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Abstract

Different properties of Volterra-type integral operator have been studied in the past two decades

on several functional spaces. In particular, on Fock spaces boundedness and compactness of

the operator was studied by (Constantin, 2012) and (Mengestie, 2013). Boundedness and

compactness of generalized integration operator V
(n,m)
g have been studied also on spaces of

analytic functions defined over a unit disc by (Du et al., 2021) and (Qian and Zhu, 2021).

However, it was not studied on Fock spaces. So, the purpose of this thesis is to fill this gap

and study bounded and compact properties of the operator on Fock spaces. The result of this

thesis generalizes the works of (Constantin, 2012) and (Mengestie, 2013).
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Chapter 1

Introduction

1.1 Background of the study

Let X and Y be Banach spaces and T : X → Y is a linear operator. If there is a constant c > 0

such that ∥Tx∥ ≤ c∥x∥, x ∈ X, then we say that T is a bounded linear operator. Moreover, if

∥Txn∥ → 0 whenever xn → 0 weakly in X, then we say that T is compact.

The study of boundedness and compactness of different linear operators on spaces of analytic

functions defined over a domain U ⊆ C is a rich history, where many authors are participated

and many papers and books are written on. In particular, integral operators including the

Volterra-type are among widely studied linear operators. This is due to their applicability in

solving real world problems.

For a given a space H(U) of analytic functions on U , the Volterra-type integral operator on

H(U) induced by a analytic symbol function g,

Vgf(z) =

∫ z

0

f(w)g′(w)dw,

is among the linear operators studied a lot acting between different spaces. The operator is first

introduced by (Pommerenke, 1977) and studied by other authors with the aim to explore the

connection between their operator theoretic behaviors with the function-theoretic properties

of the symbols g. (Pommerenke, 1977) studied continuity of the operator on the Hilbert space

of Hardy space H2 and this result is extended to Hp, 0 < p < ∞, in general by (Aleman and

Siskakis, 1995) and furthermore they studied compactness property also. Later (Aleman and

Siskakis, 1997), gave the analogous characterization on the Bergman space. But, those studies

are considered on spaces of analytic functions defined over a disk. (Constantin, 2012) and
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(Mengestie, 2013) considered the problem over a space defined over the whole complex plane

C, namely Fock spaces Fp
α.

(Li and Stevic, 2008) raised an idea to extend the Volterra-type integral operator Vg by con-

sidering its product with composition operator Cψf = f(ψ) and they studied their operator

theoretic properties in terms of the inducing pair of symbols on some spaces of analytic func-

tions on the unit disk. They eventually considered the following operator induced by analytic

functions g and ψ

V(g,ψ)f(z) =

∫ z

0

f(ψ(w))g′(w)dw.

Since a particular choice of ψ(z) = z reduce V(g,ψ) to the Volterra-type integral operator Vg,

the operator V(g,ψ) is called the generalized Volterra-type integral operator. Boundedness and

compactness of this operator have been studied on different spaces and the characterization of

these properties on Fock space have been given by (Mengestie, 2014) and later by (Mengestie

and Worku, 2018).

(Chalmoukis, 2020) introduced a new generalization of Volterra-type integral operators, which

is defined as follows. For a nonnegative integers m and n with 0 ≤ m < n, and an entire

function g, the generalized integration operator, V n,m
g , is defined by

V n,m
g f = In(f (m)g(n−m)),

Where In is the n-th iterate of the integration operator I(f)(z) =
∫ z
0
f(w)dw. (Chalmoukis,

2020) studied the operator on the Hardy spaces and very recently other researchers considered

the operator on other spaces. See (Du et al., 2021) and (Qian and Zhu, 2021). In particular,

for the values of n = 1 and m = 0, it gives the Volterra-type integral operator Vg.

The aim of this thesis is to investigate boundedness and compactness of the generalized inte-

graton operator V n,m
g acting between Fock spaces.

1.1.1 Fock Spaces

Let α > 0. An entire function f(z) of complex variable is said to belong to the Fock space F2
α

if
∫
C |f(z)|

2e−α|z|
2
dm(z) < ∞ where dm is Lebesgue area measure. The space F2

α is equipped

with inner product defined by

⟨f, g⟩α =
α

π

∫
C
f(z)g(z)e−α|z|

2

dm(z) f, g ∈ F 2
α

2



So the norm of a function f in F2
α is

∥f∥(2,α) = (
α

π

∫
C
|f(z)|2e−α|z|2dm(z))

1
2

The constant α
π
ensures that the function f(z) = 1 has norm 1. The Gaussian weight e−α|z|

2
in

the Fock space F2
α arises from adjoint condition on the inner product ⟨, ⟩α imposed by Fock.

