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Abstract 

In this thesis, mathematical model for coffee fruit disease was developed based on 

compartmental approach. The thesis encompasses the following fruitful findings. Boundedness 

and positivity of the model were proved. The model was linearized at equilibrium point. Basic 

reproduction number was also calculated by using next generation matrix. The local and global 

stability conditions of the model were also well investigated for both disease free and endemic 

equilibrium points. Furthermore, sensitivity analysis of the model parameters was also carried 

out. Finally, in order to verify the applicability of the result MATLAB simulation was 

implemented and agrees with the analytical result. 
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CHAPTER ONE 

1. INTRODUCTION 

1.1 Background of the Study 

Mathematical model plays indispensable role in different field of disciplines such as physics, 

biology, and electrical engineering and also in the social sciences (such as economics, sociology 

and political science). Physicist, Engineers, Computer scientist and Economists use mathematical 

models most extensively. Mathematical modeling can play a significant role in the efficient and 

sustainable management of renewable resources. It is mainly used to describe the real 

phenomena leading to design better prediction, prevention, management and control techniques. 

Several well documented mathematical models regarding real life problems can be found by 

(Biswas et al., 2017; Biswas et al., 2016; Chaudhary, 1986; Clark, 1979; Dubey et al., 2003 and 

Mondal et al., 2017). 

Plants play a very important role in almost every ecosystem on the planet, mainly food for the 

Human and Animals. Sometimes plants may become infected with a virus. These infections can 

be devastating to not only the plants themselves but also the ecosystem that depends on them. 

Plant viruses are important constraints to crop production worldwide and the most limiting 

factors to modern agriculture, especially in developing countries (Toledo and Moguel, 2012). 

Coffee is one of the most widely consumed beverages in the world; its trade satisfies the regular 

consumption of more than two billion people and exceeds $10 billion worldwide (Toledo and 

Moguel, 2012). Its cultivation is an important factor of social stability as it sustains the living of 

not less than twenty-five million small producers and their families worldwide. The total 

production of all exporting countries in 2018 was more than 172 million 60-kilogram bags 

(Djuikem et al., 2021). 

Coffee exports worldwide are worth around $24 billion, and coffee is a key part of the 

economies and cultures of many of the more than 80 countries that produce it (Rodríguez, 2014). 

Infestation of coffee by the coffee berry borer (CBB) causes about $500 million in losses each 

year (Vega et al., 2019).  
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The CBB is now found in almost all coffee-producing countries and is very difficult to control.  

Since its detection in Puerto Rico in 2007, the CBB has colonized the entire coffee-growing 

region. Infestation reaches to 95% in some farms, but varies greatly from year to year (Marino et 

al., 2017). Therefore, there is a great need for and interest in new tools for CBB infestation 

prediction and management.  

Mathematical modeling has become an important tool in understanding the dynamics of disease 

transmission and in decision making processes regarding intervention programs for disease 

control. For instance, to reduce the losses caused by the maize stroke disease (MSD) different 

alternative tactics are used such as cultural control, biological control and chemical control 

(Magenya et al., 2008; Karavina, 2014) and stakeholders are encouraged to combine at least two 

strategies in dealing with the disease (Jeger et al., 2004; Karavina, 2014). Currently, vector-

borne plant diseases have attracted the interest of many mathematical modeling researchers (Shi 

et al., 2014). Ordinary differential equations (ODEs) have been used to model plants infected 

with viruses (Jeger et al., 2004; Shi et al., 2014 and Alemneh et al., 2020). For instance, the 

authors in (Shi et al., 2014), formulated and analyzed the dynamics of a vector-borne plant 

disease model. The study in (Alemneh et al., 2020) developed and analyzed a mathematical 

model for MSV pathogen interaction with pest invasion on maize plant. A mathematical model 

of plant disease with the effect of fungicide and obtained that the optimal control can reduce the 

number of infected hosts compared to that of without control formulated and analyzed by 

(Anggriani et al., 2018). The study in (Meng & Li, 2010) developed a model to combat plant 

viruses by continuously removing infected plants and replacing them with healthy plants. 

