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Abstract

Cobalt oxide (CoO) has been widely studied due to its many advantages,
such as starting material for the manufacture of other chemicals and cat-
alysts, in pigments such as color reagents and in ceramics, a ground-coat
frit, promotes the adherence of enamel to steel and also used as a blue col-
oring agent for pottery, enamel and glass. In this thesis the structural and
electronic properties of Cobalt mono-Oxide (CoO) were investigated using
density functional theory with Hubbard correction (DFT+U) using Quan-
tum Espresso package. Our study is based on DFT+U with the Perdew-
Burke-Ernzerhof (PBE)+U exchange-correlation functional, Vanderbilt (ul-
tra soft) pseudo-potentials and the plane wave basis set implemented in the
Quantum-ESPRESSO package. The calculation of the total minimum energy
were calculated as a function of cutoff energy and K-points sampling. The
total minimum energy per cell is monotonically decreasing with increasing
cutoff energy due to variational principle. However, this trend can not be
predicted from increasing the k-points sampling. Moreover, the equilibrium
lattice constant is calculated using results obtained from energy convergence
test (i.e; 40 Ry and 5× 5× 5). The computational value of the equilibrium
lattice constant is 4.24Å. This result is in good agreement with experimen-
tal value which is 4.27Å. Finally, discussing band structure (with calculated
band-gap=2.45 eV) and density of state of CoO, the electrical property of
CoO is determined based on energy band gap.

Keywords: Cobalt mono-Oxide, Density Functional Theory, Hubbard cor-
rection, Electronic properties and structural properties.
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1 Introduction

1.1 General Background

Cobalt (Co) is found with minerals containing a possible variety of elements
(Ni, As, S, Fe, Cr, Cu, Pb, and Mn) as the oxide, sulfide or arsenide but is not
found naturally occurring as the metal. Co is not mined directly but is pro-
duced as a byproduct (mostly from Ni and Cu mining) of mining operations
in Africa, the former Soviet Union and North America. Cobalt is an element
that is low to moderately abundant in the Earth’s crust. Its abundance is
roughly that equal to scandium. Cobalt and scandium are the less abundant
of the first row transition elements, making them both candidates as internal
standard (IS) elements [1]. In recent years, transition metal cobalt (Co) and
cobalt oxide are known as promising materials due to their extensive applica-
tions in lithium-ion batteries, electronic gas-sensing, data storage, catalysis
and electro-chromic devices [2,3]. Cobalt has two oxides that are more com-
monly encountered in conventional sample preparation schemes, namely CoO
and Co3O4[1]. CoO is a metallic coloring oxide that produces blue in glazes
at all temperatures (unless in very high percentages where it will be black).
Black Cobalt Oxide (Co3O4) is a key source of CoO used in glazes, glass,
and enamels. Cobalt is the most powerful ceramic colorant and it is stable
in most systems, it appears in many recipes at 1% or lower. It melts very
actively in oxidation. If it is mixed into a fluid frit base in high enough a
percentage, it will completely crystallize during cooling. Cobalt is also useful
as a body and slip stain. However, cobalt materials are very expensive, this
severely limits its practical use in many things[4].

CoO, which is inorganic compound, grey green, can be obtained by heat-
ing the sample to temperatures in excess of 1000 °C. This temperature is
generally considered unnecessarily high in sample dry ashing preparations.
CoO has been reported in several structural forms, such as rock salt, wurtzite
and zinc blende. The rock-salt cubic structure (space group Fm3hm) with
octahedral Co2+ atoms is the most stable phase of CoO[5]. Cobalt(II) oxide
has for centuries used as a coloring agent on kiln fired pottery. The additive
provides a deep shade of blue named cobalt blue. The band gap (CoO) is
around 2.4 eV. It also is used in cobalt blue glass[6].

Historically, DFT+U was introduced to accurately describe the d- and f-
type electrons of transition-metal(TM) and rare-earth compounds, as it was
thought that the U parameter would correct these strongly correlated, lo-
calized states (i.e., d- and f-type states). Density-functional theory (DFT)
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with approximate exchange-correlation (xc) functionals e.g., local-density ap-
proximation (LDA) or generalized-gradient approximation (GGA) has been
remarkably successful in predicting ground-state properties of a large variety
of systems, such as crystal structure and thermodynamic stability. However,
these DFT calculations have known limitations, including the underestima-
tion of the band gap (on the order of∼ 40% in semiconductors and insulators)
due to self-interaction errors (SIE) inherent to approximate xc functionals.
Various xc functionals and methods were developed to alleviate this prob-
lem. A very popular extension of DFT is the DFT+U approach, in which
the Hubbard U correction acts selectively on a subset of states in the system
(typically, of d or f character) by imposing the piecewise linearity in the en-
ergy functional as a function of the occupations of this subset. DFT+U is
only marginally more expensive than DFT within LDA or GGA, while sig-
nificantly improving various properties of materials such as transition-metal
compounds [7].

The scope of DFT and DFT+U is limited to ground-state properties, in-
cluding electronic band gaps but excluding optical band gaps. The optical
band gap of a material is the minimal energy required for absorbing an inci-
dent photon (corresponding to a neutral excitation), whereas the electronic
band gap is the difference between the occupied and unoccupied states (cor-
responding to charged excitations). In most inorganic semiconductors, the
electronic band gap and the optical band gap are approximately equal, but
for organic semiconductors, the difference between these two energies (the ex-
citon binding energy) may be substantial. It is thus expected that DFT+U
would be more accurate at predicting optical band gaps for inorganic semi-
conductors than for organic semiconductors. To improve the precision of the
computed electronic band gaps, DFT+U incorporates a corrective U term
designed to restore piecewise linearity of the total energy with respect to the
occupations of the orbitals within the Hubbard manifold, which acts to ap-
proximate derivative discontinuities. Often the U parameter is chosen semi-
empirically by fitting it to reproduce experimental band gaps, experimental
oxidation enthalpies, or other properties. However, fitting U to reproduce a
subset of experimental data is not a predictive approach, especially in cases
when no prior data is available [7].

1.2 Statement of the Problem

It is obvious that many body problems are complicated and a bit challenging
to solve. Because of this the state of motion cannot be solved analytically for
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systems in which three or more masses are interact. To solve this many body
problems, the density functional theory(DFT) collaborated with Hubbard
potential(U) or DFT+U is preferred as an accurate and reliable tool. The
material, Cobalt Mono-Oxide (CoO) or Cobalt(II) oxide has for centuries
used as a coloring agent on kiln fired pottery. The additive provides a deep
shade of blue named cobalt blue. It is used extensively in the ceramics in-
dustry as an additive to create blue colored glazes and enamels as well as in
the chemical industry for producing cobalt(II) salts. It also is used in cobalt
blue glass. But its electronic and structural properties are not well studied.
This material was studied before in DFT and reported as it is conductor[46]
and semi-conductor[45]. Since, DFT underestimate the bandgap of highly
correlated materials (CoO), it is aimed to investigate this material in order
to improve the electronic and structural properties of CoO using DFT+U
with the help of Quantum Espresso Package.

1.3 Research questions

1. What is the ground state energy of CoO per atom?
2. What is the equilibrium lattice constant of CoO?
3. What is the magnitude and nature of the band structure of CoO?
4. What is the density of state of CoO?

1.4 Objectives

1.4.1 General Objective

The general objective of this study is to investigate the electronic and struc-
tural properties of Cobalt Oxide by using DFT+U with the help of Quantum
Espresso Package.

1.4.2 Specific Objectives

The specific objectives of this study are:
� To carryout total minimum energy convergence test with respect to cut-off
energy and K-point sampling
� To calculate the lattice constant of CoO
� To calculate the band structure of CoO
� To describe the total and partial density of states of CoO

3



1.5 Scope of the Research

Due to the shortage of time and budget constraint the scope of the study is
limited to determining the convergence of total minimum energy with respect
to cutoff-energy and K-points sampling, the theoretical lattice constant, band
structure, density of states and projected density of states.

1.6 Significance of the study

The significance of this study is to understand the electronic and structural
properties of CoO (many electron system) using computational technique.
Understanding the electronic and structural properties of many electron sys-
tem (in this thesis CoO) helps to know about the system in detail; and
significantly improving properties of materials such as transition-metal com-
pounds (CoO). Moreover, this study can be used as preliminary base for
future research works related to computational modeling of materials for dif-
ferent applications.

