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Abstract

In this thesis, exponential �tted operator method has been presented for solving second

order singularly perturbed problem having large delay. The stability and parameter uni-

form convergence of the proposed method are proved. To validate the applicability of

the scheme, a model problem is considered for numerical experimentation and solved for

di�erent values of the perturbation parameter, ε and number of mesh points,N. Maximum

absolute errors and rates of convergence for di�erent values of perturbation parameter

and number of mesh points are tabulated for the numerical example considered and it is

observed that the present method is more accurate and �rst order ε- uniformly convergent.
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Chapter 1

Introduction

1.1 Background of the study

Numerical analysis is a branch of mathematics concerned with theoretical foundations of

numerical algorithms for the solution of problems arising in scienti�c applications (Wasow

, 1942). Science and technology develop many practical problems, such as the mathemat-

ical boundary layer theory or approximation of solution of various problems described

by di�erential equations and almost all physical phenomena in nature are modeled using

di�erential equations, and singularly perturbed problems are vital class of these kinds of

problems (Cengizci, 2017).

An equation involving derivatives of one or more dependent variables with respect to

one or more independent variables is called a di�erential equation. A di�erential equation

involving ordinary derivatives of one or more dependent variables with respect to a single

independent variable is called an ordinary di�erential equation. A di�erential equation

in which the highest order derivative term is multiplied by a small positive parameter

ε where 0<ε << 1 is known to be singularly perturbed di�erential equations and the

parameter is known as the perturbation parameter.

The classi�cation of singularly perturbed higher order problems depending on how the

order of the original equation is a�ected if one sets ε = 0, where ε is small positive
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parameter multiplying the highest derivative occurring in the di�erential equation. If

the order is reduced by one, we say that the problem is convection-di�usion type and of

reaction-di�usion type if the order is reduced by two.

Any system involving a feedback control will almost involve time delays. These arise

because a �nite time is required to sense information and then react to it. If we restrict the

class of delay di�erential equation to a class in which the highest derivative is multiplied

by a small positive parameter and involving at least one delay term, then it is said to

be singularly perturbed delay di�erential equation. We call delay di�erential equations

retarded type if the delay argument does not occur in the highest order derivative term,

otherwise it is known as neutral delay di�erential equations. As ε tends to zero, the

solution of problems exhibits interesting behaviors (rapid changes) since the order of the

equation reduces. The region where these rapid changes occur is called inner region and

the region in which the solution changes regularly is called outer region.

In many branches of applied mathematics and engineering, Singularly Perturbed De-

lay Di�erential Equations (SPDDEs) are commonly used. In the mathematical modeling

of various practical phenomena, certain forms of equations often occur, such as in the

modeling of the human pupil - light re�ex (Longitin, 1988). The mathematical model

for calculating the expected time by random synaptic inputs in the dendrites (Lange,

1994). To generate action potential in nerve cells and variational problems in control

theory (Glizer, 2003). Many researchers have been trying to develop numerical methods

for solving these problems. For example, Awoke and Reddy (2013) presented parameter

�tted scheme to solve singularly perturbed delay di�erential equations. Chakravarthy et

al., (2015) presented �tted numerical scheme to solve singular perturbed delay di�erential

equation. Merga et al.,( 2021) presented exponentially �tted numerical scheme for singu-

larly perturbed di�erential equations involving small delays. Erdogan ( 2009) presented

an exponentially �tted method to solve singular perturbed delay di�erential equation.

Subburayan and Ramanujam (2013) an initial value technique for singularly perturbed

convection�di�usion problems with a negative shift.

2



Recentily, Rai and Sharma (2020) considered singularly perturbed delay di�erential

equations using �tted mesh method. Kumar and Rao (2020) presented a stabilized cen-

tral di�erence method for the boundary value problem of singularly perturbed di�erential

equations with a large negative shift. Kumar and Subburayan (2021), presented an im-

proved initial value method for singularly perturbed convection di�usion delay di�erential

equation. But, still there is a room to increase the accuracy. Besides, as far as the re-

searchers' knowledge is concerned the problem under consideration via exponential �tted

operator method is not yet considered.

Hence, the aim of this project is to formulate uniformly convergent exponential �tted

operator method to solve singularly perturbed problem having large delay.

Therefore, the main objective of this study is to develop more accurate, and ε-uniformly

convergent method for solving singularly perturbed convection- di�usion problems having

large delay.

Throughout our analysis C is generic positive constant that is independent of the

parameter ε and number of mesh points N . We assume that,Ω− = [−1, 0], Ω = [0, 2], Ω =

(0, 2), Ω1 = (0, 1), Ω2 = (1, 2). Further, Ω∗ = Ω1∪Ω2, Ω
2N

is denoted by {0, 1, 2, ..., 2N},

Ω
2N

1 is denoted by {1, 2, ..., N − 1}, Ω2N

2 is denoted by {N + 1, N + 2, ..., 2N − 1}.
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1.2 Objectives

1.2.1 General objective

The general objective of this study is to develop exponential �tted operator method for

second order singularly perturbed problem having large delay.

