JIMMA UNIVERSITY

JIMMA INSTITUTE OF TECHNOLOGY

FACULTY OF COMPUTING AND INFORMATICS

Master’s Thesis

Automatic Amharic Question Generation System Using Recurrent

Neural Network

BY

Alelign Mekonen Bogale
A THESIS SUBMITTED TO JIMMA UNIVERSITY,

SCHOOL OF

POSTGRADUATE STUDIES FOR THE PARTIAL FULFILLMENT FOR THE
DEGREE OF MASTER OF SCIENCE IN INFORMATION TECHNOLOGY.

Jimma, Ethiopia

June, 2022

JIMMA UNIVERSITY
JIMMA INSTITUTE OF TECHNOLOGY
FACULTY OF COMPUTING AND INFORMATICS

Automatic Amharic Question Generation System Using Recurrent
Neural Network
By:
Alelign Mekonen Bogale

This is to certify that the thesis prepared by Alelign Mekonen, Automatic Amharic Question
Generation System Using Recurrent Neural Network Submitted in partial fulfillment of the
requirements for the Degree of Master of Science in Information Technology complies with the

regulations of the University and meets the accepted standards concerning originality and quality.

Approved by Examining Committee:

Getachew Mamo (Ph.D.)

Main Advisor Signature Date

Abaynew Guadie (MSc.)

Co-Advisor Signature Date

Dawud Yimer (MSc.)

Internal Examiner Signature Date

Worku Jifara (Ph.D.)

External Examiner Signature Date

Declaration

This thesis is a summary of my original study findings. I, the undersigned, declare that this study has

not been presented for a degree in any other university and that all sources of materials included in

the thesis have been properly acknowledged.

Alelign Mekonen
Name of student

Sign

Date

Acknowledgement

First and foremost, praises and thanks to the God, the Almighty, for His blessings throughout my

research work to complete the research successfully.

I would like to express my deep and sincere gratitude to my research Advisor, Getachew Mamo (PhD)
and Co-advisor Abaynew Guadie (MSc), for giving me the opportunity to do research and providing
invaluable guidance throughout this research. Their dynamism, vision, sincerity and motivation have
deeply inspired me. They have taught me the methodology to carry out the research and to present the
research works as clearly as possible. It was a great privilege and honor to work and study under their
guidance. 1 am extremely grateful for what they have offered me and their patience during the
discussion I had with them on research work and thesis preparation.

My Special thanks is to my sisters Birtukan M, and Fikradis M., for their strong motivation to
complete this research, and my friends, colleagues, and classmates for the deep interest shown to

complete this thesis successfully.

Table of Contents

TS A0 T U =TSSR %
LISE OF TADIES ...ttt Vi
I A0 N 0])Y/ 1 SRS vii
AADSTIACT. ...ttt viii
(O T o] (=1 O - SO SSPSS 1
Lo INEFOTUUCTION ...ttt b e bbbt b bttt et bbbttt nbeene s 1
1.1, BACKGIOUNGottt b bbbt 1
1.2, IMIOTIVALION. ...ttt bbbtk bbb et bbb bttt enes 2
1.3. Statement 0f the ProbIem ... s 2
1.4, RESEAICN QUESTIONSiiuiiiiieiiitie ittt ettt e te e te st este e s e s s e steenee s e sbeessesseesteenseaneenneensean 3
1.5, ODJECTIVES ...ttt bbbt ettt 3
151, GeNeral ODJECLIVEociiiiiiiieiieie ettt bbbt 3
1.5.2. SPECITIC ODJECLIVESveiieeie ettt sre e e e e eae s 3

1.6. Scope and Limitation of the StUAYccciiiiiicii e 4
1.7. Significance Of the STUAYc.ccviiiiie e e 4
1.8. Organization Of the THESISccviiieie e sre e 4
(08 F=T o) (=] IV TS USSP SRS 6
2. LIEIALUIE REVIBW ...ttt bttt bbbt ab e 6
2.1, QUESTION ANA TS TYPES ...ttt b e bbbttt ne bbb 6
2.2. What iS QUESTION GENEIALIONTcueeiieeiieieieiieeiesteesieese e steeste e steete e sreesteeneesreesseeneenreennas 7
2.3. General Architecture of Question Generation SYSLEMcccoceveierierininiieiene e 8
2.3.1. SENTENCE PrEPIOCESSING ..ouviviieitieieeseeteieste st sttt sttt e bbbttt se e e e sbe st besbeereas 8
2.3.2. SENTENCE PIOCESSING ..viuvititiiteitieieeseeieie st sttt sttt et bbbttt et e b et st sbesbeeneas 9
2.3.3. QUESTION GBNEIALON ... c.uieiieiieiteeieeie st e ettt e e et este e esseesteeseesreesteeneesseenneenee e 11

2.4. Deep Learning and Artificial Neural NetwWorks. ...t 11

A S I | T £ S PO PPOP PP PPRPTPIN 12

2.4.2. ACHVALION FUNCHIONS ..ottt 13
2.4.3. L0SS functions and OPLIMIZELScveiveireriiriiiisiesiieee e 14
2.4.4. SEQUENCE T0 SBAUEIICEeivieiieiriiiiesti ettt ettt et b e n e n e 15
2.4.5. ALENtION MECNANISIMSo.vitiiiiiiieiiee ettt 16

2.5. Question Generation APPrOACHEScouiiiiiiiiiii s 17
2.5.1. Traditional APPrOACH.........cciiiiiiiii et 17
2.5.2. Machine Learning APPrOACKc.civeiiiiieieeie e sre e 19
2.5.3. Deep Learning APPrOACH........c.ccoiiiieiieiiicie sttt re e 19

2.6. Evaluation of Question Generation SYSEMSccccvveiieiieiieese e 21
2.7, REIAIEA WOTK ..ottt ettt n 22
2.7.1. Automatic Amharic QUESLION GENEIALIONcecevveiirieiieciree et 22
2.7.2. Question Generation for the English Languagecccocvveveiieieeve e 23
2.7.3. Question Generation for the Chinese Languageccceceeveeievieie e 28
2.7.4. Question Generation for the Portuguese Language...........ccooerirereninieenenene e 29
2.8, The AMNAriC LANQUAGEccveiviriiitiiieeiieiee ettt st 34
2.8. 1. INTFOAUCTION ...ttt bbbttt b e bbb 34
2.8.2. AMNAIIC SENTENCESeiuiiiiitiiteite ettt bbbttt sttt b e 35
2.8.3. Amharic Punctuation Marks and NUMEralScccooeriiiiiniiiniieeeeeee s 35
2.8.4. Amharic QUESLION FOIMALION.......ccueiieiieieceese e see e 36
(08 T o) (= g I] (== SRS PSPR 39
3. ReSEArch MethOUOIOQYcoviiiiiciie ettt e e re e sree e 39
3.1, Problem identifiCatiON............ccoiiiiiiiiii e 39
3.2. Definition of objectives for @ SOIULIONccoiiiiii i 39
3.3, Design and deVeIOPMENT.viiiii it e 40
34, DEMONSIIALION ...ttt bbbt 42

3.4.1. Word2vec model deVEIOPMENL.........ccoveiiiieiiee et 42

3.4.2. Training and GENEIATIONciiiiiieitiite sttt sb bbb 42
Buh.3. ENCOUEN ...t r bbbt 43
S B =TT oo L] USSP T PP VPR PROR 44

3.5, BEVAIUBLION ... 45
3.6, COMMUNICALION. ...ttt b bbbttt bbb 45
CNAPEET FOUT ...t bbbttt bt bbbt bt e bt et et e b e b e st et b e ene s 46
4. Design of Amharic QUESTION GENETALIONcccueiveiieiieieese s sra e 46
4.1, SYStEM AFCNITECIUIEveeiecie et be e sre e eraesreeee s 46

o N - U] 1o SO SSSOPPSN 47
O T o (= o (0 To0 11} | T TSR SRTPRN 48
4.2.2. WOIA2VEC MO ...t 49
4.2.3. INPUL PrOCESSING ...c.viivieiteeieiie it eie et ste ettt e st e st e et e s s e saeetesreesteestesneesteesnesnnesraenneas 51

N IS {12 o TSRS SSRTRPSN 53
4,31, PrEPIOCESSING . ..c.eetetiiteiteeteetiestest etttk sttt s e es e e s e b b e st e ab e bt e bt ebe e bt e se e b et e st e sbe st e be s e 53
4.3.2. WOrd emMBDEAAING ...c.oiveiiiiiiiiiieie bbb 53
4.3.3. QUESTION GENETALIONiiiiiieiieiieeeee ettt bbbttt 54
CRAPTET FIVE ..o bbbttt bbbt bbbt e st et et e bt e bbb eene s 56
5. Implementation and EVAIUBLION..........ccoooiiiiiiiiii e 56
5.1. DataSet Preparationcccoooiiiiiiiiiieiesie sttt sb e 56

5.2. Tools and eXperimental SELUD........ccciiiieeie it 57

5.3. Evaluation of QUESTIONScccuviiiiiii ettt ettt saae e eaae e e eareeens 59

5.4. Training and experimental reSUILScoccvoiii i 63

5.5. The effects of adding answer text on the AQG models ..., 64

(O 0 F: T 01 (=] T RSOSSN 66
6. Conclusion and RECOMMENUALIONc.eeiiiiiiiiiiie e 66

B. 1. CONCIUSION ..o e ettt e e e et e ettt e e e e e e e e e e et e e e e e a e e —aaaans 66

6.2. RECOMMENTALION ...ttt bt 67
RETEIBICES ...ttt b b bbbt bttt et ettt b et 68
Y o] 1=] 1o | TSRS PO PP PP PR PRTRO 76
Appendix 11 AMNAric AIPNADETS.........oiiiiie s 76
Appendix 2: AMNANC NUMETAIS.........coiiiiiiiiie e 76
Appendix 3: AMharic PUNCLUALION MAFKS.........ccviitiiiiiiiiiee e 77
Appendix 4: Short words and their expanded fOrM............ccooviieiicii i 77
Appendix 5: Sample testing sentences and generated questions With anSWerccccccecvevveieenne 79
Appendix 6: Data collection SysStem INtErface...........ccviiveiieiiiie i 80
Appendix 7: Amharic Question Generation System INterfacecccovevveveiieiecie e 81

List of Figures

Figure 2.1 General Architecture of Automatic Question Generation SyStem...........ccccccevveveiiieseennnns 8
Figure 2.2 RNN in the task of translation...........ccocoiiiiiiiiei s 15
Figure 4.1 The architecture of Amharic Question Generation Model............ccccovvviviiiiiinieieine. 47
Figure 5.1 LSTM based AAQG MOCEI 0SScveieeiieieiiesie et 58
Figure 5.2 GRU based AAQG MOUEI 10SSccviiieiiiiie ettt 58

List of Tables

Table 2.7.1 Summery of related WOTKS..........coviiiiiiicie e 30
Table 4.1 Description of word embedding training datasetccocevvereeiininniere e 51
Table 5.1 Detail description 0f the dataSetccciiieiiiiii i 56
Table 5.2 Evaluation result of the GRU based question generation SyStem............ccccccovvveveiiiennennnns 60
Table 5.4 Evaluation result of the LSTM based question generation SyStemcccceeerererenennn. 60
Table 5.6 Sample comparison of actual and system generated QUESEIONSccceevvererreeriesieeseenens 61

Table 5.7 Evaluation result of the LSTM based question generation system that is trained by the
sentence-question-ansWer triple dataSetcoiveiiie i 62

Table 5.9 Comparison of our system with the previous study [9].......ccccoviiiiiiiniiiii 63

Vi

List of Acronyms

ANN
AQG
BiGRU
BLEU
CGC-QG
CNN
GRU
K2Q

KG
LSTM
MCQ
METEOR
NER
NLP
POS

QA

QG
QGSTEC
QP

RNN
ROUGE
SQUAD
SRL
WIC

Artificial Neural Network

Automatic Question Generation

Bidirectional Gated Recurrent Unit

BiLingual Evaluation Understudy

Clue Guided Copy Network for Question Generation
Convolutional Neural Network

Gated Recurrent Unit

Keyword to Question

Kindergarten

Long Short-Term Memory

Multiple Choice Question

Metric for Evaluation of Translation with Explicit ORdering
Named Entity Recognizer

Natural Language Processing

Part-of-Speech

Question Answering

Question Generation

Question Generation Shared Task and Evaluation Challenge
Question Pattern

Recurrent Neural Network

Recall-Oriented Understudy for Gisting Evaluation
Stanford Question Answering Dataset

Semantic Role Labeling

Walta Information Center

vii

Abstract

A question is a linguistic term that is used to make a request for information and is essentially posed
in order to meet informational needs. These days electronic documents written in different languages
are available over the internet or any other storage media. These documents however do not contain
enough questions. This is because manually preparing questions is very time-consuming and tedious
task. The solution for such problem is an Automatic Question Generation System, which is a very
challenging task in NLP that is designed to automatically create questions from sentences. In this
study an attempt is made to design an Automatic Question Generation System from Amharic sentence
using Recurrent Neural Network. To train the model, 60,023 sentence-question pair and/or sentence-
question-answer triple dataset collected from the internet, with a data collection system that has been
specifically designed for this task, is used. To make the system generate more than one question from
a single sentence a beam search decoder is used. The study achieved an accuracy of 88.36% and
82.54% for the model trained with the sentence-question pair dataset and sentence-question-answer
triple dataset respectively. The former model generated Amharic questions for the given Amharic
sentence while the later generated both questions and answers for the given sentence.

Key words: Amharic Question, Factual Question Generation, Sequence-to-Sequence, encoder,

decoder, Attention Mechanism, Beam Search Decoder.

viii

Chapter One

1. Introduction

1.1. Background

Natural language processing (NLP) is an area of artificial intelligence and computer science concerned
with the interaction of humans and computers [1, 2]. It is an area of research that discovers the way
that computers can be used to understand and manipulate natural language text or speech to do some
useful things. The main aim of natural language processing is to use natural languages as effectively
as we humans do [3]. Machine translation, speech recognition, question generation etc. are among the
applications of NLP [3]. An interesting challenge in the field of Natural Language Processing for
preparing questions automatically is Automatic Question Generation (AQG).

A question is a linguistic expression used to make a request for information and basically asked so as
to fulfill the informational needs. Questions are used to extract useful information from the text. That
means questions are essential elements of learning. Questions have two categories based on how
complex they are. These are shallow questions (who, what, when, where, which, how many/much and
yes/no questions) which are factual, and deep questions (why, why not, what-if, what-if-not and how

questions), which involves complex inference [4].

Whether shallow or deep, questions are used in several areas for example, teachers use questions to
check the understanding of the student, and in interviews questions are asked to check the skills of the
candidate, for entrance exams and in many other areas. More generally, questions are used in many
applications such as student learning, medicine, security contexts etc. It is also an input to the question
answering task [4]. Nevertheless, preparing questions manually is very tedious and time-consuming
activity. In addition, even though there are massive amounts of educational data available both online
and offline in electronic form, they do not have questions for every specific content in it.

So far, manual generation of questions from a text for creating practice exercises, tests, quizzes, etc.
has consumed labor and the golden time of academicians and instructors.

But now adays the world is trying to create questions automatically through AQG. Automatic question
generation (AQGQG) is the task of automatically creating questions from natural language texts that can
be answered by a certain span of text within a given passage [5, 6, 7]. Automatic question generation
task has been done for foreign languages like English, Arabic, Spanish, etc. Moreover, the researchers

1

[8] and [9] have worked on the local language. The former applied rule-based approach to generate
Ambharic Math Word Problem and Equations while the later used the same approach to generate
factual Amharic questions.

The way that the Amharic question formed is very different from the way that other foreign
Language’s question is formed due to the different nature of those languages structure. In this study,
we used recurrent neural network to generate Amharic question(s) from a sentence by training a

sequence2sequence learning model with a large data set.

1.2. Motivation

As a working language of the Federal Democratic Republic of Ethiopia, Amharic is widely used in
many parts of the country including Amhara, Southern Nations Nationalities and Peoples, South West
Ethiopia Peoples regions. Amharic speakers whether individual or organization create educational
Ambharic documents. When these Authors write books for KG, primary and secondary school students,
they need to add questions at the end of chapters manually to test the understanding of the readers and
add answer for those questions at the end of books. Preparing questions manually for every specific
content of documents is very laborious. There are also radio programs like Yiteyiku Yishelemu (eme<
£fiagv-) that uses factual questions. These radio programs authors collect factual Amharic sentences
from books, internet, newspapers etc. and prepare factual questions from that sentence manually.
These manual generation of questions takes much labor and time. This unnecessarily consumption of

labor and time is the motivation behind conducting this study.

1.3. Statement of the Problem

Nowadays, the electronic educational document is being produced in a very high amount every day
both online and offline. Part of those documents is written in the Amharic language. Even the students
text books are made public electronically. These text books consist of miscellaneous exercise which
are prepared manually by the authors. The students guide books also consists manually prepare
guestions whose answers are appended at the end of the book. Teachers also prepare quizzes, practice
exercises and other questions to test students understanding. In addition, radio programs collect
factual sentences from different domains like historical, sport, economical, language, social, political,
current issues etc. from different sources like internet, books and newspapers. From those collected
sentences, the authors create factual questions manually. The problem behind preparing questions
manually is that: first, it takes time, second: it is difficult to prepare enough questions, and third: the

learners or readers cannot get those manually prepared questions from the teachers unless it is for a

2

test even though questions are the key linguistic expressions used to request information. Therefore,
to make questions available easily for Amharic text, it is found better to make a study how questions
can be generated from Amharic text automatically.

Lots of work has been done for other languages like English [4, 10, 11], Chinese [12], Portuguese
[13] etc. so far. However, the construction of questions, the answering techniques, and the
grammatical structure of the Amharic language is different from those other languages. Until now,
the researcher at [9] has studied the generation of Amharic questions from historic documents by
writing specific rules for generating who, where, when and how much/many kinds of factual
questions. However, this rule can hardly work well as it is very challenging to extract many features
using those specific rules. The researcher also missed the what kind of factual questions which is
very commonly used question type in the real world. In Amharic, it is common to use the what /9°7%
question. For instance, from the sentence ANN h&+5 @.m A+ NTI9°NE: P78, -+iaar:, we can have the
question AN h&+s @mt 079N+ 907 +iner? Moreover, the study assumed generation as a single
question is generated from a single sentence, although more than one questions can be created from
a single sentence.

So, in the proposed approach we studied the way questions can be generated automatically from
Ambharic text with recurrent neural network as it can learn more complex features than the hand-
written specific rules. The proposed study also used the answer text to make the model generate

questions with their answers.
1.4. Research Questions
1. Does answer features have an impact on the performance of Amharic question

generation?

2. Which of the selected learning algorithms offer better performance?

1.5. Objectives
The general and specific objectives of this study are presented as follows:

1.5.1. General Objective

The general objective of this study is to investigate and design an automatic question generation

system from Amharic sentences using recurrent neural network.

1.5.2. Specific Objectives

To achieve the general objective, the study has the following specific objectives:
3

v’ To study the formation of Amharic questions.

v To design the general architecture of the Automatic Amharic Question Generation system.
v To collect a corpus for model development purpose.

v To develop a prototype for the proposed system.

v To evaluate the performance of the designed system.
1.6. Scope and Limitation of the Study

The scope of this study is limited to Amharic language as we are very familiar with the language. The
question types that are included in this study are factual questions, which are questions that do not
involve complex inferences. This includes: who, what, when, where, which, and how many/much

questions. The study used open domain data to design the automatic Amharic Question Generation.

In this study, we do not include the generation of questions that require complex inferences like why,
why not, what-if, what-if-not and how. In addition, we do not include simplification of complex

sentences, ambiguity resolution and anaphora resolution.

1.7. Significance of the Study

The result of the proposed system is a question or list of questions. Those questions can be used as
training and testing data for different areas including question answering and even for further
improvement of question generation. It can also be applied in the areas of education: in KG, primary
and secondary schools as a great learning tool if it is likely to be properly implemented, as it is helpful
for students to understand things about facts. Moreover, this study decreases the labor and time of
teachers, book authors, online learning material publishers and radio program authors like Yiteyiku

Yishelemu (em?+ 2iiaav-) by generating questions within short time.

