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Abstract—Many people in the world are living with chronic
diseases, demanding continuous monitoring, diagnosis, and treat-
ment. Continuous physiological monitoring is key to providing
preventive healthcare and accurate disease diagnosis, which leads
to a growing demand for autonomous wearable technology.
Wearable devices acquiring physiological information from the
patient demand high-power efficiency to operate in a continuous
acquisition mode. While power-saving techniques are applied in
wearable devices for many application, very few are considered
for biomedical applications. In this work, we explore existing
techniques of power reduction for wearable medical devices.
Our analysis addresses the power reduction of wearable medical
devices and their generalization for different medical signal
processing applications. In addition, we propose a taxonomy
for power-saving techniques. The common categories of power-
saving techniques are task scheduling, clock management, signal
compression, and energy awareness. The presented analysis iden-
tifies the most appropriate and combined low-power techniques
in wearable devices to reduce power consumption.

Index Terms—Power Optimization, Power Saving Techniques,
Continuous Monitoring, Medical applications, Wearable medical
devices.

I. INTRODUCTION

Nowadays, many people are living with complex health is-
sues that adversely affect their day-to-day activities and overall
quality of life. Moreover, there is an increase in the prevalence
of chronic diseases as the age of patients increases [1]. Follow-
ing chronic diseases, there are also increased complications in
patients’ illnesses, including hypertension and diabetes. Any
delay in treatment and diagnosis of chronic disease leads to
health degradation in the patient [2]. Therefore, it is crucial
to detect the signs of chronic diseases at the initial stage.
The monitoring, diagnosis, and prevention of chronic diseases
can be done through continuous physiological monitoring.
Continuous monitoring using wearable device technologies

allows the earlier identification of signs of chronic diseases [3].
Regular measurements of physiological metrics is the primary
purpose of wearable medical devices.

A wearable medical device can continuously acquire phys-
iological information, helping physicians to be aware of the
overall patient’s well-being [4]. Moreover, a wearable device
is not only limited to collecting vital signs of physiological
parameters but is also capable of collecting signals from a
patient’s body and health-related activities [5].

Wearable medical devices can be worn or tied to a patient’s
body to monitor the patient’s activities without limiting move-
ment. Unlike other medical devices, wearable medical devices
are suitable in healthcare environments due to their non-
invasive and unobtrusive characteristics. Consequently, aged
people can better benefit from using wearable medical devices
to reduce their chronic disease deterioration rate through
preventive healthcare.

Wearable devices promise continuous monitoring only when
efficient power is provided. Consequently, it must require
a minimum amount of power to operate. Considering that
wearable devices are battery-powered devices, power man-
agement becomes essential in order to provide long-term and
dedicated healthcare monitoring without power interruption.
In fact, for many wearable devices, the battery lifetime is the
fundamental problem. Therefore, the issue of low-power in
wearable devices needs power-saving mechanisms to extend
the run time and/or battery life.

Low-Power Techniques (LPTs) have been proposed in the
past to optimize and extend the battery life for wearable
devices [6]. LPTs are power reduction techniques that aim
to minimize the power consumption of wearable devices [7].
Therefore, LPTs are becoming essential in wearable medical
devices to monitor patient health status continuously.
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Many LPTs have been proposed specifically for wearable
devices, but none is general enough for continuously monitor-
ing patients. Furthermore, as wearable technology is quickly
advancing, its power management remains challenging.The
goal of our work is to propose a taxonomy for LPTs, and
to identify the most promising LPTs for specific healthcare
applications and the ones leading to the highest savings. The
main contributions of this paper are mentioned below:

1) Presenting a taxonomy of LPTs in wearable medical
healthcare applications.

2) Identifying the most promising LPTs for wearable med-
ical devices.

3) Examining the challenges in applying LPTs in wearable
devices.

