

JIMMA UNIVERSITY SCHOOL OF GRADUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING GEOTECHNICAL ENGINEERING STREAM

Prediction of California Bearing Ratio (CBR) Value from Index Properties of Soils. Case Studies Seka Town, Jimma, Ethiopia

A Thesis Submitted to School of Graduate Studies of Jimma University in Partial Fulfilment of the Requirement of Degree of Master of Science in Civil Engineering (Geotechnical Engineering)

By:

DINKA FULEA DILBO

March, 2020 Jimma, Ethiopia

JIMMA UNIVERSITY SCHOOL OF GRADUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING GEOTECHNICAL ENGINEERING STREAM

Prediction of California Bearing Ratio (CBR) Value from Index Properties of Soils. Case Studies Seka Town, Jimma, Ethiopia

A Thesis Submitted to School of Graduate Studies of Jimma University in Partial Fulfilment of the Requirement of Degree of Master of Science in Civil Engineering (Geotechnical Engineering)

By:

DINKA FULEA DILBO

Main advisor: Prof. Emer T. Quezon, P.Eng

Co-advisor: Mr. Yada Tesfaye (Msc)

March, 2020 Jimma, Ethiopia

DECLARATION

I, the undersigned, declare that this thesis entitled: "**Prediction of California Bearing Ratio (CBR) Value from Index Properties of Soils. Case Studies Seka Town, Jimma, Ethiopia**" is my original work, and has not been presented by any other person for an award of a degree in this or any other University, and all sources of material used for this thesis have to be duly acknowledged.

Candidate:

Mr. Dinka Fulea

Signature

As Master's Research Advisors, we hereby certify that we have read and evaluated this MSc Thesis prepared under our guidance by **Dinka** entitled: "Prediction of California Bearing Ratio (CBR) Value from Index Properties of Soils. Case Studies Seka Town, Jimma, Ethiopia"

Prof. Emer T. Quezon, P.Eng Main Advisor

Signature

Date

Date

Mr. Yada Tesfaye, (MSc.)

Co- Advisor

Signature

Date

ABSTRACT

California Bearing Ratio (CBR) value is an important soil parameter considered as main design input in the design of flexible pavements and runways of air fields. The design of pavement thickness determined depending on the strength of subgrade soil expressed in terms of CBR (%). In the design of pavement, the suitability and stability of sub-grade materials are evaluated before construction of pavement by using CBR test. However, in a large scale road projects, conducting laboratory tests by using the CBR test is very expensive and time consuming. It also needs large soil samples which affects the cost and time of the project. In addition, Soil properties vary from region to region and season to season as it appears naturally. Therefore, developing empirical equations specific to a certain region and soil type could be considered nearly as good insight of soil behavior.

Therefore, this study was conducted to predict the CBR value from the index properties of soil to solve the difficulties in the determination of CBR value. The study was carried out using thirty samples collected from the study area. The laboratory test procedures were based on the standard procedures of American Society for Testing Materials (ASTM) and American Association of State Highway and Transportation Officials (AASHTO) method. The laboratory test result and statistical analysis were carried out using Microsoft excel and SPSS software respectively. To develop the intended correlation model the procedures of data collection, laboratory test, normality test, and correlation and regression analysis were done. The index soil properties considered for this study to establish correlations with CBR values are Percentage Passing sieve No.200, Liquid Limit (LL), Plastic Limit (PL), Plastic Index (PI), Maximum Dry Density (MDD) and Optimum Moisture Content (OMC). From the regression analysis result, the equations developed are CBR = 28.188 -0.67OMC, and CBR = -12.124 - 0.077LL - 0.178OMC + 20.37MDD, with coefficient of determination $R^2 = 0.814$ for single linear regression and $R^2 = 0.899$ for multiple linear regression respectively. Based on the result of regression analysis, fairly good correlation of CBR value is obtained with multiple parameters (LL, OMC and MDD) in multiple linear regression than with single parameters (OMC) in single linear regression. Therefore, the study concluded that during the prediction of CBR value from the index properties, the combined parameters of index properties should be used rather than single parameters. Generally, it is recommended that the result of this research could be applied for the prediction of the CBR values in different civil engineering practices.

Keywords: CBR Value, Index properties, Normality, Correlation, Regression.

ACKNOWLEDGEMENT

First and foremost, I would like to thank the Almighty God who is always never let me down and for being with me in every step I pass through to reach here. I would like to express my sincere gratitude and thanks to my main advisor, Prof. Emer T. Quezon and co-advisor Mr. Yada T. for their persistent support, effective motivation and helpful feedback on my research work.

Next, my deepest appreciation goes to Ethiopian Road Authority (ERA) for being sponsorship on this M.Sc. program and Jimma University, School of Graduate Studies, Jimma Institute of Technology, Civil Engineering Department, Geotechnical Engineering stream for providing necessary supports and facilities throughout this opportunity.

I also express my sincere gratefulness to my best friend Mr. Getu Regea for his unlimited support in financing and giving encouragement throughout the accomplishment of this work. And also I would like to acknowledge Mr. Dekebi Chekeri (Jimma Institute of Technology, Geotechnical Engineering Laboratory Technician) for his tremendous assistance during the laboratory work.

Last but not the least, my heartfelt gratitude goes to my sister for her effective motivation so as to help me in uncomfortable situation, my dear friends and those who assisted me from the beginning to the accomplishment of this research work.

Contents DECLARATION	Pages
ABSTRACT	II
ACKNOWLEDGEMENT	III
TABLE OF CONTENTS	IV
LIST OF TABLES	IX
LIST OF FIGURES	X
LIST OF ABBREVIATIONS AND ACRONYMS	XI
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background of the Study	1
1.2 Statement of the Problem	3
1.3 Objectives of the Study	4
1.3.1 General Objective	4
1.3.2 Specific Objectives	4
1.4 Research Questions	4
1.5 Scope and Limitation of the Study	4
1.6 Significance of the Study	5
CHAPTER TWO	6
REVIEW OF RELATED LITERATURES	6
2.1 Introduction	6
2.2 Theoretical review	6
2.2.1 California Bearing Ratio (CBR)	6
2.2.1.1 Application of California Bearing Ratio (CBR) Value	7
2.2.2 Index Properties of Soil	8
2.3 Review of Empirical Correlations of CBR value	9
CHAPTER THREE	13
MATERIALS AND METHODOLOGY	13
3.1 Description of the Study area	13
3.2 Data Collection	15
3.2.1 Sampling	15
3.2.2 Sampling Techniques	15

TABLE OF CONTENTS

3.2.2.1 Random Sampling	15
3.2.3 Sample Size	15
3.2.4 Sampling procedures	16
3.3 Research Design	16
3.4 Study variables	17
3.4.1 Dependent variable	17
3.4.2 Independent variables	17
3.5 Laboratory Tests	17
3.5.1 Natural Moisture Content	18
3.5.2 Specific Gravity	18
3.5.3 Grain Size Distribution	18
3.5.4 Atterberg Limits	18
3.5.5 Soil Classification	19
3.5.5.1 Unified Soil Classification System (USCS)	20
3.5.5.1.1 Plasticity Chart for Unified Soil Classification System (USCS)	20
3.5.5.2 AASHTO Classification System	21
3.5.5.2.1 Plasticity Chart of AASHTO Classification System	23
3.5.5.2.2 AASHTO Group Index Value	23
3.5.6 Moisture-Density Relationship	24
3.5.6.1 Factors Affecting Compaction	24
3.5.6.2 Effect of Soil Type	24
3.5.6.3 Effect of Compaction Effort	24
3.5.7 Method of Laboratory Soil Compaction	25
3.5.8 California Bearing Ratio (CBR) Test Methods	26
3.5.8.1 Laboratory California Bearing Ratio (CBR) Test	26
3.5.8.2 Soaking Samples and Subgrade Volume Change Classification	28
3.5.8.3 In-Situ California Bearing Ratio (CBR) Test	29
3.6 Procedures for Correlation and Regression Analysis	29
3.6.1 Sample size determination	29
3.6.2 Scatter Plots	30
3.6.3 Arranging Data entry for Correlation and Regression analysis using SPSS	30
3.6.4 Normality Test	31
3.6.4.1 Graphical methods of assessing Normality test	31

3.6.4.2 Statistical (Analytical) Methods of Normality Test	32
3.6.4.2.1 Normality Test Using Kolmogorov - Smirnov Test and Shapiro - W Test	Vilks 32
3.6.4.2.2 Normality Test Using Skewness and Kurtosis Coefficients	32
3.6.5 Multicollinearity (interdependency) of independent Variables Test	33
3.6.5.1 Methods for Measuring Multicollinearity	33
3.6.5.1.1 Variance Inflation Factors (VIF)	33
3.6.5.1.2 Correlation coefficient of correlation matrix	33
3.6.6 Correlation and Regression Analysis Methods	34
3.6.6.1 The Standard Error Statistics	34
3.6.6.2 Residual Analysis	34
3.6.6.3 Pearson's correlation coefficient (R)	35
3.6.6.4 Coefficient of Determination (R ²)	35
3.6.6.5 Adjusted R ²	36
3.6.7 Parametric Statistical Test	37
3.6.7.1 The Analysis of Variance (ANOVA) Test	38
3.6.7.2 The F-ratio Test	38
3.6.7.3 The t-test	39
3.6.7.4 Test of Significance Level	39
CHAPTER FOUR	40
RESULT AND DISCUSSION	40
4.1 Laboratory Test Result	40
4.1.1 Natural Moisture Content	40
4.1.2 Specific Gravity	40
4.1.3 Grain Size Distribution	41
4.1.4 Atterberg's Limits Laboratory Test Result	43
4.1.5 Soil Classification	44
4.1.5.1 Discussion on the Soil Classification	45
4.1.6 Moisture-Density Relationship	48
4.1.7 California Bearing Ratio (CBR) Value	48
4.1.7.1 CBR Swell Data after Four Days of Soaking	54
4.1.8 Discussion on the Laboratory Test Result	58
4.2 Correlation and Regression Analysis Result	59
4.2.1 Sample size result	59

4.2.2 Discussion on sample size result	60
4.2.3 Scatter Plots Result	60
4.2.3.1 Discussion on the Scatter Plots result	63
4.2.4 Descriptive statistics	63
4.2.5 Normality Test Result	64
4.2.5.1 Graphical methods of Normality test result	64
4.2.5.2 Statistical (Analytical) methods of Normality test result	66
4.2.5.3 Discussion on Normality Test Result	67
4.2.6 Correlation Matrix of Result Data	67
4.2.6.1 Discussion of the correlation matrix result	68
4.2.7 Multicollinearity (interdependency) test result	69
4.2.7.1 Discussion on Multicollinearity test result	69
4.2.8 Correlation and Regression Analysis Output from SPSS Software	70
4.2.8.1 Single Linear Regression Analysis	70
4.2.8.2 Multiple Linear Regression Analysis	71
4.2.8.3 Summary of the Developed Models	72
4.2.8.3.1 Summary of Models Developed from Single Linear Regression Analysis	72
4.2.8.3.2 Summary of Models Developed from Multiple Linear Regression Analysis	73
4.2.8.4 Discussion on the Developed Equations of Regression analysis	75
4.2.8.4.1 Discussion on Single linear regression analysis	75
4.2.8.4.2 Discussion on Multiple linear regression analysis	75
4.2.9 Validation of the Developed Equation	76
4.2.10 Cross Validation result	77
4.2.10.1 Discussion on Cross Validation result	77
4.2.11 Comparison of Experimental and Predicted CBR Value from the Present Study	78
4.2.12 Evaluation of the Developed Model Using Previous Existing Data	79
4.2.12.1 Discussion on Comparison of the developed model with previous exi correlations	sting 81
CHAPTER FIVE	82
CONCLUSION AND RECOMMENDATION	82
5.1 Conclusions	82

5.2 Recommendations for the future	4
REFERENCES	5
APPENDIXES	9
Appendix A	9
Normality Test Result of Skewness and Kutrosis Coefficient	9
Appendix B	0
Single Regression Analysis Result between CBR and PP2009	0
Appendix C	2
Single Regression Analysis Result between CBR and LL	2
Appendix D	4
Single Regression Analysis Result between CBR and PL94	4
Appendix E	6
Single Regression Analysis Result between CBR and PI9	6
Appendix F9	8
Single Regression Analysis Result between CBR and OMC	8
Appendix G10	0
Single Regression Analysis Result between CBR and MDD10	0
Appendix H10	2
Multiple Regression Analysis Result for the best fit Model between CBR and LL, OMC and MDD (the bolded one)10	2
Appendix I: Typical Laboratory analysis test result of Natural Moisture Content10	4
Appendix J: Typical Laboratory analysis test result of Specific Gravity	4
Appendix K10	5
Grain Size Distribution (Wet Sieve) Laboratory Analysis and Test result of all Samples	5
Appendix L	5
Atterberg's Limits Laboratory Analysis and test result of all Samples11	5
Appendix M12	5
Modified Compaction Laboratory Analysis and Test result of all Samples	5
Appendix N13	3
California Bearing Ratio (CBR) Laboratory Analysis and Test result of all Samples 13	3

LIST OF TABLES

Table 2.1: ERA Classification of Sub grade Strength Class
Table 3.1: Global Coordinates for Identification of Soil Sample Test Pit Location14
Table 3.2: Summary of laboratory standard testing procedures 17
Table 3.3: AASHTO classification of soils and soil-aggregate mixtures (AASHTO M
145-91)
Table 3.4: Penetration corresponding to standard unit load applied to standard crushed
rock
Table 3.5: Subgrade volume change classification based on the swell condition [42]28
Table 4.1: Grain Size (Wet Sieve) Analysis Laboratory Test Result
Table 4.2: Atterberg's Limits Laboratory Test Result
Table 4.3: Soil Classification of the Study area according to USCS and AASHTO
classification system
Table 4.4: Modified Proctor Compaction and CBR Laboratory Test Result
Table 4.5: Swell Data and Subgrade Material Volume Change after Four Days of Soaking
Table 4.6: Summary of all Laboratory Test Result
Table 4.7: Statistical Information of Dependent and Independent Variables 63
Table 4.8: Normality Test result of Kolmogorov-Smirnov and Shapiro-Wilk Test
Table 4.9: Normality Test result according to Skewness and Kurtosis Coefficients
Table 4.10: Correlation Matrix of Pearson correlation coefficient
Table 4.11: Multicollinearity test result 69
Table 4.12: Summary of Models Developed from Single Linear Regression Analysis72
Table 4.13: Summary of Models Developed from Multiple Linear Regression Analysis 73
Table 4.14: Summary of the selected SLRA and MLRA depending the ANOVA (F-test)
for Testing Significance of Regression74
Table 4.15: Summary of laboratory results for control tests 76
Table 4.16: Validation result of the developed equation 77
Table 4.17: Comparison of Experimental and Predicted CBR Value from the Present
Study
Table 4 18: Validation of the Developed Model Using Existing Correlation data 80

LIST OF FIGURES

Figure 3.1: Map of the study area
Figure 3.2: Identification of Soil Sample Location of all Test Pits from the Study area14
Figure 3.3: Overall flow Chart of the Study16
Figure 3.4: Plasticity Chart for Unified Soil Classification System (USCS), (ASTM
D2487)
Figure 3.5: Relationship between liquid limit and plasticity index for silt-clay groups
(AASHTO M 145-91)23
Figure 4.1: Grain Size Distribution Curve of Soil Samples (TP-1 to TP-5)42
Figure 4.2: Grain Size Distribution Curve of Soil Samples (TP-6 to TP-10)42
Figure 4.3: Typical Flow Curve of Soil Sample (TP7 @ 3m)44
Figure 4.4: Plasticity Chart for Unified Soil Classification System (USCS)44
Figure 4.5: Plasticity Chart for AASHTO Classification, M145-9145
Figure 4.6: Typical Moisture-Density Relationship Curve of Soil Sample (TP7 @ 3m)48
Figure 4.7: Typical Load versus Penetration Curve of Soil Sample at (TP7 @ 3m)53
Figure 4.8: Typical Dry Density Vs CBR Value graph of Soil Sample at (TP7 @ 3m53
Figure 4.9: Scatter diagram of Soaked CBR Value versus Percent Passing Sieve no.20060
Figure 4.10: Scatter diagram of Soaked CBR Value versus LL61
Figure 4.11: Scatter diagram of Soaked CBR Value versus PL61
Figure 4.12: Scatter diagram of Soaked CBR Value versus PI
Figure 4.13: Scatter diagram of Soaked CBR Value versus OMC62
Figure 4.14: Scatter diagram of Soaked CBR Value versus MDD63
Figure 4.15: Graphical methods of normality test (both histogram and normal Q-Q plot)
Figure 4.16: Graphical Comparison of Experimental and Predicted CBR Value from the
Present Study
Figure 4.17: Graphical Comparison of experimental CBR value from existing correlation
and predicted CBR value from present developed model

LIST OF ABBREVIATIONS AND ACRONYMS

AASHTO ASTM	American Association of State Highway and Transportation Officials American Society for Testing Materials
ANOVA	Analysis of Variance
CBR	California Bearing Ratio
СТ	Control Test
df	Degree of freedom
DGR	Dial Gauge Reading
E	Compaction Energy per Volume
ERA	Ethiopian Road Authority
F	Fines
G	Gravel
GI	Group Index
GS	Specific Gravity
JIT	Jimma Institute of Technology
JU	Jimma University
LI	Liquidity Index
LL	Liquid Limit
MDD	Maximum Dry Density
MPCT	Modified Proctor Compaction Test
MRE	Margin Rate Error
M.Sc.	Master of Science
MLRA	Multiple Linear Regression Analysis
MS	Sum of Square
MSE	Mean Square Error
MSR	Mean Square Regression
Ν	Sample Size
NMC	Natural Moisture Content
OMC	Optimum Moisture Content
PI	Plasticity Index
PL	Plasticity Limit
PP200	Percentage passing sieve No.200

R	Correlation Coefficient (Pearson Correlation coefficient)	
\mathbb{R}^2	Coefficient of determination	
R ² (adj.)	Adjusted Coefficient of determination	
S	Sand	
SD	Standard Deviation	
SE	Standard Error	
SLRA	Simple Linear Regression Analysis	
SPCT	Standard Proctor Compaction Test	
SPSS	Statistical Package for Social Science Software	
SS _R SS _E TP SS _T	Regression Sum of Squares Error Sum of Squares or Residual Sum of Squares Test Pit Total Sum of Squares	
USCS	Unified Soil Classification System	

CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

In the discipline of Civil Engineering, Geotechnical engineering plays one of the most important roles in early stage in planning and designing of infrastructures. This is because of every civil engineering structure to be founded on the soil. Civil engineering works such as highways, buildings, dams, and other structures have a strong relationship with soil. These structures need a strong and stable layer of foundation soil to build on. Therefore, the soil must be able to carry imposed loads from any structure placed upon it without shear failure or destructive unallowable settlements [1].

Pavement design is considered to be the most important parameter in the construction of a road network, runways of air fields and bridge abutments. Generally, pavement, a relatively stable crust, is constructed over the natural soil in order to support the wheel and traffic loads as well as to provide a hard, durable and abrasion resistant surface [2].

A flexible pavement consist of a number of layers including sub-base, base course, surfacing etc. which ultimately lies on subgrade. Basically, subgrade is not the physical part of the pavement but it is considered as the functional part of the pavement. It is necessary that the subgrade soil should be properly compacted to fully utilize its strength while carrying the loads of the above layers of pavements as well as the moving loads of traffic [3]. For this purpose, it is necessary to evaluate the strength of subgrade soil on which the whole structure of the pavement rests and for this, CBR test is one of the most widely used methods. This method is mainly used to determine the stiffness modulus and shear strength of the subgrade soil and helps in designing the thickness of each layer of pavement. If the subgrade has higher CBR value, this means that it has more strength and will be able to bear more traffic load coming over it and ultimately the thickness of pavement layers will be small and vice versa [4].

California Bearing Ratio (CBR) is an important soil parameter commonly used by civil engineers particularly those involved in the design and construction of flexible pavement construction to assess the stiffness modulus and shear strength of subgrade which plays an important role in imparting structural stability to the pavement structure as it receives loads imposed upon it by road traffic [5]. The bearing strength parameter of subgrade, sub base

and base course materials of road construction is determined using the California bearing ratio test. But in construction activities cost and time are of paramount importance. So carrying out these tests separately will definitely increase the cost of the construction. Therefore, a correlation between CBR value and index properties of soil will be constructive tool by saving time, efforts, and money to conduct a complete testing program.

The foremost step in the design of road pavements has always been the geotechnical evaluation of sub-grade soil material. The construction of a road starts from conception, planning and design. Without a good design of the road the functionality of the road may not be achieved. Even when the construction and supervision is adequate without the design process well done the end product in the form of a road project will not be functional. One of the main reasons why highways in the country fail is that adequate knowledge of the soil situation is not obtained before the commencement of the road work. Knowledge of the soil situation helps both at the design and construction stage of the road. The subgrade should be tested and found to be adequate and meet the standard before they will be accepted for usage in road construction work [6].

CBR (California bearing ratio) test, gives realistic results which aids the design process of new flexible pavements as well as the restoration of existing pavements all over the world. In practice, only limited number of such tests could be performed because of high unit cost and time required for such testing. As a result, in many cases, it is difficult to reveal detailed variations in the CBR values over the entire length of roads. In such cases if the estimation of the CBR could be done on the basis of some tests which are quick to perform, less time consuming and cheap, then it will be easy to get the information about the strength of subgrade over the length of roads and also will be helpful and important to construct the whole length of road in a short period of time [7].

As mentioned so far by [8], the models used should be simple enough that the physical parameters needed for computations or prediction of the model are accurately and reliably determined using inexpensive test procedures.

Therefore, in order to overcome the above-mentioned difficulties it was aimed here in this study to predict the soaked CBR value of the soil using index properties of the soil that is the percentage passing sieve no. 200, liquid and plastic limit and plasticity index and compaction characteristics such as MDD and OMC. This is because these tests are available and also are simple and can be completed within a short period of time.

2

1.2 Statement of the Problem

Some soil properties are time consuming and expensive to conduct in the laboratory. In geotechnical engineering there is some empirical relationships exist between one soil property and another. For this reason, for these engineering properties, it is relevant to develop empirical models that will factor in two key aspects of construction which are saving cost and time [9].

Even though various attempts have been made to predict the CBR value by different researchers from samples of their respective localities, adopting those developed prediction models for different location is not reliable due to the empirical equations developed are more reliable for the type of soil where the correlation is developed [10]. This is because of soil properties vary from region to region and season to season as it appears naturally. Therefore, developing empirical equations specific to a certain region and soil type could be considered nearly as good insight of soil behavior [11].

In addition, conducting CBR test separately increases the cost of construction as well as affects the completion time of the project, especially in large road project. This is because of conducting the conventional CBR test always been time consuming and relatively expensive, and also more quantity of samples are required for laboratory test in order to achieve better accuracy and to obtain proper idea about the soaked CBR value of subgrade materials over the entire length of the road. This is quite difficult because it is difficult to take large number of samples for a large road project. Further, if the available soil is of poor quality, suitable additives are mixed with soil and resulting strength of soil is assessed by CBR value which is cumbersome. In such case a large disadvantage associated with the CBR test is its poor reproducibility and repeatability to attain the required strength [12].

To overcome these difficulties, prediction tried to establish between and among different parameters of index properties of soil for quick assessment of CBR value. Therefore, it is very important for Geotechnical engineers to quickly predict the behaviour of foundation materials used in the construction of infrastructure such as road. So, an attempt was made in this study to predict the CBR value of soil from the index properties of soil such as the percentage passing sieve no.200, liquid limit (LL), Plastic Limit (PL), Plasticity Index (PI), Maximum Dry Density (MDD) and Optimum Moisture Content (OMC) of soil which are quick to perform in the laboratory, less time consuming and cheap, then it is easy to get the information about the strength of subgrade over the whole length of roads.

1.3 Objectives of the Study

1.3.1 General Objective

The general objective of the study is to predict the California Bearing Ratio (CBR) value from the index properties of soil found in Seka town.

1.3.2 Specific Objectives

The specific objectives of the study are addressed as the following one in order to achieve the general objective of the study.

- > To investigate the CBR value and some index properties of the soil in the study area
- To know the relationship between California Bearing Ratio value and index properties of the soil found in the study area
- To develop a correlation model to estimate CBR value from the index properties by performing simple and multiple linear regression analysis.
- To compare the results of California bearing ratio (CBR) value of soil gained from laboratory tests with the developed correlation and to validate the developed model using the previous existing correlation data.

1.4 Research Questions

- 1. What will be the California Bearing Ratio (CBR) value and some index properties of soil in the study area?
- 2. What is the relation of California Bearing Ratio (CBR) value and index properties of soil in the study area?
- 3. What will be the correlation and regression analysis between California bearing ratio value and index properties of soil from the study area?
- 4. How much the variation between the laboratory test results and the developed correlation, and its validation using with the related study of previous existing correlation data?

1.5 Scope and Limitation of the Study

This research work is to be limited within the Seka town and focused on the prediction of CBR values from the index properties of soil found in the study area. To attempt the aim of this study, thirty representative soil samples from different location were collected to conduct this study in Seka town. The collected samples were disturbed and taken from 1m to 3m depth. The soil samples were first air dried and laboratory tests were conducted according to ASTM and AASHTO soil testing standard procedures and specifications. The

study is concerned to conduct a localized research particularly on samples that are collected from Seka town. Based on the laboratory test result, prediction of CBR value from index properties such as the Percentage Passing sieve no.200, liquid limit (LL), Plastic Limit (PL), Plasticity Index (PI), Maximum Dry Density (MDD) and Optimum Moisture Content (OMC) of soil is developed using single and multiple regression statistical analysis.

Based on the trends of the scatter plot of test results the correlation was analysed using a linear regression model. The proposed correlation is carried out by applying a single linear regression model and multiple linear regression models with the aid of Microsoft excel and SPSS Software. The scope of the developed correlation, discussions and result obtained are limited to the test procedures followed, the range and quantity of sample used, apparatus used, sampling areas and methods of analysis used in the subject study.

Therefore, the findings should be considered as indicative rather than definitive for the whole study area, because the collected samples are relatively considered as a representative of the population in the study area.

1.6 Significance of the Study

This research work is to predict the California bearing ratio value from the index properties of soil such as Sieve analysis, Atterberg's limits, and Compaction characteristics of soil found in Seka town. The finding of this study will provide helpful information to various design and construction stakeholders for the purpose of different projects in the town.

Actually, Seka town is ongoing and developing town in the future. With the expansion of technology, more infrastructure such as flexible pavement will be constructed within and across this town. During this time, this finding can help as a source of information or reference for the purpose of design.

The conventional CBR testing method is expensive, time-consuming, laborious, and its repeatability is low. Especially, in the construction of long kilometres of roads, it is difficult to conduct a CBR laboratory test either as a result of huge financial involvement or scarcity of good laboratory equipment. So this finding can help to minimize the time and cost of laboratory tests, as a result, it minimizes the total duration of the project. In addition, the model may use to predict the CBR value for similar properties of soils from another site.

In addition, other researchers will use the findings as a literature review and reference for further research on the prediction of California Bearing Ratio value from the index properties of soil after it will be published.

CHAPTER TWO

REVIEW OF RELATED LITERATURES

2.1 Introduction

This chapter provides a review of the literature on the prediction of California bearing ratio (CBR) value from the index properties of soils. The main purpose of a literature review is to acquire more realistic and tangible information for academic and research areas that are relevant and reliable to the subject under the study of new research with related title.

2.2 Theoretical review

2.2.1 California Bearing Ratio (CBR)

CBR is defined as the ratio of the resistance to penetration of a material to the penetration resistance of a standard crushed stone base material. The California Bearing Ratio (CBR) test was first introduced by the California State Highway Department in the 1920s. The US Army Corps of Engineers then adapted the method in the 1940s for military airfields. After the Second World War, the CBR method was also used in the UK, and its use spread to European countries [13], [14].

California Bearing Ratio (CBR) test is a common and comprehensive test at present practiced in the design of pavement to survey the stiffness modulus and shear quality of subgrade material. Nowadays, the CBR test is the most widespread method of determining the bearing strength of the pavement materials and is fundamental to pavement design practice in most countries. CBR value is an indicative of the strength of the subgrade material. It is an important soil parameter considered as main design input in the design of flexible pavements [15].

The CBR value is obtained as the ratio of the unit load (in KN/m^2) required to effect a certain depth of penetration in to a compacted specimen of soil at some water content and density to the standard unit load required to obtain the same depth of penetration on a standard sample of crushed stone. This is because of the CBR may be considered as the strength of the soil relative to that of crushed stone [16].

The test may be conducted on remolded (disturbed) or undisturbed soil samples or on the soil in place at field. The samples may be tested at their natural or as molded water content (unsoaked CBR), or they may be soaked by immersing in water for the duration of four days in order to simulate highly unfavorable moisture conditions of the soil in the field.

In the laboratory test procedure, the test samples are prepared with soils of aggregate particle size of less than 19 mm. In the case of soils where particle sizes greater than 19 mm exist, the large particles are removed from the sample and replaced with an equal mass of material that falls between the 19 mm and 4.75 mm sieve size. In the field CBR test procedure, removal of larger particles that may adversely affect the test results is not possible, and, therefore, in the laboratory test these types of soil are likely to produce unreliable results because of the removal of larger particles [17].

The design of pavement thickness requires the strength of subgrade soil, subbase and base materials to be expressed in terms of CBR so that stable and economical design achieved based on the CBR value of the material. The value of CBR is an indicator of the type of subgrade soil. If the CBR value of subgrade is high, it means that the subgrade is strong, and as a result, the design of pavement thickness can be reduced. Conversely, if the subgrade soil has low CBR value it indicates that the thickness of pavement shall be increased in order to spread the traffic load over a greater area of the weak subgrade or alternatively, the subgrade soil shall be subjected to stabilization which leads to uneconomic both in cost and time [18].

2.2.1.1 Application of California Bearing Ratio (CBR) Value

The strength of subgrade soil, sub-base and base-course material should be expressed in terms of California Bearing Ratio to use it as design input in the design of pavement thickness in road construction to achieve a stable and economic design. The required pavement thickness is determined from this CBR percentage by a method which is essentially empirical. The bearing ratio value is entered into an appropriate wheel loading curve to give the required thickness of pavement and its component layers depending on the accumulated traffic weight.

The results obtained by these tests are used with the empirical curves to determine the thickness of pavement and its component layers. This is the most widely used method for the design of flexible pavement. A number of pavement design charts are published in which one enters a chart with the CBR (Structural Number) together with design traffic class and reads directly the thickness of sub base, base-course, and/or flexible pavement thickness based on expected wheel loads.

The main application of California Bearing Ratio (CBR) is to evaluate the suitability of shear strength of natural subgrade soil as a construction material. The determination of the

thickness of the pavement layer is governed by the strength of sub grade. If the CBR value of subgrade is high, it means that the subgrade is strong and as a result, the design of pavement thickness can be reduced in conjunction with the stronger subgrade. Conversely, if the subgrade soil has low CBR value it indicates that the thickness of pavement shall be increased in order to spread the traffic load over a greater area of the weak subgrade or alternatively, the subgrade soil shall be subjected to treatment or stabilization.

The other application of CBR value in pavement design is the road sections must be defined and assigned in accordance with subgrade strength classes depending on the range of CBR value [19].

Subgrade Strength Class	Range of CBR Value (%)
S1	2
S2	3-4
S3	5-7
S4	8-14
S5	15-29
S6	30 and above

Table 2.1: ERA Classification of Sub grade Strength Class

Therefore, the information on the stiffness modulus and shear strength of subgrade soil should be required before any pavement design is carried out. These parameters are necessary to determine the thickness of the overlying pavement in order to achieve optimum and economic design [20].

2.2.2 Index Properties of Soil

In nature, soil occurs in a large variety. Engineers are continually searching for simplified tests that will increase of soils by employing a rapid soil test. These simplified tests, which engineering properties of soils are called index properties. Index properties of soil are properties which are used to characterize soils and facilitate identification and classification of soils for engineering purposes. Index properties of cohesive soils are used to characterize the physical and mechanical behavior of soils by making use of basic properties such as moisture content, specific gravity, particle size distribution, Atterberg limit, and moisture-density relationships. The wide applications of index properties in geotechnical engineering

practice are to identify and classify cohesive soils and provide correlations with engineering soil properties [21].

2.3 Review of Empirical Correlations of CBR value

In this section some of the available literature regarding the empirical correlation between CBR value and different index properties of soil have been developed by different researchers was reviewed in order to accomplish the proposed objectives of this research. In Geotechnical engineering various researchers have been contributed immensely to develop the prediction equations for CBR using different soil properties. Some of this literature was reviewed as the following one.

Z. U. Rehman *et al.* [22] were developed Correlations separately for fine grained soils and coarse grain soils. They were used 84 sample. Among 84 tested samples, 59 samples test results were utilized for the development of correlations and 25 were utilized to check the validity of developed correlation. Based on their soil test results, they were established different relationships. According to [22], it was observed that with an increase in fines the CBR value tends to decrease i.e. Strength of this relationship is very poor. The relationship was also established between CBR soaked value, optimum moisture content and maximum dry density. It was observed there is a linear relationship between CBR soaked value and optimum moisture content for both fine grained and coarse grained soil. With an increase in optimum moisture content of soil CBR soaked tends to decrease. Similarly, a linear relationship was observed between CBR soaked value and maximum dry density, CBR soaked tends to increase with the increase in maximum dry density of soil. Liquid limit and plasticity index are two very important index properties of fine grained soils. In their study from the regression analysis it was observed that with an increase in liquid limit and plasticity index, CBR soaked Value tends to decrease for fine grained soil indicating very less scatter and good correlations. For fine grained soils they were proposed the following developed model for the prediction of soaked CBR Value.

CBRsoaked = -0.10LL - 0.425PI + 15.73, with R² = 0.9 (2.1)

P.G. Rakaraddi and Vijay Gomarsi [23] had proposed a correlation between CBR value and index properties such as Gravel (G), Fines (F), Sand(S), LL, PL and compaction characteristics such as MDD and OMC using Multiple Linear Regression Analysis. The correlations proposed are written as the following equations.

9

a) By correlating soaked CBR with optimum moisture content and maximum dry density Mathematical equation is generated as given below.

$$CBR = -0.26052OMC + 5.717093MDD \text{ with } R^2 = 0.940$$
(2.2)

b) By correlating soaked CBR with Liquid limit, plastic limit, fines, and specific gravity Mathematical equation is generated as given below.

 $CBR = -0.275LL + 0.118PL + 0.033F + 5.106G \text{ with } R^2 = 0.961$ (2.3)

c) By correlating the soaked CBR value with percentage fineness, optimum moisture content, plasticity index, and specific gravity, the mathematical equation is generated as given below.

 $CBR = 0.030F - 0.426OMC - 0.117PI + 5.471G \text{ with } R^{2} = 0.951$ (2.4)

d) By correlating soaked CBR with optimum moisture content and specific gravity the mathematical equation is generated as given below.

 $CBR = -0.557OMC + 5.943G \text{ with } R^2 = 0.931$ (2.5)

Srinivasa R.H *et al.* [24] were investigated on Black Cotton soils from different parts of Karnataka state, India to develop regression equations for the prediction of CBR values. Black cotton soil in this area is generally grayish brown to black in color and occur from 0.5m to 10m deep and have high compressibility. The soil selected for testing in the selected area is generally classified as "CH"–Inorganic clay with high compressibility. After conducting different laboratory tests on 26 black cotton soil samples, based on the results an attempts were made to correlate the CBR values with the Index properties of the soil like Liquid limit, Plasticity Index, Activity of the soil and Compaction characteristics of the soils. Using statistical package for social science, SPSS software program linear regression equations like multiple linear regression equations were tried to develop correlation. After several trials were made through regression analysis they were provided the following equation in their study. For their developed equation they conclude that the correlation between CBR with MDD and OMC is better, if other properties viz., Activity and Plasticity Index is used.

$$CBR = 6.536 - 0.064Ip - 0.018A - 0.019OMC - 0.391MDD with R2 = 0.958$$
 (2.6)

Faisal I. *et al.* [25] Were attempted to correlate CBR value of soil with its index properties like grain size analysis, Atterberg's limits, and compaction characteristics such as MDD (Maximum Dry Density) and OMC (Optimum Moisture Content). To develop suitable correlations between CBR value and the index properties of Jamshoro soil which includes

LL, PL (Plastic Limit), PI (Plasticity Index), OMC, MDD, percentage passing of soil fines (%F) by the help of SLRA and MLRA which is the main theme of their research work. Index properties and CBR values of these samples have been determined through laboratory testing according to AASHTO and ASTM specification procedures. In their paper they mentioned important correlations which have been developed through SLRA and MLRA on CBR and index properties of various soil samples in Jamshoro. From the developed MLRA models for Soaked CBR based on the values of coefficient of determination (R^2) and adjusted coefficient of determination (Adj. R^2), it has been noted that the following model provided a better correlation with LL, PI and % Finer with value of $R^2 = 0.984$ and Adjusted $R^2 = 0.935$

CBRS =11.2525(LL)-26.4144(PI)-0.3024(%F) +153.717 with R^2 = 0.984,

Adj.
$$R^2 = 0.935$$

B. Yildrim, O. Gunaydin. [26] proposed the following correlation for CBR soaked value with index properties of fine-grained soils.

CBR = 0.62OMC + 58.9MDD + 0.11LL + 0.53PL - 126.18 with $R^2 = 0.63$ (2.8)

Dino Abdela [10] was studied on Correlation of California Bearing Ratio (CBR) with Index Properties of Soils. His study is concerned to conduct a localized research particularly on subgrade material. For achieving the objective of the study, different laboratory tests were carried out on thirty samples that collected along the stated road. Based on the results obtained, the correlation of CBR with index properties of the soil (LL, PL, PI, Percentage of fine content(F), Percentage of sand content(S), Percentage of gravel content(G), MDD and OMC) is developed using statistical regression analysis.

From the correlation analysis developed, he was provided the following two models using single linear regression and multiple linear regression respectively with the help of Statistical data analysis commercially available software namely MINITAB, SPSS and Microsoft Excel.

$$CBR = 17.227 - 0.867PI + 0.013PI^2$$
, with $R^2 = 0.682$ (2.9)

 $CBR = 3.591 - 0.013F + 3.707MDD - 0.098PI \text{ with } R^2 = 0.731$ (2.10)

From his study he observed and concluded that the effect of fine, plasticity index, liquid limit, plastic limit and optimum moisture content have negative effect on CBR value. That means if fine content, liquid limit, plastic limit, plasticity index, optimum moisture content tends to increase, the CBR value tends to decrease. Therefore, from this it can be concluded that the presence of much fine particles, high water content and plasticity

(2.7)

affect soil strength. And also he observed that increasing maximum dry density and percentage of gravel content have positive effect on CBR value. For instance, if MDD and G increases CBR tends to increase. This shows coarser materials and high density soils gives better strength. From the result he obtained from his study, he also concluded that the combination of soil index properties (grain size analysis, Atterberg's limit, and compaction parameters) correlates better than individual soil properties. The result shows that the correlation is sufficiently accurate in determining the CBR and hence can be used for preliminary characterization purpose within the soil property ranges used in the study.

Yared Leliso [18] was studied on Correlation of CBR Value with Soil Index Properties for Addis Ababa Subgrade Soils, using forty two disturbed samples that are collected from different parts of Addis Ababa and tried to develop the correlation of CBR as a function of grain size parameter, Atterberg's limits and compaction parameters by considering the effect of an individual soil properties and effect of a combination of soil properties on the CBR value. The study showed a combination of soil index properties correlates better with strength characteristic of CBR than individual soil properties. He suggested that for preliminary design purpose the correlation might be used, if the predicted CBR value is within the range of 2.2% to 10%. Otherwise, a detailed laboratory test should be carried out to obtain the actual CBR value. The developed correlation provided by Yared Leliso is presented below.

CBR = -21.734 - 0.003LL - 0.137PI + 20.244MDD, with $R^2 = 0.629$ (2.11)

CHAPTER THREE

MATERIALS AND METHODOLOGY

3.1 Description of the Study area

The study was conducted in western Oromiya region, Jimma Zone at Seka town. Seka town is found in Jimma zone, Oromiya region which is located in south-western Ethiopia and located 347km from Addis Ababa. It is the administrative center of Seka Chekorsa woreda. Its geographical coordinates are 07° 35'N latitude and 36° 33'E longitude with an estimated area of 1,607.66 square kilometers. The altitude of this town ranges from 1580 to 2560 meters above sea level. It lies in the climatic zone locally known as Weyna Daga, which is considered ideal for agriculture as well as human settlement. The mean annual rainfall of the area is between 1800 mm to 2300 mm with maximum rainfall between months of June and September. The annual mean temperature of the area is between 15 °C and 25°C [27]. The Global coordinates (Latitude and Longitude), map and soil sample location of the study area are shown in table 3.1, figure 3.1 and 3.2 below respectively.

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

		Global Coordinates	
Test Pits	Name of Location (Site)	Northing (Latitude)	Easting (Longitude)
TP-1	Seka Agricultural Office	7.604490	36.728574
TP-2	Seka Town Bus Station	7.605498	36.728223
TP-3	Police Office	7.605661	36.725349
TP-4	Seka Administration Office	7.607026	36.722847
TP-5	Seka Town Municipality Office	7.596312	36.717457
TP-6	Seka High School	7.600031	36.721817
TP-7	New Generation KG School	7.597461	36.720632
TP-8	Seka Hospital	7.596747	36.716393
TP-9	Seka Preparatory School	7.598789	36.718470
TP-10	Lideta Orthodox Church	7.603117	36.721428

Table 3.1: Global Coordinates for Identification of Soil Sample Test Pit Location

3.2 Data Collection

Before selecting sampling areas, visual site investigation and information from Seka town Municipality and Seka town administration were collected to consider soil types and to take sample evenly in the whole town. After observation of different locations in the study area, ten sampling locations were selected within different location of Seka town.

3.2.1 Sampling

Sampling is related with the selection of a subset of individuals from within a population to estimate the characteristics of whole population [28].

3.2.2 Sampling Techniques

The method for the selection of an individuals on which information are to be made is called sampling techniques [28].

3.2.2.1 Random Sampling

In this method of sampling, each unit included in the sample will have certain pre assigned chance of inclusion in the sample. This sampling provides the better estimate of parameters in the studies in comparison to the others methods of sampling. Randomization within an experimental design is a way of ensuring control over confounding variables and as such it allows the researcher to have greater confidence in identifying real associations between an independent variable (predictor) and a dependent variable (outcome measure) [28]. In random sampling every individual in the population must have an equal probability of being selected and the selected sample can have high probability to represent the population [29]. Therefore, this method of sampling was applied in this study to have a representative sample.

3.2.3 Sample Size

Ten test pits were excavated using local labor and samples were collected from each test pits at different depth in different parts of Seka town. Up to three soil samples were taken from one test pit, and additional nine samples were taken. In total 39 disturbed samples collected for further laboratory test. The collected samples were further analyzed in the laboratory conducting laboratory tests such as Grain size analysis, atterberg's limits test, compaction test and California Bearing Ratio test to categorize the soil type and determine the regression and correlation analysis using the analyzed result. Among 39 tested samples, 30 samples test results were utilized for the development of correlations and 9 samples were utilized as control test to check the validity of the developed correlation.

3.2.4 Sampling procedures

Test pits were excavated using hand tools carefully and representative samples were extracted. The samples properly handled and preserved using a plastic bag to prevent contamination by foreign material and to ensure that the in-situ soil conditions are preserved. The preserving and transporting of the samples was performed according to ASTM D-4220-95 (standard Practice for Preserving and Transporting of Soil samples).

3.3 Research Design

Research design shows the general flow chart of the study. This is shown as figure below.

Figure 3.3: Overall flow Chart of the Study

3.4 Study variables

3.4.1 Dependent variable

The dependent variable is the response variable or output determined from the effects of the independent variable defining as a function of different index soil properties (independent variable) in the form of equation by the method of regression analysis (both simple linear regression and Multiple linear regression analysis). For the purpose of this study dependent variable is considered as the California bearing ratio (CBR) value of soil which was predicted based on the independent variable.

3.4.2 Independent variables

Independent variables are the variables that factor which are measured by the experimenter to determine its relationship to observed phenomena. For this research, the independent variables are the soil index properties such as Percent passing sieve no.200, atterberg limits parameters (LL, PL and PI) and compaction characteristics (MDD and OMC).

3.5 Laboratory Tests

The engineering properties of soils are classified and identified based on index properties and other tests. Several laboratory tests had been undertaken to produce model equations using the obtained result. Specifically, for this research laboratory tests such as natural moisture content, Specific gravity, Grain size analysis, Atterberg's limits, compaction test and California Bearing Ratio (CBR) test were conducted. The entire laboratory tests were conducted in Jimma Institute of Technology Department of Civil Engineering Geotechnical Engineering Laboratory using the following standard testing procedures, and the detail laboratory tests described as table 3.2 below.

Test Description	Standard Methods of Testing Procedure
Natural Moisture Content	ASTM D 2216-98a
Specific Gravity	ASTM D 854-98
Grain Size Distribution Analysis (Wet Sieve Analysis)	ASTM D 1140-97
Atterberg Limits Test	ASTM D 4318-98
Compaction Test	AASHTO T-180
California Bearing Ratio Test	AASHTO T-193

Table 3.2:	Summary o	f laboratory	standard	testing	procedures
------------	-----------	--------------	----------	---------	------------

3.5.1 Natural Moisture Content

Moisture content is defined as the ratio expressed as a percentage of the mass of water to mass of soil solids. The purpose of moisture content test is to determine the amount of water present in a quantity of soil in terms of its dry weight.

The water content of a soil is used in expressing the phase relationships of air, water, and solids in a given volume of soil. In (cohesive) soils, the consistency of a given soil type depends on its water content [30]. The other importance of moisture content is to provide general relation with strength, settlement, workability and other properties, because change in moisture content is the most important soil index property that affects the property of soils since their behavior largely changes with water concentration variation.

3.5.2 Specific Gravity

Specific gravity of soil is the ratio of weight of a given volume of soil particles in air at a stated temperature to the weight of an equal volume of distilled water at a stated temperature. The specific gravity of a soil is used to relate a weight of soil to its volume. It also used to calculate phase relationships of soils [31].

3.5.3 Grain Size Distribution

To understand the nature of the soil, the distribution of the grain size present in the given soil mass must be known. Therefore, the grain size analysis involves determining the percentage by mass of particles within the different size ranges. The purpose of grain size (sieve analysis) is to determine the percentage of various grain sizes. The grain size distribution is used to determine the textural classification of soils (i.e., gravel, sand, silt clay, etc.) The distribution of particle sizes larger than 75 μ m (retained on the no. 200 sieve) is determined by dry or wet sieving, while the distribution of particle sizes smaller than 75 μ m is determined by a sedimentation process, using a hydrometer to secure the necessary data. Then the percent passing on each sieve is used for further identifying the distribution and gradation of different grain sizes.

3.5.4 Atterberg Limits

Atterberg Limits are integral parts of several engineering classification systems to characterize fine-grained soil. It describes the consistency and plasticity of fine-grained soils with varying degrees of moisture content. Albert Atterberg, a Swedish Scientist in 1911, gave an idea of the consistency limit of cohesive soils and proposed a number of tests for defining their properties. For the portion of the soil passing the 0.425mm (No. 40) sieve,

the moisture content is varied to identify the three stages of soil behavior in terms of consistency. These stages are known as the liquid limit (LL), plastic limit (PL), and shrinkage limit (SL) of soils. Their test is performed only on that portion of a soil which passes the 0.425mm (No.40) Sieve [32].

I) The liquid limit (LL) is defined as the water content at which 25 blows of the liquid limit machine (Casagrande cup) closes a standard groove cut in the soil part for a distance of 12.7 mm. It also may be defined as the minimum water content at which the soil will start to flow under the application of a standard shearing force (dynamic loading).

II) The plastic limit (PL) is as the water content at which a thread of soil, when rolled down to a diameter of 3 mm, will begins to crumble or fracture.

III) The shrinkage limit (SL) is defined as that water content below which no further soil volume change occurs with further drying.

The Atterberg limits provide general indices of moisture content relative to the consistency and behavior of soils. The LL defines a liquid/semi-solid change, while the PL is a solid boundary. The numerical difference is termed as the plasticity index (PI = LL-PL). It is the range of water content over which the soil remains deformable or plastic.

3.5.5 Soil Classification

Soil classification is the distribution of soils into different groups such that the soils in a particular group have similar property. It is the type of labelling of soils with similar size. Soils exhibiting similar behavior can be grouped to form a particular group under different standardized classification systems. A classification scheme provides a method of identifying soils in a particular group that would likely exhibit similar characteristics. As there is a wide variety of soils covering the earth, it is desirable to classify the soils into broad groups of similar property [33].

There are various soil classification systems existing in the world, presently, two of classification systems are frequently used by geotechnical and soil engineers. They are the American Association of State Highway and Transportation Officials (AASHTO) classification system and the Unified Soil Classification System (USCS) which are used to specify a certain soil type that is best suitable for a specific application. Both systems take into account the particle-size distribution and Atterberg limits. These classification systems divide the soil into two groups: cohesive or fine-grained soils and cohesion-less or coarse-grained soils [34].

3.5.5.1 Unified Soil Classification System (USCS)

This type of classification system is the most common for use in all types of engineering problems including soils. This type of system classifies soils into two broad categories:

Coarse-grained soils that are gravelly and sandy in nature with more than 50% retained through the No.200 sieve. The group symbols start with a prefix of G or S. G stands for gravel or gravelly soil, and S for sand or sandy soil.

Fine-grained soils are with less than 50% retained through the No.200 sieve. The group symbols start with prefixes of M, which stands for inorganic silt, C for inorganic clay, or O for organic silts and clays. The symbol Pt is used for peat, muck, and other highly organic soils [35].

3.5.5.1.1 Plasticity Chart for Unified Soil Classification System (USCS)

The plasticity chart is a plot of the plasticity index versus the liquid limit of a soil and it is used for classifying fine-grained soils according to their plasticity. The A line (PI= 0.73(LL-20)) is an empirically chosen line that splits the chart between clays above the A line and silts below the A line. The vertical line, corresponding to a liquid limit equal to 50%, separates high-plasticity fine-grained soils (LL>50) from low-plasticity fine-grained soils (LL<50).To classify a soil, the plasticity index and liquid limit of that soil are plotted on the chart having the A line; the region in which the point falls indicates what type of fine-grained soil it is or what kind of fines are encountered in a coarse-grained soil. The plasticity chart is the basis for the classification of fine-grained soils and of the fines fraction of coarse-grained soils [36]. This plasticity chart for Unified Soil Classification System (USCS) is shown as the following figure.

3.5.5.2 AASHTO Classification System

In 1928, the Bureau of Public Roads introduced a classification system with seven soil groups, designated A-1 through A-7, to be used for assessing the suitability of road subgrade materials. This system is based on the proportion of grain diameters falling between 2.0, 0.425, and 0.075 mm (sieve No. 10, 40, and 200) as well as the soil's plasticity. It is a quick, rational method for categorizing both undisturbed natural soil and fill in terms of its performance as a subgrade material. The system has been found to be applicable in areas with vastly different soil types and origins. The seven classifications is shown in Table 3.3 below [37].

1											ı	
Classification Of Soils and Soil-Aggregate Mixtures												
General	Silt-Clay Materials (More										Aore	
Classifica	Granular Materials (35% or less passing 75µm)								than 35% passing 75µm)			
tion	[No.200]								[No.200]			
	A	-1	A-3*	A-2				A-4	A-5	A-6	A-7	
Group												
Classifica											A-7-5	
tion	A-1-a	A-1-b		A-2-4	A-2-5	A-2-6	A-2-7				A-7-6	
Sieve Anal	ysis											
Percent												
passing												
2mm	50											
(N0.10)	max.											
425µm	30	50	51									
(No.40)	max.	max.	min.									
75µm	15	25	10	35	35	35	35	35	35	35	35	
(No.200)	max.	max.	max.	max.	max.	max.	max.	mi.	min.	min.	min.	
Characteristics of fraction passing 425µm (No.40)												
Liquid				40	41mi	40	41	40	41	40	40	
Limit				max.	n.	max.	min.	max.	min.	max.	min.	
											11	
Plastic				10	10	10	10	10	11	11	min.*	
Index	6 max.		N.P.	max.	max.	min.	min.	min.	max.	min.	*	
Usual											1	
Types of												
significan												
t	Stone	e										
Constitue	Fragments											
nt	Grave	l and	Fine	Silty or Clayey Gravel and								
Materials	Sand Sand			Sand			Silty Soils Clayey Soils		y Soils			
Constal											<u> </u>	
General												
Kating as		Excellent to Good										
Subgrade	Excellent to Good							Fair to Poor				

Table 3.3: AASHTO classification of soils and soil-aggregate mixtures (AASHTO M 145-91)

21

*The placing of A-3 before A-2 is necessary in the "left to right elimination process" and does not indicate the superiority of A-3 over A-2.

**The plasticity index of A-7-5 is equal to or less than the liquid limit minus 30. The plasticity index of the A-7-6 subgroup is greater than the liquid limit minus 30.

There are two broad types under which the AASHTO groups and subgroups are divided. These are "granular" (A-1, A-3, and A-2) and "silt-clay" (A-4 through A-7) materials. The transitional group, A-2, includes soils which exhibit the characteristics of both granular and silt-clay soils, making subdivision of the group necessary for adequate identification of material properties. The engineering considerations for granular and silt-clay soils are significantly different. The following discussion highlights the major differences between these two types.

1. Granular: Granular materials include mixtures of rock fragments ranging from fine to coarse grained. Granular materials may include a non-plastic to slightly plastic soil binder, but are limited to 35 percent or less of the soil passing the 0.075mm (No. 200) sieve (Note that Mn/DOT's Specification limits granular backfill to no more than 20 percent passing the 0.075mm(No.200) sieve). Granular materials generally provide the most desirable subgrade.

