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ABSTRACT  

In this thesis, we consider singularly perturbed differential equation containing delay 

parameter on the convection and reaction terms. The considered problem exhibits left or right 

boundary layer, depending on the sign of the coefficient of convection term. The terms with 

delay treated using Taylor’s series approximation. The resulting asymptotically equivalent 

singularly perturbed boundary value problem is solved using the technique of fitted mesh 

finite difference method. The stability and consistency of the scheme is investigated to 

guarantee the convergence of the scheme. Further, the theoretical finding is validated using 

numerical examples that confirm the betterment of the present method than some existing 

method in the literature.  
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CHAPTER ONE 

                                                 INTRODUCTION 

1.1 Background of the Study 

In real life, we often encounter many problems which are described by parameter dependent 

differential equations. The behaviors of the solutions of these types of differential equation 

depend on the magnitude of the parameters. Any differential equation in which the highest 

order derivative is multiplied by a small positive parameter   (0  <<1) is called singular 

perturbation problem and the parameter is known as the perturbation parameter. Singularly 

perturbed second order two – point boundary value problem occur very frequently in fluid 

motion, chemical reactor theory, elasticity, diffusion in polymer, reaction – diffusion 

equation, control of chaotic system and so on (Kadalbajoo and Kumar, 2008). 

In numerical analysis, finite-difference methods (FDM) are a class of numerical techniques 

for solving differential equations by approximating derivatives with finite differences. Finite 

difference methods convert ordinary differential equations (ODE) or partial differential 

equations (PDE), which may be nonlinear, into a system of linear equations that can be 

solved by appropriate iterative techniques. Modern computers can perform these linear 

algebra computations efficiently which, along with their relative ease of implementation, has 

led to the widespread use of FDM in modern numerical analysis. Today, FDM are one of the 

most common approaches to the numerical solution of ODE, along with finite element 

methods. Singularly perturbed delay differential equation (SPDDE) is an ordinary differential 

equation in which the highest derivative is multiplied by a small parameter and containing 

delay term.  

If the order of singularly perturbed differential equation is reduced by one then the problem 

called as convection-diffusion type and if the order is reduced by two it is called reaction-

diffusion type. Hence, Second order singularly perturbed self-adjoint ordinary differential 

equations are types of reaction-diffusion problem. Due to the importance of these problems in 

real life situations, the need to develop numerical methods for approximating its solution is 

advantageous. But, numerically solving the singularly perturbed differential equations 

depends up on the small positive parameters; so that, the solution varies rapidly in some parts 

of the domain and varies slowly in some other parts of the domain because of the existence of 

boundary layer.  

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Differential_equations
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Finite_difference_approximation
https://en.wikipedia.org/wiki/Ordinary_differential_equations
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Nonlinear_partial_differential_equation
https://en.wikipedia.org/wiki/System_of_linear_equations
https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Finite_element_method
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Recently Kadalbajoo and Gupta (2010) one can find a number of papers dealing with the 

numerical solutions of singularly perturbed BVPs, singularly perturbed problems having 

delay on the convection or reaction term only. Singularly perturbed differential equations 

having delay on both the convection and reaction terms are not studied well. To review the 

numerical schemes developed for solving such problems so far; Kumar Kadalbajoo (2012) 

considered a singularly perturbed problem having delays on the convection and reaction 

terms. The authors used Taylor’s series  approximation for the delay terms and converted the 

problem into equivalent BVPs. The authors computed the numerical solutions using B-spline 

collocation method on shishkin mesh. In (2016) the authors used Tailor’s series 

approximation for the delay terms and apply fifth and sixth order finite difference 

approximation for the derivative terms and develop finite difference scheme 

Erdogan and Amiraliyev (2012) presented fitted finite difference method for singularly 

perturbed delay differential equations. An exponentially fitted difference scheme is 

constructed in an equidistant mesh, which gives first order uniform convergence in the 

discrete maximum norm. The difference scheme is shown to be uniformly convergent to the 

continuous solution with respect to the perturbation parameter.  