1.8. Organization of the Thesis

This work is organized into seven chapters. The second chapter covers the literature review on
question generation. This chapter discusses the overview of QG and its general architecture
components. In addition, it covers related works from the local and global levels. Similarly, the third
chapter presents the Amharic language. The formation of questions in Amharic, construction of

sentences and the punctuation marks used in Amharic is included in the chapter.

In the fourth chapter, the method used in this study is described in depth. The steps followed in design
science are discussed in accordance with this study including the system architecture and components
used in designing Automatic Question Generation. The fifth chapter discusses the design part of the
Automatic Amharic Question Generation in detail. The architecture of the system and its components,
as well as what and how each component of the architecture functions, are thoroughly discussed. The
sixth chapter, Implementation and Evaluation, explain the experiments carried out and the results
obtained through the use of evaluation techniques. Finally, the final chapter discusses the conclusions
reached based on the results of the studies, as well as recommendations offered to other future

investigations.

Chapter Two

2. Literature Review

2.1. Question and Its Types

A question is a linguistic term that is used to make a request for information and is essentially posed
in order to meet the informational wants. To elicit meaningful information from the text, questions
are utilized. That is to say, questions are fundamental components of learning. Questions are divided
into two categories based on their complexity [4, 14]. These are factual shallow questions (who, what,
when, where, which, how many/much, and yes/no questions) and deep questions (why, why not, what-
if, what-if-not, and how questions).

Sentence: 12013 4.9° AmCrt °N2ET PAOC (LU AP VP T Add.x

Factual guestions | Deep question

02013 9.9° AnCrt NeT AT APT URPT Add? 0AL.@ Ga0F AOC AU OPT AIPT TP4?

av’F AMCrT N7 PAOC (LU OPT VRPT hNd.? Assuming that it is 2014 E.C when the question
IS asked.

As shown above, factual questions can easily be answered from the given sentence. That means there
is a span of text from the sentence that can answer the shallow questions. The text spans “?A0C (LY~
and “2013 9.9°” are the answers for the above two factual questions respectively from top to bottom.
On the other hand, deep questions need some extra information to answer the question. So, to answer
the above deep question, one should know that “0A&.@- 4e>+” is a year that is 1-current year, and ve®+
hdd./passed away has the same meaning with 9.

There are also other kinds of questions that have different structure and way of answering including
Gap-filling and multiple choice.

Gap-filling questions

A gap-fill is a practice activity in which one must substitute words that are missing from a text. These
words are selected and eliminated to practice a certain linguistic concept. Gap-fills are often used to
practice specific language points, for example items of grammar and vocabulary, and features of
written texts such as conjunctions, or to make learners extract facts [15]. For instance:

A sentence: ACQ ALT TN (AIRT D~ £40T° MCrH @ e-:Ch aPP0vE 0LL1D- B&en.G DALFFOT St G-

Gap fill question: POt (AZLTF @ PAAI° MCTF 0Pt NL.L10D BG4 Pt @
6

In the above gap filling question, the respondent is expected to provide the text spans “ACO AZF,
“ekCh oo 0k, and “@OAZFFo-7’ for the given spaces from left to right respectively.

Multiple choice questions (MCQ)

Multiple choice question (MCQ) is a WH-type question with multiple distractor and one right answer.
Multiple choice questions are created in three steps: word/phrase extraction, distractors selection, and
question construction [16]. The similarities between the key and the distractors makes the MCQs
complex or shallow. The more similar they are, the more information you will need to distinguish
between them and select the correct one. As a result, if we have an acceptable measure of similarity
for ideas, we can attempt to create MCQs with predicted difficulty [17]. For example: from the
Ambharic sentence “2héC €20 1 11998 9.9° B9°¢ NRzah P4A° PCA HCHC @-AT L1540, One can

construct a multiple-choice question as:
PhiC BN N 9o (19300 P9AT° PCH HCHC OOT 1T
v. 1990 4. 9° A. 1994 9, 9o h.1998 4. 9» av, 2000 4. 9°

From the above multiple-choice question, choice “c” is the correct answer based on the given sentence
and the rest are distractors. One promising example of the educational use of NLP methods is the
automated generation of multiple-choice questions (MCQs). Multiple-choice question tests are widely
utilized, regarded as extremely beneficial, and effective in measuring students' knowledge; yet,
manually writing those questions is costly [18]. MCQs may be constructed using a rule-based
technique and assessed using several criteria such as grammatical correctness, meaningfulness, and
suitable WH word usage [19].

2.2. What is Question Generation?

Automatic question generation from natural language text is a tough issue that has received a lot of
attention in natural language processing [12]. Automatic question generation generates questions by
taking the input text, which has the potential value in education [4]. It is being considered an essential
component of the learning environments (— to generate questions for reading comprehension
materials [6]), help systems, information seeking systems, and many other applications [20]. Question
Generation involves two tasks: content selection (the text selected for question generation) and
question formation (transformations of the content to get the question) [21]. It is an important
technique that can improve the training of question answering [11]. That means as the reverse task of
question answering, question generation also has the potential for providing a large-scale corpus of

question-answer pairs [7].

2.3. General Architecture of Question Generation System

Question generation consists of Input Pre-processing, Input Processing and Question Generator as
diagrammatically shown in Figure 2.3.1 [11, 22]. Sentence preprocessing is the initial step after a
dataset collection process. It is where the data can be normalized, free from unnecessary special
characters, and tokenized so that they become ready to go to the sentence processing component of
QG. The sentence processing component then convert the input sequence into vector form in the
embedding layer so that the encoder of the processing component read it and produces a data structure
that summarizes the input sequence which is the context vector. This vector is used as an input for the
decoder of the processing component. The decoder is trained to predict the next word based on the
previously predicted words and the context vector. So, based on the general idea of studies [11, 22],
the very basic architecture of the neural automatic question generation can be generalized as shown

below.
‘.’/ _________________ N Ir \.i
! |
Sentence ——{ Normalization : Embedding |
= |
2 |
| @ |
| QO |
Stop word | o |
Removal : % |
|2 Encoder > Decoder |
g |
= |
Short word '3 i
expansion | | | ~~——"""""- (-4 - ’

Special character

Sentence Preprocessing

removal Question Generator
l Model
Tokenizer

Question(s)

Figure 2.1 General Architecture of Automatic Question Generation System

2.3.1. Sentence Preprocessing

The first step after collecting necessary data leads to Preprocessing as the raw data by itself cannot be
an input to the model that is being developed. Input preprocessing is the way of preparing the data

into a more analyzable and comprehensive way of presenting it to the machine learning process.
8

Normalization, stop word removal, short word expansion, special characters removal, and

Tokenization are some of the preprocessing steps in Natural Language Processing.
Normalization

In the Amharic language, there are different characters that have the same sound but a different
structural appearance. When these characters (Fidels) are used in the construction of Amharic words,
they share their properties with the words too. That is, the one word in meaning can be written in two
or more ways. For instance, the Amharic words v9°A. h9°A.7 “19°4, are similar words used to represent
the month July. Therefore, normalizing these words lets us use one of them depending on our
normalizer. These help us to minimize the dictionary size as there are a number of similar sounded
but different structured Amharic characters or Fidels like: [Uichi1], [2:0], [wia], [A70], [Pichi-S], [2%
2], [i0], and [A:4].

Short Word Expansion

The Amharic words -+, /0, and m/&/(0.t are some examples of short words to represent +9°uC+t,
Zehéot (b, and mPaL &8 (0 respectively. We usually use “/”” while writing Amharic words in short
form. When we use both short and expanded word forms interchangeably in our corpus, these words
are considered as different words while representing them in a vector form. So, to avoid such problem,
short word expansion is made based on the predefined short words [6].

Stop Word Removal

Words that appear in many sentences frequently like “a5”, “i@-”, “g*F@-”, etc. are stop words [6].
Removing these words depends upon the type of task. For instance, these words are not considered
practical to distinguish one sentence from another. On the other hand, these words are treated as being
very useful in generating questions.

Tokenization

To get keywords or tokens easily we use tokenization. The first step of input processing begins by
taking the vector form of individual terms or tokens. So, to get these terms it is very crucial to chop
up the input by using different demarcations like white spaces. For instance, the Amharic sentence
“HeaL eaP T av1§ 1 can be tokenized as ‘AAteA.L’, ‘RAPT, ‘a1g” 1,

2.3.2. Sentence Processing

Sentence processing most often consists of the construction of sentence representation, encoding the
sentence tokens to produce meaningful machine-understandable value, and decoding the encoded
value to predict the possible question words. Sentence processing helps the machine to easily represent

9

words numerically, comprehend sentences by encoding features, and generate question. The inputs to
sentence processing are represented in the form of vectors to perform encoding and decoding. This
vector representation is referred to as word embeddings, encoding, or vectorizing. It helps to convert
symbolic representations into meaningful numbers that capture underlying semantic relations between
the symbols [23].

Embeddings are trained on large datasets, saved, and then used for solving other tasks. Such
embeddings are named pre-trained embeddings [24]. There are a number of pretrained embeddings
for different languages including Word2vec, GloVe, and FastText.

Word2vec is a language modeling technique that employs a neural network to learn correlations in a
huge dataset such as a text. The model may discover semantically related terms or suggest additional
words for a partial text once the word modeling has been trained. Word2vec associates each different
word with a set of numbers known as vectors, as the name implies. Using a basic mathematical
function or cosine similarity between the vectors Word2vec reflects the level of semantic similarity

between the words represented by those mathematical functions or vectors [25].

GloVe [26] learns features in an unsupervised manner to represent words as vectors. It trains the
algorithm using word-to-word co-occurrence statistics in a corpus. The cooccurrence statistical
representations generated to highlight the linear substructures of the word vector space. The word
representation is also used to compress the input into a low-dimensional vector. It has two parts: an
encoder and a decoder. The encoder is responsible for creating the low-dimensional embedding that
helps the machine understand the raw text. The decoder rebuilds the original input by inverting
the vectorized representation.

FastText is a word2vec model with a pre-trained resource for more than 157 languages throughout the
world, including Amharic, which was trained using Common Crawl and Wikipedia. These models
were trained with a Continuous Bag of words with position-weights of 300 dimensions, character n-
grams of length 5, a window of size 5, and 10 negatives [27]. CBOW (Continuous Bag of Words) is
a model for predicting the likelihood of a target word in a given context. A context could be a single

word or a collection of words [28].
Encoder

Encoding is the process of converting data into the desired format. In the context of neural network
sequences of the words are turned in to a hidden state by the encoder. Recurrent neural networks are

stacked to create the encoder. This layer is used because its structure allows the model to understand

10

the sequences' context and temporal dependencies. The hidden state is the latest state of the Recurrent

Neural Network timestep, which is the output of the encoder [29].
Decoder

Decoding is the process of converting a coded message into a language that can be understood. The
decoder’s job in the deep learning model is to turn the hidden vector into the output sequence, which
Is a question in the case of the question generation model. RNN layers and a dense layer build the
decoder to predict the word [29]. One of the main advantages here is that the input and output
sequences can have different lengths. This opens up the possibility of some extremely fascinating

applications, such as video captioning, question answering and question generation.

2.3.3. Question Generator

Question Generator attempts to generate natural language questions from given content (knowledge
base triples, tables, texts, or images), with the generated questions requiring answers from the contents
[30, 31]. Deep learning methods require a huge quantity of data to construct a data-driven model for
a specific problem domain. The reason is that when the data volume is small, deep learning algorithms
often perform poorly. Having a huge sentence-question pair dataset has a direct performance impact

on the question generation model [32].

2.4. Deep Learning and Artificial Neural Networks
Artificial Intelligence is a general field that incorporates the subgroup of machine learning called deep
learning [33]. The fundamental problem in machine learning and deep learning is to meaningfully
learn valuable representations of the input data and transform the data into representations that help

us get closer to the target output.

To learn the representations from data and extract valuable representations, deep learning uses the
successive layers [33]. That is why sometimes, deep learning is also known as layered or hierarchical
representation learning which is an evolution of machine learning that makes increasingly complex
hierarchical models intended to mimic thought processes in the human brain over the simple machine
learning models [34].

Modern deep learning often includes a number of successive layers to automatically learn
representations from the experience of sample datasets unlike other machine learning models. Those
layered representations are learned through learnable models that are known as neural networks [33].

When a set of processing units are assembled in a closely interconnected network, they offer an

11

astonishingly rich structure showing some features of the biological neural network found in the brain

of human beings. This kind of structure is called an artificial neural network (ANN) [35].

The deep learning model learns by keeping the specification of what each layer does with its incoming
data in the weights of each layer. These weights represent the input data numerically. That in a very
simple context means, deep learning finds a set of values for the weights of all the layers in a network
which will map sample inputs to their associated targets correctly [33].

Deep neural networks perform input to target representation by mapping through a deep sequence of
simple data changes or layers and learning these data transformations from the exposure of examples.
When the deep neural networks are learning, we need to determine how the predicted output is far

from the original target value, to maintain the output of a neural network.

The task of determining the gap between the actual and predicted value is the responsibility of the loss
function of the neural network. The loss function computes the network's performance by calculating
the distance score between the predictions and the true target of the example data. To minimize the
achieved loss using the score as a feedback signal, deep learning propagates back to adjust the values
of the weights in a direction that will lower the loss score. To make this adjustment, the optimizer

implements the Backpropagation algorithm which is the essential algorithm in deep learning [33].

Each neuron, the learning units in the neural network, then receives several inputs, takes a weighted
sum, passes it through an activation function, and responds with a predicted output [36]. The neurons
extract features based on the weight values of the input data. When these weighted inputs are summed
together, they produce a function that represents probability values from 0 to 1, and negative infinity
to infinity [37]. This function, most of the time, includes a constant value called bias to adjust the
output based on the weighted sum of the inputs to the neuron [38].

Algorithms implemented in the neural network have multidimensional nature which let them show
good performance [35] although they require high cost, CPU utilization, and physical memory [39].
Neural networks are used in many areas including speech recognition, question answering, and
question generation. They determine the error of the network and then adjust the network to minimize
the faults [39].

2.4.1. Layers
A layer is the highest-level building unit in deep learning. A layer is a container that accepts weighted
input, changes it using a collection of primarily non-linear functions, and then delivers the transformed
values as output to the next layer. In a network, the initial and last levels are referred to as input and

output layers, respectively, while the layers in between are referred to as hidden layers. It is also a
12

data-processing module that accepts one or more tensors as input and returns one or more tensors as
output [33]. A tensor is either a container for numeric data or a multidimensional vector input matrix.
Diverse layers, as well as tensor formats, are ideal for different data processing. We may create helpful
data transformation pipelines by clipping suitable layers together. Hidden layers, learn compressed

representations of the original input with less neurons than the input layer.

Different layers alter their inputs in different ways, and some layers are more suited for certain tasks
than others. A convolutional layer, for example, is commonly utilized in models that cope with picture
data. Recurrent layers are used in models that operate with time-series data, and fully connected layers,
as the name implies, connect each input to each output within their layer [40].

2.4.2. Activation Functions
These functions are intended to highlight key data values in their input. [41] It is a function that is
used to obtain the node's or neuron's output. It's also referred to as the Transfer Function. The two
types of activation functions are Linear and non-linear activation functions [42]. However, in
actuality, three primary kinds of neurons are utilized, introducing nonlinearities in their calculations.
Sigmoid, Tanh, and ReLu are the three of them.
Sigmoid
This is particularly useful in models where the probability must be predicted between 0 and 1 [38].
The sigmoid function has the potential to stall a neural network during training. As a result, it's mostly
used at the output layer or in binary classification applications [34].
Tanh (Hyperbolic Tangent Function)
Tanh is a shifted variant of the sigmoid function [38], with a range of -1 to 1. This function facilitates
training for the next layer easier and faster by centering the data to have a zero mean by utilizing the
activations that come from the hidden layers. One drawback of both Sigmoid and Tanh is that if our
weighted sum input is either extremely large or extremely small, the gradient, also known as the
derivative or slope of this function, becomes very small and approaches zero, delaying gradient
descent [43].
ReLu (Rectified Linear Unit)
ReLu takes less time to compute than the other activation functions. As a result, it is frequently used
as the default activation function. In ReLu, the gradient decline does not become stuck. One downside

of this activation function is that when the weighted sum input is negative, the derivative is equal to

13

zero. The issue is referred to as the fading ReLu. If the network weights always result in negative

inputs to a ReLu neuron, that neuron will not effectively contribute to network training [43].
Softmax

In deep learning, the softmax layer is utilized for multi-class classification. It makes use of a
probability distribution by making sure that the total of all outputs is near to or equal to one. A single
entry with a weighted vector near to one is a strong prediction. While the remaining entries near 0 are
considered weak predictions, they might be labeled in a variety of ways. This layer provides a more
accurate picture of our forecast confidence. The output of a neuron in a softmax layer is dependent on

the outputs of all the other neurons in the layer, unlike in other types of layers [43].

2.4.3. Loss functions and Optimizers
A loss function is a way to see how effectively our algorithm models our dataset. The purpose of loss
functions is to compute the quantity that a model should seek to minimize during training. Our loss
function will produce a greater value if our forecasts are completely wrong. If it's good, it'll give us a
lower number. Based on the loss function then optimizers improve the learning process by determining
how the network is updated [44].
Optimizers are techniques for modifying the parameters of a neural network, such as weights and
learning rate, in order to reduce losses [45]. The most widely used adaptive learning rate algorithms
are AdaGrad, RMSProp, and Adam.
AdaGrad (Adaptive Gradient Algorithm)
For each parameter, the AdaGrad optimizer updates the learning rate. While AdaGrad works well for
basic convex functions, it is not intended to navigate the complicated error surfaces of deep networks
[33].
Root Mean Squared Propagation, or RMSProp
RMSProp is a gradient descent variant that adjusts the step size for each parameter by utilizing a
decaying average of partial gradients. Rather than using the entire set of gradients, this optimizer
utilizes a fixed-size window over the gradients computed at each step [33].
Adam
The Adam optimizer is notable for its corrective measures and ability to more effectively integrate
zero initialization bias, which is a drawback of RMSProp, as well as the key concepts underpinning
RMSProp with momentum [33].

14

2.4.4. Sequence to sequence
At the very beginning of our education, the teacher made us call the individual alphabets repeatedly
like: say ha/v, hu/v-, hil'Z, ... Another time he teaches us how to construct simple words from those
characters by combining them. And finally, we become able to construct sentences by combining
learned words. That is how we humans learn our language. Likewise, to make the machine generate
sequences from another sequence, we use a way of learning named sequence-to-sequence learning
(Seq2Seq). It is concerned with training models that convert sequences from one domain (for example,
phrases in Ambharic) to sequences from another domain (e.g., questions created from the same

sentences or other language sentence from the same sentence) [46].

The most prevalent sequence-to-sequence learning model is the encoder-decoder model, which uses
RNN to encode the source sequence (input) into a single vector, and decode this vector to the target
sequence [47]. The one that encode the source sequence in to a single vector is the encoder. The single
vector is the abstract representation of the whole input sequence. This vector is commonly called as
context vector [47]. This is equivalent to our document preparation. When we prepare documents
(encode in this case) we follow many steps each requiring our effort. Then after completing everything
in the document, we write an abstract that can provide the whole idea of the document from the
beginning to end in short. Likewise, after processing the input, the encoder put the overall process in
a single vector which is the context vector. This vector is used to initialize another RNN which is the

decoder that learns to produce the target output [47].

Y1 Y2 <eos>
* Xy, X,=input sequence
* y,,y,=output sequence
* s,,5,=decoder hidden state
* hg,h;...=encoder hidden state
* c=context vector
$1 S S3
hy h, h hy Context
ho c « _RNN
—
Embedding
layer
<sos> X1 X, <eos> <sos> <sos> A Y,

Figure 2.2 RNN in the task of translation
15

Figure 2.2. shows an example of encoder-decoder model where the input/source sequence “Xi, X2” is
passed over the embedding layer and then input into the encoder. <sos> and <eos> indicates a start of
sequence and end of sequence respectively. At each time step, the encoder RNN receives both the
embedding of the current word and the hidden state from the previous time step, and it produces a
new hidden state. The hidden state used as a vector representation of the input “xi, x2” so far. The
RNN, which is used generally here, can be any of the recurrent architectures including LSTM and
GRU.

