

JIMMA UNIVERSITY SCHOOL OF GRADUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING HYDROLOGY AND HYDRAULIC ENGINEERING CHAIR MASTERS OF SCIENCE PROGRAM IN HYDRAULIC ENGINEERING

Flood Inundation Mapping and Hazard Assessment using GIS and HEC-RAS Model for Bilate River, Rift valley, Ethiopia

By: Assefa Erimeko

A Research Thesis Submitted to the School of Graduate Studies of Jimma University in Partial Fulfillment of the Requirements for the Degree of Masters of Science Program in Hydraulic Engineering.

> May, 2020 G.C Jimma, Ethiopia

JIMMA UNIVERSITY SCHOOL OF GRADUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING HYDROLOGY AND HYDRAULIC ENGINEERING CHAIR MASTERS OF SCIENCE PROGRAM IN HYDRAULIC ENGINEERING

Flood Inundation Mapping and Hazard Assessment using GIS and HEC-RAS Model for Bilate River, Rift valley, Ethiopia

By: Assefa Erimeko

A Research Thesis Submitted to the School of Graduate Studies of Jimma University in Partial Fulfillment of the Requirements for the Degree of Masters of Science Program in Hydraulic Engineering.

Main Advisor: Mamuye Busier (Ass. Prof.) Co-Advisor: Mahmud Mustefa (MSc.)

> May, 2020 G.C Jimma, Ethiopia

DECLARATION

I declare that this thesis is my own work and it has not been presented for any degree award either by me or others. All ideas and materials used for the thesis organization are cited properly and acknowledged. If there is mistake it is my responsibility.

Mr. Assefa Erimeko

Signature...... Date:/..../2020 G.C

As a university master's research advisors, we have read and evaluate this MSc. thesis done under our supervisor-ship. Therefor we declare that this thesis is full authorized by the researcher.

Main Advisor: Mamuye Busier (Ass. Prof.)

Signature......Date:/..../2020 G.C

Co-Advisor: Mahmud Mustefa (MSc.)

Signature Date:/..../2020 G.C

APPROVAL PAGE

This thesis work done under the title "Food inundation mapping and Hazard assessment using GIS and HEC-RAS models for Bilate River, Rift valley, Ethiopia" done by Assefa Erimeko has been approved by the following parties in the partial fulfillment of the requirement for the degree of Master of Science in Hydraulic Engineering.

1.	Dr. Kasssa Tadele	Signature	Date:/	/2020 G.C
	External Examiner			
2.	Mr. Wondmagegn Taye(I	MSc.) Signature	Date:	//2020 G.C
	Internal Examiner			
3.	Mr. Nasir Gebi(Msc.)	Signature	Date:	_//2020 G.C
	Chairman			

ACKNOWLEDGMENT

First of all, I am extremely grateful to Almighty God for enabling me to complete my research work with his endless Mercy, grace and wisdom up on me. I am also highly thankful to Ethiopian Road Authority(ERA) for their educational as well as research sponsorship of MSc. program in Hydraulic Engineering.

Also JU, JIT, HHEC are one of the specials who I want to say thanks for their coordination of master's program with ERA and accepting me as per criteria for entrance. Another rolemodels in my life and I would like to say thanks are JU, JIT instructors and assistants for their well sharing of academic and any information skill guidance.

I would like to express my deepest gratification to my main advisor Mamuye Buseir (Ass. Prof.) for his valuable advices to do more and constructive comments on my work to improve the thesis by spending his golden time. My co-adviser Mahmud Mustefa (MSc.) have also great impact throughout my work by support guidance and comments. So I want to give sincere thanks to him!!

I really want to acknowledge Ministry of Water, Irrigation and Electricity(MoWIE) of Ethiopia and National Metrological and Statically Agency (NMSA) gratefully for their being basic data sources of this research and they gave it free of charge.

At the last, but not to say least, I would like to give special thanks to all my family and friends for their strong assistance entirely throughout the work. Specially, my mother Eyunesh Lapiso and my wife Desta L.!!

ABSTRACT

Flood is a natural disaster that occurs suddenly which runs from hilly land to low land area of river banks when runoff exceeds the capacity of the natural or artificial water conveyance structures. Currently, the hazard of flood is common in some parts of Ethiopia including Bilate watershed and cause heart breaking losses in terms of property and even human life in flat river flood plains due to elevation difference and climatic factors. The main cause of flood disaster vulnerability is due to unavailability of proper river and watershed management. Hence, the intended aim of this research is to carryout inundation mapping and hazard assessment of Bilate River flood plain. The required data for this analysis were, Digital Elevation Model, streamflow data, soil type and land use land cover map. These data were collected from Ministry of Water, Irrigation and Electricity in legal request. Hydraulic Engineering Center- Geographic River Analysis System (HEC-GeoRAS 10.3) was used to prepare RAS import file for steady flow analysis on Hydraulic Engineering Center-River Analysis System(HEC-RAS5.0.1). Stream flow data was checked for outlier, consistency and homogeneity at different significance level using Grubbs and Beck(G-B) test, double mass curve method and Mann-Whitney tests respectively. For flood frequency analysis parameter estimation of worldwide used distribution functions was done by three important parameter estimation methods such as: method of moment, probability weight method and maximum likelihood method. Best fitted Pearson type distribution function was selected by linear moment(L-moment), D-index, root mean square and correlation coefficient methods. The estimated peak floods in Bilate at Tena Bilate gauging station for 5, 10, 50, 100 and 200 years return periods were 153.2, 193.2, 273.6, 305.3 and 335.9 m^3 /s respectively. Mapping of flood inundation was processed with inter connection of GIS extension tool HEC-GeoRAS and HEC-RAS software. The flood inundations for 5,10,50,100 and 200 years return period were 6840.244, 7284, 8029.13, 8270.031 and 8463 ha respectively. Flood hazard map were prepared by reclassifying depth grid and its area bounding polygon. Also the assessment of hazard lever with integrating flood causative agent land use land cover map with hazard map prepared after *post-RAS processing.* Area inundated at sever to moderate hazard is ranges between 4% to 10.3% and around 58% was very low hazard area and out of these shrub land, cultivation area and grass land covers large portion of delineated flood area 44%, 25-28% and 13-15% respectively in all return periods. Hence, the result of the level of hazard indicates that there is significant potential of flood and the consequence risk on livelihood in study area. It is recommended that, the watershed management party or any stakeholder, should use this research finding to take appropriate measure and reduce flood disaster.

Keywords: Bilate Watershed, Flood Frequency, Flood hazard, Flood inundation, HEC-GeoRAS, HEC-RAS.

TABLE OF CONTENT

DECLARATIONI
APPROVAL PAGE II
ACKNOWLEDGMENTIII
ABSTRACTIV
TABLE OF CONTENT V
LIST OF TABLESIX
LIST OF FIGURES
ACRONNOMY AND ABBREVIATION
CHAPTER 1
INTRODUCTION
1.1 BACKGROUND
1.2 Statements of Problem
1.3 Objective of the Research
1.3.1 General Objective
1.3.2 Specific Objectives
1.4 Research Questions
1.5 SIGNIFICANCE OF THE RESEARCH
1.6 Scope of the Research
1.7 LIMITATION OF THE RESEARCH
CHAPTER 2
LITERATURE REVIEW
2.1 FLOOD
2.2 PEAK FLOOD
2.3 Flood Frequency Study
2.4 DISTRIBUTION FUNCTIONS
2.5 PARAMETER ESTIMATION METHODS
2.5.1 Method of Moment
2.5.2 Methods of Maximum Likelihood 10
2.5.3 Probability Weight Methods

2.6 TOOLS AND MODELS FOR FLOODPLAIN ANALYSIS AND MAPPING	. 11
2.6.1 Geographic Information System	. 12
2.6.2 HEC-RAS Model and Its Application	. 12
2.6.2.1 Steady flow water surface profiles	. 13
2.6.3 HEC-GeoRAS and Its Application	. 15
2.6.3.1 Pre-RAS processing	. 15
2.6.3.2 RAS-Processing	. 16
2.6.3.3 Post- RAS processing	. 16
2.7 TRIANGULATED IRREGULAR NETWORK (TIN)	. 16
2.8 FLOOD PLAIN ANALYSIS	. 17
2.9 FLOOD HAZARD ASSESSMENT	. 17
2.10 Previous Study in Ethiopia	. 18
CHAPTER 3	. 21
MATERIALS AND METHODS	. 21
3.1 DESCRIPTION OF RESEARCH AREA	. 21
3.1.1 Location of Research Area	. 21
3.1.2 Hydro-Metrological Condition	. 22
3.1.3 Land Use Land Cover Map of Research Area	. 22
3.1.4 Soil Map of Research Area	. 23
3.1.5 Topography of Research Area	. 24
3.2 MATERIALS USED	. 25
3.3 DATA USED AND SOURCES	. 25
3.4 Study Procedures	. 25
3.5 DATA PREPARATION AND ANALYSIS	. 26
3.5.1 Identifying and Filling Missing Data	. 27
3.5.2 Test on Outlier	. 27
3.5.1.1 Grubbs and Beck (G-B) test	. 28
3.5.3 Checking for Data Accuracy	. 28
3.5.3.1 Consistency test	. 29
3.5.3.2 Homogeneity test	. 29
3.5.4 Flood Frequency Analysis	. 30

3.5.4.1 Pearson type III method	30
3.5.4.2 Gumbel's method (distribution)	30
3.5.4.3 Log Pearson III method (distribution)	31
3.5.4.4 Log Normal method (distribution)	32
3.5.4.5 Exponential distributions	32
3.5.4.6 Gamma (2p) distribution	32
3.5.4.7 Generalized extreme value	32
3.5.4.8 Best fit selection numerically and graphically	32
3.5.4.9 D-Index method	33
3.5.2.10 Correlation coefficient	34
3.5.2.11 Root mean square error method	34
3.6 Flood Plain Analysis	34
3.6.1 Flood Plain Analysis Procedure	35
3.6.1.1 Watershed delineation	35
3.6.1.2 LULC Map Preparation	36
3.6.1.3 Manning's coefficient	36
3.6.1.4 Preparation of TIN	36
3.6.1.5 Geo-RAS pre-processing	37
3.6.2 HEC-RAS Processing	37
3.6.2.1 HEC-RAS project setup and geometric data importing	37
3.6.2.2 Editing geometric data	38
3.6.2.3 Flow data imputing and steady flow analysis	38
3.6.3 Post-RAS Processing	38
3.7 FLOOD HAZARD ASSESSMENT AND MAPPING	38
CHAPTER 4	40
RESULTS AND DISCUSSION	40
4.1 Flood Frequency Analysis	40
4.1.1 Determination of Stream Flow Accuracy	40
4.1.2 Determination of Peak Flood	40
4.2 PREPARATION OF TIN	42
4.3 HEC-RAS pre-processing	43

4.3.1 Stream centerline layer	
4.3.2 Bank lines layer	
4.3.3 Flow path centerlines layer	
4.3.4 Cross section cut lines layer	
4.3.5 RAS-Import File	
4.4 STEADY FLOW SIMULATION	
4.5 Post-RAS Analysis	
4.5.1 Water Surface TIN	
4.5.2 Flood Inundation	
4.5.2 Flood Hazard Mapping and Analysis	
CHAPTER 5	
CONCLUSION AND RECOMMENDATION	
5.1 CONCLUSION	
5.2 Recommendation	
REFERENCES	
APPENDICES	
APPENDIX TABLES	
APPENDIX FIGURE	

LIST OF TABLES

Table 2-1 PDs and their Parameters	11
Table 3-1 Table showing the materials used for flood plain analysis	25
Table 3-2 Double mass curve fitting table for Bilate stream flow gauging station	29
Table 3-3 LULC share for each type in researc area	36
Table 4-1 Correlation coefficient for best fit selection	41
Table 4-2 RMS method of best fit estimate	41
Table 4-3 D-Index Methods	41
Table 4-4 Peak discharge for different return period at Bilate at Tena Bilate station	42
Table 4-5 Maximum water level at most severe stations	49
Table 4-6 Flood inundation at different return period	53
Table 4-7 Flood hazard for different return period	55
Table 4-8 5Yrs return period flood hazard	55
Table 4-9 10Yrs return period flood hazard	56
Table 4-10 50 Years return period flood hazard	56
Table 4-11 100 Years return period flood hazard	56
Table 4-12 200 Years return period flood hazard	57

LIST OF FIGURES

Figure 1.1 Flood Prone Area In Ethiopia	2
Figure 2.1 Component parts of HEC-RAS Menu	13
Figure 2.2 Representations of Terms in the Energy Equation	14
Figure 3.1 Location Map of Research Area	21
Figure 3.2 Yearly Maximum Stream Flow at Gaging Stations in Bilate Watershed	22
Figure 3.4 LULC Map of the Research Area	23
Figure 3.5 Soil Map of the Research Area	23
Figure 3.6 DEM of the Research Area	24
Figure 3.7 Slop Map of Research Area	24
Figure 3.8 Conceptual Work Flow of Flood Plain Analysis Using GIS and HEC-RA	S 26
Figure 3.9 Graphical Methods to Select Best Fit Parent Distribution	33
Figure 3.10 Scatter Plot of Estimated Vs Observed Flow at Study Station	34
Figure 3.11 Delineated Watershed of Research Area	35
Figure 4.1 TIN of Bilate	42
Figure 4.2 Stream Center Line	43
Figure 4.3 River Bank Line	44
Figure 4.4 Flow Path Line	44
Figure 4.5 Cross Section Cut Line	45
Figure 4.6 RAS Import Geometry File from HEC-RAS Menu for 200 Yrs Return P	Period.
	46
Figure 4.7 A - F Showing Different Water Surface Profiles Simulated on HEC-RAS	5 48
Figure 4.8 Water Surface TIN Generated	50
Figure 4.9 Flood Inundation Map For 200 Yrs Return Period	51
Figure 4.10 Flood Inundation Map for 100 Yrs Return Period	51
Figure 4.11 Flood Inundation Map for 50 Yrs Return Period	52
Figure 4.12 Flood Inundation Map for 10 Yrs Return Period	52
Figure 4.13 Flood Inundation Map for 5 Yrs Return Period	53
Figure 4.14 Area Vs Return Period/Peak Discharge Relationship	53
Figure 4.15 Flood Hazard Map	54

ACRONNOMY AND ABBREVIATION

DEM	Digital Elevation Model
DG	Depth Grid
DHM	Department of Hydrology and Meteorology
DMC	Double Mass Curve
DPPA	Disaster Prevention and Preparedness Agency
DTM	Digital Train Model
ENMA	Ethiopian national Metrologic agency
ERA	Ethiopian Rod Authority
ERVLB	Ethiopian Rift Valley Lakes Basin
ESRI	Environmental Systems Research Institute
Geo-RAS	Geometrical River Analysis
GIS	Geographic Information System
GPS	Geographic Positioning System
GUI	Graphical User Interface
HEC-RAS	Hydraulic Engineering Center-River Analysis System
HHEC	Hydrology and Hydraulic Engineering Chair
ILWIS	Integrated Land and Water Information System
IPCC	Intergovernmental Panel on Climate Change
IWRM	Integrated Water Resources Management
JU	Jimma University
JIT	Jimma Institute of Technology
LULCC	Land Use Land Cover Condition
MoWIE	Ministry of water, irrigation and electricity
MLM	Methods of maximum likelihood
MOM	Method of moment
NDRMC	National Disaster Risk Management Commission
PWM	Probability of weight method
SNNPRS	Southern Nations Nationality & People Regional State

TIN	Triangulated Irregular Network
USACE	US Army Corps of Engineers
USGS	United States Geographic Survey
USWRC	United State Water Resources Council
VA	Vulnerable area
WECS	Water and Energy Commission Secretariat
XS	Cross-Section
Yrs	Years

CHAPTER 1

INTRODUCTION

1.1 Background

Water has long historical back ground in relation to its use. "Every life in the world cannot with stand alive in the absence of water". Due to these strong dependences on the water, all human activities and life time hosting follows the river path and river systems since from the beginning. Entire River roots and their adjacent floodplain serve a variety of functions both as part of the natural ecosystem and for a variety of human uses with in life existence (Manandhar, 2010). Most of the civilizations in ancient historical time was developed around or near the rivers flood plain flat area. According to the estimation by Wrachien, Mambretti & Schultz (2011) at the middle of the present century, about 80% of the world's population will live in flood prone areas.

Even though the floodplains have great importance in its positive side, there is also negative impact like damage to houses, civil infrastructure, agriculture, water supply and natural ecosystems (Barrientosa and Swain, 2014). Thus flood is defined as the inundation of water outside the artificial or natural water carrying body to the river banks or nearby plain area which may cause flood disaster on the nature and human activities on the earth's surface. Flood hazard is unexpected happening occur due to natural impacts heavy rain, snow melt or manmade impacts like dam failure and land use land cover change. From the most common global hazards river flooding is one that causes serious phenomenal losses throughout human life history, on properties and lives and caused more economic losses than any other natural hazards.

The cause of occurrence of flood inundation proneness in different country is different. Ethiopia's topographic characteristic has made the country prone to flood and resulting devastation (Enyew, 2014). In most of the time floods occur in the Ethiopia as a result of continuing for long time heavy rainfall which causing river flow go over the sides and inundate flood plain along the river banks in lowland. Among the major river flood prone areas identified parts of Oromia and Afar regions lying along the upper, middle and downstream plains of the Awash River; parts of Somali region along the Wabe Shebelle, Genale and Dawa Rivers; low-lying areas of Gambella along the Baro, Gilo, Alwero and Akobo Rivers; down-stream areas along the Omo and Bilate Rivers in SNNPR and the extensive floodplains surrounding Lake Tana and the banks of Gumera, Rib and Megech Rivers in Amhara (NDRMC, 2018)

Figure 1.1 Flood Prone Area in Ethiopia

Source (NDRMC, 2018)

Particularly the rift valley regions of the Ethiopian are prone to floods due to its connection with the highland system bounding the rift valley basin in both directions (Kefeyale, 2003). This high elevation difference contributes to significance erosion at higher altitude and deposition at lower altitude which consequences high flooding processes at lower altitude. Bilate watershed is natural disasters prone area, mainly water induced disaster such as flood, landslides, even currently some significant measures of earthquake (Tesfaye, 2015). Climate change in the study area is also another important factor for unexpected

occurrence of the flood magnitude and its hazard in this watershed (Demissie,Negash and Behailu, 2016).

As side to natural factors human activities are also other factors that cause unexpected flood happening in natural river system or manmade water conveyance structures. Unplanned rapid settlement development, uncontrolled construction of buildings in general and major land use changes can influence the spatial and temporal pattern of hazards level in fact (Elias, 2015). Currently Bilate watershed is one which in the line of LULC change due to the urbanization effect and some level of deforestation that cause high runoff and soil degradation in and deposition in general.

To reduce the damage of life and destruction of property due to flood, river system analysis and taking remedy action by appropriate method is mandatory. Controlling flood hazard will be accomplished by knowing peak magnitude of flood and assessing related hazard for different return period. To estimate the magnitude of peak flood different alternative methods are available like rational method, empirical method, unit hydrograph method and flood frequency studies depending up on the desired objectives, data availability and importance of the project to be done (Subramanya, 2008). Watershed management also needs different sophisticated tools which been developed with in recent decades like GIS and Remote sensing with important contribution (Mohamed, 2015). There are different software model packages to analyze and manage watershed in the world. HEC-RAS and HEC-GeoRAS are most current accurate methods of river flood inundation mapping in the world (Yirga, 2016). EC-RAS software, in addition to calculating one-dimensional profile of water surface instable rivers, it is also used for simulating unstable flow in rivers, calculating delivered sediment load and water quality analysis (Ahmad, Alam,Bhat and Ahmad, 2016).