It is possible, however, that some granular materials near the silt-clay boundary may have characteristics unsuitable for roadways in the presence of water. This is because capillarity (or a chemical affinity for water) may induce a volume change or softening of the material. In addition, frost heave becomes a concern in materials with high silt contents. Therefore, the elevation of the ground water table should be carefully considered when the subgrade is composed of these transitional soils

2. Silt-clay: Silt-clay materials are soils having more than 35 percent passing the 0.075mm (No. 200) sieve. The behavior of these soils is dominated by the fines in the soil mass. Silt-clay materials (A-4 through A-7) can provide suitable road subgrades when their shortcomings are accounted for by proper design or construction practices. Subgrades classified as A-6 or A-7 usually dictate a thickened pavement section and strictly maintained grading tolerances. A-7 materials are generally considered the poorest performers with regard to roadway construction.

Determining the AASHTO classification of a soil is a two-step process. First, the soil is categorized into one of the seven major "A" groups using the gradation limits set in Table
above. Generally, the lower-numbered soils to the left of the chart are more preferable subgrade materials than those on the right. However, this is not always true: A-3 materials usually outperform A-2 materials. A subdivision of some of the major groups is necessary to account for varying characteristics, e.g. A-2-6 and A-2-7.

3.5.5.2.1 Plasticity Chart of AASHTO Classification System

By plasticity chart of AASHTO Classification, the relationship between liquid limit and plasticity index for silt-clay groups (from AASHTO M 145-91), and where the subgroups division of the material falls can be checked graphically using figure below.

Figure 3.5: Relationship between liquid limit and plasticity index for silt-clay groups (AASHTO M 145-91).

3.5.5.2.2 AASHTO Group Index Value

Group index value (GI) is an indicator of suitability of subgrade soil for highway construction. Different soil class under AASHTO classification are generally rated for subgrade suitability from excellent to good for coarse graded material and good to poor for fine graded soil [33]. This parameter used as a general guide to the load bearing capacity of a soil. The group index is a function of the liquid limit, the plasticity index and the amount of material passing 0.075mm sieve size.

GI = (F-35) [0.2 + 0.005(LL - 40)] + 0.01(F - 15) (PI - 10)(3.0)

Where: F- Percentage passing sieve No. 200 (size 0.075mm), whole number

LL- Liquid Limit, expressed as a whole number

PI- Plasticity Index, expressed as a whole number

While calculating the GI from the above equation, if the computed value is negative, the group index is reported as zero. In addition, the GI value is rounded off to the nearest whole

number. The higher the value of the group index for a given group classification the poorer the performance as a subgrade material. A group index of zero indicates a good subgrade, whereas a group index of 20 or greater shows a very poor subgrade. In other way, increasing the value of the group index within each basic soil group reflect the combined effect of increase in liquid limit and plasticity index and also decreasing percentage of coarser material resulting in decrease in the load carrying capacity of subgrade. In this regard, the idea of Group Index is similar to CBR in a way that both are an indicator of the suitability of subgrade soil.

The main importance of group index is to identify the better performance of different soil group, even different soils fall under the same soil group but may have different value of GI as a highway sub grade material. Generally, the soil that has a lower value of group index is likely to perform better as a highway sub grade material.

3.5.6 Moisture-Density Relationship

According to Arora, k.R. [33] Compaction of soil means to densify the soil by using the mechanical technique in order to improve the engineering properties of soil. Compaction generally increases the shear strength of the soil, and hence the stability and bearing capacity. It is also useful in reducing the compressibility and permeability of the soil. It is a general practice and common methods in geotechnical engineering to construct; road, dams, landfills, airfields, foundations, hydraulic barriers, and ground improvements.

3.5.6.1 Factors Affecting Compaction

Besides moisture content, soil type and compaction effort (energy per unit volume) are factors that affect compaction [38]. The importance of these two factors is described below.

3.5.6.2 Effect of Soil Type

The soil type is described depending on its grain-size, shape of the soil grains, specific gravity of soil solids, and amount and type of clay minerals present. These factors has a great influence on the maximum dry unit weight and optimum moisture content. Coarse-grained soils tend to reach optimum compaction at water contents lower than fine-grained soils, and tend to reach maximum dry densities that are higher than those of fine-grained soils because of fine-grained soils have a high air voids than coarse-grained soil [38].

3.5.6.3 Effect of Compaction Effort

Compactive effort is a measure of the mechanical energy imposed on the soil mass during compaction (energy per unit volume). With a soil of given moisture content, increasing the

amount of compaction results in closer packing of soil particles and increased dry unit weight [39]. The compaction energy per unit volume used for the Proctor test is defined as below.

$$E = \frac{\binom{\text{Number of}}{\text{blows per layer}} * \binom{\text{Number of}}{\text{layers}} * \binom{\text{Weight of}}{\text{hammer}} * (\text{Height of drop hammer})}{\text{Volume of Mold}}$$
(3.1)

As the compaction effort is increased, the maximum dry unit weight of compaction is increased and the optimum moisture content is decreased to some extent [39].

3.5.7 Method of Laboratory Soil Compaction

In the 1930s an American civil engineer Ralph Proctor creates compaction test. He divided compaction test into two; Standard Proctor Compaction Test (SPCT) and the Modified Proctor Compaction Test (MPCT). In Standard proctor compaction test (ASTM D 698 or AASHTO T-99), a soil at selected water content is placed in three layers in to a mould of 101.6mm diameter with each layer compacted by 25 blows of a 2.5kg hammer dropped from a height of 305mm, subjecting the soil to a total compaction effort of about 600KN/m². So that the resulting dry unit weight at optimum water content is determined [39]. In the case of Modified proctor compaction procedures used to determine the relationship between water content and dry unit weight of soils, compacted in 5 layers by 152.4mm diameter mould with a 4.5kg hammer dropped from a height of 457mm producing a compaction effort of 2700KN/m² [39]. As outlined in the above table of summary of laboratory tests, in this research this modified standard procedure (AASHTO T-180) was followed to obtain the compaction characteristics [40].

The difference between the two methods is basically the energy generated. Modified compaction test uses higher energy than standard compaction test. In both methods, the main output is finding optimum water content and maximum dry density.

Compaction tests are performed using disturbed, prepared soils with or without additives. Normally, soil retained on the no.4 (4.75mm) and passing 19mm sieve is mixed with water to form samples at various moisture contents ranging from the dry state to wet state. These samples are compacted in layers in a mold by a hammer in accordance with specified nominal compaction energy. Dry density is determined based on the moisture content and the unit weight of compacted soil. In a moisture-density relationship a compaction curve which gives the relationship between the water contents and dry densities of soil is plotted using dry density versus moisture content. From the plotted curve of dry density versus moisture content, the maximum ordinate on this curve is referred to as the maximum dry density (γ dmax), and the water content at which this dry density occurs is termed as the optimum moisture content (OMC). That is at the peak of the curve, the water content is called optimum water content, and the dry density soil is called maximum dry density (MDD).

3.5.8 California Bearing Ratio (CBR) Test Methods

The CBR test was originally developed by the California Division of Highways in the 1930s, as part of a study of pavement failures. Its purpose was to provide an assessment of the relative stability of fine crushed rock base materials. The test has been modified since then and extended to subgrades. It is now widely used for evaluating the stability or strength of subgrade soil and other flexible pavement materials for pavement design throughout the world. The California Bearing Ratio (CBR) test can be performed either in the laboratory or in the field. All most both of them are similar to each other but the only difference is the type of sample, the apparatus to be used and soaking condition. The former one used typically with a compacted (disturbed) sample and may be performed either soaking or unsoaking based on the soil type and the condition of the site, and the later one used for undisturbed soil sample.

3.5.8.1 Laboratory California Bearing Ratio (CBR) Test

Laboratory CBR test is carried out as per the procedure outlined in AASHTO T193-93 or ASTM D 1883-73. This test method provides the determination of the CBR of a material at optimum water content or a range of water content from a specified compaction test and a specified dry unit weight. The dry unit weight is usually given as a percentage of maximum dry density from the compaction tests of either standard proctor test (ASTM D 698 or AASHTO T-99) or modified proctor test (ASTM D 1557 or AASHTO T-180). For this research, the Laboratory CBR test of the collected samples was carried out as per the procedures outlined in AASHTO T193-93.

In this test, a plunger is made to penetrate the soil, which is compacted to the prevalent dry density and moisture content anticipated in the field (or to MDD and OMC as specified) in a standard mold (CBR mold) at a specified rate of penetration. The resulting load-penetration curve is compared with that obtained for a standard crushed rock material, which is considered an excellent base course material.

Penetration testing is accomplished in a compression CBR machine applying the load applied by cylindrical metal plunger of 50 mm diameter, using the standard penetration rate

1.27mm/minute and readings of the applied load are taken at appropriate intervals of penetration (0.64mm, 1.27mm) up to a total penetration of usually not more than 7.62 mm-12.7mm [41].

The penetration resistance load is then plotted against the penetration depth. The CBR values is then determined by reading from the load versus penetration graph. The CBR is then determined by reading off from the curve the load that causes a penetration of 2.54 mm and 5.08mm and dividing this value by the standard load (13.4kN) and (20kN) required to produce the same penetration respectively in the standard crushed stone as [41]:

$$CBR(\%) = \frac{Unit \ load \ for \ 2.54 / 5.08 \ mm \ penetration \ in \ test \ specimen}{Unit \ load \ for \ 2.54 / 5.08 \ mm \ penetration \ in \ s \ tan \ dard \ crushed \ roack} \times 100$$

(3.2)

Using the above formula, from the load-penetration curve for 2.54 mm and 5.08 mm penetration, the bearing ratio is calculated by dividing the corrected load by the corresponding standard load, multiplied by 100. Its value ranges from 0 (worst) to 100 (best). The CBR value normally reported based on the load ratio for a penetration of 2.54mm, if the bearing ratio of 2.54 mm is greater than that of 5.08 mm. However, if the ratio at 5.08 mm penetration is greater, the test is entirely repeated on a fresh specimen. If the repeated result of 5.08 mm is again greater, the design bearing ratio will be that of 5.08 mm or if the bearing ratio of 2.54 mm is greater the design bearing ratio will be that of 2.54 mm penetration [41]. In case of subgrade material 2.54mm and 5.08mm are considered as failure point of soil. In the laboratory test, if the soil sample is remolded using 56 blows per layer a single density and moisture content will be calculated, and the design CBR value will be the one that obtained at 100% of the maximum dry density obtained from compaction test. Whereas in the case of when a sample compacted at 10,30 and 65 blows per layer in different mold, the design CBR value is obtained at a desired density between a range of 95% (for lower) to 98% (for higher) of the maximum dry density obtained from compaction test in comparison to the 100% compaction achieved in the laboratory. After getting the bearing ratio for each sample, density versus CBR curve is plotted and the design CBR value of the soil will be the one corresponding to the desired dry density from the Density-CBR plot. The later approach is more practiced in different specifications and also the current research has followed this testing procedure.

According to AASHTO T 193-93 the Values of Standard force-penetration relationships for crushed stone to use in equation 3.2 are listed in Table 3.4 below [41].

Penetration (mm)	Standard unit load (MPa)
2.54	6.9
5.08	10.3
7.62	13.1
10.16	15.9
12.7	17.9

Table 3.4: Penetration corresponding to standard unit load applied to standard crushed rock

3.5.8.2 Soaking Samples and Subgrade Volume Change Classification

A subgrade strength criteria may be satisfied, but may not be adequate for volume change criteria, which must be assessed separately [42]. This is done depending upon the prevailing climatic conditions of the site. The compacted specimens are immersed in water for four days before the penetration test with a surcharge load not less than 4.52 kg that is a representative of the pavement weight in the field and applied to simulate the effect of pavement overburden stress. The soaking process is to simulate the worst moisture condition of the soil that may occur in the field. During this period, the sample is loaded with a surcharge load that simulates the estimated weight of pavement layers over the material tested. Any swell due to soaking is also measured. The test on soaked sample accomplishes two things: i) it gives information concerning expected soil expansion beneath the pavement when the soil becomes saturated. ii) It gives an indication of strength loss from field saturation [42]. The soaked CBR swell provides a better indicator of movement potential for design purposes. This is because of Swell amount provides a better indicator of movement potential or subgrade volume change due to the worst condition in the field. The percent swell is computed as dividing the change in length of specimen after four days of soaking for the initial height of specimen. Therefore, for design purposes maintaining proper drainage facility is recommended depending on this swelling condition. The subgrade volume change based on the swell amount is given as the following table.

0 0	Table 3.5: Subg	grade volume ch	ange classification	based on the swel	l condition [42]
-----	-----------------	-----------------	---------------------	-------------------	------------------

Swell amount	Subgrade volume	Remarks
(%)	change	
< 1	Very low	Generally acceptable
1-2	Low	Applicable providing suitable capping layers
2-3	Medium	Design for some subgrade volume change
3-5	High	Unsuitable for subgrade directly below pavements
> 5	Very high	Should be removed and replaced or stabilized

3.5.8.3 In-Situ California Bearing Ratio (CBR) Test

The in-situ CBR test is carried out as per the procedure outlined in ASTM D 4429-93. Just like Laboratory CBR test, Field in-place CBR test is used for evaluation and design of flexible pavement components such as base and sub base course and subgrades and for other applications (such as unsurfaced roads) for which CBR is the desired strength parameter.

Benkelman beam deflection measurement apparatus is used to carry out in situ CBR tests in the field on exposed subgrades, subbases, and bases. Such testes can be useful in investigating pavement failures and also in examining the performance of existing roads in good condition. Accompanied by measurements of field densities and moisture conditions, such testing provides a useful means of building up knowledge of appropriate pavement design criteria for local soils under the locally prevailing climatic conditions.

If the field CBR is to be used directly for evaluation or design without consideration for variation due to change in water content, the test should be conducted under one of the following conditions: (i) when the degree of saturation (percentage of voids filled with water) is 80 % or greater, (ii) when the material is coarse grained and cohesion less so that it is not significantly affected by changes in water content, or (iii) when the soil has not been modified by construction activities during the two years preceding the test [43].

3.6 Procedures for Correlation and Regression Analysis

3.6.1 Sample size determination

Determination of sample size is used to select representative sample from the selected study area. To calculate the required sample size, parameters such as the level of confidence interval, level of significance, standard deviation (SD) and the degree of precision which define the Margin Rate Error (MRE) need to be considered. The standard deviation of population found from previous researches and literatures. Level of confidence interval is used to indicate the reliability of an estimate. The calculation is worked firstly by selection of the desired confidence level, because all parameters involved in the formula decided depending on the level of confidence interval except the standard deviation [29].

To determine or fix the sample size, if the standard deviation of the population known, the following formula is used [29].

$$N = \left(\frac{SD}{SE}\right)^2$$
(3.3)

Where SE is standard error which given as: $SE = \frac{MRE}{Z}$, and substituting in the above formula the following formula obtained.

$$N = \frac{Z^2 * SD^2}{MRE^2}$$
(3.4)

If the population is unknown, the following formula is used to determine sample size for sample proportion [29].

$$N = \frac{Z * \overline{\rho} (1 - \overline{\rho})}{MRE^2}$$
(3.5)

Where: SD =standard deviation

MRE = Margin of error rate

 $\overline{\rho}$ = percentage picking a choice or population proportion response

Z= the probability that a sample will fall within a certain distribution at a given of confidence level. For instance: Z=1.96 at 95% of confidence level

N=sample size

3.6.2 Scatter Plots

The scatter diagrams provide a visual method of displaying a relationship between dependent and independent variables as plotted in a two dimensional coordinate system. In developing correlations, a first step is creating a scatter plot of the data obtained, to visually assess the strength and form of some type of relationship [44]. If all points in the scatter plot are very close to each other, a fairly good correlation can be expected between the dependent and independent variables. Likewise, if those points are widely scattered, a poor correlation of data can be expected between them. If the points are scattered and they reveal no upward or downward trend, then we say the variables are uncorrelated. However, if there is an increasing trend from the lower left-hand corner and going upward to the upper right-hand corner, the correlation indicated from the graph is said to be positive. Also, if there is a downward trend from the upper left-hand corner the correlation obtained is said to be negative.

3.6.3 Arranging Data entry for Correlation and Regression analysis using SPSS

To perform the analysis using the Statistical Package Software program, SPSS, setting up the data in the form of two variables (independent and dependent) using Microsoft excel (spreadsheet) is the primary criteria. Then, the arranged data imported from Microsoft excel to the SPSS software for correlation and regression [45]. Then Methods of Regression analysis is applied. In this study stepwise analysis methods is used.

Stepwise regression is an approach to identify the effects of one variable on the other for a regression model. It is a step-by-step both forward (adding parameters) and backward (reducing parameters) iterative construction of a regression model that involves automatic selection of independent variables. It interactively explores which predictors seem to provide a good fit.

3.6.4 Normality Test

Normality test is used to check whether the data fulfill assumption of normally distributed or not. There are many tests to check whether the data is normally distributed or not. These tests basically classified as graphical and non-graphical (Statistical or analytical) tests for assessing normality [46]. The other main thing of testing normality is to identify or to choose the methods of statistical test whether it's parametric or non-parametric test.

3.6.4.1 Graphical methods of assessing Normality test

By graphical method data does not need to be perfectly normally distributed for the tests to be reliable. However, to be the data is approximately normally distributed, the normal distribution peaks in the middle and is symmetrical about the mean [46]. Under Graphical methods there are two methods which are available in SPSS. These methods are described as the following.

Histogram Method: By this method the normality of data is checked by plotting a histogram of the variables that will give an indication of the shape the distribution. In this case the normality of the collected data is checked comparing the actual data distribution with the theoretical normal distribution which is shown by a normal approximation curve through a visual examination of the drawn curve. If the normal distribution peaks fall in the middle and fairly symmetrical and if the curve has bell-shaped, the data is considered as normally distributed, if not the data is not normally distributed [47].

Normal Q-Q Plot Method: Likewise the histogram method, Q-Q plots also used to check the normality of the given data through visual examination of the drawn line. The normal Q-Q plot is an alternative graphical methods of assessing normality to the histogram and is easier to use when there are small sample sizes. By this method the scatter should lie as close to the line as possible with no obvious pattern coming away from the line for the data to be considered normally distributed [47].

3.6.4.2 Statistical (Analytical) Methods of Normality Test

Statistical (Analytical) test for normality are more precise than the graphical method test since the actual probabilities are calculated to accept or reject the statistical hypothesis depending on the level of the probability. There are several methods of statistical tests for normality test. However, the following some techniques are considered in order to test the normality of the data. These methods are Kolmogorov - Smirnov Test, Shapiro - Wilks Test and the use of skewness and kurtosis coefficients. These methods are available in SPSS to assess the normality [45].

3.6.4.2.1 Normality Test Using Kolmogorov - Smirnov Test and Shapiro - Wilks Test These to see whether the distribution as a whole deviates from a comparable normal distribution or not. The Kolmogorov–Smirnov test and Shapiro–Wilk test compare the scores in the sample to a normally distributed set of scores with the same mean and standard deviation. If the test is non-significant (p > .05) it tells us that the distribution of the sample is not significantly different from a normal distribution (i.e. it is probably normal) hence accept the null hypothesis. If, however, the test is significant (p < .05) then the distribution in question is significantly different from a normal distribution (i.e. it is non-normal) which lead to the rejection of the normality (null hypothesis) [45]. Kolmogorov - Smirnov Test works best for data sets more than fifty (>50). Shapiro - Wilks Test is applicable or works

3.6.4.2.2 Normality Test Using Skewness and Kurtosis Coefficients

best for data sets with 3 < n < 50, but can be used with larger data sets.

The other alternative analytical methods of measuring normality of data is comparing skewness and kurtosis values with their standard errors. The value of skewness and kurtosis are informative for deciding the normality of data. Both parameters are obtained from the SPSS output through the analysis of frequency distribution. By this test, the normality of data is identified depending on the associated standard error with the skewness and kurtosis value respectively. To determine the normality the obtained value of skewness and kurtosis should be converted or transformed to z-scores. To transform any skewness and kurtosis score to a z-score, simply divide the skewness and kurtosis value by their respective standard error produced by SPSS [45]. Therefore, skewness and kurtosis are converted to z-scores in exactly by the following way.

$$Z_{\text{skewness}} = \frac{S}{SE(\text{Skewness})}$$
 and $Z_{\text{kurtosis}} = \frac{K}{SE(\text{kurtosis})}$ (3.6)

Where S is value of Skewness, K is value of kurtosis and, SE (skewness) and SE (kurtosis) are the standard error for skewness and kurtosis respectively. Then the converted value of skewness and kurtosis are compared with a critical Z-value assumed for a normally distributed sample. For normal distribution sample, for 95% confidence interval the z-scores should lie between -1.96 and +1.96 [45]. If the converted value falls within the critical Z-value assumed for normally distributed data then the data is approximately considered as normally distributed.

3.6.5 Multicollinearity (interdependency) of independent Variables Test

Multicollinearity is associated with the situation results from the presence of strong linear relationships among the predictor variables. It is exists when there is a strong correlation between two or more predictors in a regression model. If there is perfect collinearity between predictors there is a multicollinearity problem between the predictors.

3.6.5.1 Methods for Measuring Multicollinearity

There are two methods for measuring collinearity between the predictor variables. These are variance inflation factors (VIF) and correlation coefficient (R) of correlation matrix.

3.6.5.1.1 Variance Inflation Factors (VIF)

The multicollinearity (interdependency) between the predictor variables can be judged by examining a quantity called the variance inflation factor (VIF) [45]. The VIF indicates whether a predictor has a strong linear relationship with the other predictor(s). Andy Field, [45] suggests that if a value of VIF is greater than 10 then there is cause for concern of multicollinearity problem in the regression model. Related to the VIF there is the tolerance statistic which is its reciprocal (1/VIF). If the tolerance statistics is greater than 0.1, we can safely conclude that there is no collinearity within the predictor variables.

3.6.5.1.2 Correlation coefficient of correlation matrix

The other way of identifying multicollinearity in the data is to examine a correlation matrix of all of the predictor variables. Depending on the size of the correlation coefficients that exist among the predictor variables it can be detect the presence of collinearity. Andy Field, [45] Suggests that If there is no multicollinearity in the data then there should be no considerable strong correlations (R< 0.9) between a pair of predictors unless otherwise there is a strong correlation (R \ge 0.9) which indicates the presence of multicollinearity problem between a pair of predictor variables.

3.6.6 Correlation and Regression Analysis Methods

Correlation is the way of measuring the relationships between two variables. It quantifies the degree to which dependent and independent variables are related. There are two methods of statistical hypothesis for correlation. These are directional hypothesis and non-directional hypothesis. The former one is used if the level of significance one-tailed is used and the later one used for two-tailed level of significance [45].

Regression analysis provides a statistical technique for modeling and investigating the relationship between two or more variables. It is a way of predicting an outcome variable from one predictor variable (simple regression) or several predictor variables (multiple regression). As a general rule, in multiple regression the fewer predictors the better, and certainly include only predictors for which you have a good theoretical grounding (it is meaningless to measure hundreds of variables and then put them all into a regression model) [45]. A variable whose value is predicted is called the dependent variable or response. A variable used to predict the value of the dependent variable is termed independent. Various techniques can be used to indicate the adequacy of a multiple regression models. A commonly used techniques are listed and discussed as the following.

3.6.6.1 The Standard Error Statistics

The standard error of a statistic gives some idea about the precision of an estimate or predictor variable. [45] demonstrated that as samples get large (usually defined as >=30), the sampling distribution has a normal distribution with a mean equal to the population mean, and a standard deviation given by:

$$\sigma = \frac{SD}{\sqrt{N}} \tag{3.7}$$

Where: σ = estimated standard error of a sample

N = sample size

During modelling, a variable that shows the least standard error of estimates is the one to be relatively chosen because least standard error indicates there is not much variability in the sample observations.

3.6.6.2 Residual Analysis

Residual analysis is any technique that uses the residuals, usually to investigate the adequacy of the model that was used to generate the residuals. The differences between the values of the outcome predicted by the model and the values of the outcome observed experimentally in the sample are known as residuals. These residuals represent the error

present in the model. If a model fits the sample data well then all residuals will be small (if the model was a perfect fit of the sample data – all data points fall on the regression line – then all residuals would be zero). If a model is a poor fit of the sample data then the residuals will be large [45].

3.6.6.3 Pearson's correlation coefficient (R)

Correlation coefficients measures the strength of linear association between two measurement variables. To overcome the problem of dependence on the measurement scale, it is need to convert the covariance into a standard set of units. This process is known as standardization, and the standardized covariance is known as a correlation coefficient or Pearson's correlation coefficient which is represented by letter R. It is calculated as using the following formula [45].

$$R = \frac{cov(x,y)}{sd(x)*sd(y)}$$
(3.8)
Where: $cov(x, y) = \sum_{i=0}^{n} (x_i - \bar{x})(y_i - \bar{y}) = covariance of x and y variable$
$$sd(x) = \sqrt{\sum_{i=0}^{n} (x_i - \bar{x})} = standard deviation of variable x$$
$$sd(y) = \sqrt{\sum_{i=0}^{n} (y_i - \bar{y})} = standard deviation of variable y$$

The value of R ranges from -1 to +1. A coefficient of correlation +1 indicates that the two variables are perfectly positively correlated, so as one variable increases, the other increases by a proportionate amount. Conversely, a coefficient of -1 indicates a perfect negative relationship: if one variable increases, the other decreases by a proportionate amount. A coefficient of zero indicates no linear relationship at all and so if one variable changes, the other stays the same [45]. The significance of the correlation coefficient is to test the hypothesis that the correlation is different from zero (i.e. different from 'no relationship'). The following key points shows assumptions used for conducting Pearson correlation.

- > The two variables should be measured at the interval or ratio level
- > There needs to be a linear relationship between the two variables
- > There should be no significant outliers
- > The variables should be approximately normally distributed

3.6.6.4 Coefficient of Determination (R²)

The squared correlation coefficient is known as the coefficient of determination (R^2). Coefficient of determination (R^2) is a measure of the amount of variability in one variable that is shared by the other during regression models. Computationally, large values of R^2 (near unity) is considered as good. However, it is possible to have large values of R^2 and find that the model is unsatisfactory [48]. The value of R^2 is always between 0 and 1, because R is between -1 and +1, whereby a negative value of R indicates inversely relationship and positive value implies direct relationship [49]. It is given by the equation:

$$R^{2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$
(3.9)
Where: $SST = \sum_{i=1}^{n} (y - \bar{y})^{2}$
 $SSE = \sum_{i=1}^{n} (y_{i} - \bar{y}_{i})$
And $SSR = SS_{T} - SS_{E} =$ regression sum of squares
 $SS_{E} =$ error sum of squares or residual sum of squares

 $SS_T = total sum of squares$

 $yi = i^{th}$ value of the response variable

 $\overline{y}i = i^{th}$ value of the fitted response variable.

 \overline{y} = average value of the response variable.

From the above equation, the value of total sum of squares (SST) represents how good the mean is as a model of the observed data. The value of residual or error sum of squares (SSE) represents the degree of inaccuracy when the best model is fitted to the data. The value of regression sum of squares (SSR) is the difference between the value of total sum of squares (SST) and the value of residual or error sum of squares (SSE), and shows the reduction in the inaccuracy of the model resulting from fitting the regression model to the data. If the value of SSR is large then the regression model is very different from using the mean to predict the outcome variable. This implies that the regression model has made a big improvement to how well the outcome variable can be predicted. However, if SSE is small then using the regression model is little better than using the mean [45].

3.6.6.5 Adjusted R²

Another useful criterion used to check the adequacy of a regression model is using a adjusted R^2 that accounts the usefulness of a variable in a model. This adjusted value indicates the loss of predictive power or shrinkage. The adjusted value tells how much variance in the outcome would be accounted for if the model had been derived from the population from which the sample was taken [45]. It also gives some idea of how well the model generalizes and ideally its value to be the same or very close to the value of R^2 . The Stein's formula was given as below to calculate the adjusted coefficient of determination, R^2 (adj.) [45].

$$R^{2}(adj.) = 1 - \left[\left(\frac{n-1}{n-k-1} \right) \left(\frac{n-2}{n-k-2} \right) \left(\frac{n+1}{n} \right) \right] (n-R^{2})$$
(3.10)

Where: k = number of predictors in the regression model

n = Sample size

 $R^{2}(adj.) = adjusted coefficient of determination$

 R^2 = coefficient of determination

Maximizing the value of R^2 by adding variables is inappropriate unless variables are added to the equation for sound theoretical reason. At an extreme, when n-1 variables are added to a regression equation, R^2 will be 1, but this result is meaningless. Adjusted R^2 is used as a conservative reduction to R^2 to penalize for adding variables and is required when the number of independent variables is high relative to the number of cases or when comparing models with different numbers of independents [50].

3.6.7 Parametric Statistical Test

We cannot really talk about the strength of a relationship indicated by the correlation coefficient only without testing a statistical test of significance. Hence a statistical test of significance should be tested to decide the relationship between the parameters. A parametric statistical test provides a mechanism for making qualitative decisions about a process generally based on the assumption that the data follows a normal distribution. The intent is to determine whether there is enough evidence to "reject" a null hypothesis or hypothesis about the process. Not rejecting may be a good result if we want to continue to act as if we "believe" the null hypothesis is true. Or it may be a disappointing result, possibly indicating we may not yet enough data to "prove" something by rejecting the null hypothesis [51].

Several problems in engineering require that decision whether to accept or reject a statement about the relationship between the dependent (outcome) and the independent (predictor) variables to be studied [29]. The statement is called a hypothesis, and the decision making procedure about the hypothesis is called hypothesis testing. A hypothesis is a kind of truth claim about some aspect of the world. This is one of the most useful aspects of statistical inference or implication. Statistical inference is to assess the extent to which the findings of a study can be accepted as valid for the population from which the study sample has been drawn [29].

To test the validity of a Statistical hypothesis; the following two hypothesis can be formulated as follows:

$$H_{0:} \mu = 0$$

$$H_{1:} \mu \neq 0$$
(3.11)

Where "Ho "and "H₁" are the null hypothesis and alternative hypothesis respectively for an arbitrary population value of μ . The following are some of parametric statistical hypothesis methods used to accept or reject a given hypothesis in regression model.

3.6.7.1 The Analysis of Variance (ANOVA) Test

ANOVA test is a test of statistical significance for assessing the difference between two or more sample means. ANOVA test is used to test a regression model to determine if one or more of the means of several groups is different from others. The ANOVA tells us whether the model overall results in a significantly good degree of prediction of the outcome variable. The fit of the regression model can be assessed using the Model Summary and ANOVA tables from SPSS. The ANOVA also tells us whether the model is a significant fit of the data overall for values less than .05 in the column labelled Sig. The test statistic for ANOVA is called the F-ratio which is described as below [51]. Finally, there is an assumption that errors in regression are independent; this assumption is likely to be met if the Durbin–Watson statistic is close to 2 (between 1 and 3) [45].

3.6.7.2 The F-ratio Test

F-statistic test is test used to test the role of all variables in explaining the variation in the dependent variable. The F-ratio represents the ratio of the improvement in prediction that results from fitting the model relative to the inaccuracy that still exists in the model. It is the statistical parameters used as criteria to select the best fit model among the predicted models. The F-ratio is calculated by dividing the average improvement in prediction by the model (MSR) by the average difference between the model and the observed data which is mean square error or residual (MSE). The average sum of squares (MS) is calculated for each term by dividing the SS by their respective degree of freedom (df) [45].

$$F-ratio = \frac{Mean Square Regression}{Mean Square Error or Residual} = \frac{MSR}{MSE} = \frac{\frac{SSR}{df of SSR}}{\frac{SSE}{df of SSE}}$$
(3.12)

If the improvement due to fitting the regression model is much greater than the inaccuracy within the model then the value of F will be much greater than 1. Hence based on the value of F–ratio value we can interpret that the model with better F value significantly improves the ability to predict the outcome variable if the significant value labelled with it is less than 0.05 [45].

3.6.7.3 The t-test

The t-test is a very versatile statistic. The t-statistic is the test used to test the role of a single variable in explaining the variation in the dependent variable. It can be used to test whether a correlation coefficient is different from 0, it can also be used to test whether a regression coefficient b is different from 0. In multiple regression, the easiest to conceptualize the t-tests measures whether the predictor is making a significant contribution to the model. A significant value of t indicates that the slope of the regression line is significantly different from horizontal which implies a b-value is significantly different from 0. Therefore, if the t-test associated with b-value is significant (if the value in the column labelled Sig.is less than .05) then the predictor is making a significant contribution to the model. The smaller the value of Significance and the larger the value of t-value indicate the greater the contribution of that predictor in the model. The t-value is signify calculated as:

$$t_{\text{value}} = \frac{B}{\text{SE(B)}} = \frac{\text{Coefficient of a variable in the regression equation}}{\text{Standard error of the estimated coefficient}}$$
(3.13)

3.6.7.4 Test of Significance Level

In linguistic, "significant" means important, while in Statistics "significant" means probably true [48]. When statisticians say a result is "highly significant" they mean it is very probably true. They do not (necessarily) mean it is highly important. The most common level used to mean something is good enough to be believed is 95%. This means that the finding has a 95% chance of being true which also means that the finding has a confidence degree 95% of being true and the finding has a five percent (.05) chance of not being true or error, which is the converse of a 95% chance of being true [48].

In statistical analysis, the significance level (α) "alpha level" for a given hypothesis test is a value for which a P-value "calculated value" less than or equal to α is considered statistically significant. This means If p-value is smaller than α (<0.05), the particular variable is important (significant) in explaining the variation of the response in the model. Conversely, a larger p-value (>0.05) suggests that changes in the predictor are not associated with changes in the response in the model. The typical value of levels of significance (α) are 0.1, 0.05, and 0.01. These value levels correspond to the probability of observing such an extreme value by chance. For example, if the P-value is 0.0082, the probability of observing such a value by chance is less than 0.01, and the result is significant at the 0.01 level [48]. Nowadays, commercial statistical software such as SPSS can provide p-values. Hence, we may not need statistical tables for our particular decision.

CHAPTER FOUR

RESULT AND DISCUSSION

4.1 Laboratory Test Result

Based on the sample collected from different location of the study area, in order to characterize some engineering properties of soils found in the study area, different laboratory tests were conducted on the thirty samples in the Geotechnical Engineering Laboratory Test of Jimma University, Jimma Institute of Technology. The sample were tested for different parameters conducting laboratory tests listed as the following one.

- Natural Moisture Content
- Specific Gravity
- Grain Size Distribution Analysis (Wet Sieve Analysis)
- Atterberg's Limits Test
- Compaction Test, (Modified Proctor Compaction Test)
- California Bearing Ratio Test, (Three-Point CBR Test)

The final test result obtained from each sample is presented here in this chapter, and also for the sake of illustration some tables and figures of the laboratory test result of the typical sample is presented in this part. But the whole laboratory analysis and test result obtained from each sample is attached to Appendix I to N of this thesis.

4.1.1 Natural Moisture Content

The Natural Moisture Content of the soil sample is the mass of water which can be removed from the soil by heating (oven drying) at $100 \,^{0}$ C to $110 \,^{0}$ C expressed as percentage of the dry mass. The Natural moisture content of the soil of the study area is varied from the range of 36.7% to 42.8%. For the sake of illustration typical table is presented under appendix I of this thesis to determine the natural moisture content of the sample and the value of all samples is presented in the summary of all laboratory test result (table 4.6) of this thesis.

4.1.2 Specific Gravity

The specific gravity of soil solid is the mass density of the mineral solids in the soil normalized relative to the mass density of water. The specific gravity of the soil of the study area is varied from the range of 2.65 to 2.72. For the sake of illustration typical table is presented under appendix J of this thesis to determine the specific gravity of the sample

and the value of all samples is presented in the summary of all laboratory test result (table 4.6) of this thesis.

4.1.3 Grain Size Distribution

The result of the sieve (Wet Sieve) analysis of the soil of the study area is shown in the following table and figure below, and the individual analysis of all samples are presented under Appendix K of this thesis.

Sieve Size (mm) and **Percent amount of Particle Size** Test **AASHTO Percent Passing (%)** USCS Pits Silt Silt 4.75 Depth 2 0.075 and and (m) mm mm mm Gravel Sand Clay Gravel Sand Clay **Type of Soil** 87.54 Fine grained 1 100 99.2 87.5 0.76 11.70 0 12.46 87.54 TP1 2 100 99.7 84.2 0.28 15.50 84.22 0 15.78 84.22 Fine grained 3 100 99.2 82.6 0.82 16.58 82.60 0 17.40 82.60 Fine grained 1 100 98.8 89 1.16 9.68 89.16 0 10.84 89.16 Fine grained TP2 2 100.0 85.8 1.18 85.76 0.00 14.24 Fine grained 98.8 13.06 85.76 99.7 98.4 21.82 0.30 3 76.5 1.64 76.54 23.16 76.54 Fine grained 99.7 98.7 78.36 Fine grained 78.4 1.30 20.34 0.34 21.30 78.36 1 TP3 2 99.4 97.4 76.4 2.60 20.98 76.42 0.62 22.96 76.42 Fine grained 3 74.84 99.2 97.3 74.8 2.72 22.44 0.78 24.38 74.84 Fine grained 1 100 99.5 82.8 0.54 16.62 82.84 0 17.16 82.84 Fine grained TP4 2 99.4 81.1 18.28 81.14 100 0.58 81.14 0 18.86 Fine grained Fine grained 3 100 99.3 78.4 0.74 20.82 78.44 0 21.56 78.44 1 99.8 99.3 82.8 82.84 0.16 17.00 82.84 Fine grained 0.66 16.50 TP5 99.7 2 99.0 81.2 0.98 17.84 81.18 0.26 18.56 81.18 Fine grained 3 99.5 98.2 80.7 1.82 17.44 80.74 0.50 18.76 80.74 Fine grained 1 99.7 99.2 86.4 0.78 12.78 86.44 0.26 13.30 86.44 Fine grained TP6 2 99.7 99.0 84.8 0.98 14.22 84.80 0.34 14.86 84.80 Fine grained 99.6 Fine grained 3 98.8 80.1 1.20 18.70 80.10 0.42 19.48 80.10 99.9 99.6 81.7 0.40 17.92 81.68 0.08 18.24 Fine grained 1 81.68 TP7 1.54 2 99.6 98.5 81.4 17.10 81.36 0.36 18.28 81.36 Fine grained 3 99.5 98.2 78.3 1.80 19.90 78.30 0.46 21.24 78.30 Fine grained 1 100 99.6 15.02 84.56 0 15.44 84.56 84.6 0.42 Fine grained TP8 2 100 99.5 81.9 0.48 17.62 81.90 0 18.10 81.90 Fine grained 3 100 99.5 79.7 0.48 19.80 79.72 0 20.28 79.72 Fine grained 1 100 99.1 90.7 0.86 8.48 90.66 0 9.34 90.66 Fine grained TP9 100 99.3 2 84.9 0.72 14.40 84.88 0 15.12 84.88 Fine grained 3 100 98.6 80.4 1.36 18.22 80.42 0 19.58 80.42 Fine grained 1 100 100.0 88.2 0.04 11.76 88.20 0 11.80 88.20 Fine grained **TP10** 99.6 2 100 86.9 0.42 12.66 86.92 0 13.08 86.92 Fine grained 3 100 99.9 86.1 0.13 13.78 86.09 0 13.91 86.09 Fine grained

Table 4.1: Grain Size (Wet Sieve) Analysis Laboratory Test Result

41

JU,JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

The Grain Size Distribution Curve of all Samples is shown as figure 4.1 and 4.2 below.

Figure 4.1: Grain Size Distribution Curve of Soil Samples (TP-1 to TP-5)

Figure 4.2: Grain Size Distribution Curve of Soil Samples (TP-6 to TP-10)

4.1.4 Atterberg's Limits Laboratory Test Result

The Atterberg's Limits (LL, PL and PI) of the Soil of the study area is varied from (46 to 76, 27.9 to 44.6 and 17.8 to 35.6) % respectively. The result of the Atterberg's Limits of all samples is shown in the following table, and the detail analysis of all samples is presented under Appendix L of this thesis.

Test	Sample	A	tterberg Limits Test	Result
Pits	Depth			
	(m)	LL (%)	PL (%)	PI (%)
TD1	1	60.8	32.5	28.3
TPI	2	56.4	30.2	26.2
	3	53.6	29.8	23.8
	1	70.8	36.4	34.4
TP2	2	67.6	38.4	29.2
	3	64.9	36.4	28.5
	1	49.6	29.9	19.7
TP3	2	48.4	29.8	18.6
	3	46.8	27.9	18.9
	1	71.2	44.6	26.6
TP4	2	73.5	44.3	29.2
	3	69.4	39.4	30.0
	1	69.6	38.8	30.8
TP5	2	66.6	37.3	29.3
	3	60.2	32.6	27.6
	1	60.8	33.4	27.4
TP6	2	50.0	29.4	20.6
	3	46.0	28.2	17.8
	1	70.0	42.1	27.9
TP7	2	68.0	37.3	30.7
	3	48.5	28.8	19.7
	1	64.4	34.6	29.8
TP8	2	60.8	32.4	28.4
	3	57.5	31.4	26.1
	1	74.0	42.5	31.5
TP9	2	73.0	41.6	31.4
	3	66.6	35.4	31.2
	1	76.0	40.4	35.6
TP10	2	74.8	41.2	33.6
	3	73.0	41.5	31.5

Table 4.2: Atterberg's Limits Laboratory Test Result

43

For the sake of illustration the following typical flow curve is shown to determine the liquid limit of the sample.

Figure 4.3: Typical Flow Curve of Soil Sample (TP7 @ 3m)

4.1.5 Soil Classification

The soil classification of the soil of the study area is performed according to USCS and AASHTO classification system depending on Sieve analysis (Percent Passing sieve no.200) and Atterberg Limits test result (LL and PI). This classification is shown in the following figure depending on both AASHTO and USCS plasticity chart.

Figure 4.4: Plasticity Chart for Unified Soil Classification System (USCS)

Figure 4.5: Plasticity Chart for AASHTO Classification, M145-91

4.1.5.1 Discussion on the Soil Classification

From the obtained laboratory test result, the region in which the point of Plasticity index and Liquid limit falls indicates that the soil of the study area is classified as high plastic and low plastic fine grained soil. According to the two system of soil classification, USCS and AASHTO classification system, taking the studied samples as a representative of the soil in the study area, 20% of the soil of the study area is classified as low-plasticity (ML) and 80% of the soil of the study area is classified as high-plasticity (MH) fine-grained soil. The group symbol and group classification for USCS and AASHTO is expressed as (ML and MH), and (A-7-6 and A-7-5) respectively. In the case of Unified Soil Classification System (USCS) the soil is classified as Silt-Clay soil. In the case of AASHTO classification system the soil is classified as clayey soil.

Furthermore, based on both the above mentioned Plasticity Chart (USCS and AASHTO), and material passing through sieve number 200 (0.075mm) the Soil of the Study area is classified and shown in the following table.

Test	Denth		Atterb	erg's Lir	nits Test	Accord	ing to Plast	icity Chart AASHTO	Group		
Pits	Deptn (m)			Result					Index (GI)	Soil Classificat	ion System
	(111)		LL	PL	PI	U-Line	A-Line	PI = LL-30		лленто	USCS
		PP200	(%)	(%)	(%)					AASIITO	USCS
	1	87.5	60.8	32.5	28.3	47.5	29.8	30.8	29	A-7-5(29)	MH
TP1	2	84.2	56.4	30.2	26.2	43.6	26.6	26.4	25	A-7-5(25)	MH
	3	82.6	53.6	29.8	23.8	41.0	24.5	23.6	22	A-7-6(22)	MH
	1	89.2	70.8	36.4	34.4	56.5	37.1	40.8	37	A-7-5(37)	MH
TP2	2	85.8	67.6	38.4	29.2	53.6	34.7	37.6	31	A-7-5(31)	MH
	3	76.5	64.9	36.4	28.5	51.2	32.8	34.9	25	A-7-5(25)	MH
	1	78.4	49.6	29.9	19.7	37.4	21.6	19.6	17	A-7-6(17)	ML
TP3	2	76.4	48.4	29.8	18.6	36.4	20.7	18.4	15	A-7-6(15)	ML
	3	74.8	46.8	27.9	18.9	34.9	19.6	16.8	15	A-7-6(15)	ML
	1	82.8	71.2	44.6	26.6	56.9	37.4	41.2	28	A-7-5(28)	MH
TP4	2	81.1	73.5	44.3	29.2	59.0	39.1	43.5	30	A-7-5(30)	MH
	3	78.4	69.4	39.4	30	55.3	36.1	39.4	28	A-7-5(28)	MH
TP5	1	82.8	69.6	38.8	30.8	55.4	36.2	39.6	31	A-7-5(31)	MH

Table 4.3: Soil Classification of the Study area according to USCS and AASHTO classification system

	2	81.2	66.6	37.3	29.3	52.7	34.0	36.6	28	A-7-5(28)	MH
	3	80.7	60.2	32.6	27.6	47.0	29.3	30.2	25	A-7-5(25)	ML
	1	86.4	60.8	33.4	27.4	47.5	29.8	30.8	28	A-7-5(28)	MH
TP6	2	84.8	50	29.4	20.6	37.8	21.9	20.0	20	A-7-6(20)	MH
	3	80.1	46	28.2	17.8	34.2	19.0	16.0	15	A-7-6(15)	ML
	1	81.7	70	42.1	27.9	55.8	36.5	40.0	28	A-7-5(28)	MH
TP7	2	81.4	68	37.3	30.7	54.0	35.0	38.0	30	A-7-5(30)	MH
	3	78.3	48.5	28.8	19.7	36.5	20.8	18.5	17	A-7-6(17)	ML
	1	84.6	64.4	34.6	29.8	50.8	32.4	34.4	30	A-7-5(30)	MH
TP8	2	81.9	60.8	32.4	28.4	47.5	29.8	30.8	27	A-7-5(27)	MH
	3	79.7	57.5	31.4	26.1	44.6	27.4	27.5	23	A-7-5(23)	MH
	1	90.7	74	42.5	31.5	59.4	39.4	44.0	37	A-7-5(37)	MH
TP9	2	84.9	73	41.6	31.4	58.5	38.7	43.0	33	A-7-5(33)	MH
	3	80.4	66.6	34.4	32.2	52.7	34.0	36.6	30	A-7-5(20)	MH
	1	88.2	76	40.4	35.6	61.2	40.9	46.0	39	A-7-5(39)	MH
TP10	2	86.9	74.8	41.2	33.6	60.1	40.0	44.8	36	A-7-5(36)	MH
	3	86.1	73	41.5	31.5	58.5	38.7	43.0	34	A-7-5(34)	MH

4.1.6 Moisture-Density Relationship

The Moisture-Density Relationship parameters (Compaction characteristics), Optimum Moisture Content (OMC) and Maximum Dry Density (MDD) of the soil in the study area is varied from 26.2% to 35.6% and 1.37 g/cc to 1.54 g/cc respectively.

For the sake of illustration the following typical Moisture-Density Curve is shown to determine the Optimum Moisture Content (OMC) and Maximum Dry Density (MDD) of the soil sample, and the detail analysis of all samples is presented under Appendix M of this thesis.

Figure 4.6: Typical Moisture-Density Relationship Curve of Soil Sample (TP7 @ 3m)

4.1.7 California Bearing Ratio (CBR) Value

The California Bearing Ratio (CBR) Value of the Soil of the study area is varied from 3.4% to 12.8%. The result of the Moisture-Density Parameters (Compaction characteristics) and California Bearing Ratio (CBR) value of all samples is shown in the following table.

		Mod	lified			(California	Bearing F	Ratio (CB	R) Test F	Result			
		Procto	or Test	Target			Loa	d of	Standa	rd Load	CBR	Value		
Test	Depth	Re	sult	Density	No. of	Density	Specim	en(kN)	(k	N)	\bigcirc	Ø	Larger	CBR @
Pits	(mm)				Blows	(g/cc)	@	@	@	@	2.54	5.08	CBR	95% MDD
		OMC	MDD	95%			2.54	5.08	2.54	5.08	mm	mm	value	MDD
		(%)	(g/cc)	MDD	10	1.21	mm	mm 0.07	mm	mm	5.2	4.0	5.0	
	1	227	1 46	1.20	10	1.31	0.69	0.97	13.2	20	5.2	4.9	5.2	7
	1	32.7	1.40	1.39	30	1.38	0.881	1.205	13.2	20	6./	6.0	6./	/
					65	1.43	1.124	1.468	13.2	20	8.5	7.3	8.5	
TD1	2	22.5	1 4 7	1.20	10	1.17	0.358	0.424	13.2	20	2.7	2.1	2.7	
TPI	2	32.5	1.45	1.38	30	1.35	0.861	1.151	13.2	20	6.5	5.8	6.5	/.4
					65	1.45	1.33	1.588	13.2	20	10.1	7.9	10.1	
	3	28.8		1.5 1.43	10	1.29	0.483	0.692	13.2	20	3.7	3.5	3.7	
		28.8	1.5		30	1.47	1.26	1.762	13.2	20	9.5	8.8	9.5	8
					65	1.52	1.702	2.197	13.2	20	12.9	11.0	12.9	
					10	1.23	0.251	0.323	13.2	20	1.9	1.6	1.9	-
	1	32.3	1.48	1.41	30	1.37	0.702	1.001	13.2	20	5.3	5.0	5.3	6.4
					65	1.54	1.392	1.929	13.2	20	10.5	9.6	10.5	
					10	1.22	0.558	0.744	13.2	20	4.2	3.7	4.2	
TP2	2	31.5	1.49	1.42	30	1.46	1.125	1.411	13.2	20	8.5	7.1	8.5	7.6
					65	1.63	1.578	2.028	13.2	20	12.0	10.1	12.0	
					10	1.23	0.543	0.613	13.2	20	4.1	3.1	4.1	
	3	30.3	1.49	1.42	30	1.38	0.98	1.353	13.2	20	7.4	6.8	7.4	8.2
					65	1.56	1.386	1.801	13.2	20	10.5	9.0	10.5	
тр2	1	27.5	1 5 1	1 /2	10	1.26	0.845	1.165	13.2	20	6.4	5.8	6.4	10.5
1173	1	27.5	1.51	1.43	30	1.41	1.334	1.702	13.2	20	10.1	8.5	10.1	10.5

 Table 4.4: Modified Proctor Compaction and CBR Laboratory Test Result

					65	1.51	1.74	2.201	13.2	20	13.2	11.0	13.2	
					10	1.23	0.669	0.921	13.2	20	5.1	4.6	5.1	
	2	27.2	1.53	1.45	30	1.41	1.251	1.71	13.2	20	9.5	8.6	9.5	11.2
					65	1.52	1.939	2.467	13.2	20	14.7	12.3	14.7	
					10	1.24	0.869	1.121	13.2	20	6.6	5.6	6.6	
	3	26.6	1.54	1.46	30	1.41	1.451	1.911	13.2	20	11.0	9.6	11.0	12.8
					65	1.54	2.139	2.667	13.2	20	16.2	13.3	16.2	
					10	1.25	0.443	0.588	13.2	20	3.4	2.9	3.4	
	1	35	1.44	1.37	30	1.36	0.615	0.861	13.2	20	4.7	4.3	4.7	4.8
					65	1.49	0.767	1.001	13.2	20	5.8	5.0	5.8	
					10	1.28	0.339	0.382	13.2	20	2.6	1.9	2.6	
TP4	2	33.1	1.46	1.39	30	1.4	0.854	1.15	13.2	20	6.5	5.8	6.5	6.2
					65	1.51	1.138	1.503	13.2	20	8.6	7.5	8.6	
					10	1.23	0.561	0.756	13.2	20	4.3	3.8	4.3	
	3	31.2	1.49	1.42	30	1.36	0.81	1.052	13.2	20	6.1	5.3	6.1	7.2
					65	1.47	1.083	1.41	13.2	20	8.2	7.1	8.2	
					10	1.28	0.74	1.004	13.2	20	5.6	5.0	5.6	
	1	32	1.47	1.40	30	1.34	0.89	1.218	13.2	20	6.7	6.1	6.7	7.6
					65	1.44	1.114	1.444	13.2	20	8.4	7.2	8.4	
					10	1.31	0.379	0.478	13.2	20	2.9	2.4	2.9	
TP5	2	31.7	1.48	1.41	30	1.41	0.958	1.209	13.2	20	7.3	6.0	7.3	7.8
					65	1.45	1.208	1.478	13.2	20	9.2	7.4	9.2	
					10	1.32	0.527	0.736	13.2	20	4.0	3.7	4.0	
	3	28.6	1.51	1.43	30	1.42	1.116	1.578	13.2	20	8.5	7.9	8.5	9
					65	1.5	1.45	2.015	13.2	20	11.0	10.1	11.0	
TP6	1	33.5	1.46	1 39	10	1.28	0.303	0.375	13.2	20	2.3	1.9	2.3	6.8
	1	55.5	1.40	1.37	30	1.34	0.727	1.026	13.2	20	5.5	5.1	5.5	0.0

JU,JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 50

					65	1.46	1.134	1.641	13.2	20	8.6	8.2	8.6	
					10	1.29	0.525	0.701	13.2	20	4.0	3.5	4.0	
	2	31	1.5	1.43	30	1.38	0.971	1.283	13.2	20	7.4	6.4	7.4	8.4
					65	1.52	1.347	1.786	13.2	20	10.2	8.9	10.2	
					10	1.24	0.653	0.873	13.2	20	4.9	4.4	4.9	
	3	27.4	1.53	1.45	30	1.41	1.214	1.557	13.2	20	9.2	7.8	9.2	10
					65	1.53	1.52	1.985	13.2	20	11.5	9.9	11.5	
					10	1.24	0.478	0.584	13.2	20	3.6	2.9	3.6	
	1	34.2	1.43	1.36	30	1.33	0.728	0.899	13.2	20	5.5	4.5	5.5	5.2
					65	1.43	0.978	1.307	13.2	20	7.4	6.5	7.4	
					10	1.25	0.589	0.861	13.2	20	4.5	4.3	4.5	
TP7	2	31.6	1.47	1.40	30	1.37	0.891	1.312	13.2	20	6.8	6.6	6.8	7.2
					65	1.51	1.255	1.823	13.2	20	9.5	9.1	9.5	
					10	1.26	0.815	1.173	13.2	20	6.2	5.9	6.2	
	3	28.8	1.52	1.44	30	1.37	1.174	1.562	13.2	20	8.9	7.8	8.9	10.4
					65	1.5	1.569	2.08	13.2	20	11.9	10.4	11.9	
					10	1.21	0.425	0.561	13.2	20	3.2	2.8	3.2	
	1	34.5	1.44	1.37	30	1.33	0.768	1.101	13.2	20	5.8	5.5	5.8	6.2
					65	1.47	1.104	1.482	13.2	20	8.4	7.4	8.4	
					10	1.25	0.499	0.612	13.2	20	3.8	3.1	3.8	
TP8	2	30.8	1.45	1.38	30	1.34	0.814	1.13	13.2	20	6.2	5.7	6.2	6.6
					65	1.47	1.148	1.483	13.2	20	8.7	7.4	8.7	
					10	1.25	0.364	0.494	13.2	20	2.8	2.5	2.8	
	3	30.5	1.47	1.40	30	1.35	0.814	1.161	13.2	20	6.2	5.8	6.2	6.8
					65	1.49	1.085	1.469	13.2	20	8.2	7.3	8.2	
тро	1	34.5	1 41	1 34	10	1.22	0.231	0.303	13.2	20	1.8	1.5	1.8	<i>A A</i>
117	1	54.5	1.41	1.34	30	1.33	0.572	0.821	13.2	20	4.3	4.1	4.3	4.4

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 51

					65	1.43	0.872	1.209	13.2	20	6.6	6.0	6.6	
					10	1.21	0.279	0.372	13.2	20	2.1	1.9	2.1	
	2	35.4	1.44	1.37	30	1.31	0.553	0.706	13.2	20	4.2	3.5	4.2	4.8
					65	1.46	0.789	1.014	13.2	20	6.0	5.1	6.0	
					10	1.24	0.403	0.583	13.2	20	3.1	2.9	3.1	
	3	31.6	1.45	1.38	30	1.35	0.73	1.05	13.2	20	5.5	5.3	5.5	6
					65	1.49	1.006	1.401	13.2	20	7.6	7.0	7.6	
					10	1.2	0.282	0.388	13.2	20	2.1	1.9	2.1	
	1	35.8	1.39	1.32	30	1.31	0.465	0.567	13.2	20	3.5	2.8	3.5	3.4
					65	1.4	0.581	0.734	13.2	20	4.4	3.7	4.4	
					10	1.23	0.335	0.461	13.2	20	2.5	2.3	2.5	
TP10	2	33.6	1.45	1.38	30	1.31	0.626	0.855	13.2	20	4.7	4.3	4.7	5.6
					65	1.41	0.971	1.234	13.2	20	7.4	6.2	7.4	
					10	1.26	0.569	0.821	13.2	20	4.3	4.1	4.3	
	3	31.5	1.47	1.40	30	1.43	0.951	1.411	13.2	20	7.2	7.1	7.2	6.8
					65	1.52	1.439	1.967	13.2	20	10.9	9.8	10.9	

For the sake of illustration the following typical Load Versus Penetration relationship Curve and Dry Density Versus Soaked CBR Value graph are shown below to determine the load of the specimen at 2.54mm and 5.08mm; and to determine the CBR Value between the three points, i.e. at 10, 30 and 65 blows. The detail analysis of all samples is presented under Appendix N of this thesis.

