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�e hydrological model is an important tool in water resource management, allocation, and prediction. However, the hydrological
models are subject to the uncertainty resulting from di�erent sources of errors involved in the large number of parameters. �e
hydrological models in the management of water resources play a very signi�cant role in quantifying uncertainty. �erefore,
uncertainty analysis implementation is essential to advance con�dence in modeling before performing the hydrological sim-
ulation.�e purpose of the study was to assess the uncertainty parameters for the stream�ow using the Soil andWater Assessment
Tool (SWAT) hydrological model integrated sequential uncertainty �tting (SUFI-2) algorithm to Nashe watershed located in the
Northwestern, Upper Blue Nile River Basin.�e required input data for this study were digital elevation model, land use, soil map
and data, meteorological data (precipitation, minimum and maximum temperature, wind speed, solar radiation, and relative
humidity), and stream�ow data. �e calibration and validation model was computed to simulate the observed stream�ow data
from 1985 to 2008 including two years of warm-up periods. Model calibration, validation, and analysis of parameter uncertainty
were conducted for both daily and monthly observed stream�ows at the gauging stations through SUFI-2, which is one of the
algorithms of the SWAT-Calibration and Uncertainty Program (SWAT_CUP). �e results show that CN_2, GW_DELAY,
ALPHA_BNK, CH_N2, and SOL_AWC were the most sensitive parameter for the monthly period and had a great impact on the
stream�ow simulation. Modeling results indicated that the method provides better results for the monthly time period than the
daily time period for both calibration and validation. �e result indicated that R2 and NSE were 0.89 and 0.85 and 0.82 and 0.79,
respectively, monthly and daily during the calibration.�e validation likewise demonstrated a good performance with R2 and NSE
results of 0.88 and 0.78 and 0.85 and 0.76, respectively, for monthly and daily time periods. �e results of this study provide a
scienti�c reference based on uncertainty analysis to decision-makers to improve the decision support process in river
basin management.

1. Introduction

Hydrological models were developed and utilized for
mathematical representations of hydrological processes to
improve the understanding of the impact of natural and
anthropogenic disturbances on hydrological characteristics
and forecast water resource changes, thereby assisting in
water resource management decisions [1–3]. Hydrological
models often contain many parameters that cannot be
measured directly because they are costly, time-consuming,

and sometimes di¨cult to achieve practically. �ey are
extensively used since they can estimate �ow and help to
better understand the impact of natural disturbances on
watershed systems. �e uncertainty of model input occurs
because of inherent randomness in natural processes, lim-
itations in measurement, and lack of data [4]. As distributed
watershed models are increasingly being used to support
decisions on alternative management strategies, it is very
important to apply hydrological models in practical water
resource investigations. �is necessitates proper calibration

Hindawi
Applied and Environmental Soil Science
Volume 2022, Article ID 1826942, 19 pages
https://doi.org/10.1155/2022/1826942

mailto:magiyyee172@gmail.com
https://orcid.org/0000-0001-7898-9451
https://orcid.org/0000-0001-5972-5768
https://orcid.org/0000-0002-6955-6838
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1826942


and uncertainty analysis [5]. Due to various influencing
factors (e.g., climate, land use, and other anthropogenic
disturbances), watershed systems are complicated, and ac-
curate hydrological process prediction is essential for wa-
tershed management [6].

)e uncertainty issues in hydrological modeling have
been paid much attention since their great effects on pre-
diction and further decision-making in hydrological pa-
rameters [7]. )e sources of uncertainties in hydrological
modeling are related to three possible sources: data input,
such as the meteorological data, which can change the
hydrological modeling procedure and simulation results
directly; a model structure that is mainly caused by the
assumptions and simplification of the model; and model
parameters [8]. Furthermore, parameter optimization is the
most significant method in the hydrological simulation since
the development of the hydrological model involves a huge
number of parameters, each of which is particularly critical
for the simulation results [4]. Parameter uncertainty is the
most common but relatively easy to control through ap-
propriate calibrations [9]. )ese parameters are usually
difficult to measure directly, and they are generally derived
from the empirical estimation and literature reference,
whichmay introduce uncertainties into the modeling system
[10]. )e uncertainty analysis and sensitivity analysis are
essential processes to reduce the uncertainties imposed by
the variations of model parameters and structures [11, 12].

For the assessment of model behavior and to identify
critical model components, sensitivity analysis is a useful
tool. As a result, understanding the impact of each parameter
on simulation outcomes during hydrological simulation
requires model parameter sensitivity analysis. [13]. It has
been demonstrated that parameter uncertainty is unavoid-
able in hydrological modeling and the corresponding as-
sessment should be carried out prior to model prediction in
the decision-making process. )ere are many uncertainties
involved while working with hydrological models that arise
due to large spatial variability and a multitude of input
parameters [2, 4, 14]. )e number of parameters required in
the calibration process can be reduced and simulation ef-
ficiency improved by selecting parameters based on pa-
rameter sensitivity determined through sensitivity analysis.
)e uncertainty may cause overestimation or underesti-
mation. Overestimation of uncertainty may lead to wasted
time and money, as well as improper watershed manage-
ment design, whereas underestimation of uncertainty may
result in little impact on unexpected losses [15].