This study basically aims to work on flood inundation mapping and hazard assessment for Bilate river flood plain to fill the gap where there is no longer study have done around. In this study flood frequency analysis method by statically distribution functions analysis was used to determine peak magnitude. Also inundation due to this peak flood was mapped and assessed for the severity of hazard level in delineated area using GIS tools and HEC-RAS models.

1.2 Statements of Problem

Flood is the most widespread and frequently occurring natural hazard that devastates human life and property in the world. Currently different studies show that climatic effect and land use land caver changes are the main causes for the increase in frequency and magnitude of flood in river system for last decades that result negative impact on human life and activity in Ethiopia (Zewde, 2004). High land area of Ethiopia is affected by human activities like urbanization, population settlement and life activities which causes environmental degradation and decreases infiltration. Then flooding occurs at prone area of low land by river channel filling with soil disposition and overfills of heavy seasonal rainfall from high land.

Land topographic condition like high relief, steep slopes, complex geological structures and variable climate effected by great LULCC and seasonality in rainfall, all combine to make Bilate watershed natural disasters prone area, mainly water induced disaster such as flood, landslides, even currently some significant measures of earthquake (Tesfaye, 2015). Most of the time huge amount of property, agricultural land and even human life is destructed due to peak occurrence of flood in sudden. To take the remedy action for flood inundation and its hazard probability either structurally or non-structurally it is necessary to estimate the magnitude of the peak flood in the river system.

The area has been suffering with water logging problem for a long time and farmers of the lowland area in Bilate Watershed have been facing crop failures and declining agricultural production due to inundation of river flood plain. This water logging can also reduce the agricultural and economic value of land causing yield reductions or at a time, total crop failures. Thus Bilate river plain is exposed to flood hazard and even hazard level also increase from place to place due to flood causative factors like elevation, slope, land use land cover change, drainage density and hydraulic parameters.

1.3 Objective of the Research

1.3.1 General Objective

The general objective of this study is to conduct flood inundation mapping and flood hazard assessment of Bilate river flood plain, Ethiopian Rift Valley Lakes Basin using worldwide

watershed management tools ArcGIS and hydrodynamic river analysis system model HEC-RAS.

1.3.2 Specific Objectives

Three specific objectives are addressed based on the main goal of the research work. These are:

- 1. To estimate peak flood of different return period in the river;
- 2. To delineate inundation map for these peak flood;
- To assess severity of flood hazard and preparation of its map in adjacent plain of Bilate River.

1.4 Research Questions

The relevant questions were formulated to meet the specific objectives of this research study efficiently. These are:

- 1. How much will be the flood magnitude quantitatively for different return period in the river?
- 2. what will be the flood inundation delineated for depth grids of water surface in the river flood plain?
- 3. What will be the flood hazard level assessed and mapped for different return periods?

1.5 Significance of the Study

Mapping of flood inundation and assessment of its hazard in this research is significant to reduce direct devastates of life and property by delineating and mapping flood inundation, to reduce the crop failure and direct land use for in season by mapping flood hazard area and give information to control flooding in important crop production period. Also this research is very important as information for designers as well as managers of the water resources structure in Bilate watershed and also gives a guidance to flood related river system management researchers.

1.6 Scope of the Study

This research is geographically limited to Bilate watershed which is one of the watersheds of Ethiopian rift valley river lakes basin (ERVLB) that runs from high lands of Gurage zone in the north west to lowest tip of watershed at Lake Abaya in the south. The research area is also bounded around an area of 5356.76 km² as it was delineated from the DEM and calculated. Even though the models used are multcriteria analysis methods, the study covers only preparation of flood inundation mapping and assessment of flood hazard for the inundated area using ArcGIS and HEC-RAS

1.7 Limitation

Cross-section data was extracted from TIN that have some drawback in representing exact river geometry. Hydraulic model(HEC-RAS) also assume a channel boundary as stationary during runoff event to be modeled. Assumptions in 1D models like HEC-RAS cannot account a flow pattern in with the cross section. These all have some effect on the consistency of outcome in study of 1D river analysis of Bilate river flood plain by GIS and HEC-RAS model.

CHAPTER 2

LITERATURE REVIEW

2.1 Flood

The term flood is used in a broad sense to cover several river activities that causes damage that means inundation of floodplains and in probably. Flood is unusual maximum stage in the river, normally the level at which the river overfills and inundates the adjoining area (Subramanya, 2008). River flooding is defined as a naturally occurring event and one part of hydrologic cycle of surface and subsurface or ground water flow and storage beyond the carrying capacity of river (Tolera and Fayera, 2019).

Flood is the most among the natural hazards in the world which has high significant damage or destruction on human life as well as property depending up on the characteristics of the river and river system. Moreover, demography, geography, urbanization, industrialization, are the major factor for flood (Pathan and Agnihotri, 2019). Both climatic and topographic condition make Ethiopia as well Bilate watershed flood prune area (Enyew, 2014; Demissie,Negash and Behailu, 2016).

2.2 Peak Flood

Peak flood is a magnitude of water level at natural or man-made channel that occurs in extreme value in probable of time. Peak flood estimation in river analysis is the first and essential step (V.Chow, 1987). Actually, there is no methodology available that can determine the strict amount of flood magnitude in the catchment. But there are some methods which are based on either probability or empirical equation. To estimate the magnitude of a peak flood in the river, different alternative methods are available like rational method, empirical method, unit-hydrograph method and flood frequency studies depends up on desired objective, data availability and importance of the project. Further rational formula is applicable for small size project (<50km²) catchment and unit-hydrograph method is restricted to moderate sized catchment with area <5000km² (Subramanya, 2008).

2.3 Flood Frequency Study

One of the biggest challenges for hydrologists is the reliable estimation of extreme flood events (Leš cešen and Dolinaj, 2019). The flood frequency analysis is one of the important studies of river hydrology. In flood frequency analysis the objective is to estimate a flood magnitude corresponding to any required return period of occurrence (Demissie,Negash and Behailu, 2016). It is essential to interpret the past record of flood events in order to evaluate future possibilities of such occurrences. The results of flood flow frequency analysis can be used for many engineering purposes for the design of dams, bridges, culverts, and flood control structures, to determine the economic value of flood control projects and to delineate flood plains and determine the effect of encroachments on the flood plain (V.Chow, 1987).

The estimation of the frequencies of flood is essential for the quantitative assessment of the flood problem. The knowledge of magnitude and probable frequency of such recurrence is also required for proper planning, design and location of hydraulic structures and for other related studies in water works design and assessments (Vivekanandan, 2015)

Most frequency distributions applicable in hydrologic study can be expressed by the following equation 2.1 which is known as the general equation of hydrologic frequency analysis.

2.4 Distribution Functions

Frequency analysis study needs statically distribution functions to estimate the peak flood magnitude of occurrence in the watershed for structural design either flood hazard remedy action or any design purposes. There are number of different statically distribution functions and parameter estimation methods with their procedures which was tested and recommended whole over the world are summarized by (Cunnane, 1989). As cited by Rahman (2010) Some of the widely used distributions for modeling annual maximum flood

series includes Extreme Value Type I(EV1), General Extreme Value(GEV), Extreme Value Type I (EV2), Two component Extreme Value, Normal, Log Normal (LN), Pearson Type III (P3), Log Pearson Type III(LP3), Gamma, Exponential, Weibull, Generalized Pareto and Wakeby. Each distribution is site fitted depending up on the hydrologic data property in the gauging station for analysis.

2.5 Parameter Estimation Methods

In distribution function there are parameters like scale, shape, location parameters depend up on the type of PDF which should have been estimated before the computation of peak flood occurrence in different return period. In current watershed study there are a number of parameter estimation methods like method of moment(MOM), method of maximum likelihood(MLM), the probability weight method(PWM), the least square method(LS), maximum entropy(ENT), mixed moment(MIX), generalized method of moment(GMM), incomplete means method(ICM) and from those three namely MOM,MLM and PWM are most common ones (Hamed, 1998).

2.5.1 Method of Moment

This method is natural and relatively easy parameter estimation method however estimates are less efficient for distributions with higher parameters. Estimates of parameters are found by equating the moment of samples with the moments of probability distribution functions. For a k parameter distribution function with a α_1 , $\alpha_2 \alpha_3...\alpha_k$ parameters which are to be estimated, the first k is set equals to corresponding population moments that are given in terms of unknown parameter. This means that the method is a technique to construct estimators of parameters that is based on matching the sample moments with the corresponding distribution moments (Vivekanandan, 2015). The jth central moment μ_j about the center of random variable can be given by:

 $\mu_j = \int (Q - \overline{Q})^j) f(Q) dQ \dots 2.2$

where Q is contentious variable, \overline{Q} is mean value of Q, f(Q) is a PDF of random variable continues variable Q.

2.5.2 Methods of Maximum Likelihood

This method is considered as most efficient method since it provides the smallest sampling variance of estimated parameters and quantiles. However, for some cases like Pearson(3P) this leads to inferior quality (Bobee and Ashar, 1991). MLM involves the choice of parameter estimation that produce a maximum probably of observation occurrence. For distribution density function determined as a function f(x) and parameters α_1 , $\alpha_2 \alpha_3...\alpha_k$ likelihood function is defined as:

Partial derivation with respect to parameters are computed and equated to zero to maximize the likelihoods function. Then the resulting equation is solved simultaneously to obtain value of parameters.

$\partial L(\alpha_1, \alpha_2, \alpha_3 \dots \alpha k)$	2 /
∂x;	

2.5.3 Probability Weight Methods

In this method parameters are estimated, as in the case of method of moment by equating moment of distribution with the corresponding sample moments. For distribution with parameter k α_1 , α_2 ... α_k which are to be estimated the first sample moments are equals to the corresponding population moments. The resulting equations are solved simultaneously for unknown parameters α_1 , α_2 ... α_k (Hamed, 1998).

Table 2-1 PDs and their Parameters

Number	Distribution	Probability Density Function	Parameters
1	EXP	$F(x) = 1 - \exp\{-(x-\xi)/\alpha\}$	scale parameter = α location parameter = ξ
2	GAM	$F(x) = \frac{x^{\alpha-1} \exp(\frac{-x}{\beta})}{\beta^{\alpha} \Gamma(\alpha)}$ Γ is the gamma function	shape parameter = α scale parameter = β
3	GEV	$\begin{split} F(x) &= \exp\{-\exp(-y)\}\\ y &= \kappa^{-1}\log\{1-\kappa(x-\xi)/\alpha\} \end{split}$	shape parameter = κ scale parameter = α location parameter = ξ
4	GLO	$\begin{split} F(x) &= \frac{1}{\{1+\exp(-y)\}}\\ y &= -\kappa^{-1}\log\{1-k(x-\xi)/\alpha\} \end{split}$	shape parameter = κ scale parameter = α location parameter = ξ
5	GNO	$\begin{split} F(x) &= \varphi(y) \\ y &= -\kappa^{-1} \log\{1 - k(x-\xi)/\alpha\} \end{split}$	shape parameter = κ scale parameter = α location parameter = ξ
6	GPA	$\begin{split} F(x) &= 1 - exp(-y) \\ y &= -k^{-1} \log\Bigl\{1 - \frac{\kappa(x-\xi)}{\alpha}\Bigr\} \end{split}$	shape parameter = κ scale parameter = α location parameter = ξ
7	GUM	$F(x) = exp[-exp\{-(x-\xi)/\alpha\}]$	scale parameter = α location parameter = ξ
8	NOR	$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{(2\sigma^2)}\right\}$	scale parameter = σ location paramete = μ
9	Р3	$\begin{split} F(x) &= \frac{ x-\epsilon ^{\alpha-1}\exp(- x-\epsilon /\beta)}{\beta^{\alpha}\Gamma(\alpha)}\\ \text{If } \gamma \neq 0 \text{, then let } \alpha &= \frac{4}{\gamma^2}, \beta = \frac{1}{2}\sigma \gamma \text{, and } \xi = \mu - 2\sigma/\gamma \end{split}$	scale parameter = σ shape parameter = γ location parameter = μ
10	WEI	$F(x) = 1 - \exp\left[-\{(x - \zeta)/\beta\}^{\delta}\right]$	scale parameter = β shape parameter = δ location parameter = ζ

2.6 Tools and Models for Floodplain Analysis and Mapping

There are a number of commercial and non-commercial software tools available for numerical modeling and analysis in GIS. Based on information on the lateral distribution of flow across a cross section the models can be further divided into one-dimensional and two-dimensional model. There are also different models like HEC-RAS, HEC-HMS and Remote sensing models are used in watershed flood plain analysis.

2.6.1 Geographic Information System

Currently, GIS tool is very rapidly developing tool regarding to its applications in different field of studies. Geographical information system is defined as computer systems capable of assembling, storing, manipulating and displaying geographically referenced information (ESRI, 1990). It encompasses not only to the GIS package but all the software used for databases, drawings, statistics, and imaging and functionality of the software used to manage the GIS determines the type of problems that the GIS may be used to solve. The soft wares must match the needs and skills of end user. GIS is powerful, easy to use, point and click graphical user interface that makes easy loading of spatial and tabular data to display the data as maps, tables and charts (Murayama and Estoque, 2010).

All the activities GIS are organized in a project, which may consist of views, tables, charts, layouts, and scripts. Using Avenue, we can customize ArcView's menus, buttons, and tools for specific applications. There are different extensions, add-on programs HEC-GeoRAS, HEC-GeoHMS, Arc Hydro and the likes can provide advanced functionality in GIS (ESRI, 1996). This tool can assist the flood plain managers to identify the flood inundation area in their community.

2.6.2 HEC-RAS Model and Its Application

Hydraulic engineering center river analysis system is an integrated system of software which was designed for interactive use in a multitasking environment. The system is comprised of a graphical user interface (GUI), separate hydraulic analysis components, data storage and management capabilities, graphics and reporting facilities (ShahiriParsa et al, 2016). The software replaces the HEC-2 river hydraulics package which was one of the oldest method dimensional steady flow water surface profiles program.

This numerical hydrodynamic model has four important possibilities in flood plain analysis. These are possibility of calculating water surface profile for steady gradually varied flow, capability of the simulation 1D/2D and combination 1D/2D unsteady flow of along open channel, floodplains and alluvial fans, simulations of 1D sediment transport or movable boundary calculation resulting from scoured and deposition over a moderate long period of time and analysis of riverine water quality. Therefore, HEC-RAS model is designed to perform 1D hydraulic analysis for a full network of natural and artificial channels and flood plains. The latest versions of HEC-RAS enables to analysis steady and unsteady flow water surface profile calculations, perform sediment transport simulation and perform water quality simulation for the user (USACE, 2016).

Figure 2.1 Component Parts of HEC-RAS Menu

Source (USACE, 2016)

2.6.2.1 Steady flow water surface profiles

Understanding of the flow dynamics in a river system is an important step towards the satisfaction of the water needs (Traore, 2015). There are different basic equations which are applicable in the environment of HEC-RAS algorithm to compute water surface elevations. In steady flow simulation water surface profiles are computed from one cross-section to the next by solving the energy equation with an iterative procedure. Energy equation is based on principle of conservation of the energy and it states that the sum of the kinetic energy and potential energy at a particular cross-section is equal to the sum of

the potential and kinetic energy at any other cross section plus or minus energy loss or gains between the sections. The energy equation can be written as follows:

Figure 2.2 Representations of Terms in the Energy Equation (Source: (Traore, 2015))

Where; z_1 and z_2 are elevations of main channel, z_2 are y_2 are depth of water across channel, V_1 and v_2 are average velocities, α_1 and α_2 are velocity weighing coefficients and g is gravitational acceleration.

$$h_{e} = LS_{f} + C \left(\frac{\alpha_{2}V_{2}^{2}}{2g} - \frac{\alpha_{1}v_{1}^{2}}{2g} \right).....2.6$$

Where; h_e is energy head loss between two sections, L is discharge weighted reach length, S_f is representative friction slope between two section and C is expansion or contraction loss coefficient.

The distance weighted reach length, L, is calculated as:

$$L = \frac{(L_{lob}Q_{lob} + L_{mch}Q_{mch} + L_{rob}Q_{rob})}{(Q_{lob} + Q_{mch} + Q_{rob})}.$$

Where L_{lob} , L_{mch} and L_{rob} are x-section reach length specified for flow in the left overbank, main channel and right overbank respectively and Q_{lob} , Q_{mch} and Q_{rob} are arithmetic average of the flows between sections for the left overbank, main channel and right over bank respectively.

2.6.3 HEC-GeoRAS and Its Application

HEC-GeoRAS is an Arc GIS extension tool specifically designed to process geo-spatial data for use with interconnection of the hydrodynamic model HEC-RAS (Cameron and Ackerman, 2012). This extension tool enables Modelers of river to pre-process HEC-RAS import file containing geometric attribute data form an existing digital terrain model and complementary data sets. When using the HEC-GeoRAS extension, the data can be easily inserted into the equation, and the results can be exposed through maps of hydrological risk (Merwade , 2012).

Here the result of water surface profile also processed to visualize flood inundation depths and bounding boundaries. HEC-GeoRAS extension for ArcView GIS used an interface method to provide a direct link to transfer information between the ArcView GIS and the HEC-RAS as shown in Figure 2.4 below.

HEC-GeoRAS version10.3 requires GIS10.3 or higher version with 3D Analyst 1.0 extension. GeoRAS10.2, extension provides the user with a set of procedures, tools, and utilities for the preparation of GIS data for import into RAS and generation of GIS data form RAS output. These tasks are organized as pre-processing (pre-RAS) and post-processing (post-RAS) facilitated by menu and buttons.

2.6.3.1 Pre-RAS processing

In order to create the import file for HEC-RAS model, the digital terrain model or digital elevation model of the river system in the form of TIN format is needed. The other important data used for the pre-processing includes series of line themes are stream centerlines, flow path centerlines, main channel banks, and cross section cut lines referred as the RAS themes. 3D streamline and cut lines themes are created using 2D RAS themes and TIN. The RAS import file consists of geometric attribute data necessary to perform hydraulic computations in HEC-RAS model. The cross-sectional geometric data is developed from DTM of the channel and surrounding land surface, while the cross-sectional attributes are derived from points of inter-section of RAS themes. Additional RAS themes may be created / used to extract additional geometric data for import in HEC-RAS. These themes include LULC, Levee Alignment, Ineffective Flow Areas, and Storage

Areas. Expansion or contraction coefficients, hydraulic structure data such as bridges and culverts are not written to the RAS GIS import file and need to be added to the model through the RAS interface (USACE, 2016).

2.6.3.2 RAS-Processing

Flood modeling is one of the engineering tools which provides the accurate information of the flood profile through processing of appropriate model (Ahmad, Alam,Bhat and Ahmad, 2016). Hydrodynamic HEC-RAS model processing is another important step in river plain analysis to simulate either steady or unsteady state flow profile. HEC-RAS model was used by (Traore, 2015) based on hydraulic routing to describe the hydraulic behavior of this river basin by performing steady flow calculations in order to generate water surface profiles for different discharges.

2.6.3.3 Post- RAS processing

Post-Processing (post-RAS) facilitates the automated floodplain delineation based on the data contained in the RAS GIS output file and the original terrain TIN. Based on the RASGIS export file, cross-sections theme (with water levels for each modeled profile as attributes) and bounding polygon (to the edge of the modeled cross-sections) can be generated. The water surface Tin is generated using these cross-sections and bounding polygon themes. With the water surface TIN and the original terrain TIN, inundated depth grids and floodplain polygons can be automatically generated. Apart from this, HEC-GeoRAS can also generate the velocity TIN and grid (ESRI, 1997).