1.2.2 Speci�c objectives

The speci�c objectives of the study are:

* To describe the exponentially �tted operator method for second order singularly

perturbed problem having large delay.

* To establish the convergence of the present scheme.

* To investigate the accuracy of the present method.

1.3 Signi�cance of the study

The results obtained in this study may:

* Help the graduate students to acquire research skills and scienti�c procedures.

* To introduce the application of numerical methods in di�erent �eld of studies.

* Serve as a reference material for scholars who works on this area.
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1.4 Delimitation of the study

This study is delimited to exponential �tted operator method for solving second

order singularly perturbed problem having large delay of the form:

Ly(x) = −εy′′(x) + a(x)y′(x) + b(x)y(x) + c(x)y(x− 1) = f(x), x ∈ Ω, (1.4.1)

y(x) = ϕ(x), x ∈ [−1, 0], (1.4.2)

y(2) = l, (1.4.3)

where ϕ(x) is su�ciently smooth on [−1, 0]. For all x ∈ Ω, it is assumed that the

su�cient smooth functions a(x), b(x) and c(x) satisfy at a(x) ≥ α > 0, b(x) ≥

β > 0, b(x) + c(x) ≥ γ > 0, c(x) ≤ η < 0. The above assumptions ensure that

y ∈ X = C0(Ω̄) ∩ C1(Ω) ∩ C2(Ω1 ∪ Ω2).

The BVP Eq. (1.4.1) exhibits strong boundary layer at x = 2 and interior layer at

x = 1 (Kumar and Subburayan, 2021).
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Chapter 2

Review of Related Literature

2.1 Boundary value problem

A boundary value problem is a system of ordinary di�erential equations with solution

and derivative values speci�ed at more than one point. Most commonly, the solution and

derivatives are speci�ed at just two points (the boundaries) de�ning a two-point boundary

value problem. A boundary value problem for a given di�erential equation consists of

�nding a solution of the given di�erential equation subject to a given set of boundary

conditions.

A boundary condition is a prescription some combinations of values of the unknown

solution and its derivatives at more than one point. Finding the numerical solution of a

boundary value problem is more di�cult than that of corresponding initial value problem.

For, there are BVPs for which solutions do not exist; and even if a solution exists there

might be many more. Thus, existence and uniqueness generally fail for BVPs. The

boundary value problems for such a class of delay di�erential equations are ubiquitous

in the modeling of several physical and biological phenomena like �rst exit time problem

in modeling of activation of neuronal variability (Mackey and Glass, 1994). In the study

of bistable device (Derstine et al, 1982). and to describe the human pupil-light re�ex

(Longtin and Milton, 1988). variation problems in control theory (Glizer, 1988), and in
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describing the motion of the sun�ower (Pena, 1989).

2.2 Singularly Perturbed Delay Di�erential Equation

Singularly perturbed delay di�erential equation is an equation in which evolution of sys-

tem at a certain time depends on the rate at an earlier time. The delay in process arises

due to requirement of de�nite time to sense the instruction and react to it. The delay

di�erential equation in which the highest derivative is multiplied by perturbation param-

eter is known as perturbed delay di�erential equation. The delay di�erential equation

can be classi�ed as retarded delay di�erential equation and neutral di�erential equation.

If we restrict it to a class in which the highest derivative term is multiplied by a

small parameter, then we obtain singularly perturbed delay di�erential equation of the

retarded type. Frequently, delay di�erential equations have been reduced to di�erential

equations with coe�cients that depend on the delay by means Taylor's series expansions

of the terms that involve delay. The resulting di�erential equation have been solved either

analytically when the coe�cients of these equations are constant or numerically, when

they are not. The theory and numerical solution of singularly perturbed delay di�erential

equation are still at the initial stage.

In the past, only every few people had worked in the area of numerical methods on

singularly perturbed delay di�erential equations (SPDDEs). But in the recent years,

there has been a growing interest in this area. Gemechis and Reddy (2013) presented

computational method for solving singularly delay di�erential equations with negative

shift. When the delay argument is su�ciently small, to tackle the delay term (Kadalbajoo

and Sharma,2008) used Taylor's series expansion and presented an asymptotic as well as

numerical approach to solve such type boundary value problem. But the existing methods

in the literature fail in the case when the delay argument is bigger one because in this

case, the use of Taylor's series expansion for the term containing delay may lead to a bad

approximation.
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The numerical treatment of singularly perturbed problems preserves some major com-

putational di�culties and in recent years a large number of special purpose methods have

been proposed to provide accurate numerical solutions. This type of problem has been

intensively studied analytically and it is known that its solution generally has boundary

layers where the solution varies rapidly. The outer solution corresponds to the reduced

problem, i.e., that obtained by setting the small perturbation parameter to zero.

