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A B S T R A C T   

Detail understanding of rainfall-runoff processes is tremendously important for a watershed with variable 
streamflow generation. The streamflow of the Meki River fluctuates seasonally causing flooding on surrounding 
agricultural land. This study adopted Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) to 
model the streamflow and predict flood in the Meki watershed, Rift valley basin. The model was calibrated with 
observed streamflow data from (1987–2004) whereas the consecutive year’s data (2005–2010) was used for 
model validation. The evaluation criteria namely: Nash Sutcliff Efficiency and coefficient of determination were 
preferred to evaluate the model performance. The finding relieved that, the model can perform very well (NSE =
0.83, R2 = 0.91) during Calibration, and (NSE = 0.804, R2 = 0.89) at validation period. Moreover, the predicted 
floods at 2, 10, 25, 50, and 100 years were 133.2, 178.1, 239.7, 313.2, and 346.19 m3/s, respectively in the 
watershed. The novelty of this study lies in evaluating the model results using both statistical parameters (NSE 
and R2) and the Generalized Extreme Value method). The finding of this study is vital to developing flood 
mapping and designing flood mitigation measures in the study area. Further, the developed models can be 
applied to other hydrology with similar hydrological conditions.   

1. Introduction 

Adequate knowledge of runoff within a watershed is vital to planning 
and designing water resources and related projects (Zelelew and 
Melesse, 2018). The actual estimation of runoff volume and peaks are 
also important for planning different interventions in integrated 
watershed management and flood protection projects (Romali et al., 
2018). However, detailed hydrological studies are challenged due to the 
scarcity of data and complexity of hydrological systems. The runoff 
simulation model is one of the hydrological models that can drive the 
watershed rainfall response and forecast flood for water resources 
management (Teng et al., 2017). So, flood simulation is simplified 
through employing model and understanding factors triggering runoff 
(Tassew et al., 2019). However, different models need several input 
parameters that are not easily obtained (Anh, 2018; France and Rumpe, 
2004). In case, it is necessary to select a model with a simple structure, 
minimum input data, and accurate prediction (Beven, 2012). The 
HEC-HMS model is one of the hydrological models that need little input 
data and provide a reliable result (Ramesh, 2017). It is widely used due 

to its ability to simulate floods in short and long-term events as well as 
very simple to use (Sok and Oeurng, 2016). 

Several previous studies indicated the ability of the HEC-HMS model 
in flood simulation. Regarding this, Zelelew and Melesse (2018) stated 
that the results of the model simulation were location-specific. Bitew 
et al. (2019) used HEC-HMS Model to predict flood in the Lake Tana 
Basin in the Case of Gilgel Abay watershed, Ethiopia. From his finding, 
the model can simulate flood. Hirpessa and Hailu (2019) conducted an 
assessment of failure on drainage structures along the Ethiopian national 
railway line of Sebeta-Mieso (a case study of Akaki river crossing 
drainage structure) and they concluded that HEC-HMS modeled design 
discharge appropriately. 