The organization of the work is as follows. In Section II, the
related works are discussed. Section III describes our novel
taxonomy of LPTs in wearable devices. In Section IV, a
discussion of the power consumption of wearable devices is
provided. Finally, our conclusions are drawn in Section V.

II. RELATED WORK

Low-power is an open and prolonged problem in wear-
able technology. In battery-operated wearable devices, energy-
efficient is a key issue to reduce energy consumption for
continuous patient monitoring in healthcare. In [8], energy-
efficient human context recognition is applied to monitor a
patient and its environment to infer ongoing tasks and living
conditions. In wearable devices, energy-efficient is preferable
for continuous monitoring while battery replacement is not ap-
propriate. In hospitals, to offer continuous patient monitoring,
the sensors need to collect data daily for healthcare [9]. There-
fore, the work proposed energy-efficient for human context
recognition applications in hospitals. Furthermore, it identi-
fies personal context and environmental context recognition
situations from the sensors. In their work, human context
recognition recognizes and monitors the human environment
like location and user activities such as walking, driving, and
related, and improves personal context recognition. Their pro-
posed solutions are the deactivation of power-hungry sensors,

Fig. 1. Generic architecture of power management for wearable medical
devices.

adaptive sampling rate, sensor set selection, and communi-
cations reduction. However, the work did not address the
promising LPTs for human context recognition in wearable
devices for healthcare [10].

In healthcare, wearable devices have attracted a large
interest [11] due to their reliable physiological measurements
and continuous patient monitoring, which assist in reducing
health risks. Moreover, they help physicians assess disease
prevention and lifelong health quality [12]. The work in [11]
focused on the three critical elements, namely sensors, batter-
ies, and energy harvesting techniques. It analyses mechanical
hardware devices, manufacturing, and energy harvesting tech-
niques. In fact, the authors in [11] provide an overview of the
applied techniques and their combination for further power
savings.

The limited battery life remains the bottleneck for au-
tonomous wearable devices. To overcome this constraint, some
works lead to enhancing their energy efficiency [13]. The
authors present energy-efficient solutions for diverse Internet
of Wearable Things (IoWT) applications [12]. However, it is
general and has no focus specifically on wearable medical
devices. Additionally, the proposed solutions did not address
the system-level power reduction of the wearables, and there
are no details of power-saving techniques identified [14].

On the other hand, power saving is examined based on
the sampling rate of biomedical signal processing in [15].
According to their work, to tackle the low-power in wearables,
the authors proposed a decrease in the sampling rate due to
its high impact on the power consumption [16]. However,
their approach presents limitations since a high sampling rate
represents a broad range of frequencies needed for some
biomedical applications. Furthermore, the authors do not dis-
cuss the side effect of a low sampling rate on the quality
of bio-signal processing. The low sample rate considers the
power consumption side, but not the quality of signals.

The authors in [5] consider the low-power consumption
as a key challenge for wearable devices. Their novelty is
to address the communication security issues troubling the
wearables in addition to the power consumption challenge.
The authors intensively reviewed the existing literature and
highlighted security threats to wearables under the categories
of confidentiality, integrity, and availability. The work brings a
significant demand on improving communication security and
reducing power consumption of the wearable systems, which
are fueling further research works in these areas [17]. The
survey is general enough and focused on power efficiency,
commercially available, and communication security issues of
wearable devices. It provides detailed information related to
wearable devices with workable solutions, but it addresses
merely self-power wearable devices, which harvest energy
from the environment. Unfortunately, it did not address other
power reduction techniques of wearable devices.

Recently, many research works have been conducted to
reduce power consumption. However, very few of them have
LPTs as their primary goal. Many works target energy-
harvesting techniques instead of power-saving techniques. In-
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Fig. 2. Our proposed taxonomy. Several low-power techniques were identified and grouped into categories based on their common characteristics.

stead, we propose a taxonomy of LPTs based on their adoption
in wearable medical devices. To our knowledge, no study has
been conducted and is available in the literature on LPTs for
wearable medical devices.

