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Abstract

The aim of this thesis is to present exponentially fitted numerical method for singularly per-

turbed differential equations involving both large and small delay.The stability and parameter

uniform convergence of the proposed method are proved. To validate the applicability of

the scheme,one models problems are considered for numerical experimentation and solved

for different values of the perturbation parameter and mesh size. The numerical results are

tabulated in terms of maximum absolute errors and rate of convergence and it observed that

the present method is accurate and ε-uniformly convergent
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Chapter 1

INTRODUCTION

1.1 Background of the Study

Numerical analysis is a branch of mathematics concerned with theoretical foundations of

numerical algorithms for the solution of problems arising in scientific applications,(Wasow,1942).

An equation involving one dependent variable and its derivative with respect to one or more

independent variable is called differential equation. There are two classes of differential equa-

tions. These are ordinary differential equations and partial differential equations .In real life

, we often encounter many problems which are described by parameter dependent differential

equations .

Any differential equation in which the highest order derivative is multiplied by a small

positive parameters is called singularly perturbed problem and the parameter is known as the

perturbation parameter (Fredrics and Wasow.1946)). If the solution of the reduced problem

(i.e., the problem which is obtained by putting ε = 0 in the original problem ) as the pertur-

bation parameter tends to zero, the problem is known as regularly perturbed otherwise , it is

known as singularly perturbed problem. Singularly perturbed problem often have very thin

boundary and internal layers where the solution varies rapidly change, whereas away from

the layer , solution behaves regularly and Varies slowly, so that the numerical treatment of
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singularly perturbed problems faces major difficulties ( Miller, 1974. Riordan, 2003). Due to

the variation in the width of the layer with respect to small perturbation parameters several

difficulties are experienced in solving the singularly perturbed problems using the standard

numerical Methods with uniform mesh ( kadalbajoo,2005). Singular perturbation problem (

SPPs) model convection diffusion process in applied mathematics that arise in diverse area,

in diverse area, including linearized Navier- stokes equation at high Reynolds number and

the drift diffusion equation of semiconductor device modeling, heat and mass transfer at

high peelet number etc(Roose et al..1996, Doolan et al.1980).

A delay differential equation is an equation where the evolution of the system at a cer-

tain time depends on the state of the system at early time . A differential equations is

said to be singularly perturbed delay differential equations , if it includes at least one delay

term, involving unknown functions occurring with different arguments and also the highest

derivatives is multiplied by a small parameter. Such type of delay differential equations

play very important role in the mathematical modeling of various practical phenomena and

also widely applicable in the various fields, like micro- scale heat transfer (Tzou ,1997) ,the

hydrodynamics of liquid helium (Joseph and Preziosi ,1989) ,second -sound theory (Joseph

and Preziosi , 1990) ,optically,bi-stable devices ( Derstine et al.,1982) ,diffusion in poly-

mers (Liu et al.,(2005) and a models of the red cell system ( Wazeweska-Czyzeweska and

Lasota,1976). Finding the solution of singularly perturbed delay differential equations is a

challenging problems. In response to these , in recent years there had been arrowing interest

in numerical methods on singularly perturbed delay differential equations.

In mid-eighties to mid-nineties, Lange and Miura(1982) studied a class of boundary value

problems for second order differential difference equations in which the highest order deriva-

tive is multiplied by a small parameter and proposed some asymptotic method to approx-

imate the solution of this class of differential equations. Amiraliyev and Cimen (2010)

proposed a first order uniform convergent fitted finite difference scheme for singularly per-
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turbed boundary value problems for a linear second order delay differential equations with

large delay in a reaction term. Subburayan and Rama ujam(2013)and Chakravarthy et al

.,(2017) were solved singularly perturbed boundary value proplems for second order delay

differential equations of convection-diffusion problems with large delay. Recently ,Debela and

Duressa,(2019) considered numerical solution of the governing problems under consideration

with exponential fitted operator method with integral boundary conditions. Duressa, (2021).

Novel approach to solve singularly perturbed boundary value problems with negative shift

parameter. In the present paper , motivated by the work of Subburayan and Ramabujam,

(2012) and Duressa, (2021) we developed exponential fitted numerical scheme on uniform

mesh for the numerical solution of second order singularly perturbed convection -diffusion

equations with large delay and small delay. We tried to develop more accurate, stable and

ε-uniformly convergent numerical method for solving singularly perturbed differential equa-

tions involving small and large delay

1.2 Statement of the problem

Chakravarthy et al .,(2017) deals with singularly perturbed boundary value problems

for a linear second order delay differential equation. It is known that the classical numerical

methods are not satisfactory when applied to solve singularly perturbed problems in a delay

differential equations. This author presented an exponentially fitted finite difference scheme

to overcome the draws backs of the corresponding classical counter parts. The stability of

the scheme is investigated. Debela and Duressa, (2019) consider exponentially fitted finite

difference method for solving singularly perturbed delay differential equations with integral

boundary condition. Authors applied Simpson’s rule to treat the intgral boundary condition.

