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Abstract

In this thesis we introduced an iterative algorithm for approximating a common
fixed point of a finite family Pseudo-pseudocontractive mappings in Hilbert space
and proved a strong convergence of a sequence generated by proposed algorithm to
a common fixed point in Hilbert spaces provided that the mappings are uniformly
continuous which are sequentially weakly continuous. Finally, we applied our main
results to find a common minimum point of a finite family of convex functions in
Hilbert spaces. Our results extended and generalized many results in the literature.
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Acronym

Throughout this research, we denotes the following.

• H is real Hilbert space.

• C is nonempty close and convex subset of Hilbert space.

• ‖.‖ is the norm space.

• 〈., .〉 is the inner product space.

• ∇ f is a gradient of function f .

• R is the set of real number.
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Chapter 1

Introduction

1.1 Background of the study

Let H be a real Hilbert space with inner product 〈· , ·〉 and induced norm ||.|| =√
〈· , ·〉. Let C be a nonempty subset of H. Let T : C−→H be a nonlinear mapping.

Many problems that arises in several branches of applied mathematics such as game
theory, variational analysis, optimization and differential equations can be reduced
to finding solutions of an equation

T x = x (1.1)

(see, e.g., Daman (2012), Dugundji (2003), Zegeye (2007) and Zhang (2008) and
the references therein). The solutions to this equation are called fixed points of the
mapping T . It has been viewed that many of the most important nonlinear map
arising in applied sciences areas can reduced to finding the fixed points of a certain
mapping.
In particular, fixed point techniques have been applied in diversified fields, such as
science, economics, and engineering. Consequently, many authors concentrate on
providing iterative algorithms for approximation of fixed points of mappings when
they exists or assuming existence (see, e.g., Mann(1953), Berinde (2007), Browder
(1968), Khan (2008) and Krasnoselskii (1955)).

The well known method for approximating a fixed point of contraction mapping is
the Picard iterations. However, this iteration method may not always converge to a
fixed point of T , when T is nonexpansive mapping.
So, for approximating fixed points of the classes of mappings are more general than
the class of contraction mappings. Many iterative schemes, such as Mann iteration,
Halpern Iteration, Ishikawa iteration, are introduced by different authors (see, e.g.,
Mann (1953), Halpern (1964), Ishikawa (1974)).
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Many authors have also constructed an iterative algorithms called hybrid Mann and
hybrid Ishikawa algorithms to obtained strong convergence of the sequence pro-
posed by their method of converging a fixed point of Lipschitz pseudocontractive
mappings (see, e.g., Liu et al. (2011), Marino et al. (2009)).

Zegeye and Wega (2020), introduced a new class of mapping which is more gen-
eral than the class of pseudocotractive mappings called pseudo-pseudocontractive
and established an iterative algorithm which converges strongly to a fixed point
of pseudo-pseudocontractive mapping provided that the mapping is T is uniformly
continuous which is sequentially weakly continuous.
We also remark that several authors have studied an iterative algorithms for approx-
imating a common fixed point of a finite family of nonlinear mappings (see, e.g.
Bauschke (1996), Yao et al. (2007), Zhou (2008), Zegeye and Wega (2020)).

Bauschke (1996), introduced Halpern-type iterative algorithm for approximating a
common fixed point for a finite family of nonexpansive self mapping and proved
that the sequence generated by his method converges strongly to a common fixed
point of a finite family of nonexpansive mappings in Hilbert spaces. Zhou (2008),stud-
ied an iterative algorithm and proved the sequence generated by his method con-
verges weakly to a common fixed point of a finite family of pseudocontractive map-
pings in Hilbert spaces.

Inspired and motivated by the above research works the purpose of this thesis is to
introduce a new iterative algorithm for approximating a common fixed point of a
finite family of pseudo-pseudo contractive mappings in Hilbert spaces.
Moreover, we give an application to the convex minimization problem and con-
struct a numerical example which supports our main result. Our results extend and
generalize many results in the literature.

Now, we recall some definitions that the researcher will need in the following se-
quel.

Definition 1.1.1 Let T : C −→ H be mapping,
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i) T is called L− Lipschitz mapping with Lipschtz constant L > 0 if

||T x−Ty|| ≤ L||x− y||

for all x,y ∈C. If 0≤ L < 1, then T is called contraction. If L = 1, then T is

called nonexpansive.

ii) T is called pseudocontractive mapping if for all x,y ∈C we have that

〈 x− y , T x−Ty〉 ≤ ||x− y||2.

iii) T is called to be α−strictly pseudocontractive mapping, if there exists a con-

stant α > 0 such that for all x,y ∈C,

〈 x− y , T x−Ty〉 ≤ ||x− y||2−α||(x− y)− (T x−Ty)||2.

iv) T is called T : C−→H is said to be pseudo-pseudocontractive mapping pro-

vided that for each x,y ∈C, we have:

〈 x−T x,y− x〉 ≥ 0 implies 〈 y−Ty,y− x〉 ≥ 0.

We remark that the class pseudo-pseudocontractive mappings are more general

than the classes of mappings mentioned in (i)-(iii) above.