III. PROPOSED TAXONOMY OF LOW-POWER TECHNIQUES

As previously mentioned, low-power is the fundamental
challenge for wearable devices. Power management is a top
priority to extend the battery capacity for wearable devices.
Fig. 1 depicts the common architecture that illustrates how is
the power management of wearable devices. This architecture
is the result of a comprehensive review of the architectures
presented in the related literature. Based on the characteristics
of this generic architecture, we can identify how LPTs affect
to the components of wearable devices. As depicted in Fig. 1,
these components can be grouped in processing, power man-
agement, Input/Output connectivity, wireless communication,
storage capacity, and display categories. These components
have a direct relationship with the power consumption of the
wearable device. Therefore, LPTs can be applied to either the
power management or to other components towards optimized
power consumption.

To create our taxonomy, we have reviewed 1058 papers
where LPTs are applied to different domains. Only the papers
applying LPTs for wearable devices are considered in the
first step. The papers that do not specify any type of medical
applications and LPTs are excluded in a second step. Finally,
only a set of 129 relevant papers targeted at wearable devices
are utilized. From these collected papers, a set of LPTs is
identified and categorized based on their common characteris-
tics. The proposed taxonomy considers LPTs currently serving
as power-saving methods. As depicted in Fig. 2, we identify
four main LPTs categories such as: task scheduling, clock
management, signal compression, and energy awareness.

A. Task Scheduling

Task scheduling plays a key role in extending the batteries
lifetime. The tasks are run on the Central Processing Unit
(CPU) for a certain amount of processing time. Once these
tasks are completed, the CPU is idle. During this idle time,
there is some amount of power consumed without performing
tasks. However, task scheduling can adjust the lengths of this

idle period by reordering tasks for their execution [18]. As
depicted in Table I, task scheduling can be subdivided into
subcategories based on the CPU workload and the scheduling
of the tasks during execution time. In these techniques, the
task scheduler controls the data on the channels and schedules
based on priority. Based on its priority, the high-priority task
gets the CPU as soon as it enters a ready-to-run mode, and then
the low-priority task will enter running mode. Task scheduling
categories enable the reduction of the energy consumption
during idle time and to shut down of components of the
architecture when there is no task ready for execution.

B. Clock Management

The techniques mentioned in this category are related to
clock management. A considerable percentage of power is
consumed during clock rates. Thus, this category dynamically
and statistically controls the clock rates of the wearable
systems [19], leading to significant energy savings in miniature
devices [20]. As depicted in Table I, clock management
contains subcategories of LPTs. The typical relation of these
sub-categories is the adjustment of the period of the clock
to reduce power consumption. Sub-categories of this type of
LPTs manage the power consumption by applying a cut-off of
the idle clock cycles, lowering the frequency, and turning on
or off the clock for a specific group of flops.

C. Signal Compression

Acquisition and reconstruction of signals are essential in the
signal processing of medical applications. Signal compression
uses the advantage of sparse signals to reduce the samples
needed to reconstruct the original signals significantly [21].
As depicted in Table I, signal compression can be subdivided
in subcategories, which have common characteristics. These
subcategories can be the compression of the signal to save
storage capacity or to reduce the bandwidth consumption in
the data transfer.

D. Energy Awareness

Energy awareness techniques are applied where replacing
and/or recharging a battery is not possible, as for instance,
when the patient is under critical health conditions [13]. These
techniques inform the patient about the battery status before it
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TABLE I
SUMMARY OF THE PROPOSED TAXONOMY AND DESCRIPTION OF LPTS.

Categories LPTs Description

Task scheduling

Balanced computational workload Reduce workloads and shut down physical machines, which become idle after tasks.

Duty cycle optimization Periodically placed the machine into sleep mode.

Task pipeline Parallel execution of multiple tasks.

Clock management

Clock gating Cutting off the clock during the idle cycles of the flip-flop.