Debela and Duressa (2020) presented finite difference scheme for singularly perturbed 

reaction diffusion problem of delay differential equation with nonlocal boundary condition. A 

small parameter is multiplied in the higher order derivative, which gives boundary layers, and 

due to the delay term, one more layer occurs on the domain. A simple but novel numerical 

method is developed to approximate the numerical solution of this types. The method gives 

accurate solutions for mesh size discritized is greater than or equal to singular perturbation 

parameter in the inner region of the boundary layer where other classical numerical methods 

fail to give smooth solution.   

The above authors presented convergent methods have not been sufficiently developed for a 

wide class of singularly perturbed delay differential equations.   Thus, this study is aimed at 

presenting a numerical method that is more satisfactory accurate solution and uniformly 

convergent method for solving singularly perturbed delay differential equations with negative 

shifts in convection and reaction terms.  
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1.2. Statement of the problem 

The numerical analysis of singular perturbation problems has always been far from trivial 

because of the boundary layer behavior of the solution. Such problems undergo rapid changes 

within very thin layers near the boundary or inside the domain of the problem. The field of 

DDE attracted mathematicians and engineers due to the following reasons. Firstly, we have to 

find an appropriate approximation of the solution at the delayed arguments. Secondly, the 

algorithm has to take care of the jump in the discontinuity due to the delay parameter and 

thirdly, its solution behavior is very interesting with layers. 

However the competition of its solution has been a great challenge and has been of great 

importance due to the versatility of such equations. In mathematical modeling of process in 

various application fields, where they provide the best simulation of observed phenomena 

and hence the numerical approximation of such equations has growing more and more, 

(Amiraliyev & Erdogan, 2007) 

Ongoing this, the present study attempt to answer the following questions: 

1. How does investigate the convergence of proposed method?  

2. How do the present methods be described for singularly perturbed DDE? 

3. How to illustrate the applicability and advantageous of the proposed method?   

1.3 Objectives of the study 

1.3.1 General Objective 

The general objective of this study is to present almost second order finite difference method 

for singularly perturbed delay differential equation.  

1.3.2 Specific objective 

 To develop finite difference method for singularly perturbed DDE.  

 To establish the convergence of the proposed method 

 To investigate the accuracy of the proposed method.  
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1.3.3 Significance of the study 

The outcomes of this study may have the following importance: 

 Provide some background information for other researchers who work on this area.  

 To introduce the application of numerical methods in different field of studies 

 Help graduate students to acquire research skills and scientific procedures.  

 

1.3.4 Delimitation of the study 

The singularly perturbed DDEs perhaps arise in variety of applied mathematics that contributes for 

the advancement of science and technology. Though singularly perturbed DDEs are vast topics and 

have many applications in the real world, this study is delimited to almost second order finite 

difference method for solving singularly perturbed DDEs  of the form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), (0,1)u x x u x x u x x u x f x x              ,
 

with interval and boundary conditions:  
  

( ) ( ), 0, (1)u x x x u       , 
 

where   , 0 1   is perturbation parameter and   is delay parameter satisfying 0    .  

The functions )(),(),( xxx  and )(xf are assumed to be smooth and bounded to guarantee 

the existence and unique solution.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1. Finite difference method 

Finite difference methods were made during the period of, and immediately following, the Second 

World War, when large-scale practical applications become possible with the aid of computers. A 

major role was played by the work of von Neumann, partly reported in O’Brien, Hyman and Kaplan 

(1951). 

Finite difference methods are always a convenient choice for solving boundary value problems 

because of their simplicity. Finite difference methods are one of the most widely used numerical 

schemes to solve differential equations and their application in science and technology. In finite 

difference methods, derivatives appearing in the differential equations are replaced by finite 

difference approximations at the grid points. This gives a large algebraic system of linear equations to 

be solved by Thomas Algorithm or other methods in place of the differential equation to give the 

solution value at the grid points and hence the solution is obtained at grid points. Some of the finite 

difference methods include forward difference methods, backward difference method, central 

difference method, etc.  