)erefore, uncertainty analysis is necessary and critical to
ensure the success of hydrological modeling [16]. Similarly,
the study of streamflow modeling and its uncertainty in the
basin is critical for settling water resource disputes and
managing water resources among the countries along the
river basin [17]. )e distributed and semi-distributed hy-
drological models have been widely used for streamflow
modeling. )e semi-distributed hydrological model, Soil and
Water Assessment Tool (SWAT) combined with the SWAT-
CUP (SWAT-Calibration and Uncertainty Program), links
GLUE (generalized likelihood uncertainty estimation), Par-
aSol (parameter solution), SUFI-2 (sequential uncertainty

fitting), MCMC (Markov chain Monte Carlo), and PSO
(particle swarm optimization) procedures to SWAT.

Recent studies show that SWAT is now globally rec-
ognized for modeling large and small watersheds and has
been regarded as an interdisciplinary endeavor [2, 18–21].
)e hydrological model (SWAT) performs sensitivity
analysis, calibration, validation, and uncertainty analysis. In
this study, the Soil and Water Assessment Tool-Calibration
and Uncertainty Program (SWAT-CUP) was combined with
the SUFI-2 method to quantify the uncertainty of hydro-
logical parameters to provide a necessary reference for
hydrological modeling and to check the calibration and
validation of the hydrological model at the study area [4].
Several researchers compared calibration and uncertainty
analysis methods for the SWAT model including the gen-
eralized likelihood uncertainty estimation (GLUE) [22],
sequential uncertainty fitting (SUFI-2) [23], parameter so-
lution (ParaSol), and Markov chain Monte Carlo (MCMC).
SUFI-2 is a semi-automated approach that makes the cali-
bration process most widely used to carry out sensitivity
analysis, uncertainty analysis, calibration, and validation of
hydrological parameters on both daily and monthly time
periods.

SUFI-2 is the more frequent method used for calibration
and uncertainty analysis and is also a convenient method to
use [24, 25]. )e other advantage is a large number of
parameters, and measured data from many gauging stations
can be simulated simultaneously using SUFI-2. )e SUFI-2
method has been widely applied to analyze parameter
sensitivity and identify critical sources of uncertainty in
modeling watersheds [4, 5, 26, 27]. )is approach to
comprehensive sensitivity analysis has the advantage of
being relatively quick in comparison with similar proce-
dures, and as a result, rather than an absolute measure of
sensitivity, however, rather obtains a ranked order of the
parameters. Additionally, this study may serve as a
benchmark for any studies in the country. However, com-
paring uncertainty analysis methodologies in hydrological
modeling presents a number of challenges. Similarly, the
difficulty of constructing the likelihood function, the high
number of simulations required to produce a fair approx-
imation to the posterior, and the numerical implementa-
tion’s inability to cover multimodal distributions are all
drawbacks of this technique.

As far as the author’s understanding, this is the first study
concentrating on parameter uncertainty analysis for
streamflow simulation using the SWATmodel in the Nashe
watershed of the Blue Nile River Basin in Ethiopia. Only a
few articles comparing alternative uncertainty analysis
methodologies are available, and they are limited to appli-
cations of simple hydrological models. As a result, this study
presents a novel technique for quantifying the uncertainty of
hydrological parameters, providing a necessary reference for
hydrological modeling and checking the calibration and
validation of the hydrological model in the study area by
combining the Soil and Water Assessment Tool-Calibration
and Uncertainty Program (SWAT-CUP) with the SUFI-2
(sequential uncertainty fitting) method. )is research sheds
light on how to choose an uncertainty analysis method in the
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modeling field, with a focus on the hydrological modeling
community. )e drawback of this method is that it is semi-
automated and requires the interaction of the modeler for
checking a set of suggested parameters. Hence, the objectives
of this study were (1) to evaluate the feasibility of the SWAT
model for simulating streamflow over the Nashe station; (2)
to analyze the uncertainty of the parameters using the SWAT
model using the SUFI-2 method.

2. Materials and Methods

2.1. Study Area Description. )e Nashe watershed is located
in Oromia regional state, Ethiopia, at about 300 km
northwest of Addis Ababa. )e watershed is a subbasin of
the Blue Nile River Basin covering an area of 945.78 km2, and
administratively, the area belongs to Abay Chomen Woreda
and Horo Woreda. )e watershed is found geographically
between the longitudes 37°00′E and 37°20′E and 9°35′N and
9°52′N latitudes. )e watershed varies in elevation from
1600m in the lower plateau under the escarpment to hills
and ridges of the highland climbing to over 2500m. )e
catchment plateau has a mountainous landscape with steep
mountain ranges, volcanic cones, and deep canyons inter-
mingled. )e annual average rainfall of the Nashe watershed
ranges from 1200mm to 1600mwith June, July, August, and
September being the main rainy season of the catchment.
)e catchment’s observed average temperature was 22°C.
Figure 1 depicts the thorough study area location.

)e Nashe River has a sharp drop of about 600m at the
Nashe cliff, forming a fall and torrents. )e watershed has a
subtropical climate with distinct wet and dry seasons. )e
Nashe watershed is the principal tributary and is mainly used
for hydropower generation for the country. )e watershed
area is classified as having intensive irrigable fields down-
stream, huge water potential sites upstream, and a high head
of hydropower potential [28]. Agriculture is the watershed’s
most important financial activity and the primary source of
income for the local population. )e average monthly
rainfall and temperature features of the stations in the study
watershed are depicted in Figure 2.