Lowering clock frequency Reducing clock speed and turning off the clock source of the peripherals.

Power gating Shutting off the current from unused blocks.

Signal compression

Compressive sampling Reduce the computational complexity to reduce power consumption.

Correlated double sampling Reduce direct current offset and low-frequency noises.

Joint compressive sampling Recovery of large signals from the small subset of measurements.

Knowledge-based adaptive sampling Estimate the optimal sample frequency using adaptive sampling.

Energy awareness

Self-awareness Train and automatically reduce power consumption.

Self-power manager Smart power technique that manages the power by setting parameters and policies.

Self-powered Harvest energy from external energy sources.

Self-sustainability Provides the sustainable power supply of the wearable device.

is under critical conditions. As depicted in Table I, energy
awareness contains subcategories of LPTs. Sub-categories
of this LPTs category are aware of the battery status to
change the operational mode of the device. Unlike other
LPTs categories, these subcategories help wearable devices
to operate without replaceable batteries or external electronic
power due to remote monitoring. Therefore, energy awareness
sub-category techniques support wearable devices to be aware
of the battery’s lifetime.

IV. DISCUSSION

Our proposed taxonomy has categorized LPTs applied on
wearable devices for medical signal processing applications,
but it can be similarly discussed based on the type of medical
application where the LPTs are applied. Most physiological
signals like Electrocardiogram (ECG), Photoplethysmogra-
phy (PPG), Electromyogram (EMG), Electroencephalography
(EEG), Electrooculography (EOG), and Phonocardiography
(PCG) are acquired using wearables are used to calculate heart
rate, blood pressure, hypertension, and diabetes. Although
most of the analyzed papers discuss LPTs for medical applica-
tions using ECG signals [22], [23] and PPG signals [24]–[26]
in wearables, other papers focused on EMG signals [27], EEG
signals [28], EOG signals [29], [30] and PCG signals [31],
[32].

Most of the LPTs are applied on wearable systems acquiring
ECG signals (38%) as depicted in Fig. 3. The distribution
shows that LPTs for wearable systems in medical applications
are distributed in 23% for PPG signals, 18% for EEG signals,
10% for EMG signals, 7% for EOG signals, and 4% for PCG
signals.

As depicted in Fig. 4, most wearable systems utilize tech-
niques that can be categorized in the signal compression cate-
gory of our taxonomy. Task scheduling and clock management
are also the other categories widely used in wearable systems.

Fig. 3. Distribution of low-power techniques in wearable medical devices
based on the target medical signals.

Fig. 4. Categorized power-saving techniques. The major categories of
taxonomy power-saving techniques are based on their common characteristics
in medical applications.

Notice that few wearable systems employ the self-awareness
category to extend battery life.

A more detailed categorization is shown in Fig. 5, where
it is possible to appreciate that the duty cycle optimization
is commonly used to acquire PPG signals. Among them,
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Fig. 5. Distribution of the low-power techniques based on the type of acquired signal. Identified power-saving techniques in wearable devices.

duty cycle adjustments [24]–[26], [33] are the most used.
From the existing physiological signals, 59% of PPG signal
acquisition applies the duty cycle technique. Because the duty
cycle optimization controlled the rate of repetition of Light-
Emitting Diode (LED) drive current. LED drive is one of the
largest power consumers during PPG signal processing [33],
[34], and [35]. For this purpose, duty cycle optimization turns
on/off the LED drive light to control the repetition frequency
between transmission and receiving time of signals.

Similarly, ECG apply compressive sampling to acquire
signals through wearable systems. Accordingly, 40% of ECG
signals, 32% of EEG signals, and 43% of EMG signals
are applied compressive sampling. It is employed in a wide
range of physiological signals, such as ECG, EEG, and EMG
signals [36], and [37]. Similarly, around 40% of EOG signals
apply lowering clock frequency, and 40% of PCG signals can
be applied for the duty cycle.

