈b̂〉〈b̂†〉. (4.29)

In addition, with the help of Eqs. (4.20) and (4.28), we see that

(∆b̂−)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉 − 〈b̂2〉 − 〈b̂†2〉+ 〈b̂〉2 + 〈b̂†〉2 − 2〈b̂〉〈b̂†〉, (4.30)

so that inspection of Eqs. (4.29) and (4.30) shows that

(∆b̂±)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉 ± 〈b̂2〉 ± 〈b̂†2〉 ∓ 〈b̂〉2 ∓ 〈b̂†〉2 − 2〈b̂〉〈b̂†〉. (4.31)

Moreover, with the aid of Eqs. (2.109) and (3.76), we get

(∆b̂±)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉 (4.32)

and in view of Eqs. (3.13) and (3.77), there follows

(∆b̂±)2 =
γc

κ

[
〈N̂b〉+ 〈N̂c〉

]
. (4.33)
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Now on account of Eqs. (2.119) and (2.120), the quadrature variance of light mode b

takes, at steady-state, the form

(∆b̂±)2 =
(γc

κ
N

) [
(γc + γ)2 + 2Ω2

(γc + γ)2 + 3Ω2

]
. (4.34)

This represents the quadrature variance of light mode b, produced by the coherently

driven nondegenerate three-level laser with an open cavity and coupled to a two-mode

vacuum reservoir.

Furthermore, we consider the case in which spontaneous emission is absent (γ = 0).

Then the quadrature variance for this case has the form

(∆b̂±)2 =
γc

κ
N

[
γ2

c + 2Ω2

γ2
c + 3Ω2

]
. (4.35)

In addition, we note that for Ω � γc, Eq. (4.35) reduces to

(∆b̂±)2 =
2γc

3κ
N. (4.36)

In view of Eq. (3.16), this can be expressed as

(∆b̂±)2 = 2n̄b, (4.37)

which is the normally ordered quadrature variance for chaotic light.

4.2 Two-mode quadrature squeezing

Now we seek to determine the quadrature variances of the two-mode light beam. The

squeezing properties of the two-mode cavity light are described by two quadrature op-

erators

ĉ+ = ĉ† + ĉ, (4.38)

ĉ− = i(ĉ† − ĉ), (4.39)

where ĉ+ and ĉ− are Hermitian operators representing the physical quantities called

plus and minus quadrature, respectively while ĉ† and ĉ are the creation and annihilation
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operators of the two-mode cavity light. With the aid of Eqs. (4.38) and (4.39), we show

that the two quadrature operators satisfy the commutation relation

[ĉ−, ĉ+] = 2i
γc

κ

[
N̂a − N̂c

]
. (4.40)

In view of this result, the uncertainty relation for the plus and minus quadrature oper-

ators of the two-mode cavity light is expressible as

∆c+∆c− ≥ 1

2

∣∣∣∣〈[ĉ+, ĉ−]〉
∣∣∣∣

≥
∣∣∣∣〈ĉĉ†〉 − 〈ĉ†ĉ〉∣∣∣∣, (4.41)

so that using Eqs. (3.123) and (3.129), there follows

∆c+∆c− ≥
γc

κ

∣∣∣∣〈N̂a〉 − 〈N̂c〉
∣∣∣∣. (4.42)

On account of Eqs. (2.118) and (2.120), the uncertainty relation for the plus and minus

quadrature operators is found to be

∆c+∆c− ≥
γc

κ
N

∣∣∣∣ (γc + γ)2

(γc + γ)2 + 3Ω2

∣∣∣∣. (4.43)

In addition, we consider the case in which spontaneous emission is absent (γ = 0).

Then the uncertainity relation for this case takes the form

∆c+∆c− ≥
γc

κ
N

∣∣∣∣ γ2
c

γ2
c + 3Ω2

∣∣∣∣. (4.44)

Moreover, we consider the case in which the deriving coherent light is absent. Thus

upon setting Ω = 0 in Eq. (4.43), we readily get

∆c+∆c− ≥
γc

κ
N, (4.45)

which is the minimum uncertainty relation for the two-mode cavity vacuum state. We

therefore notice that the uncertainties for the two quadratures are equal and their prod-

uct satisfies the minimum uncertainty relation.
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Next we proceed to calculate the quadrature variance of the two-mode cavity light.