2.2. 0e Hydrological Model Description. )e semi-distrib-
uted hydrological model SWAT is a physically based con-
tinuous, spatially distributed simulation developed to assist
water resource managers in predicting the impacts of land
management practices on water, sediment, and agricultural
chemical yields [29]. SWATis a hydrological model in which
the watershed can be used to analyze small or large
catchments by discretizing them into subbasins [14]. Each
subbasin contains the main channel and many hydrological
response units (HRUs), which consist of homogeneous land
use, soil type, slope characteristics, and management
practices. SWAT provides two methods for estimating
surface runoff: the modified Soil Conservation Service Curve
Number method for each HRU and the Green and Ampt
infiltration method [30]. )e Muskingum method was used
to evaluate channel routing. )e water balance was modeled
for four different storage volumes for each HRU: snow, soil

profile, shallow aquifer, and deep aquifer. )ere are three
methods to estimate potential evapotranspiration incorpo-
rated into the SWAT model: Hargreaves method [31],
Priestley–Taylor method [32], and Penman–Monteith
method [33].

For total streamflow, the groundwater flow contribution
is simulated by generating shallow aquifer storage. From the
bottom of the root zone, the percolation is considered a
recharge to the shallow aquifer. )e hydrological SWAT
model simulates eight major components: hydrology,
weather, sedimentation, soil temperature, crop growth,
nutrients, pesticides, and agricultural management [34].
Daily precipitation, runoff, evapotranspiration, percolation,
and return flow from subsurface and groundwater move-
ment are all used to compute the daily water balance in each
HRU. )e hydrological processes are divided into two
phases: the land/soil phase and the channel/flood plain
phase. )e land/soil phase of the hydrological cycle is
modeled in SWAT based on the water balance equation. )e
hydrological cycle for the land phase as simulated by SWAT
depends on the water balance equation [35].

SWt � SWo + 􏽘
n

i�1
(Rday − QSurf − Ea − Wseep − Qgw),

(1)

where SWt is the final soil water content (mm), SWo is the
initial water content (mm), R day is the amount of pre-
cipitation on day i (mm), QSurf is the amount of surface
runoff on day i (mm), Ea is the amount of evapotranspi-
ration on day i (mm),Wseep is the amount of water entering
the vadose zone from the soil profile on day i (mm), Qgw is
the amount of return flow on day i (mm), and t is the time
(days).

2.3. SWAT-CUP. )e SWAT-CUP was developed to per-
form calibration, validation, sensitivity analysis, and un-
certainty analysis procedures for the SWAT model by
different optimization techniques, together with the simu-
lation [10]. )e model is a public domain program that links
a variety of techniques in one single platform: the sequential
uncertainty fitting ver. 2 (SUFI-2) [26, 30], the generalized
likelihood uncertainty estimation (GLUE) [22], parameter
solution (ParaSol) [14], particle swarm optimization (PSO)
[36], and Markov chain Monte Carlo (MCMC) [37] algo-
rithms to SWAT model [4, 30].

2.4. SUFI-2 Algorithm. )e SUFI-2 program was used for
performing sensitivity analysis, calibration, validation, and
uncertainty analysis. All sources of parameter uncertainties
in SUFI-2 are considered that accounts such as uncertainty
in driving variables, parameters, conceptual model, and
measured data. SUFI-2 executes a combined optimization
and uncertainty analysis using a global method and deals
with plenty of parameters through Latin hypercube sam-
pling [30, 38]. SUFI-2 is capable of analyzing a large number
of parameters and measured data from many gauging sta-
tions simultaneously. It also requires the smallest number of
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Figure 2: Monthly average rainfall and temperature features of the stations in the Nashe watershed.
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model runs to achieve good calibration and uncertainty
results.

)e degree to which all uncertainties are accounted for is
quantified in terms of the 95% prediction uncertainty
(95PPU) band disallowing 5% of the very bad simulations.
)e 95PPU obtained through Latin hypercube sampling is
calculated at the lower value of 2.5% and upper value of
97.5% levels of the cumulative distribution of an output
variable. )e strength of a calibration and uncertainty
analysis is quantified as the p-factor and r-factor. )e
p-factor is the percentage of measured data bracketed by the
95PPU, while the r-factor is the average thickness of the
95PPU band divided by the measured data’s standard de-
viation. )e values for the p-factor and i-factor range be-
tween 0 and 100% and between 0 and infinity, respectively.

)e value of the p-factor equal to 1 (100%) shows all
observations covered by the prediction uncertainty and that
of the r-factor is close to zero indicating that the simulated
results exactly match the observed values [26]. )e pa-
rameter ranges are larger than the optimal parameter ranges
when the r-factor is high. A large p-factor can certainly be
obtained at the expense of a larger r-factor. For the first
iteration, the SUFI-2 technique assumes a substantial pa-
rameter uncertainty (physically meaningful range), ensuring
that the observed data fall into the 95PPU, and then
gradually reduces the uncertainty while monitoring the
p-factor and r-factor for the next several rounds. Further
goodness of fit can be quantified by the R2 and
Nash–Sutcliffe model efficiency (NSE) between the obser-
vations and the best simulation. )e major procedures of
SUFI-2 are shown as follows [5, 26, 30, 38].

(i) )e objective function and reasonable parameter
ranges [bj, min, and bj, max] are predefined. )e
final parameter ranges are always conditioned on
the form of the objective function since the different
formulations may lead to different results. )ere are
a number of ways to formulate an objective func-
tion, and the Nash–Sutcliffe (NSE) and coefficient of
determination (R2) are two of the most popular
objective functions.