2.3 Recent developments

In fact, Habtamu and Gemechis (2021) proposed an exponentially �tted operator method

for singularly perturbed convection-di�usion type problems with nonlocal boundary con-

dition. Senthil et al., (2021) an improved initial value method for singularly perturbed

convection di�usion delay di�erential equation. Pratima et al.,(2019) presented a numer-

ical approximation for a class of singularly perturbed delay di�erential equations with

boundary and interior layer(s). Erdogan (2009) proposed an exponentially �tted oper-

ator method for singularly perturbed �rst order delay di�erential equation. Lange and

Miura ( 1994) gave an asymptotic approximation to solve singularly perturbed second

order delay di�erential equations. Chakravarthy et al.,(2015) presented an exponentially

�tted �nite di�erence scheme to solve singularly perturbed delay di�erential equation of

second order with a large delay. Kumar and Rao (2020) presented a stabilized central

di�erence method for the boundary value problem of singularly perturbed di�erential

equations with a large negative shift.

As introduced in the literature, most researchers have been tried to �nd approximate solu-

tion for singularly perturbed di�erential equations with a large delay, but mainly focuses

on constant coe�cients, and some others those who have done for variable coe�cients

did not get more accurate solutions. Owing this, this study presents a more accurate and

convergent numerical method for singularly perturbed di�erential equations with a large

delay, by using exponentially �tted operator method.
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Chapter 3

Methodology

3.1 Study Site and Period

This study conducted at Jimma University, College of Natural Science, Department of

Mathematics from December 2021 to February 2022 G.C .

3.2 Study Design

This study employed mixed-design (i.e., documentary review design and experimental

design) on singularly perturbed delay di�erential problem.

3.3 Source of Information

The relevant source of information for this study are books, published articles on reputable

journals and related study from Internet.
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3.4 Mathematical Procedure

In order to achieve the stated objectives, the study was followed the following mathemat-

ical procedures.

1. De�ning (or describing) the problems.

2 Analyze the properties of continuous solution.

3. Discretizing the solution domain /interval.

4. Describing the method by exponential �tted operator method and obtain the schemes

in to system of equation.

5. Establishing the stability and convergence analysis of the formulated schemes.

6. Solve the obtained system of equation using Gaussian elimination method.

7. Writing MATLAB code for validation.

8. Validating the schemes using numerical experimentations and presenting the results

using tables and graphs.

9. Discussing and providing conclusions.

10



Chapter 4

DESCRIPTION OF THE METHOD,

RESULTS AND DISCUSSION

4.1 Description of the scheme

Consider the following singularly perturbed problem

Ly(x) = −εy′′(x) + a(x)y′(x) + b(x)y(x) + c(x)y(x− 1) = f(x), x ∈ Ω, (4.1.1)

y(x) = ϕ(x), x ∈ [−1, 0], (4.1.2)

y(2) = l. (4.1.3)

As we observed from Eq. (4.1.1) and Eq. (4.1.2), the values of y(x − 1) is known for

the domain Ω1 and unknown for the domain Ω2 due to the large delay at x = 1. So, it

impossible to treat the problem throughout the domain (Ω̄). Thus, we have to treat the

problem at Ω1 and Ω2 separately.

So, Eqs. (4.1.1)-(4.1.3) is equivalent to

Ly(x) = R(x), (4.1.4)
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where

Ly(x) =

 L1y(x) = −εy′′(x) + a(x)y′(x) + b(x)y(x), x ∈ Ω1,

L2y(x) = −εy′′(x) + a(x)y′(x) + b(x)y(x) + c(x)y(x− 1), x ∈ Ω2,
(4.1.5)

R(x) =

 f(x)− c(x)ϕ(x− 1), x ∈ Ω1,

f(x), x ∈ Ω2,
(4.1.6)

with boundary conditions


y(x) = ϕ(x), x ∈ [−1, 0],

y(1−) = y(1+), y′(1−) = y′(1+),

y(2) = l.

(4.1.7)

4.2 Properties of continuous solution

Lemma 4.2.1 (Maximum Principle) Let ψ(x) be any function in X such that ψ(0) ≥

0, ψ(2) ≥ 0, L1ψ(x) ≥ 0,∀x ∈ Ω1, L2ψ(x) ≥ 0,∀x ∈ Ω2 and [ψ′](1) ≤ 0 then ψ(x) ≥

0,∀x ∈ Ω̄.

Proof : De�ne the test function ,

s(x) =


1

12
+
x

4
, x ∈ [0, 1],

2

12
+
x

6
, x ∈ [1, 2].