1.7 Organization of the study

The thesis is organized and separated to five chapters. Chapter one is intro-
duction part which discusses background of the study, problem statement,
objectives of the study, its significance and the scope. Chapter two reviews
related literature on the subject such as previous studies and findings. Chap-
ter three discusses research methodology. Chapter four discusses the results
of the study and includes, explains the results and discusses the findings of
the study. Chapter five concludes the results of the study and recommends
for action and directs future research directions.

4



2 Literature Review

2.1 Cystal Structures

Transition metal monoxide (TMMO) CoO adopt two simple crystal struc-
tures; cubic close packed (ccp) and hexagonal close packed (hcp). In ccp
structure cations occupy the octahedral sites of the ccp array of anions,
stable form for most metal monoxide[13]. In hcp structure cations are
located at tetrahedral sites of the hcp array of anions, is thermodynamically
unstable relative to ccp[13]. Hence, we study the most stable (ccp structure).

Rock Salt(NaCl): It is well-known that the cubic rock salt structure
is the most stable CoO phase. It consists two interpenetrating face centred
cubic (fcc) sub-lattices of Co2+ and O2− with Lattice constant a=4.26Å[13].
Periclase (Rock salt) monoxide (c− CoO, Fm3m) (225)[13].

2.2 Structural Properties

Cobalt(II) oxide is an inorganic compound that has been described as an
olive-green or gray solid. It is used extensively in the ceramics industry as an
additive to create blue colored glazes and enamels as well as in the chemical
industry for producing cobalt(II) salts. Cobalt Oxide (CoO) crystals adopt
the periclase (rock-salt) structure with a lattice constant of 4.2615Å, is an-
tiferromagnetic below 16 °C. It has Molar mass of 74.9326 g/mol and it is
odorless. it’s appearance is olive or gray powder (colour varies from olive-
green (CoO) to red, depending on particle size), have density 6.45g/cm3,
melting point 1,933 °C(3,511 °F; 2,206K). It is Cubic, cF8 crystal structure
with space group of Fm3m, No. 225, and is insoluble in water. It has
magnetic susceptibility of χ +4900E-6cm3/mol[9]. Cobalt is a moderately
reactive metal. In air or oxygen environment, it is oxidized, forming a thin
layer of cobalt oxide on the surface of the metal. This layer serves as a
protection or passivation layer that prevents further oxidation or corrosion.
Practically insoluble in water, ethanol and ammonium hydroxide; rather sol-
uble in acids (hydrochloric, sulfuric, nitric). CoO Compound is stable in its
Co2+ oxidation state[12].

2.3 Electronic Properties

DFT commonly underestimates the band gap of materials where the valence
electrons are highly localized, such as Co oxides. Here, we therefore adopt
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the DFT+U method to describe correctly the electronic and geometric prop-
erties of CoO. DFT+U is a correction of the pure DFT method, where the U
parameter is a Hubbard-like potential added to the Kohn-Sham DFT Hamil-
tonian. DFT+U usually provides accurate results for 3d transition metal
oxides, hence the use of this method in our investigation. We have consid-
ered several U parameters, ranging from 0 to 5 eV, in order to calculate the
lattice parameters, the band gaps, and the bulk moduli of the materials, fol-
lowing the procedure used in previous works [11].

Metal monoxides such as CoO have a rock-salt NaCl crystal structure
and the most stable magnetic ordering below its Néel temperature is the an-
tiferromagnetic type II(AF-II). In the solid state calculations, this magnetic
ordering can not be represented as there is a geometrical frustration in the
CoO crystal structure. Thus, to investigate the AF-II structure, we have
considered a rhombohedral four-atom unit cell, which is equivalent to the
geometry used in previous theoretical studies where the authors investigated
the electronic and magnetic structures of CoO[11].

A U value of ∼ 3.0eV describes adequately the band gap of CoO[11].
As we will consider a system containing pure Co and its oxides in future
investigations, we need to determine one U value. We will therefore ensure
that the formation energies of the cobalt oxide phases are in good agreement
with experiment results. Thus, an effective increment of the on-site Coulomb
repulsion in the Co d electrons by 3 eV is a fair compromise to investigate
the physical and chemical properties of Co, and its oxides. According to
the study of [Africa-UK Partnership for the Computer aided Development
of Sustainable Catalysts Research Article] They have adopted U = 3 eV to
describe and discuss in more detail the electronic structure, elastic constants,
and mechanical properties of CoO. They have determined the inter-atomic
distances for the materials and found CoO bulk, determined a Co-O distance
of 2.142Å[11].

The electronic configuration of CoO can be written as Co 3d O 2p. In the
ground state, the O 2p band is completely occupied whereas the Co 3d band is
only partly occupied[33]. According to the band theory, one expects metallic
properties of CoO since the valence band is only partly occupied. A metal-
lic nature of CoO is also predicted by the density functional theory (DFT)
which is the most successful tool for describing the electronic properties of
solids [33]. However, experiments have revealed that CoO is an insulator
with a band gap of 2.5 eV[33]. This discrepancy has been attributed to the
strong electron-electron interaction in the 3d-band which strongly affects the
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electronic structure of CoO. Therefore, the one electron approach of the band
model as well as the DFT approach fails since the electrons strongly interact
during its motion. The band gap increases with the Hubbard (U) parameter.
Kurmaev found a value of 2.60 eV using synchrotron-excited oxygen X-ray
K-emission spectroscopy[31].

2.4 Applications

Recently, Cobalt oxide (CoO) has been widely studied due to its many advan-
tages, such as starting material for the manufacture of other chemicals and
catalysts, in pigments such as color reagents and in ceramics, a ground-coat
frit, promotes the adherence of enamel to steel and also used as a blue color-
ing agent for pottery, enamel and glass. It is used in ceramics and enamels
as a colorizer and decolorizer[12,47].

2.5 Many electron system

The ultimate goal of most approaches in solid state physics, quantum chem-
istry and in this electronic structural calculation of CoO is the solution of the
time independent, non relativistic Schrödinger equation. The state of motion
can not be solved analytically for systems in which three or more distinct
masses interact. To solve this problem we can use approximations[15].

2.5.1 Ab Initio Methods

Ab Initio, meaning ”from first principles”, methods solve the Schrödinger
equation and does not rely on empirical or experimental data. Beginning
with fundamental and physical properties, calculate how electrons and nu-
clei interact. For complex systems, Ab Initio methods make assumptions to
obtain approximate solutions to the Schrödinger equations and solve it nu-
merically. ”Computational Cost” of calculations increases with the accuracy
of the calculation and size of the system[37].

• Born-Oppenheimer Approximation: Nuclei are heavier than elec-
trons and can be considered stationary with respect to electrons. Also know
as ”clamped nuclei” approximations and leads to idea of potential surface[37].

The time-independent Schrödinger equation of a system reads:

Hψ(r1, ..., rN) = Eψ(r1, ..., rN) (1)
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Where H is Hamiltonian of the system, E is energy, rN is coordinate of the
electron with index N and ψ(r1, ..., rN) is the many particles wave function.

For many electron system:

Ĥ = − h̄2

2m

∑
i

∇2
i−

∑
i,I

ZIe
2

|ri −RI |
+
1

2

∑
i ̸=j

e2

|ri − rj|
−
∑ h̄2

2MI

∇2
I+

1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |
(2)

Where, MI-is mass of the nuclei
me-is mass of the electron
Since nuclei are much heavier than electrons, the nuclei appear fixed or sta-
tionary. Hence MI >> me the kinetic energy (K.E) of the nuclei become:
h̄2

2MI
∇2

I ≈ 0.

Then;

Ĥ = − h̄2

2m

∑
i

∇2
i −

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i ̸=j

e2

|ri − rj|
+

1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |
(3)

In atomic unit (e = 1, h̄ = 1,me = 1).

• The Kinetic energy; T̂ = −1
2

∑
i ∇2

i due to electron(e−)

• External potential; V̂ext =
∑

i,I Vi(|ri −RI |) due to electron and nuclei

• The interaction potential; V̂int =
1
2

∑
i ̸=j

1
|ri−rj | due to e−e− interaction

• The Nuclear potential; V̂IJ = 1
2

∑
I ̸=J

ZIZJ

|RI−RJ |
due to interaction of nuclei.

Therefore the total energy for interacting Hamiltonian is:

Ĥ = −1

2

∑
i

∇2
i + V̂ext + V̂int(e−e) + V̂IJ (4)

The wave function ψ(R, r) of the many electron molecule is a function of nu-
clear(R) and electronic(r) coordinates. Born-Oppenheimer Approximation:
Separate electronic and nuclear motion:

ψ(R, r) = ψe(r;R)ψn(R) (5)

Solve electronic(ri) part of Schrodinger equation

Ĥriψri(r;R) = Eriψri(r;R) (6)
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Born-Oppenheimer(BO) approximations leads to the concept of potential
energy surface.