The stability and parameter uniform convergence of the proposed method are proved. Subbu-

rayan and Ramabujam,(2012) suggested a numerical method as initial value technique(IVT)

to solve the singularly perturbed boundary value problems for the second order ordinary dif-
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ferential equations of convection-diffusion type with large delay. But, still there is a room to

increase the accuracy. Besides, as far as the researchers’ knowledge is concerned the problem

under consideration via exponential fitted operator method is not yet considered.

Hence, the aim of this project is to formulate uniformly convergent exponential fitted oper-

ator method to solve singularly perturbed problem having both large and small delay.

Therefore, the main objective of this study is to develop more accurate, and ε-uniformly

convergent method for the problem under consideration. Owing to this, the present study

will attempt to answer the following questions:

• How does this study was describe the numerical method for singularly perturbed dif-

ferential equation involving both large and small delay ?

• To what extent the proposed method converges?

• To what extent the present method approximate the exact solution?

1.3 Objectives of the study

1.3.1 General Objective

The general objective of this study is to develop exponentially fitted numerical method

for singularly perturbed differential equations involving both large and small delay.

1.3.2 Specific Objective

The specific objectives of the present study are:

• To describe exponentially fitted numerical method for solving singularly perturbed

differential equation involving both large and small delay .

• To establish the stability and convergence of the scheme.

• To investigate the accuracy of the scheme
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1.4 Significance of the study

The results obtained in this research may

• Serve as a reference material for scholars who works on this area.

• Give an idea about the application of numerical methods in different field of studies

• ,Help the graduate students to acquire research skills and scientific procedure.

1.5 Delimitation of the study

The singularly perturbed delay differential equations perhaps arise in variety of applied

mathematics that contributes for the advancement of science and technology. Though ,

singularly perturbed delay differential equations are vast topics and have many applications

in the real world , this study is delimited to singularly perturbed delay convection-diffusion

equation of the form

Ly(x) = −εy′′(x)+a(x)y′(x)+b(x)y(x)+c(x)y(x−1)+d(x)y′(x−δ) = f(x), x ∈ Ω = (0, 2),

y(x) = φ(x), x ∈ [−1, 0], y(2) = `, ` ∈ (0, 2).

where δ is small, 0 < ε << 1, φ(x) is sufficiently smooth on [−1, 0]. For all x ∈ Ω, it is

assumed that the sufficient smooth functions a(x), b(x), c(x) and d(x) satisfy a(x) ≥ a1 >

a > 0, b(x) ≥ b ≥ 0, c(x) ≤ γ < 0, d(x) ≥ ζ > 0, and 2a+ 5b+ 5γ ≥ η > 0, a(a1 − a) > −2γ.

We assume that, Ω = [0, 2], Ω = (0, 2), Ω1 = (0, 1], Ω2 = (1, 2). Ω∗ = Ω1 ∪ Ω2 ,

y ∈ X = C0(Ω̄) ∩ C1(Ω) ∩ C2(Ω∗).

5



Chapter 2

RIVIEW OF RELATED

LITERATURE

2.1 Singular perturbation Theory

Science and technology develops many practical problems, such as the mathematical

boundary layer theory or approximation of solution of various problems described by differ-

ential equations involving small parameters have become increasingly complex and therefore

require the use of asymptotic methods. The term singular perturbation was introduced in

1940s by( Wasow, 1942). Singularly perturbed problem arise frequently in application in-

cluding geophysical fluid dynamics ,oceanic and atmospheric circulation ,chemical reaction,

civil engineering , optimal control, etc. the classification of singularly perturbed higher order

problems depend on how the order of the original equation is affected if one ε=0 where is

a small positive parameter multiplying the highest derivative occurring in the differential

equation. If the order is reduced by one, we say that the problem is of convection diffusion

type and of reaction-diffusion boundary value problems is described by slowly and rapidly

varying parts. so there are thin transition layers where the solution can jump suddenly while

away from the solution varies slowly and behaves regularly (Akram and Afia, (2013)

6



This leads to boundary and /or interior layers in the solution of the problems. Classical

numerical methods fail to produce good approximation for these problems, therefore it is

important to develop numerical methods for these problems, whose accuracy does not depend

upon the perturbation parameter(s) which are called as parameter-uniform numerical meth-

ods, there are two important approaches a widely used in the literature for the development

of uniformly convergent numerical methods. Namely , fitted operators method (FOM)and

fitted mesh method (FMM). In FOM because of the uniform mesh, the layers well be resolved

automatically without having to decompose the solution, but FMMs use standard classical

finite difference schemes on specially designed piece wise uniform mesh. Many scholars have

studied the analytical and numerical solution of these problems. Abrahamson et al. (1974)

solved singularly perturbed ordinary differential equations using Difference approximations

Numerical treatment of Singularly perturbed boundary value problems for higher-order non

linear ordinary differential equation has a great role in fluid, dynamics. The development of

numerical methods for solving singularly perturbed problems, stated with methods aimed

at solving ordinary differential equations, an account of which can be found in the first

monograph on this subeject by Doolan et al.(1980).