The flood produced will depend on various factors (Morita, 2014). 
These are intensity and duration of rainfall, soil types, Antecedent 
Moisture Condition (AMC), Topography (slope of the watershed) and 
Land ng Use Land Cover (LULC) are the main factors (Subramanya, 
2008). Intense rainfall generates floods beyond the river channel ca-
pacity (Archer and Fowler, 2018). The rainfall pattern varies from sea-
son to season especially in Ethiopia, a prolonged heavy rainfall occurs in 
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the summer season (Jun to September) (Wagesho and Yohannes, 2016; 
Abegaz and Mekoya, 2020; Alhamshry et al., 2020; Harka et al., 2021). 
Intense rainfall in highland areas during the rainy season cause inun-
dation of agricultural land close to river courses (Getahun and Gebre, 
2015). Meki watershed is one of the Rift valley sub-basin which is 
frequently inundated due to prolonged rainfall with high intensity that 
occurs in the summer season (Ademe et al., 2020; Goshime et al., 2021; 
Tadiwos et al., 2020). Therefore, mitigating the impact of floods is 
extremely important to manage flood risk. Flood controlling measures 
are of two types (structural and non-structural) (PATEL and DHOLAKIA, 
2010; Kim et al., 2019). Structural measures are concerned with physical 
control of flood (constructing hydraulic structure) which is uneconom-
ical and time taking whereas non-structural measures are done through 
planning, providing detailed information regarding flood generated at 
different reoccurrence intervals with high accuracy (PATEL and DHO-
LAKIA, 2010; Minea and Zaharia, 2011; Yuniartanti et al., 2019). Flood 
frequency analysis is one of the non-structural measures that can help to 
predicted floods at different reoccurrence intervals (Archer, 1988). 
Consequently, flood frequency analysis is extremely important to take 
appropriate action to flood risk and prevention measures. Therefore, this 
study intended to; a) simulate streamflow by using HEC-HMS model, b) 
predict flood frequency analysis using both HEC-HMS and statically 
probability distribution function, and c) Compare the results of 
HEC-HMS with probability distribution functions and identify the best 
fit probability distribution methods to observed streamflow data for the 
Meki River watershed. The novelty of this study lies in evaluating model 
results using both statistical parameters (NSE and R2) and statistical 
distribution function (the Gumbel Extreme Value) method. 

2. Materials and methods 

2.1. Description of the study area 

The watershed is located in the rift valley basin, Ethiopia. Its river 
originated from Gurage Mountains and ends at Lake Ziway. Geograph-
ically, the study area is bounded within the limits of 70 59′ 32” to 80 27′

23” N latitude and 380 14’ 48” to 380 49” 35” E longitude and covers a 
total area of about 2240 Km2. The watershed lies within altitudes 
ranging from 1631m near Ziway Lake to 3614m along the Western 
Highlands (Guraghe Mountains) above mean sea level. The upstream of 
the watershed is steep and mountainous while the downstream is flat 
with a broad valley (Legesse et al., 2010; Yifru et al., 2021). Its main 
river originated from the mountains area and travels 100 km to reach 
Lake Ziway (Fig. 1). Fig. 1 indicates features (i.e topography, 

hydro-metereological stations, drainage line and geographical location) 
of the study area. The overall methodological flowchart of this study is 
presented in Fig. 2. 

The most common LULC of the study area are forest, woodland, 
grassland, cropland, marshland, bare land, shrubland, and water body. 
Among these, the cropland is the most dominant one in the study area. 
Forests area covered the mountainous part of the watershed while the 
flat and lower elevation areas are covered with cultivated land. The 
dominant soils in the study area are Calcaric fluvisols, Chromic Cam-
bisol, Eutric Cambisol, Eutric Vertisol, and Haplic Luvisol. The study 
area obtained rainfall with high intensity during the summer season 
which extends from June to September. The recorded mean monthly 
rainfall all over the watershed ranges from 25 mm to 210 mm. 

2.2. Datasets and sources 

The vital input data for simulating the rainfall-runoff process are 
classified into hydrological (rainfall), meteorological (streamflow), and 
physiographic (land use/cover, soil type, and digital elevation model. In 
this study, rainfall, streamflow, soil, Land Use Land Cover (LULC), and 
digital elevation model 30*30m resolution data were used. The digital 
elevation model and Soil data were obtained from the Ministry of Water 
Resource, Irrigation, and Electricity, Ethiopia. The LULC data was 
collected from the Mapping Agency of Ethiopia. In the same way, 
rainfall data (1987–2017) of six stations in the study area was obtained 
from the Ethiopian Meteorological Service Agency (Table 1). Table 2 
indicated that the areal rainfall computed by Isohyetal method. 

The input data namely digital elevation model, LULC, percent 
impervious area, and soil were mainly required to set up the HEC-HMS 
model. In calibrating and validating the model, hydrological models 
need a series of observed runoff data (Joo et al., 2014; Tassew et al., 
2019; Onyutha, 2019; Koch et al., 2020; Melǐsová et al., 2020). For this 
purpose, long term (1987–2010) daily runoff data at the outlet of the 
study area and nearby station (Awash River at Hombole and Gedamso 
River) to fill in missed data were taken from the Ethiopian Hydrological 
Agency. Rainfall data was collected for two purposes: computing areal 
rainfall over the watershed (Fig. 3) and developing a hydrological model 
setup. In the watershed, the rainfall pattern was spatially varied, and the 
Isohyetal method is recommended for such a situation (Subramanya, 
2008). Hence, the Isohyetal method was used to compute the average 
rainfall over the watershed. Further, the missed rainfall data was filled 
by the normal ratio method while the missed runoff data were filled 
using a linear regression method. 