The variance of the plus and minus quadrature operators of the two-mode cavity light

are defined by

(∆ĉ+)2 = 〈ĉ2
+〉 − 〈ĉ+〉2. (4.46)

(∆ĉ−)2 = 〈ĉ2
−〉 − 〈ĉ−〉2. (4.47)

On account of Eqs. (4.38) and (4.47), the plus quadrature variance can be expressed in

terms of the creation and annihilation operators as

(∆ĉ+)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉+ 〈ĉ2〉+ 〈ĉ†2〉 − 〈ĉ〉2 − 〈ĉ†〉2 − 2〈ĉ〉〈ĉ†〉 (4.48)

and with the help of Eqs. (4.39) and (4.47), we get

(∆ĉ−)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉 − 〈ĉ2〉 − 〈ĉ†2〉+ 〈ĉ〉2 + 〈ĉ†〉2 − 2〈ĉ〉〈ĉ†〉, (4.49)

so that inspection of Eqs. (4.48) and (4.49) shows that

(∆ĉ±)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉 ± 〈ĉ2〉 ± 〈ĉ†2〉 ∓ 〈ĉ〉2 ∓ 〈ĉ†〉2 − 2〈ĉ〉〈ĉ†〉. (4.50)

In view of Eqs. (2.110), we see that

(∆ĉ±)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉 ± 〈ĉ2〉 ± 〈ĉ†2〉. (4.51)

In addition, with the aid of Eqs. (3.123), (3.129) and (3.130), expression (4.51) goes

over into

(∆ĉ±)2 =
γc

κ

[
〈N̂a〉+ 2〈N̂b〉+ 〈N̂c〉 ± 〈m̂3〉 ± 〈m̂†

3〉
]
. (4.52)

Now using Eqs. (2.114) and (2.116), the quadrature variance of the two-mode cavity

light is found to be

(∆ĉ±)2 =
γc

κ

[
N + 〈N̂b〉 ± 2〈m̂3〉

]
. (4.53)
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Finally, on account of Eqs. (2.119) and (2.121), the quadrature variance of the two-mode

cavity light takes, at steady-state, the form

(∆ĉ±)2 =
γc

κ
N

[
(γc + γ)2 + 4Ω2 ± 2Ω(γc + γ)

(γc + γ)2 + 3Ω2

]
. (4.54)

This represents the quadrature variance of the two-mode cavity light produced by the

coherently driven nondegenerate three-level laser with an open cavity and coupled to

a two-mode vacuum reservoir.

Furthermore, we consider the case in which spontaneous emission is absent (γ = 0).

Thus the quadrature variance for this case has the form

(∆ĉ±)2 =
γc

κ
N

[
4Ω2 + γ2

c ± 2Ωγc

γ2
c + 3Ω2

]
. (4.55)

This result is exactly the same as the one obtained by Fesseha [6]. In addition, we note

that for Ω � γc, Eq. (4.55) reduces to

(∆ĉ±)2 =
4γc

3κ
N. (4.56)

This can be rewritten as

(∆ĉ±)2 = 2n̄, (4.57)

where n̄ is given by Eq. (3.126). We see that Eq. (4.57) represents the normally ordered

quadrature variance for chaotic light. Moreover, we consider the case in which the de-

riving coherent light is absent. Thus upon setting Ω = 0 in Eq. (4.55), we get

(∆ĉ+)2
v = (∆ĉ−)2

v =
γc

κ
N, (4.58)

which is the normally ordered quadrature variance of the two-mode cavity vacuum

state. We note that for Ω = 0 the uncertainty in the plus and minus quadratures are

equal and satisfy the minimum uncertainty relation.