2.2 Singularly perturbed Delay Differential Equations

A singularly perturbed delay differential equation is an ordinary differential equation in

which the highest derivative is multiplied by small parameter and involving at least one delay

term. In the past , less attention had been paid for the numerical solution of the singularly

perturbed delay differential equations. But in recent years, delay differential equations have

attached the attention of many researchers because of their applications in many scientific

and technical fields . For example, first -exist proplems in neurobiology , in the study of

of bistable devices(Derstine et Al,1982), evolutionary biology (Wazewaska Czyzeweska and

Lasota, 1976), in a variety of models for physiological processes or diseases(Mackey and
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Glass,1977), to describe the human pupil-light reflex(Longtin and Milton, 1988) and so on.

2.3 Finite difference method

The finite difference method (FDM) is one of the most used techniques to approximate

solution of the differential equation . This method is mainly based on the replacement of

the continuous variables in the differential equation by a model including discrete variables.

In fact this is procedure for constructing approximate values of the exact solution at the

mesh points an extract finite difference scheme is one for which the solution to the difference

equation has the same general solution as the associated differential equation. For linear

problems , such operator may be obtained by choosing the coefficients of the difference

operator so that , some or all the exponential functions in the null space of the differential

operator are also in the null-space of the finite difference operator. Such fitted operators have

been developed by many authors and usually work with uniform meshes. The implementation

of these methods is not straight forward and they usually introduced artificial diffusion . We

note that the methods can be applied with out apriori knowledge of the breadth and position

of the boundary or interior layers

2.4 Recent developments

Subburayan and Ramabujam,(2013) suggested a numerical method as initial value tech-

nique(IVT) to solve the singularly perturbed boundary value problems for the second order

ordinary differential equations of convection-diffusion type with large delay. In this tech-

nique ,the singularly perturbed problems is solved by the second order hybrid finite differ-

ence scheme, where as the delay problems is solved by the fourth order Runge-Kutta method

with hermite interpolation. Chakravarthy et al .,(2015) deals with the singularly perturbed

boundary value problems for the second order delay differential equations. Similar boundary

value problems are associated with expected first-exist times of the membrane potential in

models of neurons.An exponentially fitted difference scheme on a uniform mesh is accom-
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plished by the method based on cubic spline in compression. The difference scheme is shown

to converge to the continuous solution uniformly with respect to the perturbation parameter.

Geng and Qian,.(2015) presented a numerical method for singularly perturbed convection-

diffusion problems with a delay.

The method is a combination of the asymptotic expansion technique and producing kernel

method(RKM) . First an asymptotic expansion for the solution of the given singularly per-

turbed delayed boundary value problems is constructed. Chakravarthy et al .,(2017) deals

with singularly perturbed boundary value problems for a linear second order delay differen-

tial equation. It is known that the classical numerical methods are not satisfactory when

applied to solve singularly perturbed problems in a delay differential equations this author

presented an exponentially fitted finite difference scheme to overcome the draws backs of the

corresponding classical counter parts. The stability of the scheme is investigated. Debela

and Duressa, (2018) consider exponentially fitted finite difference method for solving singu-

larly perturbed delay differential equations with integral boundary condition.Here,authors

applied Simpson’s rule to treat the intgral boundary condition. The stability and parameter

uniform convergence of the proposed method are proved. Kumar and Rao,(2020) presented a

stabilized central difference method for the boundary value problem of singularly perturbed

differential equations with a large negative shift. The central difference approximations for

the derivatives are modified by re-approximating the error terms,leading to a stabilizing ef-

fect. The method is found to be second order convergent.

As we have discussed in the above literature , most researchers have been tried to find numer-

ical solution for singularly perturbed differential difference problem. The researchers studied

on one end boundary layer. In this thesis , we presents a more accurate and convergent

numerical method for singularly perturbed differential difference equations with large and

small delay by using exponentially fitted numerical method.
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Chapter 3

METHODOLOGY

3.1 Study Area and Period

The study was conducted in Jimma University, department of Mathematics from Septem-

ber 2020 to November2021.

3.2 Study Design

The study was employed mixed-design (documentary review and experiment ).

3.3 Source of Information

The relevant sources of information for this study were books, published articles on

reputable journal and related studies from internet services.

3.4 Mathematical Procedures of the study

In order to achieve the stated objectives , the study procedures followed were:

1. Defining the problem.

2. Approximating the delay parameter using Taylors series approximations.

3. Formulating numerical schemes for the problem.

4. Establishing the stability and convergence of the formulated scheme .

10



5. Writing a matlab code for the formulated scheme.

6. Validating the schemes by using numerical examples.

7. Presenting the results using tables and graphs.

8.Discussing and providing conclusions.