Present-day scientific research concerns on the methods of numerical solutions to 

mathematical problems which are simpler to use and solve difficult problems. Accordingly, 

obtaining stable, accurate, uniformly convergent and fast numerical solutions for singularly 

perturbed delay differential equations has a great importance due to its wide applications in 

science and engineering research, since they are difficult or impossible to solve analytically. 

Owing to this, this study presents parametric uniform numerical methods for solving finite 

element method for singularly perturbed delay differential equations by the methods of 

second order.  

2.2. Singularly perturbed Delay Differential Equation 

The theory and numerical solution of singularly perturbed delay differential equations are still 

at the initial stage. In the past, only very few people had worked in the area of numerical 

methods on singularly perturbed delay differential equations (SPDDEs). But in the resent 

years there have been a growing interest in this area.  Kadalbajoo and Sharma (2008) and 

Mohapatra and Netesan (2010) proposed some numerical methods for SPDDEs with small 

delay. It may be noted that Lange and Miura (1982) gave an asymptotic approximation to 
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solve singularly perturbed second order delay differential equations. In the present work a 

numerical method named as Initial Value Technique (IVT) is suggested to solve the boundary 

value problems for second order ordinary differential equations of reaction diffusion type 

with negative shift in the differentiated term. The initial value method was introduced by the 

authors Gasparo and Macconi (1990). In fact they applied this method to solve singularly 

perturbed boundary value problems for differential equations without negative shift/delay.  

A delay differential equation (DDE) is an equation where the evaluation of the system at a 

certain time, depends on the state of the system at an earlier time. This is distinct from 

ordinary differential equation (ODEs) where the derivatives depend on the current value of 

the independent variable. A DDE is said to be of retarded delay differential equation (RDDE) 

if the delay argument does not occur in the highest order derivative term, otherwise it is 

known as neutral delay differential equation (NDDE). If we restrict it to a class in which the 

highest derivative term is multiplied by small parameter, then we obtain singularly perturbed 

delay differential equations of the retarded type. Frequently, delay differential equations have 

been reduced to differential equations with coefficients that depend on the delay by means of 

first order accurate Taylor’s series expansions of the terms that involve delay the resulting 

differential equations have been solved either analytically when the coefficients of these 

equations are constant or numerically, when they are not. When the delay argument is 

sufficiently small, to tackle the delay term Kadalbajoo and Sharma (2004) used Taylor’s 

series expansion and presented an asymptotic as well as numerical approach to solve such 

type boundary value problem. But the existing methods in the literature fail in the case when 

the delay argument is bigger one because in this case, the use of Taylor’s series expansion for 

the term containing delay may lead to a bad approximation.  

2.3. Recent development 

Amiraliyev and Erdogan (2007) presented a uniformly almost second order convergent 

numerical method for singularly perturbed delay differential equations. The problem is solved 

by using a hybrid difference scheme on a Shishkin-type mesh. The method is shown to be 

uniformly convergent with respect to the perturbation parameter. Numerical experiments 

illustrate in practice the result of convergence proved theoretically. 
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Kadalbajoo and Sharma (2008) presented A numerical method based on finite difference for 

boundary value problems for singularly perturbed delay differential equations When the 

delay argument is sufficiently small, to tackle the delay term, the researchers Kadalbajoo, 

Sharma, Numerical analysis of singularly perturbed delay differential equations with layer 

behavior. 

Erdogan and Amiraliyev (2012) presented fitted finite difference method for singularly 

perturbed delay differential equations. An exponentially fitted difference scheme is 

constructed in an equidistant mesh, which gives first order uniform convergence in the 

discrete maximum norm. The difference scheme is shown to be uniformly convergent to the 

continuous solution with respect to the perturbation parameter. 

Erdogan and Cen (2018) presented a uniformly almost second order convergent numerical 

method for singularly perturbed delay differential equations. The problem is solved by using 

a hybrid difference scheme on a Shishkin-type mesh. The method is shown to be uniformly 

convergent with respect to the perturbation parameter. Numerical experiments illustrate in 

practice the result of convergence proved theoretically. 

Gemechis File (2021) presented singularly perturbed boundary value problems with negative 

shift parameter are special types of differential-difference equations whose solution exhibits 

boundary layer behavior. A simple but novel numerical method is developed to approximate 

the numerical solution of the problems of these types.  The method gives accurate solutions 

for h in the inner region of the boundary layer where other classical numerical methods 

fail to give smooth solution.  