When we see the plots on Fig. (4.1) that the minus quadrature variance of the two-

mode cavity light beams versus Ω for γc = 0.4, N = 50, κ = 0.8, and for different values
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Figure 4.1: Plots of quadrature variance (∆c−)2 [Eq. (4.54)] versus Ω

of γ. The plots in Fig. (4.1) show that the minus quadrature variance when γ = 0 is

less than when γ = 0.1 in the interval 0 ≤ Ω ≤ 0.36 and minus quadrature variance

when γ = 0 is greater than when γ = 0.1 for Ω > 0.361. And the minus quadrature vari-

ance when γ = 0 is less than when γ = 0.2 in the interval 0 ≤ Ω ≤ 0.38 and the minus

quadrature variance when γ = 0 is greater than when γ = 0.2 for Ω > 0.38. Moreover,

plots in the same figure show that the minus quadrature variance when γ = 0.1 is less

than when γ = 0.2 in the interval 0 ≤ Ω ≤ 0.4 and the minus quadrature variance when

γ = 0.1 is greater than when γ = 0.2 for Ω > 0.4. Furthermore, from the same plots the

quadrature variance increases as spontaneous emission γ increases for Ω is small.

Next we proceed to calculate the quadrature squeezing of the two-mode cavity light

in the entire frequency interval relative to the quadrature variance of the two-mode

vacuum state. We then define the quadrature squeezing of the two-mode cavity light
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by [6]

S =
(∆ĉ−)2

v − (∆ĉ−)2

(∆ĉ−)2
v

. (4.59)

It then follows that

S = 1− (∆ĉ−)2

(∆ĉ−)2
v

. (4.60)

In view of Eqs. (4.54) and (4.58), the quadrature squeezing of the two-mode cavity light

takes, at steady-state, the form

S =

[
2Ω(γc + γ)− Ω2

(γc + γ)2 + 3Ω2

]
. (4.61)

This represents the quadrature squeezing of the two-mode cavity light produced by the

coherently driven nondegenerate three-level laser with an open cavity and coupled to

a two-mode vacuum reservoir.

We observe from this equation that unlike the mean photon number and the

quadrature variance, the quadrature squeezing does not depend on the number of

atoms. This implies that the quadrature squeezing of the two-mode cavity light is inde-

pendent of the number of atoms.

Applying Eqs. (3.2) and (3.10), we find

〈b̂â〉 =
γc

κ
〈m̂3〉. (4.62)

Since 〈b̂〉 = 〈â〉 = 0, we see that light modes a and b are correlated. The squeezing of

the two-mode cavity light is due to this correlation. The two-mode light can be used in

experiments involving entangled light modes.

In addition, we consider the case in which spontaneous emission is absent (γ = 0).

Then the quadrature squeezing for this case takes the form

S =

[
2Ωγc − Ω2

γ2
c + 3Ω2

]
. (4.63)
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Figure 4.2: Plot of the quadrature squeezing [Eq. (4.61)] versus Ω.

The result described by Eq. (4.63) is exactly the same as the one obtained by Tamirat

[4]. The plots on Fig. (4.2) indicates that describes the quadrature squeezing versus

Ω for γc = 0.4, κ = 0.8, N = 50, and for different values of γ. From these plots, we find

that the maximum quadrature squeezing to be the same in the presence as well as in

the absence of spontaneous emission. The plots in Fig. (4.2) show that the quadrature

squeezing when γ = 0 is greater than when γ = 0.1 in the interval 0 ≤ Ω ≤ 0.36 and

the quadrature squeezing when γ = 0 is less than when γ = 0.1 for Ω > 0.361. And the

quadrature squeezing when γ = 0 is greater than when γ = 0.2 in the interval 0 ≤ Ω ≤

0.38 and the quadrature squeezing when γ = 0 is less than when γ = 0.2 for Ω > 0.38.

Moreover, plots in the same figure show that the quadrature squeezing when γ = 0.1

is greater than when γ = 0.2 in the interval 0 ≤ Ω ≤ 0.4 and the quadrature squeezing

when γ = 0.1 is less than when γ = 0.2 for Ω > 0.4. Furthermore, from the same plots the

maximum squeezing is found to be 36% for γ = 0.2 (dashed curve), for γ = 0.1 (dotted

curve), and for γ = 0 (solid curve) below the vacuum-state level. These occur when the

three-level laser is operating at Ω = 0.4343, Ω = 0.3636, and Ω = 0.2929, respectively.