 On the other hand, fewer studies have investigated Mathematical models of the interactions 

between coffee fruits and coffee fruit disease. For example, Vandermeer et al. (2014) study the 

interaction between the regional and local dynamics of CLR model by representing the evolution 

of the proportion of infected bushes and farms.  Bebber et al. (2016) determine the germination 

and infection risk depending on the climate in Colombia and neighbouring countries. 

Vandermeer et al. (2018) also represent the CLR dynamics in a coffee farm in Chiapas using an 

SI epidemiological model of the host. 
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In spite of aforementioned studies there is no research conducted in Ethiopia with regard to 

coffee fruit disease by using mathematical modeling and analysis. Therefore, the central goal of 

this study is to propose a new mathematical model of coffee fruit disease by incorporating 

different assumption that holds in the context of our country. 
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1.2. Statement of the problem 

Mathematical modelling is the practice of transforming problems from an implementation field 

into tractable mathematical symbols, equations, and formulas whose theoretical and numerical 

analysis offers inspiration, solutions, and guidelines for the originating application. Coffee plays 

an important role in the economic growth of many developing countries such as Brazil, 

Cameroon, Ethiopia, Ivory Coast, Mexico, Viet Nam and many others. Coffee production 

throughout the world is affected by several pests and diseases. Among these pests, the coffee 

berry borer (CBB) is considered as one of the pest which bring lose economically (Aristizábal et 

al., 2016; Vega et al., 2009). It causes direct loss such as a reduction of coffee production and 

indirect losses such as a lowering of the quality of the coffee berries. In order to tackle or reduce 

such problems, a few scholars conduct research on coffee fruit disease using mathematical model 

and analysis approach. However, those researches were not conducted in Ethiopia in the existing 

literature. Therefore, it sounds to propose a new mathematical model which represents the 

dynamics of coffee fruit disease in our context followed by some rigorous mathematical analysis. 

Bearing this in mind, this research focuses on the following points. 

 Formulation of mathematical model for coffee fruit disease, 

 Boundedness and positivity of the solution of model, 

 Computing basic reproduction number, 

 Local stability condition of  model given, 

 Global stability condition of model, 

 Sensitivity analysis of the model parameters, 

1.3 Objectives of the Study 

1.3.1 General Objective 

The general objective of this study is to investigate mathematical model and analysis of coffee 

fruit disease. 
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1.3.2 Specific Objectives   

The specific objectives of the study are: 

 To formulation of mathematical model for coffee fruit disease, 

 To prove boundedness and positivity of the solution of model, 

 To computing basic reproduction number, 

 To determine local stability condition of  model given, 

 To determine global stability condition of model, 

 To carryout sensitivity analysis of the model parameters, 

1.4 Significance of the Study 

It is well known that coffee provides enormous advantages to sustainability of human life. 

However, coffee fruit disease leads to decrement coffee production and eventually affect 

economic development of one country. Therefore, this study contributes the way in which 

farmers/ coffee producers will have more production by recommending appropriate strategies.  

1.5 Delimitation of the Study  

The study is delimited to mathematical modeling and analysis of coffee fruit disease. 
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CHAPTER TWO 

2. LITERATURE REVIEW 

Mathematical modeling can play a significant role in the efficient and sustainable management 

of renewable resources. It is mainly used to describe the real phenomena leading to design better 

prediction, prevention, management and control techniques. Mathematical models in harvesting 

of fisheries were studied first by Clark in 1979. In 2015, knife and Koya studied stability of 

dynamics of harvesting fishery. Their result shows that fish population converges to a linear 

asymptote while the predator either converges to a lower positive asymptote, converges to zero 

early or diverges to positive infinity early. In 2016, Walters et al. studied about predation from 

simple predator prey theory about impacts of harvesting forage fishes. They considered 

harvesting for both prey and predator species. Then they described complex dynamics of the 

proposed model system including positivity and uniform boundedness of the system, and 

existence and stability criteria of various equilibrium points. 

 

Plant diseases cause economic devastation especially in developing countries by 

severely affecting production of staple food crops due to yield losses. Cassava mosaic 

disease (CMD) and Maize lethal necrosis (MLN) are some of the most damaging crop 

diseases in the world (Redinbaugh and Stewart, 2018; Rey and Vanderschuren, 2017). 