The final hidden state is used as the context vector once the final input has been passed into the RNN
through the embedding layer. That is the entire input sequences representation in the form of vectors.
This vector is used to initialize the decoder to start decoding to get the target output sequence “y1, y2”
The decoder then generates sequence parts (yi1, y2) one after the other, one for each time-step. As a
first step the decoder uses the <sos> token for the first input y1 and for the rest inputs the actual or the
predicted output by the decoder which is teacher forcing. In the decoder, we need to go from the
hidden state to an actual word, therefore at each time-step we use the hidden state, st to predict, by
passing it through a Linear layer, what we think is the next word in the sequence. This decoding

process then ends when the <eos> token is reached.

2.4.5. Attention Mechanisms
When the length of the input sequence becomes longer and longer, the performance of the encoder-
decoder network lowers rapidly [48]. Back to the previous example, if the teacher tries to make
students call many different alphabets and ask them to repeat, it becomes very difficult for them to
call correctly as they forget the earliest ones. Encoder-decoder models have such kind of drawbacks
as they use only the last state of the encoder, that is as a context vector [49]. As a solution to such
problem Bahdanau [50] and Luong Attention [51] proposed a mechanism called Attention

Mechanism.

In the area of neural networks, attention is the process of focusing on relevant parts of the input
sequences to solve the problem of long-range dependency problem. The question here is how the
focusing/relevant input sequence parts are selected, and how they are used in the decoder to help it
decode and produce output with greater performance. According to Bahdanau [50] and Luong [51]
Attention, the relevancy of the input sequences is determined by calculating the alignment score

although the way they calculate it is different.

16

2.5. Question Generation Approaches

2.5.1. Traditional Approach

In this approach, wide coverage of NLP techniques is used in order to achieve the accuracy of the
questions generated. These systems first generate training data and test data through a semantic model.
Some systems of this type generate rules for each type of questions such as the semantic classes who,
when, where and why type questions. “Who” rules look for names that are the class of nouns. “When”
rules consist of time expressions only. “Where” rules mostly look for locations. These systems require
learning rules from training data and are mostly used in reading and answering comprehension
questions. A system called Quarc used some heuristic rules that look for sematic and lexical hints to
identify the question class [52, 53].

This approach uses text patterns instead of complex processing involved in other competing
approaches. Many of the question generation systems automatically learn the text patterns from
passages rather than using linguistic knowledge or tools such as named entity, WordNet [54],
ontologies [55], etc. for retrieving answers. For example, the question “who is the founder of Addis
Ababa?” will look for the pattern “who is <person name > of <location>?" and the answer is like
“<person name> is the founder of Addis Ababa”. Most of the patterns matching QG systems use

surface text patterns [56, 57].

The question-generation task has gotten more attention from the natural language processing field in
recent years, notably following the first QGSTEC [52]. This challenge includes two parts: the first is
question generation from paragraphs, and the second, which got so much attention, is question
generation from single sentences. As a result of this task, numerous researchers devised various
approaches to overcome these issues. The study [53] created a system for the second task that first
translates the complicated input text into a few simple sentences and then classifies each sentence for
the appropriate type of question based on the sentence’s subject, verb, object, and preposition. This

study did not make use of semantic data.

There are a number of approaches to the question generation problem. The study at [54] succeeds in
creating multiple-choice questions from electronic educational texts, as well as semantically relevant
distractors. The study used WordNet, as well as a shallow parser, automated term extraction, and word
sense disambiguation. Then, it generated questions from declarative phrases by applying
transformational rules to them. Another study [55] looked into the problem of vocabulary assessment.
These tests are often time-consuming processes that involve hand-written development and can be

17

handled subjectively. The study [55] then created a system that generates vocabulary evaluation
questions automatically. These questions are divided into six categories and can take various formats,
such as word bank or multiple-choice. It also checked the validity of created questions. The work at
[56] which used keyword modeling, was one of the syntax-based methods addressing the QG problem.
The study created factoids and definitional questions by using NER, parse trees, and identifying

important phrases in a document.

Heilman and Smith [57] also addressed the QG problem on factual information in syntactically
complicated reading materials. They proposed an algorithm in this method to extract simple, correct
factual statements from semantic and syntactic perspectives. These researchers [57] conducted another
investigation that used a template-based method. Their aim is to produce a large number of questions
and then rank them. They developed some hand-written procedures to accomplish a syntactic
translation of declarative sentences into questions. In addition, for ranking purposes, they utilized a
logistic regression model.

The study at [58] proposed a system for transforming keywords into questions (K2Q). It takes into
account both query history and user input. K2Q creates a list of refinement words as well as a set of
candidate questions. The user can select a preferred question or a refining term. The algorithm then
creates another set of potential questions with refining words until the user discovers the desired
question or exits.

Engaging readers while reading a news item is one application of question generation [59]. According
to Becker et al [59], by posing several questions in an article, a reader attempts to answer those
questions and so concentrates more on that issue. Having this idea, the researchers [59] produced quiz
questions based on online materials for self-motivated learners to learn about new topics. Their main
issue was deciding which section of a sentence to ask about, a process known as gap selection.
According to their findings, all semantic jobs might be ideal candidates for these gaps. They were
successful in developing a cloze (fill-in-the-blank) question generator.

Another researcher [60] developed a system for generating comparable questions in news articles. The
algorithm used consists of two parts: offline and online. A database of comparable question templates
was constructed offline, and the algorithm selects a related template based on the article content
online. Finally, the algorithm populates the template with article entities in such a way that the
comparison of the entities appears logical.

18

Semantic role labels are also used in the area of question generation. Researcher [61] used a semantic
method to develop questions of various types and depths for self-study. They used semantic role labels
to generate both questions and answers from a given text.

The study at [62] developed a system that generates questions without having the text's extensive
semantic information. The main idea is to benefit from a low-dimensional ontology for document
parts. They then crowdsource a list of promising query templates that correspond to that
representation. Finally, the results are ranked according to their relevance to the original input.
Questions can also be generated from paragraphs using predefined rules and templates. This [63] study
proposed a system that generates comprehensive questions automatically from paragraphs based on
the assumption that each body of the text is related to a topic of interest. The study created 265
templates and 350 rules to produce guestions. These questions were then ranked, to determine their

relevance, using community-based question answering systems.

2.5.2. Machine Learning Approach

This method converts input text into a structured collection of features that are then used to generate
questions. The input text is first divided into sentences and information about tokens is obtained. That
means the unstructured text is transformed into structured data. And that obtained information used
as features of the sentence. The features include: POS tags, Named Entity tags, word classes, supper
sense tags and multiword expressions. Then after, the system builds its set of rules for each type of
questions and the users do not have to manage it [64].

2.5.3. Deep Learning Approach

Deep learning is a machine learning approach that trains computers to accomplish things that humans
do naturally. Deep learning is the process through which a computer model learns to execute different
tasks directly from pictures, text, or voice, etc. Deep learning models can achieve state-of-the-art
performance, sometimes outperforming humans. Models are trained using a massive amount of data
and neural network architectures with lots of layers. Deep learning approaches employ neural network
architectures, and that is why deep learning models are sometimes referred to as deep neural networks.
The term "deep" generally represents the number of hidden layers in a neural network [65].

With the success of deep learning approaches in a variety of natural language processing applications,
numerous new research has been conducted to benefit from these techniques. It has demonstrated
encouraging results in machine translation, text summarization, question answering, and reading

comprehension. The study at [66] published a paper on the question creation challenge that employs

19

Neural Network ideas. They solve this issue by transforming knowledge graph facts into questions.
As a result, they used a Recurrent Neural Network architecture to generate a factual question-answer
corpus and demonstrated that their system outperforms the proposed template-based baseline.

Over the last several years, there has been a lot of effort placed towards integrating the natural
language and computer vision communities. Some examples include image caption generation, video
transcription, and answering questions about an image. Furthermore, this paper [67] introduced the

visual question generation task, in which the system's purpose is to generate a question given an image.

After the introduction of the attention mechanism the study at [68] proposed a method that addresses
both the QG and QA problems. They used an attention-based encoder-decoder model that is dependent
on the target answer and takes both the passage and the target answer as input. The query
understanding is then used to capture further relationships between the target answer and the passage.
They also utilized a policy gradient learning algorithm during training to address the bias exposure

problem.

Another study [69] used an attentional encoder-decoder architecture, which uses the answer location
in the input sentence, as well as lexical features and the passage, as inputs to the encoder. The

study used the part-of-speech (POS) and named entity (NER) tags as lexical characteristics.

Recurrent neural networks, namely Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU), are used in sequence-to-sequence models.

Recurrent Neural Network (RNN)

RNN can loop back and get information or we can say it can predict the information. But it has the
problem of long-term dependency. That means as the sequences length increases, it cannot predict
what will happen well. All recurrent neural networks take the form of a series of repeating neural
network modules. This repeating module in ordinary RNNs will have a relatively basic structure, such
as a single tanh layer. However, LSTM addresses this long-term issue (see next section).
Long Short-Term Memory (LSTM)

LSTM is a kind of RNN capable of learning long-term dependencies. Because they can remember
information for extended periods of time, LSTMs are intended to avoid the problem of long-term
dependency. The cell state is the key to LSTMs, and the LSTM has the power to delete or add
information to the cell state, which is carefully regulated by structures called gates. They are built
with a sigmoid neural net layer and pointwise multiplication. The sigmoid layer produces integers

ranging from zero to one, indicating how much of each component should be allowed through [70,

20

65]. A value of zero indicates "let nothing through,” whereas a value of one indicates "allow

everything through."

Three of these gates are present in an LSTM to protect and control the cell state. The first step in
LSTM is to select what information will be discarded from the cell state. This choice is determined
via a sigmoid layer known as the forget gate. The next step is to decide what additional information
will be stored in the cell state. This is divided into two sections. First, a sigmoid layer known as the
"input gate layer" determines which values to update. A tanh layer is then used to generate a vector of
new candidate values that could be added to the state. In the following step, we'll combine these two
to make a state update. Finally, we must decide what we will produce. This output will be filtered, but
it will be depending on our cell state. First, run a sigmoid layer to determine which bits of the cell
state will be output. Then, pass the cell state through (to force the values to be between -1 and 1) and
multiply it by the sigmoid gate output [65].
Gated Recurrent Unit (GRU)

The Gated Recurrent Unit is a new gating mechanism introduced in 2014, it is a newer generation of
RNN. GRU is similar to LSTM and has shown that it performs better on smaller datasets. Unlike
LSTM, GRU has only two gates, a reset gate and an update gate and they lack an output gate. GRU’s
got itself free of the cell state and instead uses the hidden state to transfer information [70].

The function of the Update gate is similar to forget gate and input gate of LSTM, it decides what
information to keep, add and let go. The Reset gate determines how much previous information to
discard. The GRU has fewer operations compared to LSTM and hence they can be trained much faster
than LSTMs [65, 70].

2.6. Evaluation of Question Generation Systems

Evaluation is a critical phase in the development of question generation systems. Evaluation helps
improve performance by pointing out weaknesses and identifying new tasks for which generation
systems can be used. There are two methods of evaluation methodologies: intrinsic and extrinsic

evaluation methodology [71].
Intrinsic evaluation methods

Intrinsic evaluation approaches assess a system's performance by evaluating its output in isolation,
either against a reference corpus or by eliciting human evaluations of quality[71, 72]. This involves
measuring the output’s grammaticality and fluency. The predominant intrinsic evaluation

methodologies are human evaluation and automatic evaluation. In order to evaluate the quality of a

21

generated question, the human evaluation method uses human judgments, while the automatic
evaluation uses algorithms that automatically calculates a score (e.g., by checking the similarity
between the generated sentence and a set of reference sentences). Examples of automatic evaluation
includes: BLEU [73], METEOR [74], ROUGE [75], Precision, Recall, F1, and Accuracy.

According to the study [71] made on 37 question generation papers from 2013-2018, among the papers
that prefer intrinsic evaluation methods, 45% used human evaluation, 32% used automatic evaluation

and 23% used both human and automatic evaluation.
Extrinsic evaluation methods

Extrinsic approaches assess system performance by analyzing the system's output in relation to its

capacity to do the task for which it was designed [71].
2.7. Related Work

2.7.1. Automatic Amharic Question Generation

So far two researchers conducted research on the Automatic Generation of Questions from Ambharic
sentence. The first [8] study is non-factual question generation using a template-based approach. Its
aim is to Automatically generate Amharic Math Word problem and equations. The study collected
154 Amharic math word problems from the school worksheets and text books. It used a manually
Tagged corpus from WIC. The study then applies preprocessing tasks like segmentation, tokenization,
and PoS tagging based on the tagged corpus of WIC. After the preprocessing step, the study then
forms a templet which consists of placeholders for the math word problem, the type of problem and
the equation. To solve the equation and store the solution in the database with necessary measures,
the study used the subcomponent that the researcher called Equation Solver. The study’s system
evaluation was conducted based on the performance of the word problem, the relatedness between the
human math word problem and the system generated word problem, and how solvable is the generated
problem. The system shown 93.84% overall performance, 90.24% relatedness, and 90% accuracy

respectively for the above-mentioned experiments.

The second study [9] was a factual Amharic question generation using a rule-based approach. This

study collected about 300 simple Amharic historic sentences from the internet, newspapers, Amharic

history books etc. These sentences passed through preprocessing step as usual including

normalization, special character removal, segmentation, and tokenization. After preprocessing is an

answer key selection using a NER which was trained by 16,130 tagged sentences and 4,032 sentences
22

with untagged tokens. The NER shown 82.0% accuracy. Sentences containing more than 30 words
are ignored. After that the study apply transformation rules in a way if the answer key is tagged as
person, location related, time related, and ordinal or cardinal numbers, the answer key is replaced by
who, where, when and how much/many interrogation words. In addition, an Amharic full stop/:: is
replaced by a question mark(?). The study also applies a post processing tasks like de-segmentation
and de- tokenization to ensure proper formatting and punctuation usage. Finally, the study shown an
overall accuracy of 86.4%.

2.7.2. Question Generation for the English Language

Discourse connectives are essential for making the text coherent. They link two clauses or sentences
that show discourse relationships such as temporal, causal, contrast, elaboration, result, and so on. It
has been demonstrated that discourse relations can be used to create questions. The work at [21]
analyzes the senses of connectives that help in QG and proposes a method that uses this analysis to
generate questions of the type why, when, give an example, and yes/no. It employs an end-to-end QG
system that accepts a text as input and outputs all of the questions generated by the selected discourse

connectives.

This research examined four subordinating conjunctions: since, when, because, and although, as well
as three adverbials: for example, for instance, and as a result. The researchers investigated discourse
connectives in relation to their target arguments and question categories. The sense of the discourse
connective, according to this study, determines the question type. As an example: the connective
"since" can indicate a temporal, causal, or temporal + causal relationship in a sentence. In the presence
of terms such as time, year, begin, finish, date, month, and so on, the sentence demonstrates a temporal
relationship. When the relationship is temporal, the question type is when, and when the relationship
is causal, the question type is why.

Following the identification of question types, the target argument is identified. A clause or a sentence
can be the target argument (structural or anaphoric) for a discourse connective. The system is then
manually assessed using syntactic modifications to produce questions. Two graduate students with
greater English proficiency performed the evaluation. On a scale of 1 to 4, evaluators were asked to
rate the questions. Finally, the overall rating of the system is 5.8 out of 8.

Another study [20] developed a rule-based question-generation system for both simple and complex

sentences. Its goal is to create factoids and descriptive answerable questions. The researchers gathered

23

290 simple and complex sentences from which 718 different possible questions were created manually

with an overall agreement of 80% between two groups of annotators.

As a first step, various text sentence fragments known as segments identify clauses from those
segments, and segments are split from the original text. A clause of the sentence is the section that
comprises a noun phrase followed by a verb phrase. After each segment is tokenized, POS taggers
and parsers are used to determine the parts of speech of the words as well as the chunked output of a
segment. Using the specified criteria, each segment is checked for a clause. If a segment is not

identified as a clause, however, a question is formed by substituting a chunk.

Based on the nature of the sentences, the researchers made two sets of rules: Question Specific
Generation Rules and Question Specific Disambiguation Rules. The first rule is used to identify the
positions where interrogative words (who, what, when, where...) will be placed, and the second rule
is used to avoid ambiguity between the interrogative words (for example, between what and whom:
If the first noun in the chunk is identified as 'PERSON' by the NER tagger, then "whom" will be used

instead of "what" at the time of question generation).

Finally, the researchers used a rating method (acceptable, ambiguous, and incorrect) to evaluate the
system-generated questions. Based on this rating method, the generated questions were checked by

two sets of human evaluators. Finally, 80% agreement was achieved.

In complicated sentences, relative pronouns or relative adverbs connect or introduce the relative clause
that is contained within the matrix clause. Examples of these in English include who, whom, which,
where, when, how, and why. Relative pronouns and relative adverbs convey accurate information
about the syntactic connection between sentence components. Khullar, Payal, et al [76] used a syntax-
based approach to construct multiple natural language questions from difficult English sentences that
comprised relative pronouns and relative adverbs. They used three sets of rules to construct questions
automatically by using wh-pronouns and wh-adverbs. Each of the three rule sets has a total of 10 rules
that are supported by linguistic principles, and each relative pronoun or relative adverb in the sentence
is first checked for a set of requirements before being input into the rules. The relative pronoun and
relative adverb, as well as the kind of relative sentence, are used to generate questions (restrictive or

unrestrictive).

The first rule set analyzes the sentence for the existence of modals and auxiliary verbs, as well as the

tense and aspect of the root verb. The do-insertion before Noun Phrase or aux/modal inversion is

conducted based on this information. The second rule set detects relative pronoun dependency, as

relative pronouns can occasionally operate as the subject of the relative clause's verb. The third rule
24

set analyzes the clause verb's tense as well as its number agreement. The researchers then evaluated
the system using 300 sentences from the collection of sentences with relative clauses, where four
independent human evaluators gave scores to questions generated by the system. Evaluators assign a
3 to questions that are syntactically well-formed and natural, a 2 to questions that contain a few
syntactic faults, and a 1 to questions that are syntactically unacceptable. Similarly, for semantic
correctness, raters provide a score of 3 when the questions are semantically right, a score of 2 when
they have an unusual meaning, and a score of 1 when they are semantically unacceptable. Finally, the

researchers received a 9.44 out of 10 overall rating.

The study at [77] presents an interactive way to generate factual questions from unstructured text.
This work converts input text into a structured collection of features that are then used to generate
questions. It learns how to generate questions from a set of sentence-question combinations and
improves its ability through user input. Its learning mechanism is based on a combination of
reinforcement learning and supervised learning machine learning techniques. The learning process
starts with an initial set of pairings made up of declarative statements and assigned questions, and it
gradually learns how to transform sentences into questions. The process is also enhanced by user

feedback on previously generated questions.

The researchers used a data-driven approach, which includes extracting features from text and
selecting the best class of questions based on these features. Each sentence class is assigned a set of
possible questions, which are chosen based on feature similarity. Their system is divided into three
components. The first module is a text preprocessing component that yields features.

The second module explores the database for possible transformation rules that can be used to generate
questions. The matching criteria are determined by the similarity of features obtained by the first
module. The final module assesses the quality of the questions generated by each rule. The researchers
next evaluated the quality of the generated questions using the dataset of question generation shared
task and evaluation challenge (QGSTEC). It contains 81 sentences and 180 desired questions.
Questions generated by participants in the question generation challenge were evaluated by human
evaluators on a scale of one to four from various viewpoints (correctness, ambiguity, diversity). The
average correctness of all questions and the number of generated questions were used to calculate the
number of correct questions.

One of the tasks performed by natural language processing is question answering. Nonetheless,
creating a question-answering system needs a large amount of data. The study at [78] attempted to
explore how to generate questions from given passages using neural networks, with three goals in

25

mind: the training data should require little or no human effort and should reflect commonly-asked
question intentions; the questions should be generated based on natural language passages and should
be of high quality; and the generated questions should be useful for question answering tasks. The

training data comes from community-question-answer websites (e.g., Yahoo Answers and Quora).

The question generator in this work contains four components: Question Pattern (QP) Mining,
Question Pattern Prediction, Question Topic Selection, and Question Ranking. These components are
used to extract frequently-asked question patterns from a large set of questions, which predicts top-N
question patterns using a retrieval-based method or a generation-based method, to select a phrase from
the question topic based on a predicted question pattern, and to rank all generated questions using a

number of features, respectively.

