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Abstract

Background: Ischemic heart disease (IHD) is a disorder of cardiac function caused

by insufficient blood flow to the muscle tissue of the heart. The decreased blood flow

is in most cases due to coronary arteriosclerosis or to obstruction by a thrombus of the

coronary arteries. Acute myocardial infarction, unstable angina, and angina pectoris

are manifestations of ischemic heart disease.

Objective: The general objective of this study is to model the time to death of pa-

tients with ischemic heart disease using various parametric shared frailty models.

Methods: Different parametric frailty models were compared using exponential, weibull,

and log-logistic as baseline hazard functions and the gamma as well as the inverse Gaus-

sian for the frailty distributions, with the goal of developing an appropriate survival

model that adequately describes the ischemic heart disease dataset. All models were

then compared using the AIC and BIC criteria.

Results: The median time to death of the ischemic heart disease patients was about

five days, with a maximum death time of thirty days, of which about 35.37% died. The

clustering effect is significant in modeling the time to death of ischemic heart disease.

The log-logistic model with an inverse Gaussian frailty distribution has the minimum

AIC value among the models compared. According to the output of the model (log-

logistic with inverse Gaussian frailty), diabetes mellitus, hypertension, obesity, smoking

status, cholesterol, and other diseases were the main determinant factors of IHD.

Conclusions: Compared to other distributions employed in this study, the log-logistic

with inverse Gaussian frailty model provided a superior description of the ischemic

heart disease dataset. The time to death of ischemic heart disease patients vary be-

tween woredas, indicating that frailty models must be used to take into account this

clustering feature.

Key words: Ischemic heart disease, Frailty, Heterogeneity, Parametric

shared frailty Model, Time to death
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Acronyms
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MI Myocardial Infarction

MLE Maximum Likelihood Method

MUFA Monounsaturated Fatty Acids

NHID National Health Insurance Database
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QQ Quantile - Quantile

USA United State of America
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1 Introduction

1.1 Background of the Study

The term ischemic heart disease (IHD) describes a group of clinical syndromes char-

acterized by myocardial ischemia, an imbalance between myocardial blood supply and

demand (Steenbergen & Frangogiannis, 2012). A disorder of cardiac function is caused

by insufficient blood flow to the muscle tissue of the heart. The decreased blood flow

is in most cases due to coronary arteriosclerosis or to obstruction by a thrombus of

the coronary arteries (Grauss et al., 2007). The heart muscle receives less blood and

oxygen when arteries narrow, this condition is also known as coronary heart disease

or coronary artery disease. Acute myocardial infarction, unstable angina, and angina

pectoris are realizations of IHD (Nilsson, 2008).

As long as the fundamental pathophysiologic defect in the ischemic myocardium is

inadequate perfusion, ischemia is associated not only with insufficient oxygen supply

but also with reduced availability of nutrients and inadequate removal of metabolic

end products. The manifestations of IHD depend on the duration, severity, and acuity

of the ischemic episodes. The main determinant factors or causes that clear the way

for manifestations of IHD are high cholesterol, high blood pressure, smoking, diabetes

mellitus, obesity, and consumption of saturated fats (Wilson, 1994). Some people can

develop myocardial ischemia without experiencing any symptoms or warning indica-

tions (silent ischemia). Chest pressure or pain, typically on the left side of the body, is

the most common symptom when it does occur (angina pectoris). Other warning signs

and symptoms that may manifest more frequently include a rapid heartbeat, shortness

of breath, nausea and vomiting, perspiration, tiredness, and discomfort in the neck,

jaw, shoulder, or arm (Paul et al., 2004).

Cardiovascular diseases (CVD) cause approximately one-third of deaths worldwide

(Mozaffarian et al., 2015). Among cardiovascular illnesses, IHD ranks as the most

prevalent (Roth et al., 2017). Indeed, IHD is acknowledged as the main threat to

sustainable development in the 21 century (Prabhakaran et al., 2018). An increasing
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number of individuals with non-fatal IHD live with chronic disabilities and impaired

quality of life (Moran et al., 1990). The primary pathological process that leads to

IHD is atherosclerosis, an inflammatory disease of the arteries associated with lipid

deposition and metabolic alterations due to multiple risk factors. More than 70% of

at-risk individuals have multiple risk factors for IHD, and only 2%-7% of the general

population have no risk factors (Khan et al., 2020).

CVD are the number one cause of death globally; more people die annually from CVD

than from any other cause. An estimated 17.7 million people died of CVD, representing

31% of all global deaths. Of these deaths, an estimated 7.4 million were due to IHD.

Of the 17 million premature deaths (under the age of 70) due to non-communicable

diseases, 82% are in low-and middle-income countries, and 37% are caused by CVD

(WHO, 2019)

The total rate of IHD-related mortality in Europe has decreased, particularly in the

United Kingdom, the Netherlands, and Ireland. In contrast, epidemiological studies

have reported that the prevalent cases and deaths related to IHD have increased rapidly

in China, the Arab States, India, and Latin America. Some studies also showed that

IHD is a preventable and eradicable disease if the risk factors are effectively controlled

(Wang et al., 2021).

IHD, which was once thought to be uncommon in Sub-Saharan Africa, is now the

eighth greatest cause of mortality in both men and women in the region. Furthermore,

as a result of negative behavioral and lifestyle changes linked with urbanization and

the epidemiological transition, the prevalence of IHD and concomitant morbidity are

rising (Mensah, 2008). Ethiopia is one of the Sub-Saharan African countries making

significant progress in combating CVD as a public health priority disease (Ali et al.,

2021).

According to the latest data published by (WHO, 2020), IHD deaths in Ethiopia

reached 36,530, or 6.48% of total deaths. The age-adjusted death rate is 78.39 per

100,000 populations. Furthermore, the global burden of IHD is rapidly rising as a

result of the combined effects of social-demographic disadvantage, limited access to

2



health care, and poor health-care system performance (Vogel et al., 2021).

Therefore, it is vital to identify modifiable risk factors in addition to non-modifiable

risk factors for IHD for effective health care planning and prevention. In this setting,

a survival modeling framework is suitable in order to identify the factors for time to

death of patients with IHD. Data that measures the time to a certain event of inter-

est is referred to as survival data. The term survival data is applied to a wide range

of occurrences, all of which can be viewed as a transition from one state to another

(Bradbury et al., 2010).

Rather than focusing solely on frequency, survival analysis includes a time dimension

to an event (Gerr et al., 2002). It also includes censoring, where data about the event

of interest is unclear due to the patient’s removal from the study. The life table cre-

ated by Berkson & Gage (1952) for researching cancer survival is one of the oldest

and most straightforward non-parametric tools for assessing survival data. Kaplan &

Meier (1958) made a significant contribution to non-parametric approaches. Also, Cox

(1972) established the proportional hazards model to quantify the inference of different

factors on the timeframes of system failures.

Moreover, Clayton (1978) coined the term ”frailty” to describe how diverse people are

at risk, even if they appear to be relatively similar on the surface in terms of quantita-

tive characteristics like age, gender, and weight, among others. In the examination of

death rates, he adopted the term ”frailty” to indicate an unobservable random effect

shared among people with similar (unmeasured) risks. Over and beyond any observed

covariates, a random effect represents excess risk or frailty for unique groupings, such

as individuals or families.

Frailty model modifications to the Cox proportional hazard model, such as random ef-

fects and unobserved heterogeneity. Up to some observed covariates, survival analysis

implicitly assumes a homogenous population, which means that all individuals in the

study are, in principle, at the same risk. However, individuals differ significantly in

terms of baseline traits, which has a significant impact when measuring the explanatory

variables. In this case, the study population must be regarded as a diverse sample. On

3



the other hand, it is not always possible to include all the relevant covariates due to

data limitations, and sometimes the importance of some covariates is still unknown.

As a result, to measure the heterogeneity caused by unobserved covariates, it is neces-

sary to include a random effect term or frailty into the model (Wienke, 2010). In this

thesis, shared frailty models are employed, assuming that patients in the same cluster

(woreda) have similar risk factors and allowing the frailty term to be addressed at the

woreda level. This is a conditional independence model in which the frailty is shared by

all individuals in a cluster and is hence responsible for the emergence of dependencies

between event times.

1.2 Statements of the Problem

Cardiovascular diseases, principally IHD, are the most important cause of death and

disability in the majority of low and lower middle income countries (Gupta & Yusuf,

2019). In these countries more than 80% of the mortality rates due to IHD occur

on individuals with low socioeconomic status (Nowbar et al., 2019). Various studies

have been conducted in Ethiopia to identify covariates of IHD mortality by using logis-

tic regression (Gebremedhin & Gebrekirstos, 2021), and Semi-parametric proportional

hazard models (Abdissa, 2020).

However, the Logistic regression does not account the censoring observations, that is, it

does not hold for time to event data. In demographic applications, non-parametric and

semi-parametric models are often used to model transition data. In such applications,

it is assumed that all heterogeneities are captured only by using theoretically relevant

covariates (Trussell & Richards, 1985).

One of the most popular models for survival analysis is the Cox proportional hazard

model (Cox, 1972), and in this model the hazard function may depend on unknown

risk factors. But, in reality it is impossible to include the unknown risk factors in the

model. This will lead to an increase in the variability of responses, which implies bi-

ased and misleading estimates might be obtained for the parameters of the Cox model

(Van Dijk et al., 2008).
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Nevertheless, there are numerous grounds to suspect omitted or unmeasured compo-

nents in many circumstances. That is, while some people are at a higher chance of

experiencing the event, the underlying causes of this variability are unlikely to be ade-

quately reflected by the observed factors. If unmeasured frailty exists, the hazard will

be a function of both the variables and the frailty (Vaupel et al., 1979). To assess the

true effects of the observed covariates under this circumstance, it is crucial to explicitly

account for unobserved heterogeneity.

This study generally addressed the following research questions:

• What are the main factors that have an impact on how long IHD patients live?

• Which fundamental tenet of distributional theory among exponential, weibull,

loglogistic, frailty, gamma, and inverse Gaussian distributions best fits the IHD

dataset?

1.3 Objectives of the Study

1.3.1 General Objective:

The general objective of this study is to model the time to death of patients with IHD

using various parametric shared frailty models.

1.3.2 Specific Objectives:

The specific objectives of this study are

• To identify the main determinant (risk) factors associated with IHD

• To determine the parametric baseline hazard, which is appropriate in modeling

the determinants of time to death of IHD

1.4 Significance of the Study

This study has the purpose of identifying the major contributing (risk) factors for IHD.

The result of this study also provides information to the government and other con-

cerned bodies in setting policies, strategies, and further investigation for the reduction

5



of IHD mortality. Moreover, this study can provide base line data for further studies

in the future.

1.5 Limitation of the study

One of the study’s limitations is that even though risk factors for ischemic heart disease

are many, the research is limited only to the eight covariates since the records on the

patient cards of secondary data do not hold some of the fundamental factors, such as

other sociodemographic variables, which are clinically significant variables for the risk

factors of IHD. These factors include family history (heredity) of the diseases, physical

activity, stress, heavy alcohol consumption, nutrition, marital status, education status,

and occupation.

1.6 Organization of the study

This research paper was organized into five chapters. The first chapter discusses the

background of the study; a statement of the problems; the objectives of the study;

the significance of the study; and limitations of the study. The second chapter con-

tains a literature review as well as the concepts used in the paper. The third chapter

focuses on the data and methodology for research design, data source, and popula-

tion, study variables, inclusion and exclusion criteria, and survival models. The fourth

chapter contains results and discussion, while the fifth chapter provides conclusions

and recommendations. Finally, it presents references and different appendices.
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2 Literature Review

2.1 Overview of Ischemic Heart Disease

Ischemia is defined as inadequate blood supply (circulation) to a local area due to

blockage of the blood vessels supplying the area. Ischemic means that an organ (the

heart) is not getting enough blood and oxygen. The discomfort felt when the heart

muscle is deprived of sufficient oxygen is termed as angina pectoris (Almdal et al.,

2004). IHD is a problem caused by narrowed heart (coronary) arteries that supply

blood to the heart muscle due to the buildup of plaque called atherosclerosis (Verdouw

et al., 1998). When the blood flow to the heart muscle is completely blocked, the

heart muscle cells die, which is termed a heart attack or myocardial infarction (MI)

(Badimon et al., 2012).

The global burden of disease study showed that IHD is the leading cause of death, dis-

ability, and human suffering worldwide. IHD affects about 126 million people worldwide

(1,655 per 100,000), or about 1.72% of the total population and causes nine million

deaths worldwide. The prevalence of IHD is still increasing. By 2030, the prevalence

rate, which is currently 1,655 per 100,000 people, is anticipated to surpass 1,845. The

highest incidence is now being sustained in Eastern European nations (Khan et al.,

2020).

IHD was the leading cause of death in five representative nations (the United King-

dom, the United States, Brazil, Kazakhstan, and Ukraine) according to WHO data

from 2005 to 2015; nevertheless, mortality from IHD has steadily declined from 2005

to 2015. With little variation in other causes of death, the age-standardized mortality

rates for IHD were significantly higher in Kazakhstan (97) and Ukraine (324), com-

pared to the United States (60), Brazil (54), and the United Kingdom (46). All 5

countries showed a progressive decline in IHD mortality, with a decline in smoking and

hypertension and, in all cases, a rise in obesity and type II diabetes mellitus (Nowbar

et al., 2019)

According to Wang et al. (2021), metabolic dysfunction is increasingly serving as a
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primary risk factor for the emergence of a variety of comorbidities due to IHD. And

it continues to be the CVD with the highest global illness burden. The global death

cases from IHD climbed significantly during that time period, although the mortality

rate gradually decreased, according to the methodology framework of the global bur-

den of disease study. Notably, metabolic risk factors are now the main causes of IHD,

which is partly responsible for the shift in the distribution of IHD-related mortality

from industrialized to developing nations. The results point to the urgent need for

effective metabolic risk factor control strategies to be put in place to stop the rise in

IHD-related mortality.