Furthermore, Woldaregay and Duressa (2021) developed a robust numerical method for 

solving singularly perturbed differential difference equations with small negative shifts both 

in convection and reaction terms. The authors applied nonstandard finite difference method 

and investigated for the stability and convergence. However, it is proved that the method is 

almost first order convergent. 

Selvakumar (2022) two new optimal and uniform third-order schemes for Singular 

Perturbation Problems with Initial Layers. This article presents two numerical methods of the 

order of three for singular perturbation problems, with a small positive parameter using finite 

differences. It is a problem with an initial layer in the neighborhood of the initial nodal point 

whose width is of the order of the small parameter. 
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The above authors presented convergent methods have developed for a wide class of 

singularly perturbed delay differential equations.    

Thus, this study is presented accurate and uniformly convergent method. But we are going to 

find more accurate and uniformly convergent solution by using almost second order finite 

difference method for singularly perturbed delay differential equation. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Study Area and period 

The study is conducted at Jimma University under the department of Mathematics from 

September 2021 to June 2022. 

3.2. Study Design 

This study employ mixed-design (documentary review design and experimental design) on 

finite difference method for singularly perturbed delay differential equations.   

3.3. Source of Information 

The relevant sources of information for this study are books, published articles & related 

studies from internet.  

3.4. Mathematical Procedure 

In order to achieve the stated objectives, the study follows the following procedures:  

1. Defining the problem,  

2. Develop asymptotically equivalent to the defined problem.  

3. Discretizing the solution domain 

4. Constructing  finite difference method that give the systems of algebraic equations, 

5. Establishing the stability and convergence of the proposed scheme, 

6. Writing MATLAB code for the proposed scheme 

7. Validate using numerical examples.  



 

10 
 

CHAPTER 4 

DESCRIPTIONS OF THE METHODS AND RESULTS 

4.1. Description of the method 

Consider the singularly perturbed DDEs having delay in the convection and reaction terms of the 

problem with interval-boundary conditions have the form:       

( ) ( ) u ( ) ( ) u( ) ( ) u( ) ( ), (0,1),

u( ) ( ), 0,

u(1) ,

u x x x x x x x f x x

x x x

     

 



         


   
 

          (4.1) 

where ,(0 1)    is singular perturbation parameter and   is delay parameter satisfying 

0    . The functions ( ), ( ), ( )x x x   and ( )f x are assumed to be smooth, bounded and 

not a function of  for guaranteeing the existence of unique solution. Further, we assume that 

( ) ( ) 0, [0,1]x x x        to ensure the problem in Eq. (4.1) exhibits boundary layer of 

thickness ( )O  . Then position of the boundary layer depends on the convection terms: For 

( ) ( ) 0x x    left boundary layer exist and for (x) (x) 0    right boundary layer exist, 

Mesfin and Gemechis (2021).   

To review the numerical schemes developed for solving the problem in Eq. (4.1) different authors 

used Taylor’s series approximation for the delay terms and convert the considered problem into 

equivalent BVPs. For instance, Mesfin and Gemechis (2021) solve this BVP using Robust 

Numerical Scheme For Solving Singularly Perturbed Differential Equations Involving Small 

Delays.  

However, due to the applicability of the problem in real-life phenomena, accuracy of the solution 

takes attention. Thus in this thesis, we developed almost second order Finite Difference scheme 

using piecewise uniform shishkin mesh for solving singularly perturbed DDEs. In singular 

perturbation problems, when the delay parameter is smaller than the perturbation parameter, 

treating the delay terms using Taylor’s series approximation is acceptable Tian(2002), Mesfin and 

Gemechis (2021).  
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So we approximate both the delay function from Eq. (4.1) as  

2

2
3

u ( ) ( ) ( ) ( )

u( ) ( ) ( ) u ( ) ( )
2

x u x u x O

x u x u x x O

  


  

      



     


                      (4.2) 