(4.2.8)

Note that S(x) > 0,∀x ∈ Ω, Ls(x) > 0,∀x ∈ Ω1 ∪ Ω2, s(0) > 0, s(2) > 0, and[s′](1) < 0.

Let µ = max{−ψ(x)
s(x)

:x ∈ Ω}. Then, there exists x0 ∈ Ω such that ψ(x0) + µs(x0) = 0

and ψ(x) + µs(x) ≥ 0,∀x ∈ Ω. Therefore , the function (ψ + µs) attains its minimum at

x = x0. Suppose the theorem does not hold true,then µ > 0.

Case (i): x0 = 0,

0 < (ψ) + µs)(0) = ψ(0) + µs(0) = 0, it is contradiction.
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Case (ii):x0 ∈ Ω1

0 < L(ψ+ µs)(x0) = −ε(ψ+ µs)′′(x0) + a(x0)(ψ+ µs)′(x0) + b(x0)(ψ+ µs)(x0) ≤ 0, it is

a contradiction.

Case (iii): x0 = 1

0 ≤ [(ψ + µs)′](1) = [ψ′](1) + µ[s′](1) < 0, it is a contradiction.

Case (iv):x0 ∈ Ω2

0 < L(ψ+µs)(x0)) = −ε(ψ+µs)′′(x0)+a(x0)(ψ+µs)′(x0)+b(x0)(ψ+µs)(x0)+c(x0)(ψ+

µs)(x0 − 1) ≤ 0, it is a contradiction.

Case (v): x0 = 2

0 ≤ [(ψ + µs)′](2) = [ψ′](2) + µ[s′](2) < 0, it is a contradiction.

All the cases are contradict and giving that Lψ(x0) < 0 which is contradiction to the

assumption made above Lψ(x0) ≥ 0,∀x ∈ Ω. Therefore, ψ(x) ≥ 0,∀x ∈ Ω̄.

The uniqueness of the solution is implied by this maximum principle. Its existence follows

trivially (as for linear problems, the uniqueness of the solution implies its existence). This

principle is applied to prove that the solution of equations(1)-(3) is bounded.

Lemma 4.2.2 (Stability Result) The solution y(x) of Eqs. (1.4.1)-(1.4.3), satis�es the

bound

|y(x)| ≤ Cmax{|y(0)|, |y(2)|, sup
x∈Ω∗

∣∣Ly(x)|}, x ∈ Ω.

Proof: Refer from (Sakar and Tamilsevan, 2018)

Lemma 4.2.3 Let y(x) be the solution of Eqs. (1.4.1)-(1.4.3). Then, we have the fol-

lowing bounds

|y(k)(x)|Ω∗ ≤ Cε−k, k = 1, 2, 3. (4.2.9)

proof: To bound y′(x) on the interval Ω1, we consider

L1y(x) = −εy′′(x) + a(x)y′(x) + b(x)y(x) = f(x). (4.2.10)

13



Integrating the above equation on both sides, we have

−ε
(
y′(x)− y′(0)

)
= −[a(x)y(x) + a(0)y(0)] +

∫ x

0

a′(t)y(t)dt−
∫ x

0

b(t)y(t)dt

+

∫ x

0

[f(t)− c(t)ϕ(t− 1)dt.

(4.2.11)

Therefore,

εy′(0) = εy′(x)− [a(x)y(x) + a(0)y(0)] +

∫ x

0

a′(t)y(t)dt−
∫ x

0

b(t)y(t)dt

+

∫ x

0

[f(t)− c(t)ϕ(t− 1)dt.

(4.2.12)

Then by the Mean value theorem, there exits z ∈ (0, ε) such that

| εy′(z) |≤ C

(
|| y(x) ||, || f(x) ||, || ϕ(x) ||[−1,0]

)
.

and | εy′(0) |≤ C

(
|| y(x) || + || f(x) || + || ϕ(x) ||

)
.

(4.2.13)

Hence,

| εy′(z) |≤ C

(
|| y(x) ||, || f(x) ||, || ϕ(x) ||

)
. (4.2.14)

By a similar argument, we can bound y′(x) on Ω2, as

∣∣∣∣εy′(x)∣∣∣∣ ≤ C. From (4.2.13) and

(4.2.14) we have

|| y(k)(x) ||Ω∗≤ Cε−k, for, k = 2, 3.

Hence the proof.

Lemma 4.2.4 The bound for derivative of the solution y(x) of Eqs. (1.4.1)-(1.4.3) when

x ∈ Ω1 = (0, 1] is given by

|y(k)(x)| ≤ C

(
1 + ε−k exp

(
−a(1− xj)

ε

))
, 0 ≤ k ≤ 4, j = 1, 2, 3, ..., N − 1. (4.2.15)

Proof: Refer from ( Clavero et al., 2005 ).
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4.3 Formulation of the numerical scheme

The linear ordinary di�erential equation in Eq. (1.4.1) cannot, in general, be solved

analytically because of the dependence of a(x), b(x) and c(x) on the spatial coordinate

x. We divide the interval [0, 2] into 2N equal parts with constant mesh length h. Let

0 = x0 < x1 < x2 < ... < xN = 1 < xN+1 < xN+2 < ... < x2N = 2 be the mesh points.