Figure 4.7: Typical Load versus Penetration Curve of Soil Sample at (TP7 @ 3m)

Figure 4.8: Typical Dry Density Vs CBR Value graph of Soil Sample at (TP7 @ 3m

4.1.7.1 CBR Swell Data after Four Days of Soaking

CBR Swell Data from CBR Test											
Heig	ght of Spa	acer Disc =	= 50mm	Height c	of perforated	d base plate	=10mm				
He	ight of M	Iold =170.	24mm	Initial heig	ght of Spec	imen (mm)	110.24	Subgrade			
		Number			Amount	of Swell	Av.Swell	material			
Test	Depth	of	Initial	Final				volume			
Pits	(m)	blows	DGR	DGR	(mm)	(%)	(%)	expansion			
		10	25+30	28+33	3.0	2.7					
	1	30	24+70	27+45	2.8	2.5	2.4	Medium			
		65	28+65	30+92	2.3	2.1					
		10	30+75	33+55	2.8	2.5					
TP1	2	30	30+55	33+28	2.7	2.5	2.3	Medium			
		65	28+35	30+45	2.1	1.9					
		10	24+83	27+54	2.7	2.5					
	3	30	23+59.5	26+23	2.6	2.4	2.1	Medium			
		65	24+98	26+59	1.6	1.5					
		10	26+32	29+27.5	3.0	2.7					
	1	30	30+83.5	33+46	2.6	2.4	2.4	Medium			
		65	20+47.5	22+72.5	2.3	2.0					
		10	22+32	24+92	2.6	2.4					
TP2	2	30	28+15	30+71	2.6	2.3	2.3	Medium			
		65	29+12	31+52.5	2.4	2.2					
		10	28+71	31+38	2.7	2.4					
	3	30	28+10	30+50	2.4	2.2	2.1	Medium			
		65	27+9	28+97	1.9	1.7					
		10	21+20	23+45	2.3	2.0					
	1	30	26+58	28+62	2.0	1.9	1.8	Low			
		65	28+40	30+10	1.7	1.5					
		10	25+84	28+10	2.3	2.1					
TP3	2	30	19+59	21+57	2.0	1.8	1.7	Low			
		65	28+76	30+29	1.5	1.4					
		10	28+86	31+5	2.2	2.0					
	3	30	27+7	29+2	2.0	1.8	1.7	Low			
		65	28+98	30+40	1.4	1.3					
		10	25+99	30+27.5	4.3	3.9					
	1	30	30+89	33+52.5	2.7	2.5	3.0	High			
		65	31+63	34+39	2.8	2.5		0			
		10	24+51	27+80	3.3	3.0					
TP4	2	30	27+11.5	30+25.5	3.1	2.8	2.5	Medium			
		65	22+51.5	24+35	1.8	1.7					
		10	27+21	30+37	3.2	2.9					
	3	30	24+23.5	27+8	2.8	2.6	2.4	Medium			
	-	65	28+87	30+87	2.0	1.8					
	1	10	23+84	26+72	2.9	2.6					
	1	30	20+53.5	23+6	2.5	2.3	2.3	Medium			
		65	27+18	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
TP5		10	31+40	34+18	2.8	2.5					
	241	30	30+79	33+25	2.5	2.2	- 22	Medium			
		65	25+88	27+91	2.0	1.8		Wiedluill			
	3	10	21+45.5	24+18	2.7	2.5	2.1	Medium			

Table 4.5: Swell Data and Subgrade Material Volume Change after Four Days of Soaking

54

		30	30+73.5	33+7	2.3	2.1		
		65	26+34	28+19	1.9	1.7		
		10	24+58	27+29	2.7	2.5		
	1	30	27+40	29+93	2.5	2.3	2.3	Medium
		65	29+24	31+55	2.3	2.1		
		10	22+50	25+22	2.7	2.5		
TP6	2	30	26+11.5	28+65	2.5	2.3	2.2	Medium
		65	27+27	29+28	2.0	1.8		
		10	25+74	28+5	2.3	2.1		
	3	30	26+97	29+2	2.1	1.9	1.8	Low
		65	20+44	22+18	1.7	1.6		
		10	24+34	27+97	3.6	3.3		
	1	30	21+76	24+92	3.2	2.9	2.8	Medium
		65	27+36	29+98	2.6	2.4		
		10	27+18	30+25	3.1	2.8		
TP7	2	30	24+25.5	27+8	2.8	2.6	2.4	Medium
		65	28+77	30+83	2.1	1.9		
		10	21+23	23+47	2.2	2.0		
	3	30	26+60	28+66	2.1	1.9	1.8	Low
		65	28+42	30+17	1.8	1.6		
		10	25+54	28+84	3.3	3.0		
	1	30	27+14	30+18.5	3.0	2.8	2.5	Medium
		65	22+42.5	24+25	1.8	1.7		
		10	26+42	29+37	3.0	2.7		
TP8	2	30	30+85	33+36	2.5	2.3	2.3	Medium
		65	20+48	22+71	2.2	2.0		
		10	24+48	27+26	2.8	2.5		
	3	30	27+43	29+83	2.4	2.2	2.3	Medium
		65	29+27	31+57	2.3	2.1		
		10	26+1	29+70.5	3.7	3.4		
	1	30	30+93	33+97.5	3.0	2.8	3.0	High
		65	31+66	34+69	3.0	2.7		
		10	25+97	29+69.5	3.7	3.4		
TP9	2	30	30+90	33+72.5	2.8	2.6	2.8	Medium
		65	31+64	34+30	2.7	2.4		
	_	10	24+44	27+57	3.1	2.8		
	3	30	21+66	24+32	2.7	2.4	2.5	Medium
		65	27+22	29+64	2.4	2.2		
		10	27+20	30+62	3.4	3.1		
	1	30	28+33	32+25.5	3.9	3.6	3.1	Hıgh
		65	31+47	34+26	2.8	2.5		
TD10	2	10	23+34	26+64	3.3	3.0	2.5	
1110	2	30	20+76	23+52	2.8	2.5	2.6	Medium
		65	26+36	28+84	2.5	2.2		
	2	10	25+58	28+33	2.8	2.5	2.2	
	3	50	27+44	29+96	2.5	2.3	2.3	Medium
	1	65	29+24	51+58	2.3	2.1	1	

 Table 4.6: Summary of all Laboratory Test Result

												Modified Proctor		
				Grain Size Analysis			Atterberg's Limits			Soil Classification		Compaction Test		
				(Percent Passing)			Result			System		Result		CBR @
Test	Depth			4.75	2	0.075	LL	PL	PI		LICCS	OMC	MDD	95%
Pits	(m)	NMC	GS	(mm)	(mm)	(mm)	(%)	(%)	(%)	AASHIO	0303	(%)	(g/cc)	MDD
	1	41.6	2.67	100	99.2	87.5	60.8	32.5	28.3	A-7-5(29)	MH	32.7	1.46	7.0
TP1	2	39.3	2.66	100	99.7	84.2	56.4	30.2	26.2	A-7-5(25)	MH	32.5	1.45	7.4
	3	38.8	2.65	100	99.2	82.6	53.6	29.8	23.8	A-7-6(22)	MH	28.8	1.5	8.0
	1	40.1	2.68	100	98.8	89.2	70.8	36.4	34.4	A-7-5(37)	MH	32.3	1.48	6.4
TP2	2	39.4	2.67	100	98.8	85.8	67.6	38.4	29.2	A-7-5(31)	MH	31.5	1.49	7.6
	3	37.1	2.67	99.7	98.4	76.5	64.9	36.4	28.5	A-7-5(25)	MH	28.2	1.51	8.2
	1	38.5	2.68	99.7	98.7	78.4	49.6	29.9	19.7	A-7-6(17)	ML	27.5	1.51	10.5
TP3	2	37.4	2.66	99.4	97.4	76.4	48.4	29.8	18.6	A-7-6(15)	ML	27.2	1.53	11.2
	3	36.7	2.66	99.2	97.3	74.8	46.8	27.9	18.9	A-7-6(15)	ML	26.2	1.54	12.8
TP4	1	40.3	2.69	100	99.5	82.8	71.2	44.6	26.6	A-7-5(28)	MH	35.0	1.44	4.8
	2	40.2	2.67	100	99.4	81.1	73.5	44.3	29.2	A-7-5(30)	MH	33.1	1.46	6.2
	3	39.8	2.67	100	99.3	78.4	69.4	39.4	30	A-7-5(28)	MH	31.2	1.49	7.2
TP5	1	41.4	2.68	99.8	98.0	82.8	69.6	38.8	30.8	A-7-5(31)	MH	32	1.46	7.6

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 56

	2	40.5	2.67	99.7	99.0	81.2	66.6	37.3	29.3	A-7-5(28)	MH	29.7	1.49	7.8
	3	39.5	2.66	99.5	98.2	80.7	60.2	32.6	27.6	A-7-5(25)	ML	27.6	1.52	9.0
	1	40.5	2.67	99.7	99.2	86.4	60.8	33.4	27.4	A-7-5(28)	MH	33.5	1.46	6.8
TP6	2	40.1	2.66	99.7	99.0	84.8	50	29.4	20.6	A-7-6(20)	MH	27.6	1.5	8.4
	3	38.4	2.65	99.6	98.8	80.1	46	28.2	17.8	A-7-6(15)	ML	26.4	1.53	10.0
	1	42.4	2.7	99.9	99.6	81.7	70	42.1	27.9	A-7-5(28)	MH	34.2	1.39	5.2
TP7	2	41.9	2.68	99.6	98.5	81.4	68	37.3	30.7	A-7-5(30)	MH	29.8	1.47	7.2
	3	40.3	2.66	99.5	98.2	78.3	48.5	28.8	19.7	A-7-6(17)	ML	28.7	1.51	10.4
	1	40.2	2.68	100	99.6	84.6	64.4	34.6	29.8	A-7-5(30)	MH	34.5	1.42	6.2
TP8	2	38.4	2.68	100	99.5	81.9	60.8	32.4	28.4	A-7-5(27)	MH	30.8	1.43	6.6
	3	37.4	2.67	100	99.5	79.7	57.5	31.4	26.1	A-7-5(23)	MH	30.5	1.46	6.8
	1	42.5	2.7	100	99.1	90.7	74	42.5	31.5	A-7-5(37)	MH	34.5	1.38	4.4
TP9	2	41.7	2.69	100	99.3	84.9	73	41.6	31.4	A-7-5(33)	MH	35.4	1.43	4.8
	3	40.8	2.67	100	98.6	80.4	66.6	35.4	31.2	A-7-5(20)	MH	31.6	1.45	6.0
	1	42.8	2.72	100	100.0	88.2	76	40.4	35.6	A-7-5(39)	MH	35.6	1.37	3.4
TP10	2	42.1	2.7	100	99.6	86.9	74.8	41.2	33.6	A-7-5(36)	MH	33.6	1.41	5.6
	3	41.4	2.67	100	99.9	86.1	73	41.5	31.5	A-7-5(34)	MH	31.5	1.47	6.8

4.1.8 Discussion on the Laboratory Test Result

Depending on the Natural moisture content laboratory test result, the Natural water content of the soil in the study area varied from 36.7% to 42.8% which indicates that the soil in the study area is fine-grained soil.

A natural moisture content close to the plastic limit confirms a firm to stiff clay whereas a natural moisture content approaching liquid limit indicates a soft clay. Therefore, based on the comparison between plastic limit and natural moisture content result obtained from the laboratory, the soil in the study area falls in the range of firm to stiff clay.

According to the test results of the specific gravity test, the Specific gravity of the soil in the study area is varied from 2.65 to 2.72, which indicate the soil in the study area is in the range of inorganic soil (silt to silty clay).

In the case of Grain Size Analysis result, for all test pits the percentage passing sieve no. 200 or percent of finer is more than 35% and is varied in the range of 74.8% to 90.7%. This result indicates that the soil in the study area is mainly fine grained and classified under silt and clay. Based on the Grain Size Analysis and Atterberg's Limits test result, according to USCS and AASHTO Classification System, the soil in the study area is categorized as MH and ML (high plastic and low plastic) silt soil and A-7-5 and A-7-6 (clayey soil) respectively.

The California Bearing Ratio (CBR) Value of the Soil in the study area is varied from 3.4% to 12.8%. According to ERA Manual-2002, this range of typical CBR value indicate the soil in the study area is to be classified as fine grained inorganic soil, and the obtained result within the range of (MH) and (ML) which is high plastic and low plastic Silt soil respectively.

As recommended on the Pavement Design Manual Volume I flexible Pavements and Gravel Roads of ERA Manual-2002, depending on the CBR Value of the Soil of the study area which ranges from 3.4% to 12.8%, and the general rating for a pavement subgrade support value as sub grade material is considered as poor to fair.

A group index value (GI) of the soil in the study area is varied from 15 to 39 which indicates the performance as a subgrade material is from good to poor.

In pavement Design, Ethiopian Roads Authority Site Investigation Manual 2002 recommends that the road section must be defined in accordance with subgrade strength classes depending on the range of CBR value. Therefore, depending on the CBR value obtained, the subgrade
strength class of the soil in the study area classified as S2 (CBR range 3-4 %), S3 (CBR range 5-7%) and S4 (CBR range 8-14%), but dominantly classified as S3 subgrade strength class.

After four days of soaking the average swelling condition of the soil in the study area during CBR test is varied from 1.7% to 3.1% which indicate that the soil in the study area is in the range of low to high volume expansion. If the subgrade material is likely to be subjected to an increase in moisture content, either from rainfall, groundwater or ingress through the surfacing, it is probable that its strength hence CBR will decrease due to the subgrade volume change. Therefore, for design purposes maintaining proper drainage facility is recommended depending on this swelling condition. Hence, the subgrade should be designed considering as there is low to high subgrade volume change or movement as the moisture content increases as a result of the worst condition from the site.

Generally, based on the whole laboratory test result of the soil index properties, the relation between CBR value and the index properties can be described as, as natural moisture content, specific gravity, grain size analysis (percent of silt-clay), atterberg limits parameters (LL, PL and PI) and from compaction characteristics as optimum moisture content increases the California bearing ratio value is decreases. However, as percent of gravel and sand, and maximum dry density of soil increases the California bearing ratio value is increases. This situation is indicates that all parameters have their own contributions on the California bearing ratio value, however, the degree to which they affect CBR value is not the same.

4.2 Correlation and Regression Analysis Result

4.2.1 Sample size result

Sample size is an important feature of any study or investigation in which the aim is to make inferences about the population from a sample.

$$N = \frac{z^2 * SD^2}{MRE^2} \quad [29] \tag{4.1}$$

Z=1.96 for 95% confidence interval

SD = Standard deviation of the mean = 0.14

MRE = 0.05 for 95% confidence interval,

$$N = \frac{(1.96)^2 * (0.14)^2}{(0.05)^2} \approx 30$$

4.2.2 Discussion on sample size result

From the above calculation, the sample size result is 30. This result was depending on the predicted standard deviation taken from previous literature, margin of error and Z value. According to [52] if ten or above tests are made, the variation of their sample average from population would have a standard deviation of 10-20%. Based on the above stated reason the predicted standard deviation of the mean was 14% (0.14). The margin of error and level of significance are depend on the level of confidence interval. The 95% percent of level of confidence interval gives 5% of margin error from the population mean and Z-value 1.96 which represent the probability that a sample will fall within a certain distribution.

4.2.3 Scatter Plots Result

Prior to carrying out the regression analysis a scatter diagram is generated by applying the Excel Spreadsheet, in order to study the relationships developed between the dependent variable and the predictors variables so as to determine the model that best suits the test results.

As discussed so far in this study, the California Bearing Ratio is taken as the dependent variable whereas PP200, the percent passing No.200 (0.075mm) sieve size, LL, PL, PI, OMC and MDD are considered as independent variables. The scatter plots of the dependent variable CBR with each independent variable, CBR with PP200, LL, PL, PI, OMC and MDD for the 30 samples were done by using Ms. Excel, and the plots are presented in the figures below.

Figure 4.10: Scatter diagram of Soaked CBR Value versus LL

Figure 4.11: Scatter diagram of Soaked CBR Value versus PL

Figure 4.12: Scatter diagram of Soaked CBR Value versus PI

Figure 4.13: Scatter diagram of Soaked CBR Value versus OMC

Figure 4.14: Scatter diagram of Soaked CBR Value versus MDD

4.2.3.1 Discussion on the Scatter Plots result

From the above scatter plots it is observed that for independent variables PP200, LL, PL, PI and OMC, the points are scattered randomly downward trend around a straight line. This shows that these parameters have a negative relationship with a dependent variable (CBR). However, for MDD the points are scattered randomly increasing trend around a straight line. This shows that MDD has a positive relationship with the CBR.

4.2.4 Descriptive statistics

	-			Descrip	otive Statist	tics		
Variables	Unit	N	Range	Minimum	Maximum	Mean	Std. Deviation	Variance
		Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic
CBR	%	30	9.4	3.4	12.8	7.343	2.1015	4.416
PP200	%	30	15.9	74.8	90.7	82.617	3.9699	15.760
LL	%	30	30.0	46.0	76.0	63.093	9.4439	89.187
PL	%	30	16.7	27.9	44.6	35.583	5.2284	27.337
PI	%	30	17.8	17.8	35.6	27.477	4.8790	23.805
OMC	%	30	9.4	26.2	35.6	31.123	2.8306	8.012
MDD	g/cc	30	.17	1.37	1.54	1.4670	.04481	.002
Valid N (listwise)		30						

 Table 4.7: Statistical Information of Dependent and Independent Variables

4.2.5 Normality Test Result

4.2.5.1 Graphical methods of Normality test result

The result of normality test using graphical methods using both histogram and normal Q-Q plot are shown as figures below.

Figure 4.15: Graphical methods of normality test (both histogram and normal Q-Q plot)

4.2.5.2 Statistical (Analytical) methods of Normality test result

The result of normality test using analytical methods using different methods are shown as tables below.

	Tests of Normality										
	Kolm	ogorov-Smi	rnov ^a		Shapiro-Wilk						
Variables	Statistic	df	Sig.	Statistic	df	Sig.					
CBR	.118	30	$.200^{*}$.964	30	.383					
PP200	.082	30	$.200^{*}$.988	30	.973					
LL	.145	30	.109	.915	30	.067					
PL	.116	30	.200*	.938	30	.079					
PI	.160	30	.057	.915	30	.063					
OMC	.094	30	$.200^{*}$.954	30	.219					
MDD	.105	30	$.200^{*}$.966	30	.445					
*. This is a low	ver bound of t	he true sign	ificance.								
a. Lilliefors Si	gnificance Co	orrection									

Table 4.8: Normality Test result of Kolmogorov-Smirnov and Shapiro-Wilk Test

 Table 4.9: Normality Test result according to Skewness and Kurtosis Coefficients

							Conver		
les				Converte			ted	Critical Value	
iat		Skew	SE of	d	Kurtos	SE of	Z	of Z for 95%	
Vaı		ness	Skew	Ζ	is	Kurto	kurtosi	confidence	
r	Ν	Value	ness	skewness	Value	sis	S	interval	Results
CBR	30	.650	.427	1.52	.562	.833	0.67	-1.96 to +1.96	Normal
PP200	30	.059	.427	0.14	550	.833	-0.66	-1.96 to +1.96	Normal
LL	30	501	.427	-1.17	-1.054	.833	-1.27	-1.96 to +1.96	Normal
PL	30	.138	.427	0.32	-1.311	.833	-1.57	-1.96 to +1.96	Normal
PI	30	668	.427	-1.56	383	.833	-0.46	-1.96 to +1.96	Normal
OMC	30	162	.427	-0.38	-1.120	.833	-1.34	-1.96 to +1.96	Normal
MDD	30	436	.427	-1.02	369	.833	-0.44	-1.96 to +1.96	Normal

In the table above the skewness value, Standard error (SE) of skewness, kurtosis value and Standard error (SE) of kurtosis are taken from SPSS output attached at appendix A of this thesis

4.2.5.3 Discussion on Normality Test Result

Depending on both the graphical and statistical (analytical) normality test result, the normality test result fulfill the basic assumption of normality test. According to the graphical methods of normality test result, the data is approximately normally distributed through the visual examination from the histogram and normal Q-Q plot. The value of converted Z skewness and kurtosis is falls in the stated critical ranges, -1.96 to +1.96, which implies that the data satisfies the normality test. The Kolmogrov-Smirnovs and Shapiro-Wilk test shows the level of significance (α) greater than 0.05, which indicates the samples data are not significantly different than a normal population hence accept the null hypothesis. Generally, based on the tested normality test, the collected samples data are not significantly different from a normal population is reasonably close to normality. Hence the assumption in statistical analysis for normally distributed data fairly satisfied, the assumption of null hypothesis is accepted. The detail normality test out-put obtained for skewness and kurtosis coefficient is presented under appendix A of this thesis.

4.2.6 Correlation Matrix of Result Data

Based on the correlation matrix analysis, it is possible to explore the relationship strength and direction of all variables through pairwise associations between each variable. Depending on the correlation matrix the following correlation coefficients and level of significance was determined then the statistical hypothesis test is stated based on level of significance.

Ho: = there is a statistically relationship between dependent and independent variable H₁: = there is no significant relationship between dependent and independent variable If there is a statistically significant relationship between dependent and independent variable, the value of level of significance (α) value is less than 0.05 if not $\alpha > 0.05$ which indicates there is no significant relationship between dependent and independent variable .Here under, the Pearson correlation coefficient matrix obtained from the SPSS software is shown in table below.

			Correlati	ons				
		CBR	PP200	LL	PL	PI	OMC	MDD
	Pearson Correlation	1	701**	846**	758**	821**	902**	.894**
CBR	Sig. (2-tailed)		.000	.000	.000	.000	.000	.000
	Ν	30	30	30	30	30	30	30
	Pearson Correlation	701**	1	.557**	.426*	.626**	.691**	647**
PP200	Sig. (2-tailed)	.000		.001	.019	.000	.000	.000
	Ν	30	30	30	30	30	30	30
	Pearson Correlation	846**	.557**	1	.936**	.930**	.795**	709**
LL	Sig. (2-tailed)	.000	.001		.000	.000	.000	.000
	Ν	30	30	30	30	30	30	30
	Pearson Correlation	758 ^{**}	.426*	.936**	1	.742**	.740**	635**
PL	Sig. (2-tailed)	.000	.019	.000		.000	.000	.000
	Ν	30	30	30	30	30	30	30
	Pearson Correlation	821**	.626**	.930**	.742**	1	.745**	689**
PI	Sig. (2-tailed)	.000	.000	.000	.000		.000	.000
	Ν	30	30	30	30	30	30	30
	Pearson Correlation	902**	.691**	.795**	.740**	.745**	1	889**
OMC	Sig. (2-tailed)	.000	.000	.000	.000	.000		.000
	Ν	30	30	30	30	30	30	30
	Pearson Correlation	.894**	647**	709**	635**	689**	889**	1
MDD	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	
	Ν	30	30	30	30	30	30	30
**. Cor	relation is significant	at the 0.01	level (2-1	tailed).				
*. Corre	elation is significant at	the 0.05 l	evel (2-ta	iled).				

Table 4.10: Correlation Matrix of Pearson correlation coefficient

4.2.6.1 Discussion of the correlation matrix result

To determine the correlation matrix, Pearson correlation coefficient is used. As observed on table above, to know the association of CBR value with the considered index properties of soil, correlation coefficient (R) and level of significance between the CBR value and PP200,LL,PL,PI,OMC and MDD were determined. Based on the above correlation matrix result, it is observed that the level of significance (*p*) value is less 0.05 and the Pearson correlation coefficient value (R) is relatively close to -1 and 1. These shows, the data accept the null hypothesis and conclude that there is a statistically significant relationship between dependent variable, (CBR) with the independent variables (PP200, LL, PL, PI, OMC and MDD). That is 95%, the relationship between dependent and the independent variables probably true. From the correlation matrix, it is noticed that there are perfect correlations

between variables and themselves which is indicated by the diagonal value is unit. The matrix is symmetrical on either side of the diagonal, meaning all correlations are given twice.

More further to the above correlation analysis based on the Pearson correlation coefficient, a number of alternative linear regression analyses was carried out to develop model that best fits the obtained test result, and summarized under correlation and regression analysis result.

4.2.7 Multicollinearity (interdependency) test result

The following table shows the result of collinearity test between the independent variables.

	Coefficients ^a										
		C	Collinearity Statis	tics							
Model	Independent Variables	Tolerance	VIF	Remarks							
	PP200	0.402	2.485	Satisfied							
	LL	0.086	12.086	Not satisfied							
1	PL	0.057	17.493	Not satisfied							
1	PI	0.065	15.344	Not satisfied							
	OMC	0.136	7.337	Satisfied							
	MDD 0.203 4.914 Satisfied										
a. Depe	ndent Variable: CBR										

 Table 4.11: Multicollinearity test result

4.2.7.1 Discussion on Multicollinearity test result

From table above, the variance inflation factor (VIF) values of the independent variables such as LL, PL and PI is greater than 10 and the tolerance statistics is less than 0.1 which indicates that there is a multicollinearity problem between these variables. Hence, these variables cannot be participated in the regression model at the same time with one another. However, the variance inflation factor (VIF) values and tolerance statistics of the independent variables like PP200, OMC and MDD is less than 10 and greater than 0.1 respectively. Therefore, we can safely conclude that there is no collinearity within these predictors.

In addition, from a correlation matrix, the pairwise Pearson correlation coefficient among the predictor variables like LL, PL and PI is greater than 0.9, (R > 0.9) which indicates that there is a multicollinearity problem between each variable. That is one of them may serve as a proxy or representative for the others in the regression model, or only one of them can be used, because their effect on the regression model is relatively considered to be the same. However,

the pairwise Pearson correlation coefficient of the pair predictor variables such as pp200, OMC and MDD is less than 0.9, (R < 0.9) which indicates there is no interdependency between the predictors. That is each predictor can be independently participated in the model.

4.2.8 Correlation and Regression Analysis Output from SPSS Software

4.2.8.1 Single Linear Regression Analysis

Based on the resulting regression analysis for correlating CBR with PP200.LL, PL, PI, OMC and MDD, using a single linear regression the result obtained is presented below.

Model 1: Single Linear Regression Analysis between CBR and PP200

The resulting regression analysis after correlating CBR with Percent Passing No.200 sieve (PP200) is expressed by the following single linear equation with its corresponding correlation coefficients:

CBR =
$$38.021 - 0.37PP200$$
, with R² = 0.492 , R² (adj.) = 0.474 , N= 30 (4.2)

Model 2: Single Linear Regression Analysis between CBR and LL

The resulting regression analysis after correlating CBR with Liquid Limit (LL) is expressed by the following single linear equation with its corresponding correlation coefficients:

CBR = 19.225 - 0.188LL, with $R^2 = 0.716$, R^2 (adj.) = 0.706, N=30 (4.3)

Model 3: Single Linear Regression Analysis between CBR and PL

The resulting regression analysis after correlating CBR with Plastic Limit (PL) is expressed by the following single linear equation with its corresponding correlation coefficient:

CBR =
$$18.186 - 0.305$$
PL, with R² = 0.575 , R² (adj.) = 0.56 , N=30 (4.4)

Model 4: Single Linear Regression Analysis between CBR and PI

The resulting regression analysis after correlating CBR with Plastic Index (PI) is expressed by the following single linear equation with its corresponding correlation coefficient:

CBR = 17.061 - 0.354PI, with $R^2 = 0.674$, R^2 (adj.) = 0.663, N=30 (4.5)

Model 5: Single Linear Regression Analysis between CBR and OMC

The resulting regression analysis after correlating CBR with Optimum Moisture Content (OMC) is expressed by the following single linear equation with its corresponding correlation coefficient:

$$CBR = 28.188 - 0.67OMC$$
, with $R^2 = 0.814$, R^2 (adj.) = 0.807, N=30 (4.6)

Model 6: Single Linear Regression Analysis between CBR and MDD

The resulting regression analysis after correlating CBR with Maximum Dry Density (MDD) is expressed by the following single linear equation with its corresponding correlation coefficient:

CBR = -54.151 + 41.918MDD, with R² = 0.799, R² (adj.) = 0.792, N=30 (4.7)

4.2.8.2 Multiple Linear Regression Analysis

In this Multiple Linear regression analysis to predict a CBR value, a best fit equation have to be chosen after going through a number of alternatives combinations of predictors. To have an alternative approach to decide the best fit equation, different alternative combinations between and among different predictors were performed. Depending on coefficient of determination and standard error the following developed correlation models are selected as alternative to decide the best fit model.

- 1. Model A: Multiple Linear Regression Analysis between CBR with LL and MDD CBR = -27.303 - 0.095LL + 27.707MDD, with $R^2 = 0.89$, R^2 (adj.) = 0.882, N=30 (4.8)
- 2. Model B: Multiple Linear Regression Analysis between CBR with LL, OMC and MDD CBR = -12.124 - 0.077LL - 0.178OMC + 20.37MDD,With R² = 0.899, R² (adj.) = 0.887, N=30 (4.9)
- 3. **Model C**: Multiple linear regression analysis between CBR with PP200, PI, OMC and MDD CBR = -6.63 - 0.033PP200 - 0.128PI - 0.216OMC + 18.34MDD,

With
$$R^2=0.892$$
, R^2 (adj.) =0.884, N=30 (4.10)

4. Model D: Multiple linear regression analysis between CBR with PL, OMC, MDD and PP200 CBR = -7.251 - 0.102PL - 0.157OMC + 20.604MDD - 0.086PP200

With
$$R^2 = 0.885$$
, R^2 (adj.) = 0.86, N=30 (4.11)

4.2.8.3 Summary of the Developed Models

4.2.8.3.1 Summary of Models Developed from Single Linear Regression Analysis

The following table summarizes the models developed from Single Linear Regression Analysis based on the statistical parameters taken from model summary and ANOVA result.

Model	Single Regression Equations		Sta	atistical Pa	rameters	
Code	Developed Models	R	\mathbf{R}^2	\mathbb{R}^2 adj.	Std.error	<i>P</i> -value
1	CBR=38.021-0.371PP200	0.701	0.492	0.474	1.5243	< 0.05
2	CBR=19.225 - 0.188LL	0.846	0.716	0.706	1.1394	< 0.05
3	CBR=18.186 - 0.305PL	0.758	0.575	0.56	1.3948	< 0.05
4	CBR=17.061- 0.354PI	0.821	0.674	0.663	1.2206	< 0.05
5	CBR=28.188 - 0.67OMC	0.902	0.814	0.807	0.9228	< 0.05
6	CBR=-54.151+41.918MDD	0.894	0.799	0.792	0.9591	< 0.05

Table 4.12: Summary of Models Developed from Single Linear Regression Analysis

From the table above, based on the statistical parameters performed, it was noted that the CBR value correlates relatively better with liquid limit, optimum moisture content and maximum dry density, while the remaining parameters showed a weak relationship with CBR value. From the above results, based on the statistical parameters, coefficient of determination (R^2) and standard error the following equations ordered with decreasing order of coefficient of determination (R^2) and increasing order of standard error.

- 1. CBR = 28.188 0.67OMC, with $R^2 = 0.814$ (4.12)
- 2. CBR = -54.151 + 41.918MDD, with $R^2 = 0.799$ (4.13)
- 3. CBR = 19.225 0.188LL, with $R^2 = 0.716$ (4.14)
- 4. CBR = 17.061 0.354PI, with $R^2 = 0.674$ (4.15)
- 5. CBR = 18.186 0.305PL, with $R^2 = 0.575$ (4.16)
- 6. CBR = 38.021 0.371PP200, with $R^2 = 0.492$ (4.17)

From the ordered equations above, based on coefficient of determination (R^2) and standard error, I can summarize that model no.1 has the least standard error and the highest coefficient of determination (R^2) with level of significance less than 0.05. Therefore, it is chosen as best fit model from the developed single linear regression models.

The details of the statistical out-put of single linear regression indicates that the relationship developed between CBR and PP200, LL, PL, PI, OMC and MDD is significant (p < 0.05), and the detail outputs of the SPSS Software for the single linear regression analysis is presented under Appendix B to G of this thesis.

4.2.8.3.2 Summary of Models Developed from Multiple Linear Regression Analysis

The alternative models selected from the Multiple Linear Regression Analysis to decide the best fit model are summarized as the following table based on the statistical parameters taken from model summary and ANOVA result.

Model	Multiple Linear Regression Equations Developed		S	tatistical Pa	arameters	
Code	Models	R	\mathbb{R}^2	\mathbb{R}^2 adj.	Std.error	P-value
А	CBR = -27.303 - 0.095LL + 27.707MDD	0.943	0.89	0.882	1.1394	< 0.05
В	CBR = -12.124 - 0.077LL - 0.1780MC + 20.37MDD	0.948	0.899	0.887	0.7068	< 0.05
С	CBR = -6.63 - 0.033PP200 - 0.128PI - 0.216OMC + 18.34MDD	0.944	0.892	0.884	0.7205	< 0.05
D	CBR = -7.251- 0.102PL - 0.157OMC + 20.604MDD - 0.086PP200	0.941	0.885	0.86	0.7516	< 0.05

Table 4.13: Summary of Models Developed from Multiple Linear Regression Analysis

From the table above results, based on the coefficient of determination and standard error the following equations selected for models fitted with decreasing order of coefficient of determination (R^2) and increasing order of standard error.

- 1. CBR = -12.124 0.077LL 0.178OMC + 20.37MDD, with $R^2 = 0.899$ (4.18)
- 2. CBR = -6.63 0.033PP200 0.128PI 0.216OMC + 18.34MDD, with $R^2 = 0.892$ (4.19)
- 3. CBR = -27.303 0.095LL + 27.707MDD, with $R^2 = 0.89$ (4.20)
- 4. CBR = -7.251-0.102PL-0.157OMC+20.604MDD-0.086PP200, with $R^2 = 0.885$ (4.21)

The other criteria used to select the best fit model among the predicted models is considering the statistical parameters F-value. As discussed so far under parametric statistical test, F-ratio represents the ratio of the improvement in prediction that results from fitting the model (regression) relative to the inaccuracy that still exists in the model (residual). In this case if the improvement due to fitting the regression of model is much greater than the inaccuracy within the model then the value of F-value will be larger. Based on the improvement in prediction (regression) and the inaccuracy exists in the model (residual), If the observed F-value is large in comparison to the tabulated value of F with n₁ and n-n₁-1 degree of freedom, the result is significant at level p (F) $\leq \alpha$ (0.05), where n₁ is number of predictor in the model which represent degree of freedom of regression, n is number of sample size and p (F) is P-value of F-test [53]. The tabulated value of F (F-tab) is taken from Appendix A.4 F-distribution statistical table with p (F), n₁ (df of regression) and n₂ (df of residual) which is F (n₁, n₂) [53]. Most values of F-tab. are obtained using interpolation. This is presented as table below.

Regression	Model	Source of	Sum of	46	Mean		F-		
Туре	Code	Variability	Square	ai	Square	F-cal.	tab.	Results	
SIDA	5	Regression	104.228	1	104.228	122 284	7 611	Significant	
SLKA	3	Residual	23.846	28	0.852	122.304	7.044	Significant	
	٨	Regression	113.949	2	56.975	109 012	5 109	Significant	
	А	Residual	14.128	27	0.523	108.912	3.498	Significant	
	В	Regression	115.087	3	38.362	76 700	1 8/1	Cionificant	
		Residual	12.987	26	0.5	/0./99	4.841	Significant	
MILKA	C	Regression	115.097	4	28.754	55 121	1 10	Significant	
-	C	Residual	12.977	25	0.519	33.431	4.18	Significant	
	D	Regression	113.952	4	28.488	50 424	276	Cionificant	
	D	Residual	14.121	25	0.565	30.434	2.70	Significant	

Table 4.14: Summary of the selected SLRA and MLRA depending the ANOVA (F-test) for Testing Significance of Regression

From the result table above, it is observed that the calculated F-value of all models is much greater than the tabulated F-value. Therefore, all models are significant at p (F) < α (0.05). However, in this case the criteria to select and judge the best fit model from all models is considering the value of the Residual Mean Square (RMS) of each model. The model with the smallest Residual Mean square (RMS) is usually preferred as the best fit model [53]. Hence, from the listed models, model B is preferred as best fit model having the smallest value of residual mean square to predict the outcome (dependent) variable.

4.2.8.4 Discussion on the Developed Equations of Regression analysis

4.2.8.4.1 Discussion on Single linear regression analysis

After carefully evaluating the data on the scatter plot and regression analysis models, the single linear regression analysis discovered that CBR is highly influenced by OMC by achieving a coefficient of determination value (R^2) of 0.814 and level of significance (p < 0.05) and least standard error. Based on this study it is observed that the effect of moisture content on CBR value is significant. This is because of CBR value is obtained at the OMC because at this moisture level, the maximum dry density (MDD) and the highest strength are achieved. The results indicated that the CBR provided a good correlation with OMC. The selected developed correlation model is given as:

CBR = 28.188 - 0.67OMC, with R² = 0.814, R² (adj.) = 0.807, N=30

4.2.8.4.2 Discussion on Multiple linear regression analysis

From the above alternatively selected developed correlation models from multiple linear regression analysis to decide the best fit model, comparing the statistical parameters such as coefficient of determination (R²),the standard error and F-value, Model B is selected more preferably better than the remain developed correlation models. In the selected model as best fit (Model B) the predictors like liquid limit, optimum moisture content and maximum dry density are participated. In fact, in CBR laboratory test, CBR value is more sensitive to moisture content and dry density. That is, CBR value is dominantly affected by these parameters. The two former parameters are indicates that the effect of moisture content on CBR value, and the later one which is maximum dry density indicates the effect of dry density on CBR value. Therefore, depending on the above statistical parameters criteria and judgment, from multiple linear regression developed models, (Model B) is chosen as best fit model.

Finally, from the correlation analysis, the selected developed equations are: CBR = 28.188 - 0.67OMC, with the coefficient of determination, $R^2 = 0.814$ for single linear regression and CBR = -12.124 - 0.077LL - 0.178OMC + 20.37MDD, with the coefficient of determination, $R^2 = 0.899$ for multiple linear regression analysis respectively.

From these two models of regression analysis, it is observed that multiple linear regression has fairly good coefficient of determination than single linear regression analysis. Based on the statistical parameters performed such as coefficient of determination value (R^2), the standard

error, F-value, RMS and the parameters contributed in the two models, comparing the two models, model obtained from multiple linear regression analysis is more preferably better than that of single linear regression model. Therefore, model CBR= -12.124 - 0.077LL – 0.178OMC + 20.37MDD, with the coefficient of determination $R^2 = 0.899$ is preferably selected for further validation. The details of the statistical out-put of multiple linear regression indicates that the relationship developed between CBR and LL and compaction characteristics (OMC and MDD) is statistically significant (p < 0.05) and the detail outputs of the SPSS Software for this multiple linear regression model is presented under Appendix H of this thesis.

4.2.9 Validation of the Developed Equation

Assessing the accuracy of a model across different samples is known as cross-validation [45]. To check the validity of developed model a separate set of soil samples were tested. In this section, the developed equations is tried to validate using nine (9) control tests. To verify the suitability of the developed correlation equation, the predicted CBR is determined using control test data to compare it with the actual or experimentally observed CBR value.

The sample data that is used as a control test is obtained by conducting different tests such as Sieve analysis, Atterberg's limits, Compaction and California Bearing Ratio (CBR) tests on different location of Seka soil sample. Summary of laboratory test results is given as follows:

				(Control T	est Results		
			Atterberg's Limits Test Result			Modifie Compactio	CBR Value @ 95%	
	Depth	PP200						MDD
Test Pit	(m)	(%)	LL (%)	PL (%)	PI (%)	OMC (%)	MDD (g/cc)	(%)
TD11	1	85.6	67.8	36.5	31.3	32.5	1.47	6.7
(CT)	2	83.2	66.5	34.6	31.9	31.2	1.49	7.5
(C1)	3	82.4	65.6	34.2	31.4	28.5	1.51	8.0
TD12	1	88.6	70.5	38.8	31.7	32.8	1.44	5.6
(CT)	2	86.5	69.2	37.2	32.0	31.8	1.46	6.4
(C1)	3	85.2	68.8	36.4	32.4	30.6	1.49	7.8
TD12	1	89.6	71	38.1	32.9	33.6	1.43	5.4
(CT)	1	86.3	69.8	37.6	32.2	31.4	1.47	6.5
	3	83.8	67.6	35.8	31.8	31.2	1.48	7.4

 Table 4.15: Summary of laboratory results for control tests

4.2.10 Cross Validation result

For validation test, the selected control test covers 30% of the training data. Substituting the values of the LL, OMC and MDD in model, CBR = -12.124 - 0.077LL - 0.178OMC + 20.37MDD, with $R^2 = 0.899$ which is chosen as best fit and selected for validation, the CBR is predicted. The following table shows the percentage of average variation of controlled test.

		Actual CBR	Predicted CBR	Variation
		Value (%)	Value (%)	[(A-B)/A] *100
Test Pit	Depth (m)	[A]	[B]	(%)
	1	6.7	6.81	1.71
TP11 (CT)	2	7.5	7.55	0.71
	3	8.0	8.51	6.38
	1	5.6	5.94	6.11
TP12 (CT)	2	6.4	6.63	3.55
	3	7.8	7.48	4.07
	1	5.4	5.56	2.91
TP13 (CT)	2	6.5	6.86	5.48
	3	7.4	7.26	1.83
-	_			2.64
			Av. Variation (%)	3.64

Table 4.16: Validation result of the developed equation

4.2.10.1 Discussion on Cross Validation result

From the above cross validation result, the total percentage of variation is 3.64% which indicate that there is a good prediction of the dependent variable. This percentage of variation is occurred due to the location of the control test pit is different from the samples considered in the correlation, and also in nature the soil behavior is vary from place to place and season to season. In general, I can conclude that the statistical regression analysis indicates the correlation may give 96% accuracy in the determination of the CBR value for the controlled tests. However, before using this developed correlation equation for practical purpose, it needs an improvement using with large number of samples and more advanced methods of regression analysis.

4.2.11 Comparison of Experimental and Predicted CBR Value from the Present Study The following table shows the percentage of average variation of the experimental and predicted CBR value of the present study using the selected predicted regression model.

	I	ndenend	ent	Developed Model				
	Varia	hles use	d in the	Actual	Predicted	Variation		
	Cur	rent Pred	licted	CBR	CBR			
	Cui	Model	lieteu	value (%)	value	[(A-B)/A]*100		
Sample	тт	OMC	MDD			(%)		
No	(%)	(%)	(q/cc)	Α	В	(, •)		
1	60.8	(70)	$\frac{(g/cc)}{1.46}$	7.0	7 1 1	1.63		
2	56.4	32.7	1.40	7.0	7.11	1.05		
3	53.6	28.8	1.45	8.0	9.18	14.72		
4	70.8	32.3	1.50	6.0	6.82	6.60		
5	67.6	31.5	1.40	7.6	7.42	2.43		
6	64.9	28.2	1.47	8.2	8.62	5 10		
7	19.6	20.2	1.51	10.5	9.92	5.10		
8	49.0	27.5	1.51	10.3	10.47	6.48		
0	46.4	27.2	1.55	11.2	10.47	14.23		
9	40.8	20.2	1.34	12.0	5 50	14.23		
10	72.5	22.1	1.44	4.0	5.30	2 19		
11	75.5	21.2	1.40	0.2	0.00	2.18		
12	69.4	22.0	1.49	7.2	1.55	1.80		
15	09.0	32.0	1.40	7.0	0.30	15.07		
14	00.0	29.1	1.49	7.8	7.81	0.10		
15	60.2	27.6	1.52	9.0	9.29	3.22		
16	60.8	33.5	1.46	6.8	6.97	2.52		
1/	50.0	27.6	1.50	8.4	9.67	15.10		
18	46.0	26.4	1.53	10.0	10.80	8.01		
19	70.0	34.2	1.39	5.2	4.71	9.37		
20	68.0	29.8	1.47	7.2	7.28	1.10		
21	48.5	28.7	1.51	10.4	9.79	5.85		
22	64.4	34.5	1.42	6.2	5.70	8.04		
23	60.8	30.8	1.43	6.6	6.84	3.65		
24	57.5	30.5	1.46	6.8	7.76	14.11		
25	74.0	34.5	1.38	4.4	4.15	5.74		
26	73.0	35.4	1.43	4.8	5.08	5.89		
27	66.6	31.6	1.45	6.0	6.66	10.99		
28	76.0	35.6	1.37	3.4	3.59	5.71		
29	74.8	33.6	1.41	5.6	4.86	13.26		
30	73.0	31.5	1.47	6.8	6.59	3.06		
Ave	rage Va	ariation ((%)			6.87		

Table 4.	17: Comp	arison	of Experimenta	l and	Predicted CB	R Value	from the	Present S	Study
				<u> </u>					

JU,JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Figure 4.16: Graphical Comparison of Experimental and Predicted CBR Value from the Present Study

From the table above, the developed correlation predicted the CBR value is varied with an average variation of 7% from the actual CBR value. From the graph the trend curves of the experimental and predicted CBR value are following each other with small deviation. This small variation indicate that there is a good prediction of the CBR values of soil in the study area using a predicted model.

4.2.12 Evaluation of the Developed Model Using Previous Existing Data

To seek and verify the validity of the predicted model as it is applicable to use for other places of soil, it should be compared with the available data of soil properties investigated by few investigators for predicting CBR value on the basis of the parameters participated in the predicted model [54]. This means the experimental parameters participated in the current best fit model and the actual CBR value obtained by the previous researchers was taken then substituting these parameters value in the current best fit model, the CBR value was predicted. Then the predicted CBR value was compared with the experimental CBR value obtained by the previous researchers. Finally, based on the variation occurred the applicability of the current model for other area of soil was identified. For this purpose the tested value of CBR in soaked condition, and Liquid Limit and compaction characteristics (OMC and MDD) reported by Yared Leliso [18] were used for the validation of the current predicted model. The results of the actual soaked CBR values and the predicted value after substituting parameters such as

LL, OMC and MDD reported by [18] in the current best fit model, and the variation is presented in table below. Note here the Actual CBR value (%) is reported by [18].

	Experimental Variables reported			Exist	ing Study by Ya	red Leliso
	by Yare	d Leliso and	used in the	Actual	Predicted	Variation
	Pres	ent Predicted	Model	CBR value (%)	CBR value by Present Study	[(A- P)/A1*100
Sample			MDD	Δ	в	D)/А]*100 (%)
No.	LL (%)	OMC (%)	(g/cc)		D	
1	50.0	23.3	1.55	6.0	11.45	90.87
2	43.0	21.9	1.60	10.0	13.26	32.59
3	53.0	20.9	1.57	9.2	12.06	31.04
4	48.0	20.6	1.56	6.2	12.29	98.23
5	55.0	20.4	1.54	6.4	11.38	77.81
6	46.0	20.2	1.59	7.4	13.13	77.39
7	60.0	24.3	1.51	3.3	9.69	193.62
8	66.0	29.2	1.50	6.1	8.15	33.63
9	61.0	27.8	1.53	5.4	9.40	74.01
10	63.0	29.2	1.53	6.1	8.99	47.43
11	54.0	23.2	1.59	7.3	11.98	64.06
12	59.0	23.8	1.55	7.8	10.67	36.80
13	52.0	27.6	1.53	9.4	10.13	7.72
14	57.0	24.2	1.50	8.4	9.73	15.89
15	61.0	23.3	1.58	4.1	11.22	173.57
16	70.0	27.8	1.48	2.2	7.69	249.33
17	56.0	22.2	1.64	7.3	13.02	78.35
18	60.0	26.0	1.53	5.2	9.79	88.35
19	63.0	27.7	1.56	4.6	9.87	114.60
20	54.0	23.4	1.61	8.4	12.35	47.01
21	59.0	24.5	1.58	4.7	11.16	137.37
22	61.0	19.0	1.57	4.3	11.78	173.90
23	67.0	22.0	1.54	6.2	10.17	64.05
24	62.0	30.2	1.57	6.4	9.71	51.68
25	72.0	30.2	1.48	2.8	7.10	153.71
26	60.0	24.2	1.52	5.8	9.91	70.88
27	68.0	28.4	1.50	3.6	8.14	126.11
28	63.0	29.3	1.49	5.3	8.16	53.98
29	59.0	22.9	1.50	3.7	9.81	165.18
30	65.0	24.1	1.48	3.2	8.73	172.78
	Average	Variation (%	b)			93.40

Table 4.18: Validation of the Developed Model Using Existing Correlation data

80

JU,JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Figure 4.17: Graphical Comparison of experimental CBR value from existing correlation and predicted CBR value from present developed model

4.2.12.1 Discussion on Comparison of the developed model with previous existing correlations

As observed from the table above, it is observed that the predicted value of CBR from the current model using existing data is relatively larger than the experimental CBR value reported by the previous researcher.

From the figure above, even the trend line of the actual CBR value reported by Yared Leliso and the Predicted CBR value from the current model using the existing reported data follows the same pattern of curve, there is a large reasonable variation. This is may be due to the difference in test procedures and the geotechnical properties of the soil where this correlation was developed. This indicate that correlation developed for a certain soil is not applicable for other soil. However, if further validation performed with different areas of soil properties the developed model might be establish good prediction of CBR value for similar properties of soils from another site.

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

5.1 Conclusions

The research was conducted to predict the California bearing ratio (CBR) value from index properties of soil such as percent passing sieve no.200, LL, PL, PI, OMC and MDD. To achieve the objectives of the study, about thirty soil samples extracted from different location of the town and laboratory tests were carried out. Using the obtained test results a single and multiple linear regressions were analyzed and a relationship was developed that predict CBR value in terms of PP200, LL, PL, PI, OMC and MDD.

Depending on the results and discussions presented in this study the following conclusions were brought out:

From the scatter plot, it is observed that the percent passing sieve no.200, LL, PL and PI have a weak negative relationship and OMC has a strong negative relationship with a dependent variable (CBR), however, MDD has a strong positive relationship with the CBR. In another word, the effect of fine, plasticity index, liquid limit, plastic limit and optimum moisture content have negative effect on CBR. That means if fine content, liquid limit, plastic limit, plasticity index, optimum moisture content tends to increase, the CBR value tends to decrease. Therefore, from this it can be concluded that the presence of much fine particles, high water content and plasticity affect the soil strength. But in the case of maximum dry density (MDD), it is observed that MDD has positive effect on CBR which indicates increasing maximum dry density gives better subgrade strength, (CBR) value.

Depending on both the graphical and statistical (analytical) normality test result, the normality test result of the collected samples fulfill the basic assumption of normality test.