Since 0 ,    for sufficiently small ,  substituting the approximation in Eq. (4.2) into Eq. (4.1) 

yields the boundary value problem of the form:  

( ) ( ) u ( ) ( ) u ( ) ( ) u( ) ( ), (0,1),

(0) (0),

(1) ,

Lu x c x x p x x q x x f x x

u

u





      



 

          (4.3)  

where L  is differential operator and coefficient functions are: 

2

( ) ( ) ( ), 0 ( )
2

( ) ( ) ( )

( ) ( ) ( )

c x x x c x

p x x x

q x x x


   

 

 

    

 

 

 

Now, for small   the problem in Eq. (4.3) is asymptotically equivalent to Eq. (4.1).  Assume that 

( ) 0,p x   and consider the case 
0 0( ) 0, (p x p p   is constant), which implies the existence of 

right boundary layer. If 
1( ) 0,p x p   (

1p  is constant) then Eq. (4.3) exhibits left boundary layer.  

4.1.1. Properties of continuous solution 

Lemma 1: (Maximum principle.) Let z  be a sufficiently smooth function defined on   which 

satisfies  ( ) 0, 0,1 .z x x  Then ( ) 0,Lz x x    implies that  ( ) 0, .z x x           

by Woldaregay and Duressa, (2020). 

Proof. Let *x be such that 
( )

( *) min ( )
x

z x z x


  and suppose that ( *) 0z x  . It is clear that   

 * 0,1x  . Since 
( )

( *) min ( )
x

z x z x


   from extreme values in calculus we have 

( *) 0z x   and ( *) 0z x   and implies that ( *) 0Lz x  which is contradiction to the 

assumption that made above ( *) 0, .Lz x x    Therefore ( ) 0, .z x x   .  
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Lemma 2 (Stability): Let ( )u x  be the solution of the problem in Eq. (4.3). then we obtain the 

bound  

 ( ) max , ,
f

u x  


    

For q( ) 0,x   and   is lower bound of q( )x . 

Proof. Defining barrier functions ( , )v x t
 as    , max , ( )

f
v x t u x 


     and applying the 

maximum principle, we obtain the required bound. At the boundary points, 

 

 

(0) max , (0) 0,

(0) max , (0) 0.

f
v u

f
v u

 


 






   

   

 

On differential operator 

     

   

( ) ( ) ( ) ( ) ( ) ( )

0 ( ) ( )(0 ( )) ( ) max ,

( ) max ,

0, since ( ) 0,

Lv x cv x p x v x q x v x

Lu
c u x p x u x q x u x

Lu
q x f x

q x

 


 




   
    

 
         

 

 
   

 

  

 

which implies ( ) 0.Lv x 
 
Hence, by maximum principle we obtain, ( ) 0, .v x x     

Lemma 3 (Boundedness condition): The bounded on the derivative of the solution  u x  of the 

problem in (4.3) is given by  

( ) *
( ) 1 (x) exp( ) , , 0 4,

(x)

i i p x
u x C c x i

c

 
      

 
 for left boundary layer. 

( ) *(1 )
( ) 1 (x) exp( ) , , 0 4,

( )

i i p x
u x C c x i

c x

 
      

 
for right boundary layer.  

Proof. See  Woldaregay and  Duressa  (2020). 
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4.1.2. Formulation of Numerical Scheme 

To define a piecewise-uniform mesh, we consider a positive integer 4.N   Since the solution of 

the problem in Eq. (4.3) exhibits left or right boundary layer depending on the function of 

( ) 0p x  or ( ) 0p x  respectively, we choose the transition parameter  defined by  

1
min , 2 ln( )

2
N 

 
  

 
         (4.4) 

Now divide the solation domain [0,1]  in to two subintervals  0, and  ,1 or 

  0,1   and  1 ,1 with 
2

N
points.  Thus, the mesh spacing in the subintervals is given by: 

 

 

2
, 1, 2,...,

2

2 1
, 1,... ,

2

i

N
i

N
h

N
i N

N








 
  



      (4.5) 

for left boundary layer cases and  

         

 2 1
1, 2,...,

2

2
, 1,... ,

2

i

N
i

Nh
N

i N
N





 