V (R) = Eri + VRIRJ
(7)

The electronic potential is a function of nuclear coordinates. Due to their
masses the nuclei move much slower than the electrons. We can consider
the electrons as moving in the field of fixed nuclei. We can ignore the nu-
clear kinetic energy and their potential energy is merely constant. Thus, the
electronic Hamiltonian reduced to:

Ĥ = T̂e + V̂ext(e−N) + V̂int(e−e) (8)

The total energy is then:

ET = Erirj(elec) + ERIRJ(nuc) (9)

Where ERIRJ(nuc) =
1
2

∑
I ̸=J

ZIZJ

|RI−RJ |

• Slater Determinants: Expand the many electron wave function in
terms of Slater determinants.

•Basis Sets: Represent Slater determinants by molecular orbitals, which
are linear combination of atomic-like-orbital functions. (i.e. basis sets).

2.6 The Variational Principle for the Ground State

When a system is in the state ψ, the expectation value of the energy is given
by

E[ψ] =
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

(10)

Where, ⟨ψ|Ĥ|ψ⟩ =
∫
ψ∗|ψdx

The variational principle states that the energy computed from a guessed
ψ is an upper bound to the ground-state energy E0. Full minimization of
the functional E[ψ] with respect to all allowed N-electrons wave functions
will give the true ground state ψ and energy E[ψ0] = E0. For a system of
N electrons and given nuclear potential Vext, the variational principle defines
a procedure to determine the ground-state wave function ψ0, the ground-
state energy E0[N, Vext], and other properties of interest. In other words, the
ground state energy is a functional of the number of the electrons N and the
nuclear potential Vext[36].

E0 = E[N, Vext] (11)

9



2.7 The Thomas Fermi theory

The Thomas Fermi theory is the simple example of a DFT. It emerges when
we ignore the exchange energy and make the simplest possible approximation
for the kinetic energy. For a solely varying density function the kinetic energy
density will only depend on the number of density at the same position.
Taking the specific function from the Fermi gas, we arrive at the kinetic
energy functional.[15]

T [n(r⃗)] =
∫ 3

10

(3π2)2/3

m
n(r)5/3d3r (12)

If E[n] is energy per particle of homogeneous electron gas of density [n]
and n(r) local density given total energy

E[n] =
∫
E(n)n(r)dn (13)

In electrostatic screening in region where there is no electrostatic contribution
to chemical potential

EF =
h̄2

2m
(3π2)3/2n2/3(r) (14)

E[n] =
1

2
(3π2)3/2n2/3(r) (15)

T̂ =
∫
E(n)n(r)dr =

1

2
(3π2)3/2(

3

5
)
∫
n5/3(r)dr =

3

10
(3π2)3/2

∫
n5/3(r)dr

(16)
Potential Energy (Coulomb interaction) (e-e interaction)

Ec =
1

2

∫ n(r)n(r′)

|r − r′|
drdr′ (17)

Potential Energy (Electron-nuclear interaction)

Eext =
∫
n(r)Vext(r)dr (18)

And the sum of the K,E and potential energy terms will give us the total
energy within the Thomas Fermi approximations. That is the energy of an
atom is finally obtained using the classical expression for the nuclear nuclear
potential and the electron-electron potential:

E[n] = T [n] + Ec[n] + Eext[n] (19)

E[n] =
3

10
(3π2)3/2

∫
n5/3(r)dr+

∫
n(r)Vext(r)dr+

1

2

∫ n(r)n(r′)

|r − r′|
drdr′ (20)
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Where the first term is kinetic energy of the electrons, the second term
is the potential energy of the electrons due to their mutual electric repulsion
and the third term is the potential energy of an atom’s electrons, due to the
electric attraction of positively charged nucleus. Note that the expression
only depends on density n(r). Unfortunately, this theory has limited validity
due to its poor approximation of kinetic energy functional [15].

”Fermi level” is the term used to describe the top of the collection of elec-
tron energy levels at absolute zero temperature. This concept comes from
Fermi-Dirac statistics. Electrons are fermions and by the Pauli exclusion
principle cannot exist in identical energy states. So at absolute zero they
pack into the lowest available energy states and build up a ”Fermi sea” of
electron energy states. The Fermi level is the surface of that sea at absolute
zero where no electrons will have enough energy to rise above the surface.
The concept of the Fermi energy is a crucially important concept for the
understanding of the electrical and thermal properties of solids. Both ordi-
nary electrical and thermal processes involve energies of a small fraction of
an electron volt[38].

In solid materials, electron energy levels form bands of allowed energies,
separated by forbidden bands. Valence band is outermost (highest) band
filled with electrons (all states occupied). Conduction band is next high-
est band to valence band (empty or partly filled). Gap is energy difference
between valence and conduction bands, is width of the forbidden band. Elec-
trons in a completely filled band cannot move, since all states occupied (Pauli
principle)[38].

The Fermi function f(E) gives the probability that a given available elec-
tron energy state will be occupied at a given temperature[38]. The Fermi
function comes from Fermi-Dirac statistics and has the form

f(E) =
1

e(E−EF )/kT + 1
(21)

The basic nature of this function dictates that at ordinary temperatures,
most of the levels up to the Fermi level EF are filled, and relatively few
electrons have energies above the Fermi level. The Fermi level is on the
order of electron volts, where as the thermal energy kT is only about 0.026
eV at 300K. The band theory of solids gives the picture that there is a sizable
gap between the Fermi level and the conduction band of the semiconductor.
At higher temperatures, a larger fraction of the electrons can bridge this gap
and participate in electrical conduction[38].
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2.8 Hartree- Fock theory

Hartree theory is designed to solve many electron problem from fundamental
physical principles. He proposed method by solving first scrodinger equa-
tion for individual electron in states a1, a2, a3, ..., an with individual solutions;
ψa1(r1), ψa2(r2), ψa3(r3), ..., ψan(rn). Each ψai(ri) is solution to scrodinger equa-
tion, their product should satisfy the solution of many electron problem.
This method of combining the wave function of individual electrons is called
Hartree product.

HF theory is the Variational theory obtained by the expectation value
of the Hamiltonian, allowing all wave functions that can be represented as
Slater determinants. This theory was developed by two individuals, Hartree
and Fock. Fock applied the slater determinant to the Hartee method and
proposed the Hartree- Fock method and involves antisymmetric natures of
waves, spin orbital (slater determinant), orthogonality and angular momen-
tum [15]. One of the strategies of HF is, the self-consistent solutions are
obtained by employing variational principle, which is given by;

δ⟨ψ(N)|H|ψ(N)⟩ = 0 (22)

Hartree-Fock Scrodinger equation (HFSE) is:

[−1
2
∇2 + Vext(r) +

∑
j,σj

∫
dr′ψ

σ∗
j

j (r′)ψσj
j (r′) 1

|r−r′| ]ψ
σ
i (r)

−
∑
j

∫
dr′ψσ∗

j (r′)ψσ
i (r

′)
1

|r − r′|
ψσ
j (r) = Eσ

i ψ
σ
i (r) (23)

The Hamiltonian can be written if the exchange term in this equation is
modified it can be written as analogous to SE of non interacting electron,
except the effective Hamiltonian depends on the state

Ĥ i
effψ

σ
i (r) = [− h̄

2

2
∇2 + V i,σ

eff (r)]ψ
σ
i (r) = Eσ

i ψ
σ
i (r) (24)

For V̂eff
V̂eff (r) = Vext(r) + VHartree(r) + V i,σ

x (r) (25)

and The Exchange term is:

V̂ i,σ
x (r) = −

∑
j

∫
dr′ψσ∗

j (r′)ψσ
i (r

′)
1

|r − r′|
ψσ
j (r)

ψσ
i (r)

(26)
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Wave-function is written as a single determinant

ψ = det(ϕ1, ϕ2, ...ϕN) (27)

The electronic Hamiltonian can be written as:

Ĥ =
N∑
i

h(ri) +
∑
i ̸=j

Vint(ri,j) (28)

For h(ri)-is single electron Hamiltonian of ith particle and Vint(ri,j)-interaction
between particle i and j.

h(ri) = − h̄2

2m
∇2

i −
Ze2

ri
= −1

2
∇2

i −
ZI

ri,I
(29)

Because the electronic Hamiltonian (in atomic units, h̄,me, 4πϵ0, e = 1).