Based on the multicollinearity test result there is no collinearity problem between the independent variables like PP200, OMC and MDD, but there is collinearity problem between the atterberg parameters (LL, PL and PI). Therefore, we can safely conclude that the predictors which have multicollinearity problem cannot be participated at the same time in multiple regression modeling analysis.

From among the single linear regression analysis, the correlation between CBR and optimum moisture content (OMC) has strong correlation than the other predicting parameters which is expressed in the following relationship:

CBR = 28.188 - 0.67OMC, with R² = 0.814, R² (adj.) = 0.807

From among the developed multiple regression models, after going through a number of alternative combinations of different predictors, relatively an improved correlation than the single regression is provided between CBR and the combination of LL,OMC and MDD. This happening indicates that, the compaction characteristics (Maximum dry density and Optimum moisture Content) and Liquid Limit are more interested parameters that make a significant contribution to predicting the CBR value. The develop correlation equation with CBR is expressed in the following relationship:

$$CBR = -12.124 - 0.077LL - 0.178OMC + 20.37MDD$$
, with $R^2 = 0.899$, R^2 (adj.) = 0.887

From control tests the predicted CBR has an average variation of 3.64% compared to the actual CBR value. This indicates the correlation gives fairly good results.

The developed correlation is predicted the CBR value with average variation of 7% from the actual CBR value which indicate that there is a good prediction of the CBR values of soil in the study area. It was observed that the actual soaked CBR value and the predicted CBR values are close to each other hence the proposed correlation is acceptable and could be applied for the prediction of the CBR values in different civil engineering practices in the study area.

From the existing correlation, it was verified by previous study undertaken by Yared L. [18]. According to the observed comparison the result varied with large variation which indicate that correlation developed for a certain soil is not applicable for other soil. Even though the predicted model presented in the present study can be effectively used for preliminary prediction of CBRs value for fine grained locally available soils in study area. However, before using this developed correlation equation for practical purpose such as design, it needs an improvement using with large number of samples and more advanced methods of regression and correlation analysis.

5.2 Recommendations for the future

In this research study, it is observed that there is fair good correlation between California Bearing ratio value and the compaction characteristics (Maximum dry density and Optimum moisture Content) and Liquid limit of soils found in Seka town.

Following are some of the recommendations for future research study in relation to the subject study to get a more interesting and reliable correlation in the future.

- To get better result, further improvement in the developed equation is possible by incorporating large samples size covering the whole study area.
- For better understanding the relationship between the CBR value and Index Properties of Soil, both the prediction of soaked and unsoaked CBR values from the index properties of soil shall be checked comparatively.
- Laboratory tests will also be carried out on different geological formations in order to develop standard models for determining approximate values of strength properties of the respective formations.
- It is recommended to collect more data in the form of data base covering wide ranges in Ethiopia according to the soil type to get a common appropriate correlation between the California Bearing Ratio (CBR) value and Index Properties of soil through the use of advanced software tools.

REFERENCES

- [1] B. J.E., Foundation Analysis and Design, 4th Edition,, McGraw Hill,, 1988.
- [2] G. Ramasubbarao and S. G. Siva, "Predicting Soaked CBR Value of Fine- Grained Soils Using Index and Compaction Characteristics.," *Jordan Journal of Civil Engineering.*, vol. 7, 2013.
- [3] C. Venkatasubramanian and G. Dhinakaran, "ANN Model for Predicting CBR from Index Properties of Soil," *International Journal of Civil and Structural Engineering*, vol. 2, pp. 605-611, 2011.
- [4] N. Shirur and S. Hiremath, "Establishing Relationship between CBR Value and Physical Properties of Soil," *IOSR Journal of Mechanical and Civil Engineering*, vol. 11, pp. 26-30, 2014.
- [5] J. E. Bowles, Engineering Properties of Soils and Their Measurement, Singapore, second edition: McGraw-Hill, 1984.
- [6] O. Dr. Ndefo, "Causes of Highway Failures in Nigeria.," *International Journal of Engineering Science and Technology (IJEST)*, vol. 11, pp. 4695-4703, November 2012.
- [7] Roy, T.K; Chattapadhyay, B.; Roy S., K., "California Bearing Ratio, Evaluation, and Estimation: A Study of Comparison.," *IGC-,IIT*, pp. 19-22, 2010.
- [8] N. S. V. K. Rao, FOUNDATION DESIGN: THEORY AND PRACTICE, Malaysia, 2010.
- [9] Sorensen K.k.a.O., N, "Correlation between drained shear strength and plasticity index of undisturbed over consolidated clays," *18th International Conference on Soil Mechanics and Geotechnical Engineering*, 2013.
- [10] Dino Abdela, "A Study on Correlation of California Bearing Ratio (CBR) With Index Properties of Soils on Welkite –Arekit-Hossana Road," *Thesis Work School of Civil* and Environmental Engineering Jimma University, 2016.
- [11] S. Zohib , "Correlation of CBR with Index Properties of Soil," *International Journal of Civil Engineering and Technology IJCIET*, vol. 7, no. 5, pp. 57-62, September-October 2016.
- [12] SABS:South African Bureau of Standards, "The determination of the California Bearing Ratio," SANS Part GR40 (Draft), 2008.
- [13] shworth R.A, Highway engineering, London: Heinemann Educational Book, 1972.

- [14] D. Croney and P. Croney, The Design and performance of road pavements, London: Mc Graw Hill Book Company, 1991.
- [15] AASHTO: Standard Specifications for Transportation Materials and Methods of Sampling and Testing Part II Methods of Sampling and Testing, Washington: 25thEdition.American Association of State Highway and Transportation Officials, 2005.
- [16] M.M and E. Zumrawi, "Prediction of In-situ CBR of Subgrade Cohesive Soils from Dynamic Cone Penetrometer and Soil Properties," *IACSIT International Journal of Engineering and Technology*, vol. 6, pp. 439-442, 2014.
- [17] N. BaoThach and M. Abbas, "Prediction of California Bearing Ratio from Physical Properties of Fine-Grained Soils," World Academy of Science, Engineering and Technology International Journal of Civil, Structural, Construction, and Architectural Engineering, vol. 9, pp. 132-137, 2015.
- [18] Yared Leliso, "Correlation of CBR Value with Soil Index Properties for Addis Ababa Subgrade Soils," *Thesis Work Addis Ababa University*, 2013.
- [19] "Ethiopian Road Authority (ERA) Site Investigation Manual," 2002.
- [20] Y. Desalegn, "Developing Correlations between DCP and CBR for Locally Used Sub grade Materials," *Thesis Work, Addis Ababa University*, 2012.
- [21] K. R. Arora, Soil Mechanics and Foundation Engineering, Delhi: Re-print Standard Publishers Distributor Nai Sadak, 2004.
- [22] Z. U. Rehman, U. Khalid, K. Farooq and H. Mujtaba, "Prediction of CBR Value from Index Properties of different Soils," *Technical Journal, University of Engineering and Technology (UET) Taxila*, vol. 22, pp. 17-26, 2017.
- [23] P. G. Rakaraddi and Vijay Gomarsi, "A correlation between CBR value and index properties," *International Journal of Research in Engineering and Technology*, 2015.
- [24] H. R. Srinivasa, N. Sureka and S. Gangadhara, "Development of Regression Equations to Predict CBR of Black Cotton Soils of Karnataka," *International Journal* of Civil Engineering Research, vol. 7, pp. 135-152, 2016.
- [25] I. Faisal, K. Aneel and A. M, "Co-Relationship between California Bearing Ratio and Index Properties of Jamshoro Soil," *Mehran University Research Journal of Engineering and Technology*, vol. 37, pp. 177-190, 2018.
- [26] B. Yildrim and O. Gunaydin, ""Estimation of CBR by soft computing systems." Expert Systems with Applications Elsevier," vol. 38, pp. 6381-6391, 2011.

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 86

- [27] https://en.wikipedia.org/10/june/2019. [Online]. [Accessed 10 June 2019].
- [28] A. S. Singh and M. B. Masuku, "SAMPLING TECHNIQUES AND DETERMINATION OF SAMPLE SIZE IN APPLIED STATISTICS RESEARCH," *International Journal of Economics, Commerce and Management,* vol. II, no. 11, November 2014.
- [29] F. Nick , H. Amanda and . M. Nigel, "Sampling and Sample Size Calculation," *The NIHR Research Design Service for Yorkshire & the Humber*, 2009.
- [30] ASTM, Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass in D 2216 – 98, West Conshohocken., 1998.
- [31] R. Krishna, Engineering Properties of Soils Based on Laboratory Testing, UIC, 2002.
- [32] J. Mittal , Sand Shukla , soil testing for Engineers, Delhi (India): Romesh ChanderKhannaPublishers, 2000.
- [33] k. R. Arora, soil mechanics and foundation engineering, Delhi: standard publisher's distributors, 2003.
- [34] M. Budhu, Soil Mechanics and Foundations, 3rd Ed ed., New York John Wiley & Sons, 2011.
- [35] B. Das, Principles of Geotechnical Engineering, 7th ed ed., Stamford Cengage Learning, 2010.
- [36] J. Briaud, Geotechnical Engineering: Unsaturated and Saturated Soils, United States of America John Wiley & Sons, Inc, 2013.
- [37] Pavement Manual, July 4,2007.
- [38] B. Das, Advanced Soil Mechanics, 3rd ed ed., New York, USA Taylor & Francis eLibrary, 2008.
- [39] V. N. Murthy, Soil Mechanics and Foundation Engineering, 5th ed. ed., new york: UBS Publishers Distributors Ltd, 2001.
- [40] AASHTO T 180, Standard Method of Modified Compaction Test for Soil.
- [41] AASHTO T 193-3, Standard Method of Test for California Bearing Ratio (CBR) Value of Soils in Laboratory.
- [42] B. G. Look, Handbook of Geotechnical Investigation and Design Tables, Second Edition ed., Australia, 2014.

- [43] ASTM D4429-93, Standard Method of Test for CBR (California Bearing Ratio) Value of Soils in Place..
- [44] H. Park, "Univariate analysis and normality test using SAS, Stata, and SPSS.", Indiana University, 2008.
- [45] A. FIELD, DISCOVERING STATISTICS USING SPSS, THIRD EDITION ed., London:Sage, 2009.
- [46] K. R. Das and A. M. Rahmatullah Imon, "Brief Review of Tests for Normality," *American Journal of Theoretical and Applied Statistics*, January 27, 2016.
- [47] P. Samuels and E. Marshall, "Checking normality in SPSS," *statstutor community project*.
- [48] F. Graybill and H. Iyer, Regression analysis concepts and application., California: Wadsworth publishing company, 1962.
- [49] N. Draper and H. Smith, Applied Regression Analysis, United States of America: John Wiley & Sons.inc., 1998.
- [50] D. Montgomery and G. Runger, Applied Statistics and Probability for Engineers., United States of America: John Wiley & Sons, Inc., 2002.
- [51] A. Elliott and W. Woodward, Statistical analysis quick reference guidebook, 2007.
- [52] ASTM, Standard Practice for Calculating Sample Size to Estimate, with specified precision, the average for a characteristic lot or processin, West Conshocken, E122-09 2009.
- [53] S. Chatterjee and . S. H. Ali, Regression Analysis By Example, Fifth Edition ed., Canada, 2012.
- [54] T. Datta and B. Chottopadhyay, "CORRELATION BETWEEN CBR AND INDEX PROPERTIES OF SOIL," *Proceedings of Indian Geotechnical Conference*, pp. (Paper No. A-350), 15-17 December 2011.

APPENDIXES

Appendix A

Normality Test Result of Skewness and Kutrosis Coefficient

Case Processing Summary										
Variables		Cases								
	Valid		Mi	ssing	Тс	otal				
	Ν	Percent	Ν	Percent	Ν	Percent				
CBR	30	100.0%	0	0.0%	30	100.0%				
PP200	30	100.0%	0	0.0%	30	100.0%				
LL	30	100.0%	0	0.0%	30	100.0%				
PL	30	100.0%	0	0.0%	30	100.0%				
PI	30	100.0%	0	0.0%	30	100.0%				
OMC	30	100.0%	0	0.0%	30	100.0%				
MDD	30	100.0%	0	0.0%	30	100.0%				

	Statistics												
		CBR	PP200	LL	PL	PI	OMC	MDD					
N	Valid	30	30	30	30	30	30	30					
IN	Missing	0	0	0	0	0	0	0					
Mean		7.343	82.617	63.093	35.583	27.477	31.123	1.4670					
Std. Error o	f Mean	.3837	.7248	1.7242	.9546	.8908	.5168	.00818					
Median		7.100	82.250	65.750	35.500	28.450	31.500	1.4650					
Mode		6.8	78.4 ^a	60.8	29.8 ^a	19.7 ^a	27.6 ^a	1.46					
Std. Deviati	ion	2.1015	3.9699	9.4439	5.2284	4.8790	2.8306	.04481					
Variance		4.416	15.760	89.187	27.337	23.805	8.012	.002					
Skewness		.650	.059	501	.138	668	162	436					
Std. Error o Skewness	f	.427	.427	.427	.427	.427	.427	.427					
Kurtosis		.562	550	-1.054	-1.311	383	-1.120	369					
Std. Error o	f Kurtosis	.833	.833	.833	.833	.833	.833	.833					
Range		9.4	15.9	30.0	16.7	17.8	9.4	.17					
Minimum		3.4	74.8	46.0	27.9	17.8	26.2	1.37					
Maximum		12.8	90.7	76.0	44.6	35.6	35.6	1.54					
	25	6.150	80.000	55.700	30.125	25.525	28.575	1.4375					
Percentiles	50	7.100	82.250	65.750	35.500	28.450	31.500	1.4650					
Skewness Std. Error o Skewness Kurtosis Std. Error o Range Minimum Maximum Percentiles	75	8.250	85.875	70.900	40.600	30.900	33.525	1.5025					

a. Multiple modes exist. The smallest value is shown

Appendix B

Single Regression Analysis Result between CBR and PP200

Variables Entered/Removed ^a								
Model	Variables Entered	Variables Removed	Method					
1	PP200 ^b		Enter					

a. Dependent Variable: CBR

b. All requested variables entered.

Model Summary ^b								
Model	R	R Square	Adjusted R	Std. Error of the	Durbin-Watson			
			Square	Estimate				
1	.701 ^a	.492	.474	1.5243	1.406			
		_		_				

a. Predictors: (Constant), PP200

b. Dependent Variable: CBR

	ANOVA ^a									
Model		Sum of Squares	df	Mean Square	F	Sig.				
	Regression	63.018	1	63.018	27.123	.000 ^b				
1	Residual	65.055	28	2.323						
	Total	128.074	29							

a. Dependent Variable: CBR

b. Predictors: (Constant), PP200

	Coefficients ^a												
	Model	Unstandardize		Standardize	t	Sig.	95.0%		Collinearity				
	d Coefficients		ficients	d			Confi	dence	Statisti	ics			
				Coefficients			Interva	al for B					
		В	Std.	Beta			Lower	Upper	Toleranc	VIF			
			Error				Bound	Bound	e				
	(Constant	28 021	5 807		6.44	.00	25.94	50.10					
)	36.021	5.097		7	0	1	1					
1	PP200	371	.071	701	- 5.20 8	.00 0	517	225	1.000	$\begin{array}{c} 1.00\\ 0 \end{array}$			

Residuals Statistics ^a								
	Minimum	Maximum	Mean	Std. Deviation	N			
Predicted Value	4.342	10.246	7.343	1.4741	30			
Residual	-2.4837	2.5541	.0000	1.4978	30			
Std. Predicted Value	-2.036	1.969	.000	1.000	30			
Std. Residual	-1.629	1.676	.000	.983	30			

Appendix C

Single Regression Analysis Result between CBR and LL

Variables Entered/Removed ^a								
Model	Variables Entered	Variables Removed	Method					
1	LL ^b		Enter					

a. Dependent Variable: CBR

b. All requested variables entered.

Model Summary ^b								
Model	R	R Square	Adjusted R	Std. Error of the	Durbin-Watson			
			Square	Estimate				
1	.846 ^a	.716	.706	1.1394	1.007			

a. Predictors: (Constant), LL

b. Dependent Variable: CBR

	ANOVA ^a									
Model		Sum of Squares	df	Mean Square	F	Sig.				
	Regression	91.721	1	91.721	70.646	.000 ^b				
1	Residual	36.353	28	1.298						
	Total	128.074	29							

a. Dependent Variable: CBR

b. Predictors: (Constant), LL

	Coefficients ^a											
Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.	95.0% Confidence		Collinearity Statistics			
							Interva	al for B				
		В	Std.	Beta			Lower	Upper	Tolerance	VIF		
			Error				Bound	Bound				
1	(Constant)	19.225	1.429		13.455	.000	16.298	22.152				
1	LL	188	.022	846	-8.405	.000	234	142	1.000	1.000		

Residuals Statistics ^a								
	Minimum	inimum Maximum Mean St		Std. Deviation	on N			
Predicted Value	4.913	10.562	7.343	1.7784	30			
Residual	-1.5966	2.3884	.0000	1.1196	30			
Std. Predicted Value	-1.367	1.810	.000	1.000	30			
Std. Residual	-1.401	2.096	.000	.983	30			

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 93

Appendix D

Single Regression Analysis Result between CBR and PL

Variables Entered/Removed ^a							
Model	Variables Entered	Variables Removed	Method				
1	PL^b		Enter				

a. Dependent Variable: CBR

b. All requested variables entered.

Model Summary ^b									
Model R		R Square	Adjusted R	Std. Error of the	Durbin-Watson				
			Square	Estimate					
1	.758 ^a	.575	.560	1.3948	.709				

a. Predictors: (Constant), PL

b. Dependent Variable: CBR

ANOVA ^a									
	Model	Sum of Squares	df	Mean Square	F	Sig.			
	Regression	73.604	1	73.604	37.836	.000 ^b			
1	Residual	54.470	28	1.945					
	Total	128.074	29						

a. Dependent Variable: CBR

b. Predictors: (Constant), PL

Coefficients ^a										
Model Unstandardized		Standardized	t	Sig.	95.0%		Collinearity			
Coefficients		Coefficients			Confidence		Statistics			
					Interval for B					
		В	Std.	Beta			Lower	Upper	Tolerance	VIF
			Error				Bound	Bound		
1	(Constant)	18.186	1.781		10.211	.000	14.538	21.834		
1	PL	305	.050	758	-6.151	.000	406	203	1.000	1.000
Residuals Statistics ^a										
---------------------------------------	---------	--------	-------	--------	----	--	--			
Minimum Maximum Mean Std. Deviation N										
Predicted Value	4.596	9.684	7.343	1.5931	30					
Residual	-2.4757	3.1155	.0000	1.3705	30					
Std. Predicted Value	-1.725	1.470	.000	1.000	30					
Std. Residual	-1.775	2.234	.000	.983	30					

Appendix E

Single Regression Analysis Result between CBR and PI

Variables Entered/Removed ^a								
Model	Model Variables Entered Variables Removed Method							
1 PI ^b . Enter								

a. Dependent Variable: CBR

b. All requested variables entered.

	Model Summary ^b					
Model R R Square Adjusted R Std. Error of Durbin-						
			Square	the Estimate	Watson	
1	1 .821 ^a .674 .663 1.2206 1.627					

a. Predictors: (Constant), PI

b. Dependent Variable: CBR

	ANOVA ^a								
	Model Sum of Squares df Mean Square F Sig.								
	Regression	86.355	1	86.355	57.959	.000 ^b			
1	Residual	41.718	28	1.490					
	Total	128.074	29						

a. Dependent Variable: CBR

b. Predictors: (Constant), PI

	Coefficients ^a									
	Model	Unstand	lardized	Standardized	t	Sig.	95.	0%	Collinea	rity
Coefficients		Coefficients			Confi	dence	Statisti	cs		
						Interva	al for B			
		В	Std.	Beta			Lower	Upper	Tolerance	VIF
Error		Error				Bound	Bound			
1	(Constant)	17.061	1.296		13.167	.000	14.407	19.716		
1	PI	354	.046	821	-7.613	.000	449	259	1.000	1.000

Residuals Statistics ^a							
Minimum Maximum Mean Std. Deviation N							
Predicted Value	4.470	10.766	7.343	1.7256	30		
Residual	-2.8534	2.4232	.0000	1.1994	30		
Std. Predicted Value	-1.665	1.983	.000	1.000	30		
Std. Residual	-2.338	1.985	.000	.983	30		

Appendix F

Single Regression Analysis Result between CBR and OMC

Variables Entered/Removed ^a								
Model	Model Variables Entered Variables Removed Method							
1 OMC ^b . Enter								

a. Dependent Variable: CBR

b. All requested variables entered.

Model Summary ^b						
Model	R	R Square	Adjusted R	Std. Error of the	Durbin-Watson	
			Square	Estimate		
1 .902 ^a .814 .807 .9228 1.819						

a. Predictors: (Constant), OMC

b. Dependent Variable: CBR

	ANOVA ^a								
Model	Model Sum of Squares df Mean Square F Sig.								
	Regression	104.228	1	104.228	122.384	.000 ^b			
1	Residual	23.846	28	.852					
	Total	128.074	29						

a. Dependent Variable: CBR

b. Predictors: (Constant), OMC

	Coefficients ^a									
Model		Unstandardized		Standardized	t	Sig.	95.0%		Collinearity	
		Coefficients		Coefficients			Confidence		Statistics	
							Interva	ıl for B		
		В	Std.	Beta			Lower	Upper	Tolerance	VIF
			Error				Bound	Bound		
	(Constant)	28.188	1.892		14.901	.000	24.313	32.064		0
1	OMC	670	.061	902	- 11.063	.000	794	546	1.000	1.000

Residuals Statistics ^a							
Minimum Maximum Mean Std. Deviation N							
Predicted Value	4.345	10.641	7.343	1.8958	30		
Residual	-1.3031	2.1592	.0000	.9068	30		
Std. Predicted Value	-1.582	1.739	.000	1.000	30		
Std. Residual	-1.412	2.340	.000	.983	30		

Appendix G

Single Regression Analysis Result between CBR and MDD

Variables Entered/Removed ^a								
Model	Model Variables Entered Variables Removed Method							
1 MDD ^b . Enter								

a. Dependent Variable: CBR

b. All requested variables entered.

	Model Summary ^b										
Model	R	R Square	Adjusted R	Std. Error of the	Durbin-Watson						
			Square	Estimate							
1	.894 ^a	.799	.792	.9591	1.666						

a. Predictors: (Constant), MDD

b. Dependent Variable: CBR

	ANOVA ^a										
Model		Sum of Squares	df	Mean Square	F	Sig.					
	Regression	102.318	1	102.318	111.235	.000 ^b					
1	Residual	25.755	28	.920							
	Total	128.074	29								

a. Dependent Variable: CBR

b. Predictors: (Constant), MDD

	Coefficients ^a									
N	Model Unstandardize		dardize	Standardize	t	Sig.	95.0%		Collinearity	
	d Coefficients		d			Confi	dence	Statist	ics	
				Coefficients			Interva	l for B		
		В	Std.	Beta			Lower	Upper	Toleranc	VIF
			Error				Boun	Boun	e	
							d	d		
	Constant	-				00	-	-		
		54.15	5.833		-9.283	.00	66.10	42.20		
1)	1				0	0	2		
	MDD	41.91	3 074	804	10.54	.00	33.77	50.06	1 000	1.00
		8	3.974	.094	7	0	7	0	1.000	0

Residuals Statistics ^a									
Minimum Maximum Mean Std. Deviation N									
Predicted Value	3.277	10.403	7.343	1.8784	30				
Residual	-1.4883	2.3966	.0000	.9424	30				
Std. Predicted Value	-2.165	1.629	.000	1.000	30				
Std. Residual	-1.552	2.499	.000	.983	30				

Appendix H

Multiple Regression Analysis Result for the best fit Model between CBR and LL, OMC and MDD (the bolded one)

	Variables Entered/Removed ^a										
Model	Variables Entered	Variables Removed	Method								
1	LL ^b		Enter								
2	OMC^{b}		Enter								
3	$\mathrm{MDD}^{\mathrm{b}}$		Enter								
4	PP200 ^b		Enter								

a. Dependent Variable: CBR

b. All requested variables entered.

	Model Summary ^e										
Model	R	R Square	Adjusted R Square	Std. Error of the	Durbin-Watson						
		-		Estimate							
1	.846 ^a	.716	.706	1.1394							
2	.927 ^b	.859	.849	.8177							
3	.948 °	.899	.887	.7068							
4	.929 ^d	.863	.856	.7947	2.052						

a. Predictors: (Constant), LL

b. Predictors: (Constant), LL, OMC

c. Predictors: (Constant), LL, OMC, MDD

d. Predictors: (Constant), LL, OMC, MDD, PP200

e. Dependent Variable: CBR

			ANOVA ^a			
	Model	Sum of Squares	df	Mean Square	F	Sig.
	Regression	91.721	1	91.721	70.646	.000 ^b
1	Residual	36.353	28	1.298		
	Total	128.074	29			
	Regression	110.019	2	55.010	74.431	.000°
2	Residual	19.955	27	.0.739		
	Total	128.074	29			
	Regression	115.087	3	38.362	76.799	.000 ^d
3	Residual	12.987	26	.500		
	Total	128.074	29			
	Regression	115.097	4	28.774	55.442	.000e
4	Residual	ual 12.977		.519		
	Total	128.074	29			

a. Dependent Variable: CBR

b. Predictors: (Constant), LL

c. Predictors: (Constant), LL, OMC

d. Predictors: (Constant), LL, OMC, MDD

e. Predictors: (Constant), LL, OMC, MDD, PP200

Ì				Coe	ficients	ı				
	Model	Unstand	lardized	Standardized	t	Sig.	95.0% Co	onfidence	Collinea	arity
		Coeff	icients	Coefficients		-	Interva	l for B	Statistics	
		В	Std.	Beta			Lower	Upper	Tolerance	VIF
			Error				Bound	Bound		
1	(Constant)	19.225	1.429		13.455	.000	16.298	22.152		
1	LL	188	.022	846	-8.405	.000	234	142	1.000	1.000
	(Constant)	26.669	1.754		15.205	.000	23.070	30.268		
2	LL	078	.027	351	-2.943	.007	132	024	.368	2.719
	OMC	463	.088	623	-5.231	.000	644	281	.368	2.719
	(Constant)	-12.124	12.274		988	.332	-37.354	13.105		
2	LL	077	.023	348	-3.380	.002	125	030	.368	2.719
3	OMC	178	.118	239	-1.509	.032	420	.064	.155	6.447
	MDD	20.370	6.396	.434	3.185	.004	7.224	33.516	.210	4.768
	(Constant)	-7.196	12.580		572	.572	-33.104	18.713		
	LL	077	.023	346	-3.416	.002	123	031	.368	2.720
4	OMC	130	.121	176	-1.081	.290	379	.118	.143	7.008
	MDD	19.508	6.317	.416	3.088	.005	6.498	32.518	.208	4.815
	PP200	063	.045	118	-1.383	.179	156	.031	.517	1.935
a. D	Dependent Va	riable: Cl	BR							

Residuals Statistics ^a									
Minimum Maximum Mean Std. Deviation N									
Predicted Value	3.525	11.152	7.343	2.0001	30				
Residual	-1.1009	1.6479	.0000	.6450	30				
Std. Predicted Value	-1.909	1.904	.000	1.000	30				
Std. Residual	-1.585	2.372	.000	.928	30				

Test	Natural Moisture Content (ASTM D 2216-98a)									
Site	New Generation KC	School				Test Pit	TP7 @ 1,	2 and 3m		
	Determination of Natural Moisture Content									
Unit										
Depth from	m NGL	m]	l		2 3				
Specimen	Trial		1	2	1	2	1	2		
Can Code			HC12	O2-3	22	C2	3	P2		
Weight of	Can	gram	18.14	17.64	18.01	17.56	17.16	17.47		
Weight of	Can + Wet Soil	gram	89.27	81.36	70.23	77.66	76.23	79.77		
Weight of Can + Dry Soil		gram	68.2	62.32	54.78	59.92	59.2	61.92		
Moisture Content %			42.09	42.61	42.02	41.88	40.51	40.16		
Average Moisture Content %			42.4 41			1.9 40.3				

Appendix I: Typical Laboratory analysis test result of Natural Moisture Content

Appendix J: Typical Laboratory analysis test result of Specific Gravity

Test	Specific Gravity (ASTM D 854-98)										
Site	New Generation KG School	Те	est Pit	7@	1, 2 an	d 3m					
	Determination	on of S	Specifi	c Grav	ity (G	S) of S	oil				
Initial T	emperature when MPW was taken, 22°C		Final T	empera	ature wł	nen MP	SW was	taken, Tx		23°C	
		Unit									
Depth f	rom NGL	m		1			2			3	
Trial no			1	2	3	1	2	3	1	2	3
Pycnom	neter Code		1	2	3	4	5	6	7	8	9
Mass of	f Pycnometer(MP)	gram	31.94	30.18	31.36	30.85	28.79	29.96	31.53	30.91	31.74
Mass of	f Pycnometer + Water (MPW) at Ti	gram	126.8	122.9	126.2	126.4	125	123.31	126.6	128.2	126.4
Mass of	f dry soil + Pycnometer (MPS)	gram	41.85	40.89	41.1	41.17	39.21	39.808	41.29	40.9	41.71
Mass of	f dry soil	gram	9.911	10.71	9.738	10.31	10.42	9.848	9.766	9.992	9.967
Mass of	f Pycnometer +Soil + Water (MPSW)	gram	133	129.6	132.3	132.9	131.5	129.485	132.7	134.5	132.7
Temp	. of Contents of Pycnometer when MPSW	°C	23	23	23	23	23	23	23	23	23
was taken,Tx											
Correction factor (K) for Tx			0.999	0.999	0.999	0.999	0.999	0.9993	0.999	0.999	0.999
Specific Gravity at Tx			2.70	2.71	2.68	2.68	2.67	2.68	2.66	2.67	2.67
Specific Gravity at 20 °C			2.70	2.71	2.68	2.68	2.67	2.68	2.66	2.66	2.66
Average	e Specific Gravity at 20 °C			2.70			2.68	6		2.66	

Appendix K

Grain Size Distribution (Wet Sieve) Laboratory Analysis and Test result of all Samples

						Particle Size Distribution Curve
Test	(Grain Size Distri	bution Analysis	s (Wet Sieve Ana	lysis)	
Site		Agricultural Of	fice	Test Pit	1 @ 1m	
		Determination o	of Wet Sieve A	nalysis of Soil		$\mathbb{R}^{50.0}$
D	ry Weight	of Soil Sample b	before washing	in gram (g)	500	b0 92.0
Sieve	Sieve	MassRetained	Percentage	Cum.Percentage	Percentage	lin line line line line line line line l
No.	size (mm)	(%)	Retained (%)	Retained (%)	Passing (%)	88.0
3/8"	9.5	0	0	0	100.0	
#4	4.75	0	0	0	100.0	3 84.0
#10	2	3.8	0.76	0.76	99.2	≥ ² _{80.0}
#20	0.85	7.2	1.44	2.2	97.8	
#40	0.425	8.2	1.64	3.84	96.2	76.0
#50	0.3	13.9	2.78	6.62	93.4	100 10 1 0.1 0.01 0.001 Particle Size (mm)
#100	0.15	12.7	2.54	9.16	90.8	Gravel Sand Silt - Clay
#200	0.075	16.5	3.3	12.46	87.5	4.75mm 0.075mm
						•
	T					Particle Size Distribution Curve
Test	(Grain Size Distri	bution Analysis	Wet Sieve Ana	alvsis)	
Site	1	Agricultural Of	ffice	Test Pit	1 @ 2m	98
	4	Determination c	of Wet Sieve A	nalysis of Soil		94
D	ry Weight	of Soil Sample t	before washing	in gram (g)	500	ا المراجع (
Sieve	Sieve	Mass Retained	Percentage	Cum.Percentage	Percentage	
No.	size (mm)	(%)	Retained (%)	Retained (%)	Passing (%)	
3/8"	9.5	0	0	0	100	
#4	4.75	0	0	0	100	2 78 1
#10	2	1.4	0.28	0.28	99.7	
#20	0.85	9.9	1.98	2.26	97.7	
#40	0.425	12.8	2.56	4.82	95.2	100 10 1 0.1 0.01 0.001
#50	0.3	18.7	3.74	8.56	91.4	Particle Size (mm)
#100	0.15	22.6	4.52	13.08	86.9	Gravel Sand Silt-Clay
#200	0.075	13.5	2.7	15.78	84.2	4.75mm 0.075mm
						Dorticle Size Distribution Curve
Test		Grain Size Distri	bution Analysis	s (Wet Sieve Ana	alysis)	
Site	Site Agricultural Office Test Pit 1 @ 3m					98
		Determination c	of Wet Sieve A	1 • 94		
D	Dry Weight of Soil Sample before washing in gram (g) 500					
Sieve	Sieve	Mass Retained	Percentage	Cum.Percentage	Percentage	
No.	size (mm)	(%)	Retained (%)	Retained (%)	Passing (%)	si s
3/8"	9.5	0	0	0	100	
#4	4.75	0	0	0	100	
		4.1	0.02	0.00	00.10	

#10 2 4.1 0.82 0.82 99.18 74 #20 0.85 12.6 2.52 3.34 96.7 70 #40 0.425 16.3 3.26 6.6 93.4 100 10 0.1 0.01 0.001 1 #50 0.3 17.8 3.56 10.16 89.84 Particle Size (mm) Sand #100 0.15 20.7 4.14 14.3 85.7 Gravel Silt-Clay 4.75mm #200 0.075 15.5 3.1 17.4 82.6 0.075mm

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering *105*

Test	(Grain Size Distril	bution Analysis	(Wet Sieve Ana	alysis)		Parti	cle S	Size	Distrib	ition	Curv	e
Site	S	eka Town Bus S	Station	Test Pit	2@1m	98							
	Determination of Wet Sieve Analysis of Soil									X			
D	Dry Weight of Soil Sample before washing in gram (g)										\mathbf{b}		
Sieve	Sieve	Mass Retained	Percentage	Cum.Percentage	Percentage	50 86							
No.	size (mm)	(%)	Retained (%)	Retained (%)	Passing (%)	ii SS 82							
3/8''	9.5	0	0	0	100	t Ba							
#4	4.75	0	0	0	100	u ə ₇₄							
#10	2	5.8	1.16	1.16	98.84	Der 70							
#20	0.85	6.2	1.24	2.4	97.6								
#40	0.425	9.6	1.92	4.32	95.68	1	00	10		1	0.1	0.01	0.001
#50	0.3	12.7	2.54	6.86	93.1]			Par	ricle Size	(mn	a)	
#100	0.15	11.2	2.24	9.1	90.9		Gra	vel		Sand		Silt-C	lay
#200	0.075	8.7	1.74	10.84	89.2		4.75	mm		0.	075n	ım	

Test		Grain Size Distri	ibution Analysi	s (Wet Sieve Ana	lysis)								
Site	S	eka Town Bus S	Station	Test Pit	2 @ 2m								
		Determination of	f Wet Sieve A	nalysis of Soil									
D	Dry Weight of Soil Sample before washing in gram (g) 500												
Sieve	Sieve Sieve Mass Retained Percentage Cum.Percentage Percentage												
No.	size (mm)	Retained (%)	Passing (%)										
3/8''	9.5	0	100										
#4	4.75	0	0	0	100								
#10	2	5.9	1.18	1.18	98.8								
#20	0.85	7.7	1.54	2.72	97.3								
#40	0.425	14.6	2.92	5.64	94.4								
#50	0.3	8.4	91.6										
#100	0.15	17.5	3.5	11.9	88.1								
#200	0.075	11.7	2.34	14.24	85.8								

Test		Grain Size Distri	bution Analysis	s (Wet Sieve Ana	lysis)	Particle Size Distribution Curve
Site	S	eka Town Bus S	tation	Test Pit	2 @ 3m	98
		Determination o	f Wet Sieve A	94		
D	ry Weight	of Soil Sample b	efore washing			
Sieve	Sieve	Mass Retained	Percentage	Cum.Percentage	Percentage	so 86
No.	size (mm)	(%)	Retained (%)	Retained (%)	Passing (%)	· · · · · · · · · · · · · · · · · · ·
3/8"	9.5	0	0	0	100	
#4	4.75	1.5	0.3	0.3	99.7	
#10	2	6.7	1.34	1.64	98.4	
#20	0.85	19.4	3.88	5.52	94.5	
#40	0.425	25.6	5.12	10.64	89.4	
#50	0.3	21.3	4.26	14.9	85.1	Particle Size (mm)
#100	0.15	26.1	5.22	20.12	79.9	Gravel Sand Silt-Clay
#200	0.075	16.7	3.34	23.46	76.5	4.75mm 0.075mm

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 106

Test		Grain Size Distri	bution Analysis	s (Wet Sieve Ana	lveic)		Particle	Size	Distrik	oution	n Curve	
Site		Police Office	e	Test Pit	3 @ 1m	98		P A				
		Determination of	f Wet Sieve A	nalysis of Soil	0 0 111	94			N			
D	ry Weight	of Soil Sample b	500	% 90			N					
Sieve	Sieve	Mass Retained	Percentage	Cum.Percentage	Percentage	b u 86			1			
No.	size (mm)	(%)	Retained (%)	Retained (%)	Passing (%)	assi 85				۷.		
3/8''	9.5	0	0	0	100	H 78				N		
#4	4.75	1.7	0.34	0.34	99.66	LCer				Ţ		
#10	2	4.8	0.96	1.3	98.7	Pe P						
#20	0.85	12.7	2.54	3.84	96.2	70						
#40	0.425	17.7	3.54	7.38	92.6	66	10 10		1	0.1	0.01	0.001
#50	0.3	21.6	4.32	11.7	88.3	10	10 10	Р	article	Size	(mm)	0.001
#100	0.15	29.8	5.96	17.66	82		Gravel	1	Sand		Silt-C	lay
#200	0.075	19.9	3.98	21.64	78.4		4.75mm	1	0.	075m	m	

Test		Grain Size Distri	bution Analysis	s (Wet Sieve Ana	alysis)								
Site		Police Office	e	Test Pit	3 @ 2m								
	-	Determination o	f Wet Sieve A	nalysis of Soil									
D	ry Weight	of Soil Sample b	efore washing	in gram (g)	500								
Sieve	Sieve Sieve Mass Retained Percentage Cum.Percentage Percentage												
No.	size (mm)	(%)	Retained (%)	Passing (%)									
3/8''	9.5	0	0	0	100								
#4	4.75	3.1	0.62	0.62	99.38]							
#10	2	9.9	1.98	2.6	97.4]							
#20	0.85	13.7	2.74	5.34	94.7	1							
#40	0.425	17.9	3.58	8.92	91.1								
#50	0.3	21.8	4.36	13.28	86.7]							
#100	0.15	28.7	5.74	19.02	81.0								
#200	0.075	22.8	23.58	76.4	L								

Г

Test		Grain Size Distri	bution Analysi	s (Wet Sieve Ana	lysis)	Pa	rticle Siz	ze Distributio	n Curve	
Site		Police Office	9	Test Pit	3 @ 3m	98				
		Determination o	f Wet Sieve A	nalysis of Soil		94				
D	Dry Weight of Soil Sample before washing in gram (g) 500							1 1		
Sieve	Sieve	Mass Retained	Percentage	Cum.Percentage	Percentage	<u>ම</u> 86		<u> </u>		
No.	size (mm)	(%)	Retained (%)	Retained (%)	Passing (%)	iis 82				
3/8"	9.5	0	0	0	100	3 4 1 78				
#4	4.75	3.9	0.78	0.78	99.22	e za		N N		
#10	2	9.7	1.94	2.72	97.3	Per				
#20	0.85	13.9	2.78	5.5	94.5	70				
#40	0.425	17.8	3.56	9.06	90.9	66	10	1 01	0.01	0.001
#50	0.3	19.9	3.98	13.04	87.0	100	10	Particle Size (r	nm)	0.001
#100	0.15	31.2	6.24	19.28	80.7	G	ravel	Sand	Silt-Clay	7
#200	0.075	29.4	5.88	25.16	74.8	4.	75mm	0.075r	nm	

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 107

						1	Particle	Size Distributio	on Curve
Test		Grain Size Distri	bution Analysis	s (Wet Sieve Ana	lysis)	100		9-0	
Site		Administration (Office	Test Pit	4 @ 1m			N	
		Determination of	f Wet Sieve A	nalysis of Soil		96			
D	ry Weight	of Soil Sample b	efore washing	in gram (g)	500	€ 92		l k	
Sieve	Sieve	Mass Retained	Percentage	Cum.Percentage	Percentage	ng (N	
No.	size (mm)	(%)	Retained (%)	Retained (%)	Passing (%)	ISSI 88		\	
3/8"	9.5	0	0	0	100	t P2			
#4	4.75	0	0	0	100	u 84		<mark> </mark> <mark> </mark>	
#10	2	2.7	0.54	0.54	99.46	Per 80			
#20	0.85	6.9	1.38	1.92	98.08				
#40	0.425	15.4	3.08	5	95.0	76			
#50	0.3	13.8	2.76	7.76	92.2	10	00 10	Particle Size (1	0.01 0.001 mm)
#100	0.15	21.3	4.26	12.02	87.98		Gravel	Sand	Silt-Clay
#200	0.075	25.7	5.14	17.16	82.8		4.75mm	0.075r	nm

Test		Grain Size Distri	bution Analysi	s (Wet Sieve Ana	ılysis)							
Site		Administration (Office	Test Pit	4 @ 2m							
		Determination of	f Wet Sieve A	nalysis of Soil								
Dry Weight of Soil Sample before washing in gram (g) 500												
Sieve	Sieve	Mass Retained	Percentage	Cum.Percentage	Percentage							
No.	size (mm)	(%)	Retained (%)	Retained (%)	Passing (%)							
3/8"	9.5	100										
#4	4.75	0	0	0	100							
#10	2	2.9	0.58	0.58	99.4							
#20	0.85	8.8	1.76	2.34	97.7							
#40	0.425	13.9	2.78	5.12	94.9							
#50	0.3	17.8	3.56	8.68	91.3							
#100	0.15	28.5	5.7	14.38	85.62							
#200	0.075	22.4	4.48	18.86	81.1							

Г

Test		Grain Size Distri	ibution Analysi	s (Wet Sieve Ana	lysis)	Pa	rticle \$	Size Distributi	on Curve
Site	1	Administration O	Office	Test Pit	4 @ 3m	98			
		Determination o	f Wet Sieve A		94		N		
D	Dry Weight of Soil Sample before washing in gram (g) 500							N N	
Sieve	Sieve	Mass Retained	Percentage	Cum.Percentage	Percentage	<u>ئ</u> 10 86		N 10	
No.	size (mm)	(%)	Retained (%)	Retained (%)	Passing (%)	asin 85		 	
3/8"	9.5	0	0	0	100	Ba		III IIII X	
#4	4.75	0	0	0	100	sent se			
#10	2	3.7	0.74	0.74	99.3	June 24			
#20	0.85	10.3	2.06	2.8	97.2	70			
#40	0.425	21.7	4.34	7.14	92.9	66			
#50	0.3	23.6	4.72	11.86	88.14	100	10	Particle Size	(mm) 0.01 0.001
#100	0.15	25.8	5.16	17.02	83.0	G	ravel	Sand	Silt-Clay
#200	0.075	22.7	4.54	21.56	78.4	4.	75mm	0.075n	hm

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering *108*

	Grain Size Distribution Analysis						Pa	rtic	la Si	zo Distr	ibutio		
Test		(Wet Sieve Analysis)						ii uc	ic BL	a Disti	iouio		
	Seka Town Municipality								11111				
Site	Office Test Pit				5@1m								
	Determination of Wet Sieve Analysis of Soil										2		
Dry W	Dry Weight of soil Sample before washing in gram 500												
	Sieve Mass Percentage Cum. Perc				Percentage	i 86					Ň		
Sieve	size	Retained	Retained	Percentage	Passing	Se 82					N		
No.	(mm)	(%)	(%)	Retained (%)	(%)	tu 7.0							
3/8"	9.5	0	0	0	100	l v							
#4	4.75	0.8	0.16	0.16	99.84	P P							
#10	2	2.5	0.5	0.66	99.34	70							
#20	0.85	6.6	1.32	1.98	98.0	66							
#40	0.425	15.8	3.16	5.14	94.9] 1	100		10	1	0.1	0.01	0.001
#50	0.3	13.6	2.72	7.86	92.1					Partic	e Size	e (mm)	
#100	0.15	21.8	4.36	12.22	87.8		(Grav	el	Sand	I	Silt-Cla	y
#200	0.075 24.7 4.94 17.16 82.8						4.	.75m	m		0.075	mm	

	Grain Size Distribution Analysis												
Test			(Wet Sieve	Analysis)									
	Seka	Town M	unicipality										
Site		Office	•	Test Pit	5 @ 2m								
Determination of Wet Sieve Analysis of Soil													
Dry Weight of soil Sample before washing in gram 500													
Sieve Mass of Percentage													
Sieve	size	Percentage											
No.	(mm)	soil(g)	(%)	retained	Passing (%)								
3/8"	9.5	0	0	0	100								
#4	4.75	1.3	0.26	0.26	99.74								
#10	2	3.6	0.72	0.98	99.0								
#20	0.85	9.8	1.96	2.94	97.1								
#40	0.425	15.7	3.14	6.08	93.9								
#50	0.3	16.8	9.44	90.6									
#100	0.15	25.5	14.54	85.5									
#200	0.075	21.4	4.28	18.82	81.2								

Tast		Grai	in Size Distrib	oution Analysis			Particle S	ize Distributio	n Curve
Test			(wet sieve	Analysis)	r				
	Seka	Town M	unicipality			98			
Site		Office	•	Test Pit	5 @ 3m	0.4			
	Dete	ermination	of Wet Sieve	Analysis of So	oil	94			
Dry W	Weight of soil Sample before washing in gram 500					○ ⁹⁰			
	Sieve	Mass of	Percentage			°) 86 86			
Sieve	size	retained	retained	Cumulative	Percentage	II 82			
No.	(mm)	soil(g)	(%)	% retained	Passing (%)	t P ₂			
3/8"	9.5	0	0	0	100	cen ^			
#4	4.75	2.5	0.5	0.5	99.5	Per 74			
#10	2	6.6	1.32	1.82	98.2	70			
#20	0.85	12.8	2.56	4.38	95.6	66			
#40	0.425	14.7	2.94	7.32	92.7	1	100 10	1 0.1	0.01 0.001
#50	0.3	16.4	3.28	10.6	89.4]		Particle Size (1	mm)
#100	0.15	23.7	4.74	15.34	84.7]	Gravel	Sand	Silt-Clay
#200	0.075	19.6	3.92	19.26	80.7		4.75mm	0.07	/5mm

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 109

		Grai				Dox	tial		70 T	Nate	ibuti	on (7			
Test			(Wet Sieve	Analysis)				га	ucu	: 51	le l	715 U	ibuu	on v	Jurve	
Site	S	eka High S	School	Test Pit	6 @ 1m		98									
	Dete	ermination	of Wet Sieve	e Analysis of So	bil											
Dry W	Veight of	soil Samp	le before wa	shing in gram	500		94					N				
	Sieve	Mass of	Percentage			0%) gi	90						R			
Sieve	size	retained	retained	Cumulative	Percentage	ssir	86				_					
No.	(mm)	soil(g)	(%)	% retained	Passing (%)	Pa	82									
3/8"	9.5	0	0	0	100	cent										
#4	4.75	1.3	0.26	0.26	99.74	Perc	78									
#10	2	2.6	0.52	0.78	99.22		74									
#20	0.85	7.9	1.58	2.36	97.6		70									
#40	0.425	11.5	2.3	4.66	95.3		10	0	1	0	1	L	0.1	_	0.01	0.001
#50	0.3	14.8	2.96	7.62	92.4						Pa	aricl	e Size	e (mn	n)	
#100	0.15	18.9	3.78	11.4	88.6]		G	rave	1	1	San	d	5	Silt-Cl	ay
#200	0.075	10.8	2.16	13.56	86.4			4.7	75mi	n			0.0	75mr	n	-

		Grai	n Size Distril	oution Analysis		Dartiala Siza Distribution Curro
Test			(Wet Sieve	Analysis)		Parucie Size Distribution Curve
Site	S	eka High	School	Test Pit	6 @ 2m	98
	Dete	ermination	of Wet Sieve	e Analysis of S	oil	
Dry W	Veight of	soil Samp	le before wa	shing in gram	500	
	Sieve	Mass of	Percentage			
Sieve	size	retained	retained	Cumulative	Percentage	
No.	(mm)	soil(g)	(%)	%retained	Passing (%)	
3/8"	9.5	0	0	0	100	u ⁶²
#4	4.75	1.7	0.34	0.34	99.66	
#10	2	3.2	0.64	0.98	99.0	A 74
#20	0.85	10.8	2.16	3.14	96.9	70
#40	0.425	12.9	2.58	5.72	94.3	100 10 1 0.1 0.01 0.001
#50	0.3	15.7	3.14	8.86	91.1	Particle Size (mm)
#100	0.15	17.9	3.58	12.44	87.56	Gravel Sand Silt-Clay
#200	0.075	13.8	2.76	15.2	84.8	4.75mm 0.075mm

		Grai	n Size Distrib	oution Analysis	•			Dortic	la Si	70 Distribution Curr	0
Test			(Wet Sieve	Analysis)				1 aruc			e
Site	Se	eka High	School	Test Pit	6 @ 3m		98				
	Dete	ermination	of Wet Sieve	e Analysis of So	bil		04				
Dry W	Veight of	soil Samp	le before wa	shing in gram	500		54				
	Sieve	Mass of	Percentage			g (%	90				
Sieve	size	retained	retained	Cumulative	Percentage	sin	86				
No.	(mm)	soil(g)	(%)	%retained	Passing (%)	Pas	82				
3/8"	9.5	0	0	0	100	ent					
#4	4.75	2.1	0.42	0.42	99.58	erc	78				
#10	2	3.9	0.78	1.2	98.8		74				
#20	0.85	13.8	2.76	3.96	96.0		70				
#40	0.425	16.7	3.34	7.3	92.7		1	00	10	1 0.1 0.01	0.001
#50	0.3	20.8	4.16	11.46	88.5					Particle Size (mm)	
#100	0.15	22.5	4.5	15.96	84.0			Gra	vel	Sand Silt-C	lav
#200	0.075	19.7	3.94	19.9	80.1			4.75	mm	0.075mm	

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 110

		Grai	in Size Distril	oution Analysis			-		
Test			(Wet Sieve	Analysis)			Pa	rticle 8	Size Distribution Curve
Site	New C	Generation	KG School	Test Pit	7 @ 1m	98			
	Dete	ermination	of Wet Sieve	e Analysis of So	oil	9/			
Dry V	Veight of	soil Samp	ble before wa	shing in gram	500	(0)			
	Sieve	Mass of	Percentage			<u>ම</u> 90			
Sieve	size	retained	retained	Cumulative %	Percentage	is 86			
no.	(mm)	soil(g)	(%)	retained	Passing (%)	Pas 85			
3/8"	9.5	0	0	0	100	ent			
#4	4.75	0.4	0.08	0.08	99.92	5 78			
#10	2	1.6	0.32	0.4	99.60	74			
#20	0.85	15.8	3.16	3.56	96.4	70			
#40	0.425	18.5	3.7	7.26	92.7		100	10	1 0.1 0.01 0.001
#50	0.3	19.9	3.98	11.24	88.8]			Particle Size (mm)
#100	0.15	24.7	4.94	16.18	84		G	ravel	Sand Silt-Clay
#200	0.075	10.7	2.14	18.32	81.7		4	.75mm	n 0.075mm

		Gra	in Size Distrib	oution Analysis			Darticl	o Sizo Distrib	ution Cunvo
Test			(Wet Sieve	Analysis)					ution curve
Site	New C	Generation	KG School	Test Pit	7 @ 2m	98			
	Dete	ermination	of Wet Sieve	e Analysis of S	oil	94			
Dry W	Veight of	Soil Sam	ple before wa	shing in gram	500	(%		N N N	
	Sieve	Mass of	Percentage			<u>ම</u> 90		<u> </u>	
Sieve	size	retained	retained	Cum.%	Percentage	assir 98			
No.	(mm)	soil(g)	(%)	retained	Passing (%)	or P			N. III
3/8"	9.5	0	0	0	100	LC el			
#4	4.75	1.8	0.36	0.36	99.64	a 78			
#10	2	5.9	1.18	1.54	98.5	74			
#20	0.85	12.7	2.54	4.08	95.9				
#40	0.425	13.8	2.76	6.84	93.2	/0	100 10) 1	0.1 0.01
#50	0.3	18.7	3.74	10.58	89.4		100 10	Particle S	Size (mm)
#100	0.15	21.5	4.3	14.88	85.1		Gravel	Sand	Silt-Cla
#200	0.075	18.8	3.76	18.64	81.4		4.75mm	0.	075mm

		Grai	n Size Distrib	oution Analysis			Der	tiolo	Siz		ibutio	n Cu		
Test			(Wet Sieve	Analysis)			rai				ibuuo		rve	
Site	New C	Beneration	KG School	Test Pit	7 @ 3m	98				٦				
	Dete	ermination	of Wet Sieve	e Analysis of So	oil	94				R				
Dry W	/eight of	Soil Sam	ole before wa	ishing in gram	500	<u> </u>								
	Sieve	Mass of	Percentge			86 an 86					2			
Sieve	size	retained	retained	Cum. %	Percentage	sin					\mathbf{X}			
No.	(mm)	soil (g)	(%)	retained	Passing (%)	$\operatorname{Pas}_{\wedge}$					N			
3/8''	9.5	0	0	0	100	ent 87								
#4	4.75	2.3	0.46	0.46	99.54	019 74								
#10	2	6.7	1.34	1.8	98.2	70								
#20	0.85	15.9	3.18	4.98	95.0									
#40	0.425	19.8	3.96	8.94	91.1	1	00	10		1	0.1	0.0	01	0.001
#50	0.3	21.8	4.36	13.3	86.7]				Particl	e Size	(mm)		-
#100	0.15	24.3	4.86	18.16	81.8]	G	rave	ı I	San	h	Silt	-Clay	v
#200	0.075	17.7	3.54	21.7	78.3		4	.75m	m	Jan	0.07	5mm		<u> </u>