On the contrary, we argue that clock gating, power gating,
and knowledge-based adaptive sampling are not widely ap-
plied in PPG signals compared with ECG signals. On the other
hand, compressive sampling is the most popular and widely
applied technique to acquire ECG signals in wearable systems,
as depicted in Fig. 5.

Some power reduction techniques are combined with other
techniques. The analysis confirms that LPTs are combined [2],
[39]–[41] to obtain the advantage of both techniques, as
depicted in Table II. The low-power design requires a com-
bination of several techniques at the design stage. The power
optimization process excels when two or more techniques are
effectively combined, leading to longer battery life. Numerous

TABLE II
SOME COMBINED LPTS FOR POWER OPTIMIZATION.

Ref Year Combination Signals Description
[38] 2021 Duty cycle

optimiza-
tion and
compressive
sampling

PPG Sometimes the techniques are
applied in multiple ways. For
example, a duty cycle some-
times applies to the radio turn-
ing on/off. To overcome radio
turns on/off limitation, compres-
sive sampling is proposed be-
cause it exploits the sparse sig-
nals.

[22] 2017 Power
gating and
clock gating

ECG Power gating and clock gating
are techniques that reduce power
consumption statically and dy-
namically, respectively.

[17] 2016 Self-
powered
and duty
cycle opti-
mization

PPG
&
ECG

Self-powered and duty cycle
techniques harvest energy from
the environment to reduce bat-
tery dependence. To conserve
power consumption, the duty cy-
cling optimization needs to be
implemented by turning off the
current when not in use.

[23] 2012 Compressed
sampling
and clock
frequency

ECG Compressed sampling can be ap-
plied to operate at a clock fre-
quency to accomplish the task
on time while lowering supply
voltage to the minimum possible
level.
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TABLE III
THE CHALLENGES IN APPLYING POWER-SAVING TECHNIQUES.

Techniques Pros Cons
Duty cycle optimiza-
tion

Dynamically adjusted and optimum to apply the
appropriate cycle. It is periodically placed into sleep
mode.

It is not controlling the magnitude of the voltage but the duration of
the high and low voltage values that resulting in the desired voltage
level.

Compressive
sampling

This technique helps to minimize the computational
complexity and the sampling rate for sparse signals.

Most of the focus is given to the algorithmic perspective, while its
real benefits in practical scenarios are still under-explored.

Clock gating This technique reduces dynamic power dissipation
by removing the clock signal when the circuit is not
in use.

Unexpected clock edges can occur if the clock is enabled or disabled
at the wrong time in the clock cycle.

Power Gating Used to apply different circuital solutions that allow
to switch off whole electronic systems or parts of
them.

If all of the gates connected to the common power supply are placed
close to each other and want to be turned off, the location and route
present a challenge.

Clock frequency The advantage of the clock frequency is that it helps
to deal with different frequencies.

The selection of an inappropriate operating frequency of micro-
controllers can lead to a significant percentage loss of battery power.

Balanced
computational
workload

Sharing services and maximizing the effectiveness of
resources.

It is difficult to perform large-scale distributed architectures because
it can cause significant fluctuations in service demand.

Self-awareness The advantage of self-awareness is that it supports
the wearable device in the decision-making of power
saving.

Since it works remotely and sometimes it is exposed to security-related
issues, processing, and storage limitations.

Self-power manager It is a dynamic technique to handle power by setting
its parameters and policies.

Sometimes it expects to develop its parameters and policies.

Self-sustainability The self-sustainable wearable stores harvested en-
ergy.

It depends on the other sources of energy in the environment to be
sustainable.

Self-Powered It supports information processing technologies. It operates by harvesting energy without external electronic power.
Task Pipeline The task is divided into sub-tasks to perform the

dedicated task.
There are no priority issues considered during executions.

Joint Compressive
Sampling

It is used to combine different techniques and take
advantage of these techniques.