Vint(ri,j) =
1

|ri − rj|
(30)

The electronic energy of the system is given by:

E = ⟨ψ|Ĥ|ψ⟩ (31)

The resulting HF equations from minimization of energy by applying of vari-
ational theorem:

f̂(x1)ϕi(x1) = εiϕi(x1) (32)

where εi is the energy of orbital Xi and the Fock operator f, is defined as:

f̂(x1) = ĥ(x1) +
∑
j

[Ĵj(x1)− K̂j(x1)] (33)

Ĵj =⇒Coulomb operator=⇒ average potential at x due to charge distribution
from electron in orbital ϕi defined as:

Ĵj(x1)ϕi(x1) = [
∫ ϕ∗

j(x2)ϕj(x2)

r12
dx2]ϕi(x1) (34)

K̂j =⇒Exchange operator=⇒ Energy associated with exchange of electrons
=⇒ No classical interpretation for this term.

K̂j(x1)ϕi(x1) = [
∫ ϕ∗

j(x2)ϕi(x2)

r12
dx2]ϕj(x1) (35)
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The Hartree-Fock equation are solved numerically or in a space spanned by
a set of basis functions (Hartree-Fock-Roothan equations):

ϕi =
K∑

µ=1

Cµiϕ̄µ (36)

Sµv =
∫
dx1ϕ̄

∗
µ(x1)ϕ̄v(x1) (37)∑

v

FµvCvi = εi
∑
v

SµvCvi (38)

Fµv =
∫
dx1ϕ̄

∗
µ(x1)f̂(x1)ϕ̄v(x1) (39)

FC = SCε (40)

The Hartree-Fock-Roothan equation is a pseudo-eigenvalue equation. C’s are
the expansion coefficients for each orbital expressed as a linear combination
of the basis function. Note: C depends on F which depends on C −→ need to
solve self-consistently. Starting with an initial guess orbitals, the HF equa-
tions are solved iteratively or self consistently (Hence HF procedure is also
known as self-consistent field or SCF approach) obtaining the best possible
orbitals that minimize the energy[39].

Basis Sets: Represent Slater determinants by molecular orbitals, which
are linear combination of atomic-like-orbital functions i.e. basis sets.

In order to calculate electronic wave function and energy

Ee =
⟨ψe|Ĥe|ψe⟩
⟨ψe|ψe⟩

(41)

The total electronic wave function is written as a Slater Determinant of the
one electron functions, i.e. molecular orbitals, MO’s

ψe =
1√
N !

ϕ1(1) ϕ2(1) ... ϕN(1)
ϕ1(2) ϕ2(2) ... ϕN(2)
... ... ... ...

ϕ1(N) ϕ2(N) ... ϕN(N)

(42)

Molecular Orbitals(MO’s) are written as a linear combination of one elec-
tron atomic functions or atomic orbitals (AO’s).

ϕi =
N∑

µ=1

CµiXµ (43)
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Cµi =⇒ MO coefficients Xµ =⇒ atomic basis functions.

Obtain coefficients by minimizing the energy via Variational Theorem.
Variational Theorem is Expectation value of the energy of a trial wave-
function is always greater than or equal to the true energy[39].

Ee = ⟨ψe|Ĥe|ψe⟩ ≥ ε0 (44)

Increasing N =⇒ Higher quality of wave-function =⇒ Higher computational
cost

2.8.1 Major problems of HF method

1) HF equation can only be solved directly only in special cases such as
spherically symmetric coordinates and homogeneous electron gas.
2) In HF method the gap between the addition and removal of energies
electrons greatly overestimated because of neglecting relaxation of orbitals
and other effects of correlation.

2.9 Post Hartree-Fock Methods

Methods that improve the Hartree-Fock results by accounting for the correla-
tion energy are known as Post Hartree-Fock methods. The starting point for
most Post HF methods is the Slater Determinant obtain from Hartree-Fock
Methods[39].
Configuration Interaction (CI) methods- Express the wave-function as
a linear combination of Slater Determinants with the coefficients obtained
variationally

|ψ⟩ =
∑
i

Ci|ψi⟩ (45)

Many Body Perturbation Theory- Treat the HF determinant as the
zeroth order solution with the correlation energy as a perturbation to the
HF equation.

Ĥ = Ĥ0 + λĤ ′ (46)

εi = E
(0)
i + λE

(1)
i + λ2E

(2)
i + ... (47)

|ψi⟩ = |ψ(0)
i ⟩+ λ|ψ(1)

i ⟩+ λ2|ψ(2)
i ⟩... (48)

Coupled Cluster Theory-The wave-function is written as an exponential
ansatz

|ψ⟩ = eT̂ |ψ⟩0 (49)
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where |ψ⟩0 is a Slater determinant obtained from HF calculations and T̂ is an
excitation operator which when acting on |ψ⟩0 produces a linear combination
of excited Slater determinants.

2.10 Density Functional Theory(DFT)

Density functional Theory by Hohenberg, 1964 and Kohn, 1965, together
with the Generalized Gradient Approximation[44] have been widely used to
study the structural and electronic properties of solids. However, the study
of FeO and transition metal monoxides (TMMO) MO (M=Mn, Co, Fe, Ni)
within the DFT-GGA methods is a special challenge. For these systems,
LDA and GGA introduce errors in the self interaction terms of the strongly
correlated electrons, which result in a de-localization of the electrons and a
reduction of band gaps in the case of MnO and NiO. As it will be seen in
this work, FeO and CoO are described as metallic compounds in the GGA
picture[8]. In this context, the LDA+U[43] method becomes a candidate
as a first approximation to the solution of the problem. In this method,
the strongly correlated electrons are separated from the DFT picture and
treated within a Hartree-Fock-like method by introducing parameter U for
the coulombian interaction and J for the electronic exchange. In an origi-
nal work by Anisimov[19] it is pointed out that spin-orbit coupling (SOC)
should be taken into account to completely break the degeneracy of the d
orbitals at the Fermi level. More recently, in works, Hybrid functional have
been shown to reproduce electronic properties more accurately on FeO and
TMMO in general[8]. However, in this work we reproduce experimental re-
sults for band gaps using the picture of GGA+U.

Density functional theory (DFT): is a computational quantum me-
chanical modeling method which is widely applied in all areas of Physics and
chemistry, wherever properties of systems need to be calculated. Using this
theory, a many electron system can be determined by using functional i.e
functions of another function, which in this case is the spatially dependent
electron density. It provides a framework to obtain the total energy, total
minimum energy, cutoff energy, k-points, crystal structural properties and
etc. The DFT has its roots in Thomas-Fermi model for the electron structure
of materials. It was first put on a firm theoretical footing by Walter-Kohn &
Pierre Hohenberg in the framework of the two Hohenberg-Kohn theorems.

E[n] = T [n] + U [n] +
∫
V (r)n(r)δ3r (50)

Where, n is the charge density, T is the kinetic energy, V is the poten-
tial energy from the external field ( typically due to positively charged nuclei
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of crystal ), U is the electron-electron interaction energy and r is the position.

The formulation is applied to any system of interacting particles in an
external potential Vext(r). As mentioned above, DFT follows different ap-
proaches to attain its central target. Some of theories or approaches were
encountered with some drawbacks. One of these is the Thomas-Fermi theory,
which is the poor approximation of kinetic energy functional. DFT in prin-
ciple, is an ab-initio method that it does not use any experimental results
on chemical bonding. It works with the electron density only. There are
significant advantages to a computational theory based on electron densities.
The first is in relation to efficiency; the electron density depends on the three
spatial variables in contrast to the 4N variables that wave functions depends
on (three spatial and one spin per electron). Therefore large system can be
theoretically modeled .In addition, electron correlation is conceptually eas-
ier to include in DFT. It has achieved a certain status as a standard first
method. This the first principle calculations have gained great success in
studying the equilibrium properties of matter, though there are still many
challenges to DFT. One of the big issues is how to solve the problems when
encountering with electronic degeneracy. Such an issue usually does not pose
a problem to the equilibrium conditions. It is well known that electronic de-
generacy cannot exist in the ground state of a nonlinear atomic geometry[40].

In DFT we only need to find the charge distribution throughout our sys-
tem. We can describe only single electron moving in a crystal mean field
of all ions and other electrons. In this way we can calculate solids up to a
few thousand atoms.DFT is a formally exact representation of the N elec-
trons Schrodinger equation. The extent to which DFT has contributed to
the chemical, physical and biological sciences is reflected by the 1998 Nobel
prize in chemistry, which was awarded to Walter Kohn for the development of
DFT, along with John Pople for the development of quantum chemistry. The
major problem in DFT is that the exact functional for exchange and correla-
tion are not known, except for the free electron gas. However approximations
exist which permit the calculation of certain physical quantities quite accu-
rately. In physics the most widely used approximation is the local density
approximation (LDA), where the functional depends only on the density at
coordinate where the functional is evaluated [15].
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2.10.1 The Hohenberg-Kohn theorem

The foundation of the DFT method is the Hohenberg-kohn theorem, which
states that for each given electronic density n(r), there is one and only one
corresponding potential. All properties of the many body system are deter-
mined by ground state density. The H-K theorem implies that the ground-
state for any system can be determined by varying the charge density until
the global minimum in the energy functional is found[40].