0.001

Silt-Clay

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 111

		Grai			D	.	tiol		izo	Dia	trib	utio	n (0			
Test			(Wet Sieve	Analysis)	-		10	a 1 (DIS		uuo				_
Site		Seka Hos	pital	Test Pit	8 @ 1m	98	3											
	Dete	ermination	of Wet Sieve	e Analysis of So	bil	94	L 👖						N					
Dry	Weight	of Sample	before wash	ning in gram	500	90	,						Ň					
	Sieve	Mass of	Percentge			8								₹				
Sieve	size	retained	retained	Cum.%	Percentage	in se	`							b				
No.	(mm)	soil(g)	(%)	retained	Passing (%)	Sea 82	2											
3/8"	9.5	0	0	0	100	ti 78	3											_
#4	4.75	0	0	0	100	01 3	. III											
#10	2	2.1	0.42	0.42	99.58	A 70	, 🏢											
#20	0.85	6.5	1.3	1.72	98.3													
#40	0.425	12.2	2.44	4.16	95.8	66	100			10		1		0.1		0.01		0.001
#50	0.3	14.8	2.96	7.12	92.9			_			F	Parti	cle S	Size	(m)	m)		
#100	0.15	19.9	3.98	11.1	88.9			G	rav	el		San	d		Sil	t-Cla	y	
#200	0.075	21.7	4.34	15.44	84.6			4.7	75m	ım			0.0)75r	nm			

		Gra	in Size Distrik	oution Analysis			Particle S	Size Distributio	n Curve
Test			(Wet Sieve	Analysis)				Distributio	
Site		Seka Hos	spital	Test Pit	8 @ 2m	98			
	Dete	ermination	of Wet Sieve	e Analysis of S	oil	0.4			
Dry W	/eight of	soil Sam	ple before wa	shing in gram	500	94		<u> </u> <u> </u>	
	Sieve	Mass of	Percentage			90 کې مو		I N X	
Sieve	size	retained	retained	Cumulative	Percentage	ii 86		<u> </u>	
no.	(mm)	soil(g)	(%)	%retained	Passing (%)	Bd 82		IIIII N	
3/8''	9.5	0	0	0	100	ent			
#4	4.75	0	0	0	100	578			
#10	2	2.4	0.48	0.48	99.5	74			
#20	0.85	8.1	1.62	2.1	97.9	70			
#40	0.425	14.3	2.86	4.96	95.0	1	00 10	1 0.1	0.01 0.00
#50	0.3	18.2	3.64	8.6	91.4			Farticle Size	e (mm)
#100	0.15	25.1	5.02	13.62	86.4	_	Gravel	Sand	Silt-Clay
#200	0.075	22.4	4.48	18.1	81.9		4.75mm	0.07	5mm

		Grai	n Size Distrib	oution Analysis			Dout	ا ما م	line Distributio	n Curran
Test			(Wet Sieve	Analysis)			Part			n Curve
Site		Seka Hos	pital	Test Pit	8 @ 3m	98				
	Dete	ermination	of Wet Sieve	e Analysis of So	oil	94				
Dry	Weight	of Sample	before wash	ning in gram	500	8 90			<u> </u>	
Sieve	Sieve	Mass of	Percentage			86 .U				
Numb	size	retained	retained	Cumulative	Percentage	aas			<u> </u>	
er (N)	(mm)	soil(g)	(%)	%retained	Passing (%)	Ts P			N N	
3/8"	9.5	0	0	0	100	87 G				
#4	4.75	0	0	0	100	م 74				
#10	2	2.4	0.48	0.48	99.5	70				
#20	0.85	8.6	1.72	2.2	97.8	66				
#40	0.425	16.1	3.22	5.42	94.6		100	10	1	0.01 0.001
#50	0.3	22.6	4.52	9.94	90.1			1.	Particle Size (r	nm)
#100	0.15	26.8	5.36	15.3	84.7]	Grav	el	Sand	Silt-Clay
#200	0.075	24.9	4.98	20.28	79.7		4.75r	nm	0.075	imm

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 112

		Grai	in Size Distrik	oution Analysis		Partiala Siza Distribution Curro
Test			(Wet Sieve	Analysis)		ratuce Size Distribution Curve
Site	Seka Pı	reparatory	School	Test Pit	9@1m	
	Dete	ermination	of Wet Sieve	e Analysis of So	bil	
Dry V	Veight of	soil Sam	ble before wa	shing in gram	500	
	Sieve	Mass of	Percentage			
Sieve	size	retained	retained	Cum.%retain	Percentage	
No.	(mm)	soil(g)	(%)	ed	Passing (%)	
3/8"	9.5	0	0	0	100	
#4	4.75	0	0	0	100	
#10	2	4.3	0.86	0.86	99.14	
#20	0.85	5.2	1.04	1.9	98.1	
#40	0.425	8.1	1.62	3.52	96.48	
#50	0.3	11.3	2.26	5.78	94.2	Paricle Size (mm)
#100	0.15	10.2	2.04	7.82	92.2	Gravel Sand Silt-Clay
#200	0.075	7.6	1.52	9.34	90.7	4.75mm 0.075mm

		Gra	in Size Distrik	oution Analysis			Dor	tiolo	Sizo	Distr	ibutio	n (
Test			(Wet Sieve	Analysis)			1 ai	ucie	Size	DISU	IDUUO	п (Juive	
Site	Seka Pi	reparatory	School	Test Pit	9 @ 2m	98								
	Dete	ermination	of Wet Sieve	e Analysis of So	bil	04				N				
Dry V	Veight of	f soil Samp	ole before wa	shing in gram	500	94								
	Sieve	Mass of	Percentage			ð 90								
Sieve	size	retained	retained	Cum.%	Percentage	3ing 86								
No.	(mm)	soil(g)	(%)	retained	Passing (%)	Pas								
3/8"	9.5	0	0	0	100	ent]								
#4	4.75	0	0	0	100	5 78								
#10	2	3.6	0.72	0.72	99.28	A 74								
#20	0.85	8.7	1.74	2.46	97.5	70								
#40	0.425	15.6	3.12	5.58	94.4	70	L00	10		1	0.1		0.01	0.001
#50	0.3	14.7	2.94	8.52	91.5]			P	Particle	Size (mm)	
#100	0.15	17.6	3.52	12.04	87.96		G	ravel	1	San	d	S	ilt-Cla	ıy
#200	0.075	15.4	3.08	15.12	84.9		4.7	5mm			0.07	5mr	n	ž

		Grai	in Size Distrib	oution Analysis			Do	rtiolo	Size Distribution Curve
Test			(Wet Sieve	Analysis)			га	rucie	
Site	Seka Pi	reparatory	School	Test Pit	9 @ 3m	98			
	Dete	ermination	of Wet Sieve	e Analysis of So	bil	Q/			
Dry	Weight	of Sample	before wash	ing in gram	500				
	Sieve	Mass of	Percentage			90 <u>ک</u>			
Sieve	size	retained	retained	Cum.%retain	Percentage	86 Sin			
No.	(mm)	soil(g)	(%)	ed	Passing (%)	Pas 82			
3/8"	9.5	0	0	0	100	ent			
#4	4.75	0	0	0	100	0.78			
#10	2	6.8	1.36	1.36	98.64	- 74			
#20	0.85	15.8	3.16	4.52	95.5	70			
#40	0.425	18.9	3.78	8.3	91.7	/0	100	10	0 1 0.1 0.01 0.001
#50	0.3	16.7	3.34	11.64	88.4				Particle Size (mm)
#100	0.15	21.8	4.36	16	84.0		G	ravel	Sand Silt-Clay
#200	0.075	17.9	3.58	19.58	80.4		4.	75mm	0.075mm

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 113

		Grai	n Size Distrik	oution Analysis				Dout	iala (Size Distribution Course
Test			(Wet Sieve	Analysis)						
Site	Lidet	a Orthodo	ox Church	Test Pit	10 @ 1m		98			
	Dete	ermination	of Wet Sieve	e Analysis of So	bil		94			
Dry	Weight of Sample before washing in gram 500						00			
	Sieve		6)	90						
Sieve	size retained retained Cum.% reta				Percentage	ing	86			
No.	(mm) soil(g) (%) ed			ed	Passing (%)	ass	22			
3/8"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	nt I	02			
#4	4.75	0	0	0	100	rce	78			
#10	2	0.2	0.04	0.04	99.96	Pe	74			
#20	0.85	6.2	1.24	1.28	98.7		70			
#40	0.425 9.6 1.92 3.2		3.2	96.8		10	100	10	1 0.1 0.01 0.001	
#50	0.3 15.7 3.14 6.34			6.34	93.7					Particle Size (mm)
#100	0.15 16.6 3.32 9.66			9.66	90			Gra	vel	Sand Silt-Clay
#200	0.15 10.0 3.32 9.00 0.075 10.7 2.14 11.8				88.2			4.7	5mm	n 0.075mm

		Gra	in Size Distrik	oution Analysis			Par	ticle S	ize Di	stribu	tion	Curve
Test			(Wet Sieve	Analysis)		100	I al			suittu	uon	Curve
Site	Lide	ta Orthodo	ox Church	Test Pit	10 @ 2m	100						
	Dete	ermination	of Wet Sieve	e Analysis of S	oil	96						
Dry	Weight	of Sample	before wash	500	(0)				A			
	Sieve	Mass of	percentage	92								
Sieve	size	retained	retained	Cum.%	percentage	ssir						
No.	(mm)	soil (g)	(%)	retained	Passing (%)	t Pa					8	
3/8"	9.5	0	0	0	100	1 U 9 3 84						
#4	4.75	0	0	0	100	Per						
#10	2	2.1	0.42	0.42	99.58	80						
#20	0.85	6.3	1.26	1.68	98.3	76						
#40	0.425	10.3	2.06	3.74	3.74 96.3			10	1	0	.1	0.01
#50	0.3	12.7	2.54	6.28				Part	icle Siz	e (m	m)	
#100	0.15	14.4	2.88	9.16	90.8		Gra	avel	Sa	nd	5	Silt-Clay
#200	0.075	19.6	3.92	86.9		4.7	′5mm		0.0	075n	nm	

		Grai	n Size Distrib	oution Analysis			Destite Cher Distribution Comme
Test			(Wet Sieve	Analysis)		100	Particle Size Distribution Curve
Site	Lidet	a Orthodo	ox Church	Test Pit	10 @ 3m	100	
	Dete	ermination	of Wet Sieve	e Analysis of So	oil	96	5 NATION AND A REPORT OF A
Dry W	Veight of	soil Samp	le before wa	shing in gram	500	(0)	
	Sieve	Mass of	ercentage			<u>ອ</u> 92	
Sieve	size	retained	retained	Cum.	percentage	ss sin	
No.	(mm)	soil(g)	(%)	% retained	Passing (%)	Pas	
3/8"	(IIIII) soligy (%) %retailed Pass 9.5 0 0 0 1					b 84	
#4	4.75	0	0	0	100	erc	
#10	2	2.3	0.13	0.13	99.9	A 80	
#20	0.85	7.3	1.46	1.59	98.4	76	
#40	0.425	12.3	2.46	4.05	96.0		100 10 1 0.1 0.01 0.001
#50	0.3	0.3 13.7 2.74 6.79					Particle Size (mm)
#100	0.15 15.9 3.18 9.97 90] .	Gravel Sand Silt-Clay
#200	0.075	19.7	3.94	13.91	86.1		4.75mm 0.075mm

0.001

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 114

Appendix L

Atterberg's Limits Laboratory Analysis and test result of all Samples

Test	ATTERBERG LIMITS TEST (ASTM D 4318-98)											
Site	Agricultura	ıl Offi	ce		Test P	it	1@1m					
I	Determination of Liquid	Limit, I	Plastic I	Limit an	d Plasti	c Index						
		Units										
Test			Liquid	l Limit		Plas	ticLimit					
Trial numb	ber		1	2	3	1	2					
Number o	f Blows	Ν	35	29	21							
Can Code	•		G	G53	NB	3A	G3T2	7				
Mass of e	mpty Can (MC)	gram	17.7	17.02	17.3	17.6	17.9					
M of Can	+Wet Soil (McWs)	gram	32.7	31.29	31	24.1	23.94					
M of Can	+ Dry Soil (McDs)	gram	27.5	26.01	25.7	22.5	22.46	ľ				
Mass of E	Dry soil (MDs)	gram	9.73	8.99	8.4	4.89	4.56					
Mass of V	Vater (Mw)	gram	5.27	5.28	5.32	1.59	1.48					
Water Co	ntent (w)	%	54.16	58.73	63.27	32.46	32.46					
Liquid Li	mit (LL)	%		60.8								
Plastic Li	mit (PL)	%		32.5]						
PLastic I	ndex (PI)	28.3										

Test	ATTERBERG LIMITS	5 TEST	(AST	M D 43	(18-98))	
Site	Agricultural Office			Tes	t Pit	1	@2m
Det	ermination of Liquid L	.imit, I	Plastic	Limit a	nd Pla	stic In	dex
		Units					
Test			Li	quid Li	mit	Plast	ic Limit
Trial numb	ber		1	2	3	1	2
Number o	of Blows	Ν	32	23	16		
Can Code	e		G3T2	P5	T2C1	50	G
Mass of e	mpty Can (MC)	gram	17.1	17.16	17	17.9	18.01
Mass of C	Can + Wet Soil (McWs)	gram	34.7	35.71	34.2	25.4	25.43
Mass of C	Can + Dry Soil (McDs)	gram	28.7	28.84	27.7	23.6	23.716
Mass of I	Dry soil (MDs)	gram	11.5	11.68	10.6	5.7	5.706
Mass of V	Vater (Mw)	gram	6.00	6.87	6.54	1.73	1.71
Water Co	ontent (w)	%	51.98	58.80	61.43	30.36	30.04
Liquid Li	mit (LL)	%					
Plastic Li	imit (PL)	%		30.2			
PLastic I	ndex (PI)	%		26.2			

(c												
Test	ATTERBERG LIMITS	5 TEST	C(AST	M D 43	318-98)							
Site	Agricultur	al Offic	e		Tes	t Pit	1 @ 3m		Water C	ontent v	s Number o	of blows
Det	ermination of Liquid L	.imit, I	Plastic	Limit a	nd Pla	stic In	dex	60				
	Units											
Test	Fest Liquid Limit Plastic Limit						58			1		
Trial numb	ber		1	2	3	1	2	» ₅₆				
Number o	of Blows	Ν	34	26	15			ent				
Can Code	e		A2	30	C2	G2	20	54 S				
Mass of e	empty Can (MC)	gram	8.16	7.895	6.2	17.3	17.03	er (
Mass of C	Can + Wet Soil (McWs)	gram	21.1	20.59	20.4	23.9	23.96	Mat Mat	LL=53	3.6 %		
Mass of C	Can + Dry Soil (McDs)	gram	16.7	16.23	15.2	22.4	22.37	50				
Mass of I	Dry soil (MDs)	gram	8.57	8.335	8.98	5.04	5.34					
Mass of V	Water (Mw)	gram	4.33	4.36	5.21	1.5	1.59	48				
Water Co	ontent (w)	%	50.45	52.31	57.95	29.76	29.78		1	5	25	125
Liquid Li	Liquid Limit (LL) % 53.6								Number	of Blows (N)		
Plastic Li	Plastic Limit (PL)%29.8											
PLastic I	PLastic Index (PI) % 23.8											

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 115

Test	ATTERBERG	LIMIT	S TES	T (AST	TM D 4	3)			Water Content Vs N	Jumber	ofBlows		
Site	Seka Town Bus	Station		Tes	t Pit	2	@ 1m			Water Content VS1	umber	01 D10 W5	
]	Determination of Liquid	Limit, F	Plastic I	limit an	d Plasti	c Index			80		-		
		Units							50				_
Test	est Liquid Li						ic Limit		/8				Ξ
Trial numb	ber		1	2	3	1	2	(%	76				-
Number of	f Blows	Ν	33	26	18			1t ('	74				-
Can Code			P2	A3	G3T3	B3	T1C1	Iter	72				=
Mass of e	mpty Can (MC)	gram	17.19	16.99	17.9	17.4	17.717	Coi	70	4			_
Mass of C	Can + Wet Soil (McWs)	gram	31.1	30.83	32.98	24.6	24.703	ter	68	LL=70.8%	<u> </u>		Ξ
Mass of C	Can + Dry Soil (McDs)	gram	25.69	25.19	26.37	22.68	22.835	Wai	66		<u> </u>		_
Mass of D	Dry soil (MDs)	gram	8.5	8.199	8.468	5.28	5.118		00				
Mass of W	Vater (Mw)	gram	5.41	5.64	6.61	1.921	1.87		64			<u> </u>	=
Water Con	ntent (w)	%	63.65	68.84	78.06	36.38	36.50		62				
Liquid Li	imit (LL)	%		70.8					60		_		
Plastic Li	Plastic Limit (PL) % 36.4									1 5	25		125
PLastic I	PLastic Index (PI) %									Number of	Blows ()	N)	

Test	ATTERBERG	LIMIT	'S TES	T (AST	M D 4	318-98	3)
Site	Seka Town Bus	Statior	1	Test	t Pit	2	@ 2m
Ι	Determination of Liquid 1	Limit, F	Plastic I	_imit and	d Plasti	c Index	
		Units					
Test			Li	quid Li	mit	Plast	ic Limit
Trial numb	er		1	2	3	1	2
Number o	f Blows	Ν	34	24	17		
Can Code			P2	A3	B3	P1	4
Mass of e	mpty Can (MC)	gram	18.4	17.38	17.4	17.9	17.56
Mass of C	an + Wet Soil (McWs)	gram	32	30.2	32.4	24.3	24.08
Mass of C	an + Dry Soil (McDs)	gram	26.8	24.98	26.1	22.5	22.27
Mass of D	ry soil (MDs)	gram	8.37	7.601	8.71	4.61	4.71
Mass of W	Vater (Mw)	gram	5.20	5.22	6.25	1.77	1.81
Water Co	ntent (w)	%	62.20	68.62	71.80	38.35	38.43
Liquid Li	mit (LL)	%		67.6			
Plastic Li	mit (PL)	%	% 38.4				
PLastic I	ndex (PI)	%		29.2			

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 116

Test	ATTERBERG	LIMIT	TS TES	T (AST	TM D 4	318-98	3)		Wat	ton Contont	Va Num	ahon o	e	
Site	Police Offi	ce		Tes	t Pit	3	@ 1m		vvai	er Content Blo		loer of	1	
I	Determination of Liquid	Limit, I	Plastic I	Limit an	d Plasti	c Index	Σ.		C1	DI	115	_		
		Units							61					
Test			Li	quid Li	mit	Plast	ic Limit		58					
Trial numb	ber		1	2	3	1	2	(%						
Number of	f Blows	Ν	33	28	18			nt ('	55					
Can Code			31	C4	27	3	C12	nteı	52					
Mass of e	mpty Can (MC)	gram	8.249	17.69	5.85	16.59	16.32	C						
Mass of C	Can + Wet Soil (McWs)	gram	22.42	33.05	23.22	22.62	23.201	ater	49		o/			
Mass of C	Can + Dry Soil (McDs)	gram	18.18	28.08	17.04	21.24	21.61	W:	46	LL=49.6	%			
Mass of D	Ory soil (MDs)	gram	9.931	10.39	11.19	4.645	5.29							
Mass of W	Vater (Mw)	gram	4.24	4.97	6.18	1.385	1.59		43			`		
Water Co	ntent (w)	%	42.64	47.83	55.19	29.82	30.08		40					
Liquid Li	mit (LL)	%		49.6					1	. 5	5	25		125
Plastic Li	imit (PL)	%		29.9						Nu	mberof	Blows		
PLastic I	ndex (PI)	%		19.7										

Test	ATTERBERG LIMITS	5 TEST	(ASTI	M D 43						
Site	Police Offi	ce		Tes	t Pit	3	@ 2m			
Ι	Determination of Liquid	Limit, F	Plastic I	imit an	d Plasti	c Index	Index			
		Units	Units							
Test			Lie	quid Li	mit	Plastic Limit				
Trial numb	ber		1	2	3	1	2			
Number of	f Blows	N	34	26	17					
Can Code			2	MK	3	6	G7			
Mass of e	mpty Can (MC)	gram	17.64	17.72	18.22	17.05	17.387			
Mass of C	an + Wet Soil (McWs)	gram	30.66	28.69	32.25	23.25	23.581			
Mass of C	an + Dry Soil (McDs)	gram	27.02	24.99	27.37	21.82	22.16			
Mass of D	Dry soil (MDs)	gram	9.384	7.274	9.152	4.771	4.773			
Mass of W	Vater (Mw)	gram	3.64	3.70	4.87	1.426	1.42			
Water Co	ntent (w)	%	38.78	50.89	53.26	29.89	29.77			
Liquid Li	mit (LL)	%		48.4						
Plastic Li	mit (PL)	%		29.8						
PLastic I	ndex (PI)	%								

Test	ATTERBERG	LIMIT	'S TES	T (AST	'M D 4	318-98	3)			Water Content Vs Number of
Site	Police Offi	ce		Tes	t Pit	3	@ 3m			Blows
Ι	Determination of Liquid Limit, Plastic Limit an					c Index	i i			
		Units							56	
Test			Lie	quid Li	mit	Plast	ic Limit		54	A
Trial numb	er		1	2	3	1	2	0%)	52	
Number of	f Blows	Ν	32	27	16			ent	52	
Can Code			B1	G7	3	G3T3	HC11	onte	50	
Mass of er	mpty Can (MC)	gram	18.23	18.49	17.72	17.56	17.683	C	48	
Mass of C	an + Wet Soil (McWs)	gram	35.1	34.43	32.14	26.3	25.32	ter		*
Mass of C	an + Dry Soil (McDs)	gram	30.19	29.48	27.09	24.4	23.65	Wa	46	
Mass of D	ry soil (MDs)	gram	11.96	10.99	9.367	6.837	5.967		44	
Mass of W	Vater (Mw)	gram	4.91	4.95	5.05	1.901	1.67		12	
Water Cor	ntent (w)	%	41.06	45.05	53.91	27.80	27.99		72	
Liquid Li	mit (LL)	%		46.8					40	
Plastic Limit (PL)%27.9										1 5 25 125
PLastic II	ndex (PI)	%		18.9						Number of Blows (N)

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 117

Test	ATTERBERG	BERG LIMITS TEST (ASTM D 4318-98) tration Office Test Pit 4 @ 1m							1	Water Content	Vs Num	ber o	of
Site	Administration	Office		Tes	t Pit	4	@ 1m			Ble	OWS	1001 0	
I	Determination of Liquid	Limit, I	Plastic I	limit an	d Plasti	c Index	L L		78.0				
		Units							76.0				
Test	t Liquid Limit Plastic Limit							76.0		•			
Trial numb	ber		1	2	3	1	2	(%	74.0		1		
Number of	f Blows	Ν	34	28	20			nt (72.0				
Can Code			C2	A2	3	60	38	nte	72.0				
Mass of e	mpty Can (MC)	gram	6.26	6.052	16.6	6.455	6.175	Coj	70.0				
Mass of C	Can + Wet Soil (McWs)	gram	17.81	17.47	27.65	15.87	15.22	ter	68.0	LL=71.2 %		<u> </u>	
Mass of C	Can + Dry Soil (McDs)	gram	13.3	12.82	22.91	12.97	12.426	Wa					
Mass of D	Dry soil (MDs)	gram	7.04	6.767	6.31	6.514	6.251		66.0				
Mass of W	Vater (Mw)	gram	4.51	4.65	4.74	2.901	2.79		64.0			<u> </u>	
Water Con	ntent (w)	%	64.06	68.75	75.12	44.53	44.70		62.0				
Liquid Li	mit (LL)	%		71.2					02.0	L 5	2	5	125
Plastic Li	Plastic Limit (PL) %			44.6					-	Number	· of Blov	x (N)	
PLastic I	Lastic Index (PI) %									1 (unioci	OI DIOW	5 (11)	

Test	ATTERBERG	LIMIT	S TES	T (AST	M D 4	4318-98)					
Site	Administration	Office		Tes	t Pit	4	@ 2m				
I	Determination of Liquid	Limit, F	Plastic I	imit an	d Plasti	c Index	τ				
		Units	Units								
Test			Lie	quid Li	mit	Plast	ic Limit				
Trial numb	ber		1	2	3	1	2				
Number of	f Blows	Ν	34	28	19						
Can Code			R1	A20	13	56	60				
Mass of en	mpty Can (MC)	gram	6.52	19.66	6.711	6.399	6.409				
Mass of C	an + Wet Soil (McWs)	gram	18.54	31.05	18.99	12.49	12.77				
Mass of C	an + Dry Soil (McDs)	gram	13.93	26.31	13.55	10.62	10.815				
Mass of D	ry soil (MDs)	gram	7.41	6.65	6.836	4.221	4.406				
Mass of W	Vater (Mw)	gram	4.61	4.74	5.44	1.87	1.96				
Water Cor	ntent (w)	%	62.17	71.28	79.62	44.30	44.37				
Liquid Li	mit (LL)	%		73.5							
Plastic Li	mit (PL)	%		44.3							
PLastic I	ndex (PI)	%		29.2							

Test	ATTERBERG	LIMIT	'S TES	T (AST	M D 4	318-98	5)			
Site	Administration	Office		Tes	t Pit	4	@ 3m			Water Content Vs Number of
Γ	Determination of Liquid	uid Limit, Plastic Limit and Plastic Inc				c Index			74	Blows
		Units						7 4		
Test		Liquid Limit Plastic Limit						72		
Trial numb	ber		1	2	3	1	2			
Number of	f Blows	Ν	33	24	18			t (%	70	
Can Code			A20	38	56	13	49	tent		
Mass of er	mpty Can (MC)	gram	19.66	6.176	6.33	6.499	5.534	Ont	68	
Mass of C	an + Wet Soil (McWs)	gram	34.36	20.76	21.62	12.25	11.25	er C		LL=69.4 %
Mass of C	an + Dry Soil (McDs)	gram	28.61	14.72	15.16	10.62	9.638	Vate	66	
Mass of D	ry soil (MDs)	gram	8.951	8.547	8.83	4.121	4.104	A		
Mass of W	Vater (Mw)	gram	5.75	6.04	6.46	1.63	1.61		64	
Water Cor	ntent (w)	%	64.23	70.63	73.16	39.55	39.28			
Liquid Li	mit (LL)	%		69.4					62	
Plastic Li	mit (PL)	%		39.4						1 5 25 125
PLastic II	Lastic Index (PI) % 30.0								Number of Blows (N)	

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 118

Test	ATTERBERG	LIMIT	S TES	Γ (AST	M D 43	318-98)			Watan Contant Va Numban of	
Site	Seka Town Municip	ality Of	ity Office Test Pit 5 @				🦻 1m			Rlows
Ι	Determination of Liquid	Limit, Plastic Limit and Plastic Ir			Index					
		Units	Units						80	
Test			Liquid Limit Plastic Limit					-		
Trial numb	ber		1	2	3	1	2	%	76	
Number of	f Blows	Ν	32	27	19			nt	72	
Can Code			G	G53	NB	3A	G3T2	nte		
Mass of en	mpty Can (MC)	gram	17.81	17.39	17.39	17.4	17.53	C	68	
Mass of C	Can + Wet Soil (McWs)	gram	33.31	31.91	32.06	24.47	24.285	iter	64	
Mass of C	Can + Dry Soil (McDs)	gram	27.57	26.09	25.59	22.49	22.4	W		
Mass of D	Dry soil (MDs)	gram	9.76	8.7	8.196	5.09	4.87		60	
Mass of W	Vater (Mw)	gram	5.74	5.82	6.47	1.98	1.89		56	
Water Cor	ntent (w)	%	58.81	66.90	78.99	38.90	38.71			
Liquid Li	mit (LL)	%		69.6					52	
Plastic Li	mit (PL)	%		38.8						Number of Blove (N)
PLastic I	ndex (PI)	% 30.8						Trumber of blows (14)		

Test	ATTERBERG LIMITS TEST (ASTM D 4318-98)									
Site	Seka Town Municip	ality Of	fice	Tes	t Pit	5 @	2m			
I	Determination of Liquid	Limit, P	imit, Plastic Limit and Plastic Index							
		Units								
Test			Lie	quid Li	mit	Plasti	e Limit			
Trial numb	ber		1	2	3	1	2			
Number of	f Blows	Ν	31	22	15					
Can Code			G3T2	P5	T2C1	50	G			
Mass of e	mpty Can (MC)	gram	18.35	19.74	18.61	17.73	17.638			
Mass of C	an + Wet Soil (McWs)	gram	35.53	36.35	35.21	25.65	25.72			
Mass of C	an + Dry Soil (McDs)	gram	28.97	29.52	28.2	23.5	23.526			
Mass of D	ry soil (MDs)	gram	10.62	9.78	9.587	5.768	5.888			
Mass of W	Vater (Mw)	gram	6.56	6.83	7.01	2.15	2.19			
Water Co	ntent (w)	%	61.77	69.84	73.12	37.27	37.26			
Liquid Li	mit (LL)	%		66.6						
Plastic Li	mit (PL)	%		37.3						
PLastic I	ndex (PI)	%		29.3						

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 119

Test	ATTERBERG	LIMIT	'S TES'	Г (AST	M D 43	818-98)		Water Content Vs Number of	
Site	Seka High Se	chool		Test Pi	it	6 @	0 1m		Blows
I	Determination of Liquid	Limit, P	nit, Plastic Limit and Plastic Index						
		Units	Jnits						
Test			Lie	quid Li	mit	Plasti	c Limit	64	
Trial numb	ber		1	2	3	1	2)%)	
Number of	f Blows	Ν	32	27	19			tent	
Can Code			P2	A3	G3T3	B3	T1C1	UO 62	
Mass of e	mpty Can (MC)	gram	16.59	15.99	17.01	17.3	17.617	er (*
Mass of C	Can + Wet Soil (McWs)	gram	31.03	30.23	31.91	24.25	24.341	09 Wat	
Mass of C	Can + Dry Soil (McDs)	gram	25.77	24.93	26.07	22.51	22.655	-	LL=60.8%
Mass of D	Dry soil (MDs)	gram	9.179	8.94	9.06	5.21	5.038		
Mass of W	Vater (Mw)	gram	5.26	5.30	5.84	1.741	1.69	58	
Water Co	ntent (w)	%	57.33	59.26	64.46	33.42	33.47		
Liquid Li	mit (LL)	%		60.8				56	
Plastic Li	imit (PL)	% 33.4							1 5 25 125
PLastic I	ndex (PI)	%		27.4					Number of Blows (N)

Test	ATTERBERG	LIMIT	MITS TEST (ASTM D 4318-98)							
Site	Seka High So	chool		Test Pi	t	6@	2m			
I	Determination of Liquid	Limit, P	lastic L	imit and	Plastic	Index				
		Units								
Test			Lie	luid Li	mit	Plastic	: Limit			
Trial numb	ber		1	2	3	1	2			
Number of	f Blows	Ν	33	26	18					
Can Code			P2	A3	B3	P1	4			
Mass of e	mpty Can (MC)	gram	16.26	13.44	15.54	16.5	17.16			
Mass of C	an + Wet Soil (McWs)	gram	30.73	29.75	31.85	24.03	23.64			
Mass of C	an + Dry Soil (McDs)	gram	26.09	24.37	26.18	22.32	22.17			
Mass of D	ry soil (MDs)	gram	9.83	10.93	10.64	5.82	5.01			
Mass of W	Vater (Mw)	gram	4.64	5.38	5.67	1.71	1.47			
Water Co	ntent (w)	%	47.20	49.22	53.29	29.38	29.34			
Liquid Li	mit (LL)	%	50.0							
Plastic Li	mit (PL)	%	29.4							
PLastic I	ndex (PI)	%	20.6							

Test	ATTERBERG	LIMIT	'S TES'	Γ (AST	M D 43	318-98)												
Site	Seka High Sc	hool		Test Pi	it	6@) 3m			Wat	ter Co	ntent	Vs I	Num	ber of	fBlo	WS	
I	Determination of Liquid	Limit, F	Plastic L	imit and	l Plastic	Index			_									
		Units	Units					5	4					1				
Test			Liquid Limit Plastic Limit					5										
Trial numb	ber		1	2	3	1	2	(%	5									
Number of	f Blows	Ν	33	27	16			nt (5	io -				4				E
Can Code			37	12	58	49	29	nte										
Mass of e	mpty Can (MC)	gram	6.078	6.458	5.717	5.432	6.145	CO	4	8								
Mass of C	Can + Wet Soil (McWs)	gram	22.31	22.38	21.41	11.55	13.21	ter										
Mass of C	Can + Dry Soil (McDs)	gram	17.43	17.41	16.16	10.21	11.65	Wa	4	6	*				-4			
Mass of D	Dry soil (MDs)	gram	11.35	10.95	10.44	4.778	5.505				LL	=46%	6		- î			
Mass of W	Vater (Mw)	gram	4.88	4.97	5.25	1.34	1.56		4	4								
Water Co	ntent (w)	%	43.01	45.33	50.27	28.05	28.34									λ		Ē
Liquid Li	imit (LL)	%		46.0					4	12 L			5		25			125
Plastic Limit (PL)%28.2								1	N	umbe	rof	Blow	25 /s (N)		173		
PLastic I	ndex (PI)	%		17.8														

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 120

Test	ATTERBERG	LIMIT	'S TES	Г (AST	M D 43			Votor (Contont Vs Num	abor of		
					7@		w.		Blows			
Site	New Generation K	G School			Test Pit 1m		1m	7	-	DIOWS	_	
D	Determination of Liquid	Limit, P	imit, Plastic Limit and Plas				stic Index					
		Units				-		7/	1			
Test			Lie	quid Li	mit	Plastic	c Limit	()				
Trial numb	ber		1	2	3	1	2	6) 1 7	2			
Number of	f Blows	Ν	34	29	19			tent				
Can Code			31	C4	27	3	C12	100 70				
Mass of en	mpty Can (MC)	gram	8.149	17.59	5.75	16.39	16.22	er (II-70%		
Mass of C	Can + Wet Soil (McWs)	gram	22.89	32.27	23.43	22.88	23.2	Vato	3	LL=/0/0		
Mass of C	Can + Dry Soil (McDs)	gram	17.01	26.33	15.97	20.96	21.13	Λ				
Mass of D	Dry soil (MDs)	gram	8.861	8.74	10.22	4.57	4.91	66	5		\	
Mass of W	Vater (Mw)	gram	5.88	5.94	7.46	1.92	2.07					
Water Cor	ntent (w)	%	66.30	67.96	72.99	42.01	42.16	64	4			
Liquid Li	mit (LL)	%		70.0					1	5	25	125
Plastic Li	imit (PL)	% 42.1							Number of	Blows		
PLastic I	ndex (PI)	%		27.9								

Test	ATTERBERG LIMITS TEST (ASTM D 4318-98)											
Site	New Generation KG	School		Tes	t Pit	7@ 2m						
Ι	Determination of Liquid	Limit, P	imit, Plastic Limit and Plastic Index									
		Units										
Test			Lie	quid Li	mit	Plastic	e Limit					
Trial numl	ber		1	2	3	1	2					
Number o	f Blows	Ν	32	24	16							
Can Code			2	MK	3	6	G7					
Mass of e	mpty Can (MC)	gram	17.44	14.56	18.12	17.15	17.497					
Mass of C	Can + Wet Soil (McWs)	gram	31.25	29.26	32.68	23.14	23.24					
Mass of C	Can + Dry Soil (McDs)	gram	25.82	23.29	26.57	21.51	21.685					
Mass of E	Dry soil (MDs)	gram	8.384	8.73	8.452	4.359	4.188					
Mass of V	Vater (Mw)	gram	5.43	5.97	6.11	1.632	1.56					
Water Co	ntent (w)	%	64.75	68.38	72.24	37.44	37.13					
Liquid Li	mit (LL)	%		68.0								
Plastic Li	imit (PL)	%										
PLastic I	ndex (PI)	%		30.7								

Test	ATTERBERG LIMITS	S TEST	Г (ASTI	M D 43	18-98)				XX/c	atar Contant Vs Number of
Site	New Generation	on KG	School		Tes	t Pit	7@ 3m			Blows
I	Determination of Liquid	d Limit, Plastic Limit and Plastic Index							58	
		Units							56	
Test			Lie	quid Li	mit	Plasti	c Limit	%	54	
Trial numb	ber		1	2	3	1	2	nt (52	
Number of	of Blows	Ν	32	26	17			nte		
Can Code	;		B1	G7	3	G3T3	HC11	C	50	
Mass of e	empty Can (MC)	gram	18.13	17.89	16.92	17.76	17.883	ter	48	
Mass of C	Can + Wet Soil (McWs)	gram	33.56	33.85	31.66	25.32	24.35	Wat	46	LL=48.5%
Mass of C	Can + Dry Soil (McDs)	gram	28.99	28.61	26.41	23.64	22.897		44	
Mass of D	Dry soil (MDs)	gram	10.86	10.72	9.487	5.877	5.014		44	
Mass of W	Water (Mw)	gram	4.57	5.24	5.25	1.68	1.45		42	
Water Co	ntent (w)	%	42.09	48.88	55.34	28.59	28.98		40	
Liquid Li	imit (LL)	%		48.5					1	1 5 25 125
Plastic Li	Plastic Limit (PL)%28.8									Number of Blows (N)
PLastic I	ndex (PI)	%		19.7						

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 121

Test	ATTERBERG	LIMIT	S TES	Γ (AST	M D 43			Water Content Vs Number o	f	
Site	Seka Hospital			Test Pi	it	8@) 1m		Blows	•
E	Determination of Liquid	Limit, P	nit, Plastic Limit and Plastic Index						T	
		Units								
Test			Lie	quid Li	mit	Plastic	: Limit	68		
Trial numb	ber		1	2	3	1	2	(%)		
Number of	f Blows	Ν	31	23	17			at ('		
Can Code			C2	A2	3	60	38	199 ee	······································	
Mass of e	mpty Can (MC)	gram	6.46	6.082	13.02	6.355	6.165	COI		
Mass of C	an + Wet Soil (McWs)	gram	18.25	19.44	27.21	15.23	14.61	J a 64		
Mass of C	an + Dry Soil (McDs)	gram	13.81	14.1	21.42	12.96	12.43	Vat	LL=64.4%	
Mass of D	ory soil (MDs)	gram	7.35	8.017	8.4	6.605	6.265			
Mass of W	Vater (Mw)	gram	4.44	5.34	5.79	2.27	2.18	62		
Water Co	ntent (w)	%	60.41	66.62	68.93	34.37	34.80			
Liquid Li	mit (LL)	%		64.4				60		
Plastic Li	mit (PL)	%	% 34.6						1 5 25	125
PLastic I	ndex (PI)	%		29.8					Number of Blows (N)	

Test	ATTERBERG	LIMIT	S TES	Γ(AST	M D 43	318-98)				
Site	Seka Hospital			Tes	t Pit	8 @	2m			
Ľ	Determination of Liquid	Limit, P	imit, Plastic Limit and Plastic Index							
		Units								
Test			Lie	quid Li	mit	Plastic	e Limit			
Trial numb	ber		1	2	3	1	2			
Number of	f Blows	Ν	32	27	18					
Can Code			R1	A20	13	56	60			
Mass of en	mpty Can (MC)	gram	6.92	19.84	6.291	6.279	6.459	2		
Mass of C	an + Wet Soil (McWs)	gram	17.99	30.54	19.05	12.72	12.82			
Mass of C	an + Dry Soil (McDs)	gram	13.98	26.51	14.11	11.14	11.27	1		
Mass of D	ry soil (MDs)	gram	7.06	6.67	7.819	4.861	4.811)		
Mass of W	Vater (Mw)	gram	4.01	4.03	4.94	1.58	1.55			
Water Cor	ntent (w)	%	56.80	60.42	63.18	32.50	32.22			
Liquid Li	mit (LL)	%		60.8						
Plastic Li	mit (PL)	%		32.4						
PLastic I	ndex (PI)	%		28.4						

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 122

Test	ATTERBERG	LIMIT	S TES	Γ (AST	M D 43	18-98)				
Site	Seka Preparatory Sch	ool		Tes	t Pit	9 @	@ 1m			Water Content Vs Number of
I	Determination of Liquid	Limit, P	lastic L	astic Limit and Plastic Index					78	Blows
		Units								↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Test			Lie	quid Li	mit	Plasti	c Limit			
Trial numb		1	2	3	1	2	(%	76		
Number of	Ν	34	28	19			it (
Can Code		P2	A3	G3T3	B3	T1C1	ter	74		
Mass of en	mpty Can (MC)	gram	17.14	16.69	17.1	17.3	17.517	Con		II –7/0/
Mass of C	Can + Wet Soil (McWs)	gram	30.76	30.38	32.35	24.72	24.84) I	72	LL-7470
Mass of C	Can + Dry Soil (McDs)	gram	25.19	24.65	25.7	22.51	22.655	/ate	. –	
Mass of D	Dry soil (MDs)	gram	8.05	7.963	8.595	5.21	5.138	Μ		
Mass of W	Vater (Mw)	gram	5.57	5.73	6.65	2.21	2.19		70	
Water Co	Water Content (w) % 69.1			71.96	77.41	42.42	42.53			
Liquid Li	iquid Limit (LL) %								68	
Plastic Li	Plastic Limit (PL) %									1 5 25 125
PLastic I	PLastic Index (PI) %									Number of Blows (N)

Test	ATTERBERG LIMITS TEST (ASTM D 4318-98)									
Site	Seka Preparato	ry Scho	ool	Tes	t Pit	9 @ 2m				
I	Determination of Liquid	Limit, P	lastic L	imit and	Plastic	Index				
		Units	Jnits							
Test			Lie	quid Li	mit	Plastic	: Limit			
Trial numb	ber		1	2	3	1	2			
Number of	f Blows	Ν	32	23	16					
Can Code			P2	A3	B3	P1	4			
Mass of e	mpty Can (MC)	gram	18.23	15.88	18.3	17.8	17.54			
Mass of C	an + Wet Soil (McWs)	gram	31.13	28.65	30.94	24.29	24.26			
Mass of C	an + Dry Soil (McDs)	gram	25.82	23.21	25.46	22.38	22.29			
Mass of D	ry soil (MDs)	gram	7.587	7.331	7.158	4.58	4.75			
Mass of W	Vater (Mw)	gram	5.31	5.44	5.48	1.91	1.97			
Water Co	ntent (w)	%	69.99	74.19	76.59	41.70	41.47			
Liquid Li	mit (LL)	%		73.0						
Plastic Li	mit (PL)	%		41.6						
PLastic I	ndex (PI)	%	% 31.4							

125

										_			
Test	ATTERBERG	LIMIT	'S TES	Γ(AST	M D 43	818-98)		Weter Content Ve Newlose of Disc					
Site	Seka Preparato	ry Sch	loc	Tes	t Pit	9@) 3m		W	ater Content Vs Nu	mber of I	Blows	
Γ	Determination of Liquid 1	Limit, P	Plastic L	astic Limit and Plastic Index					72				
	Units								70		4		
Test			Lie	quid Li	mit	Plastic	: Limit		70				
Trial numb	ber		1	2	3	1	2	(%	68				-
Number of	f Blows	Ν	34	26	19			nt (
Can Code			37	12	58	49	29	nte	66				
Mass of e	mpty Can (MC)	gram	7.978	9.758	6.317	5.612	6.102	C_{0}	64	LL=66.6%			
Mass of C	Can + Wet Soil (McWs)	gram	21.18	22.95	20.35	11.05	12.66	ter					-
Mass of C	Can + Dry Soil (McDs)	gram	16.18	17.71	14.56	9.632	10.94	Wa	62				-
Mass of D	Ory soil (MDs)	gram	8.205	7.947	8.239	4.02	4.838				1		-
Mass of W	Vater (Mw)	gram	5.00	5.25	5.79	1.418	1.72		60				
Water Cor	%	60.90	66.00	70.32	35.27	35.55		58				-	
Liquid Limit (LL) %				66.6						1 5	25		1
Plastic Li	Plastic Limit (PL) %				35.4					Number of	Blows (N	0	
PLastic I	ndex (PI)	%		31.2									

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 123

Test	ATTERBERG	LIMIT	'S TES'	T (AST	M D 43	818-98)			1	Water Content Va Number of
Site	Lideta Orthodox Chu	ırch		Tes	t Pit	10 0	@ 1m			Rlows
Ι	Determination of Liquid	Limit, P	Plastic Limit and Plastic Index						00	D 10113
		Units							80	
Test			Lie	quid Li	mit	Plastic	c Limit			_
Trial numb	ber		1	2	3	1	2	6)	78	
Number of	f Blows	Ν	32	26	18			int		
Can Code			31	C4	27	3	C12	Inte	76	
Mass of e	mpty Can (MC)	gram	8.239	17.87	7.75	16.59	16.32	Co		LL=76%
Mass of C	Can + Wet Soil (McWs)	gram	22.58	32.73	24.17	22.76	23.16	ter	74	
Mass of C	Can + Dry Soil (McDs)	gram	16.52	26.33	16.94	20.99	21.19	Wa		
Mass of D	Dry soil (MDs)	gram	8.279	8.46	9.19	4.395	4.87		72	
Mass of V	Vater (Mw)	gram	6.06	6.40	7.23	1.775	1.97			
Water Cor	ntent (w)	%	73.22	75.65	78.67	40.39	40.45		70	
Liquid Li	imit (LL)	%	76.0						. 0	1 5 25 125
Plastic Li	Plastic Limit (PL) %									Number of Blows
PLastic I	ndex (PI)	%	35.6							

Test	ATTERBERG LIMITS TEST (ASTM D 4318-98)									
Site	Lideta Orthodox	Church	h	Tes	t Pit	10 @ 2m				
E	Determination of Liquid	Limit, P	lastic L	imit and	l Plastic	Index				
		Units								
Test			Lie	quid Li	mit	Plastic	e Limit			
Trial numb	ber		1	2	3	1	2			
Number of	f Blows	Ν	33	27	19					
Can Code			2	MK	3	6	G7			
Mass of en	mpty Can (MC)	gram	17.97	15.53	18.72	17.15	17.287			
Mass of C	an + Wet Soil (McWs)	gram	31.36	28.68	32.01	23.42	23.73			
Mass of C	an + Dry Soil (McDs)	gram	25.86	23.09	26.17	21.59	21.85			
Mass of D	ry soil (MDs)	gram	7.89	7.564	7.454	4.441	4.563			
Mass of W	Vater (Mw)	gram	5.50	5.59	5.84	1.83	1.88			
Water Co	ntent (w)	%	69.71	73.90	78.29	41.21	41.20			
Liquid Li	mit (LL)	%		74.8						
Plastic Li	mit (PL)	%								
PLastic I	ndex (PI)	%								

Test ATTERBERG LIMITS	S TEST	(ASTI							
Site Lideta Orthodox Chur	ch		Tes	t Pit	10 0	@ 3m			Water Content Vs Number of
Determination of Liquid	Limit, P	Plastic L	Limit and Plastic Index					70	BIOWS
Units								70	
Test	quid Li	mit	Plastic	c Limit					
Trial number	1	2	3	1	2	(%	76		
Number of Blows	Ν	32	26	17			nt (
Can Code		B1	G7	3	G3T3	HC11	nter	74	
Mass of empty Can (MC)	gram	19.03	18.59	16.78	17.56	17.583	Cor		
Mass of Can + Wet Soil (McWs)	gram	35.44	34.84	32.65	26.14	25.12	er (72	
Mass of Can + Dry Soil (McDs)	gram	28.68	27.99	25.79	23.64	22.897	Vate		
Mass of Dry soil (MDs)	gram	9.648	9.401	9.007	6.077	5.314	M	70	T
Mass of Water (Mw)	gram	6.76	6.85	6.86	2.5	2.22		70	
Water Content (w) % 70.08			72.86	76.16	41.14	41.83			
Liquid Limit (LL)		73.0					68		
Plastic Limit (PL)		41.5						1 5 25 125	
PLastic Index (PI)	%		31.5						Number of Blows (N)

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 124

Appendix M Modified Compaction Laboratory Analysis and Test result of all Samples

Site Agricultural Office						Tes	t Pit	1@	1m
	Wet D	ensity	Deter	minati	on				
	Unit								
Trial		1	l	2		3		2	Ļ
Weight of Mold + wet soil	gram	1024	40.1	105	14.7	105	10.2	1043	33.5
Weight of Mold	gram	639	9.2	639	99.2	639	9.2	639	9.2
Weight of Wet soil	gram	384	0.9	411	15.5	41	11	403	4.3
Volume of Mold	cc	21	24	21	24	21	24	21	24
Wet Density	g/cc.	1.	81	1.	94	1.	94	1.9	90
1	Moisture	Conte	nt Det	termin	ation				
Container Code G7 II DH D B1 P2 B3 HC51									
Weight of cont. + wet soil	gram	75.5	87.1	114.2	155.8	83.42	88.25	82.38	81.5
Weight of cont. + dry soil	gram	62.2	71.2	90.2	124.9	66.26	69.83	64.66	64.2
Weight of water	gram	13.2	15.9	24	30.86	17.16	18.42	17.72	17.4
Weight of container	gram	17.4	18	17	29.59	18.24	17.49	17.4	17.7
Weight of Dry soil	gram	44.8	53.2	73.2	95.33	48.02	52.34	47.26	46.5
Dry Dens	sity and N	/loistu	re Co	ntent E	etermi	nation			
Moisture content	%	29.50	29.83	32.77	32.37	35.74	35.19	37.49	37.35
Avarege Moisture content	%	29.	.67	32	.57	35	.46	37.	42
Dry Density	gr/cc.	1.3	39	1.	46	1.	43	1.3	38
Maximum Dry Density	gr/cc.	1.46							
Optimum Moisture Content	%	32	.7						

Test MODIFIED COMPAC	TION T	EST (A	ASH	TO T-1	80.)				_
Site Agricultural Office		1.01 (.			00)	Tes	t Pit	1@	2m
	Wet D	ensity	Deter	minati	on				
	Unit	1							
Trial Number		1	1		2		3	4	L
Weight of Mold + wet soil	gram	101	80.8	105	02.7	104	87.3	1030	59.2
Weight of Mold	gram	650	8.9	650	18.9	650	08.9	650	8.9
Weight of Wet soil	gram	367	1.9	410)3.5	408	38.1	39	70
Volume of Mold	cc	21	24						
Wet Density	gr/cc	1.1	73	1.	93	1.	92	1.8	37
	Moisture	Conte	nt Det	ermin	ation				
Container Code		P3	G	65	G19	С	UC	O3-2	P-3
Weight of cont. + wet soil	gram	121	116	192	200.1	112.21	92.36	165.4	142
Weight of cont. + dry soil	gram	100	99.2	154	159	91.16	72.37	130.4	109
Weight of water	gram	20.5	16.7	38.00	41.14	21.05	19.99	34.94	32.7
Weight of container	gram	25.2	37.9	37.5	34.24	32.86	16.72	41.25	26
Weight of Dry soil	gram	75.2	61.3	117	124.7	58.3	55.65	89.17	83.4
Dry Den	sity and N	/loistu	re Co	ntent I	Determi	nation			
Moisture content	%	27.24	27.25	32.58	32.99	36.11	35.92	39.18	39.20
Avarege Moisture content	%	27.	25	32	.78	36	.01	39.	19
Dry Density	gr/cc	1.	36	1.45		1.	42	1.3	34
Maximum Dry Density	gr/cc	1.4	45						
Optimum Moisture Content % 32.5									

Test	Test MODIFIED AASHTO COMPACTION TEST (AASHTO T 180)										
Site	Agricultural Office	COMI F		IT ILS	1 (ЛЛ	51110	Test	Pit	10	3m	
Site	Agricultural Office	Wet De		Dotom	ninatio		Test	In	1@	JIII	
	Unit										
		Unit									
Trial				l		2	3		4		
Weight	Weight of Mold + wet soil gran			50.6	105	00.6	1046	50.4	1026	58.8	
Weight	Veight of Mold gram			9.2							
Weight	of Wet soil	gram	365	51.4	410	01.4	406	1.2	386	9.6	
Volume	of Mold	сс	21	24							
Wet De	nsity	gr/cc	1.	72	1.	93	1.9	91	1.8	32	
Mois			Conte	nt Det	ermina	tion					
Contain	er Code		W11	G3T3	O2-2	J41	P3	T1	P15	O2-1	
Weight	of cont. + wet soil	gram	141	146	110	118	120.7	137	125.5	156	
Weight	of cont. + dry soil	gram	120	123	92.3	99.19	100.2	113	99.69	123	
Weight	of water	gram	20.7	22.2	18.2	18.82	20.42	24.1	25.81	32.6	
Weight	of container	gram	40.8	37.9	28.3	32.71	35.97	37.7	25.41	28.7	
Weight	of Dry soil	gram	79.4	85.4	64	66.48	64.26	75.5	74.28	94.5	
	Dry Dens	ity and M	loistur	e Con	tent D	etermi	nation				
Moistur	e content	%	26.10	26.00	28.36	28.31	31.78	31.89	34.75	34.49	
Avarege	Moisture content	%	26	.05	28	.33	31.	83	34.	62	
Dry Density gr/cc			1.	36	1.50		1.4	15	1.3	35	
Maxim	um Dry Density	gr/cc	1.	50							
Optimu	m Moisture Content	%	28	.80							