Shashu (2021) conducted a facility-based study at the first private cardiac specialized

hospital in Ethiopia. The frequency distribution of the outcome variables, risk factors,

clinical presentations, and treatment categories were presented. The result showed that

the two most frequent risk factors of cardiovascular disease are hypertension and dys-

lipidemia, present in 1040 (33.61%) and 831 (26.86%) patients, respectively, followed

by diabetes in 508 (16.42%). Hypertension with hypertensive heart disease accounts for

1040 (49.31%), followed by IHD in 219 (10.38%) and cardiomyopathy in 133 (6.31%)

patients.

By Moyehodie et al. (2022), a multicenter retrospective cohort analysis of 285 patients

aged 15 or older who were being monitored from January 1, 2015, to December 31,

2019, was done. The log-rank test and the Kaplan-Meier survival curve were used

to condense descriptive analyses. Following their admission to the heart failure de-

partment, the Cox-proportional hazard regression model was used to assess the risk of

mortality up to five years later. The study found that the major risk factors for death

were diabetes mellitus and hypertension.

According to Špinar (2012), hypertension is one of the major risk factors for ischemic

heart disease and appropriate control of blood pressure is the cornerstone of both pri-

mary and secondary ischemic heart disease prevention. Effective blood pressure (BP)

control is recommended in primary prevention, meaning that maintaining blood pres-

sure <140/90 mmHg, while in secondary prevention values <130/85 mmHg used to

be recommended. According to epidemiologic data, cardiovascular mortality increases
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with blood pressure, starting as low as the 110/70 mmHg level. Czech, European,

and American guidelines from the early 21 century recommend that blood pressure in

patients with ischemic heart disease (IHD) be maintained below 130/80 mmHg.

According to Mensah (2008) IHD, which was previously considered rare in sub-Saharan

Africa, now ranks eighth among the leading causes of death in men and women in the

region. Furthermore, the prevalence of IHD and related morbidity may be increasing

as a result of adverse behavioral and lifestyle changes associated with urbanization

and the epidemiological transition. The major risk factors for IHD in sub-Saharan

Africa include hypertension, smoking, diabetes,and abdominal obesity. In the Inter-

heart Africa study, these risk factors contributed to a population-attributable risk of

nearly 90% for acute myocardial infarction. In conclusion, an aggressive approach that

combines environmental, policy, and legislative interventions for health promotion and

primary prevention, coupled with improved access to evaluation, treatment, and con-

trol of hypertension and other major risk factors, provides the best strategy for averting

an epidemic of IHD in sub-Saharan Africa.

Ostadal & Ostadal (2014) investigated epidemiological studies on sex-based differences

in cardiac ischaemic injury. Studies have demonstrated that premenopausal women

have a reduced risk of IHD compared with their male counterparts. The incidence of

IHD in women increases after menopause, suggesting that IHD is related to declining es-

trogen levels. Experimental observations have confirmed the results of epidemiological

studies investigating sex-specific differences in cardiac tolerance to ischaemia. Female

sex also appears to favorably influence cardiac remodeling after ischaemia or reperfu-

sion injury. Furthermore, sex-related differences in ischaemic tolerance of the adult

myocardium can be influenced by interventions during the early phases of ontogenetic

development.

2.2 Empirical Literature

Numerous studies have demonstrated that a variety of socioeconomic and demographic

variables have an impact on the time to death of IHD patients. For instance, Abdissa

(2020) performed a retrospective cohort study to evaluate all patients who received an
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IHD diagnosis throughout time using data from Black Lion Specialized and Tertiary

Referral Hospital in Addis Ababa, Ethiopia. Investigating the association between

dependent and predictor variables was done using the Cox-regression model. Accord-

ing to the findings, patients with IHD have a greater chance of developing incident

HF. In these individuals, increasing age, LDL cholesterol, diabetes mellitus, decreased

hemoglobin, and a dilated left atrium were the primary predictors of incident HF. Such

patients require frequent monitoring and more thorough care.

According to Abdissa et al. (2021), IHD patients were recruited and followed retro-

spectively over a 24-month period. The Cox regression model was employed to identify

risk factors for incident heart failure with reduced or preserved ejection fraction. The

result showed that of the 153 patients with new onset HF, 60.1% (92/153) were those

with reduced ejection fraction, while 39.9% (61/153) were those with preserved ejection

fraction. Besides diabetes (HR 2.07 [95% CI: 1.33-3.22], P = 0.001) and left atrium

dimension (HR 1.03 [95% CI: 1.001-1.065], P = 0.04), age 46-55 (HR 0.4 [95% CI:

0.17-0.94], P = 0.036), age 66 and above (HR 0.36 [95% CI: 0.13-0.98], P = 0.047);

and increasing left ventricular diastolic (diastolic LVD) (HR 1.06 [95% CI: 1.03-1.09],

P < 0.001) were associated with heart failure with reduced ejection fraction. The find-

ing suggests that age, diabetes, and diastolic LVD are predictors of heart failure with

reduced or preserved ejection fraction in patients with IHD.

Tromp et al. (2021) investigate global differences in prevalence, association with out-

come, and treatment of IHD in patients with acute HF in the international registry to

assess medical practice. With a HF treatment registry and longitudinal observation a

total of 18,539 patients with acute HF were prospectively enrolled from 44 countries

and 365 centers in the report of the HF registry. Patients with a history of IHD,

an ischemic event causing admission for acute HF, or coronary revascularization were

classified as IHD. Clinical characteristics, treatment, and outcomes of patients with

and without IHD were explored. The results compared with 8,766 (47%) patients

without IHD, 9,773 (53%) patients with IHD were older, more likely to have a left ven-

tricular ejection fraction <40% HF with reduced ejection fraction, and reported more

comorbidities. IHD was more common in lower income countries than in high-income
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countries (61% vs. 48%). Patients with IHD from countries with low health care ex-

penditure per capita or without health insurance were less likely to undergo coronary

revascularization or use anticoagulants at discharge. IHD was independently associ-

ated with worse cardiovascular death (hazard ratio: 1.21; 95% CI: 1.09 to 1.35). The

association between IHD and cardiovascular death was stronger in HF with reduced

ejection fraction compared with HF with preserved ejection fraction (P <0.001).

Tate et al. (1998) performed a prospective investigation of CVD as it develops in a

cohort of 3983 young men, 1094 study members (27%) developed clinical evidence

of IHD. Blood pressure, body weight, smoking, and the presence of diabetes melli-

tus have been recorded at regular intervals throughout the follow-up period. Using

measurements from examinations every five years between ages 40 and 75 years, age-

specific Cox proportional hazard models were fitted to relate these risk factors to IHD.

The result revealed that the adjusted relative risk of IHD for systolic blood pressure,

diastolic blood pressure, and smoking was found to significantly (p < 0.001) decline

with advancing age. The adjusted relative risk for body mass index and the presence of

diabetes mellitus for ischemic heart disease did not vary with age (p > 0.05). After age

65 years, these risk factors were of little value for the prediction of IHD. The relative

risk and statistical significance of blood pressure and smoking, as risk factors for IHD,

decline with age.

Barbiero et al. (2009) conducted cross-sectional, population-based study, with a strat-

ified probabilistic sample of secondary schools in Porto Alegre, comprising a total of

511 schoolchildren. Data on family risk factors, anthropometry, and eating habits were

collected. The result revealed that the prevalence of excess weight was 27.6% among

the schoolchildren, with 17.8% being overweight (BMI ≥ 85th and < 95%) and 9.8 %

obese (BMI ≥ 95%). Overweight was more prevalent in females (19.9 %) and obesity in

males (11.8%). As a conclusion, obesity had a highly significant impact on the survival

time of patients with IHD.

Sakboonyarat & Rangsin (2018) carry out a cross-sectional study to assess national

outcomes among patients with diabetes who visited public hospitals in Thailand to

evaluate the status of care among patients with diabetes aged at least 18 years who
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received medical treatment in the target hospital for the last 12 months. The results

showed that a total of 25,902 patients with diabetes were included in this study. IHD

was detected among 918 patients (3.54%; 95% CI: 3.32-3.77). Multivariate analysis

was conducted to determine which factors were most associated with IHD, and the

results showed age (AOR 1.05; 95% CI: 1.04-1.05), being male (AOR 1.78; 95% CI:

1.53-2.07), hypertensive comorbidity (AOR 2.10; 95% CI: 1.68-2.62), being in Health

Region (AOR 1.93; 95% CI: 1.54-2.35), presenting hyperglycemic crisis (AOR 1.53; 95%

CI: 1.14-2.06) and insulin therapy (AOR 1.40; 95% CI: 1.17-1.66) were the highest as-

sociated factors for IHD in this population. and concluded that IHD was a problem

among patients with diabetes.

Rashid et al. (2019) worked on a case control study among 142 newly diagnosed IHD

female patients registered in government hospitals in Terengganu, Malaysia and their

1:1 frequency matched population controls. Data on sociodemographic and socioeco-

nomic profiles, co-morbidities, lifestyle factors related to physical activities, dietary fat

intake, stress, passive smoking history, anthropometric measurements, and biochemi-

cal markers were obtained. Middle-aged women were recruited with women diagnosed

with diabetes (AOR=1.92, 95% CI: 1.11-3.31), having low HDLC (AOR=3.30, 95% CI:

1.28-8.27), those with positive family history of IHD (AOR=1.92, 95% CI: 1.13-3.26)

and passive smokers (AOR=2.99, 95% CI: 1.81-4.94) were at higher odds of IHD.

Mahendra et al. (2015) recruited patients with type 2 diabetes mellitus based on the

inclusion and exclusion criteria. History of IHD evidence of ischemia was obtained.

Retinopathy was diagnosed by direct opthalmoscopy. Fasting glucose levels, lipid pro-

files, and plasma fibrinogen levels were all measured. Statistical analysis was carried

out by the Chi-square test and the Student’s test. The results revealed that the preva-

lence of metabolic syndrome in Type 2 diabetes mellitus is 58% and plasma fibrinogen

is significantly higher in these patients. Macro and micro vascular complications are

frequent in long-standing patients with type 2 diabetes mellitus. Thus, the presence of

metabolic syndrome and hyperfibrinogenemia may contribute to the early development

of macro (IHD) and micro (retinopathy) vascular complications.

Gebremedhin & Gebrekirstos (2021) investigated a facility-based unmatched case-
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control study from November 16 to March 20, 2020, among patients with IHD and

those patients who visited the three hospitals in the Wolaita Zone. A total of 557

study participants (140 cases and 417 controls) were included in a ratio of 1:3, The

results of logistic regression showed that,the adjusted odds ratio for having no formal

education (AOR = 3.18; 95% CI: 1.59-6.34), previous history of hypertension (AOR

= 2.84; 95% CI: 1.73-4.66), physical inactivity (AOR = 2.23; 95% CI: 1.32-3.76), in-

adequate intake of fruit and vegetable consumption (AOR = 2.43; 95% CI: 1.40-4.22),

palm oil use for food preparation (AOR = 2.12; 95% CI: 1.23, 3.63) and obesity (AOR

= 5.68; 95% CI: 2.63-12.23) increased the occurrence of the disease. As a conclusion,

although ischemic heart disease is preventable using relatively simple and inexpensive

lifestyle changes, it is projected to cause a preventable loss of life.

Altaseb (2020) investigated a retrospective cohort study on CHD patients whose age is

≥ 18 years. The total deaths of people with CHD in Ethiopia reached 47712 in 2018,

where 7.81% of deaths in Ethiopia were due to CHD. In the survival analysis, the Cox

PH model, was used to identify potential associations between the survival time and

the study variables. The result of Cox PH regression analysis showed that the age of

CHD patients, diabetes mellitus, hypertension, and atherosclerotic heart diseases were

significantly associated with the survival of CHD patients.

Gona et al. (2021) conducted an epidemiological analysis of the prevalence of IHD for

16 southern African development communities using global burden of diseases study

data. An ensemble model and spatiotemporal Gaussian regression were used to esti-

mate mortality due to IHD. The result revealed that obesity in adult females increased

1.54-fold from 12.0% (uncertainty interval: 11.5-12.4) to 18.5% (17.9-19.0), where as in

adult males, obesity nearly doubled from 4.5 (4.3-4.8) to 8.8 (8.5-9.2). In children, obe-

sity more than doubled in both sexes, and overweight increased by 27.4% in girls and

by 37.4% in boys. Mean BMI increased by 0.7 in adult males from 22.4 (21.16-23.1) to

23.1 (22.23-24.0) and by 1.0 in adult females from 23.8 (22.9-24.7) to 24.8 (23.8-25.8).