5

Generation of Entanglement quantification of the

two-mode light

In this chapter we seek to study the photon entanglement as well as atom entangle-

ment of a two-mode laser light beams produced by the coherently driven nondegen-

erate three-level lasers with open cavities and coupled to the two-mode vacuum reser-

voirs via single-port mirrors. Applying the solutions of the equations of evolution of the

expectation values of the atomic operators and the quantum Langevin equations for

the cavity mode operators, we obtain the entanglement of the two-mode light beams.

5.1 Photon Entanglement

Here, we prefer to analyze the entanglement of photon-states in the laser cavity. Quan-

tum entanglement is a physical phenomenon that occurs when pairs or groups of par-

ticles cannot be described independently instead, a quantum state may be given for the

system as a whole. Measurements of physical properties such as position, momentum,

spin, polarization, etc. performed on entangled particles are found to be appropriately

correlated. A pair of particles is taken to be entangled in quantum theory, if its states

cannot be expressed as a product of the states of its individual constituents. The prepa-

ration and manipulation of these entangled states that have nonclassical and nonlocal

properties lead to a better understanding of the basic quantum principles. It is in this

spirit that this section is devoted to the analysis of the entanglement of the two-mode

66
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photon states. In other words, it is a well-known fact that a quantum system is said

to be entangled, if it is not separable. That is, if the density operator for the combined

state cannot be described as a combination of the product density operators of the con-

stituents,

ρ̂ 6=
∑

k

pkρ̂
(1)
k ⊗ ρ̂

(2)
k , (5.1)

in which pk � 0 and
∑

k pk = 1 to verify the normalization of the combined density

states. On the other hand, a maximally entangled CV state can be expressed as a co-

eigenstate of a pair of EPR-type operators [31] such as x̂a − x̂b and P̂a − P̂b. The total

variance of these two operators reduces to zero for maximally entangled CV states. Ac-

cording to the inseparable criteria given by Duan et al[30],the cavity photon-states of a

system are entangled, whereas the sum of the variance of a pair of EPR-like operators is

stated as follows,

ŝ = x̂a − x̂b, (5.2)

t̂ = p̂a + p̂b, (5.3)

where

x̂a =
1√
2

(
â + â†

)
, (5.4)

x̂b =
1√
2

(
b̂ + b̂†

)
, (5.5)

p̂a =
i√
2

(
â† − â

)
, (5.6)

p̂b =
i√
2

(
b̂† − b̂

)
, (5.7)

are quadrature operators for modes a and b, satisfy

∆s2 + ∆t2 < 2N (5.8)
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and recalling the cavity mode operators â and b̂ are Gaussian variables with zero mean,

we readily get

∆s2 + ∆t2 =

[
〈â†â〉+ 〈ââ†〉+ 〈b̂†b̂〉+ 〈b̂b̂†〉

]
−

[
〈âb̂〉+ 〈â†b̂†〉+ 〈b̂â〉+ 〈b̂†â†〉

]
. (5.9)

Thus with the aid of Eqs. (3.2) and (3.10), we see that

∆s2 + ∆t2 =
2γc

κ

[
N + 〈N̂b〉 − 2〈m̂3〉

]
. (5.10)

It then follows that

∆s2 + ∆t2 = 2∆c2
−. (5.11)

where ∆c2
− is given by (4.54). One can readily see from Eq.(5.11), the degree of entan-

glement is directly proportional to the the minus quadrature variance of the two-mode

light.

One can immediately notice that, this particular entanglement measure is directly

related the two-mode squeezing. This direct relationship shows that whenever there is

a two-mode squeezing in the system there will be entanglement in the system as well.

It is noted that the entanglement disappears when the squeezing vanishes. This is due

to the fact that the entanglement is directly related to the squeezing as given by (4.53).