2.7 Triangulated Irregular Network (TIN)

Triangulated irregular network is a surface representation derived from interconnected and non-overlapping triangles. The vertices of the triangles are formed by irregularly spaced sample points. Each point has x, y coordinate and a surface or z- coordinates (ESRI, 1997). Any floodplain model needs information about the elevation of the ground points inside the flood prone areas. Since the TIN model is the three dimensional presentation to the terrain, they become very important information to floodplain modeling. Thus the TIN model can be considered as the backbone of the flood hazard occurrence predictions. These kinds of models enable computer processing to solve problems faster and better than dealing with the natural ground.

2.8 Flood Plain Analysis

Flood plain is defined adjoining dry land area of the river or any other water carrying body that is inundated during flood event happening. As cited by Ahmad, Alam, Bhat and Ahmad (2016) floodplain modelling can focus on several different areas, including preparation of comprehensive floodplain studies, design of transportation feature, or other facilities like floodway development and structural or nonstructural solutions to flood problems in the watershed. Once the peak flood for desired return period has been estimated the next task is to determine the water surface profile of the river channel. This process can be done by assuming the steady, gradually varied 1D or 2D models. One dimensional models allow the flow properties for long stream whereas 2D model accounts the changes across the channel (V.Chow, 1987). HEC-RAS model can do this as it designed to perform the 2D/1D hydraulic calculations in full networked natural or constructed channel (USACE, 2016).

2.9 Flood Hazard Assessment

Hazard is defined as threatening event, or the probability of occurrence of a potentially damaging phenomenon within a given time period and area (Brooks, 2003). The hazard assessment includes the assessment of risks posed by a flood event in terms of tangible and intangible damages. After identifying the potential hazards, the next step in the assessment process includes the estimation of extent and severity of the damages in terms of hazard exposure analysis, usually defined by flood water depth and the velocity. The damage assessment involves estimating the impact of the likely exposure in terms of the costs of replacing and restoring the affected areas.

The flood hazard and exposure assessment can be undertaken as outlined in the three approaches by Rejewski (1993) as cited (Awal, 2003). In the first approach, a simple binary model, describes the hazard as either present or absent. The second approach, spatial coexistence model is represented by a weighted model, which involves ranking locations within the hazard area according to the severity of the hazard. The third approach is the

quantitative interval ratio model that assigns numbers to locations that quantify the unit hazard factor.

2.10 Previous Study in Ethiopia

Currently flood, is common phenomenon in the low land areas of Ethiopia like ERVLB due to its topographic and human-effect causes. Bilate watershed is one lie in ERVLB which has consecutive flooding. In the higher reaches of watershed, the problem is mainly confined to landslides, debris flows and river bank undercutting, whereas in the low lying areas and the flat areas of the watershed across the river bank. The floods generally overflow the bank and cause bank erosion, inundation and fields are filled with sediments every year during the monsoon (June- September) in the numerous streams and rivers (Kefyalew, 2003).

Natural hazard assessment in Ethiopia is still nearly in initial stage and less concern is given to assess flood hazard and mapping flood inundation area. Flood hazard assessment still needs research in Ethiopia. Even though some flood protection work has carried out at some part, it is more without planning and mapping in basin scale. Some relevant literatures carried out in Ethiopia reviewed for this study are discussed here.

(Solomon, 2012); worked on Flood risk mapping and Vulnerability Analysis of Megech River using 2D hydrodynamic flood modeling. The study was generated flood risk map by weighting flood depth, flow velocity and flood duration using HEC-RAS hydraulic model. Then prepared flood map for different return periods.

Flood Risk Analysis in Illu Floodplain, Upper Awash River Basin, Ethiopia by (Dawit, 2015) as carried out to analysis risk on crop. After the study he recommend that in order to minimize the amount of flood damage, it is recommended that areas inundated by the 100 year return period flood should not be used for agricultural activities, infrastructure development, settlement and other investment projects on the wet season because has high probability occurrence in the study area.

Flood hazard and risk assessment using GIS and remote sensing in lower awash sub basin, Ethiopia was studied by (Yirga, 2016). The major finding indicated that 107,145.01 ha (5%), 522,116.92 ha (23%), 897388.95 ha (39%) and 763045.31 ha (33%) of the area

considered in Lower Awash Sub-basin were subjected respectively to low, moderate, high and very high flood hazards. The recommendation of the paper says that "A limitation that can be pointed to this method of flood hazard and risk mapping is that the GIS result is not combined with an applicable hydrologic/hydraulic method for estimating stages. As a result of this, the study is conducted without any hydrodynamic simulation and estimation of flood depth inundation. Therefore, in the future research on developing flood hazard map that can indicate the depth of inundation through hydrodynamic simulation should be done for the Lower Awash Sub-basin."

As cited by Yirga(2016) in Ethiopia most flood hazard studies have been concentrated in Tana sub-basin (Assefa et al, 2008; Mossie, 2008; Hagos, 2011; Wubet & Dagnachew, 2011; Zelalem, 2011 Yalelet, 2013), in Dire Dawa (Daniel, 2007) and in Middle and Upper Awash sub-basin (Alemayehu, 2007; Sifan, 2012). These studies are done by out of GIS based technique to analysis flood hazard area.

Floodplain modeling for Awitu River sub-basin, Oromia, Ethiopia was done by (Tolera and Fayera, 2019). They used HEC-RAS model and HEC-GeoRAS ArcGIS tool to conclude that upstream and downstream right banks are more exposed to flood inundation with their finding of 130.7 ha and 185 ha for the return periods of 5 and 1000 Yrs respectively.

As Demissie,Negash and Behailu(2016) are work together on assessment of climate change impact on flood frequency of Bilate river basin, Ethiopia using HEC-HMS model and HEC-SSP software, their study concludes that precipitation and temperature of the study area have changed, hence there is flooding in the basin for the next 30 years.

Floodplain modeling for Awitu River sub-basin, Oromia, Ethiopia was done by (Tolera and Fayera, 2019). They used HEC-RAS model and HEC-GeoRAS ArcGIS tool to conclude that upstream and downstream right banks are more exposed to flood inundation with their finding of 130.7 ha and 185 ha for the return periods of 5 and 1000 Yrs respectively.

Flood inundation mapping in Gelana, Rift valley in Ethiopia was done by (Bucha and Selvaraj, 2019) was done using HEC-RAS model and GIS tool. Their finding show 3.99,

2.32, 2.21, 2.13, 2.04 ha which is very small finding in relation to watershed size respectively to very high, high, moderate, low and very low flood hazards

Mapping flood prone areas of Bilate watershed using integration of multcriteria analysis and GIS techniques was carried out by (Muse,Getaneh and Abiy, 2018). The final result produced using Weighted overlay function of the five criterions developed identified three flood prone areas in the watershed as high, moderate and low flood prone areas covering 28.5% (1603.16 Km²), 61.4% (3453.82 Km²) and 10.1% (568.14 Km²) area from the watershed respectively. A gap found here is that flood hazard and risk mapping using multcriteria analysis and GIS result is not combined with an applicable hydrologic /hydraulic method for estimating flood hazard relative to stages the area itself is also over estimated.

Therefore, the studying on the river plain flood inundation mapping and hazard assessment using GIS and HEC-RAS is current research area. Bilate river plain analysis using the GIS tool and hydrodynamic model HEC-RAS model was done as no more research in this area.

CHAPTER 3

MATERIALS AND METHODS

3.1 Description of Research Area

3.1.1 Location

The study area (Bilate sub-basin) is situated in the southwest of Addis Ababa, between around 6°30'10''and 8°24'0''N latitude and 37°46'50''and 38'31'55''E longitude. It forms part of the Main Ethiopian Rift valley, which is part of an active rift system of the Great Rift Valley. The Bilate River watershed, which is chosen to be the area of study, forms the north western part of the ERVLB. The catchment covers the area between Gurage highlands to Lake Abaya shore and includes the portions of SNNPRS regional zones Hadiya, Kembata Tembaro, Gurage, Silte, Wolyita, Sidama, Alaba zone and small parts of the South-central Oromia regional states. The total area coverage is around 5356.76 km^2 based on watershed delineation.

Figure 3.1 Location Map of Research Area

3.1.2 Hydro-Metrological Condition

Climatic condition of the study area ranged between sub-tropical to temperate at lower and higher altitudes respectively. The annual rain fall study watershed ranged between 769mm to 1516mm and annual maximum and minimum temperature varies between 11° C and 30° C (Demissie,Negash and Behailu, 2016). The maximum and minimum stream flow record Bilate near Alaba Kulito, Bilate near Tena Bilate, Weira near Fonko, Batena Near Hossana and Ferfero near Wulbarag were 283.54 to 0.206,283.5 to 0,239.48 to 0.449,101.3 to 0.003 and 104.366 to 0 m³/s respectively.

Figure 3.2 Yearly Maximum Stream Flow at Gaging Stations in Bilate Watershed

3.1.3 Land Use Land Cover Map of Research Area

The LULC of watershed also has an impact on flood and also impacted itself by flood. That means when there is density in land use land cover the infiltration rate is high and low in runoff rata. Bilate watershed consists of nine land use land cover type namely crop plantation land, cultivation land, wood land, state farm, swamps, grass land, water body, forest area and shrub land. The area under shrub land comprises more than 46% therefore there is an indication of soil degradation at high land area and deposition at low land area which reduces the river water carrying capacity.

Figure 3.3 LULC Map of the Research Area

3.1.4 Soil Map of Research area

Soil type in the watershed has also great impact in the occurrence of the river flooding and its hazard. The soil type also impacted by the flood due to the degradation in high land deposition in lowland when the area inundated. As the soil type near the river bank is very poor to resist the pressure of water, the bank will be degraded and filled in the channel. Then this leads for inundation in river plain due to the peak flood holding capacity retardation in river. Bilate watershed has about sixteen types of soil based on the soil Ethiopian soil map as shown in Figure 3.4 below.

Figure 3.4 Soil Map of the Research Area

3.1.5 Topography of Research Area

The topographic condition of the watershed like elevation, slope, drainage density and aspect has a great roll in flood hazard occurrence in river system. The elevation of the Bilate watershed varies between 1153m and 3331m above mean sea level as it was extracted from the DEM of 30m resolution. But majority of the Catchment area forms an elevation between 1160m and 2000m above mean sea level. Slop has also great contribution river flood happening in river system. The slope of the of Bilate watershed was classified from DEM 30 as shown on the figure 3.6 below and its majority falls under the slope category of 0-15% rises. This elevation variation and slope variation also has great in indication for the occurrence of river flooding.

Figure 3.5 DEM of the Research Area

Figure 3.6 Slop Map of Research Area

3.2 Materials Used

Before interring to the research work it is important to know what materials are necessary required for the selected title. For this case the chosen study area is to analyze the river plain which needs GIS based tools and hydraulic models. Thus to accomplish the study properly and effectively with in a short period of time different basic equipment, materials and software were used for data collection, processing, analysis and flood map preparation are tabulated with their source and purpose as following Table 3-1.

S. N <u>o</u>	Material	Source	Purpose
1	ArcGIS10.4	Sharing it from JIT instructors	For geospatial data processing and floodplain mapping of the research area
2	HEC-GeoRAS12.3	Downloaded from the Website: www.hec.usace.army.mail	To interface between GIS and HEC-RAS model
3	HEC-RAS5.0.1	Downloaded from the Website: www.hec.usace.army.mail	To calculate water surface profiles and steady flow analysis

Table 3-1 Table showing the materials used for flood plain analysis

3.3 Data Used and Sources

All the necessary data for river plain flood inundation mapping and hazard assessment using HEC-RAS model and GIS tools are stream flow data, DEM and LULC. Stream flow data of five gauging stations namely Bilate near Tena Bilate, Bilate near Alaba kulito, Batena near Hossana, Ferfero near Wulbarag and Weira near Fonko was gathered from Ministry of Water, Irrigation and Electricity(MoWIE) in legally way. Digital Elevation Model (DEM) 30m resolution of Ethiopian rift valley lake basin which is very important in flood modeling and land use land cover(LULC) map was also collected from MoWIE by kindly request.

3.4 Study Procedures

The following diagram shows the core path that the flood plain analysis in this study using GIS and HEC-RAS model was conducted. Each steps shown on the work flow diagram was done step by step and carefully to come up with best results of this research objectives.

Figure 3.7 Conceptual Work Flow of Flood Plain Analysis Using GIS and HEC-RAS

3.5 Data Preparation and Analysis

After all the data have been collected, the next step of the study followed as preparation and analysis of the raw data to make it useful for the research purpose. The data preparation and analysis phase of flood inundation mapping and hazard assessment for the study area consists of; Identifying and filling missing stream flow data, Checking the consistency and homogeneity of data, Analysis of stream flow data, Preparation of LULC and soil Map and reclassification and Topographic data preparation.

3.5.1 Identifying and Filling Missing Data

Before starting hydrologic analysis, it is important to check whether the data series is sufficient and complete with no missing or not. Errors resulting from lack of appropriate data processing are serious because they lead to bias in the final answers (Vedula, 2005). In general data should be adjusted for homogeneity and inconsistence, extended for insufficiency and filled for missing using appropriate methods.

There are different techniques to fill missing data in hydrological analysis such as simple average (Station area Average), linear or multiple regression, normal-ratio, coefficient of correlation, and inverse distance weighting method are commonly used to fill the missing records (Gomez, 2007). The regression analysis is most frequently used method to solve the missing data problem in many river flows (Mfwango, Salim ,Kazumba , 2018).

For this study the stream flow data gap was filled using linear regression. analysis. Linear Regression analysis for two relative variables Q_m and Q_o the linear regression equation is given as equation 3.1 below.

3.5.2 Test on Outlier

Outlier in the data can be happen due to the depart of the single data from the general trend of the other data in the record station. This problem usually occurs due to the observation error made during record data collection or any other natural error like failure of structures adds inspected reading of gauge.

There are two groups of methods of outlier test of data like interval and statically tests of data. Interval method considers interval of data after observation and traditionally concerns mean plus or minus three times standard deviation ($\overline{X} \pm 3S$). The data out of this range is termed as outlier data. Box plot method is also other interval method of outlier test of data

which consider the data between $X_i < Q_1 + 1.5IQR$ or $X_i > Q_1 + 1.5IQR$ as weak outlier and $X_i < Q_1 + 3IQR$ or $X_i > Q_1 + 3IQR$ equalities are taken as strong outlier data. In this equalities Q_1 , Q_3 and IQR are first quartile, the third quartile, and interquartile range (IQR = $Q_3 - Q_1$), respectively (Garcia, 2012). This method is to show position, dispersion and skewness of data, which is frequently used to detect outlier data. Statically methods like Grubbs test, Grubbs and Beck test are basic methods to detect outlier of data. For this study Grubbs and Beck (G-B) test was used.

3.5.1.1 Grubbs and Beck (G-B) test

This method is also another statically method to detect an outlier of data in stream flow record before estimating peak flood for any water related design. Quintiles bound not to be or to be outlier using G-B test method can be computed as equations 3.2 and 3.3.

$$\begin{split} X_{\rm H} &= \exp(\overline{X} + K_{\rm N}.S) \dots 3.2 \\ X_{\rm L} &= \exp(\overline{X} - K_{\rm N}.S) \dots 3.3 \\ K_{\rm N} &= -3.62201 + 6.28446 N^{1/4} - 2.49835 N^{1/4} + 0.491436 N^{1/4} - 0.037911 N^{1/4} \dots 3.4 \\ \end{split}$$
Where X and S are the mean and standard deviation of the natural logarithms of the sample, respectively, and K_N is the G-B statistic tabulated for various sample sizes and significance levels by Grubbs and Beck at the 10% significance level. Sample values greater than X_H are considered to be high outliers while those less than X_L are considered to be low outliers.

3.5.3 Checking for Data Accuracy

The daily flow data collected from MoWIE for the study area was filled using regression analysis and extended for the shortage of data by using satisfactory correlation coefficient for the common data period of neighboring station. It is very important to check the data for consistency and homogeneity before using the data to frequency analysis for different design (Hamed, 1998). In flood frequency analysis both consistency and homogeneity are important parameters to be considered for data accuracy. Therefore, the consistency and homogeneity test was done by using the method of DMC and Mann-Whitney (1947) (M-W) test statically methods respectively.

3.5.3.1 Consistency test

Inconsistency of the data that faced to hydrologists in any river and hydrologic system analysis are due to inefficiency of the missing data filling technique, due to fault of reader and change of recording material. The most widely used technique for evaluating a time series data record, such as rainfall or stream flow, for consistency is the double mass curve (Bras 1990). Double mass curve ware computed as cumulative of stations and targeted station and it is scatter plotted as shown in appendix Figure 1.

S. N <u>o</u>	Station Name	Equation	\mathbb{R}^2	
1	Bilate at Tena Bilate	Y = 2.376X - 71.06	0.988	
2	Bilate Near Alaba Kulito	Y = 1.356X + 13.72	0.974	
2	Weira Near Fonko	Y = 0.859X + 0.886	0.982	
3	Batena Near Hossana	Y = 0.384X + 43.61	0.954	
4	Ferfero Near Wulbarag	Y = 0.478X - 4.608	0.965	
Where X is cumulative of four and Y is cumulative of each				

Table 3-2 Double mass curve fitting table for Bilate stream flow gauging station

3.5.3.2 Homogeneity test

For flood frequency analysis of ... In this test two samples of size p and q with p is less than or equal to q are compared. The combined data set of size N = p + q is ranked in increasing order. The Mann-Whitney (1947) (M-W) test considers the quantities V and W in the following form (Hamed, 1998).

 $w = pq - v \dots 3.6$

where R is the sum of the ranks of the elements of the firs sample of size p in the combine series (size p), v represents the number of times an item in the sample 1 follows an item in the sample 2 in ranking. The hypothesis for this method is tested with the statically defined equation for significant level α .

Where U is the smaller of v and w, \overline{U} is equals to pq/2 approximately and variance is given as:

$\operatorname{var}(\mathbf{U}) = \left[\frac{\mathrm{pq}}{\mathrm{N}(\mathrm{N}-1)}\right] \left[\frac{\mathrm{N}^{3}-\mathrm{N}}{12} - \sum \mathrm{T}\right] \dots$	3.8
--	-----

Where $T = (J^3 - J)/12$, J the number of observation tied at a given rank of samples both in p and q.

3.5.4 Flood Frequency Analysis

Flooding is among the most threatening natural disasters in the world and its mitigation and management are pivotal for the design of enormous hydraulic structures, according to regulations administered by flood frequency analysis (Rizwan, Guo, Xiong and Yin, 2018). Flood frequency analysis which is one of the peak flow estimation method was used to analyze the flood plain in study river gauging station. There are many probability functions which represent random occurrence of variable to analyze flood frequency in river and river system. Here are some of the statically distribution functions which are graphically best fitted for the station are discussed.

3.5.4.1 Pearson type III method

Pearson III distribution method is one of the three parameter gamma family distribution function to estimate peak flood occurrence in the watershed. Quantile estimation of these three parameter distribution function is given by the Equation 3.9.

Where α , β and γ are parameters and K_T is frequency factor for the return period and computed by different imperial formulas based on the value of coefficient of skewness. For these case $C_{s is}$ greater than zero and Wilson-Hilferty transformation (Wilson and Hilferty 1931) equation was used.

$$K_T = \frac{2}{c_s} \left[\left\{ \frac{C_s}{6} \left(u - \frac{C_s}{6} \right) + 1 \right\}^3 - 1 \right].$$
 (3.10)

where $C_s > 0$ and u is standard normal variate.

3.5.4.2 Gumbel's method (distribution)

Gumbel statically distribution is the most widely used probability distribution function for extreme values in hydrologic and meteorological studies for prediction of flood peaks, maximum rainfalls and maximum wind speeds (Subramanya, 2008). For practical use in

Gumbel's method the general equation of hydrologic frequency analysis for finite length records of data for finite N is given by:

 $X_T = \overline{X} + K\sigma_{n-1} \dots 3.11$

Where, σ_{n-1} is standard deviation sample of size, N is sample size and K is frequency factor.

$$N = \sqrt{\frac{\Sigma(X - \overline{X})^2}{N - 1}} \dots 3.12$$

 $K = \frac{y_T - \overline{y}_n}{S_n} \dots 3.13$

Where, y_T is reduced variate as a function of T and given by the equation 2.5 as:

Where \bar{y}_n is reduced mean as function of N and S_n is a reduced standard deviation as function of N.