The approach is only robust when it is combined with other techniques.

Correlated double
sampling

Support reduces read noise by eliminating reset
noise.

The amplifier noise is still present and is now the dominant source of
the noise.

Knowledge-based
adaptive sampling

Estimation of the optimal sample frequency using
adaptive sampling.

It is rigid and focuses only on minimizing the energy consumption of
hardware like sensors.

techniques can be applied in wearable systems to optimize
power; for instance, when combining techniques are employed,
the first technique turns on/off the current, and the second
technique can reduce execution time.

As depicted in Table II, the most combined techniques
are duty cycle optimization, compressed sampling, self-
powered, self-sustainability, and task scheduling [17], [38],
[42], and [43]. These combined techniques are widely applied
to PPG and ECG signals for continuous patient monitoring.
Finally, we argue that power state modes are widely employed
as power-saving techniques [2], [39]–[41] in wearable devices.

One of the contributions of our work is to provide direction
for the future application of LPTs for wearable devices as
a guideline. Based on this, duty cycle optimization is a very
efficient low-power technique when needed to control the LED
drive. A balanced computational workload is an appropriate
technique to execute tasks and then shut down physical ma-
chines. In the same way, the clock frequency plays a significant
role in governing the power dissipation in wearables. So, it is
an appropriate technique when need to make an adjustment,
modification, or lowering clock rates. Clock gating is the
appropriate technique to reduce clock power by shutting off
the clock, which can be applied to reduce dynamic power
dissipation, while power gating is applied to control static
power dissipation. Similarly, power gating is a very efficient
technique for saving power by turning off the power supply in

inactive parts of the wearable devices. Similarly, compressive
sampling is an appropriate technique when the sparseness of
signal needs to be exploited to recover the signal from far
fewer samples. A joint compressive sampling is required to
jointly optimize power savings in wearables using various
power reduction techniques.

Energy awareness is a LPT that needs to be applied when
timely maintaining and recharging a battery is under challeng-
ing conditions. This technique informs the patients about the
battery’s state before it is under-critical. Self-power is a vital
technique when needed to charge the battery from the environ-
ment, like solar, while a self-power manager is very efficient
when it needs to develop its policy and parameters to optimize
power. Knowledge-based adaptive sampling is an important
technique to estimate the optimal sampling frequencies for
sensors since the sensors may consume even more energy than
the radio. A task pipeline is important to schedule tasks derived
from multiple application flows on pipelines with an arbitrary
number of stages. Self-sustainability is especially important
when it is needed to store the charge for a prolonged time in
harsh conditions. Correlated double sampling is a very efficient
technique for measuring a known condition and an unknown
condition while maintaining sensor-limited noise performance.
Finally, the work presents the challenge of applying LPTs to
wearable devices. As depicted in Table III, the pros and cons
of applying LPTs to wearable devices are explained.

Authorized licensed use limited to: Vrije Universiteit Brussel. Downloaded on December 11,2022 at 15:26:46 UTC from IEEE Xplore.  Restrictions apply. 



V. CONCLUSION

This work presents a taxonomy for power-saving techniques
intended to extend wearable medical devices’ battery life. This
proposed taxonomy facilitates the identification of the most
suitable techniques based on the target application. Duty cycle
is the most popular LPTs to acquire PPG and PCG signals for
wearable systems, whereas compressive sampling for ECG,
EMG, and EEG signals, and lowering clock frequency for
EOG signals. Overall, we found that combining these tech-
niques can potentially increase power savings for multiple
medical applications.

REFERENCES

[1] Sung-Ho Kim and Kyungyong Chung. Emergency situation monitoring
service using context motion tracking of chronic disease patients. Cluster
Computing, 18(2):747–759, 2015.

[2] Arman Anzanpour, Humayun Rashid, Amir M Rahmani, Axel Jantsch,
Nikil Dutt, and Pasi Liljeberg. Energy-efficient and reliable wearable
internet-of-things through fog-assisted dynamic goal management. Pro-
cedia Computer Science, 151:493–500, 2019.