11



Chapter 4

FORMULATION OF THE

METHOD, RESULTS AND

DISCUSSION

4.1 Formulation of the method

Consider the following singularly perturbed problem

Ly(x) = −εy′′(x)+a(x)y′(x)+b(x)y(x)+c(x)y(x−1)+d(x)y′(x−δ) = f(x), x ∈ Ω, (4.1.1)

y(x) = φ(x), x ∈ [−1, 0], y(2) = l, l ∈ Ω. (4.1.2)

Expand y′(x − δ) around x using the Taylor’s expansion and discard higher order terms.

Then, Eqs. (4.1.1)-(4.1.2) can be approximated by

Ky(x) = cε(x)y′′(x) + p(x)y′(x) + b(x)y(x) + c(x)y(x− 1) = f(x), (4.1.3)

y(x) = φ(x), x ∈ [−1, 0], y(2) = l. (4.1.4)
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where cε = −(ε+ δd(x)) and p(x) = a(x) + d(x).

As we observed from Eqs. (4.1.3) and (4.1.4), the values of y(x−1) are known for the domain

Ω1 and unknown for the domain Ω2 due to the large delay at x = 1. So, it impossible to

treat the problem throughout the domain (Ω̄). Thus, we have to treat the problem at Ω1

and Ω2 separately.

Eqs. (4.1.3)–(4.1.4) are equivalent to

Ky(x) = S(x), (4.1.5)

where

Ky(x) =

 K1y(x) = cεy
′′(x) + p(x)y′(x) + b(x)y(x), x ∈ Ω1,

K2y(x) = cεy
′′(x) + p(x)y′(x) + b(x)y(x) + c(x)y(x− 1), x ∈ Ω2.

(4.1.6)

R(x) =

 f(x)− c(x)φ(x− 1), x ∈ Ω1,

f(x), x ∈ Ω2.
(4.1.7)

with boundary conditions


y(x) = φ(x), x ∈ [−1, 0],

y(1−) = y(1+), y′(1−) = y′(1+),

y(2) = l.

(4.1.8)

where y(1−) and y(1+) denote the left and right limits of y at x = 1, respectively.

4.2 Properties of Continuous solution

Lemma 4.2.1 (Minimum Principle) Let ψ(x) be any function in X such that ψ(0) ≥

0, ψ(2) ≥ 0, K1ψ(x) ≥ 0,∀x ∈ Ω1, K2ψ(x) ≥ 0, ∀x ∈ Ω2 and [ψ′](1) ≤ 0 then ψ(x) ≤

0,∀x ∈ Ω̄.
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Proof 4.2.2 Define a test function

s(x) =


1
8

+ x
2
, x ∈ [0, 1],

3
8

+ x
4
, x ∈ [1, 2].

Note that s(x) > 0,∀x ∈ Ω̄, Ls(x) > 0,∀x ∈ Ω1 ∪ Ω2, s(0) > 0, s(2) > 0 and [s′](1) < 0.

Let µ = max{−ψ(x)
s(x)

: x ∈ Ω̄}. Then, there exists x0 ∈ Ω̄ such that ψ(x0) + µs(x0) = 0 and

ψ(x) + µs(x) ≥ 0,∀x ∈ Ω̄.Therefore, the function (ψ + µs) attains its minimum at x = x0.

Suppose the lemma does not hold true, then µ > 0.

Case (i): x0 = 0

0 < (ψ + µs)(0) = ψ(0) + µs(0) = 0,

it is a contradiction.

Case (ii): x0 ∈ Ω1

0 < L(ψ + µs)(x0) = cε(ψ + µs)′′(x0) + p(x0)(ψ + µs)′(x0) + b(x0)(ψ + µs)(x0) ≥ 0,

it is a contradiction.

Case (iii): x0 = 1

0 ≤ [(ψ + µs)′](1) = [ψ′](1) + µ[s′](1) < 0,

it is a contradiction.

Case (iv): x0 ∈ Ω2

0 < L(ψ + µs)(x0) = cε(ψ + µs)′′(x0) + p(x0)(ψ + µs)′(x0) + b(x0)(ψ + µs)(x0)

+c(x0)(ψ + µs)(x0 − 1) ≥ 0,

it is a contradiction.
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Case (v): x0 = 2

0 < (ψ + µs)(2) = (ψ + µs)(2) ≤ 0,

it is a contradiction. Hence, the proof of the Lemma.

Lemma 4.2.3 (Stability Result) The solution y(x) of Eqs. (4.1.1)-(4.1.2), satisfies the bound

|y(x)| ≤ C max{
∣∣y(0)

∣∣, ∣∣y(2)
∣∣, sup
x∈Ω∗

∣∣Ly(x)
∣∣}, x ∈ Ω.

Proof 4.2.4 This Lemma can be proved by using Lemma 4.2.1 and the barrier functions

θ±(x) = CMs(x) ± y(x), x ∈ Ω, where M = max

{∣∣y(0)
∣∣, ∣∣y(2)

∣∣, supx∈Ω∗
∣∣Ly(x)

∣∣} and

s(x) is the test function as in Lemma 4.2.1.