(ii) Latin hypercube sampling is carried out in the
hypercube [bj, min, and bj, max] leading to n pa-
rameter combinations, where n is the number of
required simulation iterations. SWAT simulations
employ the sampled parameter sets as parameter
inputs.

(iii) )e objective function is used to determine the
95PPU for simulated surface runoff. )e assessed
uncertainty measures are calculated using the per-
centage P of observed data bracketed by the 95PPU
band, as well as the average distance d between the
upper and lower 95PPU (the degree of uncertainty):

d �
1
k

􏽘

k

i�1
(qu − ql)i, (2)

where i is iterate, k is the number of observed data points for
variable q, qu and ql are the upper (97.5th) and lower (2.5th)
percentiles of the cumulative distribution of every simulated
point, and d is calculated by the r-factor:

R − factor �
dx

σx
, (3)

where σx is the observed variable’s standard deviation x. A
value less than one is a desirable measure for the r-factor.
)e 95PPU band is used to calculate the percentage P of
observed data:

P − factor �
nqin

N

∗
100, (4)

where the total number of observed values is N, while the
number of observed data bracketed by the 95PPU is nqin.
For the next iteration, a reasonable combination of distinct
factors should be identified for the necessary parameter
ranges.

After each iteration, parameter ranges have been
updated and defined (Appaspour, 2011); further sampling
rounds are required to update parameter ranges (if the
criteria are not fulfilled), which are calculated as follows:

b′j, min(new) � bj, lower − Max
(bj, lower − bj, min)

2
,
(bj, max − bj, upper)

2
􏼢 􏼣, (5)

b′j, max(new) � bj, upper + Max
(bj, lower − bj, min)

2
,
(bj, max − bj, upper)

2
􏼢 􏼣, (6)

where b’ represents the new range following one more
iteration. To be noticed, it is possible to produce inap-
propriate ranges for some parameters because equations
(4) and (5) can only ensure that the updated parameter
ranges are always centered on the best estimates. As a
result, manual adjustment is essential to avoid using po-
tentially inaccurate values based on previous practical
parameter information.

2.5. Input Data Description and Model Setup. )e required
important data for the model can be categorized into spatial
data, hydrological data, and meteorological data [39]. )e
spatially distributed data needed for the ArcSWAT interface
include the digital elevation model (DEM), soil data, and
land use data. )e spatial data were all collected from the
Ethiopian Ministry of Water, Irrigation, and Energy. )e
observed daily streamflow data for a period of 1985–2008 at
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the Nashe gauging station was also collected from the
Ethiopian Ministry of Water, Irrigation, and Energy. )e
other input data for the SWATwere the daily maximum and
minimum temperature, relative humidity, solar radiation,
wind speed, and precipitation data collected at Alibo, Fin-
chaa, Homi, Jermet, Nashe, and Shambu meteorological
stations from 1985–2019 were used. )e detailed required
input data for the study are indicated in Table 1. Generally,
the model setup consists of four steps: (1) data preparation,
(2) subbasin discretization, (3) HRU definition, and (4)
calibration and uncertainty analysis.

)e Soil and Water Assessment Tool (ArcSWAT)
coupled with ArcGIS was used for watershed delineation
and other purposes, resulting in 23 subbasins and 339
HRUs after overlaying the soil data, land use data, and slope
of the study watershed (Figure 3, Tables 2–4). SUFI-2
uncertainty analysis used in this study was embedded into a
platform. )e SWAT-CUP interface allows users to per-
form SWAT uncertainty analysis with a variety of meth-
odological options [40]. Figure 4 shows the detailed
procedure as a flowchart.

2.6. Sensitivity Analysis, Calibration, and Validation. )e
sensitivity analysis is used to identify and rank the most
responsive hydrological parameters that have a significant
impact on the specific model output. Model calibration is the
process of modifying input model parameters to ensure that
simulations match data within the prescribed ranges, re-
ducing forecast uncertainty, whereas validation is the pro-
cess of confirming the calibrated parameters by evaluating
them with an independent set of data without making any
additional changes to the model parameters [29]. )e
sensitivity analysis was made using a built-in SWAT sen-
sitivity analysis tool that uses the Latin Hypercube One-
factor-At-a-Time (LH-OAT) [26, 41].

Twenty-one sensitive parameters were selected for
sensitivity analysis; among them, ten most sensitive pa-
rameters were identified for model calibration and valida-
tion processes. )e selected 21 parameters related to
streamflow are depicted in Table 5. )e model calibration
was conducted using SWAT-CUP combined with the SUFI-
2 method after the most sensitive parameters were identified
[42]. )e model validation is to establish whether the
calibrated model has the ability to predict streamflow
compared with the observed streamflow. )e streamflow
used in this study was divided into two periods for model
calibration and validation. A warm-up period was also
considered because it is recommended to initialize and then
obtain reasonable starting values for model variables. )e
period from 1985 to 1986 was used for warm-up, the period
from 1987 to 1999 for calibration, and the final nine years
(from 2000 to 2008) for validation.