2.3. HEC-GeoHMS model 

HEC-GeoHMS extension in ArcGIS was used to delineate the 
boundary of the study area by considering the outlet point of the Meki 
watershed. Further, HEC-GeoHMS generates six sub-watersheds, sixteen 
routing reaches, and necessary hydrologic parameters. To increase the 
model performance, a series of stream segments and sub-watershed 
generated in the HEC-GeoHMS model were merged into six sub- 
watersheds. Additionally, it creates the Background map files, basin 
model files, meteorological model files, and a grid cell parameter which 
is later exported into HEC-HMS. 

2.4. HEC-HMS model 

HEC-HMS model is very popular and widely applied in several hy-
drological studies due to its ability to simulate short and long events 
runoff, ease to operate (Sok and Oeurng, 2016; Tassew et al., 2019; 
Daide et al., 2021). Several model components namely basin model, 
metrological model, control specification, and input data are available 
(Fleming and Brauer, 2016). The precipitation and streamflow data 
were used as input for the meteorological model. In this study, the 
meteorological model methods such as Frequency Storm and Gage Fig. 1. Location of the study area.  
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Fig. 2. Overall framework of methodology.  
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weights were used. The simulation period is controlled by the control 
specifications component. Accordingly, the control specification for this 
simulation was from (Jan 01, 1987–Dec 31, 2017) with an hourly time 
step. It contains components that compute runoff, direct runoff, and base 
flow. The SCS-CN, SCS-UH, monthly constant base flow, and Muskingum 
methods were used. These methods were selected based on the appli-
cability and availability of data (Kamali and Mousavi, 2014; Jin et al., 
2015).  

i) Loss Model 

The loss models normally calculate the runoff volume by computing 
the volume of water lost and reducing it from the rainfall. Although the 
HEC-HMS model has various options for loss modeling, for this study, 
the Soil Conservation Service-Curve Number loss method was selected 
due to its versatility, widely applicable in estimating runoff, requires few 
input data, and provide reliable results (Askar, 2013; Lal et al., 2017; 
Soulis, 2021; Uwizeyimana et al., 2019). The Soil Conservation Service 
Curve Number is estimated using Equation (1) 

Pe =
(P − 0.2S)2

(P + 0.8S)
(1)  

where, Pe is the excess rainfall (mm), P is the precipitation, S is the 
potential maximum retention after r through studies of many small 
agricultural watersheds. The potential maximum retention (S) is a 
function of Curve Number (CN) and is inversely proportional to CN. The 
potential maximum retention is given by equation (2). 

S=
25400

CN
− 254 (2) 

For watersheds with different soil types, weighted CN is necessary 
and computed by equation(3). 

CNw=

∑
(Ai*CNi)

At
(3)  

where, Ai is a sab-basin area, At is the watershed area, CN is the 
weighted sub-basin Curve number. The Curve Number (CN) was already 
generated by HEC-GeoHMS and embedded into the basin model file thus 
the software automatically assigned the curve number value for each 
sub-basin.  