Lemma 4.2.5 Let yε be the solution of (Pε). Then, for k = 0, 1, 2, 3, 4,

| y(k)
ε (x) |≤ C(1 + c−kε exp(

−px
cε

)),∀x ∈ [0, l].

Proof 4.2.6 For the proof refer Bansal and Sharma (2017).

4.3 Numerical Scheme Formulation

The linear ordinary differential equation in Eq. (4.1.1) cannot, in general, be solved

analytically because of the dependence of p(x), b(x) and c(x) on the spatial coordinate

x. We divide the interval [0, 2] into 2N equal parts with constant mesh length h. If we

consider the interval x ∈ (0, 1), the domain [0,1] is discretized into N equal number of

subintervals, each of length h. Let 0 = x0 < x1 < x2 < ... < xN = 1 be the points such

that xi = ih, i = 1, 2, 3, ..., N . We apply an exponentially fitted operator finite difference

method (FOFDM).

15



From Eq. (4.1.6) and Eq. (4.1.7), we have

 cεy
′′(x) + p(x)y′(x) + b(x)y(x) = S(x), x ∈ Ω1,

y(0) = φ(0), y(1) = θ,
(4.3.9)

where S(x) = f(x)− c(x)φ(x− 1).

To find the numerical solution of Eq. (4.3.9), we use the theory applied in asymptotic method

for solving singularly perturbed BVPs. In the considered case, the boundary layer is in the

left side of the domain i.e. near x = 0. From the theory of singular perturbations given by

O’Malley(1991), we get the asymptotic solution up to first order approximation as

y(x) = y0(x) +
p(0)

p(x)
(µ0 − y0(0)) exp

(
−
∫ x

0

(
p(x)

cε
− b(x)

p(x)

)
dx

)
+O(cε).

By using Taylor series at x = 0 for p(x) and b(x) and simplifying, we obtain

y(x) = y0(x) + (µ0 − y0(0)) exp

(
−p(0)x

cε

)
, (4.3.10)

where y0(x) is the solution of the reduced problem (obtained by setting cε = 0 of Eq. (4.3.9)

which is given by

p(x)y′(x) + b(x)y(x) = r(x), with y0(1) = θ1, (4.3.11)

where θ1 = l.

Considering h small enough, the discretized form of Eq. (4.3.10) becomes

y(ih) = y0(ih) + (φ0 − y0(0)) exp

(
−p(0)

cε
ih

)
, (4.3.12)

which simplifies to

y(ih) = y0(ih) + (φ− y0(0)) exp(−iρp(0)), (4.3.13)
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where ρ = h
cε

, h = 1
N

.

To handle the effect of the perturbation parameter artificial viscosity (exponentially fitting

factor σ(ρ) is multiplied on the term containing the perturbation parameter as

cεσ(ρ)y′′(x) + p(x)y′(x) + b(x)y(x) = S(x), (4.3.14)

with boundary conditions y0(0) = φ0 and y(1) = θ1.

Next, on a uniform mesh point Ω
N

= {x}Ni=0 and denote h = xi+1 − xi.



D+Yi = Yi+1−Yi
h

,

D−Yi = Yi−Yi−1

h
,

D0Yi = Yi+1−Yi−1

2h
,

D+D−Yi = Yi+1−2Yi+Yi−1

h2
,

(4.3.15)

By applying the central finite difference formula in Eq. (4.3.14) takes the form

cεσ(ρ)(D+D−y(xi)) + p(xi)(D
0y(xi)) + b(xi)y(xi) = S(xi). (4.3.16)

Using operator, Eq. (4.3.16) is rewritten as

LNcεYi = Si, (4.3.17)

with boundary conditions y(0) = y0 and y(1) = θ1.

From Eq. (4.3.16), we have

cεσ(ρ)

(
Yi+1 − 2Yi + Yi−1

h2

)
+ p(xi)

(
Yi+1 − Yi−1

2h

)
+ b(xi)Yi = Si. (4.3.18)

Multiplying Eq. (4.3.18) by h and considering h small and truncating the term (Si−b(xi)Yi)h

17



results

σ(ρ)

ρ

(
Yi+1 − 2Yi + Yi−1

)
+
p(xi)

2

(
Yi+1 − Yi−1

)
= 0. (4.3.19)

Now, using Taylor’s series for Yi−1 and Yi+1 up to first term and substituting the results in

Eq. (4.3.19) into Eq. (4.3.16) and simplifying, the exponential fitting factor is obtained as

σ(ρ) =
ρp(0)

2
coth

(
ρp(0)

2

)
. (4.3.20)

Assume that Ω
2N

denotes the partition of [0,2] into 2N subintervals such that 0 = x0, x1, x2, ..., xN =

1 and xN+1, xN+2, ..., x2N = 2 with xi = ih, h = 2
2N

= 1
N
, i = 0, 1, 2, ..., 2N .