2.7. Evaluation of Model Performance. )e model perfor-
mance evaluation was carried out to determine the con-
sistency of simulated data compared with measured data
during the calibration and validation periods [43]. )e
performance of the model was evaluated using statistical and

graphical indicators for the objective function of the fitting
effect and accuracy between the simulated and observed
values of the model [44]. )e SUFI-2 method is found to be
the most efficient in terms of computational effort to reach a
satisfactory simulation and analysis of all uncertainties in the
study. )e uncertainty in parameterization is quantified for
behavioral parameters identified during the model calibra-
tion and validation. )e p-factor and r-factor were also
computed to further assess the calibration and validation
results in terms of uncertainty in the model results. )e
calibration and validation were carried out using different
objective functions. )e Nash–Sutcliffe efficiency coefficient
(NSE), which is the most widely used criterion for assessing
the performance of the hydrological models, was selected as
the objective function in this study. )e other model per-
formance statistics including percent bias (PBIAS), the
coefficient of determination (R2), the root-mean-square
error (RMSE), and others were also calculated to evaluate the
performance of the hydrological models.

R 2 is calculated by the following equation:

R
2

�
􏽐

n
i�1(qsi − qs)(qoi − qo)􏼂 􏼃

2

􏽐
n
i�1 (qsi − qs)

2
􏽐

n
i�1 (qoi − qo)

2. (7)

NSE can be calculated as follows with the same variables
defined as follows:

NSE � 1 −
􏽐

n
i�1 (qoi − qsi)

2

􏽐
n
i�1 (qoi − qo)

2. (8)

)e PBIAS is calculated by the following equation:

PBIAS �
􏽐

n
i�1 (qoi − qsi)∗100

􏽐
n
i�1 (qoi)

. (9)

)e RSR is calculated as follows:

RSR �
RMSE

STDEVob
�

�������������

􏽐
n
i�1(qoi − qsi)2̂

􏽱

�������������

􏽐
n
i�1(qoi − qsi)2̂

􏽱 . (10)

)e bR2 is calculated by the following equation:

bR
2

� Maximize: Φ �
|b|R

2if |b|≤ 1,

|b|
− 1

R
2if |b| x> 1.

⎧⎨

⎩ (11)

)e Kling–Gupta efficiency (KGE) can be determined
using the following equation:

KGE � 1 −

�����������������������

(r − 1)
2

+(α − 1)
2

+(β − 1)
2

􏽱

. (12)

α � σs/σo, andβ � μs/μo, and r is the linear regression
coefficient between the simulated and measured variables.

)e root-mean-square error is calculated using the
following equation:

RMSE �
1
n

· 􏽘
n

i�1
(qsi − qoi)

2
, (13)

where qsi is simulated streamflow in m3/s, qoi is observed
streamflow in m3/s, qs is mean of the simulated value, and qo
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is mean of the observed value. R2 is the coefficient of de-
termination, and b is the slope of the regression line between
the measured and simulated variables. αs and αo are the
standard deviation of the simulated and observed values. µo
and µs are the mean of the observed and simulated values,
respectively.

Table 1: Input data description used in the SWAT model.

Data types Research data Resolution/
period Sources

Spatial data

Digital elevation model
(DEM) 30m )e shuttle radar topographic mapping obtained from the Ministry of

Water, Irrigation, and Energy, Ethiopia
Land use land cover 30m Ministry of Water, Irrigation, and Energy (MoWIE), Ethiopia

Soil 1 : 50,000 Ministry of Water, Irrigation, and Energy (MoWIE), Ethiopia
Meteorological
data

Daily observed weather
data 1985–2019 National Meteorological Agency, Ethiopia

Hydrological data Daily streamflow 1985–2008 Ministry of Water, Irrigation, and Energy MoWIE),
Ethiopia

N

4 4 8 12 162 0
(km)

(a)

N

3.5 3.5 7 10.5 141.75 0
(km)

(b)

N

3.5 3.5 7 10.5 141.75 0
(km)

(c)

Figure 3: SWAT model inputs. (a) Topography, (b) land use, and (c) soil type.

Table 2: Soil types of the study area with their aerial coverage.

Soil types
Area

Ha % in the watershed
Eutric cambisols 1522.045 1.61
Haplic alisols 43248.87 45.73
Haplic arenosols 9249.55 9.78
Rhodic nitisols 29221.76 30.89
Chromic luvisols 3606.813 3.81
Eutric vertisols 2742.341 2.9
Water 3677.375 3.89
Eutric leptosols 318.9469 0.34
Dystric vertisols 989.9943 1.05
Total 94577.7 100

Table 3: Land use types of the study area with their aerial coverage.

Land use land cover types
Area

Ha % in the watershed
Forest land 15567.94 16.46
Grassland 642.5034 0.68
Rangeland 17212.14 18.2
Agricultural land 57847.74 61.16
Built-up area 165.4127 0.18
Waterbody 3141.955 3.32
Total 94577.7 100

Table 4: Slope classes of the Nashe watershed.

Slope range (%)
Area

Ha % in the watershed
0–8 28683.59 30.33
15/Aug 23225.42 24.56
15–30 28660.1 30.3
>30 14008.58 14.81
Total 94577.7 100
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3. Results and Discussion

3.1. Sensitivity Analysis. Sensitivity analysis for streamflow
simulation has been performed using SWAT-CUP algo-
rithm SUFI-2 optimization techniques. )e SUFI-2 sam-
pling is a Latin hypercube sampling method that is used to
reduce the sampling size. )erefore, the SUFI-2 sampling
method is considered as easy to implement [9, 45]. )e
sensitivity analysis was performed to identify important
parameters in the Nashe watershed. )e Latin Hypercube
Sampling One-at-A-Time (LH-OAT) in the SUFI-2 method
was applied for all twenty-one selected sensitive parameters.
)e parameters having a significant effect and the most
influential parameters on streamflow simulation were
selected.