In 2019, the prevalence of obesity was highest in South Africa 44.7 (42.5-46.8), Swazi-

land 33.9 (31.7-36.0), and Lesotho 31.6 (29.8-33.5). The corresponding prevalence in

males for the three countries was 19.1 (17.5-20.7), 19.3 (17.7-20.8), and 9.2 (8.4-10.1),
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respectively. Congo and Madagascar had the lowest prevalence of adult obesity, with

5.6 (4.8-6.4) and 7.0 (6.1-7.9), respectively, in females in 2019, and in males from 4.9

(4.3-5.4) in Congo and 3.9 (3.4-4.4) in Madagascar. The finding suggests that a high

body mass index is associated with IHD.

As stated by Crump et al. (2017), obesity is known risk factors for IHD. A national

cohort study of all 1,547,407 military conscripts was conducted in Sweden. Body mass

index (BMI) measurements were examined in relation to IHD. The results revealed that

there were 38,142 men diagnosed with IHD in 39.7 million person-years of follow-up.

High BMI or low aerobic fitness was associated with a higher risk of IHD, adjusting

for family history and socioeconomic factors. The combination of high BMI (over-

weight/obese versus normal) was associated with the highest IHD risk (incidence rate

ratio, 3.11; 95% CI: 2.91-3.31; P<0.001). In this large cohort study, high BMI at age

18 was associated with a higher risk of IHD in adulthood. Low aerobic fitness appeared

to account for a similar number of IHD cases among those with normal versus high

BMI. This finding suggests that interventions to prevent IHD should begin early in life

and include not only weight control but aerobic fitness, even among people of normal

weight.
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3 Data and Methodology

3.1 Description of Study Area

This study has been conducted at Jimma University Medical Center. JUMC is one of

the oldest public hospitals in the country. It was established in 1930 E.C by Italian

invaders for the service of their soldiers. Geographically, it is located in Jimma City,

357 km southwest of Addis Ababa, the capital city of Ethiopia.

3.1.1 Study design, Population and Period

A retrospective study was conducted to obtain data on IHD patients who were recorded

at JUMC. All IHD patients who had registered at JUMC between January 1, 2016,

and June 1, 2022 comprised the study’s population. The information from the pa-

tient’s registration card and registration log book has been carefully scrutinized; any

insufficient information found has been verified in the file and, if found to be such, has

been excluded from analysis. Accordingly, the information was gathered from patient

follow-up records using the study’s factors.

3.1.2 Inclusion and Exclusion Criteria

Inclusion criteria: All patients who supplied complete information, including the vari-

ables of interest, in the registration book or on the cards, were considered eligible for

the study. To be included in the study, the patients had to have received at least one

hospital therapy.

Exclusion criteria: If the registration book or card didn’t provide enough details re-

garding the research factors, patients weren’t eligible. As a result, these patients were

excluded.

3.1.3 Data collection methods

Ethical permission has been obtained from the Jimma University Medical Center,

Jimma, Ethiopia. Then secondary data was taken based on data existing in the hos-

pital by a trained enumerator and the principal investigator using a checklist (data
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extraction form).

Starting time: The starting time of the interval (in days) is the time origin or the

beginning of the study. The entry of the survival data would be considered from the

day that the ischemic heart disease patients started their diagnosis, when the patient

first received the treatment.

Ending time: The time (in days) when the ischemic heart disease patients died or were

lost to follow-up at the beginning of June 2022 (the end of the study) means that the

type of survival data is right-censored.

3.2 Variable Description

3.2.1 Dependent Variable

The response variable in this study is the time to death of IHD, measured (in days) from

the day that the patient starts treatment after admission to discharge. The survival

status of an IHD patient at discharge time was one of the two: event (death = 1) or

censored = 0.

3.2.2 Independent Variable

Several explanatory variables are used in this study to investigate the risk factors for the

time to death of patients with IHD. A patient’s residential place (woreda) is considered

as a clustering variable (effect) in all frailty models. The candidate predictor variables

included in the study and the codes of categories were described in Table 3.1.
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Table 3.1: List of explanatory variables with description and categories

Variables Definition and Categories

Sex Sex of patients (0 = Female; 1 = Male)

Age Age group of patients (1 = 0-14; 2 = 15-47; 3 = 48-63; 4 = ≥ 64)

Diabete Mellitus patients having diabetes (0 = No; 1 = Yes)

Hypertension patients having high blood pressure (0 = No; 1 = Yes)

Obesity patients having overweight/obesity (0 = No; 1 = Yes)

Smoking status Smoking status of patients (0 = No; 1 = Yes)

Cholesterol patients having high cholesterol (0 = No; 1 = Yes)

Other diseases patients having other co-infection (0 = No; 1 = Yes)

Residential place Agaro = 1; Chora Botor = 2; Dedo = 3; Gatira = 4; Gera = 5;

(Woreda) Gomma = 6; Guma = 7; Jimma = 8; Kersa = 9; Limmu Ganat = 10;

Limmu Kosa = 11; Limmu Sakka = 12; Mana = 13; Nono = 14;

Omo Nada = 15; Sakka = 16; Shabe Sonbo = 17; Setema = 18;

Sigimo = 19; Sokoru = 20; Yabu = 21; Other = 22

3.3 Survival Data Analysis

3.3.1 The Survival Model

The time until an event occurs is the outcome variable of interest in survival analysis,

which is a collection of statistical processes for data analysis. Years, months, weeks, or

days from the start of an individual’s follow-up until an event occurs are referred to as

time; conversely, time can refer to an individual’s age when an event occurs. Death,

disease occurrence, relapse from remission, recovery, or any other identified experience

of interest that may occur to an individual are all examples of events. The time variable

in a survival analysis is commonly referred to as ”survival time” since it indicates how

long an individual has survived over a given period of time. More frequently, mortality,
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disease incidence, or some other bad individual experiences are considered as events

of interest in survival analysis, and these events can also be referred to as failures

(Kleinbaum et al., 2012).

Let T be a random variable associated with the survival times, t be the realization of

the random variable T and f(t) be probability density function of survival time t. The

cumulative distribution function F (t), which represents the probability that a subject

selected at random will have a survival time less than some stated value t, for t ≥ 0 is

given by

F (t) = p(T ≤ t) =

∫ t

0

f(u)du. (1)

The survival function is given by

S(t) = p(T > t) =

∫ ∞
t

f(u)du. (2)

The hazard function becomes

h(t) = f(t)/S(t) = − d

dt
lnS(t), (3)

Survival model is usually expressed in terms of hazard function.

S(t) = exp(−
∫ t

0

h(u)du) = exp(−H(t)). (4)

The cumulative hazard function is defined as

H(t) =

∫ t

0

h(u)du. (5)

Under the parametric approach, the baseline hazard is a parametric function and the

vector of its parameters are estimated together with the regression coefficients and the

frailty parameters.

3.3.2 Non-parametric methods

Non-parametric survival analyses are more commonly utilized in cases when the exact

form of the distribution is unknown. Estimates of the survival function and hazard

function are used to summarize the data in survival analysis. The survival distribution

estimation method yields descriptive statistics such as the median survival time. These
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methods are referred to as non-parametric since they do not make any assumptions

about the survival time distribution. The Kaplan-Meier, Nelson-Aalen, and Life Ta-

bles are the most extensively used survival and hazard functions estimation methods

(Gatabazi, 2016).

The Kaplan-Meier (KM) estimator is a non-parametric survival function estimator that

may be used to estimate survival probabilities from both censored and uncensored sur-

vival times (Kaplan & Meier, 1958). Suppose that r individuals have failures in a

group of individuals, and 0 ≤ t(1) ≤ t(2) ... < t(r) < ∞ be the observed ordered death

times. r(j) be size of the risk at t(j), where risk set encompasses individuals alive and

uncensored before t(j). Let d(j) be the number of observed events at t(j), j = 1,2,... r.

Then the Kaplan-Meier estimator of the survival probability of developing disease at

any time is given by

Ŝ(t) =
∏
t(j)≤t

[
r(j) − d(j)

r(j)
]. (6)

The Cumulative hazard function of the Kaplan-Meier estimator can be estimated as:

Ĥ(t) = −ln(Ŝ(t)). (7)

The log-rank test, first proposed by Breslow (1975), allows for comparison of the sur-

vival curves for two or more groups. It gives information on the significance of the

difference in the survival of two groups of patients.

3.4 Modeling Frailty

Ordinary survival models deal with the simplest case of independent and identically

distributed data. This is based on the assumption that the study population is ho-

mogeneous. But it is a basic observation of medical statistics that individuals differ

greatly. So do the effects of a drug or the influence of various explanatory variables.

Variability is a term used to describe this heterogeneity, and it is widely recognized as

one of the most important sources of variability in medical and biological applications

(Grover & Seth, 2014).
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Frailty models are variations on the proportional hazards model, more commonly

known as the Cox model. This is the most commonly used survival analysis model.

In most clinical applications, survival analysis implicitly assumes that the population

being investigated is homogeneous. This means that all participants in the study are,

in theory, exposed to the same risks (risk of death and risk of disease recurrence). In

many cases, the study population cannot be assumed to be homogeneous and must in-

stead be viewed as a heterogeneous sample, implies, a collection of people with varying

risks (Sargent, 1998).

The random effects (frailty) element is added into standard models of analysis to ac-

count for unmeasured variables or linked survival data. The frailty model, which was

first proposed in the biostatistical literature by Vaupel et al. (1979) and is studied in

depth by Hougaard (2000), Janssen & Duchateau (2011) and Wienke (2010), accounts

for this baseline heterogeneity. It’s a variation on the proportional hazards model in

which the hazard function is determined by an unobservable random variable called

frailty, which operates multiplicatively on the hazard function. Because observations

within a subgroup share unmeasured risk factors that push them to quit earlier than

other subgroups, models designed in terms of group-level frailties are commonly re-

ferred to as ”shared frailty models.” Individual level frailty-based models

In certain circumstances, it is impossible to measure all relevant factors at once, for

instance. The value of various variables is still unknown in relation to the disease of

interest, sometimes for economic reasons. The frailty method is a statistical modeling

technique aimed at accounting for variation induced by unmeasured covariates. In sta-

tistical terms, a frailty model is a random effect model for time-to-event data where the

random effect (the frailty) has a multiplicative effect on the baseline hazard function

(Wienke et al., 2003).

3.4.1 Shared Frailty Model

Cox proportional hazard model (1972) can be used to control or evaluate the impact

of a variety of explanatory variables or covariates on people’s survival periods. The

Cox model’s popularity stems from the fact because the regression coefficients may be
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estimated even though the model’s baseline hazard is unknown. Thus, the Cox model

is well-suited if one is more interested in the parameter estimates than the shape of

the hazard. The Cox model, on the other hand, implicitly assumes that populations

are homogeneous, implying that all people are equally vulnerable to failure (Klein &

Moeschberger, 2003). However, including all important risk factors is unfeasible. As a

result, it’s critical to think of the population as heterogeneous, with individuals who

face varying risks. The Cox model is extended to include frailty models. A frailty

model is a time-to-event random effect model in which the random effect has a multi-

plicative inference on the baseline hazard (Kleinbaum et al., 2012).

Many statistical methods for modeling failure time data are based on the assump-

tion that the observations are statistically independent (Kalbfleisch & Prentice, 2011).

However, in many cases, this is not the case. The shared frailty model is a conditional

model in which all participants in a cluster share frailty. The shared frailty concept

is what causes event times to be dependent on one another. Because the frailties in

each cluster are believed to be random, it’s also known as a mixture model. Also, it is

assumed that all event times in a cluster are independent for the given frailty. Frailty

is a convenient technique to incorporate random effect, association, and unobserved

heterogeneity into survival data models. Frailty is an unobserved random proportion-

ality factor that alters the hazard function of an individual or related persons in its

most basic form (Wienke et al., 2003).

Based on the population hazard function acquired from life tables, Vaupel et al. (1979)

used the frailty approach to estimate the individual hazard function. Given the frailties,

the shared frailty technique posits that all failure times in a cluster are conditionally

independent. The frailty term’s value is constant throughout time and is shared by all

individuals in the cluster, therefore it’s what causes the cluster’s event times to be de-

pendent. In shared frailty models, this reliance is always positive. There are two types

of frailty models: those that use univariate time as an endpoint and those that use

multivariate survival endpoints. Even though frailty may differ from group to group,

shared frailty models assume that similar observations share frailty. In effect, obser-

vations within the same group are associated due to shared frailty. The shared frailty
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model assumes that members of a subgroup or pair have the same frailty denoted by

u, but that frailty varies from group to group (Hougaard, 1995).

Conditional on the random effect, called the frailty denoted by ui, the survival times

in cluster i (1 ≤ i ≤ n) are assumed to be independent and the proportional hazard

frailty model denoted by

hij(t/xij, ui) = h0(t)exp(β
′xij + ui). (8)

If the proportional hazards assumption is not fulfilled the alternative is the accelerated

failure time frailty model which denoted by

hij(t/xij, ui) = h0(exp(β
′xij + ui)t)exp(β

′xij + ui), (9)

where i indicates the ith cluster and j indicates the jth individual for the ith cluster,

h0(.) is the baseline hazard function, ui is the random term of all the subjects in cluster

i, xij is the vector of covariates for subject j in cluster i and β the vector of regression

coefficients. If the number of subjects ni is one for all groups, the univariate frailty

model is obtained. Unless otherwise the model is called the shared frailty model as

result of all the subjects in the same cluster share the same frailty value. Suppose

that Z = exp(ui) and let Z is distributed as gamma or inverse Gaussian distribution,

in addition on an unobservable random variable Z, which acts multiplicatively on the

baseline hazard function (Hanagal, 2019). The assumption of shared frailty model is

that subjects in the same cluster share the same frailty value Zi, where i = 1,2,...n.