Case (1): Consider Eqs. (4.1.6) and (4.1.7) on the domain Ω1 which is given by

cεy
′′(x) + p(x)y′(x) + b(x)y(x) = f(x)− c(x)φ(x− 1), (4.3.21)

Hence, the required finite difference scheme becomes

(
cεσ(ρ)

h2
− p(xi)

2h

)
Yi−1 +

(
−2cεσ(ρ)

h2
+ b(xi)

)
Yi +

(
cεσ(ρ)

h2
+
p(xi)

2h

)
Yi+1

= fi − ciφ(xi−N),

(4.3.22)

The numerical scheme in Eq. (4.3.22) can be written in recurrence relation as

EiYi−1 + FiYi +GiYi+1 = Hi, i = 1, 2, ..., N, (4.3.23)

where Ei = cεσ(ρ)
h2
− pi

2h
, Fi = −2cεσ(ρ)

h2
+ bi, Gi = cεσ(ρ)

h2
+ pi

2h
, Hi = fi − ciφ(xi −N).

Case (2): Consider Eqs. (4.1.6) and (4.1.7) on the domain Ω2 using exponentially fitted

finite difference method, which is given by

cεσ(ρ)

(
Yi+1 − 2Yi + Yi−1

h2

)
+ pi

(
Yi+1 − Yi−1

2h

)
+ biYi + ciY (xi − 1) = fi. (4.3.24)
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Similarly, this equation can be written as

EiYi−1 + FiYi +GiYi+1 + Ci = Hi, i = N + 1, N + 2, ..., 2N − 1, (4.3.25)

where Ei = cεσ(ρ)
h2
− pi

2h
, Fi = −2cεσ(ρ)

h2
+ bi, Gi = cεσ(ρ)

h2
+ pi

2h
, Ci = ciy(xi − 1) and Hi = fi.

Therefore, on the whole domain Ω = [0, 2], the basic schemes to solve Eqs. (4.1.1)-(4.1.3)

are the schemes given in Eqs. (4.3.23) and (4.3.25).

Uniform Convergence Analysis

The discrete scheme corresponding to the original Eqs. (4.1.6)-(4.1.7) is as follows

For i = 1, 2, 3, ..., N

KN
1 Yi = fi − ciφi−N (4.3.26)

For i = N + 1, N + 2, ..., 2N − 1

KN
2 Yi = fi (4.3.27)

subject to the boundary conditions:

Yi = φi, i = −N,−N + 1, ..., 0 (4.3.28)

Y2N = l (4.3.29)

and where  KN
1 Yi = cεD

+D−Yi + p(xi)D
0Yi + b(xi)Yi

KN
2 Yi = cεD

+D−Yi + p(xi)D
0Yi + b(xi)Yi + c(xi)Yi−N

(4.3.30)

Lemma 4.3.1 : (Discrete Minimum Principle) Assume that the mesh function ψ(xi) satis-

fies ψ(x0) ≥ 0 and ψ(x2N) ≥ 0 . Then KN
1 ψ(xi) ≥ 0, ∀xi ∈ Ω2N

1 , KN
2 ψ(xi) ≥ 0, ∀xi ∈ Ω2N

2

and ψ′(1+)− ψ′(1−) = [ψ′](1) ≤ 0. Then ψ(xi) ≤ 0, ∀xi ∈ Ω
2N

.
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Proof 4.3.2 Let us define

s(xi) =


1
8

+ xi
2
, xi ∈ [0, 1] ∩ Ω

2N

3
8

+ xi
4
, xi ∈ [1, 2] ∩ Ω

2N

Note that s(xi) > 0,∀xi ∈ Ω
2N

, KNs(xi) > 0,∀xi ∈ Ω2N
1 ∪ Ω2N

2 and [s′](xN) < 0.

Let use the notation µ = max

(
−ψ(xi)
s(xi)

: xi ∈ Ω
2N
)

. Then there exists xi ∈ Ω
2N

such that

ψ(xk) + µs(xk) = 0 and ψ(xk) + µs(xk) ≥ 0, ∀xi ∈ Ω
2N

. Therefore, the function ψ + µs

attains its minimum at x = xk. Suppose the theorem does not hold true, then µ > 0.

Case (i): xk = x0

0 < (ψ + µs)(x0) = 0, it is a contradiction.

Case (ii): xk ∈ Ω2N
1

0 < KN
1 (ψ + µs)(xk) = cε(ψ + µs)′′(xk) + p(xk)(ψ + µs)′(xk) + b(xk)(ψ + µs)(xk) ≤ 0,

it is a contradiction.

Case (iii): xk = xN

0 < [(ψ + µs)′](xN) = [ψ′](xN) + [s′](xN) < 0, it is a contradiction.

Case (iv): xk ∈ Ω2N
2

0 < KN
2 (ψ+µs)(xk) = cε(ψ+µs)′′(xk)+p(xk)(ψ+µs)′(xk)+b(xk)(ψ+µs)(xk)+c(xk)(ψ+µs)(xk−1) ≤ 0,

it is a contradiction.
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Case (v): xk = x2N

0 < (ψ + µs)x2N ≤ 0, it is a contradiction. (4.3.31)

Hence, the proof of the lemma is finished.