)e daily and monthly ten most sensitive parameters
were selected and used for model calibration and validation
as shown in Tables 6 and 7, respectively.)e other remaining
parameters have no significant effect on streamflow

simulations and are not considered for calibration and
validation. Mengistu and Sorteberg [46] determined that the
curve number depends on a number of factors, including soil
types, soil textures, soil permeability, and land use features,
and identified the CN2 as themost sensitive parameter in the
Eastern Nile River Basin in addition to SOL-AWC, ESCO,
and SOL-K.

)e considered most sensitive parameters include sur-
face water, groundwater, and soil properties, which indicates
the results that show that the most sensitive parameters are
those representing the surface runoff, groundwater, and soil
properties that affect streamflow simulation. A t-test (high
absolute values suggest more sensitivity) and p values
(values close to zero suggest a high level of significance) were
used to measure the sensitivity and significance of each
parameter, respectively. )e daily and monthly most sen-
sitive parameters ranked according to their t-stat and p value
are summarized in Tables 6 and 7 and Figures 5 and 6,
respectively.

DEM

Input data SWAT processing

SWAT simulation

HRU delineation

Watershed discretizaation Model Validation

Model Calibartion

Sensitivity analysis

Watershed hydrology output

Output

Land use

Soil data

Meteorological data

Figure 4: General framework methodology of the model.

Table 5: Selected sensitive parameters of Nashe Watershed.

No. Parameter Description Classification
1 r__CN2.mgt SCS runoff curve number Surface runoff
2 v__GW_DELAY.gw Groundwater delay from soil to channels (days) Groundwater
3 v__ALPHA_BNK.rte Base flow alpha factor for bank storage Channel
4 v__CH_K2.rte Effective hydraulic conductivity in the main channel (mm/hr.) Channel
5 r__EPCO.hru Plant uptake compensation factor Evapotranspiration
6 r__SOL_K.sol Saturated hydraulic conductivity (mm/hour) Soil
7 v__GWQMN.gw )reshold depth of water in shallow aquifer required for return flow (mm) Groundwater
8 v__CH_N2.rte Manning’s roughness coefficient for the main channel Channel
9 r__REVAPMN.gw )reshold water in the shallow aquifer for revap to occur (mm) Groundwater
10 r__SOL_AWC.sol Soil available water capacity (mm H20/mm soil) Soil
11 v__GW_REVAP.gw Groundwater “revap” coefficient Groundwater
12 r__OV_N.hru Manning’s “n” value for overland flow Overland flow
13 v__ALPHA_BF.gw Base flow alpha factor (days Groundwater
14 r__RCHRG_DP.gw Deep aquifer percolation fraction Groundwater
15 r__SURLAG.bsn Surface runoff lag time (days) Surface runoff
16 r__SLSUBBSN.hru Average slope length (m) Landform
17 v__ESCO.hru Soil evaporation compensation factor Evapotranspiration
18 r__SOL_BD.sol Moist bulk density Soil
19 r__SOL_Z.sol Depth from the soil surface to bottom of the layer Soil
20 r_SOL_ALB.sol Moist soil albedo Soil
21 r_TLAPS.sub Temperature lapse rate (°C/Km) Temperature
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)e fitted value with the highest sensitivity was used to
calibrate and validate the model. )e dotty plots are used to
estimate the relative sensitivity of each parameter by ob-
serving the impact on an objective function. )e dotty plot
(Figures 7 and 8) is the plot of parameters versus objective

function indicating the distribution of the sampling points,
which explain the parameter sensitivity for daily and
monthly time periods. In the dotty plots, if the points are
scattered at random, the sensitivity is low for the parameter,
and if the points do follow a trend, the sensitivity is higher.
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Figure 5: t-Stat of the daily and monthly most sensitive parameters using the SUFI-2 algorithm.

Table 6: Monthly most sensitive parameters of the watershed.

S. No Parameter name t-Stat p Value rank
1 r__SOL_K.sol 1.16 0.25 10
2 v__GWQMN.gw −1.26 0.21 9
3 r__REVAPMN.gw 1.31 0.19 8
4 r__EPCO.hru −1.36 0.17 7
5 v__CH_K2.rte 1.39 0.17 6
6 r__SOL_AWC.sol −1.74 0.03 5
7 v__CH_N2.rte 2.13 0.01 4
8 v__ALPHA_BNK.rte −2.35 0 3
9 v__GW_DELAY.gw −2.65 0 2
10 r__CN2.mgt 5.03 0 1

Table 7: Daily most sensitive parameters of the watershed.

S. No. Parameter name t-stat p Value Rank
1 v__CH_K2.rte 0.66 0.63 10
2 v__ALPHA_BF.gw 0.7 0.61 9
3 r__SOL_AWC.sol −0.77 0.58 8
4 v__GWQMN.gw −0.91 0.43 7
5 r__REVAPMN.gw 0.95 0.22 6
6 r__SOL_K.sol −1.02 0.1 5
7 v__GW_DELAY.gw −1.03 0.03 4
8 v__CH_N2.rte 1.2 0.01 3
9 V__ALPHA_BNK.rte −1.52 0 2
10 r__CN2.mgt −2.03 0 1
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)ese were attained in the final iteration of the SUFI-2
algorithm after 1000 iterations.