Definition 1.1.2 The operator T is called sequentially weakly continuous if for

each sequence xn,we have xn converges weakly to x implies T xn converges to T x.

1.2 Statements of the Problem

An Iterative methods for approximating common fixed points of nonexpansive map-
pings have received vast investigations due to its extensive and wide applications
in a variety of applied areas of image recovery, inverse problem, convex feasibil-
ity problem, partial differential equations and signal processing (see, Noor (2012),
Yao (2007), and the references therein). It is known that strictly pseudocontractive
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mappings have more powerful applications than nonexpansive mappings in solv-
ing inverse problems (see, Scherzer (1995)). Consequently, many researchers have
studied iterative methods which converges strongly a common fixed point of a fi-
nite family of pseudocontractive mappings in Hilbert spaces (see, Zegeye (2011),
Daman and Zegeye (2012), Zegeye and Wega (2020)).

Daman and H. Zegeye (2012), established and proved strong convergence of Halpern-
Ishikawa iterative method to a common fixed point of a finite family of Lipschitz
pseudocontractive mappings without assuming that the interior point of the set of
common fixed points of the mappings is nonempty in Hilbert spaces, either on C or
on T .

Recently, Zegeye and Wega in (2020), introduced an iterative scheme for a com-
mon fixed point of a finite family of Lipschitz pseudocontractive mappings and
proved a sequence generated by their proposed algorithm converges strongly to
a common fixed point of the mappings in Hilbert spaces. However, an iterative
algorithm which converges to a common fixed point of a finite family of pseudo-
pseudocontractive mappings is not yet studied in Hilbert spaces.

Inspired and motivated by the research works of Zegeye (2011), Daman and H.
Zegeye (2012) and Zegeye and Wega (2020),now in this thesis the researcher was
establish a new iterative algorithm for approximating a common fixed point of a
finite family of pseudo-pseudocontractive mappings in Hilbert spaces.
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1.3 Objectives of the Study

1.3.1 General Objective

The general objective of this thesis was to study an iterative algorithms for ap-
proximating a common fixed point of a finite family of pseudo-pseudocontractive
mappings in Hilbert spaces.

1.3.2 Specific Objectives

The specific objectives of this thesis is to:

• investigate an iterative algorithm for approximating a common fixed point of
a finite family of pseudo-pseudocontractive mappings in Hilbert spaces.

• prove the sequence generated by the proposed algorithm is bounded in Hilbert
spaces.

• apply our main result to solve the minimization problems.
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1.4 Significance of the Study

The outcome of this study have the following importance:

• It generalized the study of common fixed point of a finite family of mappings
in Hilbert spaces.

• It can be used as a base for any next researcher, who is interested to study the
approximation of a common fixed point of a finite family of pseudo-pseudo
contractive mapping in Hilbert space.

• It may provide some background information for other researchers who want
to conduct a research on related topics.

1.5 Delimitation of the Study

This study was delimited to study an iterative algorithm for approximating a com-
mon fixed point of a finite family of pseudo-pseudocontractive mappings in Hilbert
spaces.
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Chapter 2

Review of Related Literatures

Fixed point results give conditions under mappings of fixed point theory in which
the desired iterative method converges to the solution. In the last one century the
theory of fixed point has been reached as a powerful and important tool in the study
of nonlinear problems. Banach (1922), introduced an iterative algorithm called
Picard iteration for the class of contraction mappings and given by:

x0 ∈C,xn+1 = T xn, n≥ 0. (2.1)

The sequence generated by algorithm converges strongly to a unique fixed point
of contraction mapping. However, this method in general failed to converge if T

is not a contraction mapping. For instance, the mapping T : [0,1]→ [0,1] defined
T (x) = 1− x has a unique fixed point 1

2 ∈ [0,1], it failed to converge. As a re-
sult many researchers introduced different types of algorithms for approximating
fixed points mappings in Hilbert spaces (see, e.g., Mann (1953), Halpern (1964),
Ishikawa (1974)). For approximating a fixed point of Mann introduced an iterative
algorithm called Mann iteration Mann (1954), for approximating fixed points of
nonexpansive mappings and it is given by

x0 ∈C,xn+1 = (1−αn)xn +αnT xn, for n≥ 0, (2.2)

where {αn} is a real sequence in the interval (0,1) satisfying certain conditions.
However, it is worth mentioning that the sequence generated by this scheme does
not always converge strongly to a fixed point of nonexpansive mapping T . To obtain
strong convergence of this method to a fixed point of T one has to impose compact-
ness assumption on C (see, e.g., Chidume (1981), Kirk (1981)). Halpern (1964)
introduced an iterative scheme called Halpern-iteration and it is given by

u, x0 ∈C, xn+1 = αnu+(1−αn)T xn, n≤ 1. (2.3)
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He proved that the sequence generated by algorithm (2.3) converges to a fixed point
of nonexpansive mapping T . Ishikawa (1974), construct an iterative scheme called
Ishikawa-iteration for approximating fixed points of the class of pseudocontractive
mappings which is more general than the class of nonexpansive mapping and the
scheme is given by

x0 ∈C, yn = (1−βn)xn +(1−βn)T xn,

xn+1 = (1−αn)xn +αnTyn for n≥ 0. (2.4)

Where {βn} and {αn} are real sequences in the interval (0,1) satisfying certain
conditions. He proved that the sequence generated by algorithm (2.4) converges
strongly to a fixed point T provided that T is Lipschitz pseudocontractive mapping
and C is a compact convex subset of a Hilbert space H.
Zhou (2008), established an iterative algorithm called hybrid Ishikawa algorithm
and proved that the sequence generated by his method converges strongly to a fixed
point of Lipschitz- pseudocontractive mapping without imposing the condition that
C is compact.