3.5.4.3 Log Pearson III method (distribution)

This distribution is extensively used in USA for projects sponsored by the US governments (Subramanya, 2008). In this distribution method first variate X is converted to log 10 and the transformed data is analyzed. For X variate random hydrologic series Z variate series is given by:

 $Z = \log X \dots 3.15$ Then reduced Z series $Z_T = \overline{Z} + K_Z \sigma_Z \dots 3.16$ Where K_Z is frequency factor as function of T and coefficient of skew of variate Z, C_s and
Standard deviation of variate Z, \overline{Z} is means of Z value, N is sample size or number of
records year of data

 K_Z is found from $f(C_s, T)$ from table or given by computation equation and after computing Z_T , X_T can be computed as X_T equals to an ant log (Z_T) .

3.5.4.4 Log Normal method (distribution)

when the skew is zero that means Cs is zero the Log –Person Type III distribution is reduced to Lognormal distribution (Subramanya, 2008). In this method all the procedures flow the Log-Person Type III distribution for zero skewness.

3.5.4.5 Exponential distributions

Exponential distribution is one of the spatial form of gamma family which include three parameter Pearson and log Pearson, one and two parameter gamma and generalized gamma distribution (Hamed, 1998).

3.5.4.6 Gamma (2p) distribution

This distribution is also an other special form of Pearson (3) distribution with ε is equals to zero and its quantile of T-year is given by

Where α and β are parameters and K_T is frequency factor computed by different empirical formulas based on coefficient of skewness (Hamed, 1998).

3.5.4.7 Generalized extreme value

GEV is also another form of distribution method which is depends up on the sing of parameters when k in distribution function is negative it is reduced to GEV (2) and suitable for bounded parameters. T-year flood is given by the equation as follows:

 $X_{T} = u + \frac{\alpha}{k} \left[1 - \left\{ -\log(1 - \frac{1}{T}) \right\}^{k} \right] \dots 3.21$

Where u, α and k are parameters commuted by parameter estimation methods.

3.5.4.8 Best fit selection numerically and graphically

Fitting of distribution function for a given watershed or station must be done through both graphically and analytically for best result. Graphically like L-Moment ratio and MRD and analytically D-index, RMS and CC was used for commonly used functions to identify best fit distribution function for the catchment. Side to side parameter estimation was done for

graphically selected best distribution methods during analytical solution using parameter estimation methods like MOM, PWM and MLM which are mostly applicable methods in flood frequency analysis. Here for this study L-moments was used.

Figure 3.8 Graphical Methods to Select Best Fit Parent Distribution

Based on L-moment diagram Pearson type three distribution function is best fitted because the site moments and site mean are migrating around it. But is impossible for different engineers come up with similar distribution function by a simple visualization of graph reading. Therefore, supporting by some numerical results should be mandatory to be real. In this study analytically using D-index, RMSE and CC methods and three of mostly used parameter estimation methods are used to select best fitted statically distribution function for stream flow data of Bilate near Tena Bilate gauging station.

3.5.4.9 D-Index method

 calculated data 7) finally compute D-Index. The distribution having the least D-index is identified as the better suited distribution for estimation of probable maximum flood (USWRC, 1981).

3.5.2.10 Correlation coefficient

Correlation coefficient (R^2) is also another analytical method to judge distribution function is best fitted, if it has largest value. Method was accomplishing by scatter plotting of observed data vs computed data by different graphically selected and commonly used distribution functions.

Figure 3.9 Scatter Plot of Estimated Vs Observed Flow at Study Station

3.5.2.11 Root mean square error method

Root mean square method is another analytical best fit selection method which is widely directed for the use of probability distribution identifications for the station. Here this method was applied in the study of frequency analysis. The equation is given by:

$$RMSE = \left(\frac{\sum Q_{oi} - Q_{mi}}{N - m}\right)^{1/2} \dots 3.23$$

Where Q_{oi} is observed data, Q_{mi} estimated flow, N is number of record year and n is the number of parameter for distribution used.

3.6 Flood Plain Analysis

Spatial data preparation for flood plain analysis and flood plain analysis after steady state flow simulation was carried out using GIS10.4.1 in this study. Powerful hydraulic model

for river analysis HEC-RAS 5.0.1 was also used to calculate water surface profiles of the Bilate river flood plain. Hydraulic Engineering Center Geographic River Analysis System version13.1 which is one of the extension tools of GIS was used to circuit between HEC-RAS and ArcGIS. These model software's and tools were used in this study why because they are most worldwide applicable in river flood plain analysis and data processing, very accurate in 1D flood plain analysis and freely available.

3.6.1 Flood Plain Analysis Procedure

The general method adopted for flood plain analysis and hazard assessment in this study was basically shown in work flow diagram of 1D hydraulic river flood plain analysis above. Here the detail of these like watershed delineation, Preparation of TIN, LULC and soil Map on GIS tool, GeoRAS Pre-processing to generate HEC-RAS import file, Running of HEC-RAS to calculate water surface profiles, Post-processing of HEC-RAS results and floodplain mapping and hazard and assessment discussed.

3.6.1.1 Watershed delineation

Delineating study area is the first thing to be done in watershed related research. The study watershed Bilate was delineated from DEM 30m resolution using GIS. Procedural steps have been done for any watershed research area delineation are fill, flow direction, flow accumulation, map calculation, flow sink, stream order, stream to feature create, snapping outlet point, watershed creating, conversion to polygon and clipping polygon in progressive order.

Figure 3.10 Delineated Watershed of Research Area

3.6.1.2 LULC Map Preparation

LULC map of the Bilate watershed was developed and reclassified from LULC map of Ethiopia collected from MoWIE which have 9 classes with use verification. This activity was accomplished by clipping the Ethiopian LULC map by the watershed polygon developed in section 3.6.1.1 above. From these output topo-sheet map each occupied by reclassifying LULC of total watershed 5356.763 km2 area were tabulated in Table 3-3 below.

Name	Area(km ²)	% Each
Crop Plantation	73.998	1.381
Cultivation	1335.816	24.94
Forest	1049.022	19.58
Grass Land	147.8328	2.76
Shrub Land	2492.308	46.53
State Farms	74.4942	1.391
Swamps	68.17936	1.273
Woodland	111.9478	2.09
Water Body	3.16497	0.059
Total	5356.763	100

Table 3-3 LULC share	for each type in study area
----------------------	-----------------------------

3.6.1.3 Manning's coefficient

In the hydraulics of HEC-RAS flood model Manning's n value have great role to determine the flow property. Based on the land use land cover table creation the GeoRAS environment Manning's value for each cross section was entered. According's to the (Chow, 1959) Manning value n for different land use was prepared as 0.035 for crop plantation area, state farm and grass land, 0.1 for forest land, 0.05 for shrub land, 0.04 for swamp and water body and 0.07 for wood land.

3.6.1.4 Preparation of TIN

TIN which is the back bone for river flood analysis was pre-processed for HEC-RAS Model using DEM 30m*30m resolution for this study. It shows best specific river bed and

banks which is very important parameters are in flood plain hydraulics. There are different tools to generate TIN like GIS and RAS Mapper. Here for this thesis GIS was used as a tool to create TIN Passing the steps: GIS new project, add DEM to GIS window, go to Arc Toolbox, 3D analysis tool, Conversion, raster to TIN, call DEM to raster to TIN menu then output was delivered.

3.6.1.5 Geo-RAS pre-processing

All the RAS import files are pre-processed on the GeoRAS before the start of RAS analysis for river system. The basic river layer parameters like stream centerline, Bank lines, XS Cutline and flow path centerline was prepared from TIN of the Watershed. These step was done based on as per criteria of the USACE manual.

3.6.2 HEC-RAS Processing

Hydraulic Engineering Center River analysis system (HEC-RAS) model is very powerful model for flood inundation mapping with interconnection to GIS tools has procedural steps to simulate flow analysis. These are setting up new project, importing geometric file, editing geometric data, inputting flow data, setting boundary conditions and running steady flow data analysis. Finally, the processed data was exported to GIS tool for post processing as form of SDF file format.

3.6.2.1 HEC-RAS project setup and geometric data importing

HEC-RAS model was setup before importing RAS import file as creating new project, saving in folder and converting the measurement system US customary units to SI units for this research work. Once the projected sated up the next step was importing geometric data which was prepared on HEC-GeoRAS. To import file going to View/edit geometric data on HEC-RAS menu, import geometry file, select folder then the data has been imported as a GIS data format.

Both GIS and its extension HEC-GeoRAS tools were effectively used to create RAS import file as GIS data. TIN was extracted from DEM raster and XS data was pre-processed passing challenging steps of HEC-GeoRAS.

3.6.2.2 Editing geometric data

After import of geometric data to edit the following steps was done; going to tools XS points were filtered for all reaches, going to table manning's n value was interred and LOB, ROB, reach lengths was edited. contraction and expansion coefficient was sated by the model itself.

3.6.2.3 Flow data imputing and steady flow analysis

Finally, Stream flow data computed using Pearson(III) statically distribution method for return periods of 5,10,50,100,200Yrs was interred. Then selecting normal depth boundary condition of slope 0.001 and 0.003 from downstream to upstream respectively which was average computed from both ends of ground profile of study area. Finally, the steady flow analysis was carried out successfully as shown in appendix Figure 3.

3.6.3 Post-RAS Processing

These stage started after the successful simulation of steady flow in HEC-RAS and exported as RASexport SDF file. Then post-RAS was analyzed by steps like changing SDF file to XML file, RAS Mapping menu, layer setup, import RAS data and inundation mapping. SDF file was converted by calling the converter in RAS mapping tool then going to folder that RASexport file exist and adding it changes the data to XML file which is familiar on GIS environment. RAS map was set for steady flow analysis in this study by creating folder, adding RASexport file, adding TIN, setting cell size 20 as it was and running the tool accomplished. Then post RAS was done for water surface generation and inundation mapping using raster as show in appendix Figure 8.

3.7 Flood Hazard Assessment and Mapping

Flood hazard was assessed based on the depth grids that was generated during flood plain map delineation using raster with intersection of land use land cover map clipped by depth grid bound polygon. The hazard aspects of flood are related to hydraulic(depth, velocity, slope, boundary condition and elevation) and the hydrological parameters(stream flow or rain fall) (Glard, 1996). As magnitude of flood increases the depth increase, then the study was done reclassifying the depth grids in to six depth level in hazard map indicating very low to sever level.

After the reclassification of the depth grid it was intersected with land use land cover and finally the resulted attribute table in GIS environment was assessed for hazard level. Hazard maps for selected return periods was done by reclassifying the depth grid raster as rang of less than one is very low, one to one and half is low, one and half to two moderate, two to two and half is high, two and half to three is very high and more than three is sever flood magnitude.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Flood Frequency Analysis

4.1.1 Determination of Stream Flow Accuracy

Using G-B test the higher quantile and lower quantile was 727.38 m^3 /s and 8.334 m^3 /s respectively, which is highly outlier for the station with maximum and minimum of the yearly maximum discharge 283.5 m^3 /s and 8.539 m^3 /s respectively. That mean the station stream flow data was not have an outlier data during the record or missing data filling time.

Double mass curve analysis was done for five stream flow gauging stations and the cumulative of average yearly stream flow for selected station verses accumulated average of the other four station was drown on excel as scatter plot. As the result shown in in appendix Figure1 and Table3.2 there are no significant slop drop on the data and therefore there is no need of adjustments. These result indicates that the method of missing data and the recorded data was accurate enough for flood frequency analysis.

Homogeneity and stationarity test value for stream flow for this study in Bilate gauging station using Manny-Whitney was u = 1.28 which is less than critical value $u_{0.025} = 1.96$ at 5% significance and homogeneity was accepted. Therefor the stream flow data used for this study in Bilate at Tena Bilate station was acceptable.

4.1.2 Determination of Peak Flood

Determination of peak flood for 5, 10, 50, 100 and 200Yrs was achieved by using statistical methods of best fitted probability functions numerically and. To select the best fit statistical model graphical and numerical methods were used. Graphical analysis was done for some worldwide recommended probability distributions and six of best fitted distribution functions were analytically solved for best of best. As the result shown in Table 4.1, 4.2 and 4.3 Pearson Type III is the appropriate method to estimate peak flood magnitude in Bilate watershed of Bilate at Tena Bilate gauging station for this study. The estimated peak floods were tabulated in the Table 4-4 below.

Method of Parameter estimation						
Distribution Type	MOM	PWM	MLM	Max	Remark(Selected)	
PIII(3P)	<u>0.9819</u>	0.9791	0.9784	<u>0.9819</u>	MOM	
EXP(2P)	0.9546	0.6773	0.6773	0.9546	MOM	
EV1(Gumbel)	0.7334	0.9711	0.7334	0.9711	PWM	
LN(3P)	0.8845	0.9776	0.9812	0.9812	MLM	
Gamma(2P)	0.9772	0.9738	N/A	0.9772	MOM	
GEV3(3P)	0.9546	0.9546	0.9073	0.9546	PWM	
			Grand			
			Max.	0.9819	Take: PIII/MOM	

Table 4-1 Correlation coefficient for best fit selection

Table 4-2 RMS method of best fit estimate

	Method of Parameter/Quantile Estimation				
S.	Name of				Max. of Min.
No	Distributions	MOM	PWM	MLM	Count
1	PIII(3P)	<u>30</u>	0	8	30
2	EXP(2P)	19	19	0	19
3	EV1(Gumbel)	23	9	6	23
4	LN(3P)	1	16	21	21
5	Gamma(2P)	28	10	0	28
6	GEV3(3P)	20	18	0	20
				Grand Max.	30
				Take: PIII/MOM	

Table 4-3 D-Index Methods

Method Of Parameter Estimation

Distribution Type	MOM	PWM	MLM	Min.	Remark(Selected)
PIII(3P)	<u>1.532</u>	2.379	1.674	<u>1.532</u>	MOM
EXP(2P)	6.326	7.283	6.155	6.155	MLM
EV1(Gumbel)	10.5	8.455	8.885	8.455	PWM
LN(3P)	6.462	9.354	6.08	6.08	MLM
Gamma(2P)	1.708	2.862	N/A	1.708	MOM
GEV3(3P)	2.043	10.95	7.872	2.043	MOM
	Grand Min.	1.532	Take: PIII/MOM		

$\alpha = 27.8834$	β= 6.8136	γ = -81.6376
Т	K _T	$Q_{\rm T}(m^3/s)$
5	0.61623	153.2
10	1.16515	193.2
50	2.27075	273.6
100	2.70612	305.3
200	3.126	335.9

Table 4-4 Peak discharge for different return period at Bilate at Tena Bilate station

These results indicate that severity of flood magnitude increases from year to year of return period. These peak flood discharge increase is due to the increase in return period which can receive different flood causative agent like LULCC, urbanization, soil degradation and elevation changes.

4.2 Preparation of TIN

TIN which is the back bone for river flood analysis was pre-processed for HEC-RAS Model using DEM 30m*30m resolution for this study. It shows best specific river bed and banks which is very important parameters are in flood plain hydraulics. TIN was reclassified in to nine class from peak elevation 3331m to lowest elevation 1153m above mean sea level.

Figure 4.1 TIN of Bilate 42

4.3 HEC-RAS pre-processing

4.3.1 Stream centerline layer

Stream centerline which is one of the required RAS layer was created on GeoRAS geometry processing menu. The stream network was created on reach basis starting from upper reach to lower reach and represents the river and reach network of Bilate River. Stream center line is used to assign river stations to XS and imported in HEC-RAS as schematic to define main channel flow path.

Figure 4.2 Stream Center Line

4.3.2 Bank lines layer

The bank lines are optional RAS layer that differentiates the main channel flow from two overbank flows. Stations of the bank were assigned to each XS based on the intersection of bank lines with cut lines. The two bank lines are exactly intersected with each cut lines and drown from upstream to downstream in this study.

Figure 4.3 River Bank Line

4.3.3 Flow path centerlines layer

The flow path center lines layer are RAS layers used to identify the hydraulic flow path in the left over bank, main channel and right over bank by identifying the center mass of flow in each region. Creating the flow path center lines assists in proper laying out the X-sectional cut lines. The path center lines were drawn in the direction of flow that means upstream to downstream in this study.

Figure 4.4 Flow Path Line

4.3.4 Cross section cut lines layer

Cross section cut lines are another required RAS layer which was drowns in perpendicular direction of flow from left overbank to right overbank when looking to downstream. Cut lines of this study represent location, position and extents of XS of the Bilate River.

Figure 4.5 Cross Section Cut Line

4.3.5 RAS-Import File

Geometric data which is basic impute for steady flow simulation was prepared on Geo-RAS tool. This data was imported to HEC-RAS and edited for best results in simulation of steady flow. In this research four basic RAS-layers was added on HEC-GeoRAS tool and processed to results the geometric data as given in Figure 4.6 below.

Figure 4.6 RAS Import Geometry File from HEC-RAS Menu for 200 Yrs Return Period.

4.4 Steady Flow Simulation

Using geometric data and peak flood resulted from flood frequency analysis, steady state flow was simulated successively. Water surface profile at different stations as a sample for a peak flood discharge of return period 200 Yrs was drawn as shown below Figure 4.7.

A.

В.

C.

D.

E.

F.

Figure 4.7 A - F Showing Different Water Surface Profiles Simulated on HEC-RAS The steady flow simulated from HEC-RAS analysis for Bilate watershed at different sections was delineated for a given boundary conditions. Among these water surfaces the most severe than other water surface level in the river cross section are also tabulated as Table 4-5 below. Station 138437.6 receives the deepest level in all return periods with slight increase obviously due to increase in flood discharge cavers large area and depth.

Stations	Return Period	Max. water level
138437.6	5	23.90
	10	24.43
	50	24.27
	100	25.23
	200	25.41
70491.77	5	23.32
	10	23.72
	50	23.52
	100	24.65
	200	24.87
137960.5	5	21.27
	10	21.80
	50	21.64
	100	22.60
	200	22.78
69289.34	5	20.82
	10	21.22
	50	21.03
	100	22.16
	200	22.37
139587	5	20.54
	10	21.07
	50	20.91
	100	21.87
	200	22.05
66600.88	5	18.35
	10	18.72
	50	18.35
	100	19.66
	200	19.87

Table 4-5 Maximum water level at most severe stations

4.5 Post-RAS Analysis

4.5.1 Water Surface TIN

TIN with big profile that means "t200" for this study was generated for all other water surface profiles based on elevations of waster surface at each XS and bounding polygon

extracted during importing RASexport file. For Bilate river flood inundation mapping enough water surface TIN was generated because it covers the outside of area possibly.

Figure 4.8 Water Surface TIN Generated

4.5.2 Flood Inundation

After the steady flow analysis in HEC-RAS for different discharges of respective return period, inundation in study area was delineated using GIS extension tool HEC-GeoRAS as raster. Then area inundated was computed from bounding polygons of these raster for return period of peak discharge and the result is tabulated in next Table 4-5. Inundation map for each return period was overlapped on bounding polygon of post-RAS processing for more visualization as shown in Figure 4.4 to 4.8 below.