[3] ST Veerabhadrappa, PM Shivakumara Swamy, GC Suguna, SK Srinidhi,
and D Priyanka. Continuous monitoring of physiological parameters
using ppg. Indian Journal of Science and Technology, 14(20):1689–
1698, 2021.

[4] Alan Godfrey. Digital Health: Exploring Use and Integration of
Wearables. Academic Press, 2021.

[5] Suranga Seneviratne, Yining Hu, Tham Nguyen, Guohao Lan, Sara
Khalifa, Kanchana Thilakarathna, Mahbub Hassan, and Aruna Senevi-
ratne. A survey of wearable devices and challenges. IEEE Communi-
cations Surveys & Tutorials, 19(4):2573–2620, 2017.

[6] Yung-Wey Chong, Widad Ismail, Kwangman Ko, and Chen-Yi Lee.
Energy harvesting for wearable devices: A review. IEEE Sensors
Journal, 19(20):9047–9062, 2019.

[7] Paul JM Havinga and Gerard JM Smit. Design techniques for low-power
systems. Journal of Systems Architecture, 46(1):1–21, 2000.

[8] Tifenn Rault, Abdelmadjid Bouabdallah, Yacine Challal, and Frédéric
Marin. A survey of energy-efficient context recognition systems using
wearable sensors for healthcare applications. Pervasive and Mobile
Computing, 37:23–44, 2017.

[9] Oscar D Lara and Miguel A Labrador. A survey on human activity
recognition using wearable sensors. IEEE communications surveys &
tutorials, 15(3):1192–1209, 2012.

[10] Zhixian Yan, Vigneshwaran Subbaraju, Dipanjan Chakraborty, Archan
Misra, and Karl Aberer. Energy-efficient continuous activity recognition
on mobile phones: An activity-adaptive approach. In 2012 16th inter-
national symposium on wearable computers, pages 17–24. Ieee, 2012.

[11] Abhishek Singh Dahiya, Jerome Thireau, Jamila Boudaden, Swatchith
Lal, Umair Gulzar, Yan Zhang, Thierry Gil, Nadine Azemard, Peter
Ramm, Tim Kiessling, et al. Energy autonomous wearable sensors for
smart healthcare: a review. Journal of The Electrochemical Society,
167(3):037516, 2019.

[12] Shivayogi Hiremath, Geng Yang, and Kunal Mankodiya. Wearable
internet of things: Concept, architectural components and promises
for person-centered healthcare. In 2014 4th International Confer-
ence on Wireless Mobile Communication and Healthcare-Transforming
Healthcare Through Innovations in Mobile and Wireless Technologies
(MOBIHEALTH), pages 304–307. IEEE, 2014.

[13] Waleed Bin Qaim, Aleksandr Ometov, Antonella Molinaro, Ilaria Lener,
Claudia Campolo, Elena Simona Lohan, and Jari Nurmi. Towards energy
efficiency in the internet of wearable things: A systematic review. IEEE
Access, 8:175412–175435, 2020.

[14] Maria Cornacchia, Koray Ozcan, Yu Zheng, and Senem Velipasalar. A
survey on activity detection and classification using wearable sensors.
IEEE Sensors Journal, 17(2):386–403, 2016.

[15] Andreas Tobola, Franz J Streit, Chris Espig, Oliver Korpok, Christian
Sauter, Nadine Lang, Björn Schmitz, Christian Hofmann, Matthias
Struck, Christian Weigand, et al. Sampling rate impact on energy
consumption of biomedical signal processing systems. In 2015 IEEE
12th International Conference on Wearable and Implantable Body
Sensor Networks (BSN), pages 1–6. IEEE, 2015.