Test	est MODIFIED AASHTO COMPACTION TEST (AASHTO T-180)										
Site	Seka Bus Station						Test	Pit	2@	1m	
	•	Wet De	ensity l	Deterr	ninatio	n					
		Unit									
Trial			1	l		2	3		4	Ļ	
Weight	of Mold + wet soil	gram	100	05.4	104	05.7	1058	33.6	1044	46.5	
Weight	of Mold	gram	639	9.2							
Weight	of Wet soil	gram	360)6.2	400)6.5	418	4.4	404	7.3	
Volume	of Mold	cc	21	24							
Wet De	nsity	gr/cc	1.	70	1.	89	1.9	97	1.9) 1	
	Ν	Aoisture	Conte	nt Det	ermina	tion					
Contain	er Code		G19	J41	A-13	T2	P66	G	2	P15	
Weight	of cont. + wet soil	gram	90.4	139	203	218.9	197	175	181.4	242	
Weight	of cont. + dry soil	gram	76.1	118	165	178.6	157.4	139	142.6	187	
Weight	of water	gram	14.3	20.8	37.2	40.32	39.55	35.3	38.86	55.4	
Weight	of container	gram	17.8	32.7	36.6	38.44	37.45	32.4	34.64	33.6	
Weight	of Dry soil	gram	58.3	85.3	129	140.2	120	107	107.9	153	
	Dry Dens	ity and M	Ioistur	e Con	tent D	etermi	nation				
Moistur	e content	%	24.50	24.33	28.86	28.77	32.97	32.99	36.01	36.15	
Avarege	Moisture content	%	24.	.42	28	.81	32.98		36.	08	
Dry Der	nsity	gr/cc	1.	36	1.46		1.4	18	1.4	40	
Maxim	um Dry Density	gr/cc	1.4	48							
Optimu	Optimum Moisture Content % 32.3										

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 125

Test MODIFIED COMPACTION TEST (AASHTO T-180)											
Site Seka Town Bus Station	1					Test	Pit	2@	2m		
	Wet De	ensity l	Deterr	ninatio	n						
	Unit										
Trial Number		1	1		2	3	6	4	ł		
Weight of Mold + wet soil	gram	103	74.1	105	58.8	1055	51.5	1044	40.3		
Weight of Mold	gram	650	8.9								
Weight of Wet soil	gram	386	5.2	415	59.6	415	2.3	404	1.1		
Volume of Mold	сс	21	24								
Wet Density	gr/cc	1.3	82	1.	96	1.9	95	1.9) 0		
N	loisture	Conter	nt Det	ermina	tion						
Container Code		P15	O2-2	14	UC	HC11	С	G19	65		
Weight of cont. + wet soil	gram	137	130	153	122.8	128.32	200	162.7	249		
Weight of cont. + dry soil	gram	112	107	121	97.69	100.9	159	129.4	195		
Weight of water	gram	24.7	22.4	32.2	25.12	27.42	41.9	33.25	54.9		
Weight of container	gram	25.4	28.7	17.5	16.73	17.67	32.9	34.25	37.5		
Weight of Dry soil	gram	86.7	78.3	104	80.96	83.23	126	95.17	157		
Dry Dens	ity and M	loistur	e Con	tent D	etermi	nation					
Moisture content	%	28.50	28.65	31.07	31.03	32.94	33.31	34.94	34.95		
Avarege Moisture content	%	28.	.58	31	.05	33.	13	34.	95		
Dry Density	gr/cc	1.4	42	1.49		1.4	47	1.4	41		
Maximum Dry Density	gr/cc	1.4	49								
Optimum Moisture Content % 31.5											

Test	MODIFIED	AASHTC) COM	PACT	TION T	EST (A	ASHTO) T-18	0)		
Site	Seka Town Bus St	ation					Test	Pit	2@	3m	
		Wet De	ensity I	Deterr	ninatio	m					
		Unit									
Trial			1	1		2	3		4	<u>۲</u>	
Weight	of Mold + wet soil	gram	1015	80.3	105	16.8	1050)4.7	1046	50.5	
Weight	of Mold	gram	639	9.2							
Weight	of Wet soil	gram	378	31.1	411	17.6	410	5.5	406	1.3	
Volume	of Mold	сс	21	24							
Wet Der	nsity	gr/cc	1.	78	1.	.94	1.9	3	1.9	<i>i</i>	
	N	Aoisture	Conter	nt Det	ermina	ation				-	
Contain	er Code		P15	P66	ZE	2	A-1C	G	T2	F	
Weight	of cont. + wet soil	gram	161	208	115	145.1	237.1	193	133.5	142	
Weight	of cont. + dry soil	gram	136	175	96.7	120.9	190.5	153	108	114	
Weight	of water	gram	24.9	33.2	18	24.26	46.56	40.6	25.51	28.1	
Weight	of container	gram	33.6	37.5	33.1	34.64	49.75	32.2	38.44	36.4	
Weight	of Dry soil	gram	103	137	63.6	86.22	140.8	121	69.58	77.8	
	Dry Dens	ity and M	loistur	e Con	tent D	etermi	nation				
Moisture	e content	%	24.21	24.19	28.28	28.14	33.08	33.59	36.66	36.16	
Avarege	Moisture content	%	24.	.20	28	.21	33.	34	36.	41	
Dry Der	ısity	gr/cc	1./	43	1.51		1.4	15	1.4	40	
Maxim	um Dry Density	gr/cc	1.	51							
Optimu	m Moisture Content	%	28	.2							

Test	Test MODIFIED COMPACTION TEST (AASHTO T-180)											
Site	Police Office						Tes	t Pit	3@	1m		
		Wet D	ensity	Deter	minati	on						
		Unit										
Trial			1	1		2	3		4	Ļ		
Weight	of Mold + wet soil	gram	10031.5		10385.7		105	15.6	103	70.3		
Weight	of Mold	gram	639	9.2								
Weight	of Wet soil	gram	363	32.3	398	36.5	411	6.4	397	1.1		
Volume	of Mold	сс	21	24								
Wet De	nsity	gr/cc	1.	1.71 1.88			1.	94	1.8	37		
	Conte	nt De	termin	ation								
Contain	er Code		10G	47	G19	W11	C13T2	T2	B1	O4-3		
Weight	of cont. + wet soil	gram	- 99	88.8	130	141.7	135.71	101.7	97.01	99.4		
Weight	of cont. + dry soil	gram	84	75.6	111	121	113.2	82.84	77.85	79.6		
Weight	of water	gram	15	13.2	19.4	20.73	22.52	18.83	19.16	19.9		
Weight	of container	gram	17.7	17.1	34.3	40.8	34.95	17.58	18.23	17.7		
Weight	of Dry soil	gram	66.3	58.5	76.5	80.21	78.24	65.26	59.62	61.9		
	Dry Dens	sity and N	Aoistu	re Co	ntent E)etermi	nation					
Moistur	e content	%	22.62	22.58	25.40	25.84	28.78	28.85	32.14	32.16		
Avarege	Moisture content	%	22	.60	25	.62	28	.82	32.	15		
Dry Der	nsity	gr/cc	1.	39	1.	49	1.	50	1.4	41		
Maxim	um Dry Density	gr/cc	1.	51								
Optimu	m Moisture Content	27	.5									

	Tast MODIFIED A ASUTO COMPACTION TEST (A ASUTO T 190)												
Test MODIFIED AASHTO COMPACTION TEST (AASHTO T-180)													
Site	Police Office						Test	Pit	3@	2m			
		Wet De	ensity l	Deteri	ninatio	n							
		Unit											
Trial				1		2	3		4	Ļ			
Weight	of Mold + wet soil	gram	100	55.4	105	25.2	1047	75.8	1026	52.1			
Weight	of Mold	gram	639	9.2									
Weight	of Wet soil	gram	365	6.2	41	26	407	6.6	386	2.9			
Volume	e of Mold	сс	21	24									
Wet De	ensity	gr/cc	1.	72	1.	94	1.9	02	1.8	32			
	N	ermina	tion										
Contain	er Code		A-13	O3-1	Μ	P65	ZE	CS3	P66	P6			
Weight	of cont. + wet soil	gram	110	107	114	122.6	136.42	153	121.3	150			
Weight	of cont. + dry soil	gram	96.1	94	98.2	104.6	112.6	126	100.7	123			
Weight	of water	gram	14	13.4	15.5	17.93	23.8	27.4	20.52	27.4			
Weight	of container	gram	36.6	36.7	40.2	37.8	33.08	32.9	37.45	37.7			
Weight	of Dry soil	gram	59.6	57.3	58	66.84	79.54	92.7	63.29	84.8			
	Dry Dens	ity and M	loistur	e Con	tent D	etermi	nation						
Moistur	re content	%	23.46	23.35	26.66	26.83	29.92	29.53	32.42	32.27			
Avarege	e Moisture content	%	23.	.40	26	.74	29.	73	32.	35			
Dry De	nsity	gr/cc	1.	39	1.	53	1.4	18	1.3	37			
Maxim	um Dry Density	gr/cc	1.	53									
Optimum Moisture Content % 27.2													

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 126

-						-				
Test	MODIFIED COMP	ACTION	SHTO	T-180)						
Site	Police Office						Test	Pit	3@	3m
		Wet De	ensity 1	Deteri	ninatio	on				
		Unit							-	
Trial Nu	mber		1	1	2		3		4	1
Weight	of Mold + wet soil	gram	101	52.1	10525.3		1048	30.3	1028	38.2
Weight	of Mold	gram	650)8.9						
Weight	of Wet soil	gram	364	13.2	413	26.1	408	1.1	38	89
Volume	of Mold	21	24							
Wet Der	nsity	1.	72	1.	94	1.9	92	1.8	33	
	Conte	nt Det	ermina	tion						
Contain	er Code		O3-5	Α	O3-3	O5-1	O6-2	NB	29	O2-3
Weight	of cont. + wet soil	gram	132	166	81.1	86.12	118.56	110	78.48	102
Weight	of cont. + dry soil	gram	111	142	68	71.89	95.2	89.1	63.65	81.4
Weight	of water	gram	22	24.1	13.1	14.23	23.36	21.2	14.83	20.8
Weight	of container	gram	17.6	37.7	17.5	17.48	17.15	17.6	17.55	17.7
Weight	of Dry soil	gram	92.9	104	50.5	54.41	78.05	71.5	46.1	63.7
	Dry Dens	ity and M	loistur	e Con	tent D	etermi	nation			
Moistur	e content	%	23.67	23.23	25.99	26.15	29.93	29.61	32.17	32.57
Avarege	Moisture content	%	23	.45	26	.07	29.	77	32.	37
Dry Der	Dry Density gr/cc			39	1.54		1.4	48	1.3	38
Maxim	Maximum Dry Density gr/cc									
Optimu	%	26	5.2							

Test	MODIFIED AASHT	O COMP.	ACTIO	N TE	ST (AA	SHTO	T-180)			
Site	Administration Office						Tes	t Pit	4@	1 m
		Wet D	ensity	Deter	minati	on				
		Unit								
Trial Nu	mber		1			2	3		4	Ļ
Weight	of Mold + wet soil	gram	1022	22.6	105	24.3	10520.2		1036	65.6
Weight	of Mold	gram	6399.2							
Weight	of Wet soil	gram	3823.4		412	25.1	41	21	396	6.4
Volume	of Mold	сс	21	24						
Wet Der	nsity	gr/cc	1.	80	1.	94	1.	94	1.8	37
	Moistu			nt Det	termin	ation				
Contain	er Code		B1	T2	O2-3	GS3	1A	D	A-1C	9
Weight	of cont. + wet soil	gram	72.9	135	116	128.8	112.6	148.4	175.6	169
Weight	of cont. + dry soil	gram	59.7	106	90.6	100.3	87.26	116.59	140.9	131
Weight	of water	gram	13.2	28.4	25.2	28.46	25.34	31.81	34.72	38.1
Weight	of container	gram	18.2	17.6	17.7	17.5	17.73	29.58	49.68	32.4
Weight	of Dry soil	gram	41.5	88.8	73	82.8	69.53	87.01	91.24	98.9
	Dry Den	sity and N	Aoistu	re Coi	ntent I	etermi	nation			
Moistur	e content	%	31.79	32.03	34.47	34.37	36.44	36.56	38.05	38.49
Avarege	Moisture content	%	31.	91	34	.42	36	.50	38.	27
Dry Der	isity	gr/cc	1.3	36	1.	44	1.	42	1.3	35
Maxim	um Dry Density	gr/cc	1.44							
Optimu	ptimum Moisture Content %			35						

Test	MODIFIED AASHT	O COM	PACTI	ON T	EST (A	ASHT	O T-180)		
Site	Administration Offic	e					Tes	t Pit	4@	2m
		Wet D	ensity	Deter	minati	on				
		Unit								
Trial Nu	mber		1			2	3		4	
Weight of	of Mold + wet soil	gram	1024	47.8	105	28.7	10520.5		1036	52.9
Weight of	of Mold	gram	639	9.2						
Weight of	of Wet soil	gram	384	8.6	412	29.5	412	21.3	396	3.7
Volume	of Mold	сс	21	24						
Wet Der	nsity	gr/cc	1.5	1.81			1.	94	1.8	37
	Moisture				termin	ation				
Containe	er Code		14	P15	O2-2	HC11	C3	T2	P2	SG=3
Weight of	of cont. + wet soil	gram	90.1	109	112	101.6	121.5	92.65	88.64	136
Weight of	of cont. + dry soil	gram	73	89.3	91.5	80.79	96.99	73.25	69.6	106
Weight of	of water	gram	17.2	19.7	20.4	20.78	24.46	19.4	19.04	29.7
Weight of	of container	gram	17.5	25.4	28.7	17.67	26.75	17.58	17.66	25.4
Weight of	of Dry soil	gram	55.5	63.9	62.7	63.12	70.24	55.67	51.94	81
	Dry Dens	sity and N	Aoistu	re Co	ntent I	Determi	nation			
Moisture	e content	%	30.90	30.82	32.54	32.92	34.82	34.85	36.66	36.61
Avarege	Moisture content	%	30.	.86	32	.73	34	.84	36.	63
Dry Den	sity	gr/cc	1.3	38	1.	46	1.	44	1.3	37
Maxim	ım Dry Density	gr/cc	1.46							
Optimu	%	33	.1							

	T											
Test	MODIFIED AASHT	O COMP	ACTIO	ON TE	ST (A	ASHTC	T-180))				
Site	Administration Office						Tes	t Pit	4@	3m		
		Wet D	ensity	Deter	minatio	on						
D COMF	ACTION TEST (AAS	Unit										
Trial Nu	mber		1	L	1	2	3		4	ļ.		
Weight	of Mold + wet soil	gram	1018	82.6	105	39.7	10515.6		1035	58.7		
Weight	of Mold	gram	6399.2									
Weight	of Wet soil	gram	3783.4 4140.5			411	6.4	395	9.5			
Volume	of Mold	сс	21	24								
Wet Der	nsity	gr/cc	1.1	78	1.	1.94 1.86						
	1	Moisture	Conte	nt Det	ermin	ation						
Contain	er Code		HC11	G19	5	RG	O6-3	O5-2	O6-12	06-11		
Weight	of cont. + wet soil	gram	115	232	155	206	86.15	94.35	90.21	106		
Weight	of cont. + dry soil	gram	92.8	189	124	163.8	69.29	75.27	70.81	82.6		
Weight	of water	gram	21.8	42.9	30.5	42.16	16.86	19.08	19.40	23.9		
Weight	of container	gram	17.7	37.9	26	25.2	17.17	17.91	17.38	17.9		
Weight	of Dry soil	gram	75.1	151	98.4	138.6	52.12	57.36	53.43	64.7		
	Dry Dens	sity and N	Moistu	re Coi	ntent D	etermi	nation					
Moisture content % 28.98 28.36 30.94 30.42 32.35 33.26 36.31 36.91									36.91			
Avarege	Moisture content	%	28.	.67	30	.68	32	.81	36.	61		
Dry Der	gr/cc	1.3	38	1.	49	1.	46	1.3	86			
Maxim	um Dry Density	gr/cc	1.4	49								
Optimu	Optimum Moisture Content % 31.2											

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 127

	Test MODIFIED A ASUTO COMPACTION TEST (A ASUTO T 190)									
Test	MODIFIED AASHT	O COMP	ACTIO	ON TES	ST (AA	SHTC	T-180)		
Site	Seka Town Municipa	ality Office	e				Tes	t Pit	5@	1m
		Wet D	ensity	Determ	inatio	n				
		Unit								
Trial				1		2	3	3	4	4
Weight	of Mold + wet soil	gram	999	92.1	104	66.7	10455.2		102	31.5
Weight	of Mold	gram	6399.2							
Weight	of Wet soil	gram	3592.9		406	57.5	40	56	383	32.3
Volume	of Mold	сс	21	124						
Wet Der	nsity	gr/cc	1.	.69	1.9	92	1.9	91	1.3	80
		Moisture	Conte	nt Dete	rmina	tion				
Contain	er Code		G7	Π	DH	D	B1	P2	B3	HC51
Weight	of cont. + wet soil	gram	73.8	85.21	112	154	82.02	87.25	81.7	81.16
Weight	of cont. + dry soil	gram	61.2	70.24	89.2	124	65.47	68.83	64	63.52
Weight	of water	gram	12.6	14.97	22.7	30.1	16.55	18.42	17.7	17.64
Weight	of container	gram	17.4	18.01	17	29.6	18.24	17.49	17.4	17.68
Weight	of Dry soil	gram	43.8	52.23	72.2	94.3	47.23	51.34	46.6	45.84
	Dry Dens	sity and M	Aoistu	re Con	tent D	etermi	ination			
Moistur	e content	%	28.63	28.66	31.42	31.86	35.04	35.88	38.09	38.48
Avarege	Moisture content	%	28	.64	31	.64	35.	46	38.	.28
Dry Der	isity	gr/cc	1.	.31	1.45		1.41		1.	30
Maxim	am Dry Density	gr/cc	1.	.45						
Ontimu	m Moisture Content	3	\$2	í –						

Test	MODIFIED COMP	ACTION	TEST	(AASI	нто т	-180)		-		
Site	Seka Town Municip	ality Offic	ce				Tes	t Pit	5 @	2m
		Wet D	ensity	Detern	ninatio	n				
		Unit								
Trial Nu	mber			1	2		3		4	4
Weight of	of Mold + wet soil	gram	101	43.8	105	09.7	10438.3		102	78.2
Weight of	of Mold	gram	6508.9							
Weight of	of Wet soil	gram	363	34.9	411	0.5	403	9.1	38	79
Volume	of Mold	сс	21	24						
Wet Der	et Density gr/cc			71	1.9	94	1.	90	1.	83
	Moisture	Conte	nt Dete	rmina	tion					
Containe	er Code		P3	G	65	G19	С	UC	O3-2	P-3
Weight of	of cont. + wet soil	gram	122	116.8	191	199	112.06	92.28	163	140.6
Weight of	of cont. + dry soil	gram	102	100.6	156	161	92.16	73.37	131	110.4
Weight of	of water	gram	20.3	16.26	35.21	37.5	19.9	18.91	31.85	30.19
Weight of	of container	gram	25.2	37.91	37.5	34.2	32.86	16.72	41.3	25.98
Weight of	of Dry soil	gram	76.4	62.65	118	127	59.3	56.65	90.2	84.42
	Dry Dens	ity and N	loistu	re Cont	ent D	etermi	nation			
Moisture	e content	%	26.55	25.95	29.73	29.52	33.56	33.38	35.32	35.76
Avarege	Avarege Moisture content %			.25	29	.62	33.	47	35.	.54
Dry Der	Dry Density gr/cc		1.	36	1.49		1.4	42	1.	35
Maxim	Maximum Dry Density gr/cc			49						
Optimu	m Moisture Content	%	29	9.7						

Test MODIFIED AASHT	O COM	PACTI	ON TE	ST (A	ASHTO	D T-180))		-
Site Seka Town Municipa	ality Offic	e				Tes	t Pit	5@	3m
	Wet D	ensity	Detern	ninatio	n				
	Unit								
Trial			1	1	2	3	3	4	4
Weight of Mold + wet soil	gram	10038.6		10518.6		1049	95.4	102	88.8
Weight of Mold	gram	6399.2							
Weight of Wet soil	gram	36	39.4	411	9.4	409	6.2	388	39.6
Volume of Mold	сс	2	124						
Wet Density	gr/cc	1	.71	1.	94	1.93 1.83			83
1	Moisture	Conte	nt Dete	rmina	tion				
Container Code		W11	G3T3	O2-2	J41	P3	T1	P15	O2-
Weight of cont. + wet soil	gram	142	147.2	114	120	122.7	139.6	126	158.
Weight of cont. + dry soil	gram	122	125.5	95.2	102	102.2	115.6	101	125.4
Weight of water	gram	20	21.69	18.6	18.6	20.51	23.94	25.7	33.1
Weight of container	gram	40.8	37.89	28.3	32.7	35.97	37.65	25.4	28.7
Weight of Dry soil	gram	81.4	87.63	66.9	69	66.26	77.96	75.3	96.6
Dry Dens	ity and N	Aoistu	re Con	tent D	etermi	nation			
Moisture content	%	24.51	24.75	27.85	26.95	30.95	30.71	34.15	34.2
Avarege Moisture content	%	24	1.63	27	.40	30.	.83	34	.22
Dry Density	gr/cc	1	.37	1.:	52	1.4	47	1.	36
Maximum Dry Density	gr/cc	1	.52						
Optimum Moisture Content % 27.6									

r								-		
Test	MODIFIED AASHT	O COM	PACTI	ON TE	ST (AA	ASHTO	D T-180)		
Site	Seka High School						Test	t Pit	6@	1m
		Wet D	ensity	Detern	inatio	n				
		Unit								
Trial				1	2		3		4	4
Weight	of Mold + wet soil	gram	102	45.4	10547.7		1054	14.6	104	96.5
Weight	of Mold	gram	639	99.2						
Weight	of Wet soil	gram	384	46.2	414	8.5	414	5.4	409	7.3
Volume	of Mold	сс	21	24						
Wet Der	nsity	gr/cc	1.	81	1.	95	1.9	95	1.93	
	1	Moisture	Conte	nt Dete	rmina	tion				
Contain	er Code		G19	J41	A-13	T2	P66	G	2	P15
Weight	of cont. + wet soil	gram	89.8	138.5	205	221	198.7	175.6	183	248.8
Weight	of cont. + dry soil	gram	73.6	114.7	163	175	155.7	137.1	142	188.4
Weight	of water	gram	16.2	23.87	41.9	45.8	43.02	38.58	41.1	60.42
Weight	of container	gram	17.8	32.74	36.6	38.4	37.45	32.39	34.6	33.56
Weight	of Dry soil	gram	55.8	81.91	126	137	118.2	104.7	108	154.8
	Dry Dens	ity and N	loistu	re Cont	tent D	etermi	nation			-
Moistur	e content	%	29.02	29.14	33.19	33.46	36.39	36.86	38.21	39.03
Avarege	Moisture content	%	29	.08	33.	.32	36.	62	38	.62
Dry Der	nsity	gr/cc	1.	40	1.46		1.4	43	1.	39
Maxim	um Dry Density	gr/cc	1.	46						
Optimum Moisture Content % 33.5										

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 128

Test	Test MODIFIED COMPACTION TEST (AASHTO T-180)												
Site	Seka High School						Test	t Pit	6@	2m			
		Wet D	ensity	Detern	ninatio	n							
		Unit											
Trial Nu	mber			1	1	2	3	3	4	1			
Weight	of Mold + wet soil	gram	101	75.1	10475.7		10465.5		103	73.3			
Weight	of Mold	gram	650	08.9									
Weight	of Wet soil	gram	36	56.2	407	6.5	406	6.3	397	4.1			
Volume	of Mold	сс	21	124									
Wet Der	nsity	gr/cc	1.	.73	1.	92	1.91		1.	87			
	1	Moisture	Conte	nt Dete	rmina	tion							
Contain	er Code		P15	O2-2	14	UC	HC11	С	G19	65			
Weight	of cont. + wet soil	gram	135	126.7	152	122	129.94	201.2	164	250.5			
Weight	of cont. + dry soil	gram	114	108.1	123	99.7	102.9	160.5	130	195.6			
Weight	of water	gram	20.9	18.6	29.2	22.8	27.04	40.72	33.11	54.94			
Weight	of container	gram	25.4	28.74	17.5	16.7	17.67	32.86	34.3	37.51			
Weight	of Dry soil	gram	88.7	79.32	106	83	85.23	127.7	96.2	158.1			
	Dry Dens	sity and N	Aoistu	re Cont	tent D	etermi	nation						
Moistur	Moisture content % 23.51 23.45 27.64 27.45 31.73 31.90 34.43 34.76												
Avarege	Moisture content	%	23	.48	27	.54	31.	81	34.	.59			
Dry Der	isity	gr/cc	1.40		1.50		1.4	45	1.	39			
Maxim	um Dry Density	gr/cc	1.	.50									
Optimu	Optimum Moisture Content % 27.6												

Test	MODIFIED AASH	то сом	PACT	ION TE	ST (A	ASHT	O T-18	0)		
Site	Seka High School						Tes	t Pit	6@	3m
		Wet D	ensity	Detern	inatio	n				
		Unit								
Trial				1		2	3	3	4	4
Weight	of Mold + wet soil	gram	100)47.3	105	09.4	1043	32.3	103	63.5
Weight	of Mold	gram	63	99.2						
Weight	of Wet soil	gram	36	48.1	4110.2		408	3.1	- 396	54.3
Volume	of Mold	сс	2	124						
Wet Der	nsity	gr/cc	1	.72	1.	94	1.9	92	1.	87
	Moisture	Conte	nt Dete	rmina	tion					
Contain	er Code		P15	P66	ZE	2	A-1C	G	T2	F
Weight	of cont. + wet soil	gram	163	211.1	119	147	243.2	197.7	137	146.1
Weight	of cont. + dry soil	gram	140	179.4	101	124	197.5	158.9	112	118.2
Weight	of water	gram	23.6	31.74	17.8	23.3	45.74	38.87	25.3	27.91
Weight	of container	gram	33.6	37.46	33.1	34.6	49.75	32.15	38.4	36.41
Weight	of Dry soil	gram	106	141.9	68.1	89.4	147.8	126.7	73.6	81.79
	Dry Dens	sity and N	Ioistu	re Con	tent D	etermi	nation			
Moistur	e content	%	22.18	22.37	26.06	26.10	30.96	30.68	34.33	34.12
Avarege	Moisture content	%	22	2.27	26	.08	30.	82	34	.23
Dry Der	sity	gr/cc	1	.40	1.53		1.4	47	1.	39
Maxim	um Dry Density	gr/cc	1.53							
Optimu	m Moisture Content	%	26.4							

Test	est MODIFIED AASHTO COMPACTION TEST (AASHTO T-180)										
Site	New Generation KG	School	Test Pit 7 @ In								
		Wet D	ensity	Detern	ninatio	n					
		Unit									
Trial				1	1	2	3	3	4	4	
Weight of	of Mold + wet soil	gram	100	41.5	103	60.7	103	34.6	101	94.3	
Weight of	of Mold	gram	639	99.2							
Weight of	of Wet soil	gram	364	42.3	396	51.5	3935.4		379	3795.1	
Volume	of Mold	сс	21	24							
Wet Der	nsity	gr/cc	1.	71	1.	87	1.3	85	1.	79	
Moisture Content Determination											
Containe	er Code		10G	47	G19	W11	C13T2	T2	B1	O4-3	
Weight of	of cont. + wet soil	gram	102	90.69	134	145	139.87	100.6	100	102	
Weight of	of cont. + dry soil	gram	82	73.5	109	119	112.1	78.59	77.6	78.75	
Weight of	of water	gram	19.6	17.19	25.1	26.4	27.78	21.97	22.6	23.26	
Weight	of container	gram	17.7	17.07	34.3	40.8	34.95	17.58	18.2	17.7	
Weight of	of Dry soil	gram	64.3	56.43	74.5	78.2	77.14	61.01	59.3	61.05	
	Dry Dens	ity and N	/loistu	re Cont	tent D	etermi	nation				
Moisture	e content	%	30.48	30.46	33.67	33.76	36.01	36.01	38.03	38.10	
Avarege	Moisture content	%	30	.47	33	.71	36.	.01	38	.07	
Dry Der	isity	gr/cc	1.	31	1.39		1.3	36	1.	29	
Maxim	um Dry Density	gr/cg	1.	39							
Optimu	m Moisture Content	%	34	4.2							

Test MODIFIED AASHTO COMPACTION TEST (AASHTO T-180)											
Site New Generation KG	School	Test Pit 7 @ 2m									
	Wet D	ensity	Detern	inatio	n						
	Unit										
Trial			1	1	2	3	3	4	1		
Weight of Mold + wet soil	gram	100	38.4	104	44.2	1042	28.8	103	99.1		
Weight of Mold	gram	63	99.2								
Weight of Wet soil	gram	36	39.2	40	45	402	9.6	6 399			
Volume of Mold	сс	21	124								
Wet Density	gr/cc	1.	.71	1.90		1.90		1.	88		
Moisture Content Determination											
Container Code		A-13	O3-1	Μ	P65	ZE	CS3	P66	P6		
Weight of cont. + wet soil	gram	109	104.7	120	127	134.70	150.9	131	157.8		
Weight of cont. + dry soil	gram	94.8	91.27	102	107	109.2	121.1	105	124.2		
Weight of water	gram	14.5	13.46	18.1	20.1	25.48	29.8	25.9	33.62		
Weight of container	gram	36.6	36.71	40.2	37.8	33.08	32.88	37.5	37.7		
Weight of Dry soil	gram	58.3	54.56	62	68.8	76.14	88.22	67.8	86.51		
Dry Dens	sity and N	/loistu	re Con	tent D	etermi	nation					
Moisture content	%	24.96	24.67	29.11	29.15	33.46	33.78	38.19	38.86		
Avarege Moisture content	%	24	.81	29	.13	33.	.62	38.	.53		
Dry Density	gr/cc	1.	.37	1.47		1.4	42	1.	36		
Maximum Dry Density	gr/cc	1.	.47								
Optimum Moisture Content	%	29	9.8								

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 129

Test	MODIFIED COM	FIED COMPACTION TEST (AASHTO T-180)										
Site	New Generation KG	School	School Test Pit 7 @ 31									
		Wet D	ensity]	Detern	ninatio	n						
	Unit											
Trial Nu	mber			1		2	3	3	4	1		
Weight of	of Mold + wet soil	gram	101	08.1	105	19.3	1050	01.3 10336		36.7		
Weight of	of Mold	gram	650)8.9								
Weight of	of Wet soil	gram	359	99.2	412	20.1	410	2.1	3937.5			
Volume	of Mold	сс	21	24								
Wet Der	nsity	gr/cc	1.	69	1.	94	1.9	93	1.	85		
Moisture Content Determination												
Containe	er Code		O3-5	Α	O3-3	O5-1	O6-2	NB	29	O2-3		
Weight of	of cont. + wet soil	gram	138	171.6	82.6	91	126.48	114.6	85.1	107		
Weight of	of cont. + dry soil	gram	116	146.6	68.4	74.8	99.2	91.05	67.3	83.38		
Weight of	of water	gram	22.4	25	14.2	16.2	27.28	23.59	17.83	23.58		
Weight of	of container	gram	17.6	37.71	17.5	17.5	17.15	17.59	17.6	17.65		
Weight of	of Dry soil	gram	97.9	108.8	50.9	57.3	82.05	73.46	49.7	65.73		
	Dry Dens	ity and N	loistu	re Con	tent D	etermi	nation					
Moisture	e content	%	22.89	22.97	27.88	28.21	33.25	32.11	35.88	35.87		
Avarege	Moisture content	%	22	.93	28	.04	32.68		35.	.87		
Dry Der	sity	gr/cc	1.	38	1.	51	1.4	46	1.36			
Maxim	ım Dry Density	gr/cc	1.	51								
Optimu	Detimum Moisture Content % 28.7											

Test	MODIFIED AASHTO COM	IPACTION	TEST (A	AASHTC	T-180)								
Site	Seka Hospital						Tes	t Pit	8 @	/ 1 m			
		Wet D	$\begin{tabular}{ c c c c c c c } \hline Test Pit & 8 @ 1 m \\ \hline Test Pit & 8 @ 1 m \\ \hline \end{tabular}$										
	Unit												
Trial Nu	umber			1	1	2		3		4			
Weight	of Mold + wet soil	gram	100	95.6	104	42.3	104	31.2	103	324.6			
Weight	of Mold	gram	639	99.2									
Weight	of Wet soil	gram	369	96.4	404	3.1	40	32	39	25.4			
Volume	e of Mold	сс	21	124									
Wet De	ensity	gr/cc	1.	.74	1.	90	1.	90	1.	.85			
Moisture Content Determination													
Contain	ner Code		B1	T2	O2-3	GS3	1A	D	A-1C	9			
Weight	of cont. + wet soil	gram	68	133.6	119	130	113.5	148.6	174	165.20			
Weight	of cont. + dry soil	gram	56.8	107.0	93.3	102	88.12	117.01	140	128.00			
Weight	of water	gram	11.2	26.57	25.6	28.1	25.37	31.56	34.30	37.20			
Weight	of container	gram	18.2	17.57	17.7	17.5	17.73	29.58	49.7	32.39			
Weight	of Dry soil	gram	38.6	89.47	75.6	84.3	70.39	87.43	90.2	95.61			
	Dry Den	sity and I	Moistu	ire Cor	tent D	eterm	ination						
Moistur	re content	%	29.10	29.70	33.85	33.33	36.04	36.10	38.01	38.91			
Avarege	e Moisture content	%	29	9.4	33	.6	36	5.1	3	8.5			
Dry Der	nsity	gr/cc	1.	.34	1	42	1.4	40	1	.33			
Maxim	um Dry Density	gr/cc	1.	42									
Optim	am Moisture Content	%	34	4.5									

Test MODIFIED AASHTO	O COMPA	CTIO	N TEST	Γ (AAS	нто	T-180)				
Site Seka Hospital						Tes	t Pit	8 @	⊉ 2m	
	Wet I	Density	Deteri	ninati	on					
	Unit									
Trial Number			1	1	2	1	3		4	
Weight of Mold + wet soil	gram	100	84.8	103	74.7	103	58.5	103	810.9	
Weight of Mold	gram	639	99.2							
Weight of Wet soil	gram	368	35.6	397	5.5	395	9.3	39	11.7	
Volume of Mold	сс	21	24							
Wet Density	gr/cc	1.	74	1.	87	1.3	86	1	.84	
Moisture Content Determination										
Container Code		14	P15	O2-2	HC11	C3	T2	P2	SG=3	
Weight of cont. + wet soil	gram	89	106	115	104	123.4	99.85	92.4	139.82	
Weight of cont. + dry soil	gram	73.7	88.78	94.5	83.8	98.99	79.25	72.6	109.44	
Weight of water	gram	15.3	17.25	20.1	20	24.45	20.6	19.79	30.38	
Weight of container	gram	17.5	25.42	28.7	17.7	26.75	17.58	17.7	25.4	
Weight of Dry soil	gram	56.3	63.36	65.7	66.1	72.24	61.67	54.9	84.04	
Dry Dei	nsity and i	Moistu	ire Con	ntent D	eterm	ination				
Moisture content	%	27.17	27.23	30.59	30.29	33.85	33.40	36.02	36.15	
Avarege Moisture content	%	27	.20	30	.44	33.	.62	36	5.09	
Dry Density	gr/cc	1.	36	1.43 1.40		1	.35			
Maximum Dry Density	gr/cc	1.	43							
Optimum Moisture Content	%	- 30	0.8							

						_			_			
Test	st MODIFIED AASHTO COMPACTION TEST (AASHTO T-180)											
Site	Seka Hospital						Tes	t Pit	8 @	⊉ 3m		
		Wet I	Density	Deteri	ninati	on						
		Unit										
Trial Nu	ımber			1	1	2	1	3		4		
Weight	of Mold + wet soil	gram	100	90.6	104	10443.7 10		93.6	10228.7			
Weight	of Mold	gram	639	99.2								
Weight	of Wet soil	gram	369	91.4	4044.5		3994.4		38	29.5		
Volume	of Mold	сс	21	24								
Wet De	nsity	gr/cc	1.	74	1.	90	1.3	88	1	.80		
Moisture Content Determination												
Contain	er Code		HC11	G19	5	RG	O6-3	O5-2	O6-12	O6-16		
Weight	of cont. + wet soil	gram	116	233.3	154	205	88.12	91.3	92.2	107.26		
Weight	of cont. + dry soil	gram	95.2	191.1	124	164	70.89	73.19	73	84.68		
Weight	of water	gram	21.3	42.2	29.6	41.5	17.23	18.11	19.24	22.58		
Weight	of container	gram	17.7	37.93	26	25.2	17.17	17.91	17.4	17.93		
Weight	of Dry soil	gram	77.5	153.2	98.4	139	53.72	55.28	55.6	66.75		
	Dry Den	sity and I	Moistu	re Cor	ntent D	eterm	ination					
Moistur	e content	%	27.42	27.55	30.10	29.94	32.07	32.76	34.60	33.83		
Avarege	Moisture content	%	27	.49	30	.02	32	.42	34	4.22		
Dry Der	nsity	gr/cc	1.	36	1.	46	1.4	42	1	.34		
Maxim	um Dry Density	gr/cc	1.	46								
Optimu	m Moisture Content	ontent % 30.5										

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering 130
Test	est MODIFIED AASHTO COMPACTION TEST (AASHTO T-180)										
Site	Seka Preparatory So	chool					Test	Pit	9 @	0 1m	
		Wet L	Density	Deteri	ninati	on					
		Unit									
Trial			1	1	2	3	3		4		
Weight of	of Mold + wet soil	gram	100	52.4	102	67.7	1038	30.6	103	320.5	
Weight of	of Mold	gram	63	99.2							
Weight of	of Wet soil	gram	36	53.2	386	68.5	398	1.4	39	21.3	
Volume	of Mold	cc	21	124							
Wet Der	nsity	gr/cc	1.	72	1.5	82	1.8	37	1	.85	
Moisture Content Determination											
Containe	er Code		G19	J41	A-13	T2	P66	G	2	P15	
Weight of	of cont. + wet soil	gram	91.8	141.2	205	222	197.5	174.3	185	245.89	
Weight of	of cont. + dry soil	gram	74.8	116.3	164	177	155.7	137.1	143	186.24	
Weight of	of water	gram	17	24.96	41.5	44.8	41.74	37.2	41.6	59.65	
Weight of	of container	gram	17.8	32.74	36.6	38.4	37.45	32.39	34.6	33.56	
Weight of	of Dry soil	gram	57	83.51	127	138	118.3	104.7	109	152.68	
	Dry Den	sity and I	Moistu	ire Con	tent D)eterm	ination				
Moisture	e content	% 29.83 29.89 32.58 32.37 35.29 35.54 38.28							39.07		
Avarege	Moisture content	% 29.86 32.47				35.	42	38	3.68		
Dry Den	sity	gr/cc 1.32			1.1	37	1.	38	1	.33	
Maxim	um Dry Density	gr/cc 1.38									
Optimu	m Moisture Content	t % 34.5									

Test	MODIFIED COMPACTION TEST (AASHTO T-180)											
Site	Seka Preparatory Sc	hool					Test P	'it	9@2	m		
		Wet D	ensity	Deteri	ninati	on						
		Unit										
Trial Nu	mber			1	1	2	3	3		4		
Weight	of Mold + wet soil	gram	102	281.1	104	37.4	105	45.5	104	190.3		
Weight	of Mold	gram	65	08.9								
Weight	Weight of Wet soil gram 3772.2 4038.2 4146.3 4091.1									91.1		
Volume	Volume of Mold cu.cm 2124											
Wet Density gr/cu.cm 1.78 1.90 1.95 1.93									.93			
Moisture Content Determination												
Contain	Container Code P15 02-2 14 UC HC11 C G19 65									65		
Weight	of cont. + wet soil	gram	136	127.9	153	122	128.34	201.8	164	253.48		
Weight	of cont. + dry soil	gram	110	105.1	119	95.7	98.9	156.5	127	192.58		
Weight	of water	gram	25.6	22.86	34.2	26.2	29.44	45.25	36.79	60.9		
Weight	of container	gram	25.4	28.74	17.5	16.7	17.67	32.86	34.3	37.51		
Weight	of Dry soil	gram	84.7	76.32	102	79	81.23	123.7	93.2	155.07		
	Dry Der	sity and I	Moistu	ire Con	tent D	eterm	ination	l				
Moistur	e content	% 30.17 29.95 33.71 33.13 36.24 3							39.49	39.27		
Avarege	Moisture content	% 30.06 33.42				.42	36	.42	39	9.38		
Dry Der	isity	gr/cu.cm 1.37 1.4			42	1.4	43	1	.38			
Maxim	um Dry Density	gr/cu.cm 1.43										
Ontimu	96	3	54									

Test	Test MODIFIED AASHTO COMPACTION TEST (AASHTO T-180)									
Site	Seka Preparatory Sc	hool					Tes	t Pit	9 @	∮ 3m
		Wet D	ensity	Deteri	ninati	on				
		Unit								
Trial				1				3		4
Weight	of Mold + wet soil	gram	10073.3 10302.4			02.4	104	70.3	103	347.5
Weight	of Mold	gram	63	99.2						
Weight	of Wet soil	gram	36	74.1	390)3.2	407	'1.1	39	48.3
Volume	of Mold	сс	2	124						
Wet Der	nsity	gr/cc	1	.73	1.	84	1.	92	1.	.86
		Moisture	e Cont	ent Det	ermin	ation				
Container Code P15 P66 ZE 2						2	A-1C	G	T2	F
Weight	of cont. + wet soil	gram	160	205.9	114	144	232.8	190.4	131	140.22
Weight	of cont. + dry soil	gram	133	170.3	95.9	119	188.5	152	107	113.2
Weight	of water	gram	26.7	35.61	18.2	24.5	44.33	38.45	24.2	27.02
Weight	of container	gram	33.6	37.46	33.1	34.6	49.75	32.15	38.4	36.41
Weight	of Dry soil	gram	99.4	132.8	62.8	84.4	138.8	119.8	68.6	76.79
	Dry Den	sity and I	Moistu	ire Cor	ntent D	eterm	ination			
Moisture	re content % 26.87 26.81 28.96 29.07							32.09	35.23	35.19
Avarege	Moisture content	%	26	5.84	29	.02	32	.02	35	5.21
Dry Density gr/cc			1	.36	1.42		1.	45	1.	.37
Maxim	Maximum Dry Density gr/cc			.45						
Optimu	m Moisture Content	%	3	1.6						

Test	Test MODIFIED COMPACTION TEST (AASHTO T-180)									
Site	Lideta Orthodox Ch	urch					Tes	t Pit	10 0	@ 1m
		Wet L	ensity	Deter	ninati	on				
		Unit								
Trial			1			2	1	3		4
Weight	of Mold + wet soil	gram	10053.4 1		10344.2		103	35.8	103	801.1
Weight	of Mold	gram	639	99.2						
Weight	of Wet soil	gram	36	54.2	39	45	393	6.6	39	01.9
Volume	of Mold	сс	21	24						
Wet Der	nsity	gr/cc 1.72 1.86			1.85			.84		
		Moisture	Cont	ent Det	ermin	ation				
Contain	er Code		A-13	O3-1	Μ	P65	ZE	CS3	P66	P6
Weight	of cont. + wet soil	gram	109	106.6	122	128	133.87	153.4	129	154.86
Weight	of cont. + dry soil	gram	91.8	89.97	101	105	106.2	120.1	103	121.51
Weight	of water	gram	17.3	16.6	21.3	23.6	27.67	33.25	25.9	33.35
Weight	of container	gram	36.6	36.71	40.2	37.8	33.08	32.88	37.5	37.7
Weight	of Dry soil	gram	55.3	53.26	60.6	66.8	73.12	87.22	65.3	83.81
	Dry Den	sity and I	Moistu	ire Cor	ntent D	eterm	ination			
Moistur	e content	% 31.29 31.17 35.08 35.29 37.84 38.12 39.62 39							39.79	
Avarege	Moisture content	%	31	.23	35	.19	37	.98	39	9.71
Dry Density gr/cc			1.	31	1.37		1.1	34	1	.31
Maximum Dry Density gr/c			1.	.37						
Optimu	m Moisture Content	% 35.6								

Test	Test MODIFIED COMPACTION TEST (AASHTO T-180)										
Site	Lideta Orthodox Ch	urch					Test	t Pit	10 0	@ 2m	
		Wet D	ensity	Deter	ninatio	on					
		Unit									
Trial Nu	mber		1 2			2	3	3		4	
Weight of	of Mold + wet soil	gram	101	30.1	103	97.3	103	78.3	10	188	
Weight of	of Mold	gram	650	08.9							
Weight o	of Wet soil	gram	362	21.2	399	98.1	397	9.1	378	88.8	
Volume	of Mold	сс	21	124							
Wet Der	nsity	gr/cc	1.	.70	1.3	88	1.3	87	1.	78	
Moisture Content Determination											
Containe	er Code		O3-5	Α	O3-3	O5-1	06-2	NB	29	O2-3	
Weight of	of cont. + wet soil	gram	137	171.6	81.6	89.7	116.48	113.3	83.9	104.52	
Weight o	of cont. + dry soil	gram	110	140.6	65.7	71.7	90.2	88.05	65.7	80.38	
Weight o	of water	gram	27.8	31.01	15.9	18	26.28	25.27	18.29	24.14	
Weight of	of container	gram	17.6	37.71	17.5	17.5	17.15	17.59	17.6	17.65	
Weight o	of Dry soil	gram	91.9	102.8	48.2	54.2	73.05	70.46	48.1	62.73	
	Dry Den	sity and l	Moistu	ire Cor	tent D	eterm	ination				
Moisture	e content	% 30.26 30.15 33.07 33.10 35.98 35.86 38.02 38.4							38.48		
Avarege	Moisture content	% 30.21 33.09				35.	.92	38	.25		
Dry Den	isity	gr/cc 1.31 1.41			41	1.	38	1.	.29		
Maxim	im Dry Density	gr/cc 1.41									
Optimu	m Moisture Content	% 33.6									

Test	Test MODIFIED COMPACTION TEST (AASHTO T-180)									
Site	Lideta Orthodox Ch	urch					Tes	t Pit	10 0	@ 3m
		Wet D)ensity	Deteri	ninati	on				
		Unit								
Trial				1	2	2	3	3		4
Weight of	of Mold + wet soil	gram	10070.5 10355.7			55.7	105	29.6	10365.3	
Weight of Mold gram 6399.2										
Weight of	of Wet soil	gram	36	71.3	395	6.5	413	0.4	39	66.1
Volume	of Mold	cc	21	24						
Wet Der	nsity	gr/cc	1.	73	1.	86	1.9	94	1.	.87
Moisture Content Determi						ation				
Containe	er Code		10G	47	G19	W11	C13T2	T2	B1	O4-3
Weight o	of cont. + wet soil	gram	102	91.46	134	145	139.95	105.3	101	103.95
Weight of	of cont. + dry soil	gram	85	76.61	112	122	114.2	83.84	78.9	80.55
Weight of	of water	gram	16.8	14.85	22	22.9	25.76	21.43	22.4	23.4
Weight of	of container	gram	17.7	17.07	34.3	40.8	34.95	17.58	18.2	17.7
Weight of	of Dry soil	gram	67.3	59.54	77.5	81.2	79.24	66.26	60.6	62.85
	Dry Den	sity and l	Moistu	ire Cor	tent D	etern	ination			
Moisture content % 24.99 24.94 28.38 28.14							32.51	32.34	37.00	37.23
Avarege	Moisture content	%	24	.96	28	.26	32.	.43	37	7.12
Dry Density gr/cc			1.	38	1.4	45	1.4	47	1.	.36
Maximum Dry Density gr/cc			1.	47						
Optimu	m Moisture Content	%	3	1.5						

Appendix N

California Bearing Ratio (CBR) Laboratory Analysis and Test result of all Samples

Test	Test California Bearing Ratio (CBR) Test, (AASHTO T 193-93)													
Site	Agricultural Offic	e									Test Pit		TP1	@ 1m
				V	Vet Der	isity De	te rmina	tion						
		Units												
Mold Nun	nber			1				2			3			
Mass of M	ſold	gram		6524.9				662	9.7		6452.9			
Volume of	Mold	cc		2124				212	24			212	24	
Number of	f Layer			5				5				5		
Number of	f Blows per Layer			10 30						6	5			
Condition	Condition of Sample Before Soaking After So				oaking	Before	Soaking	After S	oaking	Before	Soaking	After S	Soaking	
Weight of	Veight of Mold + wet soil gram 10147			103	98.7	104	35.8	105	96.6	104	04.3	105	88.1	
Weight of	Wet soil	gram	362	2.1	3873.8		3806.1 3966.9		6.9	395	1.4	4135.2		
Wet Densi	ity	g/cc	1.	71	1.3	82	1.	79	1.	87	1.	86	1.	95
			Moi	sture Co	ontent a	nd Dry	Density Determination							
Container	Code		G-56	SR	P10	O1-3	Μ	S-2	O6-1	O6-12	G-19	Ν	13	SB
Weight of	cont. + wet soil	gram	78.2	85.0	107.0	96.3	123.3	85.4	93.7	99.5	81.8	85.1	93.9	116.9
Weight of	cont. + dry soil	gram	65.9	70.9	82.5	74.3	103.8	69.9	73.2	77.3	67.0	69.1	73.6	90.1
Weight of	water	gram	12.3	14.1	24.5	22.1	19.4	15.5	20.6	22.2	14.8	16.0	20.3	26.8
Weight of	Veight of container gram 25.2 25.3 17.5 17.		17.5	40.2	17.9	17.5	17.4	17.8	16.8	18.2	18.4			
Weight of	eight of Dry soil gram 40.7 45.7 65.0 56.7		56.7	63.6	52.0	55.7	59.9	49.2	52.3	55.4	71.7			
Moisture c	loisture content % 30.4 30.9 37.7 38.9		38.9	30.6	29.8	36.9	37.0	30.1	30.6	36.6	37.4			
Avarege N	Aoisture content	%	30	30.61 38.32		30.19		36.94		30.35		36.98		
Dry Densit	ty	g/cc	1.	1.31 1.32			1.	38	1.1	36	1.43		1.42	

	Summa	ary of CB	R Value fi	rom the C	BR Test Software				
CBR Te	est Summa	Plot of Dry Density Versus Soaked CBR Value							
	Units				Dansity Versus Cooked CDD				
Number of blows		10	30	65	Dry Density Versus Soaked CBR				
Dry Density	g/cc	1.31	1.38	1.43	value				
Specimen Load @ 2.54 mm	kN	0.69	0.881	1.124					
Specimen Load @ 5.08 mm	kN	0.97	1.205	1.468	CBR _s =7%				
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	8.0				
Standard Load @ 5.08 mm	kN	20	20	20					
Soaked CBR value @ 2.54	%	5.2	6.7	8.5					
Soaked CBR value @ 5.08	%	4.9	6.0	7.3					
Larger Soaked CBR Value	%	5.2	6.7	8.5	4.0				
Data from Modifi	ied Compa	action Pro	ctor Test		й ₂₀				
OMC	%		32.7						
MDD	g/cc		1.46		0.0				
Density required	%		95		1.28 1.38 1.48				
Target Density required	g/cc		1.39		Dry Density (g/cc)				
CBR Value at Target Density	%		7.0						

133

Test	st California Bearing Ratio (CBR) Test, (AASHTO T 193-93)													
Site	Agricultural Of	fice									Test Pit		TP1	@ 2m
	Wet Density Determination													
		Units												
Mold Nun	nber			1				2	2			3	1	
Mass of M	lold	gram		650	8.6			655	2.1			64	36	
Volume of	Mold	сс		2124				212	24			2060	.214	
Number of	f Layer			5				5	i			5	i	
Number of	f Blows per Layer			10				3	0			6	5	
Condition	Condition of Sample Before Soaking A			After S	oaking	Before	Soaking	After S	Soaking	Before S	Soaking	After S	Soaking	
Weight of	Mold + wet soil	gram	972	26.2	102	10.7	102	91.1	104	30.1	104	89.4	106	18.8
Weight of	Wet soil	gram	321	7.6	5 3702.1		3739		3878		4053.4		4182.8	
Wet Densi	ity	g/cc	1.	51	1.	74	1.	76	1.	83	1.9	91	1.	.97
			Moi	isture C	ontent a	and Dry	⁷ Density Determination				-			-
Container	Code		S-3	P65	P2	06-11	T1	P6	06-3	14	O2-3	14	AT	G-21
Weight of	cont. + wet soil	gram	103.07	154.36	101.12	93.51	152.84	144.38	92.83	102.64	98.44	95.12	94.58	102.93
Weight of	cont. + dry soil	gram	83.55	128.52	77.19	70.75	124.35	117.80	72.47	79.91	78.91	76.39	73.89	80.37
Weight of	water	gram	19.52	25.84	23.93	22.75	28.49	26.58	20.37	22.73	19.53	18.74	20.70	22.55
Weight of	Veight of container gram 17.59 37.82 17.66 17.55		17.93	31.64	31.72	17.15	17.42	17.67	17.53	17.55	17.98			
Weight of	/eight of Dry soil gram 65.96 90.70 59.53 52.82		52.82	92.71	86.08	55.32	62.49	61.24	58.86	56.33	62.40			
Moisture c	oisture content % 29.59 28.49 40.20 43.08		43.08	30.73	30.88	36.82	36.38	31.89	31.83	36.74	36.14			
Avarege N	Ioisture content	%	29	29.04 41.64		30.80		36.60		31.86		36.44		
Dry Densit	ty	g/cc	1.	1.17 1.23		1.35		1.34		1.45		1.44		

Summary of CBR Value from the CBR Test Software											
CBR Te	st Summa	ry Value			Plot of Dry Density Versus Soaked CBR Value						
	Units				Dry Density Versus Soaked CBR						
Number of blows		10	30	65	Value						
Dry Density	g/cc	1.17	1.35	1.45	Value						
Specimen Load @ 2.54 mm	kN	0.358	0.861	1.33	12.0						
Specimen Load @ 5.08 mm	kN	0.424	1.151	1.588	10.0						
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	\Box CBR _S =7.4 %						
Standard Load @ 5.08 mm	kN	20	20	20	8.0						
Soaked CBR value @ 2.54	%	2.7	6.5	10.1	8 60						
Soaked CBR value @ 5.08	%	2.1	5.8	7.9	0.0						
Larger Soaked CBR Value	%	2.7	6.5	10.1	¥ 4.0						
Data from Modifi	ed Compa	action Pro	ctor Test		Ň						
OMC	%		32.5		2.0						
MDD	g/cc		1.45		0.0						
Density required	%		95		1.1 1.2 1.3 1.4	1.5					
Target Density required	g/cc		1.38		Dry Density (g/cc)						
CBR Value at Target Density	%		7.4								