Then, we have xi = ih, i = 1, 2, 3, ..., 2N .

If we consider, the interval x ∈ (0, 1], the domain [0,1] is discretized into N equal number

of subintervals, each of length h. Let 0 = x0 < x1 < x2 < ... < xN = 1 be the points

such that xi = ih, i = 1, 2, 3, ..., N . We apply an exponentially �tted operator �nite

di�erence method (FOFDM).

From Eq. (4.1.5) and Eq. (4.1.6), we have

 −εy′′(x) + a(x)y′(x) + b(x)y(x) = R(x), x ∈ Ω1,

y0 = ϕ(0), y(1) = θ,
(4.3.16)

where R(x) = f(x)− c(x)ϕ(x− 1).

To �nd the numerical solution of Eq. (4.3.16), we use the theory used in asymptotic

method for solving singularly perturbed BVPs. In the considered case, the boundary

layer is in the right side of the domain i.e. near x = 1. From the theory of singular

perturbations given in by ( O'Malley, 1991) we get the asymptotic solution up to �rst

order approximation as

y(x) = y0(x) +
a(1)

a(x)
(θ − y0(1))exp

(
−
∫ 1

x

(
a(x)

ε
− b(x)

a(x)

)
dx

)
+O(ε),

by using Taylor series about x = 1 for a(x) and b(x) and simplifying we obtain

y(x) = y0(x) + (θ − y0(1))exp

(
− a2(1)− εb(1)

εa(1)
(1− x)

)
+O(ε), (4.3.17)

15



where y0(x) is the solution of the reduced problem (obtained by setting ε = 0 of Eq.

(4.3.16) which is given by

a(x)y′(x) + b(x)y(x) = R(x), y0 = ϕ(0). (4.3.18)

Considering h small enough, the discretized form of Eq. (4.3.17) becomes

y(ih) = y0(ih) + (θ − y0(1)) exp

(
− a2(1)− εb(1)

a(1)
(1/ε− iρ)

)
, (4.3.19)

where ρ = h
ε
, h = 1

N
. Similarly, we write

yi±1 = y0((i± 1)h) + (θ − y0(1)) exp

(
− a2(1)− εb(1)

a(1)
(1/ε− (i± 1)ρ)

)
.

Using Taylors series approximation for y0((i+ 1)h) and y0((i− 1)h) up to �rst order, we

obtain 
yi+1 = y0(ih) + (θ − y0(1)) exp

(
− a2(1)−εb(1)

a(1)
(1/ε− (i+ 1)ρ)

)
,

yi−1 = y0(ih) + (θ − y0(1)) exp

(
− a2(1)−εb(1)

a(1)
(1/ε− (i− 1)ρ)

)
.

(4.3.20)

To handle the e�ect of the perturbation parameter arti�cial viscosity (exponentially �tting

factor σ(ρ)) is multiplied on the term containing the perturbation parameter as

− εσ(ρ)y′′(x) + a(x)y′(x) + b(x)y(x) = R(x), (4.3.21)

with boundary conditions y0 = ϕ(0) and y(1) = θ.

Next, we consider the di�erence approximation of Eq. (4.3.16) on a uniform grid Ω
N
=

{x}Ni=0 and denote h = xi+1 − xi. When we apply central �nite di�erence formula on

Eq.(4.3.22) takes the form

− εσ(ρ)

(
D+D−y(xi)

)
+ a(xi)

(
D0y(xi)

)
+ b(xi)y(xi) = R(xi). (4.3.22)
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Using operator, Eq. (4.3.16) is rewritten as

LNYi = Ri, (4.3.23)

with boundary conditions Y0 = ϕ(0) and Y (1) = θ, where

LNYi = −εσ(ρ)
(
Yi+1 − 2Yi + Yi−1

h2

)
+ a(xi)

(
Yi+1 − Yi−1

2h

)
+ b(xi)Yi = Ri. (4.3.24)

Multiplying Eq. (4.3.24) by h and considering h small and truncating the term (Ri −

b(xi)Yi)h, results to

−σ(ρ)
ρ

(
Yi+1 − 2Yi + Yi−1

)
+
a(xi)

2

(
Yi+1 − Yi−1

)
= 0. (4.3.25)

Substituting the results in Eq.(4.3.19) and Eq.(4.3.20) into Eq. (4.3.25) and simplifying,

the exponential �tting factor is obtained as

σ(ρ) =
ρa(1)

2
coth

(
ρa(1)

2

)
. (4.3.26)

Assume that Ω
2N

denote partition of [0,2] into 2N subintervals such that 0 = x0, x1, x2, ..., xN =

1 and xN+1, xN+2, ..., x2N = 2 with xi = ih, h = 2
2N

= 1
N
, i = 0, 1, 2, ..., 2N .