Fore this reason it is called shared frailty model. But frailty differ from group to group

(Huang & Wolfe, 2002).

3.4.2 Test of unobserved heterogeneity

For frailty models variance of random terms (θ) is estimated to obtain ideas in the

outcome in the clusters. If θ is large as well as significantly different from zero, it

indicates heterogeneity among the cluster and strong association among individuals in

the same cluster. In other way, when θ is equal to zero, the frailties are identically equal

to one which implies that the cluster effects are not present and events are independent

within and across cluster (Glidden & Vittinghoff, 2004).
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3.5 Parameterization

In order for the hazard ratio to remain constant throughout time, the term propor-

tionate hazards (PH) denotes that the hazard function of one group is proportional to

the hazard function of the other group (Klein, 1992). Therefore, the hazard ratio is

given by HR = exp(β′Xij), where β′ = 1,2,..., p is a vector of regression coefficients and

Xij is the vector of covariates for subject j in cluster i. The accelerated failure-time

(AFT) model explains how the survival time might increase or decrease depending on

the predictor variables. This is the acceleration factor indicated by φ is exp(α′Xij),

where α′ = 1,2,..., p is, in the case of the AFT model, a vector of regression coefficients.

The relationship between exponential, weibull, and log logistic survival models and β

is given by

(a) For exponential βj = -αj, the exponential PH and AFT are in fact the same model,

except that the parameterization is different, and hence HR = exp(-αj) is the hazard

ratio of the jth group with the reference groups.

(b) For weibull βj = -αjρ, where ρ is the shape parameter and hence, HR = exp(-αjρ)

is the hazard ratio of the jth group with reference groups.

(c) For loglogistic, βj = -αjρ, where ρ is the shape parameter and OR = exp(-αjρ)

indicates the failure odds ratio of the jth group with reference groups. The log-logistic

model, which has a constant OR for two groups, is a proportional odds (PO) model.

3.5.1 Baseline Survivor and Hazard Functions

Baseline hazard can be assumed in frailty models like proportional hazards model,

parametric and non-parametric forms. If non-parametric form is assumed for base-

line hazard (h0(t)) , then semi parametric proportional hazards model is considered

and the estimates are usually obtained by using Expectation-Maximization algorithm.

When parametric form for h0(t) is assumed, the baseline hazard function is a paramet-

ric function and the vector of its parameters estimated together with the regression

coefficients and the frailty parameter(s). Then maximum likelihood estimates can be

obtained by maximizing the likelihood function. If one of the four functions (density

function, survival function, hazard function, and cumulative hazard function) is speci-
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fied, it specifies the other three functions of the above baselines as stated under section

3.3.1. Parameter λ is reparameterized in terms of predictor variables and the regression

parameters. In parametric models, the shape parameter ρ is fixed.

Table 3.2: Baseline distribution for Survival and Hazard functions

Distribution h(t) S(t) f(t) Parameter space

Exponential λ exp(−λt) λ exp(−λt) λ > 0

Weibull ρλtρ−1 exp(−λtp) ρλtρ−1 exp(−λtp) λ, ρ > 0

Log-logistic λρtρ−1

1+λtρ
{1 + λtρ}−1 λρtρ−1

1+λtρ
{1 + λtρ}−1 λ ∈ : R, ρ > 0

3.6 Frailty Distribution

The structure, properties, and applicability of survival models to practical problems

depend on the nature of time-to-event data. The main premise behind the frailty model

is that people have various levels of frailty and that the most frail will die sooner than

the least frail. As a result, a systematic selection of strong individuals occurs, dis-

torting what is observed. The distribution of frailty among individuals determines the

precise nature of the link between individual and population aging. For the unobserved

covariates, several distributions can be used, resulting in qualitative and quantitative

changes. In particular, the variance of the frailty distribution determines the degree of

heterogeneity in the study population.

The classical and widely used frailty model is based on a proportional hazards model

with a random effect (frailty). The frailty zi is an unobservable realization of a random

variable Z with probability density function f(.) which is the frailty distribution. Since

zi multiplies the hazard function, Z has to be non-negative. Here, Z is considered as

a random mixture variable, varying across the population. Note that a scale factor

common to all subjects in the population maybe absorbed into the baseline hazard

function, so that frailty distributions are standardized to mean of Z is one. The vari-

ance parameter σ2 is variance of Z is interpretable as a measure of heterogeneity across

the population in baseline risk. When σ2 is small, then the values of Z are closely
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concentrated around one. If σ2 is large, then values of Z are more dispersed, inducing

greater heterogeneity in the individual hazards. Frailty increases the individual risk

and is sometimes called liability or susceptibility in other settings. All individuals,

apart from an individual constant Z are assumed to follow the same mortality pattern.

What may be observed in a population is not the individual hazard but the net result

for a number of individuals with different values of the random variable Z. One im-

portant problem in the area of frailty models is the choice of the frailty distribution.

The Laplace transform for frailty receives special attention because it can easily ex-

press unconditional survival and hazard functions. Hence, the likelihood function can

also be expressed by means of the Laplace transform. This is the reason why frailty

distributions with easy Laplace transforms are so popular and allow maximum like-

lihood methods in parameter estimation. Different distributions have been proposed

for the frailty term. In this study, gamma and inverse Gaussian frailty distributions

were applied. In both cases, the degree of independence is represented by a single

heterogeneity parameter denoted by θ.

3.6.1 Gamma Frailty Distribution

Choosing the frailty distribution is often exercised by the problem at hand in terms

of the model implications. As a mixing distribution, the gamma distribution has been

widely used by Janssen & Duchateau (2011), Kong & Kaddoum (2019) and Oakes

(1982). It fits very well as a mixture distribution to failure data from a computa-

tional and analytical standpoint (Wienke, 2010). Hougaard (1986) claimed that the

gamma and inverse Gaussian distributions are important and mathematically tractable

as frailty distributions for a heterogeneous population between groups.

The gamma distribution is a versatile distribution that can take many different forms.

The gamma distribution is most commonly used for its mathematical simplicity. This

is due to the Laplace transform’s derivative being simple, allowing maximum likelihood

approaches to be employed for parameter estimation (Wienke et al., 2003). Another

rationale for choosing the gamma distribution as the frailty distribution is its flexible

shape (Manda, 2020). Although the gamma distribution is the most often utilized
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frailty distribution for mathematical reasons, Hougaard (1995) pointed out that there

are no biological reasons for using it.

To make the model identifiable, restrict that expectation of the frailty equals one

and variance be finite. So that only one parameter needs to be estimated. Thus,

the distribution of frailty Z is one parameter gamma distribution. The density of a

gamma-distributed random variable with parameter θ > 0 is given by:-

fz(zi) =
z
(1/θ)−1
i exp(−zi/θ)

Γ(1/θ)θ1/θ
(10)

Where Γ(.) is gamma function. It corresponds to a Gamma distribution (µ, θ) with µ

fixed to one for identifiability and its variance becomes θ. With corresponding Laplace

transform

L(s) = (1 + s
θ
)−θ , where θ > 0

The conditional survival function of the gamma frailty distribution is given by

Sθ(t) = (1− θln(S(t)))−1/θ

And also the conditional hazard function is given by

hθ(t) = h(t)(1− θln(S(t)))−1

Where S(t) and h(t) are the survival function and the hazard functions of the baseline

distributions. in case of Gamma distribution it measures the association between any

two event times from the same cluster in the multivariate case. and can be determined

as

τ = θ
θ+2

, where τ ∈ (0,1)

3.6.2 Inverse Gaussian Frailty Distribution

The inverse Gaussian distribution was introduced as a frailty distribution alternative to

the gamma distribution by Hougaard (1984) and has been used for example by Manton

et al. (1986), Price & Manatunga (2001) and Kheiri et al. (2007). The unconditional

survival and hazard functions have straightforward closed-form formulas, similar to the

gamma frailty model, which makes the concept appealing. The correlation between

26



related event times is of particular importance in the multivariate scenario. Distinct

frailty distributions result in different dependent structures. inverse Gaussian frailties

produce dependency in the middle time (Hougaard, 1995). A fit assessment should

accompany the selection of frailty distributions. It’s only reasonable to base the mean

of the frailty variable on the observed filtration, which should be around one (Pipper

& Martinussen, 2004).

The probability density function of an inverse normal distributed random variable with

mean one and variance σ2 = θ is:

f(z) =
1√

2πθz3
exp(− 1

2θz
(z − 1)2) (11)

where as θ > 0 , z > 0. Consequently, the Laplace transform of the inverse normal

distribution is given by:

L(s) = exp(1
θ
(1 -
√

1 + 2θs)) , θ and s > 0

Hence, the conditional survival and hazard function take the forms

Sθ(t) = exp(1
θ
(1−

√
1− 2θlnS(t))) , θ > 0

hθ(t) = h(t) (1− 2θlnS(t))−1/2 , θ > 0

An Inverse Gaussian distributed frailty yields a Kendall’s Tau given by

τ = 1
2

- 1
θ

+ 2 exp(2/θ)
θ2

∫∞
2/θ

exp(−u)
u

du , where τ ∈ (0, 1
2
)

3.7 Parameter Estimation Method

Estimation of the frailty model can be parametric or semi-parametric. In the former

case, a parametric density is assumed for the event times, resulting in a parametric

baseline hazard function. Estimation is then conducted by maximizing the marginal

log-likelihood. In the second case, the baseline hazard is left unspecified and more

complex techniques are available to approach that situation (Abrahantes et al., 2007).

Though semi parametric estimation offers more flexibility, the parametric estimation

will be more powerful if the form of the baseline hazard is somehow known in advance

(Munda et al., 2012).
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The Frailty models account for the clustering present in grouped event time data. For

a right-censored clustered survival data, the observation for subject j ∈ Ji = (1,...,ni)

from cluster i ∈ I = (1,...,s) is the couple (yij, δij), where yij = min(tij, cij) is the

minimum between the survival time tij and the censoring time cij, and indicator δij

= I(tij≤ cij) is one for a subject where the event has taken place, while δij = 0 for

censored observation. When covariate information’s been collected the observation

will be (yij, δij, xij), where xij denote the vector of covariates for the ijth observation.

In case of the parametric setting, estimation is based on the marginal likelihood in

which the frailties have been integrated out by averaging the conditional likelihood

with respect to the frailty distribution.

Based on the assumption of right censoring of independence between the censoring

time and the survival time of random variables, given the covariate information, the

marginal log-likelihood of the observed data can be given by

lmarg(ϕ,β,θ, z, X) =
∑s

i=1 (
∑ni

j δij(log(h0(yij)) + XT
ij β)) + log((−1)di Ld (

∑m
j

H0(yij)exp(XT
ij β))).

Where di =
∑ni

j=1 δij is the number of events in the ith clusters and Lq(.) is the qth

derivative of the Laplace transform of the frailty distribution Z is defined as

L(s) = E(exp(-Zs)) =
∫∞
0

exp(Zis) f(Zi)dzi, where s > 0.

Lq(S) = −1(q)
∫∞
0
Zq exp(-Zs)f(z)dz , q > 0

Where ϕ represents a vector of parameters of the baseline hazard function, β the vector

of regression coefficients and θ the variance of the random effect. The estimates of ϕ,

β, θ are obtained by maximizing the marginal log-likelihood stated above. This can be

done if one is able to compute higher order derivatives Lq(.) of the Laplace transform

up to q = max(d1, ..., ds).

3.8 Comparison of Models

In statistics, model selection is a process researchers use to compare the relative values

of different statistical models and determine which one is the best fit for the observed
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data. The most commonly used model selection criteria are the Akaike information

criterion (AIC) and Bayesian information criterion (BIC). A data-driven model selec-

tion method such as an adapted version of Akaike’s information criterion AIC is used

to find the truncation point of the series (Akaike, 1974). AIC and BIC are given by

the expression

AIC = −2 log(L) + 2(k + c+ 1) (12)

BIC = −2 log(L) + 2kln(N) (13)

where L is the maximized likelihood value, k is the number of covariates, c the number

of model specific distributional parameter, and N is the total sample size. In this study,

AIC and BIC criterion were used to compare various candidates for parametric frailty

models. The R software was used for comparison manipulation.

3.9 Model Diagnostics

Checking the adequacy of a model in describing a dataset is an essential part of any

statistical analysis. It is generally recommended to assess the adequacy before using

a model for decision-making purposes. Ideally, we would like our model to be flexible

and parsimonious, with the ability to fit a wide range of data satisfactorily. Thus, an

assessment of the quality of a fit and adherence to model assumptions are as important

as model development in any statistical analysis. Many of the model diagnostic proce-

dures are based on graphical assessment. The graphical methods can be used to check

if a parametric distribution fits the observed data or not (Dätwyler & Stucki, 2011).

3.9.1 Evaluation of the Parametric Baselines

The model with the Weibull baseline has a property that the log(-log(Ŝ(t))) is linear

with log time, where Ŝ(t) = exp(- λ tρ). Hence, log(-log(Ŝ(t))) = log(λ) + ρlog(t). The

intercept and slope of the line will be rough estimate of log(λ) and ρ respectively. This

property allows a graphical evaluation of the appropriateness of a Weibull model by

plotting log(-log(Ŝ(t))) versus log(t) where Ŝ(t) is the Kaplan-Meier survival estimate

(Goel et al., 2010). The appropriateness of the model with the exponential baseline

can graphically be evaluated by plotting -log(Ŝ(t)) versus time. The plot should be
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linear and pass through the origin (Costella, 2010). The appropriateness of the model

with the log logistic baseline can graphically be evaluated by plotting log(1 - ŝ(t)/ŝ(t))

versus log(t). The log-failure odd versus log time of the log-logistic model is linear with

slope ρ then the survival time follows a log-logistic distribution. Where the failure odds

of log-logistic survival model can be computed as follows

1 - s(t)/s(t) = λtρ

1+λtρ

/
1

1+λtρ
= λtρ.