ii) Transform Model 

The models transform the excess precipitation into a direct runoff. In 
this study, the Soil Conservation Service Unit Hydrograph model was 
selected to compute runoff. The input parameter for this method is only 
lag time (Tag) which in turn depends on time of concentration (TC). Lag 
time (TL) and time of concentration (TC) are two parameters that 
determine how quickly a watershed responds to rainfall over its 
watershed (Sultan et al., 2022). Several formulas have been already 
developed to compute time of concentration based on watershed char-
acteristics. Thus, in watersheds largely dominated by channel flow than 
overland flow, it is appropriate to estimate time of concentration using 
Williams, 1922, Kirpich (1940), Johnstone and Cross (1949), Harka 
et al. (2021), Simas and Hawkins (2002), empirical equation. Fang et al. 
(2008) studied Time of concentration estimated using watershed pa-
rameters determined by automated and manual methods applied all the 
above methods to estimate time of concentrations. They noted that the 
Kirpich and Haktanir–Sezen methods are more accurate than other 
methods. However, Kirpich and Haktanir–Sezen methods are effective 
for small watersheds and do not consider the velocity of flow. Moreover, 
numerous studies (McCuen et al., 1984; Sharifi and Hosseini, 2011; 
Seyam and Othman, 2014; Ayalew et al., 2015) stated that all methods 
of estimating Tc provide significant errors. However, the Natural Re-
sources Conservation Service (NRCS,1986) velocity method is the most 
popular and accurate method in determining Tc for both rural and urban 
catchments (McCuen et al., 1984; Fang et al., 2008; Sharifi and Hosseini, 
2011; Perdikaris et al., 2018). Due to the NRCS velocity method relies on 
a solid hydraulic basis to compute flow velocity (Fang et al., 2008) and 
evidencing a close agreement between the mean Tc computed by this 
method and from rainfall and hydrograph data (McCuen et al., 1984); 
more reliable than purely empirical equations (Fang et al., 2008). In 
NRCS method, Tc is the sum of the travel times of flow segments Eqn. 
(5). Later on the initial Tc value computed by NRCS velocity method was 
optimized in the model calibration. Beside this, NRCS (1986) developed 
formula that relates, time to lag and time of concentration as shown in 
equation (4). Mathematically, the equation of NRCS (1986) Velocity 
Method were shown by eqns. (5) and (6). 

TL = 0.6*TC (4)  

Tc = Tsheet + Tshallow + Tchannel (5)  

Tc =
0.0018*L0.6

sheet*n0.6

i0.4*S0.3
w

+
Lshallow

3.6C
̅̅̅̅̅
Sw

√ +
0.0018*Lc*n0.75

i0.25*A0.125*S0.375
c

(6)  

Where TL is the lag time (hour), Tc is a time of concentration (hour) 
computed by equation (5), Where: Lc, = main channel length (km), 

Table 1 
Average annual rainfall of selected stations in Meki river watershed.  

Station Lat (Decimal 
degree) 

Long (Decimal 
degree) 

Altitude 
(m) 

Mean Annual 
Rainfall (mm) 

Buie 8.33 38.55 2020 1013 
Butajira 8.15 38.37 2000 1060 
Ejersa 8.24 38.68 1797 871 
Koshe 8.06 38.51 1878 800 
Meki 8.15 38.82 1662 754 
Tora 7.86 38.41 2001 834  

Table 2 
Areal mean annual precipitation computed by Isohyetal method.  

Isohyetal (mm) Average (mm) Area (km2) Areal rainfall (mm) 

<800 775 150 53.5 
800–850 825 350 128.85 
850–900 875 415 162.04 
900–950 925 290 119.70 
950–1000 975 674 293.24 
1000–1050 1025 327 149.56 
>1050 1050 34 15.93  

Fig. 3. Meki watershed Isohyetal map.  
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Lsheet = length of sheet flow (km), Lshallow = length of shallow 
concentrated flow (km), A = area in km2, and Sc = main channel slope 
and Sw = average basin slope, n = Manning’s roughness coefficient and 
C = constant equal to 4.918 for unpaved and 6.196 for paved areas. LC is 
the longest flow path (m), and SC is the average slope longest flow path.  

iii) Flood routing 

Dispute various flood routing components are available in the HEC- 
HMS model, the Muskingum method was employed for this study due to 
its simplicity and require few input data (Baláž et al., 2011; Lee et al., 
2018). It is a simple approximate method used to calculate the outflow 
hydrograph at the outlet point (O’Sullivan et al., 2012). It needs two 
input parameters such as flood travel time (K) of the flood wave through 
routing reach, and the attenuation flood wave (X). These parameters are 
usually derived through calibration using measured discharge data 
(Birkhead and James, 2002). Subramanya (2008) stated that the 
Muskingum method was computed through Equation (7). 