 
  


       4.6) 

for right boundary layer respectively.  The mesh nodal points are given by: 

           

0, 0,

, 1,2,... 1,

1, .

i i

i

x ih i N

i N




  
   

Denoting this discretization of the solution domain by ,N and  
iu is the approximation of ( )iu x , 

so that the discrete form of (4.3) on N , for 1,2,... 1i N  is given by 

 

  
2 0 ,i i i i i i ic u p u q u f                           (4.7) 

where  2 0 1 1 1 1

1 1 1

2
( ), , , .i i i i i i

i i i i i i

i i i i i i

u u u u u u
u u u u u u

h h h h h h
           

  

  
    

 
 

for   is an operator  
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Further, the scheme in (4.7) can be re-written as in the form of three-term recurrence relation:  

1 1 ,i i i i i i iE u Fu Gu H            (4.8) 

where    

1 1 1 1 1 1

2 2 2
, , , and

( ) ( )

i i i i i
i i i i i i

i i i i i i i i i i i i

c p c c p
E F q G H f

h h h h h h h h h h h h     


       

   
 

4.1.3. Stability Analysis 

The matrix form of obtained scheme can be written as   

,MU B           (4.9) 

where    

1 1

2 2 2 1 1 0

1

3 3 3 2

2

4 4 4 3

1

2 2 2 1 1

1 1

0 0 0 0

0 0 0

0 0 0

0 0 0 , ,

0

0

0

N

N N N N N N

N N

F G

E F G H E U
u

E F G H
u

M E F G u B H

u
E F G H G U

E F



    

 

 
 

                                    
 
 

. 

Definition: (M-Matrices) (from the book by Martin and David, 2018): A given square matrix 

(m )ijM  is said to be M-matrix if 0,ijm i j   ,  0,iim i   and then the inverse, 1M  exist 

with each entries are greater or equal to zero. Then, the difference schemes whose coefficient 

matrices satisfy M-matrices are generally stable. Further, a square matrix (m )ijM  is said to be 

strictly diagonally dominant if  

, .ii ij

i j

m m i


   

In our case, from system of Eq. (4.9), we have: 

 

,

, 1 ,

, 1,

0, otherwise

ii i

ij i

ij i

ij

m F

m E i j

m G i j

m



  

  


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Thus, the diagonal dominance defined above can be verified as:   

 

1 1 1 1

1 1 1 1 1 1

2 2 2

(h h ) (h h )

ii i j ij i j ij

i i i

i i i i i
i

i i i i i i i i i i i i

m m m m m

F E G

c c p c p
q

h h h h h h h h

   

     

   

 

 
    

   

 

which can be satisfied by: 0iq   .  

Hence, the difference schemes in Eq. (4.9) that employ M  matrix is stable. Thus, the formulated 

scheme in Eq. (4.8) satisfies the definition of M-matrix that consequences stability of scheme.   

4.1.4. Truncation Error    

The truncation error for the described method will be investigated. To achieve this investigation, 

the local truncation error ( )iT h  between the exact solution ( )iU x , and the approximate solution
iY  

is given by          

  0

1

2
( ) u ( ) ( ) u ( ) ( ) u( ) ( )i

i i i i i i i i i i i i i

i i

c
T h c x x p x x q x x u u p u q u

h h
   



 
          

 
  

Using Taylor’s series expansion to 
iu  around 

ix , we have the approximation for 
1iu 
 as 

                     
2 3

1 1

4
(4) 51

1 1 12 6
( )

24
i ih h i

i i i i i i i i

h
u u h u u u u O h  

  
       

                
(4.12) 

                     
2 3 4

(4) 5

1 2 6 24
( )i i ih h h

i i i i i i i iu u h u u u u O h
        .        