Then, the log-failure odds becomes

log(1 - s(t)/s(t)) = log( λtρ) = log(λ) + ρlog(t),

which is the liner function of log(t) (Dätwyler & Stucki, 2011).

3.9.2 The Cox-Snell Residuals

Cox-Snell residuals are a type of standardized residuals used in reliability analysis.

A residual is the difference between an observed data point and a predicted or fitted

value. A Cox-Snell residual considers the distribution and estimated parameters from

the lifetime regression model. The Cox-Snell residuals are equal to the negative of the

natural log of the survival probability for each observation. Cox-Snell residual for the

jth individual with observed survival time tj is given by rj = Ĥ(Tj/XJ) -logŜ(Tj/Xj),

where Ĥ and Ŝ are the estimated values of the cumulative hazard and survivor function

of the jth subjects at time tj respectively. If the model fits the data, then the r′js should

have standard (λ = 1) exponential distribution, so that a hazard plot of rj versus the

Nelson-Aalen estimator of the cumulative hazard of the r′js should be straight line

with slope unity and intercept zero. If yes, the fitted model is appropriate. In general,

residual check the overall fit of the model (Cox & Snell, 1968).
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Table 3.3: The three Cox Snell residuals baseline hazard functions

Model rj

Exponential λ̂tjexp(β̂′Xj)

Weibull λ̂ tρ̂j exp(β̂′Xj)

Log-logistic ln

[
1

1+λ̂tρ̂j exp(β̂
′Xj)

]

3.9.3 Quantile-Quantile plot

The accelerated failure-time models are an alternative to the proportional hazards

model when comparing two groups. To see if this provides a sufficient fit to the data,

a quantile-quantile or q-q plot is used. The graph is based on the notion that in

accelerated failure-time models,

S1(t) = S0(θt),

where S0 and S1 are the survival functions in the two groups and θ is the acceleration

factor. Let t0p and t1p be the pth percentiles of groups 0 and 1, respectively, that is

tkp = S−1k (1− p), k = 0, 1.

By the relationship S1(t) = S0(θt), we must have S0(t0p) = 1− p = S1(t1p) = S0(θt1p)

for all t. If the accelerated failure time model holds, t0p = θt1p. To see this assumption

we compute the KaplanMeier estimators of the two groups and estimate the percentiles

T1P , T0P , for various values of p. If we plot the estimated percentile in group 0 versus

the estimated percentile in group 1 (i.e., plot the points t1p, t0p for various values of

p), the graph should be a straight line through the origin, when the accelerated failure

time model holds. If the curve is linear, the slope of the line provides a rough estimate

of the acceleration factor q.
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4 Result and Discussion

4.1 Descriptive Statistics

To learn more about the distribution of the variables, descriptive statistics are employed

and descriptive summaries are given in Table 4.1. The shortest and longest event times

recorded during the follow-up of IHD patients were 1 and 30 days, respectively. About

64.63 percent of those IHD patients were censored (right censored), while the remaining

35.37 percent have since passed away. The median event time of IHD was 5 days.

Regarding Sex, 26.69%, of the IHD patients were female and the remaining were male

during the follow-up study. Based on residential place, Jimma had the highest death

rate of IHD 29 (26.36%), followed by Mana 9 (8.17%) among the twenty-two woredas.

And also, Dedo, Sakka, and others have the same death experience as 8 (7.27%). But

Chora Botor and Limmu Ganat did not experience death in general.

By observing the diabetes mellitus of IHD patients, most IHD patients were 65.27%

non-diabetic and the death proportion seemed highest for those IHD patients who were

diabetic, which was 54.55% compared to non-diabetic, which was 45.45%. Looking at

the cholesterol level of IHD patients, about 47.27% and 52.73% were IHD patients

with cholesterol and those without cholesterol, respectively, in which IHD patients

with cholesterol seemed to have a lower survival time because the death proportion for

patients with cholesterol (68.18% ) is higher than for IHD patients without cholesterol

(31.82%). Most IHD patients have no obesity, 72.35%, and the remaining have obesity.

And the death rate appears to be highest in IHD patients who were obese, at 50.91%,

compared to 49.09% in non-obese patients. Moreover, about 52.73% of IHD patients

had other diseases, and the rest did not.
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Table 4.1: Descriptive summary of covariates of IHD mortality in JUMC

Patient’s status

Covariates Categories Number of Number of death(%) Total

censored(%)

Sex Female 52 (25.87) 31 (28.18) 83 (26.69)

Male 149 (74.13) 79 (71.82) 228 (73.31)

Age 0-14 4 (1.99) 1 (0.91) 5 (1.61)

15-47 75 (37.31) 43 (39.09) 118 (37.94)

48-63 79 (39.31) 38 (34.55) 117 (37.62)

≥ 64 43 (21.39) 28 (25.45) 71 (22.83)

Diabetes mellitus No 153 (76.12) 50 (45.45) 203 (65.27)

Yes 48 (23.88) 60 (54.55) 108 (34.73)

Hypertension No 154 (76.62) 54 (49.09) 208 (66.88)

Yes 47 (23.38) 56 (50.91) 103 (33.12)

Obesity No 171 (85.07) 54 (49.09) 225 (72.35)

Yes 30 (14.93) 56 (50.91) 86 (27.65)

Smoking status No 165 (82.09) 101 (91.82) 266 (85.53)

Yes 36 (17.91) 9 (8.18) 45 (14.47)

Cholesterol No 129 (64.18) 35 (31.82) 164 (52.73)

Yes 72 (35.82) 75 (68.18) 147 (47.27)

Other disease No 118 (58.71) 29 (26.36) 147 (47.27)

Yes 83 (41.29) 81 (73.64) 164 (52.73)
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Residential place Agaro 14 (6.97) 5 (4.55) 19 (6.11)

(woreda) Chora Botor 9 (4.48) 0 (0.00) 9 (2.89)

Dedo 8 (3.98) 8 (7.27) 16 (5.14)

Gatira 5 (2.49) 3 (2.73) 8 (2.57)

Gera 3 (1.49) 1 (0.91) 4 (1.29)

Gomma 6 (2.99) 6 (5.45) 12 (3.86)

Guma 7 (3.48) 1 (0.91) 8 (2.57)

Jimma 48 (23.88) 29 (26.36) 77 (24.26)

Kersa 7 (3.48) 7 (6.36) 14 (4.50)

Limmu Ganat 5 (2.49) 0 (0.00) 5 (1.61)

Limmu Kosa 8 (3.98) 3 (2.73) 11 (3.54)

Limmu Sakka 1 (0.49) 5 (4.55) 6 (1.93)

Mana 11 (5.47) 9 (8.17) 20 (6.43)

Nono 5 (2.49) 2 (1.82) 7 (2.25)

Omo Nada 13 (6.46) 5 (4.55) 18 (5.79)

Sakka 5 (2.49) 8 (7.27) 13 (4.18)

Shabe Sonbo 6 (2.99) 3 (2.73) 9 (2.89)

Setema 7 (3.48) 2 (1.82) 9 (2.89)

Sigimo 5 (2.49) 2 (1.82) 7 (2.25)

Sokoru 7 (3.48) 1 (0.91) 8 (2.57)

Yabu 6 (2.99) 2 (1.82) 8 (2.57)

Other 15 (7.46) 8 (7.27) 23 (7.41)

median(days) = 5
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4.2 Survival of Significantly Different Groups

The Log-rank test and Kaplan-Meier survival estimates are used to look into the sig-

nificance of the difference in survival experience among different factors. Therefore,

the log-rank test results presented in Table 4.2 show that there is a statistically sig-

nificant difference in experiencing death events among the groups of diabetes mellitus,

hypertension, obesity, smoking status, cholesterol, and other diseases at 5% level of

significance.

Table 4.2: Log rank test for equality of Survival function of different groups

Covariate Chi-square value df Pr > Chi-Square

Sex 0.1 1 0.8

Age 1.5 3 0.7

Dibetes mellitus 28 1 <0.001

Hypertension 27.9 1 <0.001

Obesity 50.3 1 <0.001

Smoking status 6.4 1 0.01

Cholesterol 32.2 1 <0.001

Other disease 30.7 1 <0.001

The Kaplan-Meier estimator survival curve can be used to estimate survival function

among different covariates so that one can make a comparison. Separate graphs of

the estimates of the Kaplan-Meier survivor functions are constructed for different cat-

egorical covariates. In general, the survivorship pattern of one is lying above another,

which means the group defined by the upper curve has a better survival than the group

defined by the lower curve (Figure 4.1).

35



Figure 4.1: Survival curves for significantly different groups

4.3 Test of unobserved heterogeneity

Likelihood ratio is used for comparing the models with and without frailty. It is used

for testing the null hypothesis H0: θ = 0 versus the alternative hypothesis H1: θ >

0. Heterogeneity among parameter θ from the frailty models was estimated using the

mariginal Likelihood techniques. Multivariable analysis was done by assuming the ex-

ponential, Weibull and loglogistic baseline hazard functions for Gamma and Inverse

Gaussian shared frailty distributions. The results given in Table 4.3 shows that the

likelihood ratio tests of variance of random term (θ) for exponential gamma, expo-

nential inverse gaussian, weibull gamma, Weibull inverse gaussian, loglogistic gamma

and loglogistic inverse Gaussian shared frailty models were 149, 159, 167, 153, 168 and

154 with p values of <0.001 for all shared frailty model. Thus from this results we

can conclude that unobservable heterogeneity is significant in all models at 5% level of

significance.

The heterogeneity parameter (variance of random effect) is highest for loglogistic in-

36



verse Gaussian shared frailty model (θ =0.948) followed by loglogistic Gamma shared

frailty model (θ = 0.569) and the least (θ=0.005) for exponential gamma shared frailty

model with exponential baseline hazard. The Kendall’s tau (τ) is used to measure the

dependence within the clusters (woredas) and it is higher for the higher variance of

random effect (θ) values. From the results of this study the values of Kendall’s tau (τ)

for exponential gamma, exponential inverse gaussian , weibull gamma, Weibull inverse

gaussian, loglogistic gamma and loglogistic inverse Gaussian shared frailty models were

0.022, 0.019, 0.02, 0.017, 0.018.and 0.051,respectively. This evidence shows that, on

average, there is a positive correlation between times to deaths within the clusters

(woredas).

Table 4.3: Test of unobserved heterogeneity by using likelihood ratio test

Shared frailty model LRT θ τ P value

Exponential Gamma 149 0.005 0.022 <0.001

Exponential Inverse Gaussian 159 0.075 0.019 <0.001

Weibull Gamma 167 0.561 0.020 <0.001

Weibull Inverse Gaussian 153 0.081 0.017 <0.001

Loglogistic Gamma 168 0.569 0.018 <0.001

Loglogistic Inverse Gaussian 154 0.948 0.051 <0.001

LRT = likelihood ratio test of θ = 0 with 0 and 1 degrees of freedoms, θ = variance

of random terms, τ = kedall”s tau

4.4 Univariable Analysis

A univariate analysis was performed to select variables to be included in the multivari-

able analysis. The outputs in univariable analysis (Annex I) show that the covariates

of IHD, diabetes mellitus, hypertension, obesity, smoking status, cholesterol, and other

diseases are statistically significant in the entire models used. The confidence interval

of the acceleration factors for those covariates does not include one in all models. This

shows that those variables are determinant factors for the time to death of ischemic
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heart disease. However, sex and age of patients are statistically not significant accord-

ing to all the models at a 0.25 level of significance. Therefore, based on this result, it

is better to ignore those insignificant covariates and to do multivariable analysis using

the significant covariates.

4.5 Model Comparison

For the data on IHD, the parametric baseline distribution with Gamma and the inverse

Gaussian shared frailty distribution were fitted. In survival analysis, to compare the

efficiency of parametric shared frailty models, the Akaike Information Criterion (AIC),

which assesses the goodness of fit of a statistical model, was used. It is the most

commonly applicable criterion for selecting the model. The multivariable analysis of

loglogistic inverse Gaussian models AIC value, which is 908.6871, is the lowest of all

the models, indicating that it is the most effective model among the parametric frailty

models for describing the IHD dataset (Table 4.4).

Table 4.4: The Multivariable Parametric Shared Frailty Models’ AIC and BIC Values

Model

Baseline hazard function Frailty distribution AIC BIC

Exponential Gamma 916.4669 944.2260

Inverse-Gaussian 914.5860 957.5034

Weibull Gamma 919.3614 999.1133

Inverse-Gaussian 916.5015 964.5191

Loglogistic Gamma 910.8247 990.3987

Inverse-Gaussian 908.6871 938.2056

AIC = Akaike’s Information Criterion

BIC = Bayesian’s Information Criterion

4.6 Multivariable Analysis

Similar to univariable survival analysis, multivariable survival analysis was performed

by taking into account the three baseline hazard functions (exponential, Weibull, and

38



log-logistic) and two frailty distributions (gamma and inverse Gaussian), using the six

most important covariates from univariable analysis of the models. Based on multivari-

able analysis output, a log-logistic inverse Gaussian frailty model is selected by using

AIC. In multivariable frailty models, the covariates diabetes mellitus, hypertension,

obesity, Smoking status, cholesterol, and other diseases are significant factors for time

to death in ischemic heart disease.