CMD occurs in many regions across Africa, India, and Sri Lanka, areas in which 

cassava is considered a primary food crop (Alabi et al., 2021). As CMD significantly 

decreases tuber production, it is a major constraint to cassava production (vanden 

Bosch et al., 2006).  

The spread of crop diseases, in particular airborne pathogens such as fungi, has received a lot of 

attention from researchers. Among models that represent the pathogen spatial dispersal, one can 

cite the DDAL framework that focuses on the deployment of susceptible and resistant crop hosts 

in an agricultural landscape. Fewer models represent the pathogen spread by a diffusion term in 

partial differential equations (PDE).  
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For instance, Sapoukhina et al. (20120) also study susceptible and resistant crop mixtures for a 

fungal disease propagated by airborne spores in a field, while Burie et al. (2008) explore the 

dynamical behaviour of mildew in a vineyard. These disease dynamics are relevant for CLR 

modelling: they include a latency period, a sporulation period, spore dispersal and germination. 

CLR models in the literature represent different scales, from the individual coffee bush to the 

country or even the continent.  Avelino et al. (2006) investigate the factors (coffee tree 

characteristics, crop management patterns, environment that affect CLR intensity in several plots 

in Honduras. Bebber et al. (2016) determine the germination and infection risk depending on the 

climate in Colombia and neighbouring countries. In contrast to these static approaches, 

Vandermeer et al. (2014) study the interaction between the regional and local dynamics of CLR 

model by representing the evolution of the proportion of infected bushes and farms. Vandermeer 

et al. (2014) also represent the CLR dynamics in a coffee farm in Chiapas using an SI 

epidemiological model of the host. In these two latter studies, the fungus life cycle is not 

represented. Some other models investigate CLR control. Vandermeer et al. (2014) look at the 

interaction between H. vastatrix and a mycoparasite Lecanicillium lecanii, while Arroyo et al. 

(2019) consider interactions with antifungal bacteria. However, no existing CLR model 

considers H. vastatrix dynamics together with its interaction with the coffee host. In particular 

none considered the impact of CLR on berry production, which is the variable of agronomic 

interest. 

 

The capacity to accurately model the time evolution of coffee plantations allows not only to 

effectively predict trends in the process, but also to act on them. In this context, optimal control 

theory has proven to be a powerful tool for investigating potential control strategies in pest 

treatment (Abbasi et al., 2020 and Belbas and Schmidt, 2009). Such approaches are commonly 

based on the well-known PMP (Pontryagin’s maximum principle) (Pontryagin, 2018): for a 

given cost function to maximize, this theory can provide necessary (and often sufficient) 

conditions for optimality of control strategies in systems of ordinary differential equations, 

partial differential equations and hybrid systems with given constraints (Dmitruk and 

Kaganovich, 2008). The present contribution will offers an impulsive perspective to the 

modeling of the propagation of coffee fruit disease in a coffee plantation. 
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CHAPTER THREE 

METHODOLOGY 

3.1. Study Area and Period  

The study was conducted in Jimma University under the department of Mathematics from 

January, 2021 to January, 2022 G.C.  

3.2. Study Design 

This study employed mixed-design (documentary review design and experimental design). 

3.3. Source of Information 

The relevant sources of information for this study were books, published articles and related 

studies from internet. 

3.4. Mathematical Procedures 

In order to achieve the stated objectives, the following procedures were followed. 

1. Formulating mathematical model of coffee fruit disease, 

2. Proving boundedness and positivity of solution for model, 

3. Determining equilibrium points of the model, 

4. Computing basic reproduction number via next generation matrix, 

5. Linearizing the model about equilibrium points, 

6. Determining eigenvalues of Jacobian matrix, 

7. Determining local stability conditions of the model, 

8. Constructing appropriate Lyapunov functions, 

9. Determining global stability conditions of the model, 

10. Carrying out sensitivity analysis of the model parameters, 

11. Verifying the applicability of the result using MATLAB simulation. 
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CHAPTER FOUR 

RESULT AND DISCUSSION 

4.1 Preliminaries 

Definition 4.1: Consider non-linear system  
dx

f x
dt

 , where : n nf R R . A point 
nx R is an 

equilibrium point if     0
dx

x f x
dt

    

Definition 4.2: For a linear system 
dx

AX
dt

 the stability of equilibrium point can be  

completely determined by location of eigenvalues of A. This is expressed as follows; 

I. If the all eigenvalues of the Jacobian matrix have real parts less than zero, then the linear 

system is locally asymptotically stable and 

II. If at least one of the eigenvalue of Jacobian matrix has real part greater than zero, then 

the system is unstable (Khalil, 2002). 