134

Test	Test California Bearing Ratio (CBR) Test, (AASHTO T 193-93)													
Site	Agricultural Offi	ice									Test Pit		TP1 (@ 3m
					Wet De	nsity D	etermina	ation						
		Units												
Mold Nur	nber			1				2	2		3			
Mass of M	ſold	gram		6504.3				662	8.6		6533.1			
Volume of	f Mold	cc		2124				21	24		2060.214			
Number o	f Layer			5				4	5			4	5	
Number o	f Blows per Layer			10				3	0			6	5	
Condition	Condition of Sample Before Soaking			After S	oaking	Before a	Soaking	After S	oaking	Before	Soaking	After S	oaking	
Weight of	Weight of Mold + wet soil gram 10060.9			60.9	1042	22.6	1064	41.6	108	76.3	106	62.4	10828.5	
Weight of	Wet soil	gram	355	56.6	391	8.3	4013 424			4247.7		4129.3		5.4
Wet Dens	ity	g/cc	1.	67	1.5	84	1.5	89	2.0	00	1.	94	2.	02
			M	oisture (Content	and Dry	Density	y Deter	mination	1				
Container	Code		ZE	A16	T1	G3T3	C3	P2	D	E	P10	NB	12	Ν
Weight of	cont. + wet soil	gram	144.48	147.64	154.77	141.12	109.02	121.51	137.53	147.13	93.45	92.58	108.54	111.50
Weight of	cont. + dry soil	gram	118.90	121.30	119.21	109.22	90.63	98.67	107.25	111.66	76.74	76.18	87.21	86.62
Weight of	water	gram	25.58	26.34	35.56	31.91	18.39	22.85	30.29	35.47	16.71	16.40	21.33	24.87
Weight of	Weight of container gram 33.08 32.86 37.65 37.9		37.93	26.73	17.65	27.22	18.25	17.55	17.60	28.14	18.19			
Weight of	Veight of Dry soil gram 85.82 88.44 81.56 71.2		71.29	63.90	81.01	80.02	93.41	59.19	58.58	59.07	68.43			
Moisture of	loisture content % 29.80 29.79 43.60 44.75		44.75	28.78	28.20	37.85	37.98	28.23	28.00	36.10	36.35			
Avarege N	ege Moisture content % 29.80 44.17		17	28.49		37.91		28.12		36.23				
Dry Densi	ty	g/cc 1.29 1.28		28	1.47 1.			45	5 1.52		1.48			

	Summary of CBR Data from CBR Test Software										
Pen	etration vs	Load data	a	Plot of Penetration Versus Load Curve							
Penetration	Speci	imen Load	(kN)	Ponotration Versus Load Curve							
(mm)	10 blows	30 blows	65 blows	3.5							
0	0	0	0	3 — 65 Blows							
0.64	0.207	0.432	0.649								
1.27	0.312	0.786	1.103	Z - 10 Blows							
1.91	0.39	1.058	1.463	.н. 15							
2.54	0.483	1.26	1.702								
3.81	0.597	1.561	2.002								
5.08	0.692	1.762	2.197	0.3							
7.62	0.87	2.06	2.542	0 4 8 12 16							
10.16	1.032	2.338	2.815	Penetration in mm							
12.7	1.127	2.574	3.047								

Summary of CBR Value from the CBR Test Software												
CBR Tes	st Summ	ary Valu	e		Plot of Dry Density Versus Soaked CBR Value							
	Units				Dry Donsity Versus Seaked CBP							
Number of blows		10	30	65	Value							
Dry Density	g/cc	1.29	1.47	1.52	Value							
Specimen Load @ 2.54 mm	kN	0.483	1.26	1.702	14.0							
Specimen Load @ 5.08 mm	kN	0.692	1.762	2.197	12.0							
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	\overline{c} 10.0 CBRs= 8 %							
Standard Load @ 5.08 mm	kN	20	20	20								
Soaked CBR value @ 2.54	%	3.7	9.5	12.9	8.0 <							
Soaked CBR value @ 5.08	%	3.5	8.8	11.0	B 6.0							
Larger Soaked CBR Value	%	3.7	9.5	12.9	Jak							
Data from Modifi	ed Comp	action Pro	octor Test		S 4.0							
ОМС	%		28.8		2.0							
MDD	g/cc		1.5									
Density required	%		95		1.1 1.2 1.3 1.4 1.5 1.6							
Target Density required	g/cc		1.43		Dry Density (g/cc)							
CBR Value at Target Density	%		8.0									

JU,JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test	California Bearing	g Ratio (CBR) T	est, (AA	SHTO 7	Г 193-9	3)							
Site	Seka Town Bus	Station									Test Pi	t	TP2	@ 1m
				1	Wet De	ensity D	etermiı	nation						
		Units												
Mold Nu	mber	1	-			2	2				3			
Mass of M	Mold	gram		66	08			65	98			64'	76.5	
Volume o	f Mold	cc		212	24			212	24			21	24	
Number of	of Layer	5						5	5				5	
Number of	of Blows per Layer			1	0			3	0			e	55	
Condition	of Sample		Before	Soaking	After S	Soaking	Before	Soaking	After S	oaking	Before	Soaking	After S	Soaking
Weight of	f Mold + wet soil	gram	99:	58.4	103	58.9	10322.5 10567			57.8	10660.9		10871.8	
Weight of	f Wet soil	gram	33:	50.4	375	50.9	3724.5 3969.8			9.8	418	34.4	439	95.3
Wet Dens	sity	g/cc	1.	.58	1.77		1.	75	1.8	37	1.	97	2.	07
			Mo	isture C	ontent	and Dry	7 Densi	ty Deter	mination	ı				
Container	Code		O4-2	O4-1	10G	B3	MK	G	O1-3	G7	O6-1	P1	K-4	T1C1
Weight of	f cont. + wet soil	gram	88.86	84.88	91.26	83.15	73.26	89.86	114.50	99.98	56.71	47.18	115.94	103.81
Weight of	f cont. + dry soil	gram	73.11	70.01	69.11	63.31	60.94	73.88	87.20	76.64	48.11	40.68	89.46	81.03
Weight of	fwater	gram	15.75	14.87	22.16	19.84	12.32	15.97	27.30	23.34	8.60	6.50	26.48	22.78
Weight of	fcontainer	gram	17.67	17.62	17.72	17.38	17.64	17.71	17.55	17.39	17.47	17.89	17.93	17.72
Weight of	f Dry soil	gram	55.44	55.44 52.39 51.39 45.9		45.93	43.30	56.17	69.66	59.25	30.64	22.79	71.53	63.31
Moisture	content	%	28.41	28.41 28.39 4		43.21	28.46 28.44		39.19 39.39		28.07	28.53	37.01	35.98
Avarege 1	Moisture content	%	28	3.40	43	.16	28.45		39.29		28.30		36.49	
Dry Dens	ity	g/cc	1.	.23	1.	23	1.37 1.3			34	1.54		1.52	

Summary of CBR Data from CBR Test Software												
Р	enetration vs	Load data		Plot of Penetration Versus Load Curve								
Penetration	Speci	men Load (kN)	Departmention Versus Lood Curre								
(mm)	10 blows	30 blows	65 blows	3 Penetration versus Load Curve								
0	0	0	0	2.5 — 65 Blows								
0.64	0.134	0.258	0.463									
1.27	0.168	0.438	0.798	\mathbf{Z} \mathbf{Z} -10 Blows								
1.91	0.222	0.599	1.151	.9 1.5								
2.54	0.251	0.702	1.392									
3.81	0.285	0.885	1.72	Э _{0.5}								
5.08	0.323	1.001	1.929									
7.62	0.386	1.236	2.221	0 4 8 12 16								
10.16	0.458	1.46	2.408	Penetration in mm								
12.7	0.544	1.654	2.604									

	Summary of CBR Value from the CBR Test Software												
CBR Te	est Summ	ary Value			Plot of Dry Density Versus Soaked CBR Value								
	Units				Dry Density Versus Soaked CBR								
Number of blows		10	30	65	Value								
Dry Density	g/cc	1.23	1.37	1.54	10.0								
Specimen Load @ 2.54 mm	kN	0.251	0.702	1.392	12.0								
Specimen Load @ 5.08 mm	kN	0.323	1.001	1.929	10.0								
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2									
Standard Load @ 5.08 mm	kN	20	20	20	$\frac{8}{3}$ 8.0 CBRs=6.4%								
Soaked CBR value @ 2.54	%	1.9	5.3	10.5	ő <								
Soaked CBR value @ 5.08	%	1.6	5.0	9.6									
Larger Soaked CBR Value	%	1.9	5.3	10.5	× 4.0								
Data from Modif	ied Comp	action Pro	ctor Test		Š								
OMC	%		32.3		2.0								
MDD	g/cc		1.48										
Density required	%		95		1.1 1.2 1.3 1.4 1.5 1.6								
Target Density required	g/cc		1.41		Dry Density (g/cc)								
CBR Value at Target Density	%												

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test California Bearing Ratkio (CBR) Test, (AASHTO T 193-93)														
Site Seka Town Bus	Station	l								Test Pi	t	TP2	@ 2m	
			V	Vet Der	sity De	termina	tion							
	Units													
Mold Number			1				2				3			
Mass of Mold	gram	6486.4				6576					62	52		
Volume of Mold	сс	2124				2124					212	24		
Number of Layer			5	5			5				5			
Number of Blows per Layer			1	0			30)			6	5		
Condition of Sample		Before S	Soaking	After S	oaking	Before	Soaking	After S	Soaking	Before	Soaking	After S	Soaking	
Weight of Mold + wet soil	gram	984	9.8	10231		105	594.7 10762.1		10750.5		10899.3			
Weight of Wet soil	gram	336	3.4	3744.6		4018.7 4		418	36.1	4488.5		463	37.3	
Wet Density	g/cc	1.:	58	1.	76	1.	89	1.	97	2.	11	2.	18	
		Mois	ture Co	ntent a	nd Dry	Density	Detern	ination	1					
Container Code		RG	P66	O5-2	O2-3	P3	A-13	П	G19	ZE	D	113	P66	
Weight of cont. + wet soil	gram	154.3	163.3	98.1	110.6	110.2	106.1	107.8	110.7	122.2	109.5	144.3	145.5	
Weight of cont. + dry soil	gram	124.5	134.3	73.7	82.4	93.3	90.1	83.6	85.5	101.7	91.1	115.3	117.2	
Weight of water	gram	29.7	29.0	24.4	28.2	16.9	16.0	24.2	25.1	20.5	18.4	29.0	28.4	
Weight of container	gram	25.2	37.4	17.9	17.7	36.0	36.6	18.0	17.8	33.1	29.6	37.9	37.4	
Weight of Dry soil	gram	99.3	96.9	55.8	64.8	57.3	53.5	65.6	67.7	68.6	61.5	77.4	79.8	
Moisture content	%	30.0	30.0 30.0 4		43.5	29.5	29.9	36.9	37.1	29.8	29.8	37.5	35.5	
Avarege Moisture content	%	29.96 43.58		29.73		36.98		29.83		36.50				
Dry Density	g/cc	1.2	22	1.	23	1.46 1.44			44	1.63		1.60		

Summary of CBR Value from the CBR Test Software												
CBR Te	est Summ	ary Value			Plot of Dry Density Versus Soaked CBR Value							
	Units	Dry Density Versus Soaked CBR										
Number of blows		10	30	65	Value							
Dry Density	g/cc	1.22	1.46	1.63								
Specimen Load @ 2.54 mm	kN	0.558	1.125	1.578	14.0							
Specimen Load @ 5.08 mm	kN	0.744	1.411	2.028	12.0							
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2								
Standard Load @ 5.08 mm	kN	20	20	20	$\underset{\sim}{\overset{\circ}{\otimes}}$ 100 CBRs=7.0%							
Soaked CBR value @ 2.54	%	4.2	8.5	12.0	8.0							
Soaked CBR value @ 5.08	%	3.7	7.1	10.1	8.0							
Larger Soaked CBR Value	%	4.2	8.5	12.0	ak							
Data from Modif	ied Comp	action Pro	ctor Test		й 4.0							
OMC	%		31.5		2.0							
MDD	g/cc		1.49		0.0							
Density required	%		95		1.1 1.2 1.3 1.4 1.5 1.6 1.7							
Target Density required	g/cc		1.42		Dry Density (g/cc)							
CBR Value at Target Density	%		7.6									

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test	Test California Bearing Ratio (CBR) Test, (AASHTO T 193-93)														
Site	Seka Town Bus S	Station									Test Pi	t	TP2 (@ 3m	
				V	Vet Dei	nsity D	e te rmin	ation							
		Units													
Mold Nun	nber			1			2				3				
Mass of M	Iold	gram		6763				6835.4				640	8.6		
Volume of	f Mold	сс		2124				2124				21	24		
Number of	f Layer			5				5				4	5		
Number of	f Blows per Layeı			10)			30)			6	5		
Condition	of Sample		Before	Before Soaking After Soaking				Soaking	After S	oaking	Before	Soaking	After Soaking		
Weight of	Mold + wet soil	gram	101	13.1	10496.7		105	57.2	107	42.1		10609		10891.6	
Weight of	Wet soil	gram	335	50.1	3733.7		372	21.8	390	6.7	420	4200.4		83	
Wet Dens	ity	g/cc	1.	58	1.	76	1.75 1.			84	1.	98	2.	11	
			Moi	sture Co	ontent a	and Dry	Densit	y Deter	ninatio	n					
Container	Code		P66	A-1C	P2	HC51	MK	P15	AT	Π	DH	G	HC12	10G	
Weight of	cont. + wet soil	gram	117.7	128.8	121.8	122.0	85.2	117.3	113.3	115.6	80.0	93.3	112.0	113.7	
Weight of	cont. + dry soil	gram	99.9	111.4	92.6	92.8	70.7	99.4	88.7	90.3	66.7	77.2	88.2	88.7	
Weight of	water	gram	17.8	17.4	29.2	29.2	14.5	17.8	24.6	25.3	13.3	16.1	23.8	25.0	
Weight of	container	gram	37.5	49.7	17.5	17.7	17.6	33.5	17.6	18.0	17.0	17.9	18.1	17.7	
Weight of	Dry soil	gram	62.5	61.7	75.1	75.2	53.1	65.9	71.1	72.3	49.7	59.2	70.0	71.0	
Moisture c	content	%	28.5	28.5 28.1 38		38.8	27.4	27.1	34.6	34.9	26.7	27.2	34.0	35.2	
Avarege N	Aoisture content	%	28	28.30 38.		.84	27	.21	34.77		26.93		34.63		
Dry Densi	ty	g/cc	1.	23	1.	27	1.38 1.36			36	1.	56	1.57		

	Summary of CBR Data from CBR Test Software												
	Penetration vs	Load data		Plot of Penetration Versus Load Curve									
Penetration	Specir	nen Load (k	N)	Popotration Varsus Load Curva									
(mm)	10 blows	30 blows	65 blows										
0	0	0	0	2.5 — 65 Blows									
0.64	0.126	0.353	0.564										
1.27	0.281	0.59	0.883										
1.91	0.439	0.809	1.15	E 1.5									
2.54	0.543	0.98	1.386										
3.81	0.641	1.196	1.656										
5.08	0.693	1.353	1.831	0.5									
7.62	0.785	1.568	2.103										
10.16	0.877	1.705	2.312	0 4 8 12 16									
12.7	0.989	1.801	2.503	Penetration in mm									

	Summary of CBR Value from the CBR Test Software													
CBR	Test Summa	ry Value			Plot of Dry Density Versus Soaked CBR Value									
	Units				Dry Density Versus Seeked CPD									
Number of blows		10	30	65	Dry Density Versus Soaked CBR									
Dry Density	g/cc	1.23	1.38	1.56	12.0 Value									
Specimen Load @ 2.54 mm	kN	0.543	0.98	1.386										
Specimen Load @ 5.08 mm	kN	0.613	1.353	1.801	10.0 CBR _S =8.2%									
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2										
Standard Load @ 5.08 mm	kN	20	20	20										
Soaked CBR value @ 2.54	%	4.1	7.4	10.5	8 ₆₀									
Soaked CBR value @ 5.08	%	3.1	6.8	9.0										
Larger Soaked CBR Value	%	4.1	7.4	10.5	4 .0 4 .0									
Data from Mod	lified Compa	ction Procto	or Test		Ň									
OMC	%		28.2		2.0									
MDD	g/cc		1.51											
Density required	%		95											
Target Density required	g/cc		1.43		1.1 1.5 1.5									
CBR Value at Target Density	%		Dry Density (g/cc)											

JU,JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test	California Bearing Ratio (CBR) Test (AASHTO T 193-93)													
Site	Police Office										Test Pi	t	TP3	@ 1m
				W	et Den	sity De	te rmina	tion						
		Units												
Mold Nun	nber			1				2			3			
Mass of M	ſold	gram		652	5.4			645	2.1			647	4.2	
Volume of	fMold	cc		212	24			212	24			21	24	
Number of	f Layer			5				5				5	5	
Number of	f Blows per Layer			10)			30)			6	5	
Condition	of Sample		Before S	Soaking	After S	Soaking	Before	Soaking	After S	Soaking	Before	Soaking	After S	oaking
Weight of	Mold + wet soil	gram	989	8.2	10275.4		10214.6 10498.3		98.3	10490.6		10661.4		
Weight of	Wet soil	gram	337	2.8	3750		3762.5		404	6.2	4016.4		418	37.2
Wet Densi	ity	g/cc	1.5	59	1.77		1.	77	1.	90	1.	89	1.9	97
			Moist	ure Cor	ntent ar	nd Dry l	Density	Deterr	ninatio	n				
Container	Code		MK	G3T3	MK1	G10	P2	10G	K-4	T1C1	O4-2	HC12	G3T3	Ν
Weight of	cont. + wet soil	gram	90.5	88.8	100.3	91.7	100.3	90.1	99.2	100.2	102.1	94.6	100.6	93.8
Weight of	cont. + dry soil	gram	75.3	73.9	77.0	71.0	83.6	75.2	78.0	77.8	85.0	79.2	79.1	73.5
Weight of	water	gram	15.1	14.9	23.3	20.7	16.7	14.9	21.2	22.4	17.1	15.4	21.5	20.2
Weight of	container	gram	17.6	17.6	17.6	17.2	17.5	17.7	17.9	17.7	17.7	18.2	17.6	16.8
Weight of	Dry soil	gram	57.7	56.3	59.4	53.9	66.0	57.5	60.1	60.1	67.3	61.1	61.6	56.8
Moisture c	content	%	26.2	26.2 26.5		38.5	25.3	25.8	35.3	37.2	25.4	25.2	34.9	35.6
Avarege N	Aoisture content	%	26.36 38.84		.84	25.58		36.26		25.30		35.27		
Dry Densi	ty	g/cc	1.2	26	1.	27	1.	41	1.	40	1.51		1.46	

	Summary of CBR Value from the CBR Test Software												
CBR Te	est Summa	ary Value			Plot of Dry Density Versus Soaked CBR Value								
	Units	Dry Density Versus Soaked CBB											
Number of blows		10	30	65	Value								
Dry Density (Bfre Soaking)	g/cc	1.26	1.41	1.51	14.0								
Specimen Load @ 2.54 mm	kN	0.845	1.334	1.74									
Specimen Load @ 5.08 mm	kN	1.165	1.702	2.201	$^{12.0}$ CBR _s =10.5%								
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	10.0								
Standard Load @ 5.08 mm	kN	20	20	20	<u>%</u>								
Soaked CBR value @ 2.54	%	6.4	10.1	13.2									
Soaked CBR value @ 5.08	%	5.8	8.5	11.0	6.0								
Larger Soaked CBR Value	%	6.4	10.1	13.2									
Data from Modifi	ied Comp	action Pro	ctor Test		S 4.0								
OMC	%		27.5		2.0								
MDD	g/cc		1.51										
Density required	%		95		1.2 1.3 1.4 1.5 1.6								
Target Density required	g/cc		1.43		Dry Density (g/cc)								
CBR Value at Target Density	%		10.5		,, (6,,								

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test	California Bearing Ratio (CBR) Test, (AASHTO T-193)													
Site	Police	Office								Test Pit		TP3	@ 2m	
				W	et Densit	y Determ	ination							
	Units													
Mold Number				1			2	2		3				
Mass of Mold	gram		652	24.5			680	0.2			650)4.6		
Volume of Mold	сс		21	24			21	24			21	24		
Number of Layer		5 5 5										5		
Number of Blows/Layer		10 30 65												
Condition of Sample		Before	Soaking	After S	boaking	Before	Soaking	After S	loaking	Before S	Soaking	After Soaking		
Weight of Mold + wet soil	gram	984	48.4	103	23.8	105	52.6	10790.1		10548.1		10795.1		
Weight of Wet soil	gram	332	23.9	379	9.3	375	3752.4 3989.9		89.9	404	43.5	427	70.6	
Wet Density	g/cc	1.	56	1.	79	1.77 1.5		88	1	.9	2.	01		
			Mo	oisture Co	ntent and	Dry Dens	ity Deter	mination						
Container Code		С	P3	Н	G	14	O4	HC12	GS	06	05	F	G	
Wt of cont. + wet soil	gram	99.1	97.2	55	148.3	73.8	78.7	112.6	91	66.3	57.6	67.1	69.1	
Wt of cont. + dry soil	gram	84.9	82.1	41.6	118.7	62.2	66.4	87.4	71.8	56.3	49.6	51.6	52.8	
Weight of water	gram	14.2	15.1	13.4	29.6	11.6	12.2	25.3	19.3	10	8	15.5	16.4	
Weight of container	gram	32.8	25.8	5.7	37.9	17.4	17.6	18.1	18.4	17.1	17.8	6.3	5.6	
Weight of Dry soil	gram	52.1	56.3	35.9	80.8	44.8	48.8	69.2	53.4	39.2	31.8	45.3	47.2	
Moisture content	%	27.2	26.8	37.4	36.7	25.9	25	36.5	36.1	25.6	25.2	34.1	34.7	
Av. Moisture content	%	27	.01	37	.01	25	.48	36	36.29		25.39		34.4	
Dry Density	g/cc	g/cc 1.23 1.31 1.41 1.38 1.52 1.5											.5	

	Summ	ary of CB	rom the (CBR 1	lest So	ftware						
CBR T	est Summ	ary Value			Plot of Dry Density Versus Soaked CBR Value							
	Units					Dry	Donsity	loreus	Soakor			
Number of blows		10	30	65	Value							
Dry Density	g/cc	1.23	1.41	1.52								
Specimen Load @ 2.54 mm	kN	0.669	1.251	1.939		16.0				•		
Specimen Load @ 5.08 mm	kN	0.921	1.71	2.467		14.0	CBR	=11.29	%	1		
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	(%	12.0	CDR3		/0	/		
Standard Load @ 5.08 mm	kN	20	20	20	3R (10.0						
Soaked CBR value @ 2.54	%	5.1	9.5	14.7	B	80			/			
Soaked CBR value @ 5.08	%	4.6	8.6	12.3	kec	0.0						
Larger Soaked CBR Value	%	5.1	9.5	14.7	soa	6.0	· · · · · · · · · · · · · · · · · · ·					
Data from Modif	ied Com	action Pro	octor Test		0,	4.0	÷					
OMC	%		27.2			2.0						
MDD	g/cc		1.53			0.0						
Density required	%		95			1.1	1.2	1.3	1.4	1.5	1.6	
Target Density required	g/cc		1.45				Dr	y Dens	ity (g/	cc)		
CBR Value at Target Densit	%		11.2									

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test	Califor	nia Bearing	g Ratio (CE	BR) Test, (AASHTO	T 193-93))										
Site	Police	Office								Test Pit		TP3	@ 3m				
				,	Wet Dens	ity Deter	nination										
	Units																
Mold Number]	1			2	2			3	3					
Mass of Mold	gram		651	8.9			650)1.7			648	1.6					
Volume of Mold	сс		21	24			21	24		2124							
Number of Layer			4	5			4	5		5							
Number of B/Layer			10				3	0			65 efore Soaking After Soak 10588.5 10852.6						
Condition of Sample		Before	Soaking	After S	boaking	Before	Soaking	After S	oaking	Before S	Soaking	After S	oaking				
Weightt of Mold + wet s	gram	983	39.1	104	01.4	10251.8 1053			37.9	105	88.5	5 10852.6					
Weight of Wet soil	gram	332	20.2	388	32.5	375	50.1	403	36.2	410	6.9	43	71				
Wet Density	g/cc	1.	56	1.	83	1.	77	1	.9	1.	93	2.	06				
			Μ	loisture C	ontent an	d Dry Dei	ısity Dete	rmination	L								
Container Code		C3	MK	T1	F	D	P15	G	DH	GS	SR	P15	MK				
Weight of cont. + wet so	gram	155.7	119.6	134.6	146.6	129.3	159.2	121.5	112.9	65.9	65.9	151.5	98.3				
Weight of cont. + dry so	gram	129.3	98.8	108.5	117	109.1	133.6	94.5	87.7	57.6	57.8	121.3	77.4				
Weight of water	gram	26.4	20.8	26.1	29.6	20.2	25.6	27	25.2	8.3	8.2	30.2	20.9				
Weight of container	gram	26.7	17.6	37.7	36.4	29.6	33.5	17.9	17	25.2	25.3	33.5	17.6				
Weight of Dry soil	gram	102.6	81.1	70.8	80.6	79.5	100.1	76.6	70.7	32.4	32.5	87.8	59.8				
Moisture content	%	25.7	25.6	36.9	36.7	25.4	25.6	35.3	35.6	25.5	25.1	34.4	34.9				
Av. Moisture content	%	25	.68	36	5.8	25	.49	35	.42	25	5.3	34.67					
Dry Density	g/cc	1.	24	1.	34	1.	41	1	.4	1.:	1.54		1.53				

	S	Summary	of CBR V	alue from	n the CBR Test Software							
CBR Te	est Summ	ary Value				Plot	of Dry I	Densi	ty Versus	Soaked	CBR V	alue
	Units						Dry D)ensit	v Versus S	oaked C	BR Valu	e
Number of blows		10	30	65								0
Dry Density	g/cc	1.24	1.41	1.54		18.0						
Specimen Load @ 2.54 mm	kN	0.869	1.451	2.139		16.0					`	<u> </u>
Specimen Load @ 5.08 mm	kN	1.121	1.911	2.667		14.0	C .	BRs	=12.8 %)		
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	(%)	12.0	<					
Standard Load @ 5.08 mm	kN	20	20	20	BR	10.0				×		
Soaked CBR value @ 2.54	%	6.6	11.0	16.2	0 D	10.0						
Soaked CBR value @ 5.08	%	5.6	9.6	13.3	ake	8.0						
Larger Soaked CBR Value	%	6.6	11.0	16.2	So	6.0						
Data from Modif	ied Comp	action Pro	ctor Test			4.0						
OMC	%		26.6			2.0					•	
MDD	g/cc		1.54			0.0						
Density required	%		95			1	.1	1.2	1.3	1.4	1.5	1.6
Target Density required	g/cc		1.46						Dry Dens	ity (g/co	:)	
CBR Value at target Density	%		12.8	-								

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test	Califo	rnia Bearii	ng Ratio (C	BR) Test,	(AASHTC) T 193-93	3)						
Site	Admi	nistration (Office							Test Pit		TP4	@ 1m
					Wet Dens	ity Deter	mination						
	Units												
Mold Number			1	1			-	2			-	3	
Mass of Mold	gram		644	5.9			667	79.3			647	1.6	
Volume of Mold	cc		21	24			21	24			21	24	
Number of Layer			4	5			:	5			4	5	
No. of Blows/Layer			1	0			3	0			6	5	
Condition of Sample		Before	Soaking	After S	Soaking	Before	Soaking	After S	oaking	Before S	Soaking	After S	oaking
Weight of Mold +wet so	gram	998	38.4	101	30.8	104	78.1	100	566	106	18.4	10791.1	
Weight of Wet soil	gram	354	2.5	3684.9		3798.8		3986.7		4146.8		431	9.5
Wet Density	g/cc	1.	67	1.	73	1.	79	1.	88	1.	95	2.	03
			Ν	Ioisture C	Content an	d Dry De	nsity Dete	rminatior	ı				
Container Code		T2	P15	F	G	D	SG	01-1	O2-1	2	O3-1	P3	06
Weight of cont. + wet so	gram	100.4	128.2	53.5	145.3	119	126.9	139.3	128.6	119.8	143.4	126.3	97.5
Weight of cont. + dry so	gram	79.4	104.3	39.6	113.7	96.8	102.5	110.6	100.9	98.9	119	101.7	75.6
Weight of water	gram	21	23.9	13.9	31.6	22.1	24.4	28.8	27.7	20.9	24.4	24.6	21.9
Weight of container	gram	17.6	33.6	5.7	37.9	26.6	25.4	40.2	28.3	34.7	36.7	36	17.4
Weight of Dry soil	gram	61.8	70.7	33.9	75.8	70.2	77.1	70.4	72.6	64.3	82.3	65.7	58.2
Moisture content	%	34	33.8	41	41.7	31.5	31.7	40.9	38.2	32.5	29.6	37.5	37.6
Av. Moisture content	%	33	.89	41	.38	31	.59	39	.54	31	.06	37.56	
Dry Density	g/cc	1.	25	1.	23	1.	36	1.	35 1.49		1.48		

	S	ummary o	of CBR Va	alue from	the CBR Test Software						
CBR T	est Summ	ary Value	•		Plot of Dry Density Versus Soaked CBR Value						
	Units				Dry Density Versus Soaked CBR Value						
Number of blows		10	30	65							
Dry Density	g/cc	1.25	1.36	1.49	6.0						
Specimen Load @ 2.54 mm	kN	0.443	0.615	0.767	CBR _S =4.8%						
Specimen Load @ 5.08 mm	kN	0.588	0.861	1.001	< -						
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	8 4.0						
Standard Load @ 5.08 mm	kN	20	20	20	N N N N N N N N N N N N N N N N N N N						
Soaked CBR value @ 2.54	%	3.4	4.7	5.8							
Soaked CBR value @ 5.08	%	2.9	4.3	5.0	×						
Larger Soaked CBR Value	%	3.4	4.7	5.8	<u> </u>						
Data from Modif	ied Comp	action Pro	octor Test								
OMC	%		35								
MDD	g/cc		1.44		0.0						
Density required	%		95		1.1 1.2 1.3 1.4 1.5 1.6						
Target Density required	g/cc		1.37		Dry Density (g/cc)						
CBR Value at target Density	%		4.8								

Test	California Bearing Ratio (CBR) Test, (AASHTO T 193-93)												
Site	Admin	istration O	ffice							Test Pit		TP4 @	🦻 2m
				Wet	Density I)etermina	tion						
	Units												
Mold No.			1	l			2					3	
Mass of Mold	gram		659	0.3			6555	5.6		6515.5			
Volume of Mold	сс		21	24			212	4			21	24	
No.of Layer			4	5			5			5			
No. of Blows/Layer			1	0			30				6	5	
Condition of Sample		Before S	oaking	After S	Soaking	Before	Soaking	After Se	oaking	Before S	loaking	After Se	oaking
Weight of Mold + wet soil	gram	1018	0.8	104	95.3	104	10481.2 10694.6			1074	41.2	10864.7	
Weight of Wet soil	gram	10100.0 10100.0 10100.0 10101.2 10001.0 10101.2 3590.5 3905 3925.6 4139 4225.7							434	9.2			
Wet Density	g/cc	1.6	9	1.	84	1.	85	1.9	5	1.9	99	2.0)5
			Moist	ure Conte	nt and Dr	y Density	Determin	ation					
Container Code		F	T1	T1C1	06-1	G3T3	K-4	F	G	TC1	G19	04-	MK
Weight of cont. + wet soil	gram	124.3	128.2	101.6	108.4	158.1	106.2	163.6	116.3	85.4	118.1	116.1	112.8
Weight of cont. + dry soil	gram	103.2	106.3	75.2	79.8	129	85.4	127.9	88.9	68.9	99	89.7	87.1
Weight of water	gram	21.1	21.8	26.4	28.6	29.1	20.7	35.8	27.5	16.5	19.1	26.4	25.7
Weight of container	gram	36.4	37.7	17.6	17.9	37.9	17.9	36.4	17.7	17.7	37.9	17.6	17.6
Weight of Dry soil	gram	66.8 68.7 57.6 61				91.1	67.5	91.4	71.1	51.1	61.1	72.1	69.5
Moisture content	%	% 31.5 31.8 45.9 46.2					30.7	39.1 38.6		32.3	31.3	36.7	37
Av.M oisture content	% 31.65 46.03					31.34 38.8			85	31.83		36.84	
Dry Density	g/cc	1.2	8	1.	26	1.	41	1.4	4	1.51		1.5	

-		Summary	y of CBR Da	ta from CBR Test Software
	Penetration v	s Load data		Plot of Penetration Versus Load Curve
Penetration	Spec	cimen Load (l	KN)	Penetration Versus Load Curve
(mm)	10 blows	30 blows	65 blows	2.5
0	0	0	0	65 Blows
0.64	0.174	0.278	0.386	
1.27	0.25	0.528	0.66	1.5 30 Blows
1.91	0.298	0.731	0.911	.= 10 Blows
2.54	0.339	0.854	1.138	
3.81	0.363	1.027	1.365	H _{0.5}
5.08	0.382	1.15	1.503	
7.62	0.411	1.323	1.707	0 4 8 12 16
10.16	0.43	1.466	1.851	Penetration in mm
12.7	0.469	1.609	2.001	

	Su	mmary o	f CBR Val	ue from t	he CBR Test Software
CBR Test	t Summar	y Value			Plot of Dry Density Versus Soaked CBR Value
	Units				Dry Dansity Varsus Soakad CRR Value
Number of blows		10	30	65	Dry Delisity versus Soakeu CDK value
Dry Density	g/cc	1.28	1.4	1.51	
Specimen Load @ 2.54 mm	kN	0.339	0.854	1.138	
Specimen Load @ 5.08 mm	kN	0.382	1.15	1.503	\sim CBRs=6.2%
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	Sector Contraction of the sector of the sect
Standard Load @ 5.08 mm	kN	20	20	20	≤ 6.0
Soaked CBR value @ 2.54	%	2.6	6.5	8.6	5
Soaked CBR value @ 5.08	%	1.9	5.8	7.5	4.0
Reported Soaked CBR Value	%	2.6	6.5	8.6	oal
Data from Modifie	d Compac	tion Proc	tor Test		2.0
OMC	%		33.1		
MDD	g/cc		1.46		
Density required	%		95		1.1 1.2 1.3 1.4 1.5 1.6
Target Density required	g/cc		1.39		Dry Density (g/cc)
CBR Value at target Density	%		6.2		

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test	Californ	nia Bearing	Ratio (CB	R) Test, (A	AASHTO '	Г 193-93)										
Site	Adminis	stration O	ffice							Test Pit		TP4	@ 3m			
				W	et Density	/ Determi	nation									
	Units															
Mold Number			1	1				2			3	3				
Mass of Mold	gram		660)8.4			664	47.4			665	51.8				
Volume of Mold	сс		21	24			21	24		2124						
No. of Layer			4	5				5		5						
No. of Blows per Layer			10 30 65													
Condition of Sample		Before	Soaking	After S	Soaking	Before	Soaking	After S	Soaking	Before	Soaking	After S	loaking			
Weight of Mold + wet soil	gram	998	33.3	104	77.2	103	72.2	107	87.6	106	70.9	108	94.9			
Weight of Wet soil	gram	337	74.9	386	58.8	372	4.8	414	40.2	401	9.1	424	3.1			
Wet Density	g/cc	1.	59	1.	82	1.	75	1.	95	1.	89	2	2			
			Moi	isture Cor	ntent and l	Dry Densi	ty Deterr	nination								
Container Code		В	DH	G3T3	K-4	G-1	P6	G19	T1C1	G	UC	A-1C	P66			
Weight of cont. + wet soil	gram	95.3	94.3	166.1	109.2	86.7	88.4	166.2	101.9	63.2	74.4	174.5	166.6			
Weight of cont. + dry soil	gram	78	76.9	123.5	78.9	71.2	72.4	126.9	76.2	52.6	61.4	139.5	131.2			
Weight of water	gram	17.3	17.4	42.6	30.3	15.6	16	39.3	25.7	10.6	13	35	35.4			
Weight of container	gram	18.2	17	37.9	17.9	17.8	17.1	37.9	17.7	17.9	16.7	49.7	37.5			
Weight of Dry soil	gram	59.8	59.8	85.6	61	53.4	55.3	89	58.4	34.6	44.7	89.8	93.7			
Moisture content	%	29	29.1	49.7	49.6	29.2	28.9	44.2	44	30.6	29	29 38.9 3				
Av. Moisture content	%	29	.02	49	.66	29	.04	44	.11	29	9.8	38	.34			
Dry Density	g/cc	1.	23	1.	22	1.	36	1.	35	1.	46	1.	44			

		Summar	y of CBR D	ata from CBR Test Software
l	Penetration v	s Load data		Plot of Penetration Versus Load Curve
Penetration	Spec	imen Load (l	kN)	Departmention Versus Load Curve
(mm)	10 blows	30 blows	65 blows	2 65 Plows
0	0	0	0	
0.64	0.152	0.269	0.46	30 Blows
1.27	0.317	0.482	0.693	Z — 10 Blows
1.91	0.443	0.664	0.895	
2.54	0.561	0.81	1.083	030
3.81	0.678	0.971	1.27	0.5
5.08	0.756	1.062	1.41	
7.62	0.906	1.235	1.574	
10.16	1.023	1.338	1.709	0 4 8 12 16
12.7	1.103	1.428	1.823	Penetration in mm

	S	ummary of	CBR Valu	e from th	e CBR Test Software
CBR T	est Sumn	ary Value			Plot of Dry Density Versus Soaked CBR Value
	Units				Dry Departu Versus Sectord CPD Velue
Number of blows		10	30	65	Dry Density Versus Soaked CBR value
Dry Density	g/cc	1.23	1.36	1.47	10.0
Specimen Load @ 2.54 mm	kN	0.561	0.81	1.083	$CBR_{c}=7.2\%$
Specimen Load @ 5.08 mm	kN	0.756	1.052	1.41	8.0
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	8
Standard Load @ 5.08 mm	kN	20	20	20	6.0 ·····
Soaked CBR value @ 2.54	%	4.3	6.1	8.2	
Soaked CBR value @ 5.08	%	3.8	5.3	7.1	<u>9</u> 4.0
Larger Soaked CBR Value	%	4.3	6.1	8.2	Soa
Data from Modif	ied Com	action Proc	tor Test		2.0
OMC	%		31.2		
MDD	g/cc		1.49		0.0
Density required	%		95		1.1 1.2 1.3 1.4 1.5 1.6
Target Density required	g/cc		1.42		Dry Density (g/cc)
CBR Value at target Density	%		7.2		

JU,JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

144

Test	California Bea	ring Rat	io (CBR)	Test, (A	AASHT	O T 19	3-93)										
Site	Seka town munic	ipality C	Office								Test Pit		TP5	@ 1m			
	•			V	Vet Den	sity D	etermin	ation									
		Units															
Mold Nur	nber			1				2	1			3					
Mass of N	/lold	gram		653	4.9			663	9.7		6462.9						
Volume of	f Mold	сс		212	24			212	24			212	24				
Number o	of Layer			5	i			5			5						
Number o	of Blows/Layer		10						0			65	5				
Condition	of Sample		Before S	Soaking	After Se	oaking	Before S	Soaking	After S	oaking	Before	Soaking	After	Soaking			
Weight of	Mold + wet soil	gram	1006	54.1	1030	3.7	1033	33.5	1052	26.6	104	04.3	10608				
Weight of	Wet soil	gram	352	9.2	376	8.8	369	3.8	388	6.9	394	1.4	4	146			
Wet Dens	sity	g/cc	1.6	56	1.7	7	1.7	74	1.8	33	1.	86	1	.95			
			Mois	ture Co	ontent a	nd Dry	Densit	y Deter	minatio	n							
Container	Code		G6	SR	P10	01	Μ	S-2	O6-1	O62	G-9	N	13	SB			
Weight of	cont. + wet soil	gram	81.2	87.3	106.4	95.6	126.3	90.2	93.2	97.9	83.7	86.9	94.2	117.7			
Weight of	cont. + dry soil	gram	68.4	73.0	82.1	74.3	106.8	73.4	73.4	77.0	69.0	71.0	74.9	92.2			
Weight of	water	gram	12.9	14.3	24.3	21.4	19.5	16.8	19.8	20.9	14.7	15.9	19.3	25.5			
Weight of	container	gram	25.2	25.3	17.5	17.5	40.2	17.9	17.5	17.4	17.8	16.8	18.2	18.4			
Weight of	Dry soil	gram	n 43.2 47.7 64.6 56			56.7	66.6	55.5	55.9	59.6	51.2	54.2	56.6	73.8			
Moisture of	content	%	29.8	29.9	37.6	37.7	29.2	30.3	35.5	35.0	28.8	29.2	34.1	34.5			
Av. Moist	ture content	%	29.	86	37.0	52	29.	74	35.	23	29	.01	4.31				
Dry Densi	ity	g/cc	1.2	28	1.2	.9	1.3	34	1.	35	1.	44	1	.45			

		Summa	ry of CBR I	Data from CBR Test Software
]	Penetration v	s Load data		Plot of Penetration Versus Load Curve
Penetration	Spec	imen Load (l	kN)	Penetration Versus Load Curve
(mm)	10 blows	30 blows	65 blows	2.5
0	0	0	0	2 — 65 Blows
0.64	0.32	0.422	0.564	- 30 Blows
1.27	0.51	0.632	0.824	¥ 1.5 − 10 Blows
1.91	0.644	0.786	0.999	
2.54	0.74	0.89	1.114	
3.81	0.9	1.094	1.309	0.5
5.08	1.004	1.218	1.444	
7.62	1.232	1.422	1.699	0
10.16	1.41	1.609	1.874	0 4 8 12 16
12.7	1.517	1.75	2.049	Penetration in mm

Summary of CBR Value from the CBR Test Software										
CBR Te	est Summa	ary Value		Plots of Dry Density Versus Soaked CBR Value						
	Units				Dry Density Versus Soaked CBR					
Number of blows		10	30	65	Value					
Dry Density	g/cc	1.28	1.34	1.44	10.0					
Specimen Load @ 2.54 mm	kN	0.74	0.89	1.114						
Specimen Load @ 5.08 mm	kN	1.004	1.218	1.444	$CBR_{S}=7.6\%$					
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2						
Standard Load @ 5.08 mm	kN	20	20	20						
Soaked CBR value @ 2.54	%	5.6	6.7	8.4	B C C C C C C C C C C C C C C C C C C C					
Soaked CBR value @ 5.08	%	5.0	6.1	7.2						
Larger Soaked CBR Value	%	5.6	6.7	8.4						
Data from Modif	ied Compa	action Pro	ctor Test		о́					
OMC	%		32		2.0					
MDD	g/cc		1.46							
Density required	%		95		1.24 1.28 1.32 1.36 1.4 1.44 1.48					
Target Density required	g/cc	1.39			Dry Density (g/cc)					
CBR Value at Target Density	%		7.6		,					

Test California Bea	ring Ratio	o (CBR)	Test,(A	ASHTO	T 193	-93)							
Site Seka Town M	unicipalit	y Office								Test Pit		TP5	@ 2m
			,	Wet De	nsity E)etermin	ation						
	Units	nits											
Mold Number			1				2				3		
Mass of Mold	gram		643	0.6			6492	2.1			643	36	
Volume of Mold	сс		212	24			212	24			212	24	
Number of Layer			5	i			5				5		
Number of Blows/Layer			10	0			30)			65	5	
Condition of Sample		Before	Soaking	After Se	oaking	Before S	Soaking	After S	Soaking	Before Sc	aking	After S	Soaking
Weight of Mold + wet soil	gram	100	29.8	1046	0.7	10349.3 106		106	10.1 1040		2.5 10		48.8
Weight of Wet soil	gram	359	99.2	4030.1		3857.2 41		41	18	3966.	5	42	12.8
Wet Density	g/cc	1.	69	1.9	0	1.8	32	1.	94	1.87		1.	98
		Mo	isture C	ontent a	nd Dr	y Densit	y Deter	minatio	n				
Container Code		S-3	P65	P2	O61	T1	P6	O6-3	14	O2-3	14	AT	G-2
Weight of cont. + wet soil	gram	104.0	156.8	101.7	92.5	152.5	144.0	93.5	103.6	98.4	95.0	95.8	105.7
Weight of cont. + dry soil	gram	84.5	130.2	77.2	70.8	125.5	118.9	72.5	79.9	80.1	77.9	74.9	82.7
Weight of water	gram	19.5	26.6	24.5	21.8	27.0	25.1	21.1	23.7	18.3	17.2	21.0	23.0
Weight of container	gram	17.6	37.8	17.7	17.9	31.6	31.7	17.1	17.4	17.7	17.5	17.6	18.0
Weight of Dry soil	gram	66.9	92.4	59.5	52.8	93.9	87.2	55.3	62.5	62.4	60.3	57.3	64.8
Moisture content	%	29.1	28.8	41.2	41.2	28.8	28.7	38.1	38.0	29.3	28.5	36.6	35.5
Av.Moisture content	%	28.96 41.19		28.77		38.03		28.88		36.05			
Dry Density	g/cc	1.	31	1.3	4	1.4	1	1.	40	1.45		1.	46

	Summary of CBR Data from CBR Test Software												
I	Penetration v	s Load data		Plots of Penetration Versus Load Curve									
Penetration	Spec	imen Load (kN)	Penetration Versus Load Curve									
(mm)	10 blows	30 blows	65 blows	2									
0	0	0	0										
0.64	0.212	0.314	0.543	1.5									
1.27	0.296	0.561	0.826	-10 Blows									
1.91	0.346	0.779	1.049										
2.54	0.379	0.958	1.208	oad									
3.81	0.445	1.128	1.371										
5.08	0.478	1.209	1.48										
7.62	0.511	1.325	1.633	0 4 8 12 16									
10.16	0.544	1.38	1.726	Penetration in mm									
12.7	0.577	1.385	1.772										

· · · · · · · · · · · · · · · · · · ·	Summary of CBR Value from the CBR Test Software										
CBR Te	est Summ	ary Value			Plots of Dry Density Versus Soaked CBR Val	ue					
	Units				Dry Donoity Versus Socked CPP						
Number of blows		10	30	65	Dry Density Versus Soakeu CDK						
Dry Density	g/cc	1.31	1.41	1.45							
Specimen Load @ 2.54 mm	kN	0.379	0.958	1.208	3 CBR _s =7.8%						
Specimen Load @ 5.08 mm	kN	0.478	1.209	1.478	3 8						
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	8						
Standard Load @ 5.08 mm	kN	20	20	20							
Soaked CBR value @ 2.54	%	2.9	7.3	9.2	8						
Soaked CBR value @ 5.08	%	2.4	6.0	7.4							
Larger Soaked CBR Value	%	2.9	7.3	9.2							
Data from Modifi	ied Comp	action Pro	ctor Test								
OMC	%		29.7								
MDD	g/cc		1.49		0						
Density required	%		95		1.24 1.34 1.44 1.5	54					
Target Density required	g/cc	1.42			Dry Density (g/cc)						
CBR value at Target Density	%		7.8								

Test	California Bea	ring Rati	o (CBR)	Test, (A	ASHTC) T 193-	-93)							
Site	Seka Town M	lunicipali	ty Office								Test Pi	t	TP5	@ 3m
				We	et Dens	ity Det	erminat	ion						
		Units				-								
Mold Nun	nber			1				2	!			3		
Mass of M	ſold	gram		6638	8.3			660	8.6			647	3.1	
Volume of	Mold	сс		212	24			212	24			212	24	
Number of	f Layer			5				5				5		
Number of	f Blows/Layer			10)			30	00			6	5	
Condition	of Sample		Before	Soaking	After S	oaking	Before S	Soaking	After S	oaking	Before	Soaking	After S	oaking
Weight of	Mold + wet soil	gram	101	85.9	10592.6		10428.6 10696.3		96.3	10552.4		10828.5		
Weight of	Wet soil	gram	354	17.6	3954.3		382	20	408	7.7	407	79.3	435	55.4
Wet Densi	ity	g/cc	1.	67	1.86		1.8	30	1.9	92	1.	92	2.	05
			Moist	ture Con	tent an	d Dry I	Density]	Detern	ninatior	1				
Container	Code		ZE	A16	T1	G3T3	C3	P2	D	E	P10	NB	12	Ν
Weight of	cont. + wet soil	gram	142.9	145.8	154.2	140.8	110.4	123.0	138.9	148.7	96.1	95.2	109.4	113.3
Weight of	cont. + dry soil	gram	119.7	122.0	119.5	110.2	92.8	100.5	108.2	113.5	79.0	78.2	87.1	87.2
Weight of	water	gram	23.2	23.9	34.7	30.6	17.6	22.5	30.6	35.3	17.1	17.0	22.3	26.0
Weight of	container	gram	33.1	32.9	37.7	37.9	26.7	17.7	27.2	18.3	17.5	17.6	28.1	18.2
Weight of	Dry soil	gram	86.6	89.1	81.9	72.3	66.1	82.8	81.0	95.2	61.4	60.6	59.0	69.0
Moisture c	content	%	26.8	26.8	42.3	42.3	26.6	27.1	37.8	37.0	27.9	28.0	37.8	37.7
Av. Moist	ure content	%	26	26.77		.34	26.85		37.40		27.91		37.75	
Dry Densit	ty	g/cc	1.	32	1.	31	1.4	12	1.4	40	1.50		1.49	

		Summa	ry of CBF	R Data from CBR Test Software
Pene	etration vs	Load data	a	Plots of Penetration Versus Load Curve
Penetration	Speci	men Load	(kN)	Penetration Versus Load Curve
(mm)	10 blows	30 blows	65 blows	3
0	0	0	0	2.5 65 Blows
0.64	0.251	0.338	0.517	— 30 Blows
1.27	0.356	0.642	0.942	
1.91	0.434	0.914	1.231	. 🛱 1.5
2.54	0.527	1.116	1.45	
3.81	0.641	1.367	1.8	
5.08	0.736	1.578	2.015	0.5
7.62	0.914	1.836	2.364	0
10.16	1.076	2.104	2.593	0 4 8 12 16
12.7	1.171	2.267	2.751	Penetration in mm

S	Summary of CBR Value from the CBR Test Software											
CBR Test S	ummar	y Value			Plots of Dry Density Versus Soaked CBR Value							
	Units	Units				Dry Donoity Voruus Coolsod CDD						
Number of blows		10	30	65	L	Value						
Dry Density	g/cc	1.32	1.42	1.5	14.0							
Specimen Load @ 2.54 mm	kN	0.527	1.116	1.45	12.0							
Specimen Load @ 5.08 mm	kN	0.736	1.578	2.015	12.0							
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2		$CBR_S=9\%$						
Standard Load @ 5.08 mm	kN	20	20	20	$\stackrel{\circ}{\sim}$							
Soaked CBR value @ 2.54	%	4.0	8.5	11.0	BE							
Soaked CBR value @ 5.08	%	3.7	7.9	10.1	Ор 6.0							
Larger Soaked CBR Value	%	4.0	8.5	11.0	ake							
Data from Modified (Compac	tion Pro	ctor Tes	st	Sos So							
OMC	%		27.6		2.0							
MDD	g/cc		1.52		0.0							
Density required	%		95		1	.2 1.3 1.4 1.5 1.6						
Target Density required	g/cc	1.44				Dry Density (g/cc)						
CBR Value at Target Density	%		9.0									

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test	California Bea	ring Ra	tio (CBF	R) Test, (AASH	TO T1	93-93)	1						
Site	Seka High So	chool									Test P	'it	TP6	@ 1m
				W	'et Den	sity De	e te rmir	nation						
	Units													
Mold Nun	nber			1				2	,			3		
Mass of M	ſold	gram		660)3			66	18			649	6.5	
Volume of	fMold	сс		212	24			21	24			212	24	
Number of	f Layer			5				5	i			5		
Number of	f Blows/Layer			10)			3	00			6	5	
Condition	of Sample		Before S	Soaking	After S	oaking	Before	Soaking	After S	oaking	Before	Soaking	After S	Soaking
Weight of	Mold + wet soil	gram	1014	45.4	1038	88.9	10342.5 10537			37.8	105	547.9	10671.8	
Weight of	Wet soil	gram	354	2.4	378	5.9	37	3724.5		9.8	40	51.4	417	75.3
Wet Densi	ity	g/cc	1.0	57	1.1	78	1.75 1.85			1	.91	1.	97	
			Moist	ure Cor	ntent a	nd Dry	Densi	ty Deter	minati	on				
Container	Code		O4-2	O4-1	10G	B3	MK	G	O1-3	G7	O6-1	P1	K-4	T1C1
Weight of	cont. + wet soil	gram	89.3	84.7	90.8	82.5	74.4	91.5	114.0	99.9	57.9	49.1	115.3	103.8
Weight of	cont. + dry soil	gram	72.4	69.1	69.1	63.3	60.9	73.9	87.2	76.6	48.2	41.8	89.5	81.0
Weight of	water	gram	16.9	15.7	21.7	19.2	13.4	17.6	26.8	23.2	9.6	7.3	25.8	22.8
Weight of	container	gram	17.7	17.6	17.7	17.4	17.6	17.7	17.5	17.4	17.5	17.9	17.9	17.7
Weight of	Dry soil	gram	54.7	51.5	51.4	45.9	43.3	56.2	69.7	59.3	30.7	23.9	71.5	63.3
Moisture c	content	%	30.9	30.5	42.2	41.8	31.0	31.3	38.5	39.2	31.4	30.6	36.1	36.0
Av. Moist	ure content	%	30.	30.70 42.01		01	31.15		38.84		31.00		36.03	
Dry Densi	ty	g/cc	1.2	28	1.2	26	1	.34	1.	33	1	.46	1.45	