Several authors have also established different schemes for approximating a com-
mon fixed point of a finite family of nonlinear mappings (see, e.g., Bauschke (1996),
Yao et al. (2007), Zhou (2008), Zegeye et al. (2011) ,Takele and Reddy (2017)).

Zegeye et al. (2011), introduced Ishikawa iterative algorithm and proved that the
sequence proposed by their method converges to strong convergence a common
fixed point of finite family of Lipschitz pseudocontractive mappings in the setting
of Hilbert spaces provided that interior of the set of common fixed points of the
mappings is nonempty.

Takele and Reddy (2017), also approximates a common fixed point of a family of
nonself and non-expansive mapping in Hilbert spaces and they also proved weak
and strong convergence theorems.
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2.1 Preliminaries

H is real Hilbert space.

‖Pcx− x‖= in fy∈c‖x− y‖, (2.5)

hence, Pc satisfies: ‖Pcx−Pcy‖2 ≤ 〈Pcx−Pcy,x− y〉, for all x,y ∈ H.

Lemma 2.1.1 For all x,y ∈ H, it is known that the following inequality hold.

i) ‖x+ y‖ ≤ ‖x‖+‖y‖

ii) ‖x+ y‖2 +‖x− y‖2 = 2(‖x‖2 +‖y‖2)

iii) ‖x− y‖2 = ‖x‖2−‖y‖2−2〈x− y,y〉

iv) ‖x+ y‖2 = ‖x‖2 +2〈x+ y,y〉

Lemma 2.1.2 (Albert,1996). Let C be complex subset of a real Hilbert space H

and let x ∈ H, then

x0 = Pcx if and only if 〈z− x0,x− x0〉 ≤ 0, for every z ∈C.

Lemma 2.1.3 (Xu, 2002). Let {αn} be a sequence of nonnegative real numbers

that satisfying the following relation:

an+1≤ (1−αn)an+αnγn for n≥ n0 where {αn}⊆ (0,1) and {γn}⊆R, satisfies limx→∞αn = 0,

∞

∑
n=1

αn = ∞, and lim supn→∞γn ≤ 0. Then limn→∞an = 0.

Lemma 2.1.4 ( Mainge, 2008). Let {an}, be sequence of real numbers such that

there exists a subsequence {ani} of {an} such that ani < ani+1, for i∈N. Then there

exists a non decreasing sequence {mk} ⊂ N,, such that mk → ∞,and the following

properties are satisfied for numbers k ∈ N:

amk ≤ amk+1 in fact mk = max{ j ≤ k : a j ≤ a j+1}.
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Lemma 2.1.5 (Zegeye and Shahzad). Let H be a real Hilbert space. Then for all

xi ∈ H andαi ∈ [0,1] for i = 1,2,3, ...n, such that α1 +α2 +α3 + ...+αn = 1, then

the following holds

‖α0x0 +α1x1 + ...+αnxn‖2 = ∑
n
i=0 αi‖xi‖2−∑0≤i, j≤n αiα j‖xi− x j‖2.

Lemma 2.1.6 ( He,2006). Let C, be a nonempty, closed and convex subset of H

Let r(x), be a real valued function on H and defined K := {x ∈ C : r(x) ≤ 0}.
If K, is nonempty and r is L-Lipshitz continuous with L > 0, then ||PKx− x|| ≥
1
L max{r(x),0}, for x ∈C.
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Chapter 3

Methodology
This chapter contains study site and period, study design, source of information and
mathematical procedures.

3.1 Study Area and Period

The study was conducted from September 2021 to June 2022 in Jimma University
under the department of mathematics and conceptually the study was focused on
studying an iterative algorithm for approximating a common fixed point of a finite
family of pseudo-pseudocontractive in real Hilbert spaces.

3.2 Study Design

In order to achieve the objectives of this study was employ analytical methods of
designing.

3.3 Sources of Information

The relevant sources of information for this study was published articles, books of
different mathematics which related to our research topic.
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3.4 Mathematical Procedure

In this thesis, we were follow the standard mathematical procedures given below:

• Establishing an iterative algorithm and constructing theorem for approximat-
ing a common fixed point of a finite family of pseudo-pseudomonotone map-
pings.

• Proving strong convergence of the sequence proposed by the method to a
common fixed point of a finite family of pseudo-pseudomonotone mappings.

• Applying our main result to solve minimization problems.