Definition 4.3: Let x is an equilibrium point and a scalar function :V D R  is said to be: 

1. Positive definite function if   0V x  and   0V x   for all  x D x   

2. Negative definite function if   0V x  and   0V x   for all  x D x   

Theorem 4.1: Lyapunov Stability Theorem (Khalil, 2002) 

Let x x be an equilibrium point of non-linear system of  
dx

f x
dt

 , : nf D R . 

Suppose :V D R  be continuously differentiable function such that:- 

I.   0V x   

II.   0V x   for  all  x D x   

III. 
( )

0
dV x

dt
 for all  x D x   (Domain D excluding  x ).Then x x is stable. 
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Theorem 4.2: (Globally asymptotically stable) 

Let x x be an equilibrium point of non-linear system of  
dx

f x
dt

  , : nf D R .  

Let :V D R  be continuously differentiable function such that:- 

1.   0V x   

2.   0V x   for all  x D x   (Domain D excluding  x ) 

3. 
 

0
dV x

dt
 for all  x D x   (Domain D excluding  x ) 

Then x x is globally asymptotically stable. 

Theorem 4.3: (Gronwall Inequality) (Perko, 2013) 

Let ( )x t  be a function that is satisfying the following differential inequality 

0; (0)
dx

ax b x x
dt

     where ,a b are constants. Then, for all 0t  we have: 

0( ) ( 1); 0at atb
x t x e e a

a
     and 0( ) ; 0x t x bt a    

Theorem 4.4: LaSalle invariance principle (LaSalle, 1976) 

Suppose that * 0x   is an equilibrium point of system an autonomous dynamical system, and V  

is a Lyapunov function on some neighborhood U  of * 0x  . If  0x U  has its forward 

trajectory bounded with limit points in U , and M  is the largest invariant set of 

 * *: ( ) 0E x U V x   , then the solution 0( , )x t M   as t  . 

4.2 Formulation of Mathematical Model 

The total coffee fruit is divided into five sub-populations: Susceptible individuals (denoted by S ) 

are those which are not infected by the disease pathogen but there is a possibility to be infected. 

Exposed individuals (denoted by E ) are those which are in the silent period after being infected 

and have no visible signs. After some period of time those exposed coffee fruit passes to the 

infected compartment or recovered compartment; infected individuals (denoted by I ) are those 

which developed the symptom of the disease. Recovered individuals (denoted by R ) are those 
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which recovered from the disease. Collected coffee fruit denoted by C which are prepared for 

export or usage. The following is flow chart diagram for coffee fruit disease. 

 

Figure 1: Schematic Flow Diagram for Coffee Fruit Disease 

From schematic flow diagram in Figure (1) 

1

( )

( )

( ) (4.1)

(1 ) ( )

dS
ES S

dt

dE
ES E

dt

dI
E d I

dt

dR
E I R

dt

dC
S R C

dt

   

  

  

    

  


    


  




    



     

  


 

Subjected to initial conditions          

 

0 0 0 0 0(0) 0 , (0) 0 , (0) 0 , (0) 0 , (0) 0 (4.2)S S E E I I R R C C         
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Table 1: Description of parameters of the model (4.1) 

Parameters            Description 

         Influx rate 

         The rate at which recovered coffee fruit becomes collected coffee fruit 

         Contact rate of susceptible individuals 

        Transmission rate from exposed to infected or recovered 

        Proportion of exposed individuals which joins infected individuals 

        Natural mortality rate 

        The rate at which infected coffee fruit becomes recovered coffee fruit 

     1d  disease induced death rate of infected individuals 

       The rate at which susceptible coffee fruit becomes collected coffee fruit 

 

4.3 Positivity of the Solutions of the Model 

Since the state variables involved in model (4.1) represents coffee fruit, it is needful to show that 

all the state variables are also positive for all time 0t  . 