S= k[xI+(1 − x)Q] (7)  

where K is flood wave traveling time (0 ≤ K ≤ 150), X is a weighting 
factor, I is inflow, Q is outflow, S is storage. 

2.5. Calibration and validation of the model 

The model is calibrated to adjust parameters to match the simulated 
with the observed values (Moriasi et al., 2007). The model calibration 
was done by adjusting parameters like lag time, curve number, initial 
abstraction, flood wave traveling time (Muskingum-k), and weighting 
coefficient of discharge (Muskingum-x) until the simulated result was 
well-matched with the observed one. The process was completed auto-
matically and manually by adjusting the parameters. Further, the model 
is validated to check that the model parameters work outside the flow 
conditions used in calibration (Moriasi et al., 2007). In this study, ¾ 
(75%) of events was used for calibrating model and the remaining ¼ 
(25%) of events was used to validate the model. Thus, 18 years 
(1987–2004) events were used for model calibration and the remaining 
6-year (2005–2010) events was used for validating model. 

Lastly, statistical evaluation techniques such as the Nash-Sutcliffe 
Efficiency (NSE), and coefficient of determination (R2) were applied to 
evaluate the performance of the model. Different researchers range the 
model performance. Regarding this, Moriasi et al. (2007) stated that the 
NSE and R2 value ranges from 0.75 to 1.0 the model is categorized as 
very good. Moreover, several researchers (Schaefi and Gupta, 2007 and 
Vaze et al., 2011) stated that a very good model has the value of NSE and 
R2 greater than 0.75 both at calibration and validation period. 

2.6. Peak flood prediction 

Conducting flood frequency analysis is essential to understand the 
nature and magnitude of current and future floods corresponding to a 
given return period. Moreover, reviewing frequency analysis is vital to 
identify most suitable model that could anticipate extreme events of 
flood. However, it is challenging to determine rainfall and flood return 
periods. Different researchers have suggestions on taking the rainfall 
and flood return period. Viglione et al. (2009) stated that for a single 
storm duration, and storm durations vary, the rainfall and flood return 
period is always equal, irrespective of the shape of the unit hydrograph. 
Moreover, for rainfall-induced extremes over the small watershed, the 
rainfall and flood return period is almost equal (Dickinson et al., 1992). 
Due to peak floods being induced by rainfall than snowmelt over a small 
watershed, this study assumed the same return period for rainfall and 
flood. 

Despite considerable methods being available, the HEC-HMS model 
(using design storm) and statistics probability distribution (using 

observed streamflow data) were used in this study. The design storm 
data was derived using the Intensity Duration Frequency curve (IDF) 
developed by the Ethiopian Roads Authority (ERA). Flood frequency 
analysis was carried out for 2, 10, 25, 50, and 100 years return periods. 

The best fit probability distribution was determined by applying 
Easy-Fit software. Easy Fit is a well-known statistical data analysis and 
simulation tools that enable to choose the most appropriate Probability 
distribution (Ahmad et al., 2016). In regard with this, several re-
searchers (Kamal et al., 2017; Sarauskiene and Kriauciuniene, 2011; 
Singo et al., 2012) used easy fit software to analyze flood frequency. 

In this case, the choice of an appropriate flood distribution model 
was based on approaches of goodness-of-fit (GOF) tests (Kolmogorov 
Smirnov, Anderson Darling, and Chi-Squared) (Ghasemi and Zahediasl, 
2012). The goodness of fit tests provides several distribution types. 
Overall, for selecting the best-fit distribution a ranking system was done, 
with rank 1 being the best, 2 the second best and the last relieves the 
worst probability distribution. Anderson Darling test is the most pref-
erable test for selecting the best fit Probability distribution model (Alam 
et al., 2018). According to Subramanya (2008), the Gumbel’s method is 
shown in Table 3. 

3. Results 

3.1. Watershed parameters 

Table 4 shows different watershed parameters considered in model 
calibration and validation. For instance, the CN value was spatially 
varied (30 for the area covered with forest and the maximum value of 
100 for the area covered with water bodies). The overall weighted curve 
number range between 65.7 and 85.4. The spatial distribution of 
weighted CN values was shown in (Table 4). Similarly, the initial 
abstraction was varied from 8.7 mm in W1200 to 26 mm in the W770 
sub-basin. Moreover, the steepest basin slope of watershed is 78.1% 
found in the W940. 