From these two basic equations, we obtain the following: 

                    
3 4

1 1 1 1

1

(4) 4

12 6 24
( )i i i i i

i

u u h h h

i i i i i ih
u u u u u O h    






                                                       (4.13) 

                       
2 3

1 (4) 4

2 6 24
( )i i i i i

ii

u u h h h

i i i i ih
u u u u u O h                                                                (4.14) 

                  

3 3
0 1 1 1 1

1 1

...,
2 6(h h )

i i i i i i
i i i

i i i i

u u h h h h
u u u

h h
    

 

  
    

 
                                                    (4.15) 

Substituting Eq.(4.13)-(4.14) in to (4.11) and recall at the nodal point 
ix : 

                
( ) u , ( )u ( ) ,i i i i i iu x a x x a u      and  ( )u( ) ,i i i ib x x bu  we get 
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                    
3 3

1 1

112 3 6( )
T( ) ,...,i i i i

i i

h h h h

i i i i ih h
h u h h u 



 

 
                                                        (4.16) 

From the considered piecewise discretization of the solution domain, assume that the value of 

chosen transition parameter is  2 ln N  . Thus, we have  

                  
2(1 ) 2 4(2 ln( ))2 2 4

1

2 8 ln(N)N

i i N N N N
h h

N

  
 




                                                  (4.17) 

Since the considered problem exhibits a layer region the described scheme works on piecewise 

discretization. Thus, we have to consider the values of the perturbation parameter, 2( )
N

  . 

Substituting this inequality in to Eq.(4.17) gives 

                     2

2 16ln( ) 2

1 ln(N)
N N

i i N
h h N

 

                                                   (4.18) 

Thus, from Eq.(4.17) and Eq. (4.18) the norm of truncation error for the formulated scheme is 

                     2 ln(N)T CN                                                                             (4.19) 

where C  is arbitrary constant.   

Therefore, the described method is almost second order convergent. Hence, stable and consistent 

scheme is convergent by Lax’s equivalence theorem, (Siraj et al., 2019).  
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4.2. Numerical Examples and Results  

In this section, we consider numerical examples to confirm the theoretical analysis made in the 

previous sections. Since the exact solution for these examples are not known, the maximum 

absolute errors are not estimated by using the double mesh principle. Mesfin and Gemechis (2021) 

defined by:-  

2max ,N N N

i iE u u    

where 
N

iu  stands for numerical solution of the problem on N  number of mesh points and 
2N

iU  

stands for the numerical solution of the problem on 2N  Number of mesh points.  

The rate of convergence of the scheme is obtained as:  

   2log log

log(2)

N N

N
E E

r
 




  

Example1. Consider the singularly perturbed problem  

with interval and boundary conditions      1, 0u x x       and  1 1,u   

Example 2: consider the problem  

         2 11 , 0 1,x x xu x x u x e u x e u x e x                

        with interval and boundary conditions      1, 0u x x     and    1 1,u    

 

           1 sin 2 sin(2 ) 3 , 0 1,x xu x x u x e u x x u x x e x               
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Table 4.1: Comparison of maximum absolute error for Example 1 when 0.3  .  

N    32 64 128 256 512 1024 

Present Method      
410  2.6387e-03 6.9347e-04 1.7241e-04 4.0783e-05 1.2784e-05 4.0639e-06 

510  2.6630e-03 7.0593e-04 1.8133e-04 4.5596e-05 1.3008e-05 4.0620e-06 

610  2.6654e-03 7.0699e-04 1.8189e-04 4.6108e-05 1.3269e-05 4.1653e-06 

710  2.6657e-03 7.0710e-04 1.8194e-04 4.6133e-05 1.3278e-05 4.1887e-06 

810  2.6657e-03 7.0711e-04 1.8194e-04 4.6135e-05 1.3278e-05 4.1891e-06 

910  2.6657e-03 7.0711e-04 1.8194e-04 4.6135e-05 1.3278e-05 4.1891e-06 

1010

 2.6657e-03 7.0711e-04 1.8194e-04 4.6135e-05 1.3278e-05 4.1891e-06 

Results for Mesfin (2020)      

410  1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8204e-04 3.9117e-04 

510  1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8204e-04 3.9117e-04 

610  1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8204e-04 3.9117e-04 

710  1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8204e-04 3.9117e-04 

810  1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8204e-04 3.9117e-04 

910  1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8204e-04 3.9117e-04 

1010

 1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8204e-04 3.9117e-04 

 

Table 4.2: Rate of convergence for example 1. 