The results of this study suggested that diabetes mellitus had a significant effect on

the time to death of the IHD. Patients with diabetes mellitus had significantly different

death times than the reference group. As a result, the φ of dying of IHD patients with

diabetes mellitus was 0.471 times that of those without diabetes mellitus (φ = 0.471,

CI: 0.314, 0.706), indicating that the time to death of diabetic patients was reduced

by 52.9% when compared to those without diabetes mellitus.

Consequently, the findings of this study suggested that hypertension had a notable

impact on the IHD patient’s time to death. Compared to patients with and without

hypertension, those with hypertension had considerably shorter death times. The φ of

dying in hypertensive patients was 0.521 times that of those without hypertension (φ

= 0.521, CI: 0.346, 0.784), indicating that the time to death in hypertensive patients

was reduced by 47.9% when compared to patients who were not hypertensive.

Depending on the result, obesity had a significantly different time to death from IHD

than the reference groups. And the φ of being died of patients with obesity was 0.279

times the factor of those without obesity (φ = 0.279, CI: 0.185, 0.422), this indicates

that the time to death of patients who were obese was reduced by 72.1% when com-

pared with patients who were not obese. Therefore, IHD patients who had obesity

had a shortened time of death. The acceleration factor and its 95% confidence interval

for smoking is 2.724 (1.381, 5.372). In the 95% confidence interval of the acceleration

factors, one is not included, which implies that smoking status determines the time

to death of ischemic heart disease. The p-values also support this, which is less than

0.05 for smoking status (yes), when compared to smoking status (no) as the reference

category.
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Moreover, the acceleration factor, φ of being died of patients with cholesterol was 0.393

times the factor of those without obesity (φ = 0.393, CI: 0.264, 0.585), this indicates

that the time to death of patients who were cholesterol was reduced by 60.7% when

compared with patients who were not cholesterol. Finally, the φ of being died of pa-

tients with other disease was 0.382 times the factor of those without other disease (φ

= 0.382, CI: 0.246, 0.593), this indicates that the time to death of patients who were

infected by other disease was reduced by 61.8% when compared with patients who were

not infected by other disease source (Table 4.5)

Table 4.5: Results of Loglogistic Inverse Gaussian multivariable shared frailty model.

Covariate Variable Category β̂ φ St. err 95% CI P-value

Intercept 5.231 186.887 0.291 (105.556, 330.883) <0.001

Diabetes mellitus No(rf) 1

Yes -0.752 0.471 0.207 (0.314, 0.706) <0.001

Hypertension No(rf) 1

Yes -0.651 0.521 0.208 (0.346, 0.784) 0.002

Obesity No(rf) 1

Yes -1.273 0.279 0.209 (0.185, 0.422) <0.001

Smoking status No(rf) 1

Yes 1.002 2.724 0.346 (1.381, 5.372) 0.004

Cholesterol No(rf) 1

Yes -0.933 0.393 0.203 (0.264, 0.585) <0.001

Other disease No(rf) 1

Yes -0.962 0.382 0.224 (0.246, 0.593) <0.001

θ = 0.948 λ = -5.588

ρ = 0.998 τ = 0.051 AIC = 908.6871

Source = JUMC, β̂ = Coefficients, St.err = Standard error, 95% CI = confidence

interval for acceleration factor, rf = reference, θ = Variance of random term, τ =

kedall’s tau, φ = Acceleration factor, AIC = Akaike’s information criteria
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4.7 Checking for overall goodness of fit

4.7.1 Diagnostic Plots of the Parametric Baselines

The overall goodness of fit was used to evaluate the model. It is desirable to make this

determination in order to know if a fitted parametric model accurately describes the

data or not. Of the three parametric baseline graphs, the log-logistic curve is more

linear than the others. This suggests that a log-logistic baseline hazard is a better

choice for the IHD dataset (Figure 4.2).

Figure 4.2: Diagnostic plot for baselines hazards
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4.7.2 Cox Snell Residual plots

One method to assess how well the model fits the data is to look at the Cox-Snell resid-

ual. Relatives should resemble a censored sample from a unit exponential distribution

if the model fits. In other words, departures from the norm ought to be minimal. Fig-

ure 4.3 shows the plot for the residuals for the exponential, Weibull, and logarithmic

models fitted to the data using maximum likelihood estimation and cumulative hazard

functions. The residuals plot for the loglogistic hazard function can be observed to be

rather near to the 45-degree straight line through the origin. The graphic demonstrates

that the log-logistic model that was fitted to the data is generally acceptable.

Figure 4.3: Cox Snell residual plots
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4.7.3 Adequacy of Accelerated Failure Time

To determine whether the accelerated failure time provides a satisfactory fit to the

data used by two different populations, a quantile-quantile or q-q plot is created. By

contrasting the substantially different groups (diabetes mellitus, hypertension, obe-

sity, smoking status, cholesterol, and other disease), graphically assess the accelerated

failure-time model’s suitability (Figure 4.4). For all factors, the figures appeared to

be linear. As a result, an accelerated failure time model was developed, using the

log-logistic as a baseline.

Figure 4.4: Quantile-Quantile Plots
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4.8 Discussion

Ischaemic heart disease (IHD) is estimated to be the leading cause of mortality in the

world and in high-income countries it is also the leading cause of premature mortality

and disability (Guilbert, 2000). The primary goal of this study was to use parametric

shared frailty models to model the time to death of patients with IHD. Among many

parametric frailty models, Gamma and Inverse Gaussian shared frailty model were used

with exponential,,Weibull and loglogistic as baseline hazard function.

Woredas were utilized as clusters in this study because populations within a certain

woredas typically share certain factors, such as the environment, medical facilities,

and other factors, in determining the time to death of ischemic heart disease. The

likelihood ratio test was used to examine the impact of clustering (unobserved hetero-

geneity) between the clusters, and the results revealed that in all shared frailty models,

the variance of the random effect term is significantly different from zero at the 5%

level of significance.

Sex, age, diabetes mellitus, hypertension, obesity, smoking status, cholesterol, and

other diseases were factors that were of concern for this study. According to the uni-

variable analysis shown in (Appendix I), the time to death from IHD was strongly

influenced by diabetes mellitus, hypertension, obesity, smoking, cholesterol, and other

diseases. A similar study done at different places and times using different methods by

Nowbar et al. (2019), Moyehodie et al. (2022), Mensah (2008), and Sakboonyarat &

Rangsin (2018), as illustrated in the literature, agrees that the aforementioned factors

are highly related to IHD. The multivariable analysis includes all relevant factors from

the univariate analysis.

The AIC and BIC criteria were used to compare various parametric distributions with

two shared frailty distributions of the models for various multivariable analyses. Ac-

cording to Munda et al. (2012), the model with the lowest AIC and BIC provides the

greatest fit for the parametric shared frailty model. In this investigation, the mul-

tivariable log-logistic-inverse Gaussian shared frailty model showed a low AIC value

of 908.6871, making it a suitable model for modeling IHD data. The BIC value also
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supports this decision.

The results of this study showed that diabetes mellitus, hypertension, and other dis-

eases (co-infections), which reduced time to death by a factor of φ = 0.471, 0.521,

and 0.382, respectively, compared to the reference groups, had a significant impact

on the survival time of IHD patients at a 5 percent level of significance (Table 4.5).

The results of a comparable study by Altaseb (2020), Špinar (2012), and Mahendra et

al. (2015) which looked at the risk factors for ischemic heart disease, suggested that

diabetes mellitus, hypertension, and other diseases were strongly connected with the

survival of IHD patients. In addition, consistent studies conducted by Abdissa et al.

(2021) and Moyehodie et al. (2022) as discussed in the literature also indicated that

diabetes mellitus and hypertension (high blood pressure) were the known risk factors

of IHD.

The outcome of this study also showed that ischemic heart disease patients’ time to

death is significantly influenced by blood cholesterol levels, obesity and smoking. This

shows that the survival time of IHD patients is reduced by a factor of φ = 0.279,

0.393, and 2.724 respectively, when compared to the reference categories as the impact

of these diseases increases. According to studies done by Barbiero et al. (2009), and

Gebremedhin & Gebrekirstos (2021) obesity and serum cholesterol, particularly LDL

cholesterol, are all thought to be risk factors for IHD. Furthermore, according to Men-

sah (2008), Rashid et al. (2019), and Gona et al. (2021) studies, blood cholesterol levels,

obesity, and smoking were among the major determinant factors in time to death of

patients with IHD.

Even though the weibull model is the most commonly used parametric model since it

supports proportional hazards and an accelerated life-time model (Hougaard, 2000),

the log-logistic baseline was the best fit for the IHD data set when compared to the

exponential and weibull hazard functions. Diagnostics graphs were created to evaluate

the model’s suitability. As a result, figure 4.2 log-logistic plot of the log failure odds

with log time was more linear than the exponential (cumulative hazard versus time)

and weibull (log cumulative hazard versus log time) plots, demonstrating that the log

logistic baseline accurately reflected the IHD dataset.

45



The cumulative hazard plot for the Cox Snell residuals of the exponential, Weibull,

and log-logistic models also supported this conclusion (Figure 4.3). The log-logistic

model performed the best, as evidenced by the plots being closer to the line in this

instance. A q-q plot was created in order to determine whether the accelerated failure

time offered a good fit to the data utilized by two separate populations defined by

diabetes mellitus, hypertension, obesity, smoking status, cholesterol, and other disease

(Figure 4.4). For each covariate, plot seemed to follow a linear pattern. As a result,

the accelerated failure time model was utilized using the log-logistic as a baseline. So,

selecting a survival model to fit event periods is not strictly necessary. Comparing the

baseline hazard function and the frailty distribution is necessary before choosing the

best model for accurate inference.
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5 Conclusions and Recommendations

5.1 Conclusions

This study’s objective was to model the determinants of time to death of IHD by using

different parametric baselines with different shared frailty models using a dataset of

IHD patients obtained from JUMC. Out of the total 311, about 35.37% experienced

an event (death) and 64.63% did not experience an event (censored).

Almost everywhere, extending survival times is the main goal. To do that, it is prefer-

able to pinpoint the determining variables that are connected to ischemic heart disease’s

time to death. From the literature, a number of covariates were chosen as the predictor

variables. The log-logistic-inverse Gaussian frailty model is the most suitable statisti-

cal model among many parametric frailty models that accurately predicted the time

to death of ischemic heart disease patients who were identified at Jimma University

Medical Center. The heterogeneity in the woredas of the patients causes a clustering

effect on the time to death of IHD.

The result of the log-logistic-inverse Gaussian shared frailty model showed that the fac-

tors that determine the time to death of ischemic heart disease were diabetes mellitus,

hypertension, obesity, smoking status, cholesterol, and other diseases. The findings of

the study are generally consistent with data from earlier studies about relationships

between these variables and the time to death of ischemic heart disease. In general,

patients with the aforementioned predictors had shorter survival times.

The goodness of fit of the baseline distribution was determined using graphical methods

and Cox-Snell residuals plots in figures 4.2 and 4.3, which revealed that the log-logistic

distribution is superior to the exponential and Weibull distributions in explaining the

time to death of the IHD dataset.

5.2 Recommendations

The following suggestions are provided for decision-makers and the general public.

Based on the study’s findings and keeping the limitations in mind, the study makes
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the following recommendations.

• Ischemic heart disease patients with diabetes mellitus, hypertension, obesity,

smoking status, cholesterol, and other diseases should receive extra care from

medical personnel and medication.

• Additional socio-demographic, clinical, and other characteristics that were ex-

cluded from the study due to the source’s data limitations will be incorporated

into future research to provide more details about the determining factors that

affect the survival times of IHD patients (like marital status, heredity of patients,

physical activity, stress, alcoholic consumption, unhealthy nutrition, and soon).
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Badimon, L., Padró, T., & Vilahur, G. (2012). Atherosclerosis, platelets and thrombosis

in acute ischaemic heart disease. European Heart Journal: Acute Cardiovascular

Care, 1 (1), 60–74.

Barbiero, S. M., Pellanda, L. C., Cesa, C. C., Campagnolo, P., Beltrami, F., &

49



Abrantes, C. C. (2009). Overweight, obesity and other risk factors for ihd in brazilian

schoolchildren. Public health nutrition, 12 (5), 710–715.

Berkson, J., & Gage, R. P. (1952). Survival curve for cancer patients following treat-

ment. Journal of the American Statistical Association, 47 (259), 501–515.

Bradbury, A. W., Adam, D. J., Bell, J., Forbes, J. F., Fowkes, F. G. R., Gillespie,

I., et al. (2010). Bypass versus angioplasty in severe ischaemia of the leg (basil)

trial: an intention-to-treat analysis of amputation-free and overall survival in patients

randomized to a bypass surgery-first or a balloon angioplasty-first revascularization

strategy. Journal of vascular surgery , 51 (5), 5S–17S.

Breslow, N. E. (1975). Analysis of survival data under the proportional hazards model.

International Statistical Review/Revue Internationale de Statistique, 45–57.

Clayton, D. G. (1978). A model for association in bivariate life tables and its appli-

cation in epidemiological studies of familial tendency in chronic disease incidence.