12



Chapter 4

Main Results
In this section we introduce a common fixed point of a finite family of Pseudo-
Pseudo contractive mapping in Hilbert space and we shall using the following as-
sumptions and algorithm for approximation.
Assumption 1:

A1: Let T1,T2 : H→ H be uniformly continuous Pseudo-pseudocontractive map-
pings which are sequentially weakly continuous on bounded subset of H.

A2: Ω = F(T1)
⋂

F(T2) 6= /0.

A3: Let ι ∈ (0,1),µ > 0 and λ ∈ [λ ′,λ ′′]⊂ (0, 1
µ
)

A4: Let {αn} ⊂ (0,ε) for some constant real number , ε > 0 be a real sequence
such that,

limn→∞αn = 0, and
∞

∑
n=1

αn = ∞.

Remark 4.1 Note that if we have r(xn) = s(xn) = 0 for some n ∈ N, then we get,

xn ∈Ω = F(T1)∩F(T2), since we have r(xn) = xn− zn = 0 implies that, xn = (1−
λ )xn + λT1xn which gives us, λ (T1xn− xn) = 0, and hence T1xn = xn. Similarly,

s(xn)− xn− un = 0, implies, T2xn = xn. Thus, T1xn = T2xn = xn and hence, xn ∈
Ω = F(T1)∩F(T2). For the rest of the study we consider only the case that this

equality does not hold.

Lemma 4.0.1 Suppose that the assumption A1 and A2 hold and {xn},{yn},{zn},{un} and {vn}
are sequences, generated by Algorithm 1.Then the search rules in step two are well

defined.

Proof: Since ι ∈ (0,1), T1 andT2 are uniformly continuous on H, We have

〈ι j(r(xn)+T1(xn− ι
jr(xn))−T1xn,r(xn)〉 → 0 as j→ ∞,

13



Algorithm 1: For arbitrary x0 and u ∈ H, define an iterative algorithm by

Step 1. Compute {
zn = (1−λ )xn +λT1xn and r(xn) = xn− zn,

un = (1−λ )xn +λT2xn, and s(xn) = xn−un.
(4.1)

Step 2. Compute {
yn = xn−Γnr(xn),

vn = xn−Γ′s(xn),
(4.2)

where, Γn = ι jn and jn is the smallest non negative integer j satisfying;

〈ι j(r(xn))+T1(xn− ι
jr(xn))−T1xn,r(xn)〉 ≤ ‖r(xn)‖2,

Γ ′n = ι j′n and j′n is the smallest nonnegative integer and J′ satisfying

〈ι j′s(xn)+T2(xn− ι
j′s(xn))−T2xn,s(xn)〉 ≤ ‖s(xn)‖2〉

Step 3. Compute 
pn = pCnxn,

qn = pDnxn,

wn = θnxn +βn pn +ηnqn,

(4.3)

where Cn = {x ∈ H : 〈yn−T1yn,x− yn〉 ≤ 0},
Dn = {x ∈ H : 〈vn−T2vn,x− vn〉 ≤ 0} and θn,βn,ηn are nonnegative real
numbers such that, βn +θn +ηn = 1 for all n≥ 0.

Step 4. Compute
xn+1 = αnu+(1−αn)wn. (4.4)

14



and
〈ι j′(s(xn)+T2(xn− ι

j′s(xn))−T2xn,s(xn)〉 → 0 as j′→ ∞.

Moreover, since ‖r(xn)‖> 0 and ‖s(xn)‖> 0 there exist a non-negative integers jn
and j′n , satisfying the inequalities in Step 2. 2

Lemma 4.0.2 Suppose that the assumption A1−A3 hold. If {xn},{yn},{zn},{un},{vn}
are sequences generated by Algorithm 1 then, 〈xn−T1xn,r(xn)〉= 1

λ
‖r(xn)‖2 and

〈xn−T2xn,r(xn)〉=
1
λ
‖s(xn)‖2 (4.5)

Proof: From equations (4.1), we have, zn = (1− λ )xn + λT1xn which gives us,
zn− xn = λ (T1xn− xn) and hence

zn− xn

λ
= T1xn− xn (4.6)

Thus, from the fact that r(xn) = xn− zn, we get

〈xn−T1xn,r(xn)〉 = 〈xn− zn

λ
,xn− zn〉

=
1
λ
〈xn− zn,xn− zn〉

=
1
λ
‖xn− zn‖2 (4.7)

Similarly, we get

〈xn−T2xn,s(xn)〉=
1
λ
‖xn−un‖2 (4.8)

2

Lemma 4.0.3 Suppose the assumptions A1−A3 holds. Let x∗ ∈ Ω, let hn(xn) =

〈yn−T1yn,xn−yn〉 and let gn(xn)= 〈vn−T2vn,xn−vn〉. Then, hn(x∗)≤ 0, gn(x∗)≤
0, hn(xn)≥ Γn(

1
λ
−µ)‖r(xn)‖2, and gn(xn)≥ Γ′n(

1
λ
−µ)‖s(xn)‖2 In particular, if

r(xn) 6= 0 and s(xn) 6= 0, then h(xn)> 0 and g(xn)> 0.