Case (1): Consider Eq. (4.1.4) on the domain Ω1 = (0, 1] which is given by

− εy′′(x) + a(x)y′(x) + b(x)y(x) = f(x)− c(x)ϕ(x− 1), (4.3.27)

Hence, the required �nite di�erence scheme becomes

(
−εσ(ρ)
h2

− a(xi)

2h

)
Yi−1 +

(
2εσ(ρ)

h2
+ b(xi)

)
Yi +

(
−εσ(ρ)
h2

+
a(xi)

2h

)
Yi+1

= fi − ciϕ(xi−N).

(4.3.28)
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The numerical scheme in Eq. (4.3.28) can be written in three term recurrence relation as

EiYi−1 + FiYi +GiYi+1 = Hi, i = 1, 2, ..., N, (4.3.29)

where Ei =
−εσ(ρ)

h2 − ai
2h
, Fi =

2εσ(ρ)
h2 + bi, Gi =

−εσ(ρ)
h2 + ai

2h
, Hi = fi − ciϕ(xi−N).

Case (2): Consider Eq. (4.1.4) on the domain Ω2 = (1, 2) using exponentially �tted

�nite di�erence method, which is given by

− εσ(ρ)

(
Yi+1 − 2Yi + Yi−1

h2

)
+ ai

(
Yi+1 − Yi−1

2h

)
+ biYi + ciY (xi − 1) = fi. (4.3.30)

Similarly, this equation can be written as

EiYi−1 + FiYi +GiYi+1 + Ci = Hi, i = N + 1, N + 2, ..., 2N − 1, (4.3.31)

where Ei =
−εσ(ρ)

h2 − ai
2h
, Fi =

2εσ(ρ)
h2 + bi, Gi =

−εσ(ρ)
h2 + ai

2h
, Ci = ciy(xi− 1) and Hi = fi.

Therefore, on the whole domain Ω = [0, 2], the basic schemes to solve Eqs. (1.4.1)-

(1.4.3) are the schemes given in Eqs. (4.3.29) and (4.3.31).

4.4 Convergence analysis

The discrete scheme corresponding to Eqs. (1.4.1)-(1.4.3) is as follows

For i = 1, 2, 3, ..., N,

LN
1 Yi = fi − ciϕi−N . (4.4.32)

For i = N + 1, N + 2, ..., 2N − 1,

LN
2 Yi = fi, (4.4.33)
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subject to the boundary conditions

Yi = ϕi, i = −N,−N + 1, ..., 0, (4.4.34)

Y2N = l, (4.4.35)

where LN
1 yi = −εδ2Y (xi) + a(xi)D

0Y (xi) + b(xi)Y (xi),

LN
2 yi = −εδ2Y (xi) + a(xi)D

0Y (xi) + b(xi)Y (xi) + c(xi)Y (xi−N).
(4.4.36)

Lemma 4.4.1 Let ψ(x) be any mesh function then for 0 < i < 2N ,

|ψ(xi)| ≤ Cmax{|ψ(x0)|, |ψ(x2N)|, max
i∈Ω2N

1 ∪Ω2N
2

|LNψ(xi)|}.

Proof: Consider the barrier functions

θ±(xi) = CM ± ϕ(xi), ∀xi ∈ Ω
2N
, (4.4.37)

where M = max{|ψ(x0)|, |ψ(x2N)|,maxi∈Ω2N
1 ∪Ω2N

2
|LNψ(xi)|}.

From Eq. (4.4.31) it is clear that θ±(xi) ≥ 0 and θ±(x2N) ≥ 0,

LN
1 θ

±(xi) ≥ 0, ∀xi ∈ Ω2N
1 ,

LN
2 θ

±(xi) ≥ 0, ∀xi ∈ Ω2N
2 ,

D+θ±(xN)−D−θ±(xN) ≤ 0.

(4.4.38)

Using Lemma (4.2.1), θ±(xi) ≥ 0, ∀xi ∈ Ω
2N
.