3.2.Model Calibration andValidation. )e calibration is the
adjustment of model parameters until the model output
matches the best result with the observed data within the
recommended ranges to optimize the model output. Vali-
dation is the process of determining the degree to which a
model or simulation accurately represents the observed set
of data from the point of view of the model’s intended uses.
)e calibration and validation were conducted using the
SUFI-2 algorithm using the monthly and daily streamflow
data at the gauging station of the watershed using ten of the
most selected influential model parameters.

)e recorded daily streamflow data during the years
1985–2008 were collected, and the monthly and daily
streamflow data for thirteen years from 1987 to 1999 were
used for calibration and nine years from 2000 to 2008 for
validation. )e years 1985–1986 were skipped for model
warm-up. )e comparison of the observed and simulated
with their 95PPU plot for daily and monthly streamflows
was graphically plotted for the Nashe watershed as presented
in Figures 9 and 10 during the calibration and validation
period, respectively. )e main purpose of the scatter plots is
to show the distribution of sampling points and parameter
sensitivity and the scatter plots as shown in Figures 11–14 for
calibration and validation for both daily and monthly time
periods. )e calibration and validation period’s scatter plot
shows good collinearity between observed and simulated
flows and almost matches the value predicted by the model.
It is generally agreed upon that the ineffective parameter
ranges may be the primary cause of the large number of dots
produced below the threshold values and that the values of

NSE are approaching their optimal levels once all parameter
ranges have been updated.

)e monthly scatter plots created for calibration and
validation distribution parameter values in most of the
parameters show under predictions mostly (>98m3/s,
80m3/s) and over predictions (<80m3/s, 80m3/s), respec-
tively. )e scatter plots of the observed and simulated
streamflows illustrate that the model has underestimated the
streamflow. Nine model efficiency measures were consid-
ered, R2, NSE, RSR, PBIAS, bR2, MSE, KGE, p-factor, and r-
factor were calculated for calibration and validation periods,
and the results attained were acceptable. During the monthly
and daily streamflow calibration and validation periods, the
values of NSE were 0.82 and 079 and 0.85 and 0.76, while
that of R2 were 0.89 and 0.85 and 0.88 and 0.78, respectively.
Comparing the daily and monthly streamflow results, the
daily results had larger uncertainty and lower values of
objective functions because of high computational efficiency
and low-performance efficiency. Figures 9(b) and 10(b)
make it abundantly evident that the 95PPU achieved by
the SUFI-2 approach was considerably higher than those
obtained by the other three methods over the calibration and
validation, demonstrating that SUFI-2 had a considerable
advantage in the uncertainty analysis of streamflow
simulation.

)e statistical results obtained, and the graphical results,
indicate that the model performance at monthly time steps
of the Nashe watershed is satisfactory. )us, it can be ob-
served that SUFI-2 is capable of reasonably capturing ob-
served streamflow during both calibration and validation
periods, but it slightly overestimates peak values in the years
1989, 1991, 1995, 2001, and 2006, which could be due to the
large uncertainty involved in the computation of recession
by the SWAT model for monthly streamflow.
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Figure 6: t-Stat of the daily and monthly most sensitive parameters using the SUFI-2 algorithm.
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Figure 7: Continued.

Applied and Environmental Soil Science 11



3.3. Uncertainty Analysis. Simulating streamflow is a
challenging process due to the numerous uncertainties that
exist in the form of input parameter inaccuracies, unac-
counted processes by the model, and processes occurring in
the catchment that are unknown to the modeler [47]. )e
SWAT model runs on a large number of parameters to
account for uncertainties, and a large number of param-
eters further complicate the processes of the model’s pa-
rameterization. However, this does not reduce the
importance of parameterization in model calibration and
validation [26]. SUFI-2 was utilized for parametric un-
certainty analysis and is capable of capturing the model’s
behavior; for this reason, results obtained in the study
demonstrate acceptable model performance in the
streamflow simulation in the Nashe watershed.)emodel’s
uncertainty may be caused by soil erosion, which is not
taken into account and changes the soil’s structure, infil-
tration capacity, and other attributes.

)e degree of measurement and results of uncertainty
analysis during the calibration and validation periods
were assessed by p-factor and r-factor. )e model un-
certainty analysis was evaluated using the p-factor and r-
factor with the objective functions to minimize the width
of the uncertainty band and encloses as many observa-
tions as possible. )e uncertainty analysis was imple-
mented firstly in the calibration period and then passed to
the validation period. In the modeling of the daily
streamflows, some of the observations fall outside of the
corresponding 95PPU. As for the SUFI-2 algorithm,
considering the uncertainties of hydrological models and
other aspects in the process of optimizing streamflow
simulation parameters, the range of parameters generated
by the method was large. )e simulated data that fall
outside are a reflection of model structural error and
possible inconsistencies in the data that are not being
properly reflected in parameter sampling. )e 95PPU and
dotty plots for each parameter were used to compute the
overall uncertainty in the output. )e uncertainty of the

output variables was expressed as the 95% probability
distributions calculated at 2.5% and 97.5% of the cu-
mulative distribution resulting from the propagation of
the parameter uncertainty, which is referred to as the 95%
prediction uncertainty (95PPU).