3.2. Model simulation result 

The details for each sub-basin are given in Table 5. As shown in 
Table 5, the sub watershed W7700, W1100 and Outlet point have high 
discharge values because water depth increases as the river reach 
approach the outlet point. Moreover, the routed flood result indicated 
that as the river reach approach to outlet point water depth increases. 
Hence discharge increased from river reach (R480 to R420) (Table 5). 
These relieved that for design purpose peak flood at outlet point is very 
important (Table 5). Moreover,the parameter and optimized value were 
indicated by Tables 6 and 7. 

3.3. Calibration and validation 

The simulated and observed hydrograph for the calibration and 
validation period exhibits almost similar shapes and trends (Fig. 4&5). 
However, the simulated flow was slightly overestimated. The scatter 

Table 3 
Gumbel’s distribution method formula (Subramanya, 2008).  

distribution Formula 

Gumbel XT = X+

KTσ 
X =
∑N

i=1Xi

N 

KT = −

̅̅̅
6

√

π {0.5772+

ln
[

ln
(

T
T − 1

)]}
σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Xi− X)
2

N − 1

√

Note: Where XT is peak flood, σ is the standard deviation, KT is the frequency 
factor, X is the mean value of the events, Xi is the ith event magnitude, and N is 
the number of events.  
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plot of the measured and simulated flow during the calibration and 
validation period were with a correlation coefficient (R2) of 0.91 and 
0.89. This shows that this strong correlation between the simulated and 
observed stream data (Fig. 6). 

3.4. Model performance evaluation 

In this study, the value of the statistical evaluation criteria during 
calibration and validation period were, NSE = 0.832, R2 = 0.91 and, 
NSE = 0.803, R2 = 0.89 respectively. This indicates that the applied 
statistical error tests were found within an acceptable range. several 
researchers (Moriasi et al., 2007; Schaefi and Gupta, 2007; Vaze et al., 
2011) very well model, have the NSE, and R2 value above 0.75. 

3.5. Selection of best fit probability distribution 

Table 8 relieved the ranks of (Gumbel, log Pearson, lognormal, and 
normal) statistical distribution functions in GOF test. As shown from this 

Table 4 
Watershed parameters generated by HEC-GeoHMS for Meki River watershed.  

Sub- 
basin 

Area 
(Km2) 

Lag Time 
(hr.) 

Basin Slope 
(%) 

CN (S) 
(mm) 

Ia 
(mm) 

W770 681 75.8 16.8 65.7 132.8 26 
W1100 629.2 54.3 22.8 69.5 111.5 22.3 
W1320 200 37.72 11.6 83 51.5 10.3 
W1200 297.6 23 36.2 85.4 43.5 8.7 
W990 349.8 35.742 26.8 77.2 75 15 
W940 82.4 12.8 78.1 78.29 70 14  

Table 5 
Simulated results at each sub-basin and river reach.  

Sub- 
basin 

peak 
discharge 
(m3/s) 

River 
channel 

Routed 
flood (m3/ 
s) 

River 
channel 

Routed 
flood (m3/ 
s) 

W7700 156.5 R480 33.9 R400 226.0 
W1100 157.6 R470 34.0 R430 226.6 
W1320 33.8 R500 33.8 R350 258.5 
W1200 69.9 R540 33.7 R240 258.8 
W990 103.4 R570 33.6 R150 259.2 
W940 28.8 R600 33.4 R220 260.0 
Outlet 296.2 R330 156.6 R420 278.1  

Table 6 
HEC-HMS optimized watershed parameters of the study area.  

Sub-basin Parameter Unit Initial Optimized Objective function 

W7700 Lag time hr. 75.95 77.23 − 0.37 
CN  65.7 56.21 − 0.17 

W1100 Lag time hr. 53.6 54.3 − 0.46 
Ia mm 22.3 22.45 − 0.23 

W1320 Ia mm 10.3 15.15 0.00 
W1200 Ia mm 8.7 9.13 0.00 

CN  85.4 84.34 − 0.32  

Table 7 
Optimized Muskingum parameters for each reach.  