First theorem of Hohenberg-Kohn
The ground state energy of many body system is a unique functional of

the particle density. In principle all properties of the ground state can be
expressed as functional of the ground state spin density matrix n0. Therefore,
the ground state wave function ψ (which can be determined by the density
function theory) minimizing the energy functional [40].

E[ψ] = ⟨ψ|Ĥ|ψ⟩ (51)

Using ψ0[n0] one can determine all properties by calculating;

⟨ô⟩[n0] = ⟨ψ0[n0]|ô|ψ0[n0]⟩ (52)

Where, ô is an arbitrary operator.

Second theorem of Hohenberg- kohn
A universal functional for the energy E[n] interms of the density n(r)

can be defined, valid for any external potential Vext(r). For any particular
Vext(r), the exact ground state energy of the system is the global minimum
value of this functional, and the density that minimize the functional is the
exact ground state density n0(r) [15]. The total energy can be written as,

E[n] = T [n] + VNe[n] + Vee[n] = FHK [n] + VNe[n] (53)

Where, FHK [n] = T [n] + Vee[n], which is universal functional.

2.11 The kohn-sham theory

Kohn and Sham (KS) proposed to put wave mechanics in to the kinetic energy
functional, but retain the density variable n(r) elsewhere. Their theory was
tightly linked to HF Slater approximation of many body fermions theory. The
weakest part of the Thomas Fermi theory was the treatment of the kinetic
energy functional in this theory. Kohn-sham considered the exchange and
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correlation energies and supposed to calculate the exact kinetic energy of a
non interacting reference system with the same density as the real interacting
system[15].

EKS[ψ1, ...,ψn] =
∑N

a
h̄2

2m

∫
d3r∇ψ∗

a · ∇ψa +
1
2

∫
d3r e2

|r−r,|n(r)n(r
′)+

Exc[n] +
∑

a

∫
d3rVext(r)|ψa|2

(54)

Which is used together with the definition,

n(r) =
N∑
a

|ψa(r)|2 (55)

Accurate values of the exchange and correlation energies obtained for
chemically interacting systems are essential for analysis of the effect of elec-
tron correlation with in Kohn-sham (KS) theory. Two of the earliest density
functional are the local density approximation (LDA) and generalized gradi-
ent approximation (GGA)[15].

2.12 The exchange-correlation energy

The exchange-correlation energy Exc of a many electron system is the key
quantity of DFT. In the context of Kohn-Sham theory, Exc is defined as
a functional of the electron density n. In Kohn-Sham expression the total
electronic energy E[n] is given by;

E[n] = TS[n] + V [n] +WH [n] + Exc (56)

Where TS-is the kinetic energy of a non-interacting particle system with den-
sity n, V is the energy of electron-nuclear attraction, WH is the coulomb or
Hartree energy and EXC is the exchange-correlation energy. An accurate
values of the exchange and correlation energies obtained for chemically in-
teracting systems are essential for analysis of the electron correlation within
Kohn-Sham theory and in order to test and calibrate various DFT approx-
imations (Local Density Approximation (LDA) and Generalized Gradient
Approximation (GGA))[15].

2.12.1 The Local Density Approximation (LDA)

The first family of exchange correlation functional is the LDA functional
[15]. The idea of this functional is the first look at the case of a homoge-
neous electron gas. In such a system, one considers the electron moving in
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uniform external potential. In DFT, the electron density rather than the
wave function is the basic variable.

ELDA
xc [n] =

∫
n(r)Exc[n(r)]dr⃗ (57)

In LDA, there is no known formula to calculate the total energy of many
electrons moving in an external potential using the density. Hohenberg and
Kohn proved that there exist a universal functional of the density called, G[ρ]
such that:

E[nr] =
∫
V (r)nd3r +

1

2

∫ nrn
′
r

|r − r′|
d3rd3r′ +G[n] (58)

Where the first term on the right hand side is the energy due to external
potential while the second term is the classical coulomb energy of the electron
system. The main deficiency of the LDA was the strong over binding with
bond energies in error by about 1 ev. On the one hand this renders LDA
useless for most applications in condensed matter physics. On other hand,
the problem was hardly visible in solid state physics where bonds are rarely
broken, rearranged so that the errors canceled.

2.12.2 The Generalized Gradient Approximation (GGA)

This functional (GGA) depends on the local electron density as the spatial
variation of the electron density that is represented by density gradient. The
idea behind this functional was to improve the approximation of LDA by
considering not only the electron density, but also the local gradient of that
density [15]. The GGA functional can be written as;

EGGA
xc [n] =

∫
n(r)Exc[n(r)∇n]dr⃗ (59)

The EGGA
xc [n] is the exchange correlation energy per particle of an electron

gas. The GGA gives better total energies. When a bond between two atoms
is broken, the surface is increased. In GGA, this bond-breaking process is
more favorable than in LDA and hence bond is weakened. Thus the GGA
cures the over binding error of the LDA. These gradient corrections greatly
improved the bond energies and made density functional theory useful also
for chemists. The most widely distributed GGA functional is the Perdew
Burke-Ernzerhof (PBE) functional [15].
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2.13 Plane wave basis sets and Pseudo potentials

2.13.1 Plane wave basis set

In calculations of solid states or condensed matter, the DFT will be applied
with plane wave basis sets. When dealing with a crystal which has atoms
periodically arranged, the electrons are in a periodic potential U(r), where
U(r + R) = U(r) and R is the Bravais lattice. As the Bloch theorem states
below that, a discrete plane- wave basis sets are used to expand the electronic
wave function at each K-points. In principle, an infinite plane wave basis sets
is required to expand the electronic wave function. However, the coefficients
Ci, K + G for the plane waves with small kinetic energy, h̄

2m
|K + G|2 are

typically more important than those with large kinetic energy. Thus, plane
-wave basis sets can be truncated to include only plane wave that have kinetic
energy less than some particular cut-off energy [16].

2.13.2 The pseudo-potential

Pseudo potentials have been introduced to avoid describing the core elements
explicitly and to avoid the rapid oscillation of the wave function near the nu-
cleus, which normally require either complicated or large base sets. Due to
this, the fundamental idea of pseudo-potential is the replacement of one prob-
lem with another. Its primary application in electronic structure is to replace
the strong coulomb potential of the nucleus and the effects of tightly bound
core electrons by an effective ionic potential acting on the valence electron
[16]. The pseudo potential approximation is motivated by the fact that the
behavior of valence electrons in the bonding region primarily determines the
electronic structure and the structural properties of many materials.

The potential inside some core radius rc is replaced by a pseudo-potential
describing the nucleus and core radius. Outside rc the wave functions for
all-electron (ψAE) and wave functions for pseudo-potentials (ψpseudo) are the
same and much smaller realistic basis sets can be used.

A plane wave cutoff, which is the highest kinetic energy of all basis func-
tions and specifies the number of basis functions, specifies the size of the
basis group. The basis set for convergence can be managed systematically
by growing the cutoff on the plane wave.[16]

Ecut =
h̄2

2m
|Gmax|2 (60)
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Figure 1: Approximations of Pseudo-potentials

2.14 Bloch theorem

A Bloch function is the generalization of a plane wave for an electron in peri-
odic potential. Bloch- theorem states that in a periodic solid each electronic
wave function can be written as the product of cell periodic and wave like
part.