Figure 4.9 Flood Inundation Map For 200 Yrs Return Period

Figure 4.10 Flood Inundation Map for 100 Yrs Return Period

Figure 4.12 Flood Inundation Map for 10 Yrs Return Period

Figure 4.13 Flood Inundation Map for 5 Yrs Return Period

Table 4-6 Flood inundation at different return	period
--	--------

Return period	Peak discharge(m ³ /s)	Area(ha)	% per Catchment
5	153.199	6840.244	1.3
10	193.152	7284	1.4
50	273.621	8029.13	1.5
100	305.31	8270.031	1.55
200	335.87	8463	1.6

Figure 4.14 Area Vs Return Period/Peak Discharge Relationship

Both from the Figure 4.9 and Table 4-5 above we observe that inundated area delineated using the model for different return period discharge was increase slightly due to increase in flood magnitude and return period.

4.5.2 Flood Hazard Mapping and Analysis

Flood hazard maps was prepared for return periods of 5,10,50,100 and 200Yrs by overlapping the water surface grid depth generated during inundation mapping with TIN of study area as shown in Figure 4.6 for 200Yrs flood and the rest are at Appendix Figure 9.

Hazard aspect of flood is basically expressed by the severity of effect related to hydraulic and hydrologic parameters flood. Depth one of hydraulic parameter was taken for this study by reclassifying water depth grid generated from post-RAS analysis as very low, low, moderate, high, very high and sever to prepare map and flood hazard level assessment for each return.

Figure 4.15 Flood Hazard Map

Flood hazard Area(ha) In relation to water surface depth grid										
Level of	5Yrs Flood		10Yrs Flood		50Yrs Flood		100YrsFlood		200Yrs flood	
Hazard	%	Area	%	Area	%	Area	%	Area	%	Area
Very Low	56.5	3864.25	57.3	4177.2	57.4	4609.4	57.6	4762.5	57.6	4871.1
Low	15.6	1066.06	15.5	1130	16.7	1343.6	17	1402.2	17.2	1457.1
Moderate	10.3	706.535	10	731.25	9.59	769.83	9.44	780.61	9.36	792.48
High	7.11	486.34	6.9	502.57	6.67	535.68	6.55	541.61	6.47	547.95
Very high	6.07	415.075	5.84	425.58	5.46	438.71	5.37	443.87	5.29	447.86
Sever	4.41	301.978	4.35	316.99	4.11	329.95	4.04	334.18	4	338.23
Total	100	6840.24	100	7284	100	8029.1	100	8269	100	8462.8

Table 4-7 Flood hazard for different return period

Area inundated at sever level to moderate hazard is ranges between 4% to 10.3% respectively for all return periods whereas around 58% of inundated area was fall under very low flood hazard level and all the value for return periods 5,10,50,100,200Yrs was tabulated in Table 4-6 above.

Land use land cover map was intersected by the depth grid result assessed from the attribute table of hazard map and assessed for severity of hazard in river flood plain. The result indicates that, the area under all land use except State farm and forest receive flood hazard of high to sever level as tabulated blow Table 4-8 to 4-12.

		LULC				
Level of			Grass	Shrub	State	
Hazard	Cultivation	Forest	Land	Land	Farm	Woodland
Very Low	1574.387	89.618	171.896	1688.233	125.086	173.821
Low	78.855	12.956	138.337	624.350	0	170.426
Moderate	43.557	0	171.072	352.022	0	139.577
High	2.275	0	196.111	136.934	0	151.170
Very high	0	0	214.971	52.570	0	147.836
Sevier	0	0	155.576	74.935	0	71.322
Total	1699.073	102.574	1047.963	2929.049	125.086	854.151

Table 4-8 5Yrs return period flood hazard

Table 4-9 10Yrs return period flood hazard	
--	--

LULC							
Level of			Grass	Shrub	State		
Hazard	Cultivation	Forest	Land	Land	Farm	Woodland	
Very Low	1730.372	92.185	176.487	1859.913	134.922	175.498	
Low	79.775	19.414	137.515	700.2885		191.621	
Moderate	46.305		171.917	371.7841		141.240	
High	2.650		200.085	144.5839		155.059	
Very high	0		219.120	55.09168		151.420	
Sevier	0		167.473	76.67635		72.870	
Total	1859.101	111.60	1072.615	3208.338	134.922	887.698	

Table 4-10 50 Years return period flood hazard

			LULC			
Level of			Grass	Shrub	State	
Hazard	Cultivation	Forest	Land	Land	Farm	Woodland
Very Low	1730.723	92.185	177.207	1861.406	134.908	177.8593
Low	80.145	19.420	137.516	700.294		191.6245
Moderate	46.305		171.917	371.784		141.2354
High	2.650		200.086	144.584		155.0593
Very high			219.138	55.092		151.4153
Sevier	0		167.473	76.676		72.8652
Total	1859.823	111.605	1073.337	3209.836	134.908	890.059

Table 4-11 100 Years return period flood hazard

		LULC				
Level of			Grass	Shrub	State	
Hazard	Cultivation	Forest	Land	Land	Farm	Woodland
Very Low	2135.973	91.516	185.561	2020.084	156.569	168.1633
Low	86.996	39.999	148.111	897.306		229.8891
Moderate	51.587		172.890	409.258		145.9426
High	4.313		209.338	164.313		164.0288
Very high	0		225.675	60.538		157.8136
Sevier	0		178.045	78.364		77.98089
Total	2278.869	131.516	1119.620	3629.862	156.569	943.8183

		LULC				
Level of			Grass	Shrub	State	
Hazard	Cultivation	Forest	Land	Land	Farm	Woodland
Very Low	2196.442	92.939	188.212	2061.368	160.017	167.88
Low	88.950	43.511	150.481	939.160		229.8891
Moderate	53.022		173.663	416.927		148.1385
High	4.842		210.653	167.722		165.2618
Very high	0		226.935	61.938		159.2848
Sevier	0		180.480	78.700		79.43034
Total	2343.256	136.450	1130.424	3725.815	160.017	949.8845

Table 4-12 200 Years return period flood hazard

As these tabular result and the Figure 4.10 shows Bilate river plain receiver the Hazard level from Sevier to low level. Specially the area at upper watershed near Fonko, midle watershed near Alaba Kulito and lower watershed near Ofa Town receives hazard level of sever to moderate hazard.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

This study basically focused on peak flood estimation for different return period at station, flood inundation area delineation and preparation of flood hazard map and its hazard level using hydraulic model HEC-RAS and GIS based extension tools HEC-GeoRAS. Both spatial data and hydrological data at Bilate gaging station with the appropriate accuracy checked was used for flood plain analysis. GIS as spatial data analysis tool, HEC-GeoRAS GIS extension tool to data circuit between GIS and HEC-RAS model and 1D numerical hydraulic model HEC-RAS to simulate steady state flow.

Using these models and tools results efficient outputs with in short period because of the high accuracy in analysis and the models use DEM as an input data instead of DTM which takes long time for survey.

Stream flow data from Bilate at Tena Bilate gauging station was accurate and enough long that was checked during data preparation. These results good frequency analysis output of 153.2, 193.2, 273.6, 305.3 and 335.9 m³/s for 5, 10, 50, 100 and 200 Yrs return period respectively. This was done by Pearson III distribution function that is highly fitted by the correlation coefficient R2 = 0.982 for estimate and observed flow using method of moment parameter estimation method with the list D-index value than others which is 1.532. Therefore, using these peak discharge result for steady flow simulation in HEC-RAS model gives good result.

Each path of the work during application of models was done step by step procedure carefully and giving consideration of standards for best result of the study. Simulation of steady state flow was done and results maximum water surface depths of 23.90, 24.43, 24.27, 25.23 and 25.41m for 5, 10, 50, 100 and 200 Yrs return periods respectively at the most severe station 138437.6.

From the result of inundation area mapping generated during post-RAS processing there is significant flood inundation of 6840.244, 7284, 8029.13, 8270.031 and 8463 ha. Area
inundated shows slight increase from 5Yrs to 200Yrs due to increase in peak flood, water surface depth grid and flood velocity and variation land use.

Map of hazard was prepared for all return period flood and assessment was done for each by reclassifying the resulted depth grid polygon and land use land cover change map. As a result of map assessment watershed is in flood hazard from sever to very low level and around 86% of delineated area covered by shrub, cultivation and grass land. From this significance its fact to say that the research area is in hazard because the land use cultivation and grass land is very familiar with different lives.

5.2 Recommendation

Based on the result of the Bilate river flood plain analysis the following recommendations are forwarded.

- Especially the area under sever hazard shown on map should not be used for settlement because it occurs even for small discharge return period which is not expectable.
- The responsible party of the government should give priority for these area during implementation of planning watershed management include awareness creation for community how to use land use in flood prune area.
- As a master's research flood hazard assessment was done using flood depth and land use land cover parameter, it is recommended to do further research including other flood risk properties and use of new technologies to generate TIN like DEM 10m resolution, RAS mapper and LIDAR which give best quality.
- Stream flow data at one station was used for this research included the others and comparing the results as well as studying mitigation measure is also future research direction.
- Modification of natural conveyance by constructing mitigation structure like retain wall at the weak banks of the river side, modification of the river and keeping the land use land cover management in upstream as well as whole over the shade is an engineering recommendations.

REFERENCES

- Ahmad, Alam, Bhat and Ahmad. (2016, November). One Dimensional Steady Flow Analysis Using HEC RAS -Acase of River Jhelum, Jammu and Kashmir. European Scientific Journal, 12, 341. doi:10.19044/esj.2016.v12n32p340
- Awal. (2003). Application of Steady and Unsteady Flow Model and GIS for Floodplain Analysis and Risk Mapping: A Case Study of Lakhandei River, Nepal. Tribhuvan University, Water Resources Engineering. Kathmandu: IOE.
- Barrientosa and Swain. (2014). Linking Flood Management to Integrated Water Resource Management in Guatemala: A critical review. International Journal of Water Governance(4).
- Bobee and Ashar. (1991). The Gamma family and Derived distributions applied in hydrology. water resources publications,Lettloton,Co.
- Bras R. L. (1990). Hydrology: An Introduction to Hydrologie Science. Cunnane, C. (1978) Unbiased plotting positions—a review../. Hydrol.(37).
- Bucha and Selvaraj. (2019, May). FLOOD INUNDATION MAPPING IN GELANA IN ETHIOPIA. Global Scientfic Research, 7(5). Retrieved from www.globalscientificjournal.com
- Cameron and Ackerman. (2012). HEC-GeaRAS GIS tool for suport of HEC-RAS using ARC-GIS.
- Chow. (1959). Open Channel Hydraulics. McGraw Hill Inc., Singapore.
- Cowan. (1956). Estimating Hydraulic Roughness Coefficients. Agricultural Engineering(37).
- Cunnane. (1989). Statistical distributions for flood frequency. Geneva.
- Dawit. (2015). Flood Risk Analysis in Illu Floodplain,. Thesis Submitted to Addis Ababa Institute of Technology, School of Graduate Studies in , Addis Ababa Institute of Technology, Hydraulic Engineering, Addis Ababa.

- Demissie,Negash and Behailu. (2016). Assessment of Climate Change Impact on Flood Frequency of Bilate River Basin, Ethiopia. Civil and Environmental Research, 8(9).
- Elias. (2015). FLOOD MAPPING Case Study: On Bantyeketu River In Addis Ababa. A thesis submitted to the School of Graduate Studies, Addis Ababa Institute of Technology, Hydraulic Engineering, Addis Ababa.
- Enyew, B. D. (2014). Analysing the impact of topography on precipitation and flooding on the Ethiopian highlands. J Geol Geosci.
- ESRI. (1990). Understanding GIS.
- ESRI. (1996). Introducing ArcView: The Geographic Information System for Everyone. Redlands, California, Environmental Systems Research Institute (ESRI) Inc, Redlands.
- ESRI. (1997). Using ArcView 3D Analyst. Environmental Systems Research Institute, Redlands, California.
- Garcia. (2012). Tests to identify outliers in data series. Pontifical Catholic University of Rio de Janeiro, Industrial Engineering Department. Brazil: Rio de Janeiro.
- Gilard, O. (1996). Flood Risk Management: Risk Cartography for Objective Negotiations. Proc., 3rd IHP/IAHS George Kovacs colloquium, UNESCO, Paris.
- Glard. (1996). Flood risk Managment:Risk chartography for objective navigations (3rd IHP/IAHS George Kovacs colloquium ed.). Paris: UNESCO.
- Gomez. (2007). Spatial and temporal rainfall guaged data analysis and comparison with TRRM microwave radio meter surface rainfall retrievals. MSc. Thesis,Netherland.
- Hamed. (1998). Flood Frequency analysis. Boca Rotan, Florida: CRC Press LLC,2000 N.Y.corporate Blvd.
- IPCC. (2007). Climate Change, 2007. Synthesis Report An Assessment of the Intergovernmental Panel on Climate Change, Geneva, IPCC Secretariat, World Meteorological, Switzerland.

- IWRM and Flood. (2015). Making Integrated Flood Management Part of the Development Agenda. Global water partenership, world meterological organization.
- Jollinger, F. (1979). Analysis of River Problems and Strategy for Flood Control in the Nepalese Terai, Nepal. Ministry of Forest, Department of Soil and Water Conservation. Nepal: HMG, UNDP Kathmandu.
- Kefyalew. (2003). Integrated Flood Management Case Study Ethiopia: Integrated Flood ManagemenT. In T. S. UNIT (Ed.), WMO/GWP Associated Programme on Flood Management.
- Leš cešen and Dolinaj. (2019). Regional Flood Frequency Analysis of the Pannonian. University of Novi Sad, Climatological and Hydrological Research Center. Serbia: 21000 Novi Sad.
- Lewin. (2008). Fundamentals of Remote Sensing and its application in GIS. Division of Spatial Information Science, University of Tsukuba.
- Manandhar, B. (2010). Flood Plain Analysis and Risk Assessment of Lothar Khola.A
 Thesis submitted in partial fulfillment of the requirements for the Degree of
 Master of Science in Watershed Management. Pokhara, Nepal: Tribhuvan
 University, Institute of Forestry.
- Mayers and White. (1993). The challenge of the Mississippi flood.
- Merwade . (2012). Tutorial on using HEC-GeoRAS with ArcGIS 10 and HEC-RAS Modeling.
- Mfwango, Salim ,Kazumba . (2018, April 11). Estimation of Missing River Flow Data for Hydrologic Analysis: The Case of Great Ruaha River Catchment. Hydrol Current Res, an open access journal, 9(2).
- Mohamed. (2015). Characterization of a Typical Mediterranean Watershed Using Remote Sensing Techniques and GIS Tools. Hydrology Current Research.
- Murayama and Estoque. (2010, june). Fundamentals of Geographic Information System. SiS. Tsukuba.

- Muse,Getaneh and Abiy. (2018, November). Mapping Flood Prone Areas of BilateWatershed Using Integration of Multicriteria Analysis and GIS Techniques.International Journal of Scientific & Engineering Research Volume , 9(11).
- NDRMC. (2018). Flood Alert #3 Federal Democratic Republic of Ethiopia National Disaster Risk Management Commission, Early Warning and Emergency Response Directorate, Ethiopia.
- Noto and Loggia. (2009). Use of L-Moments Approach or Regional Flood Frequency Analysis in Sicily. Water Resour Managiment.
- Osti. (2004). Community Participation and Agencies Role for the Implication of Water Induced Disaster Management. Protecting and Enhancing the Poor, Disaster Prevention and Managemen, 13(1), pp. 6-12.
- Pathan and Agnihotri. (2019, May). A Combined Approach For 1-D Hydrodynamic Flood Modeling By using Arc-Gis, Hec-Georas, Hec-Ras Interface - A Case Study On Purna River Of Navsari City, Gujarat. International Journal of Recent Technology and Engineering (IJRTE), 8(1).
- Rahman. (2010, Julay). Selection of the best fit flood frequency distribution and parameter estimation procedure: a case study for Tasmania in Australia.Stochastic Environmental Research and Risk Assessment. doi:10.1007
- Rizwan, Guo, Xiong and Yin. (2018, November 8). Evaluation of Various Probability Distributions for Deriving Design Flood Featuring Right-Tail Events in Pakistan. Water.
- ShahiriParsa et al. (2016). Floodplain Zoning Simulation by Using HEC-RAS and cche2dModels in the Sungai Maka river. Air, Soil and Water Research, 9, 55–62 doi:10.4137/ASWr.S36089. doi:10.4137/ASWr.S36089
- Shrestha, M. (2008). Satellite Rainfall Estimation in HinduKush-Himalayan Region-Validation. International Centre for Integrated Mountain Development.
- Singh, S. K. (2004). Analysis of Uncertainties in Digital Elevation Models in Flood. Netherland & IIRS, ITC, India.

- Solomon. (2012). Flood risk mapping and Vulnerability Analysis of Megech River using 2D hydrodynamic flood modelling. A masters thesis submitted to School of Graduate Studies, Addis Ababa University Institute of Technology, Department of Civil Engineering, Addis Ababa.
- Subramanya. (2008). Engineering Hydrology (3rd ed.). (S. Chandrasekhar, Ed.) Kanpur, India: Tata McGraw-Hill Campanies,New Delhi.
- Tesfaye. (2015). Ground Water Potential Evaluation Based on Integrated GIS and Remote Sensing Techniques, in Bilate River Catchment: South Rift Valley of Ethiopia. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS).
- Tolera and Fayera. (2019, October 01). FloodPlain Modeling of Awitu River Sub-Basin, Jimma, Oromia, Ethiopia. Journal of material and Environmental Science, 10(11), 1030-1042. Retrieved from http//www.jmaterenvironsci.com
- Traore. (2015, July). STEADY FLOW SIMULATION IN ANAMBE RIVER BASIN USING HEC-RAS. International Journal of Development Research, Iv, 4968-4979. Retrieved from http://www.journalijdr.com
- UNDRO. (1991). Mitigation of Natural Disasters: Phenomena, Effects and Options (A Manual for Policy Makers and Planners). United Nations, Office of the United Nations Disaster Relief Coordinator, New York.
- USACE. (2016). HEC-RAS River Analysis System, User's Manual for version5.0. California, Hydrological Engineering Center: Devis.
- USWRC. (1981). Guidelines for determining flood flow frequency. Washington, DC.
- V.Chow. (1987). Open Channel Hydraulics. Singapore: McGraw Hill Inc.

Vail, Parsons, Striggow, Deatrick and Johnson. (2015). Global Positioning System.

Vivekanandan. (2015, March 16). Flood frequency analysis using method of moments and L-moments of probability distributions. IVIL & ENVIRONMENTAL ENGINEERING | RESEARCH ARTICL. Retrieved from http://dx.doi.org/10.1080/23311916.2015.1018704

- Wrachien, Mambretti & Schultz. (2011). Flood management and risk assessment in flood-prone areas: Measures and solutions. Irrigation and Drainage, 60.
- Yadav, S. K. (2002). Hydrological Analysis for Bheri-babai Hydropower Project Nepal. Msc. Thesis, Norwegian University of Science and Technology, Department of Hydraulic and Environmental Engineering, Norway.
- Yirga. (2016). Flood Hazard and Risk Assessment Using GIS and Remote Sensing in Lower Awash Sub-basin, Ethiopia. Journal of Environment and Earth Science, Vol.6.
- Zewde. (2004). Development of Flood Forecasting Model in Midd Awash River Basin of Ethiopia.