Theorem 1: All the state variables ( ), ( ), ( ), ( ), ( )S t E t I t R t C t  of model (4.1) subjected to initial 

conditions (4.2) remain positive for all time 0t  . 

Proof:  From the first equation of Eq. (4.1), 

( )

( ( ))

dS ES S
dt

dS E S
dt

   

  

  

   

 

0

( ( ))

0( ) 0 (4.3)

t

E dt

S t S e
    

 

 From the second equation of Eq. (4.1), 
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( )

( )

dE ES E
dt

dE
E

dt

  

 

 

  

 

 

( )

0( ) 0 (4.4)tE t E e      

 From the third equation of Eq. (4.1), 

1

1

( )

( )

dI d IE
dt

dI d I
dt

  

 

  

   

 

1( )

0( ) 0 (4.5)
d tI t I e    

   

From the fourth equation of Eq. (4.1), 

(1 ) ( )

( )

dR E I R
dt

dR R
dt

    

 

   

 

 

( )

0( ) 0 (4.6)tR t R e      

 

From the last equation of Eq. (4.1), 

dC S R C
dt

dC C
dt

  



 

 

 

0( ) 0 (4.7)tC t C e    

From Eqs. (4.3)- (4.7), all the state variables are positive and hence the theorem is proved. 

4.4 Boundedness of the Solutions of the Model 

Theorem 2: All the solution of ( ), ( ), ( ), ( )S t E t I t R t and ( )C t of model (4.1) which initiate in 

5R are uniformly bounded. 

Proof:  Let  ( ), ( ), ( ), ( ), ( )S t E t I t R t C t  be positive solution of the model (4.1) with initial 

condition (4.2).  
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Let ( ) ( ) ( ) ( ) ( ) ( )W t S t E t I t R t C t     , 

dW dS dE dI dR dC

dt dt dt dt dt dt
      

After some mathematical simplification, 

( ) (4.8)
dW

W t
dt

  

 

Applying Gronwall’s inequality on Eq. (4.8), 

 0 ( ) 1 (0)t tW t e W e 



      

Apply limit sup as t  ,     lim up ( ) lim up 1 lim up (0)t t

t t t
S W t S e S w e 



 

  
    

0 ( ) (4.9)W t



   

As a result, all the solutions of model (4.1) that initiated in 
5R  are attracted to the region  

5( ( ), ( ), ( ), ( ), ( )) : ( ) ( ) ( ) ( ) ( ) ( )S t E t I t R t C t R W t S t E t I t R t C t





 
         

 
 

Which is the feasible solution set for the model (4.1) and all the solution set is uniformly 

bounded in it and hence the theorem is proved. 
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4.5 Existence and uniqueness Solution of the Model 

Theorem 3: With initial conditions given by Eq. (4.2), the solution of 

 ( ), ( ), ( ), ( ), ( )S t E t I t R t C t exists in 5R . 

Proof:  Mathematical model given by Eq. (4.1) can be expressed as ( )x f x where 

1

( )( )

( )( )

, ( ) ( )( )

( ) (1 ) ( )

( )

ES SS t

ES EE t

x f x E d II t

R t E I R

C t S R C

   

  

  

    

  

    
  

   
      
  

     
       

 

Since f  has a continuous first derivative in
5R , it is then locally Lipschitz. As a result, by the 

well known fundamental existence and uniqueness theorem (Perko, 2013) and theorem 1 and 2 

proved above, there exists a unique, positive and bounded solution for the system of differential 

equation given by Eq. (4.1) in 
5R . 

4.6 Equilibrium points of the Model 

To find equilibrium points, 

0
ds dE dI dR dC

dt dt dt dt dt
      

 

1

( ) 0

( ) 0

( ) 0 (4.10)

(1 ) ( ) 0

0

ES S

ES E

E d I

E I R

S R C

   

  

  

    

  

    


  


    
    


   

 

From the second equation of Eq. (4.10), 

 0E  or S
 




  

For 0E  , the following equilibrium point is obtained 
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 0 ,0,0,0,
( )

E
 

    

 
  

  
 

This equilibrium point is called disease free equilibrium point (DFEP). 