For two polynomials p(z) and q(z), we have

⟨αzp(z), q(z)⟩α = ⟨p(z), q′(z)⟩α (1.1.1)

Suppose that w(z) is the weight in the inner product

⟨p, q⟩α =

∫
C
p(z)q(z)w(z)dm(z)

for which the adjoint condition holds. Apply ((1.1.1)) to p(z) = zn−1 and q(z) = zm, n,m ∈ N
to obtain

α

∫
C
znz̄mw(z)dm(z) = m

∫
C
zn−1z̄m−1w(z)dm(z)

Let z = reiθ. If we suppose that w is a radial weight,i.e w(z) = w(r), then

2πα

∫ ∞

0

r2n+1w(r)dr = 2πn

∫ ∞

0

r2n−1w(r)dr

let γn = 2π
∫∞
0
r2n+1w(r)dr, n = 0, 1, 2, ... then we have γn = n

α
γn−1, n = 1, 2, 3, .... The

convention that f(z) = 1 has norm 1 means that 1 =
∫
Cw(z)dm(z) = 2π

∫∞
0
rw(r)dr = γ0. So

we get γn = n!
αn , but a calculation using the gamma function shows that

2α

∫ ∞

0

r2ne−αr
2

rdr =
n!

αn
= 2π

∫ ∞

0

r2nw(r)rdr

If we further suppose that w is continuous, then we have w(z) = α
π
e−α|z|

2
to generalize F2

α to

Banach spaces, for 0 < p ≤ ∞, define Lpα to be the spaces of measurable function f on C such

that f(z)e−α|z|
2 ∈ Lp(C, dm), where dm is lebesgue measure. The subspace of Lpα consisting of

entire functions is denoted by Fp
α and is called a Fock space. Thus, Fock space is defined as:

Definition 1.1.1. For 0 < p ≤ ∞ and α > 0 the Fock space Fp
α consists of entire functions

3



for which

∥f∥p(p,α) =
pα

2π

∫
C
|f(z)|pe−

pα
2
|z|2 dm(z) <∞

for 0 < p <∞ where dm is the usual lebesgue measure. And

∥f∥(∞,α) = sup
z∈C

|f(z)|e−
α
2
|z|2 <∞ for p = ∞

Example 1.1.2. The function f(z) = zn is an entire function in Fp
α, since

∥zn∥p(p,α) =
pα

2π

∫
C
|zn|pe−

pα
2
|z|2dm(z)

= αp

∫ ∞

0

rnpe−pα
r2

2 rdr = (
1

αp
)
np
2 Γ(

np

2
+ 1) <∞,

where Γ(z) is gamma function.

The space Fp
α for 1 ≤ p ≤ ∞ is Banach space. For each f ∈ Fp

α, we have a pointwise estimate

given by, |f(z)| ≤ e
α
2
|z|2∥f∥(p,α). In particular for p = 2, it ensures that for any fixed w ∈ C,

the mapping f 7→ f(w) is bounded linear functional on F2
α. By Riesz representation theorem

in functional analysis, there exists a unique function Kw in F2
α such that f(w) = ⟨f,Kw⟩α for

all f ∈ F2
α. This function Kw is called the reproducing kernel of F2

α and F2
α is a reproducing

kernel Hilbert space. To find an explicit expression for kernel function, for any orthonormal

bases {en} and f ∈ F2
α, we have f(z) =

∑∞
k=0⟨f, en⟩αen(z) which implies

Kw,α(z) =
∞∑
k=0

⟨Kw,α, en⟩αen(z) =
∞∑
k=0

⟨en, Kw⟩αen(z)

=
∞∑
k=0

en(w)en(z).

Since {en(z) =
√

αn

n!
zn} is an orthonormal base for F2

α, the reproducing kernel for F2
α is

Kw,α(z) = eαzw and the normalized kernel function is kw,α(z) = eαzw−
α
2
|w|2 . The following local

estimate finds lots of application in the spaces.

Lemma 1.1.3. For any r > 0 and p > 0 there exists a constant C such that

|f(z)|pe−
αp
2
|z|2 ≤ C

∫
D(z,r)

|f(w)|pe−
αp
2
|w|2 dm(w) ∀z ∈ C

4



where D(z, r) is a disc of center z and radius r.

The next theorem gives the inclusion property of the space.

Theorem 1.1.4. Let 0 < p ≤ q ≤ ∞. Then Fp
α ⊆ F q

α.

Proof. If q = ∞, then applying the above lemma, we have

|f(z)|e−
α
2
|z|2 ≤ (C

∫
D(z,1)

|f(w)|pe−
pα
2
|w|2dm(w))

1
p

= (C
2π

pα
)
1
p (

∫
D(z,1)

|f(w)|pe−
pα
2
|w|2dm(w))

1
p

≤ (C
2π

pα
)
1
p (

∫
C
|f(w)|pe−

pα
2
|w|2dm(w))

1
p

= (C
2π

pα
)
1
p∥f∥(p,α) <∞,

which implies,

∥f∥(∞,α) = sup
z∈C

|f(z)|e−
α
2
|z|2 ≤ (C

2π

pα
)
1
p∥f∥(p,α) <∞.