[16] A Voss, N Wessel, A Sander, H Malberg, and R Dietz. Influence of
low sampling rate on heart rate variability analysis based on non-linear
dynamics. In Computers in Cardiology 1995, pages 689–692. IEEE,
1995.

[17] James Dieffenderfer, Henry Goodell, Steven Mills, Michael McKnight,
Shanshan Yao, Feiyan Lin, Eric Beppler, Brinnae Bent, Bongmook
Lee, Veena Misra, et al. Low-power wearable systems for continuous
monitoring of environment and health for chronic respiratory disease.
IEEE journal of biomedical and health informatics, 20(5):1251–1264,
2016.

[18] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Low-power
task scheduling for multiple devices. In Proceedings of the Eighth
International Workshop on Hardware/Software Codesign. CODES 2000
(IEEE Cat. No. 00TH8518), pages 39–43. IEEE, 2000.

[19] Loris Duch, Soumya Basu, Rubén Braojos, David Atienza, Giovanni
Ansaloni, and Laura Pozzi. A multi-core reconfigurable architecture for
ultra-low power bio-signal analysis. In 2016 IEEE Biomedical Circuits
and Systems Conference (BioCAS), pages 416–419. IEEE, 2016.

[20] Ian Brynjolfson and Zeljko Zilic. Dynamic clock management for low
power applications in fpgas. In Proceedings of the IEEE 2000 Custom
Integrated Circuits Conference (Cat. No. 00CH37044), pages 139–142.
IEEE, 2000.

[21] Rubén Braojos, Hossein Mamaghanian, Alair Dias, Giovanni Ansaloni,
David Atienza, Francisco J Rincón, and Srinivasan Murali. Ultra-low
power design of wearable cardiac monitoring systems. In 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2014.

[22] Loris Duch, Soumya Basu, Rubén Braojos, Giovanni Ansaloni, Laura
Pozzi, and David Atienza. Heal-wear: An ultra-low power heterogeneous
system for bio-signal analysis. IEEE Transactions on Circuits and
Systems I: Regular Papers, 64(9):2448–2461, 2017.

[23] Jeremy Constantin, Ahmed Dogan, Oskar Andersson, Pascal Mein-
erzhagen, Joachim Neves Rodrigues, David Atienza, and Andreas Burg.
Tamarisc-cs: An ultra-low-power application-specific processor for com-
pressed sensing. In 2012 IEEE/IFIP 20th International Conference on
VLSI and System-on-Chip (VLSI-SoC), pages 159–164. IEEE, 2012.

[24] Qirui Zhang, Qingsong Xie, Kefeng Duan, Bo Liang, Min Wang, and
Guoxing Wang. A digital signal processor (dsp)-based system for
embedded continuous-time cuffless blood pressure monitoring using
single-channel ppg signal. Science China Information Sciences, 63(4):1–
3, 2020.

[25] Serj Haddad, Assim Boukhayma, and Antonino Caizzone. Beat-to-beat
detection accuracy using the ultra low power senbiosys ppg sensor. In
European Medical and Biological Engineering Conference, pages 178–
188. Springer, 2020.

[26] Mohamed Atef, Min Wang, and Guoxing Wang. A fully integrated high-
sensitivity wide dynamic range ppg sensor with an integrated photodiode
and an automatic dimming control led driver. IEEE Sensors Journal,
18(2):652–659, 2017.

[27] Yi-Da Wu, Shanq-Jang Ruan, and Yu-Hao Lee. An ultra-low power
surface emg sensor for wearable biometric and medical applications.
Biosensors, 11(11):411, 2021.

[28] Zain Taufique, Anil Kanduri, Muhammad Awais Bin Altaf, and Pasi
Liljeberg. Approximate feature extraction for low power epileptic seizure
prediction in wearable devices. In 2021 IEEE Nordic Circuits and
Systems Conference (NorCAS), pages 1–7. IEEE, 2021.

[29] Andreas Bulling, Daniel Roggen, and Gerhard Tröster. Wearable eog
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