For S
 




 , after some mathematical manipulation the following are obtained. 

 
( )( )

( )
E

    

  

  



 

 
1

( )( )

( )( )
I

d

     

    

  


  
 

 

1 1

1

(1 ) ( ) (1 )( )( )( ) ( )( )

( )( )( )

d d
R

d

                 

      

            


   
 

 

1 1

1

(1 ) ( ) (1 )( )( )( ) ( )( )

( )( )( )

( )

d d
C

d

                 

       

  



             
  

    




  

Endemic equilibrium point:  * * * * *

1 , , , ,E S E I R C , 

where *S
 




 ,  * ( )( )

( )
E

    

  

  



  ,  

*

1

( )( )

( )( )
I

d

     

    

  


  
 

* 1 1

1

(1 ) ( ) (1 )( )( )( ) ( )( )

( )( )( )

d d
R

d

                 

      

            


   
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* 1 1

1

(1 ) ( ) (1 )( )( )( ) ( )( )

( )( )( )

( )

d d
C

d

                 

       

  



             
  

    




 

Theorem 3: The endemic equilibrium point is positive if the following condition is satisfied. 

 

( )( ) (4.11)E        

 

Proof: Since all parameters of the model are positive, * *, 0S S
 




   

 * ( )( )
0, 0 , ( )( ) 0

( )
E

    
    

  

  
     


 

  

 ( )( )        

If *E  is positive, then *I , *R and 
*C are positive. Hence, the proof is completed. 

4.7 Basic Reproduction Number 

The basic reproduction number, denoted by 0R , is defined as number of secondary infections 

appears from one infected individual. The basic reproduction number of the system is calculated 

by applying the next generation matrix method. The next-generation matrix is used to derive 

the basic reproduction number, for a compartmental model of the spread of infectious diseases. 

The infected subsystem of the model is:  

1

( )

(4.12)

( )

dE
ES E

dt

dI
E d I

dt

  

  


   


   


 

https://en.wikipedia.org/wiki/Basic_reproduction_number
https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
https://en.wikipedia.org/wiki/Infectious_disease
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1

0 0
,

0 0

T V
d


 

 
  

 
           

 

 

T represents transmission matrix and V represents transition matrix. 

 1

1 1

1
0

1

( )( )

V

d d

 



     



 
 
 
 
      

 

 1
0

( )( )

0 0

TV



   

 
  
 
 
 

 

 

The spectral radius of  
1TV 
 is

( )( )



    
. 

This spectral radius is called basic reproduction number.  As a result,  

 
0

( )( )
R



   


 
 

4.8 Local Stability Analysis DFEP 

Theorem 4: The disease free equilibrium point 0 ,0,0,0,
( )

E
 

    

 
  

  
is locally 

asymptotically stable if 0 1R  . 
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 Proof: The Jacobian matrix of the model evaluated at disease free equilibrium point is:  

1

( ) 0 0 0

( )( )
0 0 0 0

( )

0 ( ) 0 0

0 (1 ) ( ) 0

0 0

J

d


 

 

    

 

  

    

  

 
  
 

   
 
 

   
 

   
  

 

The eigenvalues of J are: 

1 2 3 1

4 5

( )( )
, ( ) , ( ) ,

( )

( ) ,

d
    

      
 

    

  
       



    

 

Since all parameters of the model are positive, 2 3 4 5, , ,    are all negative.  

For 1 0

( )( )
0 0 1

( )
R

    


 

  
    


. Hence, the proof completed.  

4.9 Local Stability Analysis EEP 

Theorem 5: The endemic equilibrium point  * * * * *

1 , , , ,E S E I R C is locally asymptotically 

stable if 0 1R  . 

Proof: The Jacobian matrix of the model evaluated at endemic equilibrium point is:  

1

( ) 0 0 0
( )

( )( )
0 0 0 0

( )

0 ( ) 0 0

0 (1 ) ( ) 0

0 0

J

d


 

 

    

 

  

    

  

 
  

 
   

   
   
 

   
  
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The eigenvalues of J are: 

 

 

2

1

2

2

3 1 4 5

1
4 ( )( ) ,

2( ) 2

1
4 ( )( ) ,

2( ) 2

( ) , ( ) ,d

 
     

   

 
     

   

       

 
      

  

 
      

  

        

 

Since all parameters of the model are positive, 3 4 5, ,   are all negative.  