For q <∞ assume f ∈ Fp
α. Then,

∥f∥q(q,α) =
qα

2π

∫
C
|f(z)|qe−

qα
2
|z|2dm(z)

=
qα

2π

∫
C
|f(z)|p|f(z)|q−pe−

qα
2
|z|2dm(z)

Applying the pointwise estimate, we have the right hand side is

≤ ∥f∥q−p(p,α)

q

p

pα

2π

∫
C
|f(z)|pe

α(q−p)
2

|z|2e−
qα
2
|z|2dm(z)

=
q

p
∥f∥(p,α)

Thus, ∥f∥(q,α) ≤ ( q
p
)
1
q ∥f∥(p,α). Therefore, Fp

α ⊆ F q
α.

For more detail and the above note we refer to the book by (Zhu, 2012).
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1.2 Statement of the problem

As noted in the background of the study, boundedness and compactness of Volterra-type

integral operator on the Fock space was studied by (Constantin, 2012) and (Mengestie, 2013),

expressing boundedness in terms of the function g to be complex polynomial of degree atmost

two and compactness was expressed interms of in terms of of the function g to be complex

polynomial of degree atmost one. For the generalized Volterra-type integral operators it was

studied by (Mengestie, 2013) interms of Berezin type integral transforms. Later, ( Mengestie

and Worku, 2018) simplified the Berezin type characterization to a new simpler function. But,

the characterization of boundedness and compactness of V n,m
g acting between Fock spaces is

not studied yet, except for the case n = 1 and m = 0, which is studied in (Constantin, 2012)

and (Mengestie, 2013). Therefore, this thesis studies boundedness and compactness of V n,m
g

on Fock spaces Fp
ϕ.

1.3 Objectives of the study

1.3.1 General objectives

The general objective of this thesis is to study the boundedness and compactness properties

of generalized integration operators on Fock spaces.

1.3.2 Specific objectives

The specific objectives of this thesis are;

� Describing boundedness of the generalized integration operators on Fock spaces by giving

sufficient and necessary condition for it.

� Describing compactness of generalized integration operators on Fock spaces by giving

sufficient and necessary condition for it.

� Finding a condition on which boundedness and compactness are equivalent.

1.4 Significance of the study

The result of this study have the following importance:

� It generalizes study of Volterra-type integral operators into more general operators.

6



� It can be used as a base for any researcher who is interested to study other properties of

generalized integration operators on Fock spaces.

� Help the graduate students to acquire research skills and scientific procedures.

1.5 Delimitation of the study

This study focused only on establishing bounded and compact generalized integration operators

acting between Fock spaces.
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Chapter 2

Review of Related Literature

Ever since introduced by (Pommerenke, 1977) and after the works of (Aleman and Siskakis,

1995), a number of researchers are motivated to study different properties of the Volterra-

type integral operator Vg on different spaces. (Constantin, 2012) studied boundededness,

compactness and other properties of Vg on the Fock spaces Fp
α. Then the study was continued

by (Mengestie, 2013) on the growth type Fock space F∞
α . We will state the two results by the

following theorem.

Theorem 2.0.1 (Constantin, 2012 and Mengestie, 2013).

Let 0 < p ≤ q ≤ ∞. Then Vg : Fp
α → F q

α is

(i) bounded if and only if g(z) = az2 + bz + c, a, b, c ∈ C.

(ii) compact if and only if g(z) = az + b, a, b ∈ C.

For the case when the operator maps from larger space to the smaller, there is a stronger

condition in which boundedness and compactness are equivalent.

Theorem 2.0.2 (Constantin, 2012 and Mengestie, 2013).

Let 0 < q < p ≤ ∞. Then the following are equivalent.

a) Vg : Fp
α → F q

α is bounded,

b) Vg : Fp
α → F q

α is compact,

c) q >


2p
p+2

, p <∞

2, p = ∞
and g(z) = az + b for some a, b ∈ C.

8



(Mengestie, 2014) studied the extended operator, namely the generalized Volterra type integral

operators, on Fock spaces Fp
α. Recently, (Mengestie and Worku, 2018) studied also bounded

and compact generalized Volterra type integral operator V(g,ψ) with simpler characterization

on Fock spaces Fp
α. They obtained the following results.

Theorem 2.0.3 (Mengestie and Worku, 2018).

Let 0 < p ≤ q ≤ ∞ and (g, ψ) be pairs of nonconstant entire functions. Then

i) V(g,ψ) : Fp
α → F q

α is bounded if and only if |g′(z)|
1+|z| e

1
2
(|ψ(z)|2−|z|2) ∈ L∞(C, dm).

ii) V(g,ψ) : Fp
α → F q

α is compact if and only if lim|z|→∞
|g′(z)|
1+|z| e

1
2
(|ψ(z)|2−|z|2) = 0.

Their result is different for the cases p ≤ q and q < p. For the latter case, we have a

stronger condition under which the boundedness implies compactness as stated below.

Theorem 2.0.4 (Mengestie and Worku, 2018).