Reach Muskingum(X) value Muskingum(K) (hr) Objective function 

Initial Optimized Initial Optimized 

R480 0.25 0.24 3.00 2.77 0.00 
R330 0.273 0.264 2:00 1.88 0.00 
R320 0.25 0.24 1.89 1.78 0.00 
R400 0.23 0.25 1:75 1.65 0.00 
R350 0.19 0.21 1:23 1.18 − 0.01  

Fig. 4. Simulated and observed streamflow hydrographs after calibration.  

Fig. 5. Simulated and observed stream flow hydrographs after validation.  

Fig. 6. The Scatter plot of observed and simulated flow after calibration 
and validation. 

Table 8 
Statistical distribution best-fit analysis result by Easy Fit5.6  

Distribution 
Function 

Kolmogorov Smirnov Anderson Darling Chi-Squared 

Statistics Rank Statistics rank Statistics rank 

Gumbel 0.07292 1 0.218559 1 0.03889 1 
Log Pearson 3 0.0752 2 0.21288 1 0.12325 2 
Log Normal 0.07558 3 0.22103 3 0.36018 3 
Normal 0.15793 4 1.0482 4 1.6624 4  
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table, the Gumbel distribution ranks first in all GOF tests, Log Pearson 3 
the second best fit and Normal distribution ranks the last. This mean the 
Gumbel method was the best-fit to observed data while normal distri-
bution was not good for this data. Hence, Gumbel method was selected 
to predict flood at various return periods. 

3.6. Peak flood prediction 

The predicted flood over different return periods were shown in 
Table 9. The minimum flood predicted by HEC-HMS is 133.2 and 
346.19 m3/s whereas the minimum and maximum flood computed by 
the Gumbel method is 126.7 and 331.87 m3/s. This shows that for the 
same return period, the predicted flood by HEC-HMS is greater than 
Gumbel method. Taking the same basin lag time interval for 2, 10-, 25-, 
50-, and 100-year return periods, the peak discharge and shape of the 
hydrograph were predicted (Fig. 7). In both methods the larger value 
occurred at 100-year return period. Overall, this study is similar with 
Kebebew and Awass (2022) and Acharya and Joshi (2020). Fig. 8 
relieved that result obtained by HEC-HMS is slightly greater than the 
Gumbel method. 

4. Discussion 

Several physical parameters were taken into account in this study. 
Tassew et al. (2019) stated that the Curve number represents the impact 
of both soil type and LULC upon the watershed response toward hy-
drological parameters. The curve Number value can greatly influence 
runoff generation (Lal et al., 2017). The CN value of this study area was 
spatially varied, with 30 for the area covered with forest and a maximum 
value of 100 for the area covered with waterbodies. The curve number 
value is directly proportional to runoff generation (Lal et al., 2017). 
Therefore, the lower value of CN indicates a low runoff coefficient, 
whereas a high value shows a high runoff coefficient (Ranjan and Singh, 
2022). However, during rainfall-runoff processing, each sub-basin re-
quires a weighted curve number value. Hence, the weighted CN values 
were extracted by HEC-GeoHMS for each sub-basin (Fleming and Bra-
uer, 2016). The basin lag time of the study area was varied from 12.8 to 
75.8 h. This means that for low basin lag time value, the flood reach 
outlet points slowly and the corresponding peak discharge is also low. 
The lower the basin lag time, the quicker surface runoff reaches the 
outlet point (Yu et al., 2000). Moreover, the basin slope can also bring 
significant change on quantity of runoff (Garg et al., 2013; Jourgholami 