This study suggested two approaches to question generation: one is a retrieval-based method based
on convolution neural networks (CNN), and the other is a generation-based method based on recurrent
neural networks (RNN). The retrieval-based method accepts a passage and a question pattern as input
and returns vector representations of both. In addition, the generation-based method is based on
sequence-to-sequence model. To rank produced question candidates, the study also used features that
include question pattern prediction score, question topic selection score, QA matching score, word
overlap between question and passage, and question pattern frequency. Finally, the researchers
include the QA pair generation work into an end-to-end QA task and achieve significant

improvements.

The study at [22] used a fully data-driven approach for the generation of questions as a sequence-to-
sequence learning problem that directly maps a sentence from a text passage to a question. The
researchers used different encoders for encoding the sentence and the paragraph. They made the
experiment based on the processed SQUAD dataset.

The model is trained using sentence question pairs from this dataset. The dataset contains 536 articles
and about 100k questions regarding them. The researchers used Stanford CoreNLP for pre-processing,
including tokenization and sentence splitting, before lower-casing the full dataset. They select the
sentence containing the answer and use it as the input sentence using the offset of the answer to each
question. In both the encoder and decoder, the LSTM hidden unit size is set to 600, and the number
of LSTM layers is set to 2.

Finally, the model that only encodes sentence-level information achieves the best performance across

all metrics, and the researchers concluded that adding pre-trained embedding generally helps, though

26

encoding the paragraph causes the performance to drop slightly, which makes sense because, in

addition to useful information, the paragraph contains many noises.

The neural encoder-decoder model was also used in the work at [10] to generate meaningful and
diverse questions from natural language sentences. The encoder reads the input text and the answer
location to create an answer-aware input representation, which is then sent to the decoder to form an
answer-focused question. The answer span in the input sentence is denoted by the answer position

characteristic, which is required to generate answer-relevant questions.

To aid in sentence encoding, lexical characteristics such as part-of-speech tags and named-entity tags
are included. Furthermore, the attention mechanism in the decoder creates a response to the sentence's
particular question. The encoder is built with Gated Recurrent Unit. This encoder is designed to read
inputs. The word vector, lexical feature embedding vectors, and answer location indication embedding
vectors are concatenated as the encoder's input. The researchers used the answer location feature to
pinpoint the target answer in order to generate a question with regard to a specific answer in a sentence.
The BIO tagging technique is used to denote the location of a target answer, with tag B denoting the
start of an answer, the tag | continuing the response, and tag O denoting words that do not form part

of an answer.

The attention-based GRU decoder examines the preceding word-embedding and context vector and
decodes the sentence and answer information to produce questions. Furthermore, the researchers
attempted to overcome the problem of rare and unknown terms by using the pointing mechanism to
copy rare words from the source sentence. When decoding a word in this method, the copy switch
takes the current decoder state and context vector as input and generates the likelihood of copying a
word from the source sentence. The attention probability is then used to choose which word to
duplicate. Finally, the evaluation of this system shows a BLEU-4 score of 13.29, which is found to be

a 2.05 BLEU improvement.

The study at [11] also designed Clue Guided Copy Network for Question Generation (CGC-QG),
which is a sequence-to-sequence generative model with a copying mechanism that utilizes a variety
of novel components and strategies to improve question generation performance. CGC-QG employs
a multi-task labeling technique to decide whether a question word should be copied from the input
material or generated instead, allowing the model to learn the precise boundaries between copying
and generation.

The passage encoder used in this study uses as input the prediction provided by a clue word predictor,

which aids in determining if each word in the input passage is a hint to be copied into the target
27

question. To decrease complexity, clue prediction and question generation with multi-task learning
are trained together. The encoder is Gated Recurrent Unit that takes as input word embeddings, answer
location indicators, lexical and frequency features of words, and the output of the clue word predictor.
Another GRU with a copying mechanism is used in the decoder to generate question words

sequentially depending on the encoded input passage representation and previously decoded words.

The researcher utilized a dataset including 120K questions and their related answers extracted from
SQUAD, as well as documents containing CNN news articles. Finally, the researchers obtained BLEU-
4, ROUGE-L, and METEOR results of 17.55, 44.53, and 21.24, respectively, while the comparable
prior state-of-the-art findings from other methodologies are 16.17, 44.24, and 19.67.

A paragraph often contains much more context than a sentence. To generate questions from a
paragraph or sentence, this [5] study used a sequence-to-sequence attention model with a maxout
pointer mechanism and a gated self-attention encoder. The researchers used a Recurrent Neural
Network (RNN) to encode the data. In this case, a gated self-attention mechanism is used to aggregate
information from the whole passage and incorporate intra-passage dependence in order to improve
the encoded passage-answer representation at each time-step. It consists of three steps: accepting
encoded passage-answer representation as input, matching against itself to compute self-matching

representation, and merging the input and self-matching representation.

2.7.3. Question Generation for the Chinese Language

This study [12] generated questions from key sentences using a template-based method. The good
questions are then known by ranking the questions using a multi-feature neural network model. The
methodology for this study consists of three steps: identifying key sentences of text using an adapted
TextRank, generating questions using rule-based templates, and then the questions are ranked using a

multi-feature neural network model.

An adapted TextRank, which converts text to a graph and calculates the score of each sentence node,
is used to find essential sentences from text or paragraphs. When a sentence's score exceeds the
predefined level, the sentence is selected. The input text was divided into sentences using different
terminators (e.g., question mark, full stop, exclamation mark...). Then divide sentences into words.
Each term is evaluated using Term Frequency—Inverse Document Frequency. A sentence can

therefore be represented by a word vector. Then, the similarity score is calculated.

28

The researchers used rule-based templates to generate targeted questions from the parser tree. To
select the top key questions, a multi-feature neural ranking model is created in the question ranking
step.

The generated questions and text are used to import around twelve features (such as the number of
tokens in the question and answer, the number of named entities in the question, the type of question,
and the score of key sentences). Human evaluation is also used. In human evaluation, all generated
questions are evaluated by humans, and each question is judged by two individuals (as excellent,
borderline, or bad), giving an average human evaluation score of 2.73, whereas the baseline scores
are 1.79, 1.95, and 2.12.

2.7.4. Question Generation for the Portuguese Language

The paper [79] proposes three different approaches to generate factual questions in Portuguese. The
first does a syntax-based analysis on a given text using data from Part-of-Named Entity Recognition
(NER) and Speech tagging (POS). The second method uses Semantic Role Labeling (SRL) to do
semantic analysis on the sentences, while the third approach uses Dependency Parsing to extract the
underlying dependencies inside phrases.

To integrate the findings of POS tagging with NER, the researchers use a syntax-based method. After
that, the entities are detected using NER and matched with the POS pattern. The researchers searched
for matches to their guidelines using regular expressions. When a match is found, it indicates that the

statement may include one or more questionable facts.

In order to validate the result, the researchers designed a survey with 15 questions generated
automatically from four Portuguese books. Five questions were created using the syntax-based
method, five using the semantic-based method, and five using the dependency-based method. After
generating questions from the Portuguese texts, the selection criterion was to choose five questions
for each of the approaches. Furthermore, these questions serve as illustrations of the kind of questions
that may be generated for each approach. Given the emphasis on factual questions, instructors were
asked to rate the generated questions based on objectivity, grammaticality, answerability, and question
length. On a scale of one to five (lowest to highest), each of these criteria was scored, with the
generator achieving an average agreement of 3.48, 3.04, and 3.45 out of five for syntax-based,
semantic-based, and dependency-based approaches, respectively.

29

Summary

In this chapter we made extensive literature review. The concept of question and question types

including factual questions, deep questions, gap fill questions and multiple questions were explained.

The general architecture of question generation systems with its components were also discussed. In

addition, the different activation functions, loss functions, optimizers and attention mechanism that

are being used in deep learning are discussed. Moreover, this chapter included the review of question

generation approaches which are traditional, machine learning-based and deep learning-based

approaches. Finally, we made a review of question generation studies for different languages including

Ambharic, English, Chinese and Portuguese which are related to our work. The table wise description

of related works is shown in Table 2.7.1 below.

Table 2.7.1 Summery of related works

Author

Andinet Assefa [8]

Getaneh Damtie [9]

Title

Automatic
Generation
of Amharic
Math Word
Problem
and
Equation
Automatic
Ambharic
Factual
Question
Generation
from
Historic
Text Using
Rule Based
Approach

Problem
Absence of
automatic math

word problems and

equations generator

Question generation

30

Method/tool

A rule-based approach is
used in which sets of
hand-written rule sets are
utilized to generate math
word problems and

equations.

Sets of rules are used to
convert the Amharic
sentence to factual

question.

Result

90% accuracy

86.4% accuracy

Manish Agarwal etal [21] Automatic

Rubel Das et al [20]

Payal Khullar et al [76]

Hai-Tao Zheng et al [12]

Question
Generation
using
Discourse

Cues

A Rule
based
Question
Generation
Framework
to deal with
Simple and
Complex
Sentences

Automatic
Question
Generation
using
Relative
Pronouns
and
Adverbs

A Novel
Framework
for

Automatic

The sense of the
discourse
connective
influences the

question-type.

Previous rule-based
question generating
systems were
designed for basic
sentences, but what
about complex
sentences in the

same approach?

Exploiting wh-
pronouns and wh-
adverbs is necessary
to generate natural
language questions

using syntax-based

system.
Previous question
generation works

does not rank the

31

Rule-based approach is
used to identify question
type and target argument.
Then

transformations are made

syntactic

to generate questions

Used two different sets of
rules based on the natures
of the sentences: Question
Specific Generation Rules
and Question Specific

Disambiguation Rules.

Rule based approach using
three sets of rules: the first
checks the tense and aspect
of root verb, the second
rule identifies the
relative
the third

checks the tense of relative

dependency of

pronoun and

clause.

Identifying the key
sentences of text with an
adapted TextRank,
constructing questions

The overall rating of
the system is 5.8 out
of 8

Wikipedia
and the total number

for five

articles

of questions
generated for this

dataset are 150.

Used rating scheme

(acceptable,

ambiguous and
incorrect) for
evaluating the

system-generated

questions. Finally,
80% of agreement
was achieved for two
sets of human
evaluators.

Finally, the

researchers obtained
an overall rating of
9.44 out of 10

An average human
evaluation score of
2.73 based on two

humans’ evaluation

Blstak
Viera Rozinajov [77]

Miroslav

Nan Duan et al [78]

Qingyu Zhou et al [7]

and

Chinese
Question
Generation
Based
Multi-
Feature

on

Neural
Network
Model

Machine
Learning
Approach
to the
Process of
Question

Generation

Question
Generation
for
Question

Answering

Neural
Question
Generation
from Text:
A

generated questions

from sentences.

The previous works

on question
generation were
using handcrafted

rules, which is time
consuming and hard

to make changes.

The previous works
on generating
questions from
sentences using rule
based or machine
learning approaches
does not generate
questions from

passages.

Previous works on
question generation
does not generate
answer aware

questions.

32

according to rule-based while

templates, and ranking

questions with a multi- and 2.12.

feature neural network

model.

Combination of machine -
learning techniques:
reinforcement learning and

supervised learning

Neural networks: CNN & -
RNN

encoder decoder BLEU-4
Gated 13.29

Neural
model using

Recurrent Unit

score

the baseline
score is 1.79, 1.95,

of

Yao Zha et al [5]

Bang Liu et al [11]

Preliminary
Study
Paragraph-
level

Neural
Question
Generation
with
Maxout
Pointer and
Gated Self-
attention
Networks

Learning to
Generate
Questions
by learning
what not to

Generate

Repeated

occurrence of words
in the input
sequence tends to
cause repetitions in
output sequence,
especially when the
input sequence is

long.

A strategy should be
designed to identify
whether a question
word come from the
input passage or be

generated instead.

33

Recurrent Neural Network = BLEU-4 score of 16.3

with maxout pointer

Sequence-to-sequence BLEU-4 score of
generative model with 17.55

copying mechanism

2.8. The Amharic Language

2.8.1. Introduction

Ambharic/a71c% is the working language of the Federal Democratic Republic of Ethiopia, and as such
has official status across the country. Many federal states, most notably Amhara and the multi-ethnic
Southern Nations, Nationalities, and Peoples area, as well as the South West Ethiopia Peoples region,
use it as their official or working language. It has been the working language of the government, the
military, and the Ethiopian Orthodox Church throughout modern history. Outside of Ethiopia,
Ambharic is spoken by immigrants (most notably in Egypt, Israel, and Sweden) as well as Eritrean
deportees. It is written in a writing system called Fidel or Abugida, which was developed from the
now-extinct Ge'ez language [80]. Though Ethiopia has several languages (including Tigrinya,
Ambharic, Affan Oromo, and others), Amharic is the most popular and commonly used[81].

The Amharic language has been declared to have the following word categories: ag° (noun), <t (verb),
ol (adjective), t@-anaa (Adverb), et L8 (preposition), and +a@-am ag° (pronoun) [82].
ag°/Noun

Nouns in Amharic can be masculine or feminine. Suffixes are used to indicate whether a word is
masculine or feminine. Some nouns have both masculine and feminine genders, but others only have
one. The feminine gender is used to denote both femaleness and smallness. For example, (& +7a 1=
Plurals are formed by adding #+ or A whether the word ends with a vowel or consonant. For example:
&P T, KT, OPTF, AT, dL0F, R&-PT e.t.c.

ah/Verb

Ambharic verbs are words that inflect person, number, gender, mood, voice, and polarity using roots
and affixes. Verbs are in agreement with their subjects. The use of verb agreement with objects is
optional. In Amharic, verbs are usually put at the conclusion of a phrase.

+a@-ahat/Adverb

An adverb can be used to modify a verb by adding an extra idea to the sentence. The Amharic adverbs
are limited in number and include A7£19% Hé® TATTHII9T Aot ..

Pod/Adjective

The adjective is any word that modifies a noun or an adverb, which really comes before a noun
(Example 200 &% ange 0H). Another specific property of adjectives is, when pluralized, it repeats
the previous letter of the last letter for the word (e.qg., *+7a: +770).

34

afyPL:L:/Preposition

A preposition is a word which can be placed before a noun and perform adverbial operations related
to place, time, cause and so on; which can’t accept any suffix or prefix; and which is never used to
create a new word. It includes @£3 2723 (A and h.

+@-Am (9°/Pronoun

This category further can be divided as deictic specifier, which includes At A%z @ A7F: APET Al
quantitative specifier, which includes t&+: A7497%%% A7%; and possession specifier such as ta7t: ¢
and e

2.8.2. Amharic Sentences

A sentence in Amharic can be a statement that is used to declare, explain, or discuss an issue; an
interrogative sentence that can be used for questioning; exclamatory and imperative [82]. Sentences
are made up of noun phrase and verb phrase combinations. The noun phrase and the verb phrase are
further divided into different particles such as other sub noun phrase and verb phrase, noun, adjectives
and so on. The interrogative sentences also have the same structure with little modifications and an
introduction of question particles (interrogative words). For example: For the sentence: A%. 109 28,
the question can be A%. ¢+ 28?2

The verb goes at the end of the sentence in subject/object/verb (SOV) order where the word order in
English is SVO. For instance, in the Amharic sentence “A%. &A1+ =", the word “A%.” is the subject,
the word “£-0-+C” is the object of the sentence, and “1” is the verb.

Ambharic words contain lots of prefixes and suffixes as a result the sentences can be short in a number
of words. For example, a single Amharic word “AdaemFAF®-:" is a sentence which describes “She
made something come for them”.

For interrogative sentences, if it is a yes or no question, the sentence order stays the same but the
intonation is that of a question, and no question word is used. If not, the question word is placed right
before the verb. For instance, from the Ambharic sentence “23v-7 £04(, 24.::”, the yes/no question can

be 27-u-7 2040, 24.? This question is similar to the sentence except for the intonation.

2.8.3. Amharic Punctuation Marks and Numerals

The Amharic documents collected must be pre-processed before proceeding to the other components
of the question generation system. Sentences utilize different punctuation marks for separating one

from the other [83]. In Amharic, there are different punctuation marks used for different purposes. For

35

example, sentence indexing will be done with the help of the Amharic full stop (::) for separating
different sentences. So, the system should understand this punctuation mark indicates the end of a
sentence. In the old writing systems, a colon (two dots :) has been used to separate two words. There
are lots of articles (e.g., some Ambharic articles on Wikipedia) that are written using a colon as a
separator between words. These days the two dots are replaced with whitespace. In addition, imA aZH
(7 or) is also used to separate lists of ideas just like the comma in English.

Similarly, numerals have a greater impact on Amharic question generation systems. Since numbers
are stored in different formats, some kind of standardization should be applied to help the question
generation system. Ethiopic and Arabic numbers should be normalized to the same standard to make
a sentence suitable for the generator component. In Amharic, numbers can be represented using
Arabic symbols. It has also its own number representations, Ethiopic number representations.
Similarly, numbers can be represented in a word alphanumerically which is a representation of

numbers in words [82].

2.8.4. Amharic Question Formation

A question is a language term that is used to make an informative request [4]. Questions may be asked
to determine what we do not know or to ensure that we do know something. In Amharic, we use
adverbs to ask questions about which we have no information, and additional words or tones to
indicate that the sentences are interrogative [84].

ann oo aom? \When did Abebe come?

ann oo oe? Did Abebe come?

a0n aom? Did Abebe come?

The first example shows that the interrogator does not know when Abebe is coming so will add the
adverb when (¢v). In the second example, the interrogator knows that Abebe is coming but wants to
be sure. In this sentence the last word @¢ indicates the sentence is interrogative and it can be used to
be sure about something. It is placed at the end of the interrogative sentence.

The third sentence has no interrogative word. The only thing that indicates it is a question is the
question mark and the sound (tone) of the interrogator and the way the sentence is read [85]
Questions might be raised about some action or condition, about the performer of an action, about the
agent that performs the action or time and place, about the cause of the action or aim of the action,
how the action is performed or techniques used to perform the action, and so on [85]. All of these
types of questions might be within a single sentence.

36

In every language, questions are formed using interrogative phrases and a question mark (?), which
is inserted at the ending of the question. The question mark is placed at the end of the sentence to
indicate that it is a question. For instance: (57 977 Aafu? The interrogative words in Amharic are
placed near the end of the sentence most of the time. There should be extra information to determine
the question type besides the interrogative words such as question focuses or complex grammatical
structure analysis of the sentence [86].

In English, the interrogative words (WH words) who, what, where, when, why, how ... are used to
construct a question. There are a number of interrogative words in Ambharic that will help in
constructing a question [86]. The well-known Ambharic factoid interrogative words are 77, 9°7%, ¢+,
a7z, e, However, depending on the answer, the interrogation words can be combined with
prepositions, suffices and prefixes like 2997, A1977, 9977, h19977, 9977, DTG @<, VGO, 17504,
TYEP, TNIGHO-, 0977, Ok, (0T, O, Ok, OFE, LT, NeHTO- 00, PFT @, eTTP, TEE, net, AhheT,
OLeF, OG-, (1OHEE, P97, IOWT, POT0Y, I°GTFUT, 908, POr7, AAICTY, W2LIPT, (197, AONIPY, 9P, MLIT,
oL, IPILVA, (92F, AhhaoF| Ao F| A7k, hivr T etc.

For example,

Sentence 1: A%, 078007 FhT ANA= Question: A%, ¢7777 St ANG? Answer 1: e@78:av%
Sentence 2: AtvkC @P9¢U7 Am™ AdF: Question: ANtC 9707 am™ ANT? Answer 2: av9qy7y
Sentence 3: AvtoI4@« AbNTFU-7 AT¢ Adz= Question: PG TFu<7? Answer 3: A Tu-7

For the first sentence’s question the answer is “P@7%£0v7” and the interrogation word is “?97%77%”. In
this interrogation word, “¢” and “7” are taken from the prefix and suffice of the answer. In the second
sentence’s question the interrogation word is “9°7U7”. The last two letters from this interrogation word
are taken from the answer “e?9¢v7”. In the third example also, the interrogation word takes the suffice
“aFu-7’ from the answer text “adhfuo-7".

Most of the time if the interrogation word for a certain question consists of suffices or prefixes or

prepositions, it is true that the answer part contains what is combined with the interrogation word.

Sentence Question Answer
A999, Yo.00T AGOP O H B h919, YT AIPT HHIE? Ao POt
PAT N RTC AT 10 TPy (Lol TC ATPHE 1D Pag
NS KOE7 D84 KO-k

% a AB. 77T LOAANT? ?

37

The first question includes the interrogation word formed by combining the prefix “A” with the word
“go7”. This prefix is obtained from the prefix of the answer word “aee® o+, This is the same for the
rest of the above-mentioned examples as indicated by bold font weight.