Let 0 < q < p ≤ ∞ and (g, ψ) be pairs of nonconstant entire functions. Then the following

statements are equivalent.

i) V(g,ψ) : Fp
α → F q

α is bounded;

ii) V(g,ψ) : Fp
α → F q

α is compact;

iii) |g′(z)|
1+|z| e

1
2
(|ψ(z)|2−|z|2) ∈

L
pq
p−q (C, dm), p <∞

Lq(C, dm), p = ∞.

For the generalized integration operator V n,m
g boundedness and compactness properties

have not studied on Fock spaces. So, this thesis is devoted for such a study.

9



Chapter 3

Methodology of the study

3.1 Study area and Period

The study was conducted in Jimma University department of mathematics under the functional

analysis stream from September, 2020 G.C. to June, 2021 G.C. Conceptually, the study focused

on generalized Volterra-type integral operators acting between generalized Fock spaces.

3.2 Study design

In this research work we employed analytical method of design.

3.3 Source of information

The relevant sources of information for this study were journals, books, published articles and

related studies from Internet.

3.4 Mathematical Procedure of the study

The mathematical procedure that the researcher follows for this research work is the following:

� Providing a sufficient and necessary condition for boundedness and compactness of the

generalized integration operators.

� Characterizing boundedness and compactness of Volterra type integral operator.

� Giving conclusion based on the main findings.

10



Chapter 4

Main Result and Discussion

We begin the section with the following lemma.

Lemma 4.0.1. Let 0 < p ≤ ∞ and m be a nonnegative integer. Then for each f ∈ Fp
α, it

holds that

|f (m)(z)| ≲ (1 + |z|)me
α
2
|z|2∥f∥(p,α).

Proof. The pointwise estimate ( that is when m = 0) was proved in Corollary 2.8 of (Zhu,

2012) and the proof for the case when m = 1 was given in Lemma 2.1 of (Tien and Khoi,

2019). For m > 1, we have the following. If |z| ≤ 1, then by Cauchy formula and the pointwise

estimate,

|f (m)(z)| ≤ m!

2π

∫
|w−z|=1

|f(w)|
|w − z|m+1

|dw| ≤ m! max
|w−z|=1

|f(w)|

≤ m!∥f∥(p,α) max
|w−z|=1

e
α
2
|w|2 ≤ m!e2α∥f∥(p,α).

If |z| > 1, then arguing as above,

|f (m)(z)| ≤ m!

2π

∫
|w−z|= 1

|z|

|f(w)|
|w − z|m+1

|dw| ≤ m!|z|m max
|w−z|= 1

|z|

|f(w)|

≤ m!|z|m∥f∥(p,α) max
|w−z|= 1

|z|

e
α
2
|w|2 ≤ m!|z|me

α
2
(|z|+ 1

|z| )
2

∥f∥(p,α)

≤ m!|z|me
α
2
|z|2∥f∥(p,α)e2α.

11



Where the last inequality follows from the fact that

e
α(|z|+|z|−1)2

2 = e
α(|z|2+|z|−2+2)

2 ≤ e
α(|z|2+3)

2 ≤ e2αe
α|z|2

2 .

Combining the two estimates give the conclusion.

In the study of integral operators, description of the working space in terms derivative has

a crucial role. Such a description ( in terms of first derivative) for Fock space was given by

(Constantin, 2012) and (Mengestie, 2013), and later extended to mth ( m ≥ 1) order derivative

characterization,

∥f∥p,α ≍


(
|f (m−1)(0)|p +

∫
C |f

(m)(z)|p(1 + |z|)−mpe− pα
2
|z|2dm(z)

) 1
p

, 0 < p <∞

|f (m−1)(0)|+ supz∈C |f (m)(z)|(1 + |z|)−me−α
2
|z|2 , p = ∞,

(4.0.1)

by (Hu, 2013) and (Ueki, 2016).

Proposition 4.0.2. Let 0 < p, q ≤ ∞ and g ∈ H(C) with g ̸≡ 0.

(I) If V n,m
g : Fp

α → F q
λ is bounded, then the function |g(n−m)(z)||z|m

(1+|z|)n e
α
2
|z|2−λ

2
|z|2 is bounded.

(II) If V n,m
g : Fp

α → F q
λ is compact, then |g(n−m)(z)||z|m

(1+|z|)n e
α
2
|z|2−λ

2
|z|2 → 0 as |z| → ∞.

Proof. (I) Using the inclusion F q
λ ⊆ F∞

λ for q ≤ ∞, Littlewood-Paley estimate (4.0.1) and

then setting in particular w = z gives

∥kw,α∥(p,α)∥V n,m
g ∥ ≥ ∥V n,m

g kw,α∥(q,λ) ≳ sup
z∈C

|V n,m
g kw,α(z)|e−

λ
2
|z|2

≳
|wα|m|g(n−m)(z)|

(1 + |z|)n
|eαzw̄−

α|w|2
2 |e−

λ
2
|z|2

=
|g(n−m)(z)||z|m

(1 + |z|)n
e

α
2
|z|2−λ

2
|z|2 . (4.0.2)

From this we have that, |g(n−m)(z)||z|m
(1+|z|)n e

α
2
|z|2−λ

2
|z|2 is bounded whenever the operator is

bounded.