Proof: For the fact that x∗ ∈Ω, we have

〈x∗−T1x∗,yn− x∗〉 ≥ 0. (4.9)
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This inequality and the fact that T1 is Pseudo-pseudocontractive mapping, we obtain

hn(x∗) = 〈yn−T1yn,yn− x∗〉 ≥ 0,

which gives us,
hn(x∗) = 〈yn−T1yn,x∗− yn〉 ≤ .0

In addition, from Step 2, of Algorithm 1, we have,

hn(xn) = 〈yn−T1yn,xn− yn〉

= 〈yn−T1yn,xn− (xn−Γnr(xn)〉

= Γn〈yn−T1yn,r(xn)〉

Furthermore, from the inequalities in Step 2, we have,

〈xn− yn +T1yn−T1xn,r(xn)〉 ≤ µ‖r(xn)‖2,

which implies

〈yn−T1yn,r(xn)〉 ≥ 〈xn−T1yn,r(xn)〉−µ‖r(xn)‖2 (4.10)

From Lemma 4.0.2 and inequality above, we obtain

〈yn−T1yn,r(xn)〉 ≥ (
1
λ
−µ)‖r(xn)‖2 (4.11)

By combining (4.10) and (4.11), we obtain,

hn(xn)≥ Γn(
1
λ
−µ)‖r(xn)‖2.

Similarly, we obtain,

gn(xn)≥ Γ
′
n(

1
λ
−µ)‖s(xn)‖2.

2

Theorem 4.0.4 Suppose the assumptions A1−A4 hold. Then, the sequence {xn},
generated by the Algorithm 1 is bounded in Hilbert space, H.
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Proof: Let P ∈Ω from Lemma 2.1.5 and equation (2.5), we obtain

‖Xn+1− p‖ = ‖αnu+(1−αn)wn− p‖

= ‖αnu+(1−αn)wn−αn p+(1−αn)p‖

= ‖αn(u− p)+(1−αn)(wn− p‖

≤ αn‖u− p‖+‖(1−αn)(wn− p‖

= αn‖(u− p)+(1−αn)‖‖(θnxn +βn pn +ηnqn)− p‖

= αn‖u− p‖+(1−αn)‖(θn(xn− p)+βn(pn− p)+ηn(qn− p)‖

≤ αn‖u− p‖+(1−αn)[θn‖xn− p‖+βn‖pn− p‖+ηn‖qn− p‖]

= αn‖u− p‖+(1−αn)[θn‖xn− p‖+βn‖(pCnxn− p)‖+ηn‖pDnxn− p‖]

≤ αn‖u− p‖+(1−αn)[θn‖xn− p‖+βn‖xn− p‖+ηn‖xn− p‖]

= αn‖u− p‖+(1−αn)[θn +βn +ηn)‖xn− p‖]

= αn‖u− p‖+(1−αn)‖xn− p‖]

Hence, by induction

‖xn+1− p‖ ≤ max{‖u− p‖,‖x0− p‖}.

Thus, the sequence {xn} is bounded and hence the sequences {zn},{yn},{un},{T1xn}
and {T2xn} are bounded. 2

Theorem 4.0.5 Suppose the assumption A1−A4 hold. Then the sequence {xn},
generated by the algorithm 1, converges strongly to p = PΩ(u).

Proof: Now, let P = PΩ(u). From equation 2.5, we have,

‖p− pn‖2 ≤ ‖p− xn‖2−‖xn− pn‖2.

Similarly, we get
‖p−qn‖2 ≤ ‖p− xn‖2−‖xn−qn‖2 (4.12)

Since T1 is bounded on bounded subset of H ,Then their exists L > 0, such that

‖T1yn− yn‖ ≤ L,

17



for all n≥ 0. Thus,

|hn(z)−hn(w)|= |〈yn−T1yn,z− yn〉−〈yn−T1yn,z− yn〉|

= |〈yn−T1yn,z−w〉

≤ |yn−T1yn‖‖z−w‖

≤ L‖z−w‖,

which gives us that hn is L- Lipschitz continuous on H. Thus, from Lemma 2.1.6
and Lemma 4.0.3, we obtain

‖xn− pn‖2 ≥ hnxn

2L2 ≥ Γ
2
n(

1
λ
−µ)2‖r(xn)‖2 (4.13)

Thus, from (4.12) and (4.13), we get

‖p− pn‖2 ≤ ‖p− xn‖2−Γ
2
n(

1
λ
−µ)2‖r(xn)‖4 (4.14)

Similarly, we get

‖p−qn‖2 ≤ ‖p− xn‖2−Γ
′2
n (

1
λ
−µ)2‖s(xn)‖4 (4.15)

By Lemma 2.1.1 and Lemma 2.1.5, we get

‖xn+1− p‖2 = ‖αnu+(1−αn)w(n)− p‖2

≤ (1−αn)
2‖wn− p‖2 +2αn〈u− p,xn+1− p〉

= (1−αn)
2‖wn− p‖2 +2αn〈u− p,xn+1− xn + xn− p〉

= (1−αn)
2‖wn− p‖2 +2αn〈u− p,xn+1− xn〉+2αn〈u− p,xn− p〉

≤ (1−αn)
2‖wn− p‖2

+2αn +‖u− p‖‖xn+1− xn‖+2αn〈u− p,xn− p〉
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Since from Lemma 2.1.5, we have