APPENDICES

APPENDIX TABLES

Appendix Table 1 Stream flow data

	Station Na	ame : Bila	te @Ten	a Bilte	Time-Seri	ies Type :	Flow (cu	necs)							
	Station Co	ode: 0820	05		Elevation	: 2030.0 1	netres		Area : 55	18.0 km2					
				Monthly	max. and i	min.								、 、	
														Ap.	L
years.	Tatt	Ken a	Mar	API	May	THE	Tul	Alle	GeR	oct	404	Dec AI	nual Max	unnal min	an
1977	0.702	0.703	19.82	15.76	16.92	7.182	104.1	65.31	67.09	40.6	10.97	8.874	104.1	0.702	33.06
1978	1.244	1.083	3.962	6.27	13.24	129	164.7	59.31	67.99	49.8	28.57	3.962	164.7	1.083	49.64
1979	0.63	0.631	0.272	0.286	0.451	0.368	14.87	22.48	23.84	19.99	9.858	10.31	23.84	0.272	9.15
1980	4.662	0.936	0.622	11.28	35.49	28.57	84.41	36.73	104.1	54.43	14.29	2.896	104.1	0.622	34.51
1981	1.008	1.418	34.27	12.56	15.76	9.793	24.45	110.1	63.56	27.5	6.717	1.418	110.1	1.008	29.98
1982	0.622	1.807	29.66	44.71	26.46	33.08	103	67.09	95.06	74.5	0.622	0	103	0	41.4
1983	0	0	1.605	5.232	21.6	1.51	10.97	79.36	39.94	8.169	33.08	3.545	79.36	0	20.31
1984	6.686	29.56	24.41	64.33	50.14	68.52	98.93	128.9	132.2	158.8	153.2	18.09	158.8	6.686	78.52
1985	2.057	11.29	42.73	22.84	18.09	34.04	83.4	146	186.6	224.5	14.05	51.9	224.5	2.057	76
1986	28.36	111.8	35.4	38.95	46.75	94.88	63.31	85.87	88.38	96.22	16.81	3.545	111.8	3.545	58.97
1987	2.269	4.858	19.9	38.22	45.11	83.4	41.95	17.13	43.43	39.82	5.143	1.059	83.4	1.059	30.48
1988	0.664	1.675	174.3	128.9	23.88	32.72	156.9	80.99	206	190.8	30.8	1.588	206	0.664	88.28
1989	0.426	0.429	5.47	9.654	9.912	10.86	16.41	24.81	26.3	25.86	17.4	16.93	26.3	0.426	13.66
1990	2.269	7.876	50.14	80.99	137.3	120.9	55.53	172.3	222.1	176.3	43.51	2.989	222.1	2.269	92.61
1991	1.196	0.995	1.196	1.588	27.19	15.19	41.95	100.3	119.4	33.37	3.545	2.859	119.4	0.995	33.51
1992	2.612	0.713	8.389	76.29	114.8	19.5	53.7	47.58	32.72	27.19	135.6	24.95	135.6	0.713	48.6
1993	1.268	11.95	24.95	27.77	83.4	149.6	283.5	168.3	164.5	132.2	162.6	34.71	283.5	1.268	109.3
1994	4.504	3.259	5.231	47.58	26.62	231.7	105.9	30.8	34.71	67.46	48.43	4.333	231.7	3.259	60.39
1995	0.333	1.121	4.354	5.353	4.46	4.522	12.52	15.93	22.19	15.8	6.033	6.056	22.19	0.333	8.657
1996	1.344	110.3	19.9	85.87	42.73	56.47	22.84	41.19	101.7	107.4	2.748	2.772	110.3	1.344	50.49
1997	2.771	2.765	1.799	2.097	1.599	1.799	25.89	66.4	67.46	76.29	10.06	8.389	76.29	1.599	24.66
1998	4.504	22.84	82.19	34.71	71.78	71.78	53.7	65.36	71.78	11.95	13.32	23.36	82.19	4.504	43.85
1999	60.31	49.28	59.34	46.75	37.5	78.61	76.29	89.66	110.3	110.3	96.22	1.878	110.3	1.878	66.33
2000	2.079	1.953	3.367	2.874	3.015	3.51	31.95	31.16	30.75	32.19	4.341	4.388	32.19	1.953	13.27
2001	4.407	4.415	3.132	4.346	4.77	3.791	25.44	24.28	24.53	25.45	3.79	3.811	25.45	3.132	11.48
2002	3.819	3.828	20.48	10.06	20.91	38.67	38.76	35.93	39.14	42.8	3.239	3.257	42.8	3.239	21.92
2003	3.267	3.279	1.551	1.849	1.586	1.861	14.33	24.38	15.57	23.72	19.36	21.53	24.38	1.551	11.3
2004	21.65	21.65	6.452	8.456	6.498	6.164	28.62	34.36	29.3	31.55	9.203	9.442	34.36	6.164	18.13
2005	9.541	9.000	2.449	213.3	21.83	22.84	22.84	192.9	85.87	01.3	20.85	3.848	2/5.5	2.449	/1.93
2006	2.269	1.503	0.403	3.545	8.004	14.8	40.75	04.33	150.9	144.2	38.95	3.545	130.9	1.503	46.45
2007	2.101	2 5 4 5	1.190	30.09	97.57	15.59	25.88	20.19	54./1	142.4	20.00	8.389	142.4 56.47	1.196	46.48
2008	5.545	3.343	57.5 07.17	21.83	27.19	45.11	12 22	52.7	10.0	0.492	8.389	3.545	20.47 71.79	3.545	27.0
2009	0.913	14.8	/1./8	10.90	19.9	12.02	13.32)1 02	19.9 01.00	7.482 20.05	4.304	19.9 5 100	/1./8	4.504	24.43
2010	10.39 5 121	5 120	10.99	21.03	19.9	19.9	21.34 02.54	21.03 51.01	21.03	20.03	5 600	J.122 7 204	21.03 02.54	5.10Z	26.14
2011	9.131 9.12	J.138 7 146	10.0/	21.34 16.75	20.03 10.29	10.98	128 0	74.01	09.00 3/1 71	0J.0/ 27 5	18 12	2 8/9	128.0	2.13T	00.14
2012	0.13 2.404	10.36	11.23	40.75	49.28	10.98	120.9	100 0	54.71 62.21	27.3 20.56	40.43	0.760	120.9	3.848 2.404	45.4 29.22
2013	۵.474 ۵ ۵۲	10.00 6 6E	51.5	40.7J	41.19	20.0J	40.43 £ 1	100.0 £ 1	03.51 6 1	29.J0 د ۲	12.97 Q EA	9.709 Q ED	100.0 8 5/	۲.494 ۲ م	50.23
2014	0.05	0.05	0.04	0.0	0.04	0.02	0.1	0.1	0.2	0.21	0.34	Grand May	283.54	0.1	0.000
												Grand Min	205.5	0	

		Qav=1	08.348	S=72.7	78	N=38					
Ditribution Type	Selected Max	Rank	Т	F	p<0.5	1/p^2	w	u	KT	QT	/Q-Q*/
Pearson(3P)/MOM	283.5	1	39	0.97	0.026	1521	2.707	1.837	2.032	256.267	27.233
	275.3	2	19.5	0.95	0.051	380.25	2.437	1.513	1.611	225.615	49.685
	231.7	3	13	0.92	0.077	169	2.265	1.301	1.347	206.418	25.282
	224.5	4	9.75	0.9	0.103	95.065	2.134	1.138	0.00	192.058	25.6
	164.7	6	6.5	0.87	0.128	42.25	1.935	0.884	0.33	170 475	5 7745
	104.7	0	0.5	0.05	0.154	42.25	1.755	0.004	0.054	Sum	166.02
										D=	1.5323
Pearson(3P)/PWM	Selected Max	Rank	Т	F	p<0.5	1/p^2	w	u	KT	Q*	/Q-Q*/
	283.5	1	39	0.97	0.026	1521	2.707	1.837	2.032	229.823	53.677
	275.3	2	19.5	0.95	0.051	380.25	2.437	1.513	1.611	204.706	70.594
	231.7	3	13	0.92	0.077	169	2.265	1.301	1.347	188.975	42.725
	224.5	4	9.75	0.9	0.103	95.063	2.134	1.138	1.15	177.208	47.292
	164.7	5	7.8	0.87	0.128	42.25	2.027	0.884	0.99	159 522	5 1778
	104.7	0	0.5	0.85	0.154	42.23	1.755	0.004	0.854	Sum	257.81
										D=	2.3795
Pearson(3P)/MLM	Selected Max	Rank	Т	F	p<0.5	1/p^2	w	u	KT	Q*	/Q-Q*/
	283.5	1	39	0.97	0.026	1521	2.707	1.837	2.032	251.28	32.22
	275.3	2	19.5	0.95	0.051	380.25	2.437	1.513	1.611	221.662	53.638
	231.7	3	13	0.92	0.077	169	2.265	1.301	1.347	203.112	28.588
	224.5	4	9.75	0.9	0.103	95.063	2.134	1.138	1.15	189.236	35.264
	206	5	7.8	0.87	0.128	60.84	2.027	1.002	0.99	177.971	28.029
	104.7	0	0.5	0.85	0.154	42.25	1.935	0.884	0.854	108.38	181 42
										D-	161.42
Gamma(2P)/MOM	Selected Max	Rank	т	F	n	1/p^2	w	u	кт	0*	/0-0*/
	283.5	1	39	0.97	0.026	1521	2.707	1.837	2.111	261.976	21.524
	275.3	2	19.5	0.95	0.051	380.25	2.437	1.513	1.58	223.387	51.913
	231.7	3	13	0.92	0.077	169	2.265	1.301	1.265	200.42	31.28
	224.5	4	9.75	0.9	0.103	95.063	2.134	1.138	1.038	183.875	40.625
	206	5	7.8	0.87	0.128	60.84	2.027	1.002	0.859	170.86	35.14
	164.7	6	6.5	0.85	0.154	42.25	1.935	0.884	0.711	160.081	4.6191
										Sum	185.1
										<u> </u>	1 7094
Gamma(2P)/MI M	Selected Max	Rank	т	F	n	1/n^2	337	11	кт	D=	<u>1.7084</u>
Gamma(2P)/MLM	Selected Max 283.5	Rank 1	T 39	F 0.97	p 0.026	1/p^2 1521	w 2.707	u 1.837	КТ 2.17	D= Q* 222.226	1.7084 /Q-Q*/ 61.274
Gamma(2P)/MLM	Selected Max 283.5 275.3	Rank 1 2	T 39 19.5	F 0.97 0.95	p 0.026 0.051	1/p^2 1521 380.25	w 2.707 2.437	u 1.837 1.513	KT 2.17 1.668	D= Q* 222.226 195.868	1.7084 /Q-Q*/ 61.274 79.432
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7	Rank 1 2 3	T 39 19.5 13	F 0.97 0.95 0.92	p 0.026 0.051 0.077	1/p^2 1521 380.25 169	w 2.707 2.437 2.265	u 1.837 1.513 1.301	KT 2.17 1.668 1.362	D= Q* 222.226 195.868 179.833	1.7084 /Q-Q*/ 61.274 79.432 51.867
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5	Rank 1 2 3 4	T 39 19.5 13 9.75	F 0.97 0.95 0.92 0.9	p 0.026 0.051 0.077 0.103	1/p^2 1521 380.25 169 95.063	w 2.707 2.437 2.265 2.134	u 1.837 1.513 1.301 1.138	KT 2.17 1.668 1.362 1.138	D= Q* 222.226 195.868 179.833 168.092	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206	Rank 1 2 3 4 5	T 39 19.5 13 9.75 7.8	F 0.97 0.95 0.92 0.9 0.87	p 0.026 0.051 0.077 0.103 0.128	1/p^2 1521 380.25 169 95.063 60.84	w 2.707 2.437 2.265 2.134 2.027	u 1.837 1.513 1.301 1.138 1.002	KT 2.17 1.668 1.362 1.138 0.96	D= Q* 222.226 195.868 179.833 168.092 158.727	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6	T 39 19.5 13 9.75 7.8 6.5	F 0.97 0.95 0.92 0.9 0.87 0.85	P 0.026 0.051 0.077 0.103 0.128 0.154	1/p^2 1521 380.25 169 95.063 60.84 42.25	w 2.707 2.437 2.265 2.134 2.027 1.935	u 1.837 1.513 1.301 1.138 1.002 0.884	KT 2.17 1.668 1.362 1.138 0.96 0.81	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6	T 39 19.5 13 9.75 7.8 6.5	F 0.97 0.95 0.92 0.9 0.87 0.85	p 0.026 0.051 0.077 0.103 0.128 0.154	1/p^2 1521 380.25 169 95.063 60.84 42.25	w 2.707 2.437 2.265 2.134 2.027 1.935	u 1.837 1.513 1.301 1.138 1.002 0.884	KT 2.17 1.668 1.362 1.138 0.96 0.81	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2 8619
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max	Rank 1 2 3 4 5 6	T 39 19.5 13 9.75 7.8 6.5	F 0.97 0.95 0.92 0.9 0.87 0.85	p 0.026 0.051 0.077 0.103 0.128 0.154	1/p^2 1521 380.25 169 95.063 60.84 42.25	w 2.707 2.437 2.265 2.134 2.027 1.935	u 1.837 1.513 1.301 1.138 1.002 0.884	KT 2.17 1.668 1.362 1.138 0.96 0.81	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D=	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5	Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 1	T 39 19.5 13 9.75 7.8 6.5 T T	F 0.97 0.95 0.92 0.9 0.87 0.85 F 0.97	P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521	w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.707	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3	Rank 1 2 3 4 5 6 Rank 1 2	T 39 19.5 13 9.75 7.8 6.5 T T 39 19.5	F 0.97 0.95 0.92 0.87 0.85 F 0.97 0.95	P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25	w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.707 2.437	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7	Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 39 19.5 13 9.75 7.8 6.5 T T 39 19.5 13	F 0.97 0.95 0.92 0.97 0.87 0.85 F 0.97 0.95 0.92	P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169	w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.707 2.437 2.265	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5	Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 39 19.5 13 9.75 7.8 6.5 T T 39 19.5 13 9.75	F 0.97 0.95 0.92 0.9 0.87 0.85 F 0.97 0.95 0.92 0.9	p 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103	1/p^2 1521 380.25 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063	W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.265 2.134	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206	Rank 1 2 3 4 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 9 8 9 8 9 8 9 8	T 39 19.5 13 9.75 7.8 6.5 T T 39 19.5 13 9.75 7.8	F 0.97 0.95 0.92 0.9 0.87 0.85 F 0.97 0.95 0.92 0.9 0.97	p 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84	W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.265 2.134 2.027	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	T 39 19.5 13 9.75 7.8 6.5 T 13 9.75 7.8 9.75 7.8 6.5	F 0.97 0.92 0.92 0.87 0.87 0.85 F 0.97 0.95 0.92 0.9 0.87 0.85	p 0.026 0.051 0.077 0.103 0.128 0.154 p 0.026 0.051 0.077 0.103 0.128 0.154	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25	w 2.707 2.437 2.265 2.134 2.027 1.935 w w 2.707 2.437 2.265 2.134 2.027 1.935	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6	T 39 19.5 13 9.75 7.8 6.5 T 13 9.75 7.8 9.75 7.8 6.5	F 0.97 0.92 0.9 0.87 0.87 0.85 F 0.92 0.97 0.95 0.92 0.9 0.87 0.85	p 0.026 0.051 0.077 0.103 0.128 0.154 p 0.026 0.051 0.077 0.103 0.128 0.154	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25	w 2.707 2.437 2.265 2.134 2.027 1.935 w w 2.707 2.437 2.437 2.134 2.027 1.935	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6 4625
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 206 164.7 Selected Max	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6	T 39 19.5 13 9.75 7.8 6.5 T 19.5 13 9.75 7.8 6.5 7.8 6.5	F 0.97 0.92 0.92 0.87 0.87 0.87 0.97 0.97 0.95 0.92 0.99 0.87 0.85	p 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.154	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25	W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.437 2.134 2.027 1.935	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= O*	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 6 Rank 1 1 2 3 4 5 6 Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T 39 19.5 13 9.75 7.8 6.5 T 39 9.75 7.8 6.5 7.8 6.5 7.8 6.5 T	F 0.97 0.92 0.92 0.87 0.87 0.87 0.97 0.95 0.92 0.92 0.87 0.85 F 0.97	P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25	W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.437 2.134 2.027 1.935 W 2.707	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062 KT 1.741	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 /Q-Q*/ 234.08
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max Selected Max 283.5 275.3	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8	T 39 19.5 13 9.75 7.8 6.5 T 39 19.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 9.75 7.8 9.75 7.8 9.75	F 0.97 0.92 0.87 0.87 0.87 0.85 F 0.97 0.95 0.92 0.87 0.85 F 0.97 0.95	p 0.026 0.051 0.077 0.103 0.128 0.154 p 0.026 0.051 0.077 0.103 0.128 0.154 p 0.026 0.051	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1/p^2 1521 380.25	W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.134 2.027 1.935 W 2.707 2.437	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.002 0.884 u 1.837 1.513	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062 KT 1.741 1.134	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 /Q-Q*/ 234.08 189.93
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max Selected Max 283.5 275.3 2231.7	Rank 1 2 3 4 5 6 Rank 1 2 3 Rank 1 2 3 4 5 6 Rank 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	T 39 19.5 13 9.75 7.8 6.5 T 7.8 6.5 13 9.75 7.8 6.5 7.8 6.5 7.8 9.75 7.8 9.75 7.8 9.75 7.8 9.75 7.8 9.75 13 9.75 7.8 9.75 13 9.75 7.8 13 9.75 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	F 0.97 0.92 0.87 0.87 0.85 F 0.97 0.95 0.92 0.85 F F 0.97 0.85	p 0.026 0.051 0.077 0.103 0.128 0.154 p 0.026 0.051 0.128 0.154 p 0.026 0.051 0.077	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169	W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.265	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.301	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.104 0.082 0.062 KT 1.741 1.134 0.815	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875 167.667	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 /Q-Q*/ 234.08 189.93 166.74