(II) This part follows from (4.0.2) and the fact that kw,α → 0 uniformly on a compact subsets

of C.
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If V n,m
g : Fp

α → F q
λ, 0 < p, q ≤ ∞, is bounded, then an application of V n,m

g to the function

f(z) = zm ∈ Fp
α shows that g(n−m) ∈ Fq,λ.

Clearly, if g(n−m) is identically zero, then the operator is compact. Thus, in our results below

we assume g(n−m) to be not identically zero function in F q
λ. We now state our main result.

Theorem 4.0.3. Let 0 < p, q ≤ ∞, m,n nonnegative integers with 0 ≤ m < n and V n,m
g maps

from Fp
α into F q

λ.

(I) If p ≤ q, then V n,m
g is bounded ( respectively, compact) if and only if the function

|g(n−m)(z)||z|m
(1+|z|)n e

(α−λ)
2

|z|2 is bounded ( respectively, lim|z|→∞
|g(n−m)(z)||z|m

(1+|z|)n e
(α−λ)

2
|z|2 = 0).

(II) If q < p, then V n,m
g is bounded or compact if and only if
∫
C

(
|g(n−m)(z)||z|m

(1+|z|)n e
(α−λ)

2
|z|2

) pq
p−q
dm(z) <∞, for p <∞∫

C

(
|g(n−m)(z)||z|m

(1+|z|)n e
(α−λ)

2
|z|2

)q
dm(z) <∞, for p = ∞.

Proof. (I) The forward implication have been shown in Proposition 4.0.2.

Suppose |g(n−m)(z)||z|m
(1+|z|)n |z|meα

2
|z|2−λ

2
|z|2 is bounded. Then for q < ∞, the use of the estimate in

(4.0.1) and inclusion property (Theorem 2.10 of (Zhu, 2012)) of the space gives,

∥V n,m
g f∥q(q,λ) ≍

∫
C

( |g(n−m)(z)|
(1 + |z|)n

)q|f (m)(z)|qe−
qλ
2
|z|2dm(z)

≤ sup
z∈C

(
( |g(n−m)(z)|
(1 + |z|)n

)q
(1 + |z|)mqe(

qα
2
|z|2− qλ

2
|z|2))

∫
C

|f (m)(z)|q

(1 + |z|)mq
e−

qα
2
|z|2dm(z)

≲ sup
z∈C

(
( |g(n−m)(z)||z|m

(1 + |z|)n
)q
e(

qα
2
|z|2− qλ

2
|z|2))

∫
C

|f (m)(z)|q

(1 + |z|)mq
e−

qα
2
|z|2dm(z)

≍ ∥f∥q(q,α)
(
sup
z∈C

( |g(n−m)(z)||z|m

(1 + |z|)n
)q
e

qα
2
|z|2− qλ

2
|z|2

)
≲ ∥f∥q(p,α)

(
sup
z∈C

( |g(n−m)(z)||z|m

(1 + |z|)n
)q
e

qα
2
|z|2− qλ

2
|z|2

)
.

(4.0.3)
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Similarly, for q = ∞,

∥V n,m
g f∥∞,λ ≍ sup

z∈C

( |g(n−m)(z)|
(1 + |z|)n

)
|f (m)(z)|e−

λ|z|2
2

≤
(
sup
z∈C

( |g(n−m)(z)|
(1 + |z|)n

)
(1 + |z|)me

α
2
|z|2−λ|z|2

2

)(
sup
z∈C

|f (m)(z)|
(1 + |z|)m

e−
α|z|2

2

)
≲

(
sup
z∈C

( |g(n−m)(z)||z|m

(1 + |z|)n
)
e

α
2
|z|2−λ|z|2

2

)(
sup
z∈C

|fm(z)|
(1 + |z|)m

e−
α|z|2

2

)
≍ ∥f∥(∞,α)

(
sup
z∈C

( |g(n−m)(z)||z|m

(1 + |z|)n
)
e

α
2
|z|2−λ|z|2

2

)
≲ ∥f∥(p,α)

(
sup
z∈C

( |g(n−m)(z)||z|m

(1 + |z|)n
)
e

α
2
|z|2−λ|z|2

2

)
.

(4.0.4)

Hence, from (4.0.3) and (4.0.4), V n,m
g is bounded.