It also follows that like the mean photon number and quadrature variance the degree of

entanglement depends on the number of atom. With the help of the criterion (5.8) that

a significant entanglement between the states of the light generated in the cavity. This

is due to the strong correlation between the radiation emitted when the atoms decay

from the upper energy level to the lower via the intermediate level.

On account of Eqs. (2.119) and (2.121), the photon entanglement of the two-mode

cavity light takes, at steady-state, the form

∆s2 + ∆t2 =
2γc

κ
N

[
(γc + γ)2 + 4Ω2 − 2Ω(γc + γ)

(γc + γ)2 + 3Ω2

]
. (5.12)
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Figure 5.1: Plot of the photon entanglement of the two-mode cavity light [Eq. (5.12)]

versus Ω

This is the steady-state the photon entanglement of a two-mode cavity light produced

by the coherently driven non-degenerate three-level laser with an open cavity and cou-

pled to a two-mode vacuum reservoir.

We next proceed to consider the case in which spontaneous emission is absent (γ =

0). Then the photon entanglement for this case takes the form

∆s2 + ∆t2 =
2γc

κ
N

[
γ2

c + 4Ω2 − 2Ωγc

γ2
c + 3Ω2

]
. (5.13)

In addition, we note that for Ω � γc, Eq. (5.13) reduces to

∆s2 + ∆t2 =
8γc

3κ
N. (5.14)

This can be rewritten as

∆s2 + ∆t2 = 4n̄, (5.15)

where n̄ is given by Eq. (3.126).
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The plots on Fig. (5.1) describes the photon entanglement of the two-mode cavity

light Ω for γc = 0.4, κ = 0.8, N = 50, and for different values of γ. From these plots along

with Eq. (5.12), we have

γ ∆s2 + ∆t2 Ω

γ = 0.2 32 0.4343

γ = 0.1 32 0.3636

γ = 0 32 0.2929

Table 5.1: Values of ∆s2 + ∆t2 for γc = 0.4, κ = 0.8, and N = 50.

When we see the plots on Fig. (5.1) that as the spontaneous emission decay constant

increases the photon entanglement also decreases. Similarly, as we observe from the

data on Table 5.1, the photon entanglement is decreased with increasing of the sponta-

neous emission decay constant. From these plots and values of κ = 0.8, γc = 0.4, and

N = 50, we determined the maximum photon entanglement is 34% and it occurs at

Ω = 0.2929, Ω = 0.3636, and Ω = 0.4343 for γ = 0, γ = 0.1, and γ = 0.2 respectively.

5.2 Cavity Atomic-States Entanglement

The quantum entanglement between the two cavity modes a and b proposed by Duan-

Giedke-Cirac-Zoller (DGCZ) [30], which is a sufficient condition for entangled quantum

states. According to DGCZ, a quantum state of a system is said to be entangled if the

sum of the variances of the EPR-like quadrature operators, û and v̂, satisfy the inequality

∆u2 + ∆v2 < 2N2. (5.16)

On the other hand, cavity atomic-states of a system are entangled, if the sum of the

variance of a pair of EPR-like operators,

û = x̂′a − x̂′b, (5.17)

v̂ = p̂′a + p̂′b, (5.18)
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Figure 5.2: Plot of the atom entanglement of the two-mode cavity light [Eq. (5.25)] ver-

sus Ω.

where

x̂′a =
1√
2

(
m̂1 + m̂†

1

)
, (5.19)

x̂′b =
1√
2

(
m̂2 + m̂†

2

)
, (5.20)

p̂′a =
i√
2

(
m̂†

1 − m̂1

)
, (5.21)

p̂′b =
i√
2

(
m̂†

2 − m̂2

)
, (5.22)

Since m̂1 and m̂2 are Gaussian variables with zero means, so one can easily verify that

∆u2 + ∆v2 =

[
〈m̂†

1m̂1〉+ 〈m̂1m̂
†
1〉+ 〈m̂†

2m̂2〉+ 〈m̂2m̂
†
2〉 − 〈m̂

†
2m̂

†
1〉 − 〈m̂1m̂2〉

]
. (5.23)