Lemma 4.3.3 Let ψ(x) be any mesh function. Then, for 0 < i < 2N

|ψ(xi)| ≤ C max{|ψ(x0)|, |ψ(x2N)|, max
i∈Ω2N

1 ∪Ω2N
2

|KNψ(xi)|}

Proof 4.3.4 : Consider the barrier functions

θ±(xi) = CM ± ψ(xi), ∀xi ∈ Ω
2N

(4.3.32)

where M = max{|ψ(x0)|, |ψ(x2N)|,maxi∈Ω2N
1 ∪Ω2N

2
|LNψ(xi)|}.

From Eq. (4.3.32) it is clear that θ±(x0) ≥ 0 and θ±(x2N) ≥ 0

KN
1 θ
±(xi) ≥ 0, ∀xi ∈ Ω2N

1

KN
2 θ
±(xi) ≥ 0, ∀xi ∈ Ω2N

2

[θ±′](xN) ≤ 0

Using Lemma 4.3.1, θ±(xi) ≥ 0, ∀xi ∈ Ω
2N

.

We proved above that the discrete operator KN satisfies the maximum principle. Next, we

analyze the uniform convergence of the method.

Theorem 4.3.5 Let y(xi) and Yi be the exact solution of Eqs. (4.1.1)-(4.1.3) and numer-

ical solutions of Eq. (4.3.17) respectively. Then, for a sufficiently large N , the following
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parameter uniform error estimate holds

|LN(y(xi)− Yi)| ≤
CN−2

N−1 + cε

(
1 + c−3

ε exp

(
−pxi
cε

))
. (4.3.33)

Proof 4.3.6 Let us consider the local truncation error defined as

LN(y(xi)− Yi) = cεσ(ρ)(y′′(xi)−D+D−y(xi)) + p(xi)(y
′(xi)−D0y(xi)),

= cε

[
ρp(1)

2
coth

(
ρp(1)

2

)
− 1

]
D+D−y(xi)

+ cε(y
′′(xi)−D+D−y(xi)) + p(xi)(y

′(xi)−D0y(xi)),

(4.3.34)

where σ(ρ) = p(1)ρ
2

coth(p(1)ρ
2
), and ρ = N−1

cε
.

since |z coth(z) − 1| ≤ z2 holds if z 6= 0 and also |z coth(z) − 1| ≤ z if z > 0 values, Now,

for z > 0, C1 and C2 are constants, and we have |z coth(z)− 1| ≤ C1z
2, z ≤ 1. Similarly,

for z −→∞, since lim
z−→∞

coth(z) = 1, |z coth(z)− 1| ≤ C1z is given.

In general, for all z > 0, we write

C1
z2

z + 1
≤ z coth(z)− 1 ≤ C2

z2

z + 1
(4.3.35)

implying that

cε[p(1)
ρ

2
coth(p(1)

ρ

2
)− 1] ≤ cε

(
(N−1/cε)

2

(N−1/cε) + 1

)
=

N−2

N−1 + cε
. (4.3.36)

Using Taylor series expansion, we can rewrite y(xi−1) and y(xi+1) in terms of the values and

derivatives of y(xi) as

 y(xi−1) = y(xi)− hy′(xi) + h2

2!
y′′(xi)− h3

3!
y(3)(xi) + h4

4!
y(4)(xi) +O(h5),

y(xi+1) = y(xi) + hy′(xi) + h2

2!
y′′(xi) + h3

3!
y(3)(xi) + h4

4!
y(4)(xi) +O(h5).
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We obtain the bound for the second order derivatives as

 |D
+D−y(xi)| ≤ C|y′′(xi)|,

|y′′(xi)−D+D−y(xi)| ≤ CN−2|y(4)(xi)|.
(4.3.37)

Similarly, for the first derivative term

|y′(xi)−D0y(xi)| ≤ CN−2|y(3)(xi)|, (4.3.38)

where |y(k)(xi)| = supxi∈(x0,xN ) |y(k)(xi)|, k = 2, 3, 4.

Using the bounds in Eq.(4.3.37) and Eq.(4.3.38), we obtain

|LN(y(xi)− Yi)| ≤ C
N−2

N−1 + cε
|y′′(xi)|+ cεCN

−2|y(4)(xi)|+ CN−2|y(3)(xi)|,

≤ C
N−2

N−1 + cε
|y′′(xi)|+ CN−2[cε|y(4)(xi)|+ |y(3)(xi)|].

Now, using the bounds for the derivatives of the solution in lemma (4.2.5), we have

|LN(y(xi)− Yi)| ≤
CN−2

N−1 + cε

(
1 + c−2

ε exp

(
−pxj
cε

))
+ CN−2

[
cε

(
1 + c−4

ε exp

(
−pxj
cε

))
+

(
1 + c−3

ε exp

(
−pxj
cε

))]
≤ CN−2

N−1 + cε

(
1 + c−2

ε exp

(
−pxj
cε

))
+ CN−2

[(
cε + c−3

ε exp

(
−pxj
cε

))
+

(
1 + c−3

ε exp

(
−pxj
cε

))]
,

which simplifies to

|LN(y(xi)− Yi)| ≤
CN−2

N−1 + cε

(
1 + c−3

ε exp

(
−pxj
cε

))
, since c−3

ε ≥ c−2
ε . (4.3.39)
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Lemma 4.3.7 For a fixed mesh and for cε → 0, the following holds:

lim
cε→0

max
1≤j≤N−1

exp

(
−pxj
cε

)
cmε

= 0, m = 1, 2, 3, ....