Biometrika, 65 (1), 141–151.

Costella, J. P. (2010). A simple alternative to kaplan–meier for survival curves. Peter

MacCallum Cancer Centre Working Paper (No.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical

Society: Series B (Methodological), 34 (2), 187–202.

Cox, D. R., & Snell, E. J. (1968). A general definition of residuals. Journal of the

Royal Statistical Society: Series B (Methodological), 30 (2), 248–265.

Crump, C., Sundquist, J., Winkleby, M. A., & Sundquist, K. (2017). Interactive effects

of obesity and physical fitness on risk of ischemic heart disease. International journal

of obesity , 41 (2), 255–261.

Dätwyler, C., & Stucki, T. (2011). Parametric survival models.

Gatabazi, P. (2016). Survival analysis and its stochastic process approach with appli-

cation to diabetes data. University of Johannesburg (South Africa).

50



Gebremedhin, M. H., & Gebrekirstos, L. G. (2021). Dietary and behavioral risk

factors of ischemic heart disease among patients of medical outpatient departments in

southern ethiopia: Unmatched case-control study. Integrated Blood Pressure Control ,

14 , 123.

Gerr, F., Marcus, M., Ensor, C., Kleinbaum, D., Cohen, S., Edwards, A., et al. (2002).

A prospective study of computer users: I. study design and incidence of muscu-

loskeletal symptoms and disorders. American journal of industrial medicine, 41 (4),

221–235.

Glidden, D. V., & Vittinghoff, E. (2004). Modelling clustered survival data from

multicentre clinical trials. Statistics in medicine, 23 (3), 369–388.

Goel, M. K., Khanna, P., & Kishore, J. (2010). Understanding survival analysis:

Kaplan-meier estimate. International journal of Ayurveda research, 1 (4), 274.

Gona, P. N., Kimokoti, R. W., Gona, C. M., Ballout, S., Rao, S. R., Mapoma, C. C., et

al. (2021). Changes in body mass index, obesity, and overweight in southern africa

development countries, 1990 to 2019: Findings from the global burden of disease,

injuries, and risk factors study. Obesity Science & Practice, 7 (5), 509–524.

Grauss, R. W., Winter, E. M., Tuyn, J. van, Pijnappels, D. A., Steijn, R. V., Hogers, B.,

et al. (2007). Mesenchymal stem cells from ischemic heart disease patients improve

left ventricular function after acute myocardial infarction. American Journal of

Physiology-Heart and Circulatory Physiology , 293 (4), H2438–H2447.

Grover, G., & Seth, D. (2014). Application of frailty models on advance liver disease

using gamma as frailty distribution. SRL, 3 , 42–50.

Guilbert, J. (2000). The world health report 1999making a difference. report of the

director general, world health organization, geneva. Education for Health, 13 (1),

126–128.

Gupta, R., & Yusuf, S. (2019). Challenges in management and prevention of ischemic

heart disease in low socioeconomic status people in llmics. BMC medicine, 17 (1),

1–11.

51



Hanagal, D. D. (2019). Various frailty models. In Modeling survival data using frailty

models (pp. 85–121). Springer.

Hougaard, P. (1984). Life table methods for heterogeneous populations: distributions

describing the heterogeneity. Biometrika, 71 (1), 75–83.

Hougaard, P. (1986). A class of multivanate failure time distributions. Biometrika,

73 (3), 671–678.

Hougaard, P. (1995). Frailty models for survival data. Lifetime data analysis , 1 (3),

255–273.

Hougaard, P. (2000). Shared frailty models. In Analysis of multivariate survival data

(pp. 215–262). Springer.

Huang, X., & Wolfe, R. A. (2002). A frailty model for informative censoring. Biomet-

rics , 58 (3), 510–520.

Janssen, P., & Duchateau, L. (2011). Frailty model. In International encyclopedia of

statistical science (pp. 544–546). Springer.

Kalbfleisch, J. D., & Prentice, R. L. (2011). The statistical analysis of failure time

data. John Wiley & Sons.

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete obser-

vations. Journal of the American statistical association, 53 (282), 457–481.

Khan, M. A., Hashim, M. J., Mustafa, H., Baniyas, M. Y., Al Suwaidi, S. K. B. M.,

AlKatheeri, R., et al. (2020). Global epidemiology of ischemic heart disease: results

from the global burden of disease study. Cureus , 12 (7).

Kheiri, S., Kimber, A., & Meshkani, M. R. (2007). Bayesian analysis of an inverse

gaussian correlated frailty model. Computational statistics & data analysis , 51 (11),

5317–5326.

Klein, J. P. (1992). Semiparametric estimation of random effects using the cox model

based on the em algorithm. Biometrics , 795–806.

52



Klein, J. P., & Moeschberger, M. L. (2003). Semiparametric proportional hazards

regression with fixed covariates. In Survival analysis (pp. 243–293). Springer.

Kleinbaum, D. G., Klein, M., et al. (2012). Survival analysis: a self-learning text

(Vol. 3). Springer.

Kong, L., & Kaddoum, G. (2019). Secrecy characteristics with assistance of mixture

gamma distribution. IEEE Wireless Communications Letters , 8 (4), 1086–1089.

Mahendra, J., Kumar, S. D., Anuradha, T., Talikoti, P., Nagaraj, R., & Vishali, V.

(2015). Plasma fibrinogen in type 2 diabetic patients with metabolic syndrome and

its relation with ischemic heart disease (ihd) and retinopathy. Journal of clinical and

diagnostic research: JCDR, 9 (1), BC18.

Manda, S. (2020). Flexible modeling of frailty effects in clustered survival data. In Com-

putational and methodological statistics and biostatistics (pp. 489–509). Springer.

Manton, K. G., Stallard, E., & Vaupel, J. W. (1986). Alternative models for the

heterogeneity of mortality risks among the aged. Journal of the American Statistical

Association, 81 (395), 635–644.

Mensah, G. (2008). Ischaemic heart disease in africa. Heart , 94 (7), 836–843.

Moran, A., Forouzanfar, M., Roth, G., Mensah, G., & Ezzati, M. (1990). others.

2014a.. The Global Burden of Ischemic Heart Disease in, 1493–501.

Moyehodie, Y. A., Muluneh, M. W., Belay, A. T., & Fenta, S. M. (2022). Time

to death and its determinant factors among patients with chronic heart failure in

northwest ethiopia: A retrospective study at selected referral hospitals. Frontiers in

Cardiovascular Medicine, 9 .

Mozaffarian, D., Benjamin, E., Go, A., Arnett, D., Blaha, M., Cushman, M., et al.

(2015). Mohler 3rd. ER, Moy, CS, Muntner, P., Mussolino, ME, Nasir, K., Neumar,

RW, Nichol, G., Palaniappan, L., Pandey, DK, Reeves, MJ, Rodriguez, CJ, Sorlie,

PD, Stein, J., Towfighi, A., Turan, TN, Virani, SS, Willey, JZ, Woo, D., Yeh, RW,

Turner, MB .

53



Munda, M., Rotolo, F., & Legrand, C. (2012). parfm: Parametric frailty models in r.

Journal of Statistical Software, 51 , 1–20.

Nilsson, S. (2008). Chest pain and ischemic heart disease: Diagnosis and management

in primary health care. Unpublished doctoral dissertation, Institutionen för medicin

och hälsa.

Nowbar, A. N., Gitto, M., Howard, J. P., Francis, D. P., & Al-Lamee, R. (2019).

Mortality from ischemic heart disease: Analysis of data from the world health orga-

nization and coronary artery disease risk factors from ncd risk factor collaboration.

Circulation: cardiovascular quality and outcomes , 12 (6), e005375.

Oakes, D. (1982). A model for association in bivariate survival data. Journal of the

Royal Statistical Society: Series B (Methodological), 44 (3), 414–422.

Ostadal, B., & Ostadal, P. (2014). Sex-based differences in cardiac ischaemic injury

and protection: therapeutic implications. British journal of pharmacology , 171 (3),

541–554.

Paul, S. A., Simons, J. W., & Mabjeesh, N. J. (2004). Hif at the crossroads between

ischemia and carcinogenesis. Journal of cellular physiology , 200 (1), 20–30.

Pipper, C. B., & Martinussen, T. (2004). An estimating equation for parametric

shared frailty models with marginal additive hazards. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 66 (1), 207–220.

Prabhakaran, D., Jeemon, P., Sharma, M., Roth, G. A., Johnson, C., Harikrishnan, S.,

et al. (2018). The changing patterns of cardiovascular diseases and their risk factors

in the states of india: the global burden of disease study 1990–2016. The Lancet

Global Health, 6 (12), e1339–e1351.

Price, D. L., & Manatunga, A. K. (2001). Modelling survival data with a cured fraction

using frailty models. Statistics in medicine, 20 (9-10), 1515–1527.

Rashid, N. A., Nawi, A. M., & Khadijah, S. (2019). Exploratory analysis of traditional

risk factors of ischemic heart disease (ihd) among predominantly malay malaysian

women. BMC public health, 19 (4), 1–8.

54



Roth, G. A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S. F., Abyu, G., et

al. (2017). Global, regional, and national burden of cardiovascular diseases for 10

causes, 1990 to 2015. Journal of the American college of cardiology , 70 (1), 1–25.

Sakboonyarat, B., & Rangsin, R. (2018). Prevalence and associated factors of ischemic

heart disease (ihd) among patients with diabetes mellitus: a nation-wide, cross-

sectional survey. BMC cardiovascular disorders , 18 (1), 1–7.

Sargent, D. J. (1998). A general framework for random effects survival analysis in the

cox proportional hazards setting. Biometrics , 1486–1497.

Shashu, B. (2021). Profile of patients presenting to addis cardiac hospital, addis ababa,

ethiopia, from may 2007 to december 2011. East African Medical Journal , 98 (7),

3966–3974.
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6 Annex

6.1 Annex I: Univariable Analysis for Frailty Models

Table 6.1: Exponential versus Gamma Univariable frailty model

Covariate Variable Category β̂ φ St. err 95% CI P value

Sex Coeff 3.8069 45.008 0.219 (29.303, 69.130) <0.001

Female(rf) 1

Male 0.0735 1.076 0.217 (0.703, 1.647) 0.74

Age Coeff 4.497 89.739 1.01 (12.308, 654.301) <0.001

0-14(rf) 1

15-47 -0.737 0.478 1.02 (0.064, 3.533) 0.47

48-63 -0.504 0.604 1.02 (0.081, 4.463) 0.62

≥ 64 -0.729 0.482 1.02 (0.064, 3.593) 0.48

Diabetes mellitus Coeff 4.21 67.552 0.160 (49.337, 92.491) <0.001

No(rf) 1

Yes -1.02 0.362 0.194 (0.247, 0.529) <0.001

Hypertension Coeff 4.16 64.333 0.136 (49.272, 83.998) <0.001

No(rf) 1

Yes -1.00 0.367 0.191 (0.252, 0.533) <0.001

Obesity Coeff 4.29 72.847 0.174 (51.780, 102.486) <0.001

No(rf) 1

Yes -1.36 0.257 0.195 (0.175, 0.376) <0.001

Smoking status Coeff 3.657 38.736 0.100 (31.830, 47.141) <0.001

No() 1

Yes 0.933 2.541 0.348 (1.285, 5.026) 0.007

Cholesterol Coeff 4.47 87.688 0.195 (59.835, 128.504) <0.001

No(rf) 1

Yes -1.23 0.292 0.209 (0.193, 0.439) <0.001

Other disease Coeff 4.57 97.016 0.209 (64.392, 146.166) <0.001

No(rf) 1

Yes -1.23 0.290 0.221 (0.188, 0.448) <0.001
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Table 6.2: Exponential versus Inverse Gaussian Univariable frailty model

Covariate Variable Category β̂ φ St. err 95% CI P value

Sex Coeff 3.7450 42.306 0.201 (28.508, 62.784) <0.001

Female(rf) 1

Male 0.0738 1.076 0.215 (0.705, 1.642) 0.73

Age Coeff 4.474 87.703 1.01 (12.131, 634.025) <0.001

0-14(rf) 1

15-47 -0.777 0.459 1.02 (0.062, 3.380) 0.45

48-63 -0.544 0.580 1.02 (0.078, 4.276) 0.59

≥ 64 -0.758 0.468 1.02 (0.063, 3.478) 0.46

Diabetes mellitus Coeff 4.20 66.845 0.161 (48.786, 91.588) <0.001

No(rf) 1

Yes -1.02 0.361 0.195 (0.247, 0.529) <0.001

Hypertension Coeff 4.165 64.380 0.143 (48.605, 85.274) <0.001

No(rf) 1

Yes -0.999 0.368 0.192 (0.252, 0.536) <0.001

Obesity Coeff 4.25 70.173 0.170 (50.277, 97.943) <0.001

No(rf) 1

Yes -1.36 0.256 0.195 (0.175, 0.376) <0.001

Smoking status Coeff 3.672 39.348 0.127 (30.698, 50.435) <0.001

No() 1

Yes 0.919 2.505 0.351 (1.260, 4.983) 0.009

Cholesterol Coeff 4.47 86.964 0.203 (58.368, 129.571) <0.001

No(rf) 1

Yes -1.24 0.288 0.210 (0.191, 0.435) <0.001

Other disease Coeff 4.56 95.668 0.208 (63.623, 143.853) <0.001

No(rf) 1

Yes -1.24 0.290 0.221 (0.188, 0.447) <0.001
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Table 6.3: Weibull versus Gamma Univariable frailty model