(II) Necessity of lim|z|→∞
( |g(n−m)(z)||z|m

(1+|z|)n
)
e

α
2
|z|2−λ

2
|z|2 = 0 for the compactness of the operator

was shown in Proposition 4.0.2. For the sufficiency, we let fl to be arbitrary bounded sequence

in Fp
α, that converges to 0 uniformly on a compact subsets of C as l → ∞. Then for R > 0

and q <∞, using (4.0.1), Proposition 4.0.2 and Theorem 2.10 of (Zhu, 2012),

∥V n,m
g fl∥q(q,λ) ≍

∫
C

( |g(n−m)(z)|
(1 + |z|)n

)q|f (m)
l (z)|qe−

qλ
2
|z|2dm(z)

=

(∫
|z|≤R

+

∫
|z|>R

)( |g(n−m)(z)|
(1 + |z|)n

)q|f (m)
l (z)|qe−

qλ
2
|z|2dm(z)

≲ max
|z|≤R

|f (m)
l (z)|q

∫
|z|≤R

( |g(n−m)(z)|
(1 + |z|)n

)q
e−

qλ
2
|z|2dm(z)

+ sup
|z|>R

( |g(n−m)(z)|
(1 + |z|)n

)q|z|mqe qα
2
|z|2− qλ

2
|z|2

∫
|z|>R

|f (m)
l (z)|q

(1 + |z|)mq
e−

qα
2
|z|2dA(z)

≲ ∥g(n−m)∥q(q,λ) max
|z|≤R

|f (m)
l (z)|q

+∥fl∥qq,α sup
|z|>R

( |g(n−m)(z)||z|m

(1 + |z|)n
)q
e

qα
2
|z|2− qλ

2
|z|2

≲ max
|z|≤R

|f (m)
l (z)|q + sup

|z|>R

( |g(n−m)(z)||z|m

(1 + |z|)n
)q
e

qα
2
|z|2− qλ

2
|z|2 .

(4.0.5)
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Similarly, for R > 0 and q = ∞, using Lemma 4.0.1,

∥V n,m
g fl∥∞,λ ≍ sup

z∈C

( |g(n−m)(z)|
(1 + |z|)n

)
|f (m)
l (z)|e−

λ
2
|z|2

≤
(
sup
|z|≤R

+ sup
|z|>R

)( |g(n−m)(z)|
(1 + |z|)n

)
|f (m)
l (z)|e−

λ
2
|z|2

≲ ∥g(n−m)∥(∞,λ) sup
|z|≤R

|f (m)
l (z)|+ ∥fl∥(p,α) sup

|z|>R

( |g(n−m)(z)||z|m

(1 + |z|)n
)
e

α
2
|z|2−λ

2
|z|2

≲ sup
|z|≤R

|f (m)
l (z)|+ sup

|z|>R

( |g(n−m)(z)||z|m

(1 + |z|)n
)
e

α
2
|z|2−λ

2
|z|2 .

(4.0.6)

Letting l → ∞ and then R → ∞ in (4.0.5) and (4.0.6) gives ∥V n,m
g fl∥(q,λ) → 0.and hence V n,m

g

is compact.

(III) We will first show that the integral conditions imply compactness of the operator and then

boundedness of the operator imply the integral conditions. Let (fl) be a uniformly bounded

sequence in F(p,α) and fl → 0 uniformly on compact subsets of C as l → ∞. Then for R > 0

∥V n,m
g fl∥q(q,λ) ≍

∫
C

( |g(n−m)(z)|
(1 + |z|)n

)q|f (m)
l (z)|qe−

qλ
2
|z|2dm(z)

=

(∫
|z|≤R

+

∫
|z|>R

)( |g(n−m)(z)|
(1 + |z|)n

)q|f (m)
l (z)|qe−

qλ
2
|z|2dm(z)

≲ max
|z|≤R

|f (m)
l (z)|q

∫
|z|≤R

( |g(n−m)(z)|
(1 + |z|)n

)q
e−

qλ
2
|z|2dm(z)

+

∫
|z|>R

|f (m)
l (z)|q

(1 + |z|)mq
e−

qα
2
|z|2

(( |g(n−m)(z)||z|m

(1 + |z|)n
)q
e

qα
2
|z|2− qλ

2
|z|2

)
dm(z)

≲ ∥g(n−m)∥q(q,λ) max
|z|≤R

|f (m)
l (z)|q

+

∫
|z|>R

|f (m)
l (z)|q

(1 + |z|)mq
e−

qα
2
|z|2

(( |g(n−m)(z)||z|m

(1 + |z|)n
)q
e

qα
2
|z|2− qλ

2
|z|2

)
dm(z).

(4.0.7)
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For p = ∞, applying (4.0.1) with Lemma 4.0.1 to the above estimate gives,

∥V n,m
g fl∥qq,λ ≲ ∥g(n−m)∥q(q,λ) max

|z|≤R
|f (m)
l (z)|q

+ sup
|z|>R

|f (m)
l (z)|q

(1 + |z|)mq
e−

qα
2
|z|2

∫
|z|>R

( |g(n−m)(z)||z|m

(1 + |z|)n
)q
e

qα
2
|z|2− qλ

2
|z|2dm(z)

≲ ∥g(n−m)∥q(q,λ) max
|z|≤R

|f (m)
l (z)|q + ∥f∥q(∞,α)

∫
|z|>R

( |g(n−m)(z)||z|m

(1 + |z|)n
)q
e

qα
2
|z|2− qλ

2
|z|2dm(z)

≲ max
|z|≤R

|f (m)
l (z)|q +

∫
|z|>R

( |g(n−m)(z)||z|m

(1 + |z|)n
)q
e

qα
2
|z|2− qλ

2
|z|2dm(z).