N    32 64 128 256 512 

410  1.9279 2.0080 2.0798 1.6736 1.6534 
510  1.9155 1.9609 1.9916 1.8095 1.6791 
610  1.9146 1.9586 1.9800 1.7970 1.6716 
710  1.9145 1.9585 1.9796 1.7968 1.6645 
810  1.9145 1.9585 1.9795 1.7968 1.6643 
910  1.9145 1.9585 1.9795 1.7968 1.6643 
1010

 1.9145 1.9585 1.9795 1.7968 1.6643 
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Table 4.3: Maximum absolute error of example 2 for different values of perturbation parameter for delay 0.5     

N    32 64 128 256 512 1024 

410  1.5461e-02 5.4971e-03 1.8642e-03 6.0856e-04 1.9256e-04 5.9468e-05 
510  1.5456e-02 5.4971e-03 1.8598e-03 6.0779e-04 1.9254e-04 5.9472e-05 

610  1.5456e-02 5.4937e-03 1.8579e-03 6.0689e-04 1.9222e-04 5.9428e-05 
710  1.5455e-02 5.4934e-03 1.8576e-03 6.0672e-04 1.9211e-04 5.9364e-05 

810  1.5455e-02 5.4933e-03 1.8576e-03 6.0670e-04 1.9210e-04 5.9355e-05 

910  1.5455e-02 5.4933e-03 1.8576e-03 6.0670e-04 1.9210e-04 5.9354e-05 
1010

 1.5455e-02 5.4933e-03 1.8576e-03 6.0670e-04 1.9210e-04 5.9354e-05 

 

Table 4.4: Rate of Convergence for example 2. 

N    32 64 128 256 512 

410  1.4914 1.5635 1.6151 1.6601 1.6951 
510  1.4914  1.5635 1.6135 1.6584 1.6949 
610  1.4923 1.5641 1.6142 1.6587 1.6935 
710  1.4923 1.5643 1.6143 1.6591 1.6943 
810  1.4923 1.5642 1.6144 1.6591 1.6944 
910  1.4923 1.5642 1.6144 1.6591 1.6944 
1010

 1.4923 1.5642 1.6144 1.6591 1.6944 

 

 

Figure 1: Solution profile for Example 1, when 
310 , 0.5*      and 32N    

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
i

u
i

 

 

Numerical solution on N

Numerical solution on 2N



 

20 
 

 

Figure 2: Effect of delay parameter on the solution of example 2 for 0.5   

 
Figure 3: Effect of delay parameter on the solution of example 2 for 32N    and  

210   
 

In tables 4.1 and 4.3, the maximum absolute errors are presented to show the applicability and 

effect of the formulated scheme. Besides table 4.2 and table 4.4 demonstrates the rate of 

convergence to confirm the method is almost second order finite difference method.  As one 

observes the result in the provided tables confirm the theoretical investigations with betterment of 

accurate solution than some existing method.  Further, figures 1-3 shows that the solution profile 

via layer regions, effects of perturbation and delay parameters.   
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CHAPTER FIVE 

CONCLUSION AND SCOPE FOR FUTURE WORK 

5.1 Conclusion  

In this thesis, almost second- order finite difference method is presented for solving singularly 

perturbed delay differential equations. To achieve this method, first, singularly perturbed delay 

differential equations are written in its asymptotically equivalent of BVPs form. Then the FD 

scheme is formulated for the BVPs that can be solved using Thomas algorithm. The stability and 

consistency of the method are investigated to guarantee the convergence of the method. To validate 

and authorize the effectiveness of the method, two model examples considered. Further, the 

method gives more accurate solution than some existing methods in the literature. Thus, the 

formulated method produces more accurate and convergent numerical solution for singularly 

perturbed delay differential equations.  

 

5.2. Scope of the Future Work  

In this thesis, the numerical method based on almost second order finite difference method for singularly 

perturbed delay differential equations (SPDDEs). Hence the scheme proposed in this thesis can also be 

extended to fourth order and higher order finite difference methods for solving singularly perturbed 

differential equations.   
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