Summary of CBR Value from the CBR Test Software											
CBR Te	est Summ	ary Value			Plot of Dry Density Versus Soaked CBR Valu						
	Units				Dry Density Versus Soaked CBR						
Number of blows		10	30	65	120	Value					
Dry Density	g/cc	1.28	1.34	1.46	12.0						
Specimen Load @ 2.54 mm	kN	0.303	0.727	1.134	10.0						
Specimen Load @ 5.08 mm	kN	0.375	1.026	1.641	10.0						
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	. 8.0	$CBR_S = 6.8 \%$					
Standard Load @ 5.08 mm	kN	20	20	20	6)						
Soaked CBR value @ 2.54	%	2.3	5.5	8.6	E 6.0						
Soaked CBR value @ 5.08	%	1.9	5.1	8.2	d C						
Larger Soaked CBR Value	%	2.3	5.5	8.6	ake 4.0						
Data from Modif	ied Comp	action Pro	ctor Test		So						
OMC	%		33.5		2.0						
MDD	g/cc		1.46		0.0						
Density required	%		95		1	.2 1.3 1.4 1.5					
Target Density required	g/cc	1.39			Dry Density (g/cc)						
CBR value at Target Density	%		6.8								

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test	California Bearin	g Ratio ((CBR) T	est, (AA	SHTO	T 193-9	93)							
Site	Seka High Scho	ol									Test Pit	t	TP6 (@ 2m
	-			I I	Net De	nsity D	etermin	ation						
		Units												
Mold Nu	mber			1				2	2				3	
Mass of N	Aold	gram		653	6.4			66	86			632	21.2	
Volume o	f Mold	cc		21	24			21	24			21	24	
Number of	of Layer			5	;			5	i			4	5	
Number of	of Blows/Layer			1	0			3	00			6	5	
Condition	of Sample		Before	Soaking	After S	Soaking	Before	Soaking	After S	oaking	Before	Soaking	After S	oaking
Weight of	Mold + wet soil	gram	999	9.8	103	10329.9		10371.7 1062		22.1	104	32.5	1064	42.3
Weight of	Wet soil	gram	346	3.4	3793.5		368	35.7	393	6.1	411	1.3	432	1.1
Wet Dens	sity	g/cc	1.0	63	1.	79	1.	74	1.8	35	1.	94	2.0	03
			Mois	sture Co	ontent a	and Dry	Densit	y Deter	minatio	n				
Container	Code		RG	P66	O5-2	O2-3	P3	A-13	II	G19	ZE	D	113	P66
Weight of	cont. + wet soil	gram	152.2	161.1	95.8	105.0	109.0	105.4	105.4	108.1	122.1	109.0	142.3	144.5
Weight of	cont. + dry soil	gram	125.8	135.3	74.9	81.4	94.1	90.9	82.6	84.5	103.1	92.1	115.3	117.2
Weight of	water	gram	26.4	25.8	20.9	23.6	14.9	14.6	22.8	23.5	18.9	16.9	27.0	27.4
Weight of	container	gram	25.2	37.4	17.9	17.7	36.0	36.6	18.0	17.8	33.1	29.6	37.9	37.4
Weight of	Dry soil	gram	100.6	97.9	57.0	63.8	58.2	54.3	64.6	66.7	70.0	62.5	77.4	79.8
Moisture	content	%	26.2	26.3	36.6	37.0	25.5	26.8	35.3	35.2	27.1	27.0	34.9	34.3
Av.Moist	ure content	%	26.	26.26		36.81		.17	35.26		27.01		34.58	
Dry Dens	ity	g/cc	1.	29	1.	31	1.	38	1.3	37	1.52		1.51	

S	Summary of CBR Value from the CBR Test Software										
CBR Test S	Summar	y Value		Plot of Dry Density Versus Soaked CBR Value							
	Units				Dry Density Versus Soaked CBR						
Number of blows		10	30	65	Value						
Dry Density	g/cc	1.29	1.38	1.52	12						
Specimen Load @ 2.54 mm	kN	0.525	0.971	1.347	12						
Specimen Load @ 5.08 mm	kN	0.701	1.283	1.786	10 CBR _a -8.4%						
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2							
Standard Load @ 5.08 mm	kN	20	20	20							
Soaked CBR value @ 2.54	%	4.0	7.4	10.2							
Soaked CBR value @ 5.08	%	3.5	6.4	8.9							
Larger Soaked CBR Value	%	4.0	7.4	10.2	4						
Data from Modified	Compac	tion Pro	octor Te	est	Š						
OMC	%		27.6		2						
MDD	g/cc		1.5								
Density required	%		95		1.1 1.2 1.3 1.4 1.5 1.6 1.7						
Target Density required	g/cc	1.43			Dry Density (g/cc)						
CBR value at Target Density	%		8.4								

Test	California Bearin	nia Bearing Ratio (CBR) Test, (AASHTO T 193-93)												
Site	Seka Town Agri	cultural a	and Natu	iral Resou	Irce Off	fice					Test Pit		TP6 (@ 3m
	Wet Density Determination													
		Units												
Mold Num	nber			1				2	2			3		
Mass of M	Iold	gram		680)3			680	5.4			653	1.6	
Volume of	Mold	cc		212	24			21	24		2124			
Number of	f Layer			5				5				5	i	
Number of	f Blows/ Layer			10)			3	0			6	5	
Condition of	of Sample		Before	efore Soaking After Soaking				Soaking	After S	Soaking	Before	Soaking	After S	oaking
Weight of I	Mold + wet soil	gram	101	00.1	105	16.7	105	47.2	107	82.1	10	610	10801.6	
Weight of	Wet soil	gram	329	97.1	3713.7		3741.8 397		76.7	407	4078.4		70	
Wet Densi	ty	g/cc	1.	.55	1.	75	1.	76	1.	87	1.	92	2.0)1
			Moi	isture Co	ontent a	and Dry	Densit	y Deten	minatio	n				
Container (Code		P66	A-1C	P2	HC51	MK	P15	AT	Π	DH	G	HC12	10G
Weight of a	cont. + wet soil	gram	116.7	127.8	121.1	121.0	83.4	115.8	114.2	116.7	80.2	94.0	111.6	112.7
Weight of o	cont. + dry soil	gram	100.9	112.3	93.9	93.7	70.5	99.2	89.1	91.1	67.3	78.6	88.8	89.0
Weight of	water	gram	15.8	15.5	27.3	27.3	12.9	16.5	25.2	25.6	12.8	15.3	22.8	23.8
Weight of o	container	gram	37.5	37.5 49.7 17.5 17.7		17.6	33.5	17.6	18.0	17.0	17.9	18.1	17.7	
Weight of I	Dry soil	gram	63.4	3.4 62.6 76.3 76.1		52.9	65.7	71.5	73.1	50.3	60.7	70.7	71.2	
Moisture c	ontent	%	25.0 24.8 35.7 35.8		24.4	25.2	35.2 35.0		25.5	25.3	32.2	33.4		
Av. Moista	ure content	%	24	24.88 35.79		24.80		35.12		25.37		32.80		
Dry Densit	у	g/cc	1.	1.24 1.29		1.41 1.		1.	39	1.53		1.51		

Summary of CBR Value from the CBR Test Software															
CBR Test S	CBR Test Summary Value									Plot of Dry Density Versus Soaked CBR Value					
	Units					Г)ry D	onci	tv Vo	reije	Soako	d CB	R		
Number of blows		10	30	65			ny D	CIISI	Va	lue	JUAKE	u CL			
Dry Density	g/cc	1.24	1.41	1.53	12.0										
Specimen Load @ 2.54 mm	kN	0.653	1.214	1.52											
Specimen Load @ 5.08 mm	kN	0.873	1.557	1.985	10.0						6				
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	8.0	, []	CI	3R _s =	=10%	6					
Standard Load @ 5.08 mm	kN	20	20	20	BR										
Soaked CBR value @ 2.54	%	4.9	9.2	11.5	Ú 6.0)									
Soaked CBR value @ 5.08	%	4.4	7.8	9.9	kec *	, 🗄			•						
Larger Soaked CBR Value	%	4.9	9.2	11.5	Soa										
Data from Modified	Compac	ction Pro	octor Te	st	2.0)									
OMC	%		26.4												
MDD	g/cc	1.53		0.0	1.1		1.2	1.	.3	1.4	1	.5			
Density required	%		95					D	rv De	nsit	v (g/cc)			
Target Density required	g/cc	1.45							,		/ \0/ **	,			
CBR value at Target Density	%	10.0													

150

Test	Californ	nia Bear	ring Rat	io (CBR)	Test, (A	ASHT	O T 193	-93)							
Site	New G	eneratio	on KG	School]	Fest Pit		TP7	@ 1m	
				V	Vet Der	sity D	etermin	ation							
		Units													
Mold Nun	nber			1					2			3			
Mass of M	Iold	gram		665	3.9			660	01.7			655	1.6		
Volume of	f Mold	cc		212	24			21	24		21				
Number of	f Layer			5				:	5			5			
Number of	f Blows/Layer			10)			3	30			65	5		
Condition	of Sample		Before	Soaking	After S	oaking	Before S	boaking	After	Soaking	Before	Soaking	After Soakir		
Wt of Mol	ld + wet soil	gram	10	149.1	1049	01.4	1032	2.8	10:	557.9	105	28.5	10702.6		
Weight of	Wet soil	gram	34	90.2	3832.5		3721.1 39		56.2	3976.9		4151			
Wet Densi	ity	g/cc	1	.64	1.8	30	1.7	'5	1	.86	1.	.87	1.	95	
			Mo	isture Co	ontent a	nd Dry	Densit	y Dete	rminat	ion					
Container	Code		C3	MK	T1	F	D	P15	G	DH	GS-6	SR	P15	MK	
Wt of cont	t. + wet soil	gram	154.7	119.6	133.9	145.8	128.8	158.6	121.5	112.9	65.3	64.9	151.5	98.3	
Wt of cont	t. + dry soil	gram	123.7	94.8	103.5	111.0	105.1	128.6	90.5	84.7	55.6	55.6	119.3	76.4	
Weight of	water	gram	31.0	24.8	30.4	34.8	23.7	30.0	31.0	28.2	9.6	9.3	32.2	21.9	
Weight of	container	gram	26.7 17.6		37.7	36.4	29.6	33.5	17.9	17.0	25.2	25.3	33.5	17.6	
Weight of	Dry soil	gram	97.0 77.1		65.8	74.6	75.5	95.1	72.6	67.7	30.4	30.3	85.8	58.8	
Moisture c	content	%	32.0 32.1		46.2	46.6	31.4	31.6	42.7	41.6	31.7	30.8	37.5 37.2		
Av. Moist	ure content	%	32.07		46.43		31.47		42.15		31.22		37.39		
Dry Densit	ty	g/cc	1	1.24		1.23		3	1	1.31		1.43		1.42	

		Summar	y of CBR Dat	ta from CBR Test Software
	Penetration v	s Load data		Plot of Penetration Versus Load Curve
Penetration	Spec	cimen Load (l	kN)	Penetration Versus Load Curve
(mm)	10 blows	30 blows	65 blows	2
0	0	0	0	65 Blows
0.64	0.244	0.353	0.42	Z 1.5 30 Blows
1.27	0.364	0.523	0.654	E - 10 Blows
1.91	0.436	0.649	0.84	
2.54	0.478	0.728	0.978	ILO
3.81	0.528	0.815	1.175	0.5
5.08	0.584	0.899	1.307	
7.62	0.67	1.028	1.49	
10.16	0.722	1.152	1.623	Penetration in mm
12.7	0.784	1.254	1.714	

Summary of CBR Value from the CBR Test Software											
CBR Te	est Summa	ary Value			Plot of Dry Density Versus Soaked CBR Value						
	Units				Dry Density Versus Sooked CBR						
Number of blows		10	30	65	Value						
Dry Density	g/cc	1.24	1.33	1.43	10.0						
Specimen Load @ 2.54 mm	kN	0.478	0.728	0.978							
Specimen Load @ 5.08 mm	kN	0.584	0.899	1.307							
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	\sim CBR _s =5.2%						
Standard Load @ 5.08 mm	kN	20	20	20							
Soaked CBR value @ 2.54	%	3.6	5.5	7.4							
Soaked CBR value @ 5.08	%	2.9	4.5	6.5							
Larger Soaked CBR Value	%	3.6	5.5	7.4							
Data from Modifi	ied Comp	action Pro	ctor Test		<i>х</i> 20						
OMC	%		34.2								
MDD	g/cc		1.39		0.0						
Density required	%		95		1.2 1.3 1.4 1.5						
Target Density required	g/cc	1.32			Dry Density (g/cc)						
CBR Value at target Density	%	5.2									

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test	California Bea	ring Rati	io (CBR	CBR) Test, (AASHTO T 193-93)										
Site	New Generati	on KG S	School								Test Pit		TP7	@ 2m
				V	Vet De	nsity D	etermin	nation						
		Units												
Mold Nun	nber			1				2	2			3		
Mass of M	ſold	gram		6624	4.5			688	30.2			6634	.6	
Volume of	Mold	сс		212	24			21	24		2124			
Number of	f Layer			5			5					5		
Number of	f Blows/Layer			10				3	0			65		
Condition	of Sample		Before	efore Soaking After Soaking			Before	Soaking	After S	oaking	Before	Soaking	After S	Soaking
Weight of	Mold + wet soil	gram	999	98.4	103	53.8	105	92.6	1079	98.1	106	98.1	10847.1	
Weight of	Wet soil	gram	337	73.9	3729.3		3712.4		391	7.9	4073.6		422	22.6
Wet Densi	ity	g/cc	1.	59	1.	76	1.	75	1.5	34	1.	92	1.	99
			Moi	sture Co	ontent	and Dry	/ Densi	ty Deter	minatio	n				
Container	Code		С	P3	Н	G	14	O4-3	HC12	GS=3	06-3	O5-2	F	G
Weight of	cont. + wet soil	gram	98.2	96.1	55.0	148.3	73.6	77.2	112.6	91.0	64.4	56.1	68.7	69.5
Weight of	cont. + dry soil	gram	84.2	81.1	39.6	113.7	61.6	64.4	85.4	70.0	54.2	47.9	51.9	52.0
Weight of	water	gram	14.0	15.0	15.4	34.6	12.0	12.7	27.3	21.1	10.2	8.2	16.8	17.6
Weight of	container	gram	32.8	32.8 25.8 5.7 37.9		17.4	17.6	18.1	18.4	17.1	17.8	6.3	5.6	
Weight of	Dry soil	gram	51.4	55.3	33.9 75.8		44.2	46.8	67.2	51.6	37.1	30.1	45.6	46.4
Moisture c	content	%	27.3	27.3 27.1 45.5 45.7		27.2	27.2	40.5 40.9		27.4 27.2		36.8	37.8	
Av. Moist	ure content	%	27	27.19 45.57		27.18		40.70		27.33		37.33		
Dry Densi	ty	g/cc	1.	1.25 1.21		1.37		1.31		1.51		1.45		

		Summary	y of CBR D	ata from CBR Test Software
Р	enetration vs	Load data		Plot of Penetration Versus Load Curve
Penetration	Speci	imen Load (l	kN)	Penetration Versus Load Curve
(mm)	10 blows	30 blows	65 blows	
0	0	0	0	65 Blows
0.64	0.113	0.243	0.404	2.5 30 Blows
1.27	0.306	0.522	0.767	2 10 Blows
1.91	0.475	0.74	1.036	.目 1.5
2.54	0.589	0.891	1.255	ad
3.81	0.744	1.142	1.568	I I
5.08	0.861	1.312	1.823	0.5
7.62	1.009	1.6	2.147	0
10.16	1.14	1.79	2.394	
12.7	1.26	1.936	2.603	Penetration in mm

Summary of CBR Value from the CBR Test Software										
CBR Test	t Summa	ry Value		Plot of Dry Density Versus Soaked CBR Value						
	Units				Day Donsity Varias Cooked CDD					
Number of blows		10	30	65	Dry Density versus Soaked CBR					
Dry Density	g/cc	1.25	1.37	1.51	value					
Specimen Load @ 2.54 mm	kN	0.589	0.891	1.255	14.0					
Specimen Load @ 5.08 mm	kN	0.861	1.312	1.823	12.0					
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2						
Standard Load @ 5.08 mm	kN	20	20	20	\sim CBR _s =7.2%					
Soaked CBR value @ 2.54	%	4.5	6.8	9.5	8.0					
Soaked CBR value @ 5.08	%	4.3	6.6	9.1						
Larger Soaked CBR Value	%	4.5	6.8	9.5	a ak					
Data from Modified	d Compa	ction Pr	octor Tes	t	3 4.0					
OMC	%		29.8		2.0					
MDD	g/cc		1.47		0.0					
Density required	%	95			1.1 1.2 1.3 1.4 1.5 1.6					
Target Density required	g/cc	1.40			Dry Density (g/cc)					
CBR value at Target Density	%	7.2								

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test	California H	Bearing	Ratio (C	BR) Test	, (AASI	HTO T I	193-93)							
Site	New Gener	ration K	G Schoo	1							Test Pi	t	TP7	@ 3m
	Wet Density Determination													
		Units												
Mold Number	r			1				2				3	;	
Mass of Mole	ł	gram		6525	5.4			6462	2.1		6464.2			
Volume of M	old	сс		212	4			212	24		2124			
Number of L	ayer			5				5				5	i	
Number of B	lows/Layer			10				30)			6	5	
Condition of S	Sample		Before	efore Soaking After Soal			Before	Soaking	After S	Soaking	Before	Soaking	After S	Soaking
Weight of M	old + wet soil	gram	992	29.2	103	15.4	101	40.6	104	08.3	105	01.6	10701.4	
Weight of W	et soil	gram	340)3.8	3790		36	78.5	394	46.2	4037.4		423	37.2
Wet Density		g/cc	1.60		1.	78	1	.73	1.	86	1.	90	1.	99
			Mois	sture Co	ntent a	nd Dry	Densit	y Deteri	ninatio	n	-			
Container Co	ode		MK	G3T3	MK1	G10	P2	10G	K-4	T1C1	O4-2	HC12	G3T3	Ν
Weight of co	nt. + wet soil	gram	93.3	91.4	101.3	93.3	99.5	89.8	98.0	97.5	102.6	95.2	101.6	95.2
Weight of co	nt. + dry soil	gram	77.3	75.7	78.0	72.0	82.4	75.1	76.7	76.2	84.7	78.9	80.3	75.2
Weight of wa	iter	gram	16.0	15.7	23.3	21.4	17.2	14.7	21.3	21.3	18.0	16.3	21.3	20.0
Weight of co	ntainer	gram	17.6	17.6 17.6 17.6 17.2		17.5	17.7	17.9	17.7	17.7	18.2	17.6	16.8	
Weight of Dr	y soil	gram	59.6	58.1	60.3 54.8		64.8	57.4	58.8	58.5	67.0	60.7	62.8	58.5
Moisture con	itent	%	26.8	26.8 27.1 38.7 39.0		26.5	25.6	36.2	36.5	26.8	26.9	33.9	34.2	
Av.Moisture	content	%	26	26.91 38.85		26.05		36.33		26.84		34.05		
Dry Density	y Density g/cc 1.26 1.29		1.37		1.	1.36 1.		50 1.49		49				

Summary of CBR Value from the CBR Test Software											
CBR Te	st Summa	ry Value			Plot of Dry Density Versus Soaked CBR Val						
	Units				Dry Density Versus Soaked CBR						
Number of blows		10	30	65	Value						
Dry Density	g/cc	1.26	1.37	1.5							
Spec. Load @ 2.54 mm	kN	0.815	1.174	1.569	$12 - CBR_s = 10.4\%$						
Spec. Load @ 5.08 mm	kN	1.173	1.562	2.08	ŝ 10 						
Stand. Load @ 2.54 mm	kN	13.2	13.2	13.2							
Stand. Load @ 5.08 mm	kN	20	20	20	8						
Soaked CBR @ 2.54	%	6.2	8.9	11.9	e q						
Soaked CBR @ 5.08	%	5.9	7.8	10.4							
Soaked CBR Value	%	6.2	8.9	11.9	<i>й</i> 4						
Data from Modif	ied Comp	action Pro	ctor Test								
OMC	%		28.7		2						
MDD	g/cc		1.51		0						
Density required	%		95		1.2 1.3 1.4 1.5 1.						
Target Density required	g/cc	1.43			Dry Density (g/c_3)						
CBR value at Target Density	%		10.4								

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test California E	earing Ra	tatio (CBR) Test, (AASHTO T193-93)											
Site Seka Hosp	tal									Test P	it	TP8	@ 1m
	Wet Density Determination												
	Units												
Mold Number			1				2	2		3			
Mass of Mold	gram		649	5.9			671	9.3		6551.6			
Volume of Mold	сс		21	24			212	24		2124			
Number of Layer			5		5					5			
Number of Blows/Laye	:		1			30	00			6	5		
Condition of Sample		Before	fore Soaking After Soaking			Before S	Soaking	After S	oaking	Before	Soaking	After Soakin	
Wt of Mold + wet soil	gram	99	28.4	102	90.8	1048	31.1	106	536	10	672.4	10831.1	
Weight of Wet soil	gram	34	32.5	3794.9		3761.8 39		391	3916.7		4120.8		79.5
Wet Density	g/cc	1	.62	1.	79	1.7	77	1.	84	1	.94	2	.01
		Mo	isture Co	ontent	and Dry	/ Densit	y Dete	rminati	on				
Container Code		T2	P15	F	G	D	SG	O1-1	O2-1	2	O3-1	P3	O6-12
Weight of cont. + wet s	oil gram	97.2	124.5	53.5	144.3	116.5	125.1	138.4	129.4	118.9	143.9	126.3	97.5
Weight of cont. + dry s	oil gram	77.4	101.8	38.8	110.8	94.4	100.5	110.6	100.9	98.3	118.0	101.7	75.6
Weight of water	gram	19.9	22.7	14.8	33.5	22.1	24.6	27.8	28.5	20.6	25.9	24.6	21.9
Weight of container	gram	17.6	17.6 33.6 5.7 37.9		26.6	25.4	40.2	28.3	34.7	36.7	36.0	17.4	
Weight of Dry soil	gram	59.8	59.8 68.3 33.0 72.9		67.7	75.1	70.4	72.6	63.6	81.3	65.7	58.2	
Moisture content	%	33.3	33.3 33.2 44.7 45.9		32.7	32.7	39.5	39.3	32.4 31.9		37.5	37.6	
Av. Moisture content	%	33	33.23 45.29		32.70		39.42		32.14		37.56		
Dry Density	g/cc	1	1.21 1.23		1.3	33	1.	1.32		1.47		1.46	

		Summar	y of CBR D	ata from CBR Test Software
P	enetration vs	Load data		Plot of Penetration Versus Load Curve
Penetration	Speci	imen Load (kN)	Penetration Versus Load Curve
(mm)	10 blows	30 blows	65 blows	2.5
0	0	0	0	
0.64	0.135	0.254	0.434	
1.27	0.263	0.484	0.708	1.5 10 Blows
1.91	0.364	0.659	0.948	
2.54	0.425	0.798	1.104	
3.81	0.482	0.972	1.34	
5.08	0.561	1.101	1.482	0.5
7.62	0.62	1.265	1.67	0
10.16	0.702	1.406	1.813	0 4 8 12 16
12.7	0.744	1.502	1.916	Penetration in mm

· · · · · ·	Summary of CBR Value from the CBR Test Software												
CBR Te	est Summ	ary Value			Plot of Dry Density Versus Soaked CBR Value								
	Units				Dry Density Versus Soaked CBR								
Number of blows		10	30	65									
Dry Density	g/cc	1.21	1.33	1.47	value								
Specimen Load @ 2.54 mm	kN	0.425	0.768	1.104	12.0								
Specimen Load @ 5.08 mm	kN	0.561	1.101	1.482	10.0								
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2									
Standard Load @ 5.08 mm	kN	20	20	20	≈ 8.0 CBRs=6.2%								
Soaked CBR value @ 2.54	%	3.2	5.8	8.4									
Soaked CBR value @ 5.08	%	2.8	5.5	7.4									
Larger Soaked CBR	%	3.2	5.8	8.4	¥ 4.0								
Data from Modif	ied Comp	action Pro	octor Test		Š S								
OMC	%		34.5		2.0								
MDD	g/cc		1.42										
Density required	%		95		1.1 1.2 1.3 1.4 1.5								
Target Density required	g/cc		1.35		Dry Density (g/cc)								
CBR value at target Density	%		6.2		(0,								

Test	Test California Bearing Ratio (CBR) Test, (AASHTO T 193-93)													
Site	Seka Hospital										Test Pi	t	TP8	@ 2m
					Wet De	nsity De	e te rmina	ation						
		Units												
Mold Number 1 2												3		
Mass of M	lold	gram		667	5.3			664	5.6			661	5.5	
Volume of	Mold	сс		21	24			21	24			212	24	
Number of	f Layer			5	5			4	5			5		
Number of	f Blows/Layer			1	0			3	0			65	5	
Condition	of Sample		Before	Soaking	After S	Soaking	Before	Soaking	After S	boaking	Before	Soaking	After S	boaking
Weight of	Mold + wet soil	gram	100	89.8	104	85.3	103	06.2	105	64.6	10611.2		10824.7	
Weight of	Wet soil	gram	341	4.5	3810		3660.6		39	19	39	95.7	420	9.2
Wet Densi	ity	g/cc	1.	61	1.	79	1.	72	1.	85	1	.88	1.	98
			Mo	isture C	ontent	and Dry	Density	y Deterr	ninatior	ı				
Container	Code		F	T1	T1C1	06-11	G3T3	K-4	F	G	TC1	G19	O4-1	MK
Weight of	cont. + wet soil	gram	122.1	125.7	99.6	106.4	155.0	105.1	163.6	116.3	83.2	116.3	115.1	111.8
Weight of	cont. + dry soil	gram	103.2	106.3	75.2	79.8	129.0	85.4	127.9	88.9	68.9	99.0	89.7	87.1
Weight of	water	gram	18.9	19.3	24.4	26.6	26.0	19.7	35.8	27.5	14.3	17.3	25.4	24.7
Weight of	container	gram	36.4	37.7	17.6	17.9	37.9	17.9	36.4	17.7	17.7	37.9	17.6	17.6
Weight of	Dry soil	gram	66.8	66.8 68.7		61.9	91.1	67.5	91.4	71.1	51.1	61.1	72.1	69.5
Moisture c	content	%	28.2	28.2 28.2		43.0	28.6	29.1	39.1	38.6	28.0	28.3	35.3	35.6
Av. Moista	ure content	%	28	.19	42	.68	28	.85	38	.85	28	3.15	35	.43
Dry Densit	у	g/cc	g/cc 1.25 1.26					1.34 1			1	1.47		46

	Summary of CBR Data from CBR Test Software													
	Penetration v	rs Load data		Plot of Penetration Versus Load Curve										
Penetration	Spec	cimen Load (l	kN)	Departmention Variance Lood Curre										
(mm)	10 blows	30 blows	65 blows											
0	0	0	0	65 Blows										
0.64	0.184	0.278	0.486											
1.27	0.34	0.528	0.76	30 Blows										
1.91	0.428	0.711	1.001	.= 1.3										
2.54	0.499	0.814	1.148											
3.81	0.563	1.017	1.335											
5.08	0.612	1.13	1.483											
7.62	0.681	1.323	1.707	0										
10.16	0.74	1.466	1.851	0 4 8 12 16										
12.7	0.809	1.609	2.001	reneuration in mm										

	Summary of CBR Value from the CBR Test Software												
CBR Te	est Summ	ary Value			Plot of Dry Density Versus Soaked CBR Value								
	Units				Dry Donsity Vorsus Sockod CBP								
Number of blows		10	30	65	Value								
Dry Density	g/cc	1.25	1.34	1.47	value								
Specimen Load @ 2.54 mm	kN	0.499	0.814	1.148	10								
Specimen Load @ 5.08 mm	kN	0.612	1.13	1.483	$CBR_{0}=6.6\%$								
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	8 CDRS-0.070								
Standard Load @ 5.08 mm	kN	20	20	20									
Soaked CBR value @ 2.54	%	3.8	6.2	8.7									
Soaked CBR value @ 5.08	%	3.1	5.7	7.4									
Larger Soaked CBR Value	%	3.8	6.2	8.7	yeo								
Data from Modif	ied Comp	action Pro	ctor Test		S ,								
OMC	%		30.8		2								
MDD	g/cc		1.43										
Density required	%		95		1.2 1.3 1.4 1.5								
Target Density required	g/cc		1.36		Dry Density (g/cc)								
CBR value at target Density	%												

155

Test	California Bearing Ratio (CBR) Test, (AASHTO T 193-93)													
Site	Seka Hospital										Test F	Pit	TP8	@ 3m
				v	Vet De	nsity D	etermin	ation						
		Units												
Mold Number 1 2												3		
Mass of N	ſold	gram		6518	3.4			654	7.4			653	1.8	
Volume of	f Mold	cc		212			212	24			21	24		
Number o	f Layer			5				5				5		
Number o	f Blows/Layer			10)			30)			6	5	
Condition	of Sample		Before	Soaking	After S	oaking	Before	Soaking	After S	oaking	Before	e Soaking	After s	Soaking
Weight of	Mold + wet soil	gram	995	3.3	10447.2		102	62.2	10627.6		10	620.9	10864.9	
Weight of	Wet soil	gram	343	4.9	3928.8		3714.8		4080.2		4089.1		43	33.1
Wet Densi	ity	g/cc	1.	62	1.	85	1.	75	1.	92	1	1.93	2.	.04
			Mois	ture Co	ntent a	nd Dry	Densit	y Deter	minatio	on				
Container	Code		В	DH	G3T3	K-4	G-19	P6	G19	T1C1	G	UC	A-1C	P66
Weight of	cont. + wet soil	gram	95.3	94.3	166.1	109.2	86.7	89.1	166.2	101.9	62.9	74.4	174.5	166.6
Weight of	cont. + dry soil	gram	78.0	76.9	123.5	78.9	71.2	72.4	126.9	76.2	52.6	61.4	139.5	131.2
Weight of	water	gram	17.3	17.4	42.6	30.3	15.6	16.7	39.3	25.7	10.3	13.0	35.0	35.4
Weight of	container	gram	18.2	17.0	37.9	17.9	17.8	17.1	37.9	17.7	17.9	16.7	49.7	37.5
Weight of	Dry soil	gram	59.8	59.8 59.8		61.0	53.4	55.3	89.0	58.4	34.6	44.7	89.8	93.7
Moisture c	content	%	29.0	29.0 29.1		49.6	29.2	30.2	44.2	44.0	29.7	29.0	38.9	37.8
AvMoistu	re content	%	29.02 49.6		.66	29	29.67		44.11		29.37		38.34	
Dry Densi	ty	g/cc	z/cc 1.25 1.24					1.35 1.			1.49		1.47	

	Summary of CBR Data from CBR Test Software												
]	Penetration v	s Load data		Plot of Penetration Versus Load Curve									
Penetration	Spec	imen Load (kN)	Repetration Versus Load Curve									
(mm)	10 blows	30 blows	65 blows										
0	0	0	0	2.3 — 65 Blows									
0.64	0.121	0.249	0.416	2 30 Blows									
1.27	0.231	0.45	0.655										
1.91	0.305	0.66	0.895	.g 1.3 10 BIOWS									
2.54	0.364	0.814	1.085										
3.81	0.442	1.021	1.323										
5.08	0.494	1.161	1.469	0.3									
7.62	0.573	1.343	1.689	0									
10.16	0.643	1.502	1.859	0 4 8 12 16									
12.7	0.705	1.642	2.05	Penetration in mm									

Summary of CBR Value from the CBR Test Software											
CBR Te	est Summ	Plot of Dry Density Versus Soaked CBR Value									
	Units		Dry Donsity Vorcus Socked CPP								
Number of blows		10	30	65	Dry Density versus Soaked CBR						
Dry Density	g/cc	1.25	1.35	1.49	value						
Specimen Load @ 2.54 mm	kN	0.364	0.814	1.085	10.0						
Specimen Load @ 5.08 mm	kN	0.494	1.161	1.469	$CBR_{c}=6.8\%$						
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	8.0 CDRS=0.070						
Standard Load @ 5.08 mm	kN	20	20	20							
Soaked CBR value @ 2.54	%	2.8	6.2	8.2							
Soaked CBR value @ 5.08	%	2.5	5.8	7.3							
Larger Soaked CBR Value	%	2.8	6.2	8.2	yec						
Data from Modifi	ied Comp	action Pro	ctor Test		<i>х х</i>						
OMC	%		30.5		2.0						
MDD	g/cc		1.46		0.0						
Density required	%		95		1.1 1.2 1.3 1.4 1.5 1.6						
Target Density required	g/cc		1.39		Dry Density (g/cc)						
CBR value at target Density	%		6.8								

156

Test	California Bear	ing Rati	ng Ratio (CBR) Test, (AASHTO T 193-93)												
Site	Seka Preparato	ory Sch	ool								Test Pi	it	TP9	@ 1m	
				W	et Den	sity De	termina	ation							
		Units				-									
Mold Number 1 2												3	;		
Mass of N	ſold	gram		668	38			67	18			652	6.5		
Volume of	f Mold	cc		212	24			212	24			21	24		
Number o	f Layer			5				5				5	i i		
Number o	f Blows/Layer			10)			30)			6	5		
Condition	of Sample		Before S	Soaking	After S	Soaking	Before	Soaking	After S	oaking	Before	Soaking	After S	Soaking	
Wt of M	Iold + wet soil	gram	1005	58.4	103	28.9	10362.5		10577.8		10550.9		10701.8		
Weight of	Wet soil	gram	337	0.4	3640.9		3644.5		3859.8		4024.4		417	75.3	
Wet Dens	ity	g/cc	1.5	59 1.71			1	.72	1.8	32	1.	89	1.	97	
			Moist	ure Cor	ntent ar	nd Dry	Densit	y Deteri	ninatio	n					
Container	Code		O4-2	O4-1	10G	B3	MK	G	O1-3	G7	O6-1	P1	K-4	T1C1	
Weight of	cont. + wet soil	gram	87.4	84.0	90.8	82.7	72.7	88.1	113.7	99.0	56.2	46.8	115.2	103.2	
Weight of	cont. + dry soil	gram	70.4	67.5	69.1	63.3	59.2	70.8	87.2	76.4	46.7	39.8	89.5	81.0	
Weight of	water	gram	17.0	16.5	21.7	19.4	13.5	17.2	26.5	22.5	9.5	7.0	25.7	22.2	
Weight of	container	gram	17.7	17.6	17.7	17.4	17.6	17.7	17.5	17.4	17.5	17.9	17.9	17.7	
Weight of	Dry soil	gram	52.7	52.7 49.9		45.9	41.5	53.1	69.7	59.1	29.2	21.9	71.6	63.3	
Moisture o	content	%	32.2	32.2 33.1		42.3	32.5	32.4	38.0	38.2	32.5	32.1	35.9	35.0	
Av. Moist	ure content	%	32.	32.65		42.23		32.45		38.10		32.30		35.45	
Dry Densi	ty	g/cc	1.2	20	1.21		1.30		1.32		1.43		1.	45	

Summary of CBR Value from the CBR Test Software												
CBR Te	st Summ	ary Value			Plot of Dry Density Versus Soaked CBR Value							
	Units				Dry Density Versus Soaked CBR							
Number of blows		10	30	65	Value							
Dry Density	g/cc	1.2	1.3	1.43								
Specimen Load @ 2.54 mm	kN	0.231	0.572	0.872	8.0							
Specimen Load @ 5.08 mm	kN	0.303	0.821	1.209	$CBR_{c}-4.4\%$							
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	G 6.0							
Standard Load @ 5.08 mm	kN	20	20	20	8) 2							
Soaked CBR value @ 2.54	%	1.8	4.3	6.6	ē 🖛 🛶 🛶							
Soaked CBR value @ 5.08	%	1.5	4.1	6.0								
Larger Soaked CBR Value	%	1.8	4.3	6.6	oak							
Data from Modifi	ed Comp	action Pro	ctor Test		^о 2.0							
OMC	%		34.5									
MDD	g/cc		1.38		0.0							
Density required	%		95		1.1 1.2 1.3 1.4 1.5							
Target Density required	g/cc		1.31		Dry Density (g/cc)							
CBR Value at Target Density	%											

Test	California Bearing Ratio (CBR) Test, (AASHTO T 193-93)													
Site	Seka Preparatory	School									Test Pi	t	TP9	@ 2m
				V	Vet Der	sity De	termin	ation						
		Units												
Mold Nun	nber			1				2				3		
Mass of N	/lold	gram	6506.4					672	26			640)2	
Volume of	f Mold	сс	2124					212	24			212	24	
Number o	f Layer			5				5				5		
Number o	f Blows/Layer			10)			30)			65	5	
Condition	of Sample		Before S	Soaking	After S	oaking	Before	Soaking	After S	oaking	Before	Soaking	After S	Soaking
Weight of	Mold + wet soil	gram	991	9.8	101	61	104	-24.7	10642.1		105	17.5	10640.3	
Weight of	Wet soil	gram	341	3.4	3654.6		3698.7		3916.1		4115.5		423	38.3
Wet Dens	sity	g/cc	1.6	51	1.72		1.	.74	1.8	34	1.	94	2.	00
			Mois	ture Co	ntent a	nd Dry	Densit	y Deter	minatio	n				
Container	Code		RG	P66	O5-2	O2-3	P3	A-13	П	G19	ZE	D	113	P66
Weight of	f cont. + wet soil	gram	157.5	166.3	98.3	109.6	112.2	107.8	109.1	112.7	124.4	111.5	144.0	146.9
Weight of	f cont. + dry soil	gram	124.5	134.3	73.7	81.4	93.3	90.1	82.6	84.5	101.7	91.1	115.3	117.2
Weight of	water	gram	32.9	32.0	24.6	28.2	18.9	17.7	26.5	28.1	22.7	20.4	28.7	29.8
Weight of	container	gram	25.2	37.4	17.9	17.7	36.0	36.6	18.0	17.8	33.1	29.6	37.9	37.4
Weight of	Dry soil	gram	99.3	96.9	55.8	63.8	57.3	53.5	64.6	66.7	68.6	61.5	77.4	79.8
Moisture	content	%	33.2	33.2 33.1		44.2	33.0 33.1		41.1 42.1		33.0	33.1	37.1	37.3
Av. Moist	ture content	%	33.	33.12		11	33.08		41.59		33.06		37.19	
Dry Dens	ity	g/cc	1.21 1.19				1.31 1.30			30	1.46		1.45	

	Summary of CBR Value from the CBR Test Software												
CBR T	est Summa	ry Value			Plot of Dry Density Versus Soaked CBR Value								
	Units				Dry Donsity Vorsus Soakod CPP								
Number of blows		10	30	65	Value								
Dry Density (Bfre Soaking)	g/cc	1.21	1.31	1.46	value								
Specimen Load @ 2.54 mm	kN	0.279	0.553	0.789	8.0								
Specimen Load @ 5.08 mm	kN	0.372	0.706	1.014									
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	$G^{6.0}$ CBR _S =4.8%								
Standard Load @ 5.08 mm	kN	20	20	20	8								
Soaked CBR value @ 2.54	%	2.1	4.2	6.0	Ö								
Soaked CBR value @ 5.08	%	1.9	3.5	5.1									
Larger Soaked CBR Value	%	2.1	4.2	6.0	oak								
Data from Modif	ied Compa	ction Pro	ctor Test		<u>й</u> 2.0								
OMC	%		35.4										
MDD	g/cc		1.43		0.0								
Density required	%		95		1.1 1.2 1.3 1.4 1.5 1.6								
Target Density required	g/cc		1.36		Dry Density (g/cc)								
CBR Value at Target Density	%		4.8	-									

158

Test	California Beau	alifornia Bearing Ratio (CBR) Test, (AASHTO T 193-93)													
Site	Seka Preparato	ory Scho	ol								Test Pit		TP9	@ 3m	
				v	Vet Der	nsity De	termina	ation							
		Units													
Mold Numl	Mold Number 1 2												3		
Mass of M	old	gram				679.	5.4			654	1.6				
Volume of	Mold	сс		212	4			212	24			21	24		
Number of	Layer			5				5					5		
Number of	Blows/Layer			10				30)			6	5		
Condition o	of Sample		Before	Soaking	After S	Soaking	Before	Soaking	After S	Soaking	Before	Soaking	After S	Soaking	
Weight of I	Mold + wet soil	gram	102	03.1	104	98.7	10497.2 10		107	42.1	105	579	10801.6		
Weight of	Wet soil	gram	340	0.1	3695.7		3701.8 39		394	3946.7		4037.4		260	
Wet Densi	ty	g/cc	1.	60	1.74			74	1.	86	1.	90	2.	01	
			Mois	ture Co	ntent a	nd Dry	Densit	y Deter	ninatio	n					
Container (Code		P66	A-1C	P2	HC51	MK	P15	AT	II	DH	G	HC12	10G	
Weight of a	cont. + wet soil	gram	119.1	130.2	122.2	123.0	85.6	118.0	116.3	117.8	81.7	95.7	112.8	113.7	
Weight of a	cont. + dry soil	gram	100.9	112.3	90.6	90.8	70.3	99.2	88.7	90.3	67.8	78.9	88.2	88.7	
Weight of	water	gram	18.2	18.0	31.6	32.2	15.3	18.7	27.6	27.5	13.9	16.7	24.6	25.0	
Weight of a	container	gram	37.5	49.7	17.5	17.7	17.6	33.5	17.6	18.0	17.0	17.9	18.1	17.7	
Weight of I	Dry soil	gram	63.5	63.5 62.6		73.2	52.7	65.7	71.1	72.3	50.8	61.0	70.0	71.0	
Moisture c	ontent	%	28.6	28.6 28.7		43.9	29.1	28.5	38.8	38.0	27.3	27.5	35.1	35.2	
Av. Moistu	are content	%	28.64		43.59		28.80		38.40		27.40		35.14		
Dry Densit	у	g/cc	1.	24	1.	21	1.35 1.			34	1.49		1.48		

Summary of CBR Value from the CBR Test Software											
CBR T	est Summa	Plot of Dry Density Versus Soaked CBR Value									
	Units				Dry Density Versus Socked CBR						
Number of blows		10	30	65	Value						
Dry Density (Bfre Soaking)	g/cc	1.24	1.35	1.49	value						
Specimen Load @ 2.54 mm	kN	0.403	0.73	1.006	10.0						
Specimen Load @ 5.08 mm	kN	0.583	1.05	1.401							
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	\overline{CBR} CBRs=6%						
Standard Load @ 5.08 mm	kN	20	20	20	8 7 60						
Soaked CBR value @ 2.54	%	3.1	5.5	7.6	B 6.0						
Soaked CBR value @ 5.08	%	2.9	5.3	7.0							
Larger Soaked CBR Value	%	3.1	5.5	7.6	o average of the second s						
Data from Modif	ied Compa	ction Pro	ctor Test		<i>х</i>						
OMC	%		31.6								
MDD	g/cc		1.45		0.0						
Density required	%		95		1.1 1.2 1.3 1.4 1.5						
Target Density required	g/cc	1.38			Dry Density (g/cc)						
CBR Value at Target Density	%		6.0								

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

Test Ca	Test California Bearing Ratio (CBR) Test, (AASHTO T 193-93)														
Site Li	Lideta Orthodox Church												TP10	@ 1m	
Wet Density Determination															
		Units	Units												
Mold Number				1				2				1	3		
Mass of Mold		gram		652	5.4			6502	2.1			647	4.2		
Volume of Mo	old	cc		21	24			212	24			21	24		
Number of Lay	yer			5	5			5				4	5		
Number of Blo	ows/Layer			1	0			30)			6	5		
Condition of Sa	ample		Before	Before Soaking After Soaking Be			Before	Soaking	After S	oaking	Before Soaking		After Soaking		
Weight of Mol	ld + wet soil	gram	99	49.2	1028	5.4	10214.6 104		1043	38.3	10440.6		10601.4		
Weight of Wet	t soil	gram	34	23.8	376	50	3712.5 3		393	3936.2		3966.4		4127.2	
Wet Density		g/cc	1	.61	1.7	7	1.	75	1.85		1.87		1.94		
			Мо	isture Co	ontent a	nd Dry	Densit	y Deter	minatio	on					
Container Cod	de		MK	G3T3	MK1	G10	P2	10G	K-4	T1C1	O4-2	HC12	G3T3	Ν	
Weight of cont	t. + wet soil	gram	93.2	91.6	102.3	94.6	100.5	90.8	99.4	99.1	102.0	95.9	102.1	94.6	
Weight of cont	t. + dry soil	gram	74.3	72.7	75.4	69.9	79.4	72.4	76.0	75.8	81.2	76.5	79.1	73.5	
Weight of wate	er	gram	19.0	18.9	26.9	24.7	21.2	18.3	23.4	23.3	20.9	19.5	23.0	21.0	
Weight of cont	tainer	gram	17.6	17.6	17.6	17.2	17.5	17.7	17.9	17.7	17.7	18.2	17.6	16.8	
Weight of Dry	/ soil	gram	56.6	55.1	57.8	52.7	61.8	54.7	58.0	58.1	63.5	58.3	61.6	56.8	
Moisture conte	ent	%	33.5 34.3 46.6 46.9		34.2	33.5	40.4	40.1	32.9	33.4	37.3	37.1			
Av. Moisture o	content	%	33	3.90	46.	72	33.87 40.22			22	33.14		37.20		
Dry Density		g/cc	1	.20	1.2	21	1.	31	1.3	32	1.40		1.42		

Summary of CBR Value from the CBR Test Software										
CBR Te	st Summa	Plots of Dry Density Versus Soaked CBR Value								
	Units				Dry Density Manua Coolered CDD					
Number of blows		10	30	65	Dry Density Versus Soaked CBR					
Dry Density (Bfre Soaking)	g/cc	1.2	1.31	1.4	Value					
Specimen Load @ 2.54 mm	kN	0.282	0.465	0.581	6.0					
Specimen Load @ 5.08 mm	kN	0.388	0.567	0.734						
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	\odot 4.8 CBR _S =3.4%					
Standard Load @ 5.08 mm	kN	20	20	20	°° ₩ 36					
Soaked CBR value @ 2.54	%	2.1	3.5	4.4	8 +					
Soaked CBR value @ 5.08	%	1.9	2.8	3.7	2.4					
Reported Soaked CBR Value	%	2.1	3.5	4.4	o al					
Data from Modifi	ed Compa	action Pro	ctor Test		0 1.2					
OMC	%		35.8							
MDD	g/cc		1.37		0.0					
Density required	%		95		1.1 1.2 1.3 1.4 1.5					
Target Density required	g/cc		1.30		Dry Density (g/cc)					
CBR Value at Target Density	%		3.4							

Test	Test California Bearing Ratio (CBR) Test, (AASHTO T 193-93)													
Site	Site Lideta Orthodox Church											it	TP10	@ 2m
Wet Density Determination														
Units														
Mold Num	iber			1				2				3	3	
Mass of M	lold	gram		668	4.5			685	0.2			658	4.6	
Volume of	Mold	сс		21	24			212	24			21	24	
Number of	f Layer			5	i			5				4	5	
Number of	f Blows/Layer			1	0			30)			6	5	
Condition of	of Sample		Before	Soaking	After S	Soaking	Before	Soaking	After S	Soaking	Before Soaking		After Soaking	
Weight of	Mold + wet soil	gram	101	08.4	104	53.8	104	92.6	107	50.1	10514.1		10675.1	
Weight of	Wet soil	gram	342	23.9	376	59.3	364	2.4	3909.9		3929.5		4090.5	
Wet Densi	ity	g/cc	1.	61	1.	77	1.	71	1.5	84	1.85		1.93	
			Moi	sture Co	ontent a	nd Dry	Densit	y Deter	minatio	n				
Container	Code		С	P3	Н	G	14	O4-3	HC12	GS=3	O6-3	O5-2	F	G
Weight of	cont. + wet soil	gram	99.6	98.9	55.1	148.2	74.6	78.7	112.8	91.8	65.8	58.6	67.9	68.6
Weight of	cont. + dry soil	gram	83.7	82.0	39.6	113.7	61.0	64.2	85.4	70.0	54.2	48.9	51.9	52.0
Weight of	water	gram	15.8	16.9	15.5	34.5	13.6	14.4	27.5	21.9	11.5	9.7	16.0	16.7
Weight of	container	gram	32.8	25.8	5.7	5.7 37.9		17.6	18.1	18.4	17.1	17.8	6.3	5.6
Weight of	Dry soil	gram	50.9	56.2	33.9	75.8	43.6	46.6	67.2	51.6	37.1	31.1	45.6	46.4
Moisture c	content	%	31.1 30.1 45.8 45.6		31.2	30.9	40.9	42.4	31.0	31.0	35.0	35.9		
Av. Moist	ure content	%	30.60 45.66		31.06 41.62		.62	31.02		35.46				
Dry Densi	ty	g/cc	1.	23	1.1	22	1.	31	1.	30	1.41		1.42	

Summary of CBR Value from the CBR Test Software											
CBR Tes	st Summa	Plot of Dry Density Versus Soaked CBR Value									
	Units				Day Density Margare Coolered CDD						
Number of blows		10	30	65	Dry Density versus Soaked CBR						
Dry Density (Bfre Soaking)	g/cc	1.23	1.31	1.41	Value 8						
Specimen Load @ 2.54 mm	kN	0.335	0.626	0.971	$CBR_{s}=5.6\%$						
Specimen Load @ 5.08 mm	kN	0.461	0.855	1.234							
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2	(%) ⁶						
Standard Load @ 5.08 mm	kN	20	20	20	BR BR						
Soaked CBR value @ 2.54	%	2.5	4.7	7.4							
Soaked CBR value @ 5.08	%	2.3	4.3	6.2	ke						
Larger Soaked CBR value	%	2.5	4.7	7.4	So S						
Data from Modifi	ed Compa	ction Pro	ctor Test		2						
OMC	%	33.6									
MDD	g/cc	1.41									
Density required	%	95			1.2 1.3 1.4 1.5						
Target Density required	g/cc	1.34			Dry Density (g/cc)						
CBR value at Target Density	%		5.6		Dry Density (g/cc)						

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering

161

Test	California Bearing Ratio (CBR) Test, (AASHTO T 193-93)													
Site	Lideta Orthodo	odox Church											TP10	@ 3m
Wet Density Determination														
Units														
Mold Nun	nber			1				2				3	3	
Mass of M	Iold	gram		6528	8.9			651	1.7			650	1.6	
Volume of	Mold	cc		212	24			212	24			21	24	
Number of	f Layer			5				5				5	5	
Number of	f Blows/Layer			10)			30)			6	5	
Condition	of Sample		Before	Soaking	After S	oaking	Before	Soaking	After S	boaking	Before S	Soaking	After S	oaking
Weight of	Mold + wet soil	gram	999	94.1	1037	71.4	10461.8 10727.9		27.9	10670.5		10833.7		
Weight of	Wet soil	gram	340	55.2	384	2.5	395	50.1	4216.2		4168.9		4332.1	
Wet Densi	ity	g/cc	1.	63	1.8	31	1.	86	1.	99	1.96		2.04	
			Mois	ture Cor	ntent an	d Dry	Densit	y Deter	minatio	n				
Container	Code		C3	MK	T1	F	D	P15	G	DH	GS-6	SR	P15	MK
Weight of	cont. + wet soil	gram	152.2	117.3	133.6	144.6	127.7	156.8	120.2	111.9	64.6	64.5	150.7	97.6
Weight of	cont. + dry soil	gram	123.7	94.8	103.5	111.0	105.1	128.6	90.5	84.7	55.6	55.6	119.3	76.4
Weight of	water	gram	28.5	22.5	30.1	33.6	22.6	28.2	29.7	27.2	9.0	8.9	31.4	21.2
Weight of	container	gram	26.7	17.6	37.7	36.4	29.6	33.5	17.9	17.0	25.2	25.3	33.5	17.6
Weight of	Dry soil	gram	97.0	77.1	65.8	74.6	75.5	95.1	72.6	67.7	30.4	30.3	85.8	58.8
Moisture c	ontent	%	29.4 29.2 45.8 45.0		30.0	29.7	40.9	40.1	29.5	29.5	36.6	36.1		
Av. Moist	ure content	%	29	.28	45.	40	29.81 40.		.51	29.46		36.33		
Dry Densit	ty	g/cc	1.	26	1.2	24	1.	43	1.	41	1.52		1.50	

Summary of CBR Value from the CBR Test Software										
CBR Te	est Summa	Plot of Dry Density Versus Soaked CBR Value								
	Units				Dry Dansity Varsus Soakad CBR					
Number of blows		10	30	65	Value					
Dry Density (Bfre Soaking)	g/cc	1.26	1.43	1.52	12					
Specimen Load @ 2.54 mm	kN	0.569	0.951	1.439						
Specimen Load @ 5.08 mm	kN	0.821	1.411	1.967	10					
Standard Load @ 2.54 mm	kN	13.2	13.2	13.2						
Standard Load @ 5.08 mm	kN	20	20	20	$ \overset{\circ}{\sim} \circ$					
Soaked CBR value @ 2.54	%	4.3	7.2	10.9	8 6 1 1 1 1 1 1 1 1 1 1					
Soaked CBR value @ 5.08	%	4.1	7.1	9.8	eg eg					
Reported Soaked CBR Value	%	4.3	7.2	10.9						
Data from Modif	ied Compa	ction Proc	tor Test		Ň					
OMC	%		31.5		2					
MDD	g/cc	1.47								
Density required	%	95			0					
Target Density required	g/cc	1.40			1.1 1.3 1.5 Dry Density (g/cc)					
CBR Value at target Density	%		6.8		Dig Density (gree)					

JU, JIT Faculty of Civil and Environmental Engineering M.sc in Geotechnical Engineering