ψk(r⃗) = eiG·r⃗Uk(r⃗) (61)

Where, UK(r⃗) is the periodic potential in space with the same periodicity as
the supper cell. That is;

Uk(r⃗ + n1a⃗1 + n2a⃗2 + n3a⃗3) = Uk(r⃗) (62)

for any integers n1, n2 & n3
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2.15 The DFT+U Approach

The present implementation of DFT+U stems from the early contributions
by Anisimov and others,[18-22] who proposed to correct the failures of the
LDA functional in dealing with the strongly localized d or f electrons of
transition metal ions. An on-site correction was thus constructed to account
for strong electronic correlations poorly described within the local-density or
generalized-gradient approximations and formulated as follows:

EDFT+U [n(r)] = EDFT [n(r)]+EU [n
Iσ
mm′ ] = EDFT [n(r)]+EHUB[n

Iσ
mm′ ]−EDC [n

Iσ]
(63)

where n(r) is the electronic density, nIσ
mm′ are generalized atomic orbital

occupations with spin σ associated to the I atom, and nIσ is the sum of
the occupations corresponding to all eigen-states,

∑
m n

Iσ
mm′ . EDFT [n(r)] is

the standard LDA or GGA energy functional, and EHUB[n
Iσ
mm′ ] represents

the ”correct” on-site correlation energy. Since EDFT [n(r)] already contains
an approximate correlation contribution, a term intended to model such a
contribution, EDC [n

Iσ], must be subtracted to avoid double counting.

In this work, we resort to the rotationally invariant formulation of DFT+U
introduced by Liechtenstein et al.[18] and later simplified by Dudarev and
his co-workers[18], in which the non-sphericity of the electronic interactions
and the differences among the interactions in like-spin and unlike-spin chan-
nels are neglected. With these assumptions, the correction to the energy
functional can be written

EU [n
Iσ
mm′ ] =

U

2

∑
I

∑
m,σ

[nIσ
mm −

∑
m,

nIσ
mm′ · nIσ

m′m] =
U

2

∑
Iσ

Tr[nIσ(1− nIσ)] (64)

where U is the Hubbard parameter describing on-site correlations. In
principle, different definitions for the occupation matrix are possible, which
in turn will determine different values for U. In this case we define

nIσ
mm, =

∑
v

fv⟨ψσ
v |ϕI

m⟩⟨ϕI
m, |ψσ

v ⟩ (65)

with fv being the weight of the electronic state v, ϕI
m the valence atomic

orbital |lm⟩ of atom I, and ψσ
v the one-electron wave function corresponding

to the state v with spin σ. The diagonalization of the occupation matrices
leads to the following expression for the energy correction:

EU [n
Iσ
mm, ] =

U

2

∑
I,σ

∑
i

λIσi (1− λIσi ) (66)
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Equation above clearly reflects the nature of the correction, which imposes
a penalty (mediated by U) for fractional occupations, thus favoring either
fully occupied or empty orbitals (λ ≈ 1 and λ ≈ 0, respectively). We note
that, under this definition, U corresponds to the difference U-J, as utilized
by Anisimov and other researchers.[20-22] For example, the adoption of U
= 4 eV in the present calculations is comparable to a U value of 5eV in
combination with a J value of 1 eV in the work of Rollmann.[23] Whereas
in recent applications U is considered a fitting parameter,[23,24] here we
obtain it from the spurious curvature of the DFT energy as a function of
the occupations. As shown by Cococcioni and de Gironcoli,[25] the value of
U can be estimated as the difference between the screened and bare second
derivative of the energy with respect to the occupations:

U =
∂2EDFT

∂(nI)2
− ∂2Eo

DFT

∂(nI)2
(67)

In particular, we are interested in the self-consistent U, which we will call Usc,
originating from the curvature of the DFT + U ground state. To compute
Usc, a few linear-response calculations must be performed at a finite Uin

value, each one yielding a corresponding Uout value. It can be shown that
there is a linear dependence between Uin and Uout, from which Usc can be
extrapolated[26]:

Uout =
∂2Equad

∂(nI)2
= Usc −

Uin

m
(68)

Equad groups all electronic terms within the DFT + U functional that have
quadratic dependence on the occupations, whereas m can be interpreted as an
effective degeneracy of the orbitals whose population is perturbed. This pro-
cedure, which allowed us to attain an improved description of the multi-plet
splittings and bonding is the one adopted here to calculate a self-consistent
U parameter. Another criterion has also been explored, requesting that a
linear-response calculation at a finite U value returns this same value of U at
the output, for example, Uin = Uout. The parameter fulfilling this criterion
will be hereafter denoted Usc. This second criterion is not as appealing as
the first one, since Usc seems to be the “right definition” for self consistency.

2.15.1 Hubbard model

According to the conventional band theories, strongly correlated materials
are predicted to be conductive, while they show insulating behavior when ex-
perimentally measured. This serious flaw of the band theory was pointed out
by Sir Nevil Mott, who emphasized that inter-electron forces cannot be ne-
glected, which lead to the existence of the band-gap in these falsely predicted
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conductors (Mott insulators) [27]. In these “metal-insulators,” the band-gap
exists between bands of like character i.e., between sub-orbitals of the same
orbitals, such as 3d character, which originates from crystal field splitting or
Hund’s rule. The insulating character of the ground state stems from the
strong Coulomb repulsion between electrons that forces them to localize in
atomic like orbitals (Mott localization). This Coulomb potential, responsible
for localization, is described by the term “U,” and when electrons are strongly
localized, they cannot move freely between atoms and rather jump from one
atom to another by a “hopping” mechanism between neighbor atoms, with
an amplitude t that is proportional to the dispersion (the bandwidth) of the
valence electronic states[28].

Since the problem is rooted down to the band model of the systems, al-
ternative models have been formulated to describe the correlated systems.
One of the simplest models is the “Hubbard” model [36,37]. The Hubbard
model is able to include the so-called “on-site repulsion,” which stems from
the Coulomb repulsion between electrons at the same atomic orbitals, and
can therefore explain the transition between the conducting and insulating
behavior of these systems. Based on this model, new Hamiltonian can be
formulated with an additive Hubbard term that explicitly describes elec-
tronic interactions. The additive Hubbard Hamiltonian can be written in its
simplest form as follows [28]:

HHub = t
∑
⟨i,j⟩σ

(c†i,σcj,σ + h · c) + U
∑
i

ni↑ni↓ (69)

As predicted, the Hubbard Hamiltonian should be dependent on the two
terms t and U, with ⟨i, j⟩ denoting nearest-neighbor atomic sites and c†i , cj,
and ni are electronic creation, annihilation, and number operators for elec-
trons of spin on site i, respectively. The hopping amplitude t is proportional
to the bandwidth (dispersion) of the valence electrons, while the on-site
Coulomb repulsion term U is proportional to the product of the occupa-
tion numbers of atomic states on the same site [28]. The system’s insulating
character develops when electrons do not have sufficient energy to overcome
the repulsion potential of other electrons on neighbor sites, i.e., when t << U .
The ability of the DFT scheme to predict electronic properties is fairly ac-
curate when t >> U , while for large U values, DFT significantly fails the
HF method, which describes the electronic ground state with a variation-
ally optimized single determinant, that cannot capture the physics of Mott
insulators.
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2.15.2 Hubbard correction

DFT +U is applicable for all open shell orbitals, such as d and f orbitals for
transition metal elements with localized orbitals existing in extended states,
as in the case of many strongly correlated materials and perovskites, where
localized 3d or 4f orbitals are embedded in elongated s-p states. A compli-
cated many-electron problem is made of electrons living in these localized
orbitals, where they experience strong correlations among each other and
with a subtle coupling with the extended states. Isolating a few degrees of
freedom relevant to the correlation is the idea in the Hubbard model, where
screened or re-normalized Coulomb interaction (U) is kept among the lo-
calized orbitals’ electrons [28]. In other word, the localized orbitals in the
band-gap, which are present as localized states (d- and f-states), are too
close to the Fermi energy. From that aspect, the U value should be used to
push theses states away from the Fermi level, such as that provided by the
GGA + U theory, which adds to the Hamiltonian a term that increases the
total energy preventing the unwanted de-localization of the d- or f-electrons,
when two d- or f-electrons are located on the same cation [28]. It is worth
mentioning that using too large values of U will over-localize the states and
lead to an unphysical flattening of the appropriate bands, which unlike fit-
ting to many other properties, will make the fit worse. Also, the increase in
the U value can cause an overestimation of the lattice constants as well as a
wrong estimation of the ground state energy due to the electronic interaction
error. Therefore, applying Hubbard correction to solve the band-gap prob-
lem is necessary for predicting the properties of transition metal oxides[28].
The value U=3.7 eV is the most suitable and adequate value for CoO and
NiO[42].