‖wn− p‖2 = ‖θnxn +βn pn +ηnqn− p‖2

= ‖θn(xn− p)+βn(pn− p)+βn(qn− p)‖2

≤ θn‖xn− p‖2 +βn‖pn− p‖2 +ηn‖qn− p‖2

−θnβn‖xn− pn‖2−θnηn‖xn−qn‖2−θnβn‖pn−qn‖2

By setting

Rn = θnβn‖xn− pn‖2
n +θnηn‖xn−qn‖2 +θnβn‖pn−q2

n‖,

from ((4.14)), and ((4.15)) we get

‖xn+1− p‖2 ≤ (1−αn)
2[θn‖xn− p‖2 +βn‖pn− p‖2

+ηn‖qn− p‖2](1−αn)
2Rn +2αn‖u− p‖‖xn+1− xn‖ (4.16)

+2αn〈u− p,xn− p〉

≤ (1−αn)
2[θn‖xn− p‖2 +βn‖pn− p‖2 +ηn‖qn− p‖2]

−(1−αn)
2Rn +2αn‖u− p‖‖xn+1− xn‖+2αn〈u− p,xn− p〉

−βnΓ2
n(

1
λ
−µ)2‖r(xn)‖4−ηnΓ′2n (

1
λ
−µ)2‖s(xn)‖4

= (1−αn)
2‖xn− p‖2− (1−αn)

2Rn +2αn‖u− p‖‖xn+1− xn‖

+2αn〈u− p,xn− p〉− ( 1
λ
−µ)2[Γn

nβn‖r(xn)‖4 +ηnΓ′2n ‖s(xn)‖4, (4.17)

which gives us

(1−αn)
2Rn +(

1
λ
−µ)2[Γ2

nβn‖r(xn)‖4 +ηnΓ
′2
n ‖s(xn)‖4]

≤ (1−αn)
2‖xn− p‖2−‖xn+1− p‖2 +2αn‖u− p‖‖xn+1− xn‖+2αn〈u− p,xn− p〉

≤ ‖xn− p‖2−‖xn+1− p‖2 +2αn‖u− p‖‖xn+1− xn‖+2αn〈u− p,xn− p〉. (4.18)

Now, we that the sequence {‖xn− p‖} converges strongly to zero. For this we
consider two cases as follows:
Case 1: Assume that there exist n0 ∈ N, such that the sequence of real numbers
{‖xn− p‖2} is decreasing for all n≥ n0. Thus, the sequence {‖xn− p‖2} convergent
and hence from (4.18) and the fact that αn → 0, we obtain limn→∞Rn = 0, which
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implies that

limn→∞‖xn− p‖2 = limn→∞‖xn−qn‖2 = limn→∞‖pn−qn‖2 = 0.

In addition, we have

limn→∞Γ
2
n‖r(xn)‖4 = limn→∞Γ

′2
n ‖s(xn)‖4 = 0.

Then, from this we obtain that

limn→∞Γn‖r(xn)‖2 = limn→∞Γ
′
n‖s(xn)‖2 = 0. (4.19)

Since the sequence {xn} is bounded, there exists a subsequence {xnk}, of {xn}
which converges weakly to q ∈ H and

limn→∞〈u− p,xn−q〉= lim supn→∞〈u− p,xnk−q〉 (4.20)

Now, we prove that

limk→ ∞‖xnk− znk‖= 0, limk→ ∞‖xnk−unk‖= 0 (4.21)

First consider the case, when liminfk→∞Γnk > 0 In this case there is Γ > 0 such that
Γnk > Γ > 0, for all k ∈ N. Thus, we have

‖xnk− znk‖
2 =

1
Γnk

Γnk‖xnk− znk‖
2 ≤ 1

Γ
Γnk‖xnk− znk‖

2.

From this inequality and ((4.19)), we obtain

limk→ ∞‖xnk− znk‖
2 = 0

and hence
limk→ ∞‖xnk− znk‖

Second consider, when limin fk→∞Γnk = 0. In this case

lim k→∞Γnk = 0 and lim k→∞‖xnk− znk‖
2 = c > 0 (4.22)
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Consider, y′nk
= 1

ι
Γnkznk +(1− 1

ι
Γnk)xnk

Thus, from (4.22), we have

lim k→∞‖y′nk
− znk‖= lim k→∞

1
ι

Γnk‖.xnk− znk‖= 0 (4.23)

From inequality in Step 2 and definition of y′nk
, we obtain

µ‖xnk− znk‖
2 < 〈xnk− y′nk

+T1y′nk
−T1xnk ,xnk− znk〉

≤ 〈xnk− y′nk
,xnk− znk〉+ 〈T1y′nk

−T1xnk ,xnk− znk〉

≤ ‖xnk− y′nk
‖‖xnk− znk‖+‖T1y′nk

−T1xnk‖‖xnk− znk‖.(4.24)