Now with the aid of (2.70) and (2.71), Eq. (5.23) takes the form

∆u2 + ∆v2 = N
[
N + 〈N̂a〉 − 2〈m̂3〉

]
. (5.24)
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On account of Eqs. (2.119) and (2.121), the cavity atomic-states entanglement of the

two-mode cavity light takes, at steady-state, the form

∆u2 + ∆v2 = N2

[
(γc + γ)2 + 4Ω2 − 2Ω(γc + γ)

(γc + γ)2 + 3Ω2

]
. (5.25)

This is the steady-state the cavity atomic-states entanglement of a two-mode cavity

light produced by the coherently driven non-degenerate three-level laser with an open

cavity and coupled to a two-mode vacuum reservoir. When we observe Eq. (5.25), the

cavity atomic-states entanglement of the two-mode cavity light highly depends on the

number of atoms.

We next proceed to consider the case in which spontaneous emission is absent (γ =

0). Then the cavity atomic-states entanglement for this case takes the form

∆u2 + ∆v2 = N2

[
γ2

c + 4Ω2 − 2Ωγc

γ2
c + 3Ω2

]
. (5.26)

In addition, we note that for Ω � γc, Eq. (5.26) reduces to

∆u2 + ∆v2 =
4

3
N2. (5.27)

Furthermore, when Ω = 0, Eq. (5.26) turns out to be

∆u2 + ∆v2 = N2. (5.28)

The plots on Fig. (5.2) describes atom entanglement of the two-mode cavity light versus

Ω for γc = 0.4, and for different values of γ. From the plots on Fig. (2.93) along with Eq.

(5.25), we have

γ ∆u2 + ∆v2 Ω

γ = 0.2 1599 0.4343

γ = 0.1 1599 0.3636

γ = 0 1599 0.2929

Table 5.2: Values of ∆u2 + ∆v2 for γc = 0.4, κ = 0.8, and N = 50.
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When we see the plots on Fig. (5.2) that as the spontaneous emission decay constant

increases the atom entanglement also decreases when it occurs at the same value of Ω.

Similarly, as we observe from the data on Table 5.2, the atom entanglement is decreased

with increasing of the spontaneous emission decay constant, γ. From these plots and

values of κ = 0.8, γc = 0.4, and N = 50, we determined the maximum atom entangle-

ment is 17% and it occurs at Ω = 0.2929, Ω = 0.3636, and Ω = 0.4343 for γ = 0, γ = 0.1,

and γ = 0.2, respectively.

On the basis of the criteria (5.8) and (5.16), we clearly see that the two states of the

generated light are strongly entangled at steady-state. Moreover, the absence of thermal

light leads to an increase in the degree of entanglement. Furthermore, when we observe

from Figs. (5.1) and (5.2) that the degree of cavity-atomic state entanglement is greater

than the photon entanglement of light.
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Conclusion

In conclusion, the squeezing and entanglement properties of a non-degenerate three-

level laser driven by coherent light and coupled to a two-mode vacuum reservoir via a

single-port mirror whose open cavity contains N non-degenerate three-level atoms, are

thoroughly analyzed. We carried out the analysis by putting the noise operators asso-

ciated with the vacuum reservoir in normal order and by considering the interaction of

a three-level atoms with the vacuum reservoir outside the cavity. The master equation

and the quantum Langevin equations for the cavity light is obtained. Applying these

equations, the equations of evolution of the cavity mode and the atomic operators are

solved. Making use of the steady-state solutions of atomic and cavity mode operators,

the quadrature variance, the quadrature squeezing, and the entanglement for the two-

mode cavity light, at steady state, are determined. .

The analysis showed that the interactivity quadrature squeezing is enhanced due

to in the absence spontaneous emission. It is found that the squeezing and entangle-

ment in the two-mode light is directly related. As a result, an increase in the degree

of squeezing directly implies an increase in the degree of entanglement and vise versa.

This shows that whenever there is squeezing in the two-mode light, there exists entan-

glement in the system. It is found to be the maximum quadrature squeezing is 36% for

γ = 0.2. Moreover, the more the mean photon number is the more bright light. Hence

the absence of spontaneous emission gives bright and squeezed light beams.
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