et al., 2021). Thus, the steeper the basin, the faster runoff reaches the 
outlet point. Despite several watershed parameters considered, the 
curve number and lag time parameters were found to be the most 
influential parameters. The model slightly systematically overestimated 
streamflow even though it followed the same pattern as the observed 
one. This is may be due to some water is supplied for irrigation purpose 
and imprecise measurement of streamflow data by data collector. In line 
with this, several researchers (Oleyiblo and Li, 2010; Sardoii et al., 2012; 
Asadi and Boustani, 2013; Sok and Oeurng, 2016; Ramesh, 2017; Romali 
et al., 2018; Tassew et al., 2019; Gunathilake et al., 2019; Suprayogi 
et al., 2021; Hamdan et al., 2021) obtained almost similar results. The 
HEC-HMS is designed to simulate the rainfall-runoff process of water-
shed systems and has an optimization feature that can be used to match 
the simulated streamflow with the observed flow (Thu et al., 2019; 
Hamdan et al., 2021). Model calibration and validation require the ex-
amination of the accuracy of results to ensure valid representation of 
hydrological processes in the watershed. Modelers have used different 
performance methods for basin calibration and validation in the litera-
ture. The statistical performance evaluation criteria refer to model 
performance qualitative ratings with the corresponding threshold for 
model performance measures (Moriasi et al., 2015). The statistical 
model performance evaluation result showed, the model can be well 
applied for the study area. According to the range mentioned in Akoglu 
(2018), the mean correlation coefficient obtained in this study can be 
considered as strong (>0.8). Furthermore, this finding relieved that the 
model can simulate streamflow in the Meki watershed. Estimation of the 
design flood for a desired return period is of prime importance for the 
safe design of hydraulic structures such as dams, spillways, bridges, 
culverts, urban drainage systems, and flood plain zoning. Frequency 
analysis enables estimation of the probability of occurrence of a certain 
hydrological event of practical importance by fitting a probability dis-
tribution to one that is empirically obtained from recorded annual 
maximum discharge data (Desalegn and Mulu, 2021; Vivekanandan, 
2012; Saghafian et al., 2014). It is used to predict design floods for sites 
along a river. According to Saghafian et al. (2014), probability distri-
bution functions fitted to maximum flood series are commonly applied 
to determine flood discharges of different probabilities. Despite 
choosing the best-fitted probability distribution function is often 
controversial, Gumbel method was appropriately fit to observed data 
based on GOF tests. The flood frequency analysis shows that peak floods 
will increase with increasing reoccurrence intervals. Keeping basin lag 
time constant, the variation in peak and shape of the hydrograph ob-
tained occurred due to the variation in return period and magnitude of 
maximum probable precipitation. The result obtained by the Gumbel’s 
method was very close to simulated value (Table 9). However, to 
appropriately manage flood risk, the maximum probable flood is 
extremely important, so HEC-HMS result is recommended in designing 
flood control measurement. 

In conclusion, the finding of this study can help to develop appro-
priate watershed management strategies and combat flood risks in the 
different parts of the watershed. 

Table 9 
The predicted flood of the study area.  

No. Return period (year) Peak flood (m3/s) 

HEC-HMS Gumbel 

1 2 133.2 126.7 
2 10 178.1 167.8 
3 25 239.7 223.5 
4 50 313.2 287.9 
5 100 346.19 331.87  

Fig. 7. Hydrograph of different return period.  

Fig. 8. Graphical Comparison of HEC-HMS result with Gumbel method.  
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5. Conclusion 

In this study, the rainfall-runoff process was conducted using HEC- 
HMS. The correlation between simulation and observation was very 
good, but the total peak of discharge for this study was slightly over-
estimated. Peak flood for different return period were conducted using 
hec-hms and Gumbel methods. It was noticed the curve number, initial 
abstraction, lag time, flood traveling time (Muskingum-k), and 
discharge weighting factor (Muskingum-x) were the main parameters 
that affect runoff generation. The Nash-Sutcliffe Efficiency (NSE) and 
Coefficient of Determination (R2) were used to assess the performance of 
the model. The result indicated HEC-HMS model is well suited for flood 
simulation from rainfall data of the study area. Further, this finding can 
offer detailed information regarding peak floods in the watershed. Thus, 
it is useful to plan, design, and manage flood risk in the watershed. 
Moreover, it helps further investigation of hydrological modeling of 
adjacent catchments with a similar hydrological setting. The limitation 
of this finding was it assumed the same return period for rainfall and 
observed streamflow data in analyzing flood frequency. 
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