Covariate Variable Category β̂ φ St. err 95% CI P value

Sex Coeff 3.9268 50.742 0.243 (31.516, 81.696) <0.001

Female(rf) 1

Male 0.0921 1.096 0.264 (0.653, 1.839) 0.73

Age Coeff 4.897 133.887 1.25 (11.494, 1559.569) <0.001

0-14(rf) 1

15-47 -1.023 0.359 1.26 (0.030, 4.229) 0.42

48-63 -0.761 0.467 1.26 (0.039, 5.506) 0.55

≥ 64 -1.000 0.367 1.27 (0.030, 4.393) 0.43

Diabetes mellitus Coeff 4.42 83.351 0.229 (53.170, 130.663) <0.001

No(rf) 1

Yes -1.15 0.317 0.241 (0.197, 0.508) <0.001

Hypertension Coeff 4.39 80.866 0.222 (52.357, 124.899) <0.001

No(rf) 1

Yes -1.13 0.321 0.243 (0.199, 0.517) <0.001

Obesity Coeff 4.46 86.076 0.234 (54.398, 136.200) <0.001

No(rf) 1

Yes -1.48 0.228 0.237 (0.143, 0.363) <0.001

Smoking status Coeff 3.83 45.947 0.161 (33.499, 63.019) <0.001

No() 1

Yes 1.07 2.926 0.426 (1.270, 6.740) 0.12

Cholesterol Coeff 4.69 108.586 0.266 (64.506, 182.789) <0.001

No(rf) 1

Yes -1.35 0.259 0.246 (0.159, 0.420) <0.001

Other disease Coeff 4.81 123.023 0.287 (70.143, 215.770) <0.001

No(rf) 1

Yes -1.37 0.253 0.269 (0.149, 0.429) <0.001
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Table 6.4: Weibull versus Inverse Gaussian Univariable frailty model

Covariate Variable Category β̂ φ St. err 95% CI P value

Sex Coeff 3.8984 49.323 0.250 (30.246, 80.435) <0.001

Female(rf) 1

Male 0.0845 1.088 0.254 (0.661, 1.790) 0.74

Age Coeff 4.760 116.736 1.20 (11.108, 1226.800) <0.001

0-14(rf) 1

15-47 -0.911 0.402 1.20 (0.038, 4.238) 0.45

48-63 -0.652 0.521 1.20 (0.049, 5.498) 0.59

≥ 64 -0.908 0.403 1.21 (0.037, 4.309) 0.45

Diabetes mellitus Coeff 4.43 83.778 0.225 (53.915, 130.183) <0.001

No(rf) 1

Yes -1.17 0.309 0.245 (0.191, 0.499) <0.001

Hypertension Coeff 4.43 84.135 0.212 (55.572, 127.377) <0.001

No(rf) 1

Yes -1.19 0.304 0.249 (0.186, 0.495) <0.001

Obesity Coeff 4.40 81.515 0.222 (52.787, 125.879) <0.001

No(rf) 1

Yes -1.49 0.225 0.241 (0.140, 0.361) <0.001

Smoking status Coeff 3.82 45.611 0.165 (33.017, 63.009) <0.001

No() 1

Yes 1.06 2.897 0.423 (1.264, 6.637) 0.12

Cholesterol Coeff 4.61 100.843 0.257 (60.951, 166.844) <0.001

No(rf) 1

Yes -1.34 0.261 0.247 (0.160, 0.423) <0.001

Other disease Coeff 4.78 119.291 0.279 (69.044, 206.105) <0.001

No(rf) 1

Yes -1.38 0.250 0.271 (0.147, 0.425) <0.001
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Table 6.5: Loglogistic versus Gamma Univariable frailty model

Covariate Variable Category β̂ φ St. err 95% CI P value

Sex Coeff 3.5226 33.871 0.251 (20.728, 55.348) <0.001

Female(rf) 1

Male 0.0545 1.055 0.280 (0.609, 1.828) 0.85

Age Coeff 4.551 94.720 1.20 (9.078, 988.273) <0.001

0-14(rf) 1

15-47 -1.129 0.323 1.21 (0.030, 3.440) 0.35

48-63 -0.841 0.431 1.21 (0.040, 4.598) 0.49

≥ 64 -1.079 0.339 1.22 (0.031, 3.689) 0.38

Diabetes mellitus Coeff 4.00 54.731 0.212 (36.094, 82.991) <0.001

No(rf) 1

Yes -1.19 0.304 0.246 (0.187, 0.492) <0.001

Hypertension Coeff 3.98 53.509 0.207 (35.646, 80.322) <0.001

No(rf) 1

Yes -1.23 0.291 0.249 (0.179, 0.475) <0.001

Obesity Coeff 4.03 56.123 0.218 (36.577, 86.114) <0.001

No(rf) 1

Yes -1.53 0.217 0.236 (0.137, 0.345) <0.001

Smoking status Coeff 3.38 29.259 0.160 (21.390, 40.022) <0.001

No() 1

Yes 1.19 3.281 0.406 (1.481, 7.267) 0.003

Cholesterol Coeff 4.3 73.795 0.251 (45.109, 120.723) <0.001

No(rf) 1

Yes -1.4 0.245 0.235 (0.154, 0.389) <0.001

Other disease Coeff 4.39 80.822 0.265 (48.071, 135.887) <0.001

No(rf) 1

Yes -1.40 0.247 0.259 (0.149, 0.411) <0.001
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Table 6.6: Loglogistic versus Inverse Gaussian Univariable frailty model

Covariate Variable Category β̂ φ St. err 95% CI P value

Sex Coeff 3.5220 33.852 0.263 (20.224, 56.662) <0.001

Female(rf) 1

Male 0.0346 1.035 0.267 (0.613, 1.746) 0.9

Age Coeff 4.427 83.662 1.12 (9.267, 755.283) <0.001

0-14(rf) 1

15-47 -1.014 0.362 1.13 (0.039, 3.306) 0.37

48-63 -0.716 0.488 1.13 (0.053, 4.442) 0.52

≥ 64 -1.007 0.365 1.14 (0.039, 3.384) 0.38

Diabetes mellitus Coeff 4.01 54.998 0.205 (36.786, 82.227) <0.001

No(rf) 1

Yes -1.23 0.293 0.250 (0.179, 0.478) <0.001

Hypertension Coeff 4.0 54.486 0.192 (37.413, 79.348) <0.001

No(rf) 1

Yes -1.3 0.272 0.254 (0.165, 0.449) <0.001

Obesity Coeff 3.97 52.871 0.204 (35.468, 78.815) <0.001

No(rf) 1

Yes -1.54 0.213 0.239 (0.133, 0.341) <0.001

Smoking status Coeff 3.37 29.211 0.174 (20.763, 41.098) <0.001

No() 1

Yes 1.15 3.172 0.396 (1.458, 6.899) 0.004

Cholesterol Coeff 4.21 67.689 0.242 (42.090, 108.858) <0.001

No(rf) 1

Yes -1.40 0.246 0.235 (0.155, 0.391) <0.001

Other disease Coeff 4.36 78.099 0.257 (47.220, 129.170) <0.001

No(rf) 1

Yes -1.41 0.243 0.260 (0.146, 0.405) <0.001

62



6.2 Annex II: Multivariable Analysis for Frailty Models

Table 6.7: Results of Exponential Gamma multivariable shared frailty model.

Covariate Variable Category β̂ φ St. err 95% CI P value

Intercept 5.654 285.308 0.246 (176.243, 461.866) <0.001

Diabetes mellitus No(rf) 1

Yes -0.677 0.508 0.206 (0.339, 0.760) 0.001

Hypertension No(rf) 1

Yes -0.568 0.566 0.207 (0.377, 0.849) 0.006

Obesity No(rf) 1

Yes -1.207 0.298 0.199 (0.202, 0.441) <0.001

Smoking status No(rf) 1

Yes 0.907 2.476 0.354 (1.236, 4.957) 0.01

Cholesterol No(rf) 1

Yes -0.887 0.411 0.213 (0.271, 0.625) <0.001

Other disease No(rf) 1

Yes -1.012 0.363 0.233 (0.230, 0.574) <0.001

θ = 0.005 λ = 0.003 τ = 0.022 AIC = 916.4669

Source = JUMC, β̂ = Coefficients, St.err = Standard error, 95% CI = confidence

interval for acceleration factor, rf = reference, θ = Variance of random term, λ =

scale, τ = kedall’s tau, φ = Acceleration factor, AIC = Akaike’s information criteria
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Table 6.8: Results of Exponential Inverse Gaussian multivariable shared frailty model.

Covariate Variable Category β̂ φ St. err 95% CI P value

Intercept 5.702 299.524 0.260 (179.968, 498.503) <0.001

Diabetes mellitus No(rf) 1

Yes -0.665 0.514 0.209 (0.341, 0.774) 0.002

Hypertension No(rf) 1

Yes -0.580 0.560 0.210 (0.371, 0.844) 0.006

Obesity No(rf) 1

Yes -1.234 0.291 0.201 (0.196, 0.432) <0.001

Smoking status No(rf) 1

Yes 0.943 2.568 0.359 (1.269, 5.196) 0.009

Cholesterol No(rf) 1

Yes -0.903 0.405 0.214 (0.266, 0.617) <0.001

Other disease No(rf) 1

Yes -1.040 0.353 0.238 (0.221, 0.563) <0.001

θ = 0.075 λ = 0.003 τ = 0.019 AIC = 914.5860

Source = JUMC, β̂ = Coefficients, St.err = Standard error, 95% CI = confidence

interval for acceleration factor, rf = reference, θ = Variance of random term, λ =

scale, τ = kedall’s tau, φ = Acceleration factor, AIC = Akaike’s information criteria
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Table 6.9: Results of weibull Gamma multivariable shared frailty model.

Covariate Variable Category β̂ φ St. err 95% CI P value

Intercept 5.757 316.417 0.353 (158.539, 631.515) <0.001

Diabetes mellitus No(rf) 1

Yes -0.569 0.565 0.208 (0.376, 0.850) 0.006

Hypertension No(rf) 1

Yes -0.559 0.571 0.209 (0.379, 0.860) 0.007

Obesity No(rf) 1

Yes -1.221 0.294 0.204 (0.197, 0.439) <0.001

Smoking status No(rf) 1

Yes 0.957 2.604 0.347 (1.318, 5.145) 0.006

Cholesterol No(rf) 1

Yes -0.917 0.399 0.210 (0.264, 0.603) <0.001

Other disease No(rf) 1

Yes -1.060 0.346 0.240 (0.216, 0.554) <0.001

θ = 0.561 λ = 0.004

ρ = 0.982 τ = 0.02 AIC = 919.3614

Source = JUMC, β̂ = Coefficients, St.err = Standard error, 95% CI = confidence

interval for acceleration factor, rf = reference, θ = Variance of random term, τ =

kedall’s tau, φ = Acceleration factor, AIC = Akaike’s information criteria
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Table 6.10: Results of weibull Inverse Gaussian multivariable shared frailty model.

Covariate Variable Category β̂ φ St. err 95% CI P value

Intercept 5.654 285.293 0.317 (153.223, 531.199) <0.001

Diabetes mellitus No(rf) 1

Yes -0.650 0.521 0.211 (0.345, 0.788) 0.002

Hypertension No(rf) 1

Yes -0.571 0.565 0.208 (0.375, 0.849) 0.006

Obesity No(rf) 1

Yes -1.216 0.296 0.210 (0.196, 0.447) <0.001

Smoking status No(rf) 1

Yes 0.933 2.541 0.355 (1.267, 5.095) 0.009

Cholesterol No(rf) 1

Yes -0.891 0.410 0.215 (0.269, 0.625) <0.001

Other disease No(rf) 1

Yes -1.027 0.358 0.240 (0.223, 0.573) <0.001

θ = 0.081 λ = 0.004

ρ = 0.981 τ = 0.017 AIC = 916.5015

Source = JUMC, β̂ = Coefficients, St.err = Standard error, 95% CI = confidence

interval for acceleration factor, rf = reference, θ = Variance of random term, τ =

kedall’s tau, φ = Acceleration factor, AIC = Akaike’s information criteria
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Table 6.11: Results of Loglogistic Gamma multivariable shared frailty model.

Covariate Variable Category β̂ φ St. err 95% CI P value

Intercept 5.355 211.592 0.332 (110.338, 405.766) <0.001

Diabetes mellitus No(rf) 1

Yes -0.722 0.485 0.205 (0.324, 0.726) <0.001

Hypertension No(rf) 1

Yes -0.609 0.543 0.208 (0.362, 0.817) 0.003

Obesity No(rf) 1

Yes -1.275 0.279 0.206 (0.186, 0.418) <0.001

Smoking status No(rf) 1

Yes 1.005 2.732 0.343 (1.394, 5.354) 0.003

Cholesterol No(rf) 1

Yes -0.969 0.379 0.201 (0.256, 0.562) <0.001

Other disease No(rf) 1

Yes -0.978 0.376 0.224 (0.242, 0.583) <0.001

θ = 0.569 λ = -5.597

ρ = 1.000 τ = 0.018 AIC = 910.8247

Source = JUMC, β̂ = Coefficients, St.err = Standard error, 95% CI = confidence

interval for acceleration factor, rf = reference, θ = Variance of random term, τ =

kedall’s tau, φ = Acceleration factor, AIC = Akaike’s information criteria
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