Even from a single Amharic word, we can create one or more questions as a single Amharic word can
be a sentence by itself. From the Amharic word “a2M” one can construct questions like “@7%7 a»M” and

“av’f; ao@)”, From the word “0A”, one can construct questions like “o77 1A”, “av’E 1A”, “9°7 NA”.

38

Chapter Three

3. Research Methodology

After a problem is identified one should have some method, deploy tools and techniques, apply some
method as well as pass some steps to conduct research for the identified problem. This over all process
is a research methodology. There are two research paradigms [87]. These are behavioral science (the
former natural science paradigm by [88]) and design science research paradigms. According to [87]
behavioral science “addresses research through the development and justification of theories that
explain or predict phenomena related to the identified business need” whereas design science
“addresses research through the building and evaluation of artifacts designed to meet the identified

business need”.

Among the mentioned above paradigms, this study follows a design science research methodology as
it is suitable for the objective of this research. From design science research, the result is an artifact
that is developed and implemented to address some problem. The design science process includes six
basic steps according to [89]. These are identification of problem, objectives definition for a solution,

design and development, demonstration, evaluation, and communication.

3.1. Problem identification

The first step in the design science research process is problem identification. The problem regarding
automatic question generation from Ambharic sentence is identified and understood at this stage. An
observation and literature review are performed to have a better understanding of the problem under
consideration. Then we move on to the definition of objectives for designing the solution to the

identified problem.

3.2. Definition of objectives for a solution

After identifying the problems to be solved, the study objectives should be clearly defined. Then, with
our aims in mind, we design and implement the study we are working on. As a result, having
recognized the problems, the objectives of this study are well defined, and understanding the
objectives, we proceed to the design and development of the study.

Here, the concept of neural machine translation, which is one of the most imperative areas in the field

of natural language processing [90], helped us to define our objective. Neural machine translation

39

translates a sentence in one language to its equivalent sentence in another language. Due to the
different meaning of words in a sentence, one sentence can be translated into more than one sentence
in other language. Likewise, in our task more than one questions can be generated from a single

sentence. That means:

Given a sentence S= (s1, S2..., sn) Where siis a token and N is the length of the sentence, we are going
to generate question Q= (qy, g2, g3..., qm) With length M, which has its answer embedded in S. So, our
objective here is to find Q so that the conditional probability p(Q|S) is maximized. This indicates that
the probability of each gt depends on the previously generated words and the input sentence S.

3.3. Design and development

The design and development phase of this study includes developing a design and architecture to
automate the generation of factual Amharic questions from a sentence. The architecture we use is an
encoder-decoder architecture where there are two recurrent neural networks: the encoder, which reads
the input sequence one word at a time and converts it into a vector representation, and the decoder,
which generates the output sequence according to the encoder’s output and previously generated

words.

The designing process starts with data collection and analyzing the data, according to [91]. For this
research different types of data are collected from different sources. Most of the data for training the
word embedding model are collected from Amharic WIKIPEDIA website articles. And the rest are
collected from the internet and through web form.

These days electronic data is available over the internet. The very challenging task is getting relevant
data for our specific study. In this study, we need a sentence-question pair and/or a sentence-question-
answer triple dataset. However, no source provides a large set of this dataset. So, to collect our
sentence we started manually distributing sentences for Amharic familiar individuals to create
possible factual questions. Nonetheless, we could collect only 5105 questions from a voluntary two
Ambharic teachers and 38 university students who are studying Amharic. This is almost nothing for
training a deep learning model. As a result, we shift to another method. In this method we tried to
collect data through the web form over the internet. We created a web form that has enough description

about how to fill it.

First of all, we created a data collection system that uses form to accept sentences/%Z&t 'T1C,
questions/t 2P+ from the sentence, answer/apdn to the question and Type of question/ ¢ @« ALYt

as a choice like Who, Where, When, What and how much/many. To distribute the webform over the

40

internet, we first collect very important public information especially new Vacancy notices, and we
store those vacancy links in our database. We then share the links of that important information,
vacancy announcements and other sources on social medias including Facebook and Telegram.
Specially telegram groups with a larger number of members. When an internet user clicks on the link
we shared, it will redirect them to our data collection webform with a brief description about what

could do and why they are redirected to it.

The web form consists of examples that describe the process of form filling. When the user completes
filling out the web form and submitting it, our system then provides the target link with a great
acknowledgment. However, we got the problem of repetition of sentence-question-answer-type
quadruples. Many of the sentences are almost the same except for the differences in subject like A0nN
avn.§ M, hAav- aPn.§ T, QG oo G T, ..

So, we used our third method which ends with an interesting result. In this method, we collect 34,302
sentences from different media’s websites including waltainfo.com and fanabc.com. On these
websites there are interesting sentences prepared by professional journalists. More interestingly, the
sentences cover various domains like social, economic, political, sport and others which helped us to

create an open domain dataset.

We then store the collected sentences in our database. Now, instead of letting the user fill the sentences
on their own, we provide the sentences automatically through our data collection system. That means,
that when the user clicks on the link we shared over the social media, the user will be redirected to
our data collection system web form. In this web form, the system displays a sentence from the
previously-stored sentences from which no question was created from it by another user. Then the
user’s task is to create a question from the displayed sentence, answer it based on the sentence and
select the type of question from the provided lists. The data collection system also helps the user by
filling the answer filled automatically when they select from the sentence in order to save their time
and keep them from getting bored while writing. After completion of form filling the system redirects
the user to the target link again with acknowledgment.

Finally, we collect 60,023 sentence-question-answer-type quadruples. For this task we need only
sentence-question pairs and/or sentence-question-answer triples. We collect the other things like
answer type for future use. Once the necessary data is collected, we should make it understandable
for the machine. To do this, we performed character normalization, special character removal and

tokenization and many more (see detail in section 4.2.1) on the collected data.

41

3.4. Demonstration

The design science research method verifies the application of the artifact on the problem according
to Peffers et al [91]. We used a prototype to demonstrate this artifact and understand how valuable

and usable is this artifact for the intended users.

We used an encoder-decoder architecture with an attention mechanism where the encoder is an LSTM
that encodes the input and produces the context vector which will be used as a decoder initial step
from the decoder after passing through the attention mechanism. In order to implement a design and
build a prototype, we used different techniques and tools such as Python programing language, and
the TensorFlow library. In this research we implement our model using the Python language which is
a programming language that allows us to work quickly and efficiently integrate systems [92]. More
specifically, the TensorFlow library is used in developing the model. TensorFlow is an end-to-end
open-source machine learning platform. It has a rich, flexible ecosystem of tools, libraries, and
community resources that allow academics to push the limits of machine learning and developers to
rapidly build and deploy ML-powered applications [93]. Python programming language is also used
in this study to train a word embedding model, which consists of the similarities between words in the

form of vectors.

3.4.1. Word2vec model development
To understand text inputs, machines need numeric representation of inputs. This research trains a
model that can convert the input words into vectors. These vectors then become an input to the encoder
when necessary. The vectors in word2vec are not just numbers, rather they contain the similarity

information between words.

To develop this model the researcher collects the data from the internet. We scraped the Amharic
Wikipedia website using BeautyfulSoap4 which yields 191,834 sentences. We then perform
preprocessing tasks including special character removal, short word expansion, normalization and
tokenization. The preprocessed data is fed to the Word2vec algorithm, and trained (see section 4.2.2
for detail). This model is used during the training and testing of the Automatic Amharic Question
Generation model.
3.4.2. Training and generation

The training's purpose is to reduce the training corpus's negative log-likelihood with respect to all
model parameters. For training our model. we use a strategy called teacher forcing, which means using

the exact word from the original question when feeding the next target word to the decoder rather than

42

the decoder’s own prediction. This is because of the fact that in the early stages of training, decoder
makes many mistakes during generation, and feeding those mistakes as the next input to the decoder
can make the training process harder and longer. However, during testing, we feed the model’s own
output as the next target word to the decoder. This technique prevents the model from learning from

mistakes in the process.

3.4.3. Encoder
An encoder network used in the model development is an RNN that maps an input sequence into a
word vector and then converts this word vector into hidden states. It takes a single element from the
input sequence, collects information for that element, and forwards it. The input sequence in this
question-generation task is a collection of all words from the sentence. Each word is represented as a

vector through word embedding, which transforms each word into a fixed-length vector.

Each word is represented as a vector using the word embedding, which converts each word into a
vector of fixed length. The internal state then learns what the LSTM has read until time step t. For
example, when t=2, it remembers that LSTM has read two words or tokens of the input sequence.
Then the final state of the LSTM encoder contains the heart of the entire input. In addition to the final
internal state, the LSTM predicts an output when it has read the entire input sequence. However, this
output is of no use for initializing the decoder, so we discard it. The final state of the encoder is then

used to initialize the decoder.

In sequence-to-sequence learning, the input sequence is encoded understandably so that it can help to
predict the output sequence. Our LSTM encoder take the sentence-question pairs. These pairs are
separated by tab in the way shown below.

LYRPTT TI0LA CHAT VALY 10 LYRPTT TI0L 0977 VALYT 102

AR N 36N NG EPT hdts A& Ot 3N 0§ P T hAT?

PAOG 0T NEA TP T @t He FabP: PAOG UOTE hEA 18P T amt avF +aPd?

The dataset is sorted by the length of a sentence from the shortest to the longest. It is known that the
Ambharic Full stop(:) and Question mark (?) punctuations are important to show the end of sentence
and question respectively. In fact, these operators are appended to the last word of a sentence or
question. However, in this work appending these punctuations is unnecessary as it makes the model
to understand the appended token as a single word. For instance, from the first example “1@” and “::
” are put together in the sentence side and “1@” and “?” are put together. That means “1@-:” and
“40-7” are considered two words. To prevent this, we create a space between a word and the

punctuation following it as follow:
43

PYEPTY 99409 CHAIT VALY 10+ = EIRPTT 99409 097 DALY 1@< ?

We then inserted a start and end token to the sentence to tell the algorithm when to predict and when
to stop. The word tokenization is performed on both the sentences and the question like [‘®7RPF7?’,
‘AL, ‘ehrt, ‘vadrt’, 1w, ‘=] for the above sentence, and we create a Vocabulary with word

index (mapping from word — id) and reverse word index (mapping from id — word).

We use a batch size of 64, an embedding size of 300, and a unit of 1024 which is the dimension of the
inner cells in LSTM. The encoder then takes the input vocabulary size, embedding dimension, the

encoder units, and batch size parameters and start producing sample output, hidden state and cell state.

We also apply the same process for the Amharic Sentence-Question-Answer triple corpus. The

difference is that we added the third column by separating it with an <ans> tag as shown below:
LYEPFY AL CHIT VALY 10+ = RIRPFT 1AL 0997 DALY 1D+ ? <ans>PH7T

Here, the <ans> token is added to separate the answer span from the question column. This token is
also important during post-processing to identify the answer from the predicted text. We used this
dataset to develop a model that can take Amharic sentences as an input and generate factual questions
from the input sentence with the possible answer. In another work [7] answer span is used to increase

the performance of the question generation model.

3.4.4. Decoder
The decoder generates the output sequence according to the encoder’s output and previously generated
words. Specifically, an attention-based decoder focuses on a particular range of the input sequence
during the automatic question generation task [51]. This is similar to the process of forming a question
in a human’s mind, where one pays attention to a specific part of a sentence and creates a question

regarding that part.

The decoder itself is another LSTM whose input is the encoder’s output. Then this decoder creates a
sequence of words as the question. Only the final output of the encoder, known as the context vector,
is utilized to establish the hidden state of the decoder in its most basic version. In this way, the context
vector is responsible for encoding the whole sentence. We then apply an attention mechanism to ease
the burden on the context vector. This method allows the decoder to concentrate on different areas of
the encoder's output.

The decoder predicts the next word given the context vector and the previously predicted words. The
process stops when the end-of-sentence token is generated. We utilized a softmax layer to get the

prediction distribution.

44

3.5. Evaluation

For evaluating automatic question generation systems, recall, precision, accuracy and F-Measure can
be used [50]. According to [65], the development of the question generation system and evaluation
methodology should be parallel. The systematic analysis of evaluation methodologies could play a
central role in the effort to construct machines capable of achieving linguistic communication
standards that are human-like. First of all, two Amharic teachers judged the questions generated from
the system. Two criteria are considered in their judgment: syntactic correctness and relevance.
Syntactic correctness indicates the grammaticality and fluency of the generated questions and
relevance demonstrates whether the generated question is meaningful and related to the sentence it is

generated from.

The judges were asked to classify the questions as either correct or incorrect with Syntactic correctness
and relevance. They performed the evaluations on 227 questions generated from 105 randomly
selected Amharic sentences. Finally, since this research used accuracy, as an evaluation metrics, we

define Accuracy [94] as defined below:

Accuracy = (%) x 100

Where CGQ=Correctly generated questions and TGQ=Total Generated Questions by the system.

3.6. Communication

Communication is the final stage of the design science research process. In this step the final results
from the experiment should be done. In addition, the complete research process was thoroughly

documented and communicated as a thesis work.

45

Chapter Four

4. Design of Amharic Question Generation

This chapter discusses the design and prototype development of the AQG model using recurrent neural
network. The major components, that are utilized to accomplish the Amharic QG, in the architecture
of AQG system are the training component which in turn consists of Input Preprocessing and Input
Processing sub-components, and the Testing component which consists of Question Generation (QG)
sub-component and shares the preprocessing subcomponents from the training component. In the next
section we discuss the AQG system architecture along with the system interaction in the training and
testing phases.

4.1. System Architecture

In this section the above-mentioned Amharic question generation architectures are discussed in detail.
Figure 5.1 shows the overall system architecture of the AQG model that involves the mentioned

components.

The first step in the AQG model is the Input Preprocessing. This component helps us to get more clean
data by including Normalization, Special Character Removal, and Tokenization to the raw data. The
raw data in this task is a Sentence-Question pair and/or Sentence-Question-Answer triple. The
sentence is where the question is generated from, the question is the possible factual question that can
be generated from the given sentence, and the answer is a text span from the sentence that can be a
possible answer for the question created from the same sentence. The next step in training the AQG
model is to let the system understand the preprocessed input data by representing them in a vectorized
form. To make the AQG model understand the preprocessed data we use the previously trained
Word2vec (see section 4.2.2 for detail) model. This model provides the vectorized form of each token
to the AQG model. In case the new token is obtained, we use Word Modeling in the training

component to convert the preprocessed structured data into a vectorized form.

The Word Modeling takes a preprocessed input from the Amharic Sentence-Question pair and/or the
Sentence-Question-Answer triple Corpus and extracts a semantic relation of words using a sparse
distribution. It also saves the semantically related vectorized words in the Word2vec Model for future
use in the Testing component. This word vectorizer gives a richer semantic meaning to make the

machine understand the inputs well.

46

The testing component is the final component of the system architecture. This component shares

similar architecture to the training component by using the preprocessing and vectorization of words

similarly.

The Question Generator can then automatically generate questions without necessarily extracting or

learning the features again.

/

\

.

Ambharic Sentence -

d Preprocessing

Normalization

Question /sentence-

question-answer
corpus

Training

Key:

h,H= hidden state of encoder, decoder
C,C=cell state of encoder, decoder

C, =context vector

i
Short Word
Expansion

Special Character
Removal

Tokenization

}

Word Modeling

‘\

Input pro1:essing
+ Decoder , Embedding
Encoder hyc - -
l 7 e Hy, Gy _,_;_,: >
LI [et
X, hy ¢ -\‘ % ff‘ l ‘(:k |
l / » 3 :I;"_' € H.G —i+; ¥2
/ =" | |)"
Xt Maea 7/ g . ' P
| \ € Hs €3 —— 3
l \\ PR
_/ > | a”

Word2vec
Model

Question

Generation
Model

Figure 4.1 The architecture of Amharic Question Generation Model

4.2. Training

Ambharic Sentence

Testing

KPreprocessing

Normalization

1
Short Word
Expa‘nsion

Special Character
Removal

Tokenization
Il —/

Vector

Representation

|

Question

Generation

Question(s)

The training component is one part of the AQG system architecture that is used to train the AQG

model using the Amharic Sentence-Question pair and/or Sentence-Question-Answer dataset. In this

component various tasks are performed to train the AQG system: Input Preprocessing, Input

Processing, and development of the Question Generation Model. Input preprocessing is where the

necessary preprocessing techniques are applied to the collected data and Input Processing, the major

component in training the AQG model, is all about representing the vectorized words into a fixed size

word matrix, and training the AQG model to generate a learned knowledge base i.e., Question

Generation Model as it is shown in Figure 5.1.

47

4.2.1. Preprocessing

Preprocessing is a method of structuring the raw data using different data formatting and cleaning
techniques to make those data suitable for the learning process. The AQG model uses the Amharic
Sentence-Question pair Corpus and/or the Sentence-Question-Answer triples to generate questions by
primarily preprocessing them. The Preprocessing component is critical in enabling the AQG model to

learn from well-structured input.

Character Normalization: the purpose of character normalization in this study is to reduce the
vocabulary size. In Amharic, one word can be written in different characters or fidels but the sound
and the meaning are the same. For example, the Amharic characters v, 7, ch, <, -1, > and " have sound
and A, and w have the same, and 6, & sounds the same. That means, words like 8ché,, 8hé,, U4, 874,
0714, 024, 004, &chds, &hd., VL, AY4., &714., AD4:, 2Tid. would be considered as different words by the
model, which is not desirable because all of these words have the similar meaning in reality. Therefore,
it is very important to normalize these characters to avoid any differences in similar words that are
written using different characters with the same pronunciation but different structural presence in

order to make the machine understand each meaning.

Special Character Removal: Characters that are not necessary for the Amharic Question Generation
task are removed from the corpus. These non-alphanumeric characters are often found in punctuation
marks like adding quotations to refer to other people’s speech, as well as symbolizing currencies.

These non-alphanumeric characters add no value to the data other than causing noise to the system.

Short word expansion: While collecting data several short word forms found. Using the short and
expanded word forms interchangeably in the dataset make the model to consider those words as
different words. To avoid these problem, short word expansion is made based on the predefined short
words that we extract during data collection. Some of those short words are written in Appendix 4
with their equivalent expanded form.

Tokenization: The technique of dividing a given text into single words or tokens is known as word
tokenization. It helps us to analyze the semantic meaning of each word. The tokens can be either a
sentence or a single word, punctuation mark or number. Hence, there are two kinds of tokenization:
sentence tokenization and word tokenization. Sentence tokenization is performed on a given
paragraph splitting it into a set of sentences. Since this work focuses on sentence-level question

generation, sentence tokenization is used to split paragraphs into sentences so that questions can be

48

generated from them. To make sentence tokenization we used an Ambharic full stop (:) name as aé-t
17-(1/arati net’ibi.

Word tokenization is the process of splitting a given sentence into single words. This is done by
finding the word boundaries, the ending point of a word and the start of the next one. In this study we
perform word tokenization on the whole dataset. The reason behind this process is to get all the unique
words in our corpus in order to build the vocabulary or dictionary. Finally, we assign an index to each
of these words to make them a distinctive member of the dictionary. For performing this task, we used

white space as a splitter to distinguish the boundary between tokens.

4.2.2. Word2vec Model

Machines cannot understand the Amharic or any other language texts directly. Rather they need a
numerical form of these text data that we call a vector. FastText word2vec model provides a 300-
dimensional word vectors for 157 languages including Amharic. More specifically, for Amharic it
contains vectors of 304,651 tokens. However, FastText did not perform Amharic character
normalization. That means the same words are written differently due to the different nature of
Ambharic letters having different vector representations. That makes those act differently. For example,
the following words are all in the FastText Amharic word vector.

ahg -0.0019 -0.0119 0.0696 ... 8-he 0.0077 0.0018 -0.0687 ...
aug -0.0263 0.0111 0.0066 ... 6ch2 -0.1033 -0.0438 0.0228 ...
a7¢ -0.0283 -0.0048 0.0677 ... 672 0.0185 0.0129 0.0503 ...
ahg -0.0166 0.0258 -0.0441 ... 6v2 0.0058 0.0028 -0.0324 ...