(4.0.8)

For p < ∞, applying Hölder’s inequality and then using (4.0.1), the integral in (4.0.7) is

estimated as,∫
|z|>R

|f (m)
l (z)|q

(1 + |z|)mq
e−

qα
2
|z|2

(( |g(n−m)(z)||z|m

(1 + |z|)n
)q
e

qα
2
|z|2− qλ

2
|z|2

)
dm(z)

≤
(∫

|z|>R

|f (m)
l (z)|p

(1 + |z|)mp
e−

pα
2
|z|2dm(z)

) q
p
(∫

|z|>R

(( |g(n−m)(z)||z|m

(1 + |z|)n
)
e

α
2
|z|2−λ

2
|z|2) pq

p−q dm(z)
) p−q

p

≲ ∥fl∥q(p,α)
(∫

|z|>R

(( |g(n−m)(z)||z|m

(1 + |z|)n
)
e

α
2
|z|2−λ

2
|z|2) pq

p−q dm(z)
) p−q

p

≲
(∫

|z|>R

(( |g(n−m)(z)||z|m

(1 + |z|)n
)
e

α
2
|z|2−λ

2
|z|2) pq

p−q dm(z)
) p−q

p

and hence

∥V n,m
g fl∥q(q,λ) ≲ max

|z|≤R
|f (m)
l (z)|q +

(∫
|z|>R

(( |g(n−m)(z)||z|m

(1 + |z|)n
)
e

α
2
|z|2−λ

2
|z|2) pq

p−q dm(z)
) p−q

p
.

(4.0.9)

Letting l → ∞ and then R → ∞ in (4.0.8) and (4.0.9), ∥V n,m
g fl∥(q,λ) → 0 as l → ∞, which

shows that V n,m
g is compact.

Now, we assume V n,m
g is bounded and proceed to show the integral conditions hold. For

this, we let a sequence (zj) to be an r
2
-lattice for C (see (Hu and Lv, 2011) and (Mengestie,

2016)) and use a technique initiated by (Luecking, 1993). From the atomic decomposition of

functions in Fp
α (Theorem 2.34 of (Zhu, 2012)) each function f ∈ Fp

α, 0 < p ≤ ∞, is generated
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by an lp sequence as

f =
∞∑
j=1

cjkzj ,α and ∥f∥(p,α) ≍ ∥(cj)∥lp .

If (rj(t)) is the Rademacher sequence of functions in [0, 1] ( as in (Luecking, 1993)), then the

sequence (cjrj(t)) is in lp with ∥(cjrj(t))∥lp = ∥(cj)∥lp for all t and
∑∞

j=1 cjrj(t)kzj ,α ∈ Fp
α with

∥
∞∑
j=1

cjrj(t)kzj ,α∥(p,α) ≍ ∥(cj)∥lp . (4.0.10)

From Khinchine’s inequality (Luecking, 1993) we have

( ∞∑
j=1

|cjzmj |2|kzj ,α(z)|2
) q

2
≲

∫ 1

0

|
∞∑
j=1

cjz
m
j rj(t)kzj ,α(z)|qdt. (4.0.11)

Setting dξg(z) =
( |g(n−m)(z)|

(1+|z|)n

)q
e−

λq
2
|z|2dm(z) ◦ Φ−1(z) and using (4.0.11) with Fubini’s theorem,

∫
C

( ∞∑
j=1

|cjzmj |2|kzj ,α(z)|2
) q

2
dξg(z) ≲

∫
C

∫ 1

0

|
∞∑
j=1

cjz
m
j rj(t)kzj ,α(z)|qdtdξg(z)

=

∫ 1

0

∫
C
|

∞∑
j=1

cjz
m
j rj(t)kzj ,α(z)|qdξg(z)dt

≍
∫ 1

0

∥V n,m
g

∞∑
j=1

cjrj(t)kzj ,α∥
q
(q,λ)dt

≲ ∥V n,m
g ∥q∥(cj)∥qlp . (4.0.12)

The last estimate above is from boundedness of V n,m
g and equation (4.0.10). Then, using the

estimate |zj| ≍ |z| for each z ∈ D(zj, 2r) and

|kzj ,α(z)|q = e
αq
2
(|z|2−|z−zj |2) ≥ e−

αqr
2

+αq
2
|z|2 ,
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∞∑
j=1

|cj|q
∫
D(zj ,2r)

|z|mqe
αq
2
|z|2dξg(z) ≲

∞∑
j=1

|cj|q|zj|mq
∫
D(zj ,2r)

|kzj ,α(z)|qdξg(z)

=

∫
C

∞∑
j=1

|cj|q|zj|mq|kzj ,α(z)|qχD(zj ,2r)(z)dξg(z)

≲ max{1, N1− q
2}

∫
C

( ∞∑
j=1

|cj|2|zj|2m|kzj ,α(z)|2
) q

2
dξg(z).