)e shaded region (95PPU) in the figures shows all
uncertainties in the model from different sources because
it covers a large amount of measured data. )e result of
the monthly streamflow (Figures 10 and 12) shows that
84% and 82% of the observed data were covered by the
95PPU, and the average thickness (r-factor) shows 1.10
and 1.00 for calibration and validation, respectively. )e
simulated and observed uncertainties were captured by
95PPU and located between the upper (97.5% PP) and
lower (2.5% PPU) uncertainty ranges except at some peak
and low streamflow. During the calibration and valida-
tion, the p-factor and r-factor with the other obtained
objective functions were generally depicted in Table 8.
Most of the measured values of the streamflow were in the
range of 95PPU for both daily and monthly time periods
(Figures 9 and 10). )e overall performance evaluation
criteria indicate that the monthly data performed better
than the daily data, which shows that more observations
fell into the 95PPU bands of the simulated outputs. )e
lack of an adequate number of observation stations affects
the model output. Due to the heterogeneity of the
catchments, a number of meteorological observation
stations are required to represent the spatial variation in
the hydrometeorological characteristics in the area.
Furthermore, the high-resolution remote sensing soil
moisture and evapotranspiration data can be used to
calibrate the other primary hydrological components of
the water cycle in a follow-up study, minimizing the
simulation’s uncertainty. In this study, the input data of
the model are the main limitation for the application of
the model. )ese elements also contribute to the ineffi-
ciency of using increasingly complicated and precise
models [48–50].
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Figure 7: Daily dotty plots of the most sensitive parameters of the Nashe watershed.
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Figure 8: Monthly dotty plots of the most sensitive parameters of the Nashe watershed.
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Figure 9: Daily streamflow of the Nashe watershed in calibration and validation periods. (a) Observed and simulated. (b) 95PPU plot.

0

200

400

600

800

1000

1200

1400

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

20
5

21
1

21
7

22
3

22
9

23
5

24
1

24
7

25
3

25
9

ST
RE

A
M

 F
LO

W
 (M

3 /S
)

observed
Simulated

Calibration Validation

(a)

Figure 10: Continued.

Applied and Environmental Soil Science 15



y = 0.9115x + 3.9769
R2 = 0.8471

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Si
m

ul
at

ed
 st

re
am

 fl
ow

 (m
3/

s)

Observed stream flow (m3/s)

Figure 11: Scatter plots of observed and simulated daily streamflow
for the Nashe watershed during the calibration period.

0

200

400

600

800

1000

1200

1400

1600

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

20
5

21
1

21
7

22
3

22
9

23
5

24
1

24
7

25
3

25
9

ST
RE

A
M

 F
LO

W
 (M

3 /S
)

L95PPU
U95PPU
95PPU

Calibration Validation

(b)

Figure 10: Monthly streamflow of the Nashe watershed in calibration and validation periods. (a) Observed and simulated. (b) 95PPU plot.
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Figure 12: Scatter plots of observed and simulated daily streamflow
for the Nashe watershed during the validation period.
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Figure 13: Scatter plots of observed and simulated monthly
streamflow for the Nashe watershed during the calibration period.
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Figure 14: Scatter plots of observed and simulated monthly
streamflow for the Nashe watershed during the validation period.
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4. Conclusions

In hydrological modeling, uncertainties have a significant
impact on prediction and subsequent decision-making. )e
uncertainty, and its measurement, is a difficult task in SWAT
model predictions, and it is dependent on the uncertainty
technique employed. )e SUFI-2 algorithm of SWAT-CUP
was utilized to analyze the sensitivity analysis, uncertainty
analysis, calibration, and validation of the model for the
Nashe watershed. )e sequential uncertainty fitting 2 was
implemented to investigate the uncertainty of the model,
accounting for errors due to model structure, input data, and
model parameters. )e results reveal that CN2, followed by
GW_DELAY, ALPHA_BNK, CH_N2, and SOL-AWC, is
themost sensitive and has a significant impact on streamflow
based on the monthly time period. )e hydrological model
was successfully calibrated and validated from 1987–1999
and 2000–2008, respectively, for daily and monthly time
periods. )e governing surface runoff generation processes
in the selected subbasin of sensitive parameters were
identified. )ere are 23 subbasins and 339 hydrological
response units (HRUs) in the basin that were delineated
using the model’s data. )e most significant sensitive pa-
rameters were selected and used for model calibration and
validation. )e model performance evaluation indicators in
all calibration and validation techniques were mostly above
the minimum threshold value.)e research results indicated
that the NSE of the monthly and daily streamflow simulation
in the Nashe watershed was 0.82 and 0.79 and 0.85 and 0.76,
respectively, and R2 was 0.89 and 0.85 and 0.88 and 0.78,
respectively, for daily and monthly. )e result indicated that
the model had good applicability in both time periods in the
study area. )e uncertainty analysis of the model indicated
that the observed streamflow values covered more than 70%
for both daily and monthly flows within the 95% prediction
uncertainty (95PPU) band after calibration and validation.
In general, the SWATmodel is a valuable tool that generates
good simulation results for daily and monthly time steps,
which could be used to model water resource management
and hydrological processes in a watershed. However, model
performance is better during the monthly time-series cali-
bration and validation phase, resulting in good objective
functions. )e SWAT-CUP is useful in forecasting flow and
quantifying underlying uncertainties and related assump-
tions in the field of water resources, according to the findings

of this study. It is recommended that the calibrated model be
used in further climate change and land use/land cover effect
assessments on water resources. Similarly, it is suggested in
future studies, to use more uncertainty techniques in model
calibration, sensitivity, and uncertainty analysis.
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