Although the all the above words have the same meaning, they appear eight times in FastText each
having different vector value. While the change in letter form changes only the structure of the word
itself, it has no any impact on the structure of Amharic text. For example, from the Amharic sentence
“ach@ N9°0e-P toMNT:” The word “8h87 is the beginning of the sentence. If we replace this word
with “&hg”, the sentence becomes “ahg (9°as-P +omaT:" The beginning of the sentence is now
“ahe”. That is to mean, that the structure of the sentence does not get changed due to the change in
unnormalized character change in a word. Therefor those words should have the same vector value.

In addition, the presence of these repeated words with their different forms increases the vocabulary
size which in turn increases the computation time during training. For instance, with the addition of a

preposition like ¢, 0, h, @2, aA etc., the above verities of 842 will have another eight words for each

49

preposition. The same case will happen when those words come with other prefixes and suffices.

Moreover, the Amharic version of the FastText word vector consists of thousands of English words.

To make the machine understand our input we model our inputs in the form of vectors. First of all, we
pre-train a word embedding model that we use to look up during training our generator model.
Training the word embedding model begins by scrapping the Wikipedia Amharic website. Wikipedia
Ambharic consists of lots and lots of Amharic articles that they called “er@&” in Amharic. By the
time we collect the Amharic articles/aemet, we got 17,584 articles. Among these, 2,583 articles
have no content inside other than their title. So, we got a total of 15,001 Ambharic articles which is

pretty enough to train our word embedding model.

As a first step, we extract titles as the URL of each article is made of its title. For example: @
PECL P77, PATEXE T8 O7h, 67 AZT 67 v-0-pT etc. Titles with more than one word are made
concatenate by an underscore (e.g., +970_A2+_970_v-0+F) as white spaces cannot be used in URL,
and also the format of the Wikipedia Amharic URL is following this method. We then navigate
through each article and extract each text in each article using BeautifulSoup4 [95].

In the collected sentences there were lots of unnecessary special characters, and Wikipedia reference
numbers that have no relation to the written text for our purpose. When the same thing is written by
two or more bodies, its content will not be all the same. However, writers use different characters to
write the same thing. For instance: ?AhG-9° V@i F, PAh(I° 70T, and PAh(I° ha-t are titles of three
different articles. Storing all these things as it is, increases our dictionary size. So, we apply
normalization to the entire sentences so that va@-&t, Yo-dt, h@-d+ become one word. The articles

also consist of English texts which again are not necessary for our task.

Hence, the preprocessing steps: special character removal, and normalization are applied to the
collected sentences. In addition, on this website several Amharic articles which contain texts delimited
by colon (u-a't 11). To make our task easier, we replace the characters :, , £, and = by whitespace so

that we could use only whitespace during tokenization.

There were also lots of short word forms in the collected data. We collect all short words. We then
create a dictionary in python where the index stores the short word forms and the value part of the
dictionary stores the expanded form of those short words. Then we used this dictionary while applying
the short word expansion step of preprocessing.

After preprocessing the collected text, we apply word-level tokenization to make our dictionary. We
also preprocess the collected sentences and questions in the above same way, and add the words to

our dictionary. From this process we got 210,008 unique words/tokens. We then develop an
50

embedding model with a dimension of 300. Below is a table-wise description of the word embedding

training data.

Table 4.1 Description of word embedding training dataset

The data used for modeling our word2vec model

Total number of articles 15,001
Total number of paragraphs 74,827
Total number of sentences 191,834
Total number of unique words 210,008

As shown in Table 5.1 above the total number of Amharic Wikipedia Articles (eeme) which has
contents inside is 15,001. From those articles we could extract 74, 827 paragraphs which in turn
consists of 191,834 sentences. The unique words/tokens in those sentences are 210,008. Even though
Ambharic Wikipedia has lots of Amharic articles, there are repeated and empty articles. This is the
reason behind the small number of unique words relative to the number of Articles found in Amharic

Wikipedia articles.
4.2.3. Input processing

Input Processing represents the vectorized words into a 300-dimensional word matrix, extracts
features (keyword) and, provides a learned model that can generate questions from Amharic sentence.
This component is generally very valuable to let the generator model learn from the vectorized
Ambharic Sentence-Question and/or Sentence-Question-Answer Corpus by involving the mentioned
operations in Sentence Processing. The question processor outputs trained models after learning
features. The saved trained model is then used in the Testing component to the generated Amharic
Questions. The general architecture in the Input Processing component of training consists of three
main sub-components. The first one is the encoder, which uses Long-Short-Term-Memory (LSTM)
layer to make the model understand the input sequence and produce hidden states that are used as an
input for the decoding process. The second sub-component is the attention mechanism which lets the
model to focus on very important words during learning. The last sub component in the input-
processing component of the Amharic Question Generation is the decoder which is another LSTM.

The decoder predicts output at each time step using the encoder's output and the current target word
51

vector. To predict the next target word using a probabilistic distribution over the entire target

vocabulary, we used the softmax layer.

Encoder

In sequence-to-sequence learning, the input sequence is encoded understandably so that it can
help to predict the output sequence. Our LSTM encoder take the sentence-question pairs. These
pairs are separated by tab in the way shown below.

LILPFD TIART P VALY 1022 FIEPFD 9L 773 VAL i 10?

ATOER A FENP 1527 Ad = ATCER 121 FENP 15227 AAA?

PhO VATE WGA 179827 Dt e 1A% Phld vAT5 hGa 17627 @t 7oF +AP#?

The dataset is sorted by the length of a sentence from the shortest to the longest. It is known that the
Ambharic Full stop(::) and Question mark (?) punctuations are important to show the end of sentence
and question respectively. In fact, these operators are appended to the last word of a sentence or
question. However, in this work appending these punctuations is unnecessary as it makes the model
to understand the appended token as a single word. For instance, from the first example “1@-” and “::
” are put together in the sentence side and “1@” and “?” are put together. That means “1@-:” and
“40?” are considered two words. TO prevent this, we create a space between a word and the
punctuation following it as follow:
LIEPTF PALT PRIT VAL 10+ =2 FILPFF 79ALTY P7E VAL i 1D ?

We then inserted a start and end token to the sentence to tell the algorithm when to predict and when
to stop. The word tokenization is performed on both the sentences and the question like [< #2¢277%’,
‘aeT, ‘A, ‘vigr, -, ‘=] for the above sentence, and we create a Vocabulary with word

index (mapping from word — 1d) and reverse word index (mapping from id — word).

We use a batch size of 64, an embedding size of 300, and a unit of 1024 which is the dimension of the

inner cells in LSTM. The encoder then takes the input vocabulary size, embedding dimension, the

encoder units, and batch size parameters and start producing sample output, hidden state and cell state.

We also apply the same process for the Amharic Sentence-Question-Answer triple corpus. The

difference is that we added the third column by separating it with an <ans> tag as shown below:
LIEPTI TPALT PHIT VAL 10 2 LIRPFF TPALT PO7F VAL i1 s ? <ans> 7

Here, the <ans> token is added to separate the answer span from the question column. This token is

also important during post-processing to identify the answer from the predicted text. We used this
52

dataset to develop a model that can take Amharic sentences as an input and generate factual questions
from the input sentence with the possible answer. In another work [7] answer span is used to increase
the performance of the question generation model.

Decoder

The decoder is another LSTM that is responsible for predicting the output sequences based on the
encoders hidden and cell states which together is a context vector. Therefore, the decoder LSTM is
initialized with the encoder state with the Luong Attention [51]. Luong attention get the decoder's
hidden state, compute attention scores, and then predict using the context vector concatenated with
the decoder's hidden state. To let our model, generate more than one questions from a single sentence,
we used a beam search decoder where the default width of the beam is set to 3, and the average number
of questions generated from a single question in the whole dataset, which is calculated by dividing the
total number of sentences to the total number of questions from the whole dataset. We then train our
model using Adam optimizer and defined loss and metrics. Finally, the model is let to train for 50

epochs.

4.3. Testing

This component is somehow similar to the Training component except that it uses a learned Question
Generation Model to generate the Amharic Questions from the given sentence. This component
generates questions from sentences that were never fed into the system before to evaluate the
performance of the AQG model. The Question Generation Model gets saved and updated every time
the Training component passes through some training. The Testing component as shown in Figure
5.1, retrieves the saved Question Generation Model to generate questions without necessarily going

through the processes carried out in the training component.

4.3.1. Preprocessing
The preprocessing component receives the Amharic Sentences as input. The sentences here share a
similar process i.e., Normalization, Special character removal, and Tokenization as what has been
done in the training preprocessing sub-component. Each of the preprocessing sub-components is
discussed in Section 4.2.1.

4.3.2. Word embedding
After preprocessing the Amharic sentences, we vectorize each sentence using the Word2vec Model.
The trained Word2vec Model solves this issue by training on a large amount of data to identify the

semantically related words. The Word2vec Model stores the learned vectorized questions in a 300-
53

dimensional word vector. Its purpose is to mainly store the modeled words with their semantically

related vectorized words.

The Vectorization in the Testing component of the AQG system architecture converts the
preprocessed raw data into a vectorized form by using the learned Word2vec Model. We then get the
word matrix from the stored vectorized trained data using a lookup table functionality. Each word is
mapped to a vector with multi-dimensional related vectorized words. This process makes the Testing
process easier by getting the tokenized input words alongside the related vectors. Then again, words

with a different meaning are represented with a vectorization far from the target word.

The Word2vec Model is trained on words having similar words across the 300 dimensions. There are
actually 50, 100, 200, and 300-dimensional word embeddings. In this study we use a 300-dimensional
word vector to get a more accurate representation of the words. The represented words in the
Word2vec model are loaded into our AQG model to represent the input sentences with a 300-

dimensional word2vec word matrix.

4.3.3. Question generation
The Question Generation is like the intersection between the Question Generation Model and the
Vectorized Amharic sentences that we get from the Testing component. The Question Generation
Model stores the learned features using the tab-separated Amharic Sentence-Question pairs and/or
Sentence-Question-Answer triple Corpus. The testing component takes sentences as input unlike the
training component which take sentence-question pairs. This sentence (e.g., A 4.0 ehedl AL 10-:) is
tokenized into words ([‘A 240, ‘Phedi’, ‘A8, 1@+, “x’]). The <sos> and <eos> tokens are also added
to help the model know when to start and end the prediction. These inputs are then converted to tensors
using a convert_to_tensor method of TensorFlow and padded to the maximum length. Then, the model
passes the tensor inputs to the decoder. The decoder processes these tensor inputs in a way it has
trained before and the encoder returns the hidden state and cell state which the model uses to initialize

its decoder hidden state.

The model’s decoder then uses this hidden state and the input vector to predict a word. After predicting
a word, the decoder then takes the next input. Using this input and the previous hidden state, the
decoder produces the second word. This process continues until all the inputs are completed. The

model understands that the prediction process is finished when it gets the <eos> token.

The generation of multiple questions from a single sentence is performed by the use of a beam search
whose width is set to 3, which is the average number of questions generated from all the sentences in

the corpus.
54

Sentence

ANN 12014 4.9° A926h B8

Questions

AN 97 A9%60 887

ANN N2014 4.9° ¢+ 2L
977 012014 94.9° Aoeéh BL.x

From the above sentence (4010 12014 9.9° A73.60 %L.:2), three factoid questions of type Who, When and

Where are generated. The generation of those questions is based on the beam width and the beam

weight. The question with high weight is generated first and with the lower weight will be generated

later.

55

Chapter Five

5. Implementation and Evaluation

5.1. Dataset Preparation

For evaluating automatic Amharic question generation. We utilized two datasets: a sentence-question
dataset which contains around 60,023 Sentence-Question pairs and a sentence-question-answer triples
with the same number as the first dataset, which was created from 34,302 sentences which are
collected from waltainfo.com and fanabc.com as mentioned in section 3.3. We shuffle all the
categories through the dataset and since all of the examples within a batch should also come from
different parts of the dataset, we shuffle all the samples before training. Batches are also randomly
selected during training by using a function that returns a random permutation of integers from 0 to
[(size of the input) — 1].

We do not set a fixed-length vectors for our input sentences. Instead, we add a special end-of-sentence
token to our dictionary of words which helps with learning variable-length sentences. In addition, the
<s0s> and <eos> tokens are added to the start and end of each sample respectively so that the model
continues decoding until it generates the token. In the generation process, for producing the next word,
the decoder can either choose the most likely word according to the model or apply a beam search to
generate best sequences according to the given beam width. In our case, the default beam width is set
to 3 which is the approximate average value of the total number of questions in the dataset divided by
the total number of sentences from which the questions are created. The distribution of questions is
described below in Table 5.1.

Table 5.1 Detail description of the dataset

Sentence-question pairs and/or sentence-question-answer triples Quantity

Number of sentence-question pairs and/or sentence-question-answer triples 11,067

where the question kind is Who|77

Number of sentence-question pairs and/or sentence-question-answer triples 15,502

where the question kind is What|7°7

Number of sentence-question pairs and/or sentence-question-answer triples 8,473

where the question kind is Where|¢+

56

Number of sentence-question pairs and/or sentence-question-answer triples 10,831

where the question kind is When|ao’g

Number of sentence-question pairs and/or sentence-question-answer triples 14,150

where the question kind is How much|az+

Total number of sentence-question pairs and/or sentence-question-answer 60,023

triples collected

As shown in the above table, the collected data for the who, what, where, when and how much/many
factual question types is 11067, 15502, 8473, 10831, 14150 respectively which gave us a total of
60,023 sentence-question pairs and/or sentence-question-answer triples. The difference between the
sentence-question pair and the sentence-question-answer datasets is that, the former was used to train
a model that can generate questions from an Ambharic sentence and the latter was used to train the
model to generate question from an Amharic sentence with their answers without the need to train an
independent question answering model. That means in the latter dataset we added the answer text to
know whether it has impact on our model’s performance. Among the collected data 80% is used for
training the model and 20% for validating it. These data split is chosen after testing with different
splitting trials like 70% for training and 30% for validation. Finally, testing is done manually using
human evaluator there is no standard automatic evaluation metrics for question generation task as it

is discussed in detail at the end of section 5.2

5.2. Tools and experimental setup

After collecting and preprocessing the necessary data, one needs to setup the environment in a suitable
way for the preprocessed data. To implement our model, we used the TensorFlow library, which is a
promote public machine learning environment. It includes a robust, flexible set of tools, libraries, and
community resources that allow academics to push the limits of machine learning and developers to
swiftly create and use ML-powered systems [93].

To train our model, we used Google Colab, which is a Jupyter notebook environment created by
Google to help spread machine learning education and research, because of its effortlessness in use
and its fast processing [96]. First of all, we build our source and target vocabulary. To do this we got
all the unique words on the source and target side, and assigned an index to each unique word. We
then set the size of those source and target vocabularies to length of the unique inputs. When there are
words out of the limit, those words were replaced with the UNK token. In addition, we added the
<so0s> token at the beginning of the sentence to indicate the start of the sentence, and <eos> token at

57

the end of the sentence. The <eos> token helped us for defining variable-length sequences in our

model. It also indicates where the generation of question from that sentence should stop.

We set the dimension of the word embedding vector to 300, which is obtained from the weight of our
pre-trained word embedding model. If there is a word in our vocabulary that does not exist in our
word embedding, the weight of that word is initialized from a uniform distribution. We trained an
LSTM based and GRU based learning model with a hidden unit size of 1024 for our model.

Adam is an adaptive learning rate optimizer created particularly for deep neural network training [33].
It adapts the learning rate for each weight of the neural network by estimating the first and second
moments of the gradient. Adam has a quicker computation speed and requires less modification
parameters. As a result, we used Adam as our optimizer for both the LSTM based and GRU based

models.

The training of our model took 50 epochs. The number of samples that go through one forward, which
is the batch size, is set to 64. Moreover, to prevent our model from overfitting, which occurs when the
model fits the current data very well but fails to generalize for new examples, we utilized dropout with
a probability of 0.5 because dropout in a hidden layer need to be between 0.5 and 0.8 to allow the
model to train successfully [97]. For training and validating the model we made a percentage split of
80% by 20% which is selected after different percentage split testing like 70% by 30% for training
and validation respectively.

LSTMbased model loss

GRUbased_model loss

35 _ trai_n_loss 40 — ftrain_loss
valid_loss T
= valid_lass
30 35 B
25 30
4 20 ’ 25
3 320
15
15
10
10
05
0.5
0.0 1o r T T T T T T T T T T
] 10 20 30 40 50 0 10 20 0 40 50
Epoch Epoch
Figure 5.1 LSTM based AAQG model loss Figure 5.2 GRU based AAQG model loss

The figures 5.1 and 5.2 above shows the training and validation loss of the LSTM based and GRU

based Automatic Amharic Question Generation model with the same training and validation datasets.

The LSTM based model could learn better than the GRU based model. The GRU based model shown

an increased loss both in the training and validation especially around the middle its iteration although
58

it showed a decreased loss at the last quarter of its iteration. In the last ten epochs of the GRU based
model, the validation loss shown a little improvement compared to its training loss. Unlike the GRU
based model, the LSTM based model shown lower loss value both in training and validation,
comparatively. In this model also, a little increase in loss has shown nearest to epoch thirty also it
lowered after some iterations. Even in the last ten iterations the validation loss is lower that the GRU

based model.

The testing is made based on another 105 sentences which enabled the model to generate 227
questions and those questions were given for human evaluators as it is discussed in section 5.3. The
reason behind human evaluation is that there is no standard automatic evaluation metrics for question
generation task. Based on the study made on 37 question generation papers [71], most of the papers
used human evaluation and some used automatic evaluation metrics which was mainly designed for
machine translation work like BLEU [73] and METEOR [74]. However, none of these metrics or the

automatic accuracy could evaluate the question generation model.

For example, for the Amharic sentence “AN0 11985 4.9° A4.0 ANQ +®AL:", the reference questions
could be “A0N QOFF 4.9° +OAL?”, <977 11985 94.9° AL.0 ANO +DAL?”, and “ANN P +OAL?”. Even
though many questions can be created from this sentence we could not collect all possible questions
that can be created from all the sentences in our dataset due to the flexibility of the langage nature.
Some sentences have only one question, some have two etc. And the system could generate questions
like “AN0 aE +®AL?”, “A0N N1985 94.9° ¢+ +®AL”. This time, based on the automatic accuracy
evaluation, the system performs nothing because number of correctly generated questions according
to the system is zero though they are correct in reality. This is because matching sequence is very
complex unlike classification tasks which matches labels.

BLEU too could not evaluate our task well as it is dependent on precison and do not understand the
semantics. That means, BLEU could not understand that “o»E” is equivalent to “0a7+ %.9°” and also
to calculate the precision, it should count the predicted words that match the reference and divide it to
the total number of predicted words which makes the evaluation unfair. The same is true for METEOR

as it also counts the predicted words for the purpose of recall calculation.

5.3. Evaluation of Questions

To evaluate the questions, we collect 105 different Amharic sentences and give them to the system.
The system generates 227 questions. The generated questions include 58, 31,33,61 and 44 questions

of type 9°7%, o+, av’E, a'rt, and 997 respectively by considering other questions types like he+, 9977,

59

aart, and A977 as e, 977, and a7t respectively etc. We then gave these questions to a human
evaluator to classify the questions as correct or incorrect based on grammaticality and relevance.
Using the result of the human evaluator, we used the accuracy, which is the most widely used

evaluation measure, to evaluate our system. It is calculated as:

Accuracy = (%) x 100

Where CGQ is the number of Correctly Generated Questions from the system according to the human
evaluator, and TGQ is a Total number of Generated Questions. Table 5.2 shows the correctly
evaluated and total generated questions of each question types with the accuracy independently as

well as the overall accuracy.

Table 5.2 Evaluation result of the GRU based question generation system

Type of Question 9% av’f ark ot %
Total questions 44 33 61 31 58
Correct Questions 39 27 56 27 54
Incorrect Questions 5 6 5 4 4
Accuracy (%) 86.64 81.82 91.80 87.1 91.38

Over all accuracy (%) 88.10
As shown in table 5.2 above our question generation system generates 39 out of 44, 27 out of 33, 56
out of 61, 27 out of 31 and 54 out of 58 correct questions, and 3, 5, 4, 6 incorrect questions for who,
when, how much/many type questions respectively. Based on these, the system shown an overall
accuracy of 88.10%. The When question type shown lower accuracy relative to other question types.