Gamma(2P)/MLM LNIII/MOM LNIII/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 6 Rank 1 2 3 3 4 3 4 3 4 3 4 3 4 4 1 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T 39 19.5 13 9.75 7.8 6.5 T 39 19.5 13 9.75 7 T 39 9.75 7 39 9.75 13 9.75	F 0.97 0.95 0.92 0.87 0.85 F 0.97 0.95 0.92 0.85 F 0.85 F 0.92 0.85	P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.154 0.051 0.077 0.103	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 1521 380.25 169 95.063	W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.265 2.134	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.513 1.002 0.884 1.002 0.884 1.002 0.884 1.002 1.513 1.301 1.138 1.301 1.138 1.301 1.138 1.301 1.138 1.138 1.002 1.513 1.301 1.138 1.002 0.884 1.513 1.301 1.138 1.002 1.513 1.301 1.138 1.002 0.884 1.513 1.301 1.138 1.002 0.884 1.513 1.301 1.138 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.513 1.002 0.884 1.513 1.002 0.884 1.513 1.513 1.513 1.002 0.884 1.513 1.301 1.513 1.301	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.122 0.166 0.131 0.104 0.082 0.062 KT 1.741 1.134 0.815 0.604	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875 167.667 152.298	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 /Q-Q*/ 234.08 189.93 166.74 151.4
Gamma(2P)/MLM LNIII/MOM LNIII/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206	Rank 1 2 3 4 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	T 39 19.5 13 9.75 7.8 6.5 T 39 19.5 13 9.75 7.8 6.5 T T 39 19.5 13 9.75 7.8	F 0.97 0.95 0.92 0.87 0.85 F 0.97 0.95 0.92 0.85 F 0.92 0.85 F 0.97 0.85 0.92 0.87	P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.051 0.077 0.103 0.077	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 1521 380.25 169 95.063 60.84	W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.265 2.134 2.265 2.134 2.205	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.513 1.301 1.138 1.301 1.138 1.301 1.138 1.002 0.884	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.122 0.166 0.131 0.104 0.082 0.062 KT 1.741 1.134 0.815 0.604 0.448	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875 167.667 152.298 140.97	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 /Q-Q*/ 234.08 189.93 166.74 151.4 140.1
Gamma(2P)/MLM LNIII/MOM LNIII/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	T 39 19.5 7.8 6.5 7.8 6.5 13 9.75 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5	F 0.97 0.95 0.92 0.87 0.85 F 0.92 0.97 0.95 0.92 0.9 0.87 0.95 0.92 0.97 0.95 0.97 0.95 0.92	P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25	W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.265 2.134 2.027 1.935 W W 2.707 2.437 2.265 2.134 2.027 1.935	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062 KT 1.741 1.134 0.815 0.604 0.448 0.326	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875 167.667 152.298 140.97 132.082	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 /Q-Q*/ 234.08 189.93 166.74 151.4 140.1
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 6 7 8 6 6 7 8 6 7 6 7 6 7 6 7 7 6 7 7 7 7	T 39 19.5 7.8 6.5 T 39 19.5 13 9.75 7.8 6.5 T T 39 19.5 13 9.75 7.8 6.5	F 0.97 0.92 0.9 0.87 0.85 F 0.97 0.92 0.92 0.92 0.87 0.85 F 0.92 0.92 0.92 0.92 0.87	P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.154 P 0.026 0.051 0.077 0.103 0.128 0.051	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25	W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.265 2.134 2.027 1.935	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062 KT 1.741 1.134 0.815 0.604 0.448 0.326	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875 167.667 152.298 140.97 132.082 Sum	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 /Q-Q*/ 234.08 189.93 166.74 151.4 131.24 1013.5 9.27
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 224.5 206 164.7	Rank 1 2 3 4 5 6 6 Rank 1 6 Rank 1 6 Rank 1 6 Rank 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 39 19.5 13 9.75 7.8 6.5 T 39 19.5 7.8 6.5 T 39 19.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	F 0.97 0.92 0.92 0.87 0.87 0.95 0.92 0.97 0.95 0.92 0.97 0.95 0.92 0.99 0.87 0.95	P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.051 0.077 0.103 0.128 0.051 0.077 0.103 0.128	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25	w 2.707 2.437 2.265 2.134 2.027 1.935 w w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.707 2.437 2.265 2.134 2.027 1.935	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062 KT 1.741 1.134 0.815 0.604 0.448 0.326	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875 167.667 152.298 140.97 132.082 Sum D= Q*	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 /Q-Q*/ 234.08 189.93 166.74 151.4 151.4 131.24 1013.5 9.354
Gamma(2P)/MLM LNIII/MOM LNIII/PWM LNIII/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 39 19.5 13 9.75 7.8 6.5 T 39 19.5 7.8 6.5 T 39 19.5 13 9.75 7.8 6.5 T 39 19.5 13 9.75 7.8 6.5 T 39 19.5 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	F 0.97 0.92 0.92 0.87 0.87 0.85 F 0.97 0.95 0.92 0.87 0.85 F 0.92 0.97 0.95 0.92 0.97 0.85 F 0.92	P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.051 0.077 0.103 0.124 0.051 0.077 0.103 0.124 0.154	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25	W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.265 2.134 2.027 1.935 W 2.707 2.437 2.265 2.134 2.027 1.935	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.301 1.138 1.002 0.884 u 1.837 1.301 1.138 1.002 0.884 u 1.837 1.301 1.138 1.002 0.884 u 1.138 1.301 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.301 1.138 1.002 0.884 u 1.138 1.301 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.002 0.884 u 1.837 1.	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062 KT 1.741 1.134 0.815 0.604 0.448 0.326 KT 0.056	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875 167.667 152.298 140.97 132.082 Sum D= Q*	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 /Q-Q*/ 234.08 189.93 166.74 151.4 131.24 1013.5 9.354 /Q-Q*/ 111 43
Gamma(2P)/MLM LNIII/MOM LNIII/PWM LNIII/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 224.5 206 207 208 208 208 209 209 200 200 200 200 200 200	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 39 19.5 13 9.75 7.8 6.5 T 39 19.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	F 0.97 0.92 0.92 0.87 0.87 0.92 0.97 0.95 0.92 0.99 0.87 0.95 0.92 0.97 0.95 F 0.92 0.9 0.85 F F 0.97 0.95	p 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25	 w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.707 2.437 1.935 w 2.707 2.437 1.935 w 2.707 2.437 	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.513 1.301 1.138 1.002 0.884 u 1.513 1.301 1.138 1.002 0.884 u 1.513 1.301 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.301 1.138 1.002 0.884 u 1.138 1.301 1.138 1.002 0.884 u 1.138 1.002 0.884 u 1.138 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.002 0.884 1.513 1.515 1.515 1.515 1.515 1.515 1.515 1.515 1.515 1.515 1.515 1	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062 KT 1.741 1.134 0.815 0.604 0.428	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875 167.667 152.298 140.97 132.082 Sum D= Q* 112.4 111.24	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 (Q-Q*/ 234.08 189.93 166.74 151.4 140.1 131.24 1013.5 9.354 /Q-Q*/ 111.43 110.47
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 224.5 206 164.7 224.5 206 164.7 224.5 207 231.7 224.5 206 206 206 206 207 206 207 207 208 207 208 207 208 208 207 208 208 208 208 208 208 208 208	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 Rank 1 2 3 4 5 6 8 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 39 19.5 13 9.75 7.8 6.5 T 39 19.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	F 0.97 0.92 0.92 0.87 0.87 0.97 0.95 0.92 0.9 0.87 0.95 0.92 0.9 0.87 0.95 0.92 0.9 5 0.92 0.9 0.87 0.95 0.92 0.9 0.87	p 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169	 w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.707 2.437 2.437 2.437 2.437 2.437 2.437 2.265 2.134 2.027 1.935 w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.707 2.437 2.265 	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.513 1.301 1.138 1.002 0.884 1.513 1.301 1.138 1.002 0.884 1.513 1.301 1.138 1.002 0.884 1.513 1.301 1.138 1.002 0.884 1.138 1.002 0.884 1.138 1.002 0.884 1.138 1.002 0.884 1.138 1.002 0.884 1.138 1.138 1.002 0.884 1.138 1.002 0.884 1.138 1.138 1.138 1.002 0.884 1.138 1.138 1.002 0.884 1.138 1.138 1.138 1.138 1.138 1.002 0.884 1.138 1.513 1.513 1.513 1.513 1.513 1.301 1.513 1.301 1.513 1.301 1.513 1.301 1.513 1.301 1	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062 KT 1.741 1.134 0.815 0.604 0.326 0.326 KT 0.326	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875 167.667 152.298 140.97 132.082 Sum D= Q* Q* 112.4	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 (/Q-Q*/ 234.08 189.93 166.74 151.4 165.74 151.4 1013.5 9.354 /Q-Q*/ 111.43 10.47 109.85
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 Rank 1 2 3 4 5 6 8 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 39 19.5 13 9.75 7.8 6.5 T 39 19.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	F 0.97 0.92 0.87 0.87 0.87 0.92 0.97 0.95 0.92 0.99 0.87 0.95 0.92 0.99 0.87 0.95 0.92 0.92 0.9 5 0.92 0.9 5 0.92 0.9 5 0.92 0.9 5 0.92 0.9 5 0.92 0.9 5 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	p 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.071 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169 95.063	 w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.707 2.437 2.437 2.027 1.935 w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.707 2.437 2.265 2.134 	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.513 1.301 1.138 1.301 1.313 1.301 1.337 1.301 1.338 1.301 1.301 1.338 1.301 1	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062 KT 1.741 1.134 0.815 0.604 0.326 0.326 KT 0.326 0.448 0.326	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875 167.667 152.298 140.97 132.082 Sum D= Q* 140.97 132.082 Sum D= Q*	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 /Q-Q*/ 234.08 189.93 166.74 151.4 140.1 31.24 1013.5 9.354 /Q-Q*/ 111.43 110.47 109.85 109.38
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 224.5 206 164.7 224.5 206 207 206 207 224.5 206 206 207 224.5 206 206 207 224.5 206 206 207 224.5 206 206 207 224.5 206 206 207 224.5 206 206 207 224.5 206 207 224.5 206 207 224.5 206 206 207 224.5 206 207 224.5 206 207 224.5 206 206 207 224.5 206 207 224.5 206 207 224.5 206 207 224.5 206 207 224.5 207 224.5 206 206 207 224.5 206 207 224.5 206 206 207 224.5 206 206 207 224.5 206 207 224.5 206 206 207 224.5 206 206 207 224.5 206 206 206 207 224.5 206 206 206 206 206 206 206 206	Rank 1 2 3 4 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 39 19.5 13 9.75 7.8 6.5 T 39 19.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 7.8 6.5 7.8 6.5 7.8 6.5 7.8 7.8 6.5 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	F 0.97 0.92 0.87 0.87 0.92 0.97 0.95 0.92 0.92 0.92 0.87 0.85 F 0.92 0.93 0.87 0.95 0.92 0.92 0.93 0.87 0.95 0.92 0.99 0.87 0.95 0.92 0.99 0.87	p 0.026 0.051 0.077 0.103 0.128 0.154 p 0.026 0.051 0.077 0.103 0.128 0.154 p 0.026 0.051 0.077 0.103 0.128 0.154 p 0.026 0.051 0.077 0.103 0.128	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84	 w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.134 2.027 1.935 2.134 2.265 2.134 2.265 2.134 2.265 2.134 2.027 	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 0.002 0.884 0.884 0.002 0.002 0.884 0.002 0.	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062 KT 1.741 1.134 0.815 0.604 0.448 0.326 0.428 0.056 0.042 0.035	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875 167.667 152.298 140.97 132.082 Sum D= Q* 132.082 Sum D= Q* 112.4 111.416 110.774 110.28 109.869	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 /Q-Q*/ 234.08 189.93 166.74 151.4 140.1 31.24 1013.5 9.354 /Q-Q*/ 111.43 110.47 109.85 109.38
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 207 207 207 207 207 206 164.7 206 206 164.7 206 207 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 206 164.7 206 206 206 206 206 206 206 206	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 Rank 1 2 3 4 5 6 8 Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 39 19.5 13 9.75 7.8 6.5 T 39 19.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	F 0.97 0.92 0.87 0.87 0.92 0.97 0.95 0.92 0.92 0.87 0.85 F 0.97 0.95 0.92 0.92 0.87 0.85 F 0.92 0.92 0.93 0.87 0.95 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.87 0.95 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.154	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25	 w 2.707 2.437 2.265 2.134 2.027 1.935 w 2.134 2.027 1.935 	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062 KT 1.741 1.134 0.815 0.604 0.448 0.326 0.448 0.326 KT 0.056 0.042 0.037 0.021 0.016	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875 167.667 152.298 140.97 132.082 Sum D= Q* 112.4 111.416 110.774 110.288	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 /Q-Q*/ 234.08 189.93 166.74 151.4 140.1 131.24 1013.5 9.354 /Q-Q*/ 111.43 110.47 109.85 109.38 109 108.67
Gamma(2P)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 224.5 206 206 164.7 224.5 206 206 206 206 206 206 206 206	Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 39 19.5 13 9.75 7.8 6.5 T 39 19.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 6.5 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	F 0.97 0.92 0.92 0.87 0.87 0.95 0.92 0.92 0.92 0.87 0.85 F 0.97 0.85 F 0.97 0.85 F 0.92 0.99 0.87 0.92 0.99 0.87 0.95 0.92 0.92 0.92	P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.154 P 0.026 0.051 0.077 0.103 0.128 0.154	1/p^2 1521 380.25 169 95.063 60.84 42.25 1/p^2 1521 380.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25 169 95.063 60.84 42.25	 w 2.707 2.437 2.265 2.134 2.027 1.935 2.134 2.027 1.935 2.134 2.027 1.935 	u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u 1.837 1.513 1.301 1.138 1.002 0.884 u	KT 2.17 1.668 1.362 1.138 0.96 0.81 KT 0.22 0.166 0.131 0.104 0.082 0.062 0.062 KT 1.741 1.134 0.815 0.604 0.448 0.326 KT 0.056 0.042 0.033 0.027 0.021 0.016	D= Q* 222.226 195.868 179.833 168.092 158.727 150.876 Sum D= Q* 124.331 120.403 117.856 115.902 114.284 112.883 Sum D= Q* 235.054 190.875 167.667 152.298 140.97 132.082 Sum D= Q* 112.4 111.416 110.774 10.28 109.869 109.511 Sum	1.7084 /Q-Q*/ 61.274 79.432 51.867 56.408 47.273 13.824 310.08 2.8619 /Q-Q*/ 123.36 119.45 116.93 115 113.41 112.04 700.2 6.4625 /Q-Q*/ 234.08 189.93 166.74 151.4 140.1 131.24 1013.5 9.354 /Q-Q*/ 111.43 110.47 109.85 109.38 109