1 2&   have negative real part due to condition given by Eq. (4.11).  More specifically, 

condition given by Eq. (4.11) gives the following.  

 ( )( )        

 01 ; 1
( )( )

R


   
 

 
. Hence, the proof completed. 

4.10 Global Stability Analysis DFEP 

Theorem 6: The DFEP given by 0 ,0,0,0,
( )

E
 

    

 
  

  
 is globally asymptotically stable 

provided that the following two conditions are satisfied. 

 

 

2

(4.13)
o

i

ii R

 



 

 



 

 

Proof: Consider the following Lyapunov function, 

 
 

2
*

* *

* *
, , , , ln

2

S S C
V S E I R C E I R C C C

S C

  
       

 
 

   

   * *

1 , , , , 0

2 ,0,0,0, 0

V S E I R C

V S C




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Differentiating V with respect to t  along the solution trajectories of Eq. (4.1) gives: 

 * *

*

S SdV dS dE dI dR C C dC

dt S dt dt dt dt C dt

  
      

 
 

 
   

     

 

*

*

1

*

              1

              

S SdV
S ES ES E

dt S

PE d I E I R

C C
S R C

C

      

       

  


             

          

 
  

 

 
        

          

*

* * * *

*

*
* *

1 1  

S SdV
S S S E S S ES ES E

dt S

C C
E d I E I R S S R C C

C

         

          


                

 
                

 

 

 
       

    

 

2 2
* * *

* *

* *

1

2
* *

            +   

        

dV E
S S S S E S S ES E

dt S S

E d I E E I R R C C S S
C

R C R C C
C

  
   


       




 
         

         

   

 

 
      

 
     

 

2 2
* * * * *

*

2 2 2
* * *

*

2
*

 

2 2

               

dV
S S ES E C C S S C C

dt S C C

dV
S S E C C S S

dt S C C

C C
C

   
 

    


 



 
        

   
        

 

 

 

 
   

2 2
* *

*
 

2 2

dV
S S E C C

dt C S C C

    


 

     
           

    
 

When the above two conditions given by Eq. (4.13) are satisfied, 

 0
dV

dt
  

0
dV

dt
 when    * *,  ,  ,  ,  ,  0,  0,  0,  S E I R C S C  
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This fact indicates that the largest invariant set where 0
dV

dt
 the singleton 

is 0 ,0,0,0,
( )

E
 

    

 
  

  
. Thus, by LaSalle’s invariance principle, the DFEP is globally 

asymptotically stable. 

Note: 
0 0 1R R



 
  


 

This fact revealed that global stability implies local stability. 

4.11 Global Stability Analysis EEP 

Theorem 7: The EEP given by  * * * * *

1 , , , ,E S E I R C  is globally asymptotically stable 

provided that the following conditions are satisfied 

 

   

   

          

*

2
* * *

1

2

2

(4.14)
2

4 1

i

ii R C

iii E C S

iv E E R d E E R R I

  

  

   

    

  


 

   



      

 

Proof: Consider the following Lyapunov function,  

 

   

   

* * * * * *

* * *

* * * *

* *

* * * * *

, , , , ln ln ln

ln ln

1 , , , , 0

2 , , , , 0

S E I
V S E I R C S S S E E E I I I

S E I

R C
R R R C C C

R C

V S E I R C

V S E I R C

     
             
     

   
        
   





 

Differentiating V with respect to t  along the solution of Eq.(4.1), 
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         

 
  

 
  

 
  

 
    

 
 

* * * * *

* * *

1

* *

       + 1

S S E E I I R R C CdV ds dE dI dR dC

dt S dt E dt I dt R dt C dt

S S E E I IdV
ES S ES E PE d I

dt S E I

R R C C
E R S R C

R C

         

      

    
    

  
          

 
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As a result,    * * * * *0 & 0 when , , , , = , , , ,
dV dV

S E I R C S E I R C
dt dt

   

Hence, by LaSalle’s invariance principle, the EEP is globally asymptotically stable. 