We proved above the discrete operator LN satisfy the maximum principle and the uniform

stability estimate. Next we analyze the uniform convergence analysis. The following

theorem shows the parameter uniform convergence of the scheme developed.
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Theorem 4.4.2 Let y(xi) and Yi be respectively the exact solution of Eqs. (1.4.1)-(1.4.3)

and numerical solutions of Eq. (4.3.23). Then, for su�ciently large N , the following

parameter uniform error estimate holds

|LN(y(xi)− Yi)| ≤
CN−2

N−1 + ε

(
1 + ε−3 exp

(
−a(1− xi)

ε

))
. (4.4.39)

Proof Let us consider the local truncation error de�ned as

LN(y(xi)− Yi) = −εσ(ρ)(y′′(xi)−D+D−y(xi)) + a(xi)(y
′(xi)−D0y(xi)),

= −ε
[
ρa(1)

2
coth

(
ρa(1)

2

)
− 1

]
D+D−y(xi)

+ ε(y′′(xi)−D+D−y(xi)) + a(xi)(y
′(xi)−D0y(xi)),

(4.4.40)

where σ(ρ) = a(1)ρ
2
coth

(
a(1)ρ

2

)
, and ρ = N−1

ε
.

Now, for z > 0, C1 and C2 are constants, and we have |z coth(z) − 1| ≤ C1z
2, z ≤ 1.

Similarly, for z −→ ∞, since lim
z−→∞

coth(z) = 1, |z coth(z)− 1| ≤ C1z is given.

In general, for all z > 0, as Eq.(4.2.11), we write

C1
z2

z + 1
≤ z coth(z)− 1 ≤ C2

z2

z + 1
(4.4.41)

implying that

ε[a(1)
ρ

2
coth(a(1)

ρ

2
)− 1] ≤ ε

(
(N−1/ε)2

(N−1/ε) + 1

)
=

N−2

N−1 + ε
. (4.4.42)

Using Taylor series expansion, the bound for y(xi−1) and y(xi+1) at xi as y(xi−1) = y(xi)− hy′(xi) +
h2

2!
y′′(xi)− h3

3!
y(3)(xi) +

h4

4!
y(4)(xi) +O(h5),

y(xi+1) = y(xi) + hy′(xi) +
h2

2!
y′′(xi) +

h3

3!
y(3)(xi) +

h4

4!
y(4)(xi) +O(h5).
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We obtain the bound for |D+D−y(xi)| ≤ C|y′′(xi)|,

|y′′(xi)−D+D−y(xi)| ≤ CN−2|y(4)(xi)|.
(4.4.43)

Similarly, for the �rst derivative term

|y′(xi)−D0y(xi)| ≤ CN−2|y(3)(xi)|, (4.4.44)

where |y(k)(xi)| = supxi∈(x0,xN ) |y(k)(xi)|, k = 2, 3, 4.

Using the bounds in Eq.(4.4.43) and Eq.(4.4.44), we obtain

|LN(y(xi)− Yi)| ≤ C
N−2

N−1 + ε
|y′′(xi)|+ εCN−2|y(4)(xi)|+ CN−2|y(3)(xi)|,

≤ C
N−2

N−1 + ε
|y′′(xi)|+ CN−2[ε|y(4)(xi)|+ |y(3)(xi)|].

Now, using the bounds for the derivatives of the solution in lemma (4.4.40)and the as-

sumption ε ≤ N−1, Eq. (4.2.4), we have

|LN(y(xi)− Yi)| ≤
CN−2

N−1 + ε

(
1 + ε−2 exp

(
−a(1− xj)

ε

))
+ CN−2

[
ε

(
1 + ε−4 exp

(
−α(1− xj)

ε

))
+

(
1 + ε−3 exp

(
−a(1− xj)

ε

))]
. ≤ CN−2

N−1 + ε

(
1 + ε−2 exp

(
−a(1− xj)

ε

))
+ CN−2

[(
ε+ ε−3 exp

(
−α(1− xj)

ε

))
+

(
1 + ε−3 exp

(
−a(1− xj)

ε

))]
,

which simpli�es to

|LN(y(xi)−Yi)| ≤
CN−2

N−1 + ε

(
1+ ε−3 exp

(
−a(1− xj)

ε

))
, since ε−3 ≥ ε−2. (4.4.45)
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Lemma 4.4.3 For a �xed mesh and for ε→ 0, it holds

lim
ε→0

max
1≤j≤N−1

exp

(
−axj

ε

)
εm

= 0, m = 1, 2, 3, ....

lim
ε→0

max
1≤j≤N−1

exp

(
−a(1−xj)

ε

)
εm

= 0, m = 1, 2, 3, ....

Proof: Refer from ( Woldaregay and Duressa , 2019)

Theorem 4.4.4 Let y(xi) and Yi be the exact solution of Eqs. (1.4.1)-(1.4.3) and nu-

merical solutions of Eq. (4.3.23) respectively. Then, the following error bound holds

sup
0<ε<<1

|(y(xi)− Yi)| ≤
CN−2

N−1 + ε
≤ CN−1. (4.4.46)

Proof: By substituting the results in lemma 4.4.3 in to theorem 4.4.2 and applying the

discrite maximum principle, we obtain the required bound.