Table 5.3 Evaluation result of the LSTM based question generation system

Type of Question 9% av’f art et %
Total questions 44 33 61 31 58
Correct Questions 41 28 57 25 52

60

Incorrect Questions

Accuracy (%)

Over all accuracy

(%) 88.36

93.18 84.85 93.44 80.65 89.66

As shown in table 5.2 above our question generation system generates 41 out of 44, 28 out of 33, 57

out of 61, 25 out of 31 and 52 out of 58 correct questions, and 3, 5, 4, 6 incorrect questions for who,

when, how much/many type questions respectively. Based on these, the system shown an overall

accuracy of 88.36%.

Table 5.4 Sample comparison of actual and system generated questions

Sentence

= UL PO NATTIAI 1840
TOCO-E 9ot

" AMCrt et A
AL NAg APT
4GPl

" A.977 hdd 9°hC 01
n2014 14 A7 NC
Ne+ hoLe:

Actual question

+Hhe Po 00t +OCo-C +?

777 QAT 1840 TOCD-C TO+?
QAT 180 +OCOC PP+@-
77 10C?

amcrk heT avt aPT
+4.5PN?
W% TALT APT 0907 hTeT
T4.GP?

ee+ had °hc 0+ 2014 14
LAP7 NC NETF ABLP?
P77 had °hC Ot AovE 14
(LAY NC NEF hOLP?
P87 hdd °hC 0+ 42014 art
LA 0C NEF hOLP?

System generated question

= tHhL PO T PF?
= 977 QATIATR 1846 TOCOC
qo+?

» amcrk et art aPF
TGP?

= A8 TLALY APT 97 PhIST
TeGP?

= A7t AT 0907 PNTET LG PA?

" 20877 hAd °NC (LT 9°7 hOLP?
= 997 A2014 14 ALY NC 08+
hOLP?

" 877 had °hc Ot AQTE
LA NC NEF hoLP:

As shown in the above table, most of the system generated questions are similar to the actual questions,

some are not similar but they are still correct questions based on the sentence, and some of the system

generated questions are not correct.

61

For example, from the first row of the above table the actual factual question is -+Hhé P 091 +OCO-C
9>+?” and the system generated question is “+Had P ¢+ +?”. Even though these questions are not
perfectly equal, both of them are grammatically correct questions. This is the reason that automatic
evaluation of question generation task is very difficult. That means, in reality many questions can be
created from a single sentence, and the number of questions that can be created from different sentence
is not known. When the dataset is prepared all possible questions that can be created from the given
sentence could not be included due to the complex nature of natural languages. However, based on
the training from different sentences-question pairs, the generation system generates correct questions
which are not included in the test data. At that time the automatic evaluation metrics understands that
the system made wrong prediction.

From the sentence “(.897 haéh 9°hC (b A2014 14 (LA OC 08+ AL+, the system generalizes the
string “A42014 14” into one and produces an incorrect prediction “(.47 had 7°hC 0+ AOTF (LASZ C
0g+ heL+:=". That means, the system understands the two tokens 2014 and 14 as one and classify
them to a how much question. However, when we say “01985 +®AL” in our day-to-day activities, it

is known that 1985 to indicate the year instead of saying 1985 4.9°.
Table 5.5 Evaluation result of the LSTM based question generation system that is trained by the

sentence-question-answer triple dataset

Type of Question 77 av’f art et 7%
Total questions 44 33 61 31 58
Correct Questions 39 27 56 23 48
Incorrect Questions 5 6 5 8 10
Accuracy (%) 88.63 81.82 88.52 70.97 82.75

Over all accuracy (%) 82.54
Our system outperforms the previous results. The rule-based question generation system by [9] got
86.4% overall accuracy for the factoid question types Who, Where, When and How much/many while
excluding the What question types. Table 5.6 shows the comparison of our system with the baseline

automatic Ambharic question generation system.

62

Table 5.6 Comparison of our system with the previous study [9]

Previous Our GRU based Our LSTM based Our LSTM based
Type of question = generation system generation generation system generation system
accuracy system accuracy with answer text
a9 91.6% 86.64 93.18% 88.63
o 83.3% 81.82 84.85% 81.82
nrr 94.1% 91.80 93.44% 88.52
pE 73.0% 87.1 80.65% 70.97
gy - 91.38 89.66% 82.75
Overall accuracy 86.4 % 88.10 88.36% 82.54%
Generate more
than one question
_ No No No Yes
from asingle
sentence

5.4. Training and experimental results

To get a high-performance model and choose the best learning algorithm for the Amharic Question
Generation, we train two different models using the same dataset. In the first step, we train an encoder-
decoder model with GRU, and LSTM learning algorithms. We use the same dataset for all of them
for both training and testing. The dataset, as mentioned above in section 3.3, consists of 60,023
sentence-question-answer-answer type quadruples. However, for our experiment we use the sentence-
question pairs which are separated by a tab from one another and the sentence-question-answer triples
where the sentence and the questions are separated by tab and the answer part is separated by our
special token (<ans>). Among the whole dataset 80% is used for training and 20% is used for
validating the model. We also used our pre-trained word vector data. The parameters for all the model
are set equally. The batch size is set to 64, the embedding dimension is set to 300 and the hidden unit
is set to 1024.

63

In the first phase of our training, we use an LSTM encoder which takes the input sequences in the
form of vectors. The encoder then produces hidden states. Then the Luong Attention [51] is applied
so that the hidden states encoded by the encoder are concatenated with the previous predicted output.
This concatenated result is then passed through dense layers to form the attention weights. These
weights are then used to compute the context vector. Eventually, the LSTM decoder take this context
vector from the softmax layer as an input. We then train our model using the Adam optimizer. Finally,
our model achieves an accuracy of 88.36% after 50 epochs based on human evaluation.

To train the GRU model, we adopt the above LSTM model as GRU has one state unlike LSTM which
has two states. We do not make any change whether on the sentence-question dataset or on the word
vector dataset, and the same attention mechanism is applied here. However, the accuracy is seen to be
lower than the LSTM model by 0.26 % as shown in Table 5.6. This indicates that the LSTM-based
model outperforms the GRU-based model for our task of generating Amharic questions from Amharic
sentence automatically.

5.5. The effects of adding answer text on the AQG models

So far researchers conducted research on the area of question generation including [22], [64], [68],
and [98]. They tried to increase the performance of their question generation system using the answer
and answer position features. In our experiment however, we used the answer span to train the model
to learn how to provide an answer for the generated question instead of just only learning the modet
to generate questions given the sentence. In real-world, when we want to test ourselves after reading
some information, we want to get question concerning what we read. For example, assume a journalist
collects 50 historical economic, political, and general current issues sentences for radio question and
answer program. This time the journalist should prepare questions from those collected sentences.
That means the journalist is wasting time and labor. Our study tried to solve this problem by training
the model how to get the answer text from the given sentence without further independent trained
guestion answering model.

To solve the above-mentioned problem, we train our model by adding answer span in the previously
used dataset in a format like this > Sentence[tab]question[space]<ans>[space]answer. The other
preprocessing task is similar to the previous sentence-question pair dataset. We added the <ans> tag
to separate the answer text from the question text as well as to split the answer text from the question

text during post-processing as the model understands the question and the answer as a single sequence.

64

After we trained the model with the same parameters as the previous model, we evaluated it with the
same number of questions that we used previously. However, in this case the model generates
questions and answers for the given sentences. Based on the human evaluation, the system achieves
82.54 % accuracy.

Relatively, the performance of this model decreases. This is because of the longer sequence in
comparison to the previous sentence-question pair dataset. For example, from the sentence “A00 $&
avp 5 1H”, we have the following format of the previous dataset (sentence-question pair) and the dataset
used in this experiment (sentence-question-answer triple) respectively.

A0N & aong ™ a0n g°7 M ?

ANN P2 oo M ANN 9°7 H ? <ans> ¢ oG

Our model understands that “A00 ¢& oG " as one sequence and “AN0N 9°7% TH? <ans> L a°n.S” as
another sequence. This time when the sentence, question, answer text becomes long, the length of the

sequence increases. This leads the system to make poor predictions.

65

Chapter Six

6. Conclusion and Recommendation

6.1. Conclusion

In this study, an attempt was made for the implementation of automatic factual question generation
from Amharic sentences. The system uses an encoder-decoder architecture with an attention
mechanism where the encoder and decoder are recurrent neural networks specifically LSTM for
encoding the input sequence and decoding it respectively. Furthermore, the attention mechanism helps
the system to focus on necessary parts only to make the prediction. The dataset used in this study is
collected from the internet using our data collection system that was developed for this specific task.
The sentences that help the data annotators during question construction are crawled from the websites

which use the Amharic language more specifically from waltainfo.com and fanabc.com.

We implemented our question generation system using the python programming language. We
basically used the TensorFlow library to build the model. The model is trained by the collected dataset
in the Google Colab environment. To generate questions, the encoder part of the system takes the
input sequence in the form of tensors and produces the context vector that is used to initialize the
decoder. Later on, the decoder predicts the output words based on the current input and the previously

predicted word with the help of an attention mechanism.

The system also used a pretrained word embedding that we trained with sentences collected from the

Ambharic Wikipedia website. For crawling content from Wikipedia, we used BeautifulSoup4 [95].

The model was trained by using two different datasets: one is the sentence-question pair and the other
is the sentence-question-answer triple. The model trained with the first dataset generates questions
from the given sentence while the model trained with the second dataset generates questions with their
answer. Human evaluation was made for both models and the model trained with the sentence-
question pair has 88.36% accuracy while the model trained with the sentence-question-answer triple
achieves 82.54% accuracy. This is because in the second model, the sequence length is longer due to
the addition of answer text for to learn the model how to answer the generated question from the given
sentence.

Having these performance, this study contributes to the world by (1): preparing relatively large dataset
from the scratch which can be used not only for the question generation task but also for question

66

answering and question classification tasks using deep learning approaches, (2): providing a
normalized and cleaned embeddings of the Amharic words unlike FastText which provides
embeddings of unnormalized Amharic words as well as thousands of English words in it, (3): building
a model that provides answers for the generated Amharic questions instead of adding question-

answering model distinctly.

6.2. Recommendation

In this research we developed a system that can generate question(s) from the given Amharic sentence.
From this work we understood that question generation task is very challenging very specifically such
task is difficult for low resource languages like Amharic. Based on the results from the experiments
in this study, the researcher recommends the following future works to improve the performance of

the question generation system:

e Language is complex and flexible that it can be used in different forms for describing even a
single thing. So, to make the machine learn more about generating questions from sentence,
using deep learning, a very huge and clean dataset is necessary.

e For generating better questions from the longer sentences, using the transformer model [49]
can also be a future work as transformers do not use recurrence and are based only on the
attention mechanism.

e Generating factual questions is not the only case in reality. Therefore, developing a system
that can generate deep questions which require complex inferences will make the question
generation full. For example, from the Amharic sentence “11 A@MA-F AF ¢44.+L AAMT LANA”,
one can ask “A0N 1@< AAmS AL Lat4A: A9°7?” and the answer is “@T+ AAPT’. However,
creating such a question need understanding the semantics of the sentences deeply. Therefore,
working on such questions is crucial for developing a full-fledged question generation system.

e This study considers question generation from sentences as paragraph-level question requires
other tasks like text simplification and anaphora resolution which requires much time by
themselves. Not only, these tasks but also a data set of paragraph-list of questions from the
paragraph is necessary for training the model. So, in future work, one can incorporate those

tasks to develop a paragraph-level question generation system.

67

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

References

A. Reshamwala, D. Mishra and P. Pawar, "Review on natural language processing,” Engineering
Science and Technology: An International Journal (ESTIJ), vol. 3, no. 1, pp. 113-116, February
2013.

IBM Cloud Education, "Natural Language Processing (NLP)," IBM, 2 July 2021. [Online].
Available: https://www.ibm.com/cloud/learn/natural-language-
processing#:~:text=Natural%20language%?20processing%20(NLP)%20refers,same%20way %2
Ohuman%?20beings%20can.. [Accessed 10 December 2021].

R. Weischedel, J. G. Carbonell, B. J. Grosz, W. Lehnert, M. Marcus, C. R. Perrault and R.
Wilensky, "White paper on natural language processing,” in Speech and Natural Language:
Proceedings of a Workshop Held at Cape Cod, Massachusetts, October 15-18, 1989,
Massachusetts, 19809.

M. Heilman, "Automatic Factual Question Generation from Text," Pittsburgh, 2011.

Y. Zhao, X. Ni, Y. Ding and Q. Ke, "Paragraph-level Neural Question Generation with Maxout
Pointer and Gated Self-attention Networks," in Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels, October 31 - November 4 ,2018.

X. Du, J. Shao and C. Cardie, "Learning to Ask: Neural Question Generation for Reading
Comprehension,"” pp. 1342-1352, 2017.

Q. Zhou, N. Yang, F. Wei, C. Tan, H. Bao and M. Zhou, "Neural Question Generation from Text:
A Preliminary Study," in National CCF Conference on Natural Language Processing and
Chinese Computing, Beijing, 2017.

A. Assefa, "Automatic generation of amharic math word problem and equation,” Journal of
Computer and Communications, vol. 8, no. Scientific Research Publishing, pp. 59-77, 2020.

G. Damtie, "Automatic Amharic Factual Question Generation From Historic Text Using Rule
Based Approach,” Addis Ababa, June.

Q. Zhou, N. Yang, F. Wei, C. Tan, H. Bao and M. Zhou, "Neural Question Generation from Text:
A Preliminary Study," in National CCF Conference on Natural Language Processing and
Chinese Computing, Beijing, 2017.

B. Liu, M. Zhao, D. Niu, K. Lai, Y. He, H. Wei and Y. Xu, "Learning to Generate Questions by
Learning What not to Generate," in World Wide Web Conference, NewYork, 2019.

H.-T. Zheng, J. Han, J. Chen and A. K. Sangaiah, "A novel framework for automatic Chinese
question generation based on multi-feature neural network model,” Computer Science and
Information Systems, vol. 15, no. 3, pp. 487-499, 2018.

68

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

B. Leite, H. L. Cardoso, L. P. Reis and C. Soares, "Factual Question Generation for the
Portuguese Language,” in 2020 International Conference on INnovations in Intelligent SysTems
and Applications (INISTA), 2020.

Y. I. Chali and S. A. Hasan, "Classifying the Question by the Answer Complexity," in
Proceedings of the Workshop on Question Answering for Complex Domains, Mumbai, 2012.

teachingenglish.org.uk, "Gap-fill," [Online]. Available:
https://www.teachingenglish.org.uk/article/gap-
fill#:~:text=A%20gap%2Dfill%20is%20a,intervals%2C%20e.g.%20every%20five%20words..
[Accessed 21 March 2020].

A. Narendra, M. Agarwal and R. Shah, "Automatic cloze-questions generation,” in Proceedings
of the International Conference Recent Advances in Natural Language Processing RANLP 2013,
2013.

T. Alsubait, B. Parsia and U. Sattler, "Ontology-Based Multiple Choice Question Generation,"
K1 - Kinstliche Intelligenz, vol. 30, pp. 183-188, 2016.

A. Hoshino and H. Nakagawa, "A real-time multiple-choice question generation for language
testing: a preliminary study,” in Proceedings of the second workshop on Building Educational
Applications Using NLP, 2005.

L. Stanescu, C. S. Spahiu, A. lon and A. Spahiu, "Question generation for learning evaluation,”
in 2008 International Multiconference on Computer Science and Information Technology, 2008.

R. Das, A. Ray, S. Mondal and D. Das, "A Rule based Question Generation Framework to deal
with Simple and Complex Sentences,” in 2016 International Conference on Advances in
Computing, Communications and Informatics (ICACCI), 2016.

M. Agarwal, R. Shah and P. Mannem, "Automatic Question Generation using Discourse Cues,"
in Proceedings of the Sixth Workshop on Innovative Use of NLP for Building Educational
Applications, 2011.

Xinya Du et al, "Learning to Ask: Neural Question Generation for Reading Comprehension,"
2017.

H. D. A. D. Ali, "Automatic question generation: a syntactical approach to the sentence-to-
guestion generation case," 2012.

Aravindpai, "An Essential Guide to Pretrained Word Embeddings for NLP Practitioners,” 16
March 2020. [Online]. Available: https://www.analyticsvidhya.com/blog/2020/03/pretrained-
word-embeddings-nlp/. [Accessed 22 September 2020].

A. C. Graesser and N. K. Person, "Question asking during tutoring,” American educational
research journal, vol. 31, no. 1, pp. 104-137, 1994.

J. Pennington, R. Socher and C. D. Manning, "GloVe: Global Vectors for Word Representation,”
nlp.stanford.edu, August 2014. [Online]. Available: https://nlp.stanford.edu/projects/glove/.
[Accessed 05 April 2021].

69

[27]

[28]

[29]

[30]
[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

https://fasttext.cc, "Word vectors for 157 languages,” [Online]. Available:
https://fasttext.cc/docs/en/crawl-vectors.html.

V. Rus, Z. Cai and A. C. Graesser, "Experiments on generating questions about facts,” in
International Conference on Intelligent Text Processing and Computational Linguistics, 2007.

N. BM, "What is an encoder decoder model?,” 07 October 2020. [Online]. Available:
https://towardsdatascience.com/what-is-an-encoder-decoder-model-86b3d57c5ela. [Accessed
05 February 2021].

M. Heilman and N. Smith, "Good Question! Statistical Ranking for Question Generation.," 2010.

N. Duan and Y. Liang, "Question Generation (QG)," microsoft.com, [Online]. Available:
https://www.microsoft.com/en-us/research/project/question-generation-qg/. [Accessed 25
September 2021].

M. Z. Alom, T. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. Nasrin, M. Hasan, B. Essen, A.
Awwal and V. Asari, "A State-of-the-Art Survey on Deep Learning Theory and Architectures,"
Electronics, vol. 8, p. 292, 2019.

F. Chollet, Deep learning with Python, Simon and Schuster, 2021.

E. Amor, "Understanding Non-Linear Activation Functions in Neural Networks," 29 May 2020.
[Online]. Awvailable: https://medium.com/ml-cheat-sheet/understanding-non-linear-activation-
functions-in-neural-networks-152f5e101eeb. [Accessed 06 June 2021].

A. Khan, B. Baharudin, L. H. Lee and K. Khan, "A review of machine learning algorithms for
text-documents classification," Journal of advances in information technology, vol. 1, no. 1, pp.
4-20, 2010.

A. Rao, "Convolutional Neural Network Tutorial (CNN) — Developing An Image Classifier In
Python Using TensorFlow," Jul 2020. [Online]. Available:
https://www.edureka.co/blog/convolutional-neural-network/. [Accessed 09 Augest 2021].

DeepAl, "Logit,” [Online]. Available: https://deepai.org/machine-learning-glossary-and-
terms/logit. [Accessed 23 March 2021].

N. Buduma and N. Locascio, "Fundamentals of deep learning: Designing next-generation
machine intelligence algorithms," O'Reilly Media, Inc, 2017.

I. Goodfellow, Y. engio and A. Courville, Deep learning, MIT press, 2016.
DEEPLIZARD, "Deep Learning Fundamentals - Classic Edition,” [Online]. Available:
https://deeplizard.com/learn/video/FK77zZxaBol. [Accessed 03 October 2021].

P. Vieito and P. José, "Convolutional neural networks for efficient object detection on ultra low-
power platforms,” Universitat Politecnica de Catalunya, 2017.

S. SHARMA, "Activation Functions in Neural Networks,” 06 September 2017. [Online].
Available: https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6.
[Accessed 17 December 2021].

70

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

IBM Cloud Education, "Convolutional Neural Networks," IBM, 20 October 2020. [Online].
Available: https://www.ibm.com/cloud/learn/convolutional-neural-networks. [Accessed 13 June
2021].

J. Brownlee, "Loss and Loss Functions for Training Deep Learning Neural Networks,"
machinelearningmastery.com, 23 October 2019. [Online]. Available:
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-
networks/. [Accessed 05 February 2022].

S. Doshi, "Various Optimization Algorithms For Training Neural Network," Towards Data
Science, January 2019. [Online]. Awvailable: https://towardsdatascience.com/optimizers-for-
training-neural-network-59450d71caf6. [Accessed 08 April 2020].

F. Chollet, "A ten-minute introduction to sequence-to-sequence learning in Keras," The Keras
Blog, 29 September 2017. [Online]. Available: https://blog.keras.io/a-ten-minute-introduction-
to-sequence-to-sequence-learning-in-keras.html. [Accessed 26 October 2021].