Proof 4.3.8 For the proof refer Debela and Duressa (2020).

Theorem 4.3.9 Let y(xi) and Yi be the exact solution of Eqs. (4.1.1)-(4.1.3) and numerical

solutions of Eq. (4.3.17) respectively. Then, the following error bound holds

sup
0<cε<<1

|(y(xi)− Yi)|| ≤
CN−2

N−1 + cε
≤ CN−1. (4.3.40)

Proof 4.3.10 By substituting the results of lemma 4.3.7 in to Theorem 4.3.5 and applying

the discrete maximum principle, we obtain the required bound.

For the case cε > N−1 the scheme secures second order convergence and we expect to lose

an order of convergence for cε ≤ N−1, and in fact it turns out that the scheme guarantees

second order uniformly convergent.

4.4 Numerical Examples and Results

In this section, one example is given to illustrate the numerical method discussed above.

The exact solutions of the test problem is not known. Therefore, we use the double mesh

principle to estimate the error and compute the experimental rate of convergence to the

computed solution. For this we put

EN
ε = max

0≤i≤2N
|Y N
i − Y 2N

2i |, (4.4.41)
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where Y N
i and Y 2N

2i are the ith and 2ith components of the numerical solutions on meshes of

N and 2N respectively. We compute the uniform error and the rate of convergence as

EN = max
ε
EN
ε , andRN = log2

(
EN

E2N

)
. (4.4.42)

The numerical results are presented for the values of the perturbation parameter ε ∈

{ 10−4, 10−8, ..., 10−20}.

Example 4.4.1 Consider the model singularly perturbed boundary value problem:

εy′′(x)− 10y′(x) + y(x− 1)− y′(x− ε) = −x x ∈ (0, 1) ∪ (1, 2),

subject to the boundary conditions

y(x) = 1, x ∈ [−1, 0], y(2) = 2.

Table 4.1: Maximum absolute errors for Example 4.4.1 at number of mesh points 2N .
ε N=32 N=64 N=128 N=256 N=512

10−4 1.9799e-04 1.0004e-04 5.0281e-05 2.5206e-05 1.2619e-05
10−8 1.9799e-04 1.0004e-04 5.0281e-05 2.5206e-05 1.2619e-05
10−12 1.9799e-04 1.0004e-04 5.0281e-05 2.5206e-05 1.2619e-05
10−16 1.9799e-04 1.0004e-04 5.0281e-05 2.5206e-05 1.2619e-05
10−20 1.9799e-04 1.0004e-04 5.0281e-05 2.5206e-05 1.2619e-05

EN 1.9799e-04 1.0004e-04 5.0281e-05 2.5206e-05 1.2619e-05
RN 0.9849 0.9925 0.9962 0.9982

4.5 Discussion and Conclusion

This thesis introduces an exponential fitted numerical method for singularly perturbed

differential equations having both small and large delay. The numerical scheme is developed

on uniform mesh using exponential fitted operator in the given differential equation. The
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Table 4.2: Comparison of Maximum absolute errors and order of convergence for Example
1 at number of mesh points N .

N=64 N=128 N=256 N=64 N=128 N=256
Present M Subbu and Rama (2012)

EN 1.0004e-04 5.0281e-05 2.5206e-05 7.7350e-04 2.4335e-04 7.5353e-05
RN 0.9925 0.9962 0.9982 1.6684 1.6913 1.6849
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Figure 4.1: The behavior of the Numerical Solution for Example 4.4.1 at ε = 10−12 and
N = 32.

stability of the developed numerical method is established and its uniform convergence is

proved. To validate the applicability of the method, one model problem is considered for nu-

merical experimentation for different values of the perturbation parameter and mesh points.

The numerical results are tabulated in terms of maximum absolute errors, numerical rate of

convergence and uniform errors (see Table 4.1). Further, behavior of the numerical solution

(Figure 4.1), point-wise absolute error (Figure ??) and the ε -uniform convergence of the

method is shown by the log-log plot (Figure 4.2). The method is shown to be ε-uniformly

convergent with order of convergence O(h). The proposed method gives an accurate, stable

and ε-uniform numerical result (see Table 4.2)
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Figure 4.2: ε-uniform convergence with fitted operator in log-log scale for Example 4.4.1.

4.6 The scope of the future work

In this thesis , an exponentially fitted numerical methods were constructed for solving

singularly perturbed differential equations . Hence , the scheme proposed in this thesis can

also be extended to solve singularly perturbed differential equation involving both large and

small delay .
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