From (4.23), (4.24) and the fact that T1 is uniformly continuous, we get limn→∞‖xnk−
znk‖ = 0, which contradict (4.22). Thus, from this fact the equation (4.21) holds.
Furthermore, from Step 1 of the Algorithm 1, we have

znk = (1−λ )xnk +λT1xnk ,

which gives as
‖znk− xnk‖= λ‖xnk−T1xnk‖. (4.25)

Hence, from equation (4.21), we obtain,

lim k→∞‖xnk−T1xnk‖= 0. (4.26)

Similarly, we get
lim k→∞‖xnk−T2xnk‖= 0. (4.27)

From (4.26) and the fact that T1 is sequentially weakly continuous, we get q ∈
F(T1). Similarly, q ∈ F(T2). Therefore, q ∈ Ω. From the definition of xn+1, we
have ‖xn+1−wn‖= αn‖u−wn‖→ 0, as n→∞, since αn→∞, as n→ ∞ and from
(4.18), we get

‖xn+1−wn‖ ≤ ‖xn+1−wn‖+‖wn− xn‖

≤ ‖xn+1−wn‖+‖θnxn +βn pn +ηnqn− xn‖

≤ ‖xn+1−wn‖+θn‖xn− xn‖ (4.28)

+βn‖pn− xn‖+ηn‖qn− xn‖→ 0 as n→ 0. (4.29)
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Moreover,

‖xn−wn‖ ≤ θn‖xn− xn‖+βn‖pn− xn‖+ηn‖qn− xn‖→ 0, as n→ 0. (4.30)

Thus, from (4.28) and (4.30), we obtain

‖xn+1− xn‖ = ‖xn+1−wn +wn− xn‖

≤ ‖xn+1−wn‖+‖wn− xn‖→ 0, as n→ 0. (4.31)

From (4.20), we have

lim supn→∞〈u− p,xn− p〉 ≤ lim supk→∞〈u−q,xnk−q〉

= 〈u− p,q− p〉

≤ 0. (4.32)

Finally, from (4.16), (4.31), (4.32) and Lemma 2.1.3, we get ‖xn− p‖2 → 0, as
n→ ∞ and hence xn→ p, as n→ ∞.

Case 2: Suppose that there exists a subsequence {‖xni− p‖2} of {‖xn− p‖2} such
that

‖xni− p‖2 < ‖xni+1− p‖2, for i≥ 0. (4.33)

Thus by Lemma 2.1.4 there exists a non-decreasing sequence {mk},of the set of
positive integer of numbers such that mk→ 0, as k→ ∞,

‖xmk− p‖2 ≤ ‖xmk+1− p‖2 and

‖xmk− p‖2 ≤ ‖xmk+1− p‖2, for all k ≥ 1. (4.34)

Hence, by following the method of Case 1, from the inequality (4.20), we obtain

limk→∞Rmk = 0,

and hence,
limk→∞‖xmk− pmk‖= limk→∞‖xnk−qmk‖= 0.

In addition,
limk→∞‖xmk− zmk‖= 0,
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limk→∞‖xmk+1− xmk‖= 0,

and
limsupn→∞〈u− p,xmk− p〉 ≤ 0.

Thus, from Lemma 2.1.5, we have

‖xmk+1− p‖2 ≤ (1−αmk)‖xmk+1− p‖2

+αmk‖u− p‖‖xmk+1− xmk‖+αmk〈u− p,xmk− p〉. (4.35)

Now, from (4.34) and (4.35) we get

‖xk− p‖2 ≤ ‖xmk+1− p‖2

≤ 〈u− p,xmk− p〉+‖u− p‖‖xmk+1− xmk‖ (4.36)

which implies, limk→∞‖xk− p‖2 = 0 and hence xk→ p as, k→ ∞. 2

Algorithm 2: For arbitrary x0 and u ∈ H, define an iterative algorithm by

Step 1. Compute
zn,i = (1−λ )xn +λTixn and ri = xn− zn,i, for i = 1,2, ...m

Step 2. Compute
yn,i = xn−Γn,irn(xn),

for i = 1,2,3, ...m, where,Γn,i = ι jn,i and jn is the smallest non negative
integer jisatisfying

〈ι j,iri(xn)+Ti(xn− ι
j,iri(xn))−Tixn,ri(xn)−Tixn,ri(xn)〉 ≤ µ‖ri(xn)‖2

Step 3. Compute
wn = βn,1un,1 +βn,2un,2 + ...+βn,mun,m,

where, un,i = PCn,ixn, Cn,i = {x ∈ H : 〈yn,i−Tiyn,i,xn− yn,i〉 ≤ 0} and
βn,1 +βn,2 + ...+βn,m = 1

Step 4. Compute
xn+1 = αnu+(1−αn)wn.

23



We remark that the method of proof of Theorem 4.0.5, provides the following
theorem for approximating a common fixed point of a finite family of uniformly
continuous pseudo-pseudocontractive mappings in Hilbert spaces.