2.15.3 Optimizing the U value

From the literature of this chapter, one can intuitively conclude that correc-
tive functional LDA+U is particularly dependent on the numerical value of
the effective potential Ueff , which is generally referred to in literature as U for
simplicity. However, the U value is not known and practically is often tuned
semi-empirically to make a good agreement with experimental or higher level
computational results. However, the semi-empirical way of evaluating the U
parameter fails to capture its dependence on the volume, structure, or the
magnetic phase of the crystal, and also does not permit the capturing of
changes in the on-site electronic interaction under changing physical con-
ditions, such as chemical reactions. In order to get full advantage of this
method, different procedures have been addressed to determine the Hubbard
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U from first principles [28]. In these procedures, the U parameter can gen-
erally be calculated using a self-consistent and basis set in an independent
way. These different ab initio approaches for calculating U have been applied
to different material systems, where the U value is calculated for individual
atoms. For each atom, the U value is found to be dependent on the material
specific parameters, including its position in the lattice and the structural
and magnetic properties of the crystal, and also dependent on the localized
basis set employed to describe the on-site occupation in the Hubbard func-
tional. Therefore, the value of effective interactions should be re-computed
for each type of material and each type of LDA+U implementation (e.g.,
based on augmented plane waves, Gaussian functions, etc.). Most programs
these days use the method presented by Cococcioni[25]; Where the values of
U can be determined through a linear response method [28], in which the
response of the occupation of localized states to a small perturbation of the
local potential is calculated. The U is self-consistently determined, which
is fully consistent with the definition of the DFT+U Hamiltonian, making
this approach for the potential calculations fully ab initio. The value of U
implemented by Cococcioni, is Ueff = U-J, where J is indirectly assumed
to be zero in order to obtain a simplified expression[28]. Nonetheless, J can
add some additional flexibility to the DFT+U calculations, but it may yield
surprising results including reversing the trends previously obtained in the
implemented DFT+U calculations [28].
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3 Research Methodology

3.1 Materials

Soft-wares like Quantum ESPRESSO, Fortran programming, X-cry-S-den,
X-m-grace, Gnu-plot and Latex(Tex-studio) and computers are essential in-
struments, which will be used to accomplish this study. The study is purely
theoretical. The books, articles, journals, published thesis and dissertations
carried out based on the thesis title are to be sources of information.

3.2 Computational Details

QUANTUM ESPRESSO is an open source implementation made available
under the GNU General Public License of the DFT techniques and related
codes. The central component of QE is the PWscf module, which carries out
the self-consistent calculations that require most of the rest of QE to work.
Calculations were carried out on a Linux 64-bit operating system. The calcu-
lations were performed using QUANTUM ESPRESSO. Such calculations are
Total energy Vs Ecutwfc convergence, Total energy Vs Ecutrho convergence,
Total energy Vs K-mesh convergence, Total energy Vs Lattice constant con-
vergence, band structure and state density.

The physical (structural) and Electronic properties of CoO will be calcu-
lated using Quantum-Espresso code in the frame work of the density func-
tional theory and Hubbard Correction. The DFT+U calculations will be
performed with the generalized gradient approximations and Hubbard cor-
rection of Perdew-Burke-Ernzerhof (GGA+ U - PBE + U) exchange corre-
lation functional, Vanderbilt ultra-soft pseudo-potential and the plane-wave
basis sets will be implemented in the Quantum-Espresso program package.
This Quantum-Espresso program package is an integrated module of com-
puter codes for electronic and structural calculations and materials modeling
depending on the frame work of DFT + U , plane-wave basis sets (PW) and
pseudo-potentials to represent the electron-ion interaction[40].
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Flow Chart for Kohn-Sham calculations:-Schematic representation
of the self-consistent loop for solution of the Kohn-Sham equations. In gen-
eral one may iterate two such loops simultaneously for the two spins, with
the potential for each spin depending upon the density of both spins.

Figure 2: A general self-consistent scheme to solve the Kohn-Sham equation
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3.3 Data Collections

Total minimum energy convergence test with respect to cut-off energy, K-
point sampling and lattice constants for CoO calculations data were collected
as below respectively. The first point of delta (△)where the difference of two
consecutive data become ≤ 10−3 or ≤ 10−4 were used as a point of starting
for convergence.

Table 1: Data collected for convergence test of total energy Vs ecutwfc for
which K-points sampling used is 3× 3× 3
ecutwfc (Ry) Etot(Ry) ∆ Selected point
10 -594.98202497 -78.5818546
20 -673.56387957 -4.76008413
30 -678.32396370 -0.19318305
40 -678.51714675 -0.00721805

√

50 -678.52436480 -0.00170385
60 -678.52606865 -0.00209905
70 -678.52816770 -0.00167912
80 -678.52984682 -0.00027523
90 -678.53012205 -0.00011188
100 -678.53023393 -0.00046644
110 -678.53070037 -0.00028752
120 -678.53098789 -0.00007880
130 -678.53106669 -0.00026431
140 -678.53133100 -0.00062141
150 -678.53195241 0.00000000

Table 2: Data collected for convergence test of total energy Vs K-Points
sampling for which ecutwfc = 40 Ry, ecutrho = 320 Ry
k-Points Etot(Ry) ∆ Selected point
1× 1× 1 -678.06715359 -0.46099535
3× 3× 3 -678.52814894 -0.00376409
5× 5× 5 -678.53191303 -0.00001713

√

7× 7× 7 -678.53193016 0.00010828
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k-Points Etot(Ry) ∆ Selected point
9× 9× 9 -678.53182188 0.00003151
11× 11× 11 -678.53179037 0.00000916
13× 13× 13 -678.53178121 0.00000137
15× 15× 15 -678.53177984 -0.00000200
17× 17× 17 -678.53178184 -0.00000071
19× 19× 19 -678.53178255 0.00000000

Table 3: Data collected for convergence test of total energy Vs Lattice pa-
rameter (alat) for which K-points sampling used is 5 × 5 × 5, ecutwfc = 40
Ry and ecutrho = 320 Ry
alat (a.m.u) Etot(Ry) ∆ Selected point
7.6 -678.48301323 -0.02230699
7.7 -678.50532022 -0.01439789
7.8 -678.51971811 -0.00930362
7.9 -678.52902173 -0.00393582
8.0 -678.53295755 0.00082304

√

8.1 -678.53213451 0.00501667
8.2 -678.52711784 0.00871173
8.3 -678.51840611 0.01193863
8.4 -678.50646748 0.01478669
8.5 -678.49168079 0.00000000

Table 1, 2 and 3 are taken with a precision of 10−3, 10−5 and 10−4 respec-
tively.
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4 Results and Discussions

4.1 Introduction

In this chapter, the structural and electronic properties of Cobalt monoxide
(CoO) is calculated within the frame work of the density functional theory
with Hubbard correction. The important aspects studied in this research are
the total minimum energy convergence with K-point sampling and kinetic
energy cut-off wave functions (ecutwfc), lattice constant, band structure and
density of states. Results are mainly presented in figures. The first results
are the total minimum energy per cell with respect to ecutwfc as well as K-
points sampling. Then comes the results for the equilibrium lattice constants,
band structure and density of states. Graphs were plotted to obtain the
optimized parameters for CoO structure with in the Perdew-Burke-Ernzerhof
(PBE+U) exchange-correlation functional, Vanderbilt (ultra soft) pseudo-
potentials and the plane wave basis set.
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4.2 Geometrical Structure of CoO

CoO (cobalt monoxide) with rock-salt structure (NaCl structure) consists of
two interpenetrating fcc sub-lattices of Co2+ and O2−. These two sub-lattices
are shifted along the body diagonal by half of its length. Thus each ion has
six of the other ions as its nearest neighbors as shown in Figure below. Each
cubic unit cell (not the primitive unit cell) has four Co2+ and four O2− ions.
The lattice constant of CoO is 4.24 Å. Each ion has 6 of the other kind
of ions in a distance of (1

2
)a0 = 2.12 Å as its nearest neighbors, 12 ions of

the same kind in a distance (
√
2/2)a0 as its second nearest neighbors and

again 8 ions of the other kind in a distance of (
√
3/2)a0 as its third nearest

neighbors.

Figure 3: Unit cell of CoO, which consists of two O and Co fcc sub-lattice
lattices
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4.3 Convergence test of total minimum energy of CoO
with respect to energy cutoff

The total minimum energy of CoO is calculated as a function of energy cutoff
(ecutwfc) (i.e, The kinetic energy cut off convergence is checked by changing
the cut off energy). In this case the input code used were 3× 3× 3 K-points
mesh and lattice constant of 8.0 a.m.u or 4.23 Å. The calculation was done
using different ecutwfc values, that range from (10-150) Ry. An increment
of energy cutoff for wave function is made until the convergence is achieved
(i.e., the place where the energy becomes nearly constant). To take both
Ecutwfc and Ecutrho in SCF calculations, ecutrho = 8× ecutwfc is used. As
we can see from the graph below, the total minimum energy start to converge
at 40 Ry plane wave cutoff energy, 320 Ry ecutrho and the total ground state
energy had its minimum at -678.52 Ry. Moreover, the total minimum energy
is monotonically decreasing with increasing energy cutoffs for wave function.
Finally, the total energy against kinetic energy cut-off were plotted in graph
below.