G. Colab, "Sequence to Sequence Learning with Neural Networks," Google Colab, [Online].
Available: https://colab.research.google.com/github/bentrevett/pytorch-
seq2seq/blob/master/1%20-
%20Sequence%20to%20Sequence%20Learning%20with%20Neural%20Networks.ipynb.
[Accessed 11 December 2021].

K. Cho, B. v. Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and Y. Bengio,
"Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine
Translation," in Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Doha, Qatar.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and L.
Polosukhin, "Attention is all you need,” in NIPS'17: Proceedings of the 31st International
Conference on Neural Information Processing Systems, Red Hook, NY, United States, 2017.

D. Bahdanau, K. Cho and Y. Bengio, "Neural Machine Translation by Jointly Learning to Align
and Translate,” 2014.

M.-T. Luong and C. D. M. Hieu Pham, "Effective Approaches to Attention-based Neural Machine
Translation," 2015.

V. Rus, B. Wyse, P. Piwek, M. Lintean, S. Stoyanchev and C. Moldovan, "The first question
generation shared task evaluation challenge," 2010.

H. Ali, Y. Chali and S. A. Hasan, "Automatic question generation from sentences,” in Actes de
la 17e conférence sur le Traitement Automatique des Langues Naturelles. Articles courts, 2010,
pp. 213-218.

R. Mitkov, "Computer-aided generation of multiple-choice tests,” in Proceedings of the HLT-
NAACL 03 workshop on Building educational applications using natural language processing,
2003.

71

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

J. Brown, G. Frishkoff and M. Eskenazi, "Automatic question generation for vocabulary
assessment,” in Proceedings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, 2005.

S. Kalady, A. Elikkottil and R. Das, "Natural language question generation using syntax and
keywords," in Proceedings of QG2010: The Third Workshop on Question Generation, 2010.

M. Heilman and A. S. Noah, "Extracting simplified statements for factual question generation,"
in Proceedings of QG2010: The Third Workshop on Ques-tion Generation, 2010.

Z. Zheng, X. Si, E. Chang and X. Zhu, "K2q: Generating natural language questions from
keywords with user refinements,” 2011.

L. Becker, S. Basu and L. Vanderwende, "Mind the gap: learning to choose gaps for question
generation,” Proceedings of the 2012 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 742-751, 2012.

O. Rokhlenko and I. Szpektor, "Generating synthetic comparable questions for news articles,” in
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 2013.

K. Mazidi and R. Nielsen, "Linguistic considerations in automatic question generation,” in
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), 2014.

C. Zong and M. Strube, "Deep questions without deep,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing, 2015.

Y. Chali and S. Golestanirad, "Ranking automatically generated questions using common human
queries,” in Proceedings of The 9th International Natural Language Generation conference,
2016.

M. BIstak and V. Rozinajova, "Machine learning approach to the process of question generation,"
in International Conference on Text, Speech, and Dialogue, 2017.

mathworks.com, "deep-learning,” www.mathworks.com, 26 October 2019. [Online]. Available:
https://www.mathworks.com/discovery/deep-learning.html. [Accessed 3 December 2020].

I. V. Serban, A. Garcia-Duran, C. Gulcehre, S. Ahn, S. Chandar, A. Courville and Y. Bengio,
"Generating factoid questions with recurrent neural networks: The 30m factoid question-answer
corpus,” arXiv preprint arXiv:1603.06807, 2016.

N. Mostafazadeh, I. Misra, J. Devlin, M. Mitchell, X. He and L. Vanderwende, "Generating
natural questions about an image," arXiv preprint arXiv:1603.06059, 2016.

L. Song, Z. Wang and W. Hamza, "A unified query-based generative model for question
generation and question answering,” arXiv preprint arXiv:1709.01058, 2017.

D. Tang, N. Duan, T. Qin, Z. Yan and M. Zhou, "Question answering and question generation as
dual tasks,™ arXiv preprint arXiv:1706.02027, 2017.

72

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

A. Patel, "Introduction to CNN, LSTM, GRU, OBJECT RECOGNITION & DATASETS,"
medium.com, 20 December 2018. [Online]. Available:
https://medium.com/@apatel67/introduction-to-cnn-Istm-gru-object-recognition-datasets-
7dfa4f8ad8f6. [Accessed 3 December 2020].

J. Amidei, P. Piwek and A. Willis, "Evaluation methodologies in automatic question generation
2013-2018," The 11th International Natural Language Generation Conference, 2018.

Albert Gatt and Anja Belz et al, "Introducing shared tasks to NLG: The TUNA shared task
evaluation challenge,” Berlin Heidelberg, 2010.

Kishore Papineni et al, "BLEU: a method for automatic evaluation of machine translation,” in the
40th Annual meeting of the Association for Computational Linguistics, 2002.

Banerjee and Laviel, "Meteor: An automatic metric for MT evaluation with improved correlation
with human judgments,” in the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization, 2005.

Lin and Och, "Automatic evaluation of machine translation quality using using longest common
subsequence and skip-bigram statistics,” 2004.

P. Khullar, K. Rachna, M. Hase and M. Shrivastava., "Automatic Question Generation using
Relative Pronouns and Adverbs," in Proceedings of ACL 2018, Student Research Workshop,
Melbourne, 2018.

Miroslav Blstak and Viera Rozinajov, "Machine Learning Approach to the Process of Question
Generation," Springer, 2017.

N. Duan, D. Tang, P. Chen and M. Zhou., "Question Generation for Question Answering," in
Proceedings of the 2017 conference on empirical methods in natural language processing,
Copenhagen, 2017.

B. Leite, H. L. Cardoso, L. P. Reis and C. Soares, "Factual Question Generation for the
Portuguese Language,” in 2020 International Conference on INnovations in Intelligent SysTems
and Applications (INISTA), 2020.

lonweb.org, "AMHARIC," [Online]. Available: http://www.lonweb.org/link-amharic.htm.
[Accessed 13 Jun 2020].

amharic.com, "Welcome to Ambharic.com,” [Online]. Available: http://www.amharic.com/.
[Accessed 13 Jun 2020].

Wondwossen Teshome, "Designing Amharic Definitive Question Answering,” Addis Ababa
University, Addis Ababa, 2013.

S. Muhie, "AMHARIC QUESTION ANSWERING SYSTEM FOR FACTOID QUESTIONS,"
Addis Ababa University, Addis Ababa, 2009.

C. W. Isenburg, "Grammar of The Amharic Language.,”" London, 2002.

73

[85]

[86]

[87]
[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

A. Atelach, "Automatic Sentence Parsing for Amharic Text: An Experiment Using Probabilistic
Context Free Grammars," MSc. Thesis, Addis Ababa University, Addis Ababa, 2002.

Brook Eshetu, "Amharic Question Answering for list questions," Addis Ababa University, Addis
Ababa, 2013.

S.T.J.P.a. S.R. Alan R, "Design science in information systems research," 2004.

G. F. S. Salvatore T. March *, "Design and natural science research on information technology,"
Information and Decision Sciences Department, 1995.

K. Peffers, "A Design Science Research Methodology for Information Systems Research,"
Journal of Management Information Systems, vol. 24, no. 3, pp. 45-77, 2007.

G. Neubig, "Neural machine translation and sequence-to-sequence models: A tutorial,” arXiv
preprint arXiv:1703.01619, 2017.

K. Peffers, M. Rothenberger, T. Tuunanen and R. Vaezi, "A design science research methodology
for information systems research,” International Conference on Design Science Research in
Information Systems, pp. 398-410, 2012.

"Python,” Python.org, [Online]. Awvailable: https://www.python.org/about/. [Accessed 12
December 2021].

"Why TensorFlow," TensorFlow, [Online]. Available: https://www.tensorflow.org/. [Accessed
10 June 2021].

R. Kohavi and ljcai, "A study of cross-validation and bootstrap for accuracy estimation and model
selection,” Montreal, Canada, 1195.

"beautifulsoup4 4.10.0," pypi.org, [Online]. Available:
https://pypi.org/project/beautifulsoup4/4.10.0/. [Accessed 08 September 2021].

G. Colab, "Colaboratory," [Online]. Available:
https://research.google.com/colaboratory/faq.html. [Accessed 18 December 2021].

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, "Dropout: a simple
way to prevent neural networks from overfitting,” The journal of machine learning research, pp.
1929-1958, 2014.

M. W. Prabowo, I. Budi and H. B. Santoso, "Developing Question Generation System for Bahasa
Indonesia Using Indonesian Standard Language Regulation,” in ICSCA 2021: 2021 10th
International Conference on Software and Computer Applications, 2021.

Nan Duan et al, "Question Generation (QG)," microsoft, 2018. [Online]. Available:
https://www.microsoft.com/en-us/research/careers/. [Accessed 19 1 2020].

Michael Heilman Noah A.Smith, "GoodQuestion! StatisticalRankingforQuestionGeneration,"
Carnegie Mellon University, Pittsburgh, 2010.

Klein and C. D. Manning, "Fast exact inference with a factored model for natural language
parsing,” 2003.

74

[102]

[103]
[104]

[105]

[106]

[107]
[108]

M. Collins, "Head-Driven Statistical Models for Natural Language Parsing,” University of
Pennsylvania, 1999.

N. P. Er and I. Cicekli, "A Factoid Question Answering System," 2013.
D. Melo, I. Pimenta Rodrigues and V. Beires Nogueira, "A review on cooperative question-
answering systems,"” pp. 23-30, 2013.

E. Riloff and M. Thelen, "A rule-based question answering system for reading comprehension
tests,” in ANLP-NAACL 2000 Workshop: Reading Comprehension Tests as Evaluation for
Computer-Based Language Understanding Systems, 2000.

C. Fellbaum, "WordNet,” in Theory and applications of ontology: computer applications,
Springer, 2010, pp. 231-243.

T. Gruber, "Ontology," Springer, 2018.

H. Hussein, M. EImogy and S. Guirguis, "Automatic english question generation system based
on template driven scheme,” in International Journal of Computer Science Issues (IJCSI), 2014.

75

Appendix

Appendix I: Amharic Alphabets

v v L 7 % v v

A & A A & & K A
h v h. h b h A
go go- @] o) @y go qo aj
wowe Y v v,y
L & 6 & 6 C C &
A & a a4 6 0O 0 q
a o a9 0 a0 @ @
¢ ¢ & F & ¢ & *
a - 0 a o n o q
t+ & & P ok Ak
T E T F F T ¥ GF
T L P 1 A
T L 9 3 T 9 &
S 2 S AR e TR)
A & h. A &b h A

n b ho. a hh h b &

Appendix 2: Amharic Numerals

76

~ N r ~ = =T o 8 oA

4 ™~ = 2 x» 5§ 3

)

BT P PP 3 PR3 F PR S

Pl 8 ™ @ 2@ 2 8§ 3 p &N » P 2 2 L £ &

=1

N A~ o 20 20§ 53 U N »® w I = P8 A
Pl e PP B D e NPT P o8

fla){

4 A > % X F 3 2Nk F =2 o B o
N R % % % 3 3~ WP PR T o8 A

)

=)\

P8 B8 » o o

H B

I

Appendix 3: Amharic punctuation marks

2 4 S
g I A @
Tk qwCk Vel wAQ
9 20 30
& i 1 £
aN% 7P 0 o
70 90 100

Punctuation

Name in Amharic

A OW4H
Al 1

LN aCH

v\t 10

% %
agak aNok
6 7
A H
ACO% chg™
40 50
&
hOG
10000

English equivalent
Comma
Full stop / period

Colon

Whitespace

Appendix 4: Short words and their expanded form

Short word
o/Clav
a8y}
/h

o/ TSHA T
0/ncorte7
/0

&0 Fo-
.

/G
/0
go/nayfiz:
o/¢

o/t

0k
m/&/0k

Expanded form

9t Coh aPOH8.L:C

M LYY
ohkd kN
Pt TSHA T
0+ hCates
&CL Nk

KVt LI FD-
TIPVCT TLL0C
mPAL TG
°hC Lk

Pt ho 0z
OHE

OLHLT

T9UCT Lk
mPAL &CL Lk

Short word
/0t
9°/m/1,
Io/Claoprt8.8:C
L/0/N0/v/hdé
eASITI0ARCOTE?
&lc

0o/ Bl

m/7,
°/m/"/C
m//c

N/E s
oln/TL i
°/m/"idvt4
n/c

TIC

77

Expanded form

J°nc 0k

Phtd mPAL TLL0C

ontA Con aP(rT48:C

L0-0 NEC NBLA0TF AT VHOT hAd
AL LL KCA&NA PV (LTRCHTET?
ahtc

ATGO Brid

mPAL TLL0C

A mPAL LT

MPAL TLLNC

NCILA Erib

PN mPAL LT

A mPAL 0TS

hoi8c

TCENC

m/&Ce:
m/&/0t
/(L F
av/(,fF
U
h/71c

/&

I/ A0k
m/7.4
N/Esib
/e
0/h

a/&c

ol
Waohbd
Llone
gla

M/ bF91C
/¢t
avf(
W&y
W%
a/ae
UL
m/9°

o/ (AT

O/ 1MChA
AT
m/hP0,
vlece
o/1.0C10
P/TICLI
9°/80.401C
o[304,
e
m/914
hlh
Y/0/9914
l7ICL°
/7
go/av-f.
UKL C
/7Lt

mPAL GCL
mPAL &€CL Nt
°nc LE
ao(gf LE
MM 200

h&a 71C

nAZA

PohFA AL 0P
mPAL T4
NCILA B rl-d\
ATGA DA
0+ hchte?
e 4C

G087

104 aoQ1Pdn
L0 Ofe
VAT

MPAL A TTHC
ORHST

agoY(

10 YT
704 1%
(%7 AP

M 1L
m$ag °hc Lt
ovést (AT
DAL 1Mo
ATGA Ehid
mPAL AP,
VLA T1489°
OAL 1.OC1LA
PL0t TI4L9°
Phkd AeshtC
Phrtd PAd
ZAT neac
mPAL T vHe
A0 ANa
YA&TE OTOAT 914
200 716909

0+ hCorke?
htd oot

10 A AN MG
Pt TLLOTC

PP INC
@[/,
/0

o/c

/0%
/a3 e
WErIL
/g

/e
UrLnkd
o/hrtn
AJE
h/ntaq
&/t
ITeéNC
@794 99°
nz/0ro-
m/C

/TG
/"G
a/c
av/(\,
&/0k

alc
Clavtvt88:C
o/0.+
/"0t
av [(T
T/F
o/hAn
o/mPaL
3lTICe°
/0t
9/gv

O/, k0
AT
hA

Alh

it

Tt
ao/(\,
URMANC
HOATT

78

vt AParNC

m-sp> 140 TLLOTC

Svést 0k
WeHCE
9°hC Lk

oA mPAL AJTTHC

e TL
NCILA Lo\
TLC B
M TLhAd
htd hrka
MG Ehid
hea htay
KVt b
L8 TCENC
DAL 715990
0Zvést N3 Fo-
mPAL T30 HC
MPAL TLLNC
MPAL TLLNC
T, 2.0°HC

a1 4P Lk
GCL Nk
ATBAC

Con ao(88:C
ovést Ok
mPAL T 04
av(S0 (A
TSN

DAL (AN
ohtd mPaL
200 T1499°
mPAL °hC O+
qavt oYLt
DAL “Lhhi

T AT

4 A0

ag.0 ANO
TUCT
TVt (Lt
ansf (Lt

M AMANMC
TPV (AT

go/nHTT Nt AN
0S8 20T MTGA B bi-tet
PlOTEN P40 AT
PlA0, PLOT AN
T+ TSHRTT
/79 e9° DAL, 6L
AlAN0 a%.0 ANa

PI%/0T PCTRE BVET (LT
°/m htd mPAL

/C ohtA Con avrtRLC
&/ 04T Kvét (At

UT1699° M T16L9°
o/12-C1LO DAL 1.8CLO

h/n hea hta?

Appendix 5: Sample testing sentences and generated questions with

answer

Sentence

At TrE TAU-7 hAhsdh A%YT
ath htA TSHATE OC
TMOLR::

A% +haYemIet (AN TFo-
AP T A8 (s Toto-
VA

NGs AATEXP P13 TLA7
LAC &G hLL1T:

A U117 NChF avpg et
LTt Do Gt

héndn L9727 ONAATELL
7 CEINT MC a4 I0C::

hnhg Nt o~ 7N
NaoCH qo-t::

$8.0 1.CLO DALSTT (G (AF
+0.900::

Question

a7 hhgsh AP QTh Phtd TEHA T OC +oPR?
Af 7RO PAUT D977 PR TEHS T OC D ER?

AP TG TAUT 0977 OC TOPR?

A% FNAYLIITE NANFTFO- AeAPT KB 1977 +@1HD W42
A% ThAYLITH 01777 W8 N, 0@+ Al4?
MANFFO« AeAPT WS Ners(l 0@ PL4F 977 1042
7 ARACLE 013 TLALT BAC £9G ARLTT?

NG9 A977 213 TLALT BAC £ ARLTT?

NG8 AATEXE AT TLAST BAC &6 ALLTT?
O1e-F7 (CF PR LTF eo17F0F hrtad a7 G2
EH 00 NChr oA oL T netT G2

T (U167 NChF aoOGETF POLTTOT 927877 §F?
he0 0 £077 (AR 2717 MC avé 1NC?

T L0971 (AR 07 CEDAT 7 10C7?
A& 07CEINT MC o4 977 10C ?

hOh4 0&F LI+ 70 097 12

NooCH e9°+@- 977 1o<?

997 LETT (4G NAF TALP?

TYG 0PA 0197 AF TALE?

79

Answer
At TR TAUY
ha&dn A9+

hasdh At O7h
Nt TSHS 7T

Neps(,
AOFFO- feOPT
A% ThAY2oISF
hqq

ALT&E

?13

37\

V17

ey

7 CEINT

MC avg,

heno 8097
NaoCH

hah4 gt Linco-
THO

P80 1.CL0

$8.0 1.C1L0

128,0F (1CAOTFD- 8.9 NA16+E
@O L 1PAPA

T OL YPA AILIVTEE:
AFAP D189, P1LTF D

0&Ck P2t 14T LLANTFD-
ATRXERET RTC UIPA TV 403

04497 ht97 1100 99.4.97 C
Ogn, 110 ahe Wk EA
NETA 21

NCAFD &P (A14E OO K19T7 @ rbaban?

1980 (RO 4. $L8 01 DT LrPAPAn?

1980F (1977 4.$L (A1éE D-OT LIPAPAN?

TS ML Ot WIRIPFLE: AFAP 0L, 11T D2

T L. YPA KILIOTEL ATTT 11l TFD?

977 L YPA WILIPTEE AFAP O£, 11T D7

0LCE PN 14T LLLAVED: A ARELPET TC 0¥ 40
2

VA Y AFLRLPET (1907 PN20F 18T LLONVFD- ?

0eF hte? 01100 99497 OC @eh, 4110 Ae At A
tavlp?
04477 bt OO7E 7107 0C @R, ©H1710 OGS (-t PBA
+avlp?

Appendix 6: Data collection system interface

198,07
NASE OO
NAFa-

7P4

AFAP ©72:Y,
e

V94 v

N&Ck ot
NA%77

n100

Data Collection pm
- “tn ﬂ...?=> @ CMNFPEL@ A0PEL- LT MNP LUYT ECT° L™= KPANT ATIPF hAT 200 P91A0T £k Pad-0- (LaCh "A1" P9LADT £onys 5 avs K@ o993

Tool

BNz QAN KNGaRNG Y=

LA s

THE

93012013 9.9° Novh.S @L WCAC $£

KON aF Novh,S OF WCAC 4L

0N N2013 4.9° NeehS ©F £+ 28

AN O2013 9.9° 197 @L WCAC ¥L

ANNN2013 %.9° aoh.G @L QVCAC AL

LN

SR t-11C +RC

PTPD- ALY

®m O O Covg Ot

Ann

Om O Omi @mf Off

n2013 9.9

Com O O Ceog @FF

vcac

Cey @97y Oie CovF Op

nevh§

80

Appendix 7: Amharic Question Generation System Interface

¢ Ambharic Question Generator

NN ASAN NYA 7 TALT AFC HEF ATIPLA +HIB=

T Pe AOLM

Q1: $NZhar A4NN N%A NI ATC HEF ATIPZA +HIE 2
Q2: $NNA- AT®T N%A 7 TUALT ATC HEF ATIPLAN +HIE 2
Q3: 197 A4NN N%A N7+ ATC HeF ATIPAN +HIE 2

81