For the case ε > N−1 the scheme secures second order convergence and we expect to lose

an order of convergence for ε ≤ N−1, and in fact it turns out that the scheme is �rst

order uniformly convergent.

Remark: A similar analysis for convergence may be carried out for the �nite di�erence

scheme Eq. (4.3.24).

4.5 Numerical Examples and Results

In this section, an example is given to illustrate the numerical method discussed above.

The exact solutions of the test problems are not known. Therefore, we use the double

mesh principle to estimate the error and compute the experiment rate of convergence to

the computed solution. For this we put

EN
ε = max

0≤i≤2N
|Y N

i − Y 2N
2i |, (4.5.47)
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where Y N
i and Y 2N

2i are the ith components of the numerical solutions on meshes of N

and 2N respectively. We compute the uniform error and the rate of convergence as

EN = max
ε
EN

ε , and RN = log2

(
EN

E2N

)
. (4.5.48)

The numerical results are presented for the values of the perturbation parameter ε ∈

{ 10−4, 10−8, ..., 10−20}.

Example 4.5.1 Consider the model singularly perturbed boundary value problem

−εy′′(x) + (5 + x)y′(x) + 2y(x)− x

2
y(x− 1) = exp(x), x ∈ (0, 1) ∪ (1, 2),

subject to the boundary conditions

y(x) = 1 + x, x ∈ [−1, 0], y(2) = 2.

Table 4.1: Maximum absolute errors and rate of convergence for Example 4.5.1 at di�erent
number of mesh points N

.

ε N=16 N=32 N=64 N=128 N=256
10−4 3.6790e-03 2.0411e-03 1.0718e-03 5.4879e-04 2.7764e-04
10−8 3.6790e-03 2.0411e-03 1.0718e-03 5.4879e-04 2.7764e-04
10−12 3.6790e-03 2.0411e-03 1.0718e-03 5.4878e-04 2.7764e-04
10−16 3.6790e-03 2.0411e-03 1.0718e-03 5.4879e-04 2.7764e-04
10−20 3.6790e-03 2.0411e-03 1.0718e-03 5.4879e-04 2.7764e-04

EN 3.6790e-03 2.0411e-03 1.0718e-03 5.4879e-04 2.7764e-04
RN 0.8500 0.9293 0.9657 0.9830

4.6 Discussion

The developed method is based on exponentially �tted operator method for solving sin-

gularly perturbed problem having large delay. We investigate the e�ect of delay and

perturbation parameters on the solution of the problem; numerical solutions have been
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Table 4.2: Comparison of Maximum absolute errors and rate of convergence for Example
4.5.1 at di�erent number of mesh points N .
N → 16 32 64 128 256

present method
EN 3.6790e-03 2.0411e-03 1.0718e-03 5.4879e-04 2.7764e-04
RN 0.8500 0.9293 0.9657 0.9830

(Kumar and Subburayan, 2021).
EN 2.0055e-2 8.0979e-3 2.7416e-3 9.8601e-4 3.1655e-4
RN 1.3083 1.5626 1.4753 1.6392
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Figure 4.1: The Numerical Solution at ε = 10−12 and N = 32 and the maximum point
wise errors log-log plot scale of Example 4.5.1 respectively.

presented using Tables and graphs. As shown in Table 4.1,the maximum absolute error

of Example 1 is given, as ε →0 it is shown that the maximum absolute error is stable.

In Table 4.2 we compare the proposed method with the work of (Senthil et al., 2021), it

is clearly shown that the proposed method is more acurate and as ε → 0, the maximum

absolute error is uniform. The solution of the example given in(4.5.1) has strong bound-

ary layer at the right side of the interval [0,2],(see Figure 4.1). The computed solution of

Example 1 for di�erent values of perturbation parameters are also shown in Figure (4.1).

The results in the proposed method is better than that obtained in (Senthil et al.,2021).
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Chapter 5

CONCLUSSION AND SCOPE OF

THE FUTURE WORK

5.1 Conclussion

In this Thesis, we considered exponential �tted operator method for solving singularly

perturbed problem having large delay. The behavior of the continuous solution of the

problem is studied and shown that it satis�es the continuous stability estimate and the

derivatives of the solution are also bounded. The numerical scheme is developed on

uniform mesh using exponential �tted operator in the given di�erential equation. The

stability of the developed numerical method is established and its uniform convergence

is proved. To validate the applicability of the method, a model problem is considered

for numerical experimentation for di�erent values of the perturbation parameter and

mesh points. The numerical results are tabulated in terms of maximum absolute errors,

numerical rate of convergence and uniform errors.

25



5.2 Scope for Future Work

In this study, exponential �tted operator method has been presented for solving second

order singularly perturbed problem having large delay. Hence, the scheme proposed in

this study can also be extended to solve singularly perturbed problems with delay and

advance the boundary layer on the left and right side of the domain and internal layer in

the middle side of the domain.
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