4.12 Sensitivity Analysis 

Sensitivity analysis is carried out on the basic parameters, to identify their effect to the 

transmission of the coffee disease fruit. To go through sensitivity analysis, we applied the 

normalized forward sensitivity index definition. The Normalized forward sensitivity index of a 

variable, p , that depends differentiable on a parameter, p , is defined as: 0 0
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The sensitivity indices of the basic reproductive number with respect to main parameters 

revealed that, those parameters that have positive indices are ( , )   show that 

they have great impact on expanding the disease if their values are increasing. Also those 

parameters in which their sensitivity indices are negative  ( , , )    have an effect of minimizing 

the disease as their values increase. Therefore, this study recommends for coffee producers to 

work on decreasing the positive indices and increasing negative indices parameters. 
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4.13 MATLAB Simulation 

MATLAB simulation was implemented by using the following parameters value subjected to 

initial conditions. Some of the parameters values were taken from the literature and others were 

assumed as the model was developed for the first time by this study. 

Table 2: Parameters value used for MATLAB Simulation 

Parameters            Value Parameters Value 

         85   0.07 

         0.00034   0.2 

       Initial Conditions 

        0.1 (0)S  5,000 

        0.35 (0)E  2000 

        0.05 (0)I  1000 

        0.09 (0)R  400 

        0.045 (0)C  100 

1d  0.003   
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Figure 2: Graph of coffee fruit verses time for parameters value given in table 2. 

 

Figure 3: Graph of Susceptible Coffee fruit for different values of   and keeping others 

parameters value constant.  
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Figure 4: Graph of infected Coffee fruit for different values of   keeping others parameters 

value constant.  

 

 

Figure 5: Graph of infected Coffee fruit for different values of   keeping others parameters 

value constant.  
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Figure 6: Graph of infected Coffee fruit for different values of   keeping others parameters 

value constant.  

 

Figure 7: Graph of Basic Reproduction Number verses    and   
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Figure 8: Graph of Basic Reproduction Number verses    and   

4.14 Discussions 

Figure 2 indicates that the graph of coffee fruit in different compartment verses time. It revealed 

the fact that equilibrium point is locally asymptotically stable when the basic reproduction 

number is less than one. Figure 3 indicates graph Susceptible Coffee fruit for different values of 

rate at which susceptible coffee fruit becomes collected coffee fruit. As rate at which susceptible 

coffee fruit becomes collected coffee fruit increases the Susceptible Coffee fruit decreases. 

Figure 7 depicts that graph of Basic Reproduction Number verses influx rate and contact rate. It 

revealed the fact that increasing influx rate and contact rate has the capacity to increase the basic 

reproduction number which in turn lowers coffee production. Figure 8 depicts that graph of 

Basic Reproduction Number verses rate at which susceptible coffee fruit becomes collected 

coffee fruit and transmission rate from exposed to infected or recovered. It revealed the fact that 

increasing rate at which susceptible coffee fruit becomes collected coffee fruit and transmission 

rate from exposed to infected or recovered has the capacity to decrease the basic reproduction 

number which in turn maximizes coffee production.   
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CHAPTER FIVE 

5. CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion 

The findings of this thesis are concluded as follows. 

 New mathematical model for coffee fruit disease were developed, 

 Qualitative analysis like boundedness and positivity of the model were proved, 

 Equilibrium points of the model (disease free and endemic equilibrium points) were 

calculated , 

 Basic reproduction number was calculated by using next generation matrix, 

 The local and global stability conditions of the model were also well investigated for both 

disease free and endemic equilibrium points, 

 Furthermore, sensitivity analysis of the model parameters was also carried out, 

 Finally, in order to verify the applicability of the result, MATLAB simulation was 

implemented and agrees with the analytical result. 
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5.2 Future Scope 

One can conduct the following further investigation on this area of study. 

 Refinement of the mathematical model by incorporating other important factor, 

  Optimal control analysis of the model is also further investigation, 

 It is also possible to extend the model to fractional order derivative to make new analysis 

with new result, 

 Furthermore, introducing time delay into the model and conducting qualitative analysis 

like bifurcation, global stability, existence of periodic solution and limit cycle is also 

future scope of the study. 
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