Figure 4: Total minimum energy versus Kinetic energy cut-off
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4.4 Convergence test of total minimum energy of CoO
with respect to K-point-sampling

For performing convergence test for K-points, SCF calculations were done
using different 10 k-points values that range from (1×1×1)-to-(19×19×19)
K-points. The other variables such as lattice constant, energy cutoff, are kept
fixed. The total minimum energy is calculated as a function of K- points
sampling size using PWSCF code. The total energy versus K-points sample
size is shown in graph below. It can be observed that the total minimum
energy of CoO converged at (5×5×5) K-points sample and the total ground
state energy has its minimum at -678.53 Ry. Finally, the total energy against
K-points mesh were plotted in graph below.

Figure 5: Total minimum energy versus K-points sampling
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4.5 Lattice parameter convergence

The converged values of K-Point (5×5×5), Kinetic energy cut off (ecutwfc =
40 Ry) and charge density (ecutrho = 320 Ry) is used to perform convergence
test for lattice parameter. Lattice constant ranging from (7.6 − 8.5) Bohr
with difference of 0.1 is taken and the lattice constant convergence reached
at 8.011 Bohr (4.24Å) which is the value for which we get minimum total
energy and this value is used for further calculations. Finally, the total energy
plotted against that lattice constant (4.24Å) shown in graph below.

Table 4: Calculated and experimental values of Lattice constant
This work (Å) Theory (Å) Experiments (Å)
4.24 4.260[13]

4.2615[49] 4.27[50]
4.29[45]

Figure 6: Total Energy versus lattice parameter
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4.6 Band Structure Calculations

Table 5: Calculated values of Band-gap for which K-points = 5 that contain
201 points
Sources Methods Band-gap/eV
This work DFT+U (PBE+U) 2.45
Theoretical values DFT+U (PBE+U) 2.4[6]

DFT+U (PBE+U) 2.5[33]
DFT+U (PBE+U) 2.3[42]
DFT (PBE) 1.55[45]

Experiments X-ray K-emission spectroscopy 2.6[31]

The band structure is a good way to visualize the wave vector-dependence
of the energy states, the band-gap, and the possible electronic transitions.
As shown in figure below, the maximum of valence band at X coincides with
minimum of conduction band at X in left part of the plot shown by arrow.
Therefore, CoO is a direct band gap with band gap shown in the table be-
low. The minimum of the conduction band and the maximum of the valence
band occur at the same momentum. The energy E of a particle is always
associated with a wave-vector k (or momentum), which implies that, for any
transition between bands, both energy and momentum must be conserved.
When an electron absorbs enough energy to exceed the energy gap Eg, the
electron can jump from the valence band into the conduction band. The
source of the energy could be photons, phonon, or electric field.

At T = 0K, occupancy is “digital”: No occupation of states above EF and
complete occupation of states below EF and at T > 0K, occupation proba-
bility is reduced with increasing energy. The crystal behaves as an insulator
because the allowed energy bands are all empty, for then no electrons can
move in an electric field. At higher temperatures, higher energy states can
be occupied, leaving more lower energy states unoccupied[35]. Know that
the value of Hubbard parameter U=3.7 eV is the most suitable one in order
to study electronic and structural properties of CoO[42]. As we saw from
the table 5, we calculated Band-gap of CoO for Hubbard parameter (U =
3.7 eV) and we get 2.45 eV. Experimentally studied band-gap of CoO us-
ing synchrotron-excited oxygen X-ray K-emission spectroscopy, and founded
value of 2.60 eV[31]. Our calculated result (2.45 eV) is close to experimental
value (2.60 eV) with 5.8% error. Band-gap value of DFT shows About 37%
under-estimation when we compare with our calculated DFT+U value.
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Figure 7: Band structure plot (Fermi level is indicated at 0 eV). PBE + U
calculation employed.

4.7 Density of States

The band structure is a good way to visualize the wave vector-dependence
of the energy states, the band-gap, and the possible electronic transitions.
The actual transition probability depends on how many states are available
in both the initial and final energies. The band structure is not a reliable
guide here, since it only tells about the bands along high symmetry direc-
tions. What we need is the full density of states across the whole Brillouin
zone, not just the special directions. We have to sample the Brillouin zone
evenly, just as we do for the calculation of the ground state. The density
of states (DOS) is essentially the number of different states at a particular
energy level that electrons are allowed to occupy, i.e. the number of electron
states per unit volume per unit energy.

The result of the number of states in a band is useful for predicting the
conduction properties. If the Fermi level lies in an occupied band gap be-
tween the highest occupied state and the lowest empty state, the material
will be an insulator or semiconductor. The main issue we can see from calcu-
lating the DOS of CoO is the investigation of electronic transport properties
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of CoO. The calculated energy gap of CoO is between the occupied and un-
occupied energy levels is 2.35 eV. CoO show clear insulating properties and
antiferromagnetic (AFM) ordering below the Neel temperature TN .

Figure 8: Density of states plot (Fermi level is indicated at 0 eV). PBE + U
calculation employed.

The vertical line at ±(5.3,6) eV, ±(3.5,6.2) eV, ±(1.4,6.5) eV indicates
highest occupied level from the valence band, shows the highest density of
states exist there. The vertical line at ±(3.5,6.7) eV indicates highest oc-
cupied level from the Conduction band, shows the highest density of states
exist there. The density of states becomes zero between -0.2 and 2.15 eV.
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4.8 Projected density of states (PDOS)

The projected density of states (PDOS) is mainly show the relative contri-
bution of a particular atom/orbital to the total DOS. The PDOS plots also
show which specific states have the highest density of states (DOS) near the
valence band maximum (VBM) and conduction band minimum (CBM) in
semiconductors and insulators. The Projected density of states (PDOS) of
CoO originate from Co-d and O-p states. The valence band, located from
±(-8 - 0) eV and states O-2p is mainly dominant state in top of valence
band. The conduction band, located from (0 - 14) eV and Co-d is mainly a
dominant state in the bottom of conduction band.

The output SCF calculation of spin polarized CoO shows total magneti-
zation = 0.00 Bohr mag/cell which indicates it is Anti-ferromagnetic. The
other evidence is the spin up and spin down DOS is symmetrical. In Anti-
ferromagnetic, some spins go up and some down in opposite direction, that
canceling each other out. Thus magnetization should be zero. From SCF
calculations we get 2.75 magnetic moment/µ and the experimental value is
2.74[42] magnetic moment/µ. Our values have an error of 0.36 %.

Figure 9: Projected density of states (Fermi level is indicated at 0 eV). PBE
+ U calculation employed.
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5 CONCLUSION ANDRECOMMENDATION

5.1 Conclusion

In this thesis, we investigated structural and electronic properties of CoO
using DFT+U. The electronic and structural properties of this material
were investigated within the framework of the density functional theory
with Hubbard corrections (DFT+U) with the Perdew Burke-Ernzerhof and
Hubbard (PBE+U) exchange-correlation functional, Vanderbilt (ultra soft)
pseudo-potentials and the plane wave basis set implemented in the Quantum-
ESPRESSO program package. All calculations have been carried out with
Quantum Espresso package. The total minimum energy calculation is per-
formed as a function of cutoff energy and Monk-horst pack-grid size (K-points
sampling), respectively fixing the other parameters constant. The total en-
ergy convergence test is achieved, at the energy cutoff 40 Ry for the energy
cutoff case and at 5× 5× 5 k-point grid size for the K-point sampling case.
The total minimum energy is -678.52 Ry for the first case and -678.53 Ry
for the second case. The numerical calculation shows that the equilibrium
lattice constant is 4.24 Å. This value is in good agreement with existing ex-
perimental value 4.27 Å with an error of 0.7 %. Band-gap investigation shows
direct band gap of CoO is 2.45 eV. Comparing our calculated band-gap value
with experimental value (2.6 eV) shows about 5.8 % error. This amount er-
ror shows as our value is somewhat in good agreement. Generally, CoO is
Mott-Hubbard insulator under normal pressure. However, it makes an
insulator-metal transition at high pressure.

5.2 Recommendation

In this thesis we investigate the electronic and structural properties of CoO.
From those electronic calculations outstanding results are obtained. But due
to shortage of time, optical properties, checking efficiency and performance
in applications are not performed. So we recommend continuing with those
parameters to fully tell the efficiency theoretically.
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