From the estimate in (4.0.12) and the above estimate, we get

∞∑
j=1

|cj|q
∫
D(zj ,2r)

|z|mqe
αq
2
|z|2dξg(z) ≲ ∥V n,m

g ∥q∥(cj)∥qlp . (4.0.13)

If p = ∞, then putting cj = 1 for all j in (4.0.13)and substituting back dξg,

∞ >
∞∑
j=1

∫
D(zj ,2r)

|z|mqe
αq
2
|z|2dξg(z) ≳

∞∑
j=1

∫
D(zj ,3

r
2
)

|z|mqe
αq
2
|z|2dξg(z)

≥
∫
C

( |g(n−m)(z)|
(1 + |z|)n

|z|me
α
2
|z|2−λ

2
|z|2)qdm(z).

From which and (4.0.13) the conclusion follows. Moreover, we have the following norm esti-

mate, which gives the lower estimate of the norm for p = ∞,

∥V n,m
g ∥ ≳

(∫
C

( |g(n−m)(z)|
(1 + |z|)n

|z|me
α
2
|z|2−λ

2
|z|2)qdm(z)

) 1
q
.

If p <∞, then since (|cj|q) ∈ l
p
q from (4.0.13) and duality argument between l

p
q and l

p
p−q ,

( ∞∑
j=1

(∫
D(zj ,2r)

|z|mqe
αq
2
|z|2dξg(z)

) p
p−q

) p−q
p
<∞.
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Thus, substituting dξg, it follows that

∞ >
( ∞∑
j=1

(∫
D(zj ,2r)

|z|mqe
αq
2
|z|2dξg(z)

) p
p−q

) p−q
p

≳
( ∞∑
j=1

∫
D(zj ,3

r
2
)

( |g(n−m)(z)|
(1 + |z|)n

|z|me
α
2
|z|2−λ

2
|z|2) pq

p−q dm(z)
) p−q

p

≥
(∫

C

( |g(n−m)(z)|
(1 + |z|)n

|z|me
α
2
|z|2−λ

2
|z|2) pq

p−q dm(z)
) p−q

p
.

From which and (4.0.13), we get the other estimate

∥V n,m
g ∥ ≳

(∫
C

( |g(n−m)(z)|
(1 + |z|)n

|z|me
α
2
|z|2−λ

2
|z|2) pq

p−q dm(z)
) p−q

pq
.

Next, we prove the other direction of norm estimate. First, for p = ∞,

∥V n,m
g f∥q(q,λ) ≍

∫
C

( |g(n−m)(z)|
(1 + |z|)n

)q|f (m)(z)|qe−
qλ
2
|z|2dm(z)

≲
∫
C

|f (m)(z)|q

(1 + |z|)mq
e−

qα
2
|z|2( |g(n−m)(z)|

(1 + |z|)n
|z|me

α
2
|z|2−λ

2
|z|2)qdm(z)

≤ ∥f∥q∞,α

∫
C

( |g(n−m)(z)|
(1 + |z|)n

|z|me
α
2
|z|2−λ

2
|z|2)qdm(z),

which shows that,

∥V n,m
g ∥ ≲

(∫
C

( |g(n−m)(z)|
(1 + |z|)n

|z|me
α
2
|z|2−λ

2
|z|2)qdm(z)

) 1
q
.
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Similarly, for the case p <∞, using Hölder’s inequality and the estimate in (4.0.1),

∥V n,m
g f∥q(q,λ) ≍

∫
C

( |g(n−m)(z)|
(1 + |z|)n

)q|f (m)(z)|qe−
qλ
2
|z|2dm(z)

≲
∫
C

|f (m)(z)|q

(1 + |z|)mq
e−

qα
2
|z|2( |g(n−m)(z)|

(1 + |z|)n
|z|me

α
2
|z|2−λ

2
|z|2)qdm(z)

≤
(∫

C

|f (m)(z)|p

(1 + |z|)mp
e−

pα
2
|z|2dm(z)

) q
p

×
(∫

C

( |g(n−m)(z)|
(1 + |z|)n

|z|me
α
2
|z|2−λ

2
|z|2) pq

p−q dm(z)
) p−q

p

≍ ∥f∥q(p,α)
(∫

C

( |g(n−m)(z)|
(1 + |z|)n

|z|me
α
2
|z|2−λ

2
|z|2) pq

p−q dm(z)
) p−q

p
.

Thus,

∥V n,m
g ∥ ≲

(∫
C

( |g(n−m)(z)|
(1 + |z|)n

|z|me
α
2
|z|2−λ

2
|z|2) pq

p−q dm(z)
) p−q

pq
.
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Chapter 5

Conclusion

This thesis includes a number of results, which characterize generalized integration operators

acting between Fock spaces. Our results in chapter 4, which is about boundedness and com-

pactness are new and may be applied to study other properties defined whenever the operator

is bounded. In addition, our results generalizes some of the results that have been obtained

for the Volterra-type integral operators. In particular, it generalizes the results of (Constantin,

2012) and (Mengestie, 2013) from Volterra-type integral to the generalized integration opera-

tors, which is stated in Theorem 2.0.1 and 2.0.2.
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