Theorem 4.0.6 Let H be a Hilbert space, suppose A1 and A2 hold. Let Ti : H→ H

be uniformly continuous pseudo-pseudocontractive mappings which are sequen-

tially weakly continuous on bounded subset of H , such that Ω = ∩m
i=1F(Ti) 6= ∅,

for i = 1,2, ...m. Then, the sequence {xn}, generated by the Algorithm 2, converges

strongly to p = PΩ(u).

We remark that from Theorem 4.0.5 we obtain the following the following result
for two pseudocontractive mappings which are sequentially weakly continuous on
bounded subset of H.

Corollary 4.0.7 Suppose the assumption A2−A4 hold. Let T1,T2 : H→ H be uni-

formly continuous pseudocontractive mappings which are sequentially weakly con-

tinuous on bounded subset of H; Then the sequence {xn} generated by the Algo-

rithm 1, converges strongly to p = PΩ(u).

We remark that from Theorem 4.0.6 we obtain the following the following result
for a finite family of pseudocontractive mappings which are sequentially weakly
continuous on bounded subset of H.

Corollary 4.0.8 Let H be a real Hilbert space, suppose A3 and A4 hold. Let T2 :
H → H, be uniformly continuous pseudo contractive mappings which are sequen-

tially weakly continuous on bounded subset of H , such that Ω = ∩m
i=1F(Ti) 6= ∅,

for i = 1,2, ...m. Then, the sequence {xn}, generated by the Algorithm 2, converges

strongly to p = PΩ(u).

4.1 Application to Convex Minimization Problem

In this section, we apply Corollary 4.0.7 to find a common minimum point of a
finite family of convex functions in Hilbert Spaces.

Let f : H→ R be a convex smooth function. We consider the problem of finding a
point z ∈ E such that

f (z) = min
x∈E
{ f (x)}. (4.37)
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According to Fermat’s rule, this problem is equivalent to the problem of finding
z ∈ H such that

∇ f z = 0, (4.38)

where ∇ f is a gradient of f . We note that ∇ f is monotone mapping (see, e.g., ,
Peypouquet, J. (2015)) and hence pseudomonotone mapping.
We note that T is pseudocontractive if and only if A := I−T , where I is the identity
mapping on H, is monotone and hence the set of fixed points of T , F(T ) : {x ∈
D(T ) : T x = x}, is the set of zero points of A, N(A) := {x∈D(A) : Ax = 0}. Now, if
in Algorithm 2, we assume ∇ fi = I−Ti, then we obtain the following Algorithm 3
for a common minimum point problem of a finite family convex functions in Hilbert
spaces.

Algorithm 3: For arbitrary x0 and u ∈ H, define an iterative algorithm by

1. Step 1. Compute
zn,i = xn−λ∇ fixnxn and ri = xn− zn,i, for i = 1,2, ...m

2. Step 2. Compute
yn,i = xn−Γn,irn(xn),

for i = 1,2,3, ...m, where,Γn,i = ι jn,i and jn is the smallest non negative
integer jisatisfying

〈ι j,iri(xn)+Ti(xn− ι
j,iri(xn))−Tixn,ri(xn)−Tixn,ri(xn)〉 ≤ µ‖ri(xn)‖2

3. Step 3. Compute

wn = βn,1un,1 +βn,2un,2 + ...+βn,mun,m,

where, un,i = PCn,ixn, Cn,i = {x ∈ H : 〈yn,i−Tiyn,i,xn− yn,i〉 ≤ 0} and
βn,1 +βn,2 + ...+βn,m = 1

4. Step 4. Compute
xn+1 = αnu+(1−αn)wn.
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The method of proof Theorem 4.0.4 provides the proof of the following theorem
of finding a common minimum point of a finite family convex functions in Hilbert
spaces.

Theorem 4.1.1 Suppose the Assumptions (A1) and (A2) hold. Let fi : E → Rfor

i = 1,2, ...m be a finite family of convex smooth functions with ∇ fi are sequentially

weakly continuous on bounded subset of H and ∩m
i=1Ωi 6= /0, where Ωi = {z : fi(z) =

minx∈H f (x)} for i = 1,2, ...m. Then, the sequens {xn} generated by Algorithm 3

converges strongly to an element x∗ = PΩ(u).
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Chapter 5

Conclusion and Future scope
5.1 Conclusion

In this thesis, we established an iterative algorithm for approximating a common
fixed point of a finite family pseudo- pseudocontractive mappings in real Hilbert
space.
In addition, we also proved a strong convergence of a sequence generated by the
proposed algorithm to a common fixed point provided that the mappings are uni-
formly continuous which are sequentially weakly continuous. Our result general-
izes the results of many Authors such as (Zegeye (2011), Daman and H. Zegeye
(2012) and Zegeye and Wega (2020)).

5.2 Future Scope

In this thesis we obtained the common fixed point result for a finite family pseudo-
pseudocontractive mapping on real Hilbert space. However, extending this result to
a Banach spaces more general Hilbert spaces is an open problem. So, any interested
researchers can use this opportunity to conduct their research work in this area.
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