Appendix Table 2 Best fit selection computation

Exp(2P)/MOM	Selected Max	Rank	т		кт	Q*	/Q-Q*/		
	283.5	1		39	1.59	151.4	132.13		
	275.3	2		19.5	1.29	129.5	145.84		
	231.7			9.75	1.11	107.5	116.06		
	224.5	5		7.8	0.89	107.5	105.51		
	164.7	6		6.5	0.81	94.73	69.969		
						Sum	685.46		
						D=	6.3265		
Exp(2P)/PWM	Selected Max	Rank	т		кт	Q *	/Q-Q*/		
	283.5	1		39	1.59	62.46	221.04		
	275.3	2		19.5	1.29	85.83	189.47		
	224.5	4		9.75	0.99	109.2	115.3		
	206	5		7.8	0.89	116.7	89.275		
	164.7	6		6.5	0.81	122.9	41.828		
						Sum	789.11		
		-	_			D =	7.2831		
Exp(2P)/MLM	Selected Max	Rank	.1.	20	KT 150	Q*	/Q-Q*/		
	283.3	2		19.5	1.39	187.3	110.10		
	275.5	3		13	1.11	119.7	111.98		
	224.5	4		9.75	0.99	107.3	117.25		
	206	5		7.8	0.89	97.58	108.42		
	164.7	6		6.5	0.81	89.68	75.024		
						Sum D-	666.83		
EV1(Gumbel)/MOM	Selected Max	Rank	т		F	$L = \frac{1}{2}$	109(-109(0*	/0-0*
	283.5	1	-	39	0.97	0.011	-1.948	76.23	207.3
	275.3	2		19.5	0.95	0.023	-1.641	76.89	198.4
	231.7	3		13	0.92	0.035	-1.459	77.57	154.1
	224.5	4		9.75	0.9	0.047	-1.328	0.195	224.3
	206	5		7.8	0.87	0.06	-1.225	6.047	200
	164.7	6		6.5	0.85	0.073	-1.139	10.9	153.8
								D=	10.5
EV1(Gumbel)/PWM	Selected Max	Rank	т		F	(-log(F)	log(-log(Q*	/Q-Q*/
	283.5	1		39	0.97	0.011	-1.948	450.1	166.6
	275.3	2		19.5	0.95	0.023	-1.641	408.6	133.3
	231.7	3		13	0.92	0.035	-1.459	383.9	152.2
	224.5	4		9.75	0.9	0.047	-1.328	366.2	141.7
	206	5		7.8	0.87	0.06	-1.225	352.3	146.3
	104.7	0		0.5	0.05	0.075	1.1.0.2		
								Sum	916
								Sum D=	916 8.455
EV1(Gumbel)/MLM	Selected Max	Rank	т		F	(-log(F)	log(-log(Sum D= Q*	916 8.455 /Q-Q*/
EV1(Gumbel)/MLM	Selected Max 283.5	Rank 1	т	39	F 0.97	(-log(F) 0.011	log(-log(-1.948	Sum D= Q* 72.5	916 8.455 /Q-Q*/ 211
EV1(Gumbel)/MLM	Selected Max 283.5 275.3	Rank	т	39 19.5	F 0.97 0.95	(-log(F) 0.011 0.023	log(-log(-1.948 -1.641	Sum D= Q* 72.5 71.7	916 8.455 /Q-Q*/ 211 203.6
EV1(Gumbel)/MLM	Selected Max 283.5 275.3 231.7 224 5	Rank 1 2 3 4	Т	39 19.5 13 9 75	F 0.97 0.95 0.92	(-log(F) 0.011 0.023 0.035 0.047	bg(-bg(-1.948 -1.641 -1.459 -1 328	Sum D= Q* 72.5 71.7 70.91	916 8.455 /Q-Q*, 211 203.6 160.8 154.4
EV1(Gumbel)/MLM	Selected Max 283.5 275.3 231.7 224.5 206	Rank 1 2 3 4 5	Т	39 19.5 13 9.75 7.8	F 0.97 0.95 0.92 0.9 0.87	(-log(F) 0.011 0.023 0.035 0.047 0.06	log(-log(-1.948 -1.641 -1.459 -1.328 -1.225	Sum D= Q* 72.5 71.7 70.91 70.11 69.31	916 8.455 /Q-Q* 211 203.6 160.8 154.4 136.7
EV1(Gumbel)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6	T	39 19.5 13 9.75 7.8 6.5	F 0.97 0.95 0.92 0.9 0.87 0.85	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073	bg(-bg(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52	916 8.455 /Q-Q* 211 203.6 160.8 154.4 136.7 96.18
EV1(Gumbel)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6	T	39 19.5 13 9.75 7.8 6.5	F 0.97 0.95 0.92 0.9 0.87 0.85	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073	bg(-bg(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum	916 8.455 /Q-Q*/ 211 203.6 160.8 154.4 136.7 96.18 962.7
EV1(Gumbel)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6	T	39 19.5 13 9.75 7.8 6.5	F 0.97 0.95 0.92 0.9 0.87 0.85	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073	log(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 /Q-Q* 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max	Rank 1 2 3 4 5 6 Rank	T	39 19.5 13 9.75 7.8 6.5	F 0.97 0.92 0.92 0.92 0.87 0.85	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073 Q*	bg(-bg(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836	Sum D= Q** 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 /Q-Q* 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3	Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T	39 19.5 13 9.75 7.8 6.5 39	F 0.97 0.95 0.92 0.9 0.87 0.85 1-1/T 0.97 0.95	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073 Q* 210.7 210.2	bg(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107	Sum D= Q ^{4*} 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 /Q-Q* 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7	Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T	39 19.5 13 9.75 7.8 6.5 39 19.5 13	F 0.97 0.95 0.92 0.87 0.85 1-1/T 0.97 0.95 0.92	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073 Q* 210.7 210.2 209.7	log(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 5.107 21.992	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 /Q-Q* 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5	Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 1 2 3 4	T	39 19.5 13 9.75 7.8 6.5 39 19.5 13 9.75	F 0.97 0.92 0.9 0.87 0.85 1-1/T 0.97 0.95 0.92 0.9	(-log(F) 0.011 0.023 0.047 0.06 0.073 Q* 210.7 210.2 209.7 209.2	log(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 15.289	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5	T	39 19.5 13 9.75 7.8 6.5 39 19.5 13 9.75 7.8	F 0.97 0.95 0.92 0.87 0.85 1-1/T 0.97 0.95 0.92 0.92 0.92	(-log(F) 0.011 0.023 0.047 0.06 0.073 210.7 210.2 209.7 209.2 208.7	bg(-bg(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 15.289 2.6982	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 4 5 6	T T	39 19.5 13 9.75 7.8 6.5 39 19.5 13 9.75 7.8 6.5	F 0.97 0.95 0.92 0.87 0.85 1-1/T 0.97 0.95 0.92 0.92 0.9 0.87 0.85	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073 210.2 209.7 209.2 208.7 208.2	bg(-bg(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 15.289 2.6982 43.471	Sum D= Q* 72.5 71.7 70.91 70.91 69.31 68.52 Sum D=	916 8.455 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 5 6	T 	39 19.5 13 9.75 7.8 6.5 39 19.5 13 9.75 7.8 6.5	F 0.97 0.95 0.92 0.87 0.85 1-1/T 0.97 0.95 0.92 0.92 0.87 0.85	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073 210.2 209.7 209.2 208.7 208.2 Sum	log(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 15.289 2.6982 43.471 221.39 2.6982	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 /Q-Q* 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank	T	39 19.5 13 9.75 7.8 6.5 39 19.5 13 9.75 7.8 6.5	F 0.97 0.92 0.92 0.87 0.85 1-1/T 0.97 0.95 0.92 0.92 0.87 0.85	(-log(F) 0.011 0.023 0.047 0.06 0.073 210.2 209.7 209.2 208.7 208.2 Sum D = 0*	log(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 15.289 2.6982 43.471 221.39 2.0434 (O-O*/	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 /Q-Q* 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5	Rank 1 2 3 4 5 6 8 8 8 8 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 	39 19.5 13 9.75 7.8 6.5 19.5 13 9.75 7.8 6.5 39	F 0.97 0.92 0.92 0.87 0.85 1-1/T 0.97 0.95 0.92 0.92 0.92 0.87 0.85	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073 Q* 210.7 210.2 209.7 209.2 209.7 209.2 209.7 209.2 Sum D = Q* 36.19	bg(-bg(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 15.289 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 /Q-Q* 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3	Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 	39 19.5 13 9.75 7.8 6.5 19.5 13 9.75 7.8 6.5 39 19.5	F 0.97 0.92 0.9 0.87 0.85 1-1/T 0.97 0.95 0.87 0.85 1-1/T 0.97 0.95	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073 210.2 209.7 209.2 209.7 209.2 208.7 209.2 208.7 208.2 Sum D= Q * 36.19 35.02	log(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 15.289 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31 240.28	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 /Q-Q** 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 3 2 3 3	T 	39 19.5 13 9.75 7.8 6.5 13 9.75 7.8 6.5 7.8 6.5 39 19.5 13	F 0.97 0.92 0.9 0.87 0.85 1-1/T 0.97 0.95 0.87 0.85 1-1/T 0.97 0.95 0.92	(-log(F) 0.011 0.023 0.047 0.06 0.073 210.7 210.2 209.7 209.2 208.7 209.2 208.7 208.2 Sum D= Q * 35.02 33.81	log(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 15.289 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31 240.28 197.89	Sum D= Q* 72.5 71.7 70.91 70.11 68.52 Sum D=	916 8.455 /Q-Q** 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 205.3 231.7 224.5 206 275.3 231.7 224.5 206 207 200 200 200 200 200 200 200	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8	T 	39 19.5 13 9.75 7.8 6.5 39 19.5 7.8 6.5 39.75 7.8 6.5 39 19.5 13 9.75	F 0.97 0.92 0.9 0.87 0.85 1-1/T 0.95 0.92 0.9 0.87 0.85 1-1/T 0.95 0.92 0.92 0.92	(-log(F) 0.011 0.023 0.047 0.06 0.073 210.7 210.2 209.7 209.2 208.7 209.2 208.7 208.2 Sum D= Q* 36.19 35.02 33.81 32.57	bg(-bg(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 2.6982 43.471 221.39 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31 240.28 197.89 191.93 3174 7	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 /Q-Q** 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8	T 	39 19.5 13 9.75 7.8 6.5 39 19.5 7.8 6.5 39 7.8 6.5 13 9.75 13 9.75 7.8 6.5	F 0.97 0.95 0.92 0.87 0.85 1-1/T 0.97 0.95 0.92 0.92 0.87 0.85 1-1/T 0.97 0.95 0.92 0.92 0.92 0.92 0.92	(-log(F) 0.011 0.023 0.047 0.06 0.073 210.2 209.7 209.2 208.7 208.2 Sum D= Q* 36.19 35.02 33.81 32.57 31.3 29.98	log(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31 240.28 197.89 191.93 174.7 134.72	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 /Q-Q** 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8	T 	39 19.5 13 9.75 7.8 6.5 39 19.5 7.8 6.5 39 19.5 13 9.75 13 9.75 7.8 6.5	F 0.97 0.95 0.92 0.87 0.85 1-1/T 0.97 0.95 0.92 0.9 0.87 0.95 0.92 0.92 0.92 0.92 0.87 0.85	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073 210.2 209.7 209.2 208.7 208.2 Sum D= Q * 36.19 35.02 33.81 32.57 31.3 29.98 Sum	bg(-bg(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31 247.31 247.31 247.31 191.93 174.7 134.72 1186.8	Sum D= Q* 72.5 71.7 70.91 70.91 69.31 68.52 Sum D=	916 8.455 /Q-Q* 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6	T 	39 19.5 13 9.75 7.8 6.5 19.5 13 9.75 7.8 6.5 39 19.5 13 9.75 7.8 6.5	F 0.97 0.95 0.92 0.87 0.85 1-1/T 0.97 0.95 0.92 0.92 0.92 0.97 0.85 1-1/T 0.97 0.95 0.92 0.92 0.92 0.92	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073 210.2 209.7 209.2 209.7 209.2 209.7 209.2 208.7 208.2 Sum D= Q* 36.19 35.02 33.81 32.57 31.3 29.98 Sum D=	bg(-bg(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 2.6982 43.471 221.39 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31 240.28 197.89 191.93 174.7 134.72 1186.8 10.954	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 /Q-Q* 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 224.5 206 164.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8	T 	39 19.5 13 9.75 7.8 6.5 19.5 13 9.75 7.8 6.5 39 19.5 13 9.75 7.8 6.5	F 0.97 0.95 0.87 0.85 1-1/T 0.97 0.95 0.92 0.92 0.87 0.85 1-1/T 0.95 0.92 0.92 0.92 0.92 0.93 1-1/T	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073 209.2 209.7 209.2 208.7 209.2 208.7 209.2 208.7 209.2 208.7 30.8 208.7 31.3 29.98 Sum D= Q* 35.02 33.81 32.57 31.3 29.98	log(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 05.107 21.992 15.289 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31 240.28 197.89 191.93 174.7 134.72 1186.8 10.954	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 /Q-Q* 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 205 164.7 Selected Max 283.5	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8	T 	39 19.5 13 9.75 7.8 6.5 19.5 13 9.75 7.8 6.5 39 19.5 13 9.75 7.8 6.5	F 0.97 0.92 0.99 0.87 0.85 1-1/T 0.97 0.95 0.92 0.87 0.85 1-1/T 0.95 0.92 0.92 0.92 0.93 0.85 1-1/T 0.95	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073 210.2 209.7 209.2 209.7 209.2 208.7 209.2 208.7 209.2 308.7 31.3 35.02 33.81 35.02 33.81 35.02 33.81 32.57 31.3 29.98 Sum D = Q * Sum D = Q * Sum	log(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 15.289 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31 240.28 197.89 191.93 174.7 134.72 1186.8 10.954 10.954	Sum D= Q* 72.5 71.7 70.91 70.11 69.31 68.52 Sum D=	916 8.455 /Q-Q** 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8	T 	39 19.5 13 9.75 7.8 6.5 13 9.75 7.8 6.5 39 19.5 13 9.75 7.8 6.5 7.8 6.5	F 0.97 0.92 0.9 0.87 0.85 1-1/T 0.97 0.95 0.92 0.9 0.87 0.85 1-1/T 0.97 0.95 0.92 0.9 0.87 0.85 1-1/T 0.97 0.85	(-log(F) 0.011 0.023 0.047 0.06 0.073 210.7 210.2 209.7 209.2 209.7 209.2 208.7 209.2 208.7 209.2 33.81 32.57 31.3 29.98 Sum D = Q* Sum D = Q* 8 Sum	log(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 15.289 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31 240.28 197.89 191.93 174.7 134.72 1186.8 10.954 /Q-Q*/ /193.8	Sum D= Q* 72.5 71.7 70.91 70.11 68.52 Sum D=	916 8.455 /Q-Q** 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8	T T T T T	39 19.5 13 9.75 7.8 6.5 13 9.75 7.8 6.5 39 19.5 13 9.75 7.8 6.5 7.8 6.5	F 0.97 0.95 0.92 0.87 0.85 1-1/T 0.97 0.92 0.92 0.92 0.92 0.87 0.85 1-1/T 0.95 0.92 0.92 0.92 0.95 0.92 0.92 0.95 0.92 0.92 0.92 0.92 0.92 0.95 0.92 0.95 0.92 0.95 0.92 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(-log(F) 0.011 0.023 0.047 0.06 0.073 210.7 210.2 209.7 209.2 208.7 209.2 208.7 209.2 208.7 209.2 33.81 32.57 31.3 29.98 Sum D = Q* 8 Sum D = Q* 89.35 88.99	log(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31 240.28 197.89 191.93 174.7 134.72 1186.8 10.954 /Q-Q*/ 193.8 185.95 142.71	Sum D= Q* 72.5 71.7 70.91 70.11 68.52 Sum D=	916 8.455 /Q-Q** 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8	T T T T T T	39 19.5 13 9.75 7.8 6.5 13 9.75 7.8 6.5 13 9.75 7.8 6.5 13 9.75 7.8 6.5 13 9.75 7.8 6.5	F 0.97 0.92 0.92 0.87 0.85 0.92 0.97 0.95 0.92 0.92 0.92 0.93 0.85 1-1/T 0.95 0.92 0.87 0.85	(-log(F) 0.011 0.023 0.047 0.06 0.073 210.2 209.7 209.2 208.7 209.2 208.7 209.2 208.7 209.2 208.7 30.1 32.57 31.3 29.98 Sum D= Q* 35.02 33.81 32.57 31.3 29.98 Sum D= Q* 35.02 33.81 32.57 31.3 29.98 Sum D= Q* 35.02 33.81 32.57 31.3 29.98 Sum D= Q* 35.02 33.81 32.57 31.3 29.98 Sum D= Q* 35.02 33.81 32.57 31.3 29.98 Sum D= Q* 35.02 33.81 32.57 31.3 29.98 Sum D= 35.02 33.81 32.57 31.3 29.98 Sum D= 35.02 33.81 32.57 31.3 29.98 Sum D= 35.02 33.81 32.57 31.3 29.98 Sum D= 35.02 33.81 32.57 31.3 29.98 Sum D= 35.02 33.81 32.57 31.3 29.98 Sum D= 35.02 33.81 32.57 31.3 29.98 Sum D= 35.02 33.81 32.57 31.3 29.98 Sum D= 35.02 33.81 32.57 31.3 29.98 Sum D= 35.02 33.81 32.57 31.3 29.98 Sum D= 35.02 33.81 32.57 31.3 29.98 Sum 35. 82 35. 82 35. 81 35. 82 35. 325 35. 325 35. 325 35. 325 35.35. 355 35. 355 	bg(-log(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31 240.28 197.89 191.93 174.7 134.72 1186.8 10.954 /Q-Q*/ 193.8 185.95 142.71 135.87	Sum D= Q* 72.5 71.7 70.91 70.11 68.52 Sum D=	916 8.455 /Q-Q** 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 206 164.7 207 206 164.7 207 206 164.7 207 206 164.7 207 206 164.7 206 164.7 207 206 164.7 207 206 164.7 207 206 164.7 206 164.7 207 206 164.7 206 206 164.7 206 206 206 206 206 206 206 206	Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8	T T T T T	39 19.5 13 9.75 7.8 6.5 13 9.75 7.8 6.5 13 9.75 7.8 6.5 39 19.5 13 9.75 7.8 6.5	F 0.97 0.95 0.92 0.87 0.85 0.92 0.97 0.95 0.92 0.92 0.92 0.87 0.95 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	(-log(F) 0.011 0.023 0.047 0.06 0.073 210.2 209.7 209.2 208.7 209.2 208.7 209.2 208.7 209.2 33.81 32.57 31.3 29.98 Sum D= Q* 85.02 33.81 32.57 31.3 29.98 Sum D= Q* 89.7 89.35 88.99 88.63 88.25 87.86	bg(-bg(-1.948 -1.641 -1.459 -1.328 -1.225 -1.139 /Q-Q*/ 72.836 65.107 21.992 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31 247.31 247.31 191.93 174.7 134.72 1186.8 10.954 /Q-Q*/ 193.8 185.95 142.71 135.87 117.75 76.839	Sum D= Q* 72.5 71.7 70.91 70.91 68.52 Sum D=	916 8.455 /Q-Q** 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885
EV1(Gumbel)/MLM GEV(3P)/MOM GEV(3P)/PWM	Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7 Selected Max 283.5 275.3 231.7 224.5 206 164.7	Rank 1 2 3 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T	39 19.5 13 9.75 7.8 6.5 19.5 13 9.75 7.8 6.5 39 19.5 13 9.75 7.8 6.5 39 19.5 13 9.75 7.8 6.5	F 0.97 0.95 0.87 0.85 1-1/T 0.97 0.95 0.92 0.92 0.92 0.87 0.85 1-1/T 0.97 0.95 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	(-log(F) 0.011 0.023 0.035 0.047 0.06 0.073 Q* 210.2 209.7 209.2 208.7 209.2 208.7 209.2 208.7 30.2 33.81 32.57 31.3 29.98 Sum D= Q* 36.19 35.02 33.81 32.57 31.3 29.98 Sum D= Q* 89.35 88.99 88.63 88.25 87.86 Sum	log(-log(-1.948 -1.641 -1.459 -1.328 -1.25 -1.139 /Q-Q*/ 72.836 65.107 21.992 15.289 2.6982 43.471 221.39 2.0434 /Q-Q*/ 247.31 240.28 197.89 191.93 174.7 134.72 1186.8 10.954 /Q-Q*/ 193.8 185.95 142.71 135.87 117.75 76.839 852.92	Sum D= Q* 72.5 71.7 70.91 70.91 68.52 Sum D=	916 8.455 /Q-Q* 211 203.6 160.8 154.4 136.7 96.18 962.7 8.885

Distribution/Methods	PIII(3P)				EVI				LN(3P)			
1 co	MOM	DWM	мтм	Min	MOM	DWM	мтм	Min	MOM	DWM	MIM	Min
× 1	2 5 2 9 7	12 1467	0 1153	NIIII.	0.5205	F W WI 4 6703	0.3254	0.2254	1 1601	2 2605	1 0406	1 0406
1	2.5507	12 1007	0.0206	0.1155	0.5395	4.0703	0.5254	0.3234	1.1001	1.0520	1.0400	1.0400
2	2.3037	10 3303	0.0200	0.0200	0.570	4.7574	0.4155	0.4195	1.1393	1.9559	1.0355	1.0355
	1 0872	0.12	0.4201	0.4201	0.404	4.4904	0.3000	0.3000	1.1103	1.0005	1.0202	1.0202
4	1.9072	8 03/157	0.4142	0.4149	0.4001	4.5525	0.3370	0.3398	1.0094	1.3201	1.0223	1.0229
6	1.0450	7 14426	0.8775	0.8775	0.3073	4 117	0 2968	0.2968	1.0707	1.3003	1 014	1.0101
7	1.7303	6 33703	1.3623	1 3623	0.2717	4 0321	0.2834	0.2717	1.05 17	1.2003	1.0103	1 0103
8	1.5200	5 90689	1.3903	1 3903	0.3238	4 1562	0.3573	0.3238	1 0282	1 1 3 5 9	1.0072	1.0103
9	1.4852	5 25815	1 9513	1 4852	0.3201	4 1476	0.3739	0.3201	1 0147	1 0686	1.0038	1.0072
10	1.444	4.97822	2.0737	1.444	0.4468	4.4496	0.5271	0.4468	1.0016	1.0071	1.0004	1.0004
11	1.4393	5.04749	3.1593	1.4393	0.778	5.2392	0.9021	0.778	0.984	0.9299	0.9959	0.9299
12	1.461	5.43118	4.0634	1.461	1.4569	6.8579	1.6625	1.4569	0.9528	0.8	0.9878	0.8
13	1.351	4.63265	5.8313	1.351	1.733	7.5163	1.9991	1.733	0.9194	0.6677	0.9792	0.6677
14	1.2041	3.51227	6.343	1.2041	1.9505	8.0348	2.2773	1.9505	0.8822	0.5272	0.9695	0.5272
15	1.0309	2.17847	8.617	1.0309	2.1945	8.6168	2.5907	2.1945	0.8386	0.3686	0.9582	0.3686
16	0.8354	0.6067	8.9864	0.6067	2.2749	8.8085	2.7241	2.2749	0.7992	0.2337	0.948	0.2337
17	0.401	2.33508	17.598	0.401	4.4052	13.888	5.2172	4.4052	0.6088	0.4569	0.8985	0.4569
18	1.5191	15.4347	46.895	1.5191	13.63	35.884	16.018	13.63	0.2247	3.4534	0.6821	0.2247
19	3.2305	28.593	70.188	3.2305	17.038	44.008	20.217	17.038	0.72	5.1097	0.5532	0.5532
20	3.2305	28.593	70.188	3.2305	16.671	43.135	20.016	16.671	0.72	5.1097	0.5532	0.5532
21	30.813	49.4999	62.86	30.813	<u>63.799</u>	87.176	96.747	63.799	15.494	53.704	4.7617	4.7617
22	<u>6.0561</u>	29.152	36.037	6.0561	42.165	97.155	51.039	42.165	4.3024	13.298	<u>1.8564</u>	1.8564
23	<u>3.1034</u>	6.02699	23.917	3.1034	37.227	85.379	45.518	37.227	3.5669	10.795	<u>1.6651</u>	1.6651
24	<u>0.5853</u>	14.7931	23.917	0.5853	<u>36.526</u>	83.709	45.134	36.526	3.1626	9.461	<u>1.5599</u>	1.5599
25	<u>0.7141</u>	20.0974	32.045	0.7141	<u>20.702</u>	45.979	25.745	20.702	1.9889	4.9703	<u>1.2558</u>	1.2558
26	<u>0.0182</u>	9.53718	40.555	0.0182	<u>7.0361</u>	13.393	8.6643	7.0361	1.2338	1.9639	<u>1.0604</u>	1.0604
27	<u>0.1797</u>	6.88443	24.517	0.1797	<u>4.184</u>	6.5922	5.0876	4.184	1.0839	1.3559	<u>1.0217</u>	1.0217
28	<u>0.1638</u>	6.70501	18.244	0.1638	<u>3.3554</u>	4.6165	4.0576	3.3554	1.0305	1.1334	<u>1.0079</u>	1.0079
29	<u>0.1452</u>	6.65787	16.55	0.1452	<u>2.8491</u>	3.4091	3.4273	2.8491	0.997	<u>0.9864</u>	0.9992	0.9864
30	<u>0.2605</u>	5.48898	11.309	0.2605	2.272	<u>2.0331</u>	2.6888	2.0331	0.9775	<u>0.8954</u>	0.9942	0.8954
31	<u>0.142</u>	6.40704	12.523	0.142	2.2005	<u>1.8627</u>	2.6123	1.8627	0.9575	<u>0.7949</u>	0.9891	0.7949
32	<u>0.0873</u>	6.77069	11.107	0.0873	2.054	<u>1.5133</u>	2.4321	1.5133	0.9417	<u>0.7078</u>	0.985	0.7078
33	<u>0.3799</u>	4.21595	7.0356	0.3799	1.5963	<u>0.422</u>	1.8199	0.422	0.9536	<u>0.757</u>	0.9881	0.757
34	<u>0.3756</u>	4.1927	5.8983	0.3756	1.5018	<u>0.1965</u>	1.6983	0.1965	0.9478	<u>0.7132</u>	0.9866	0.7132
35	<u>0.2818</u>	4.90783	6.9092	0.2818	1.4816	<u>0.1483</u>	1.6785	0.1483	0.935	<u>0.6216</u>	0.9834	0.6216
36	<u>0.1987</u>	5.51696	6.4475	0.1987	1.4442	<u>0.0593</u>	1.6338	0.0593	0.9229	<u>0.5191</u>	0.9803	0.5191
37	0.283	4.75726	5.7453	0.283	1.3214	0.2336	1.4646	0.2336	0.9278	<u>0.5057</u>	0.9816	0.5057
38	<u>0.1232</u>	5.92172	5.4295	0.1232	1.2999	<u>0.285</u>	1.4393	0.285	1.0189	<u>0.2766</u>	0.9769	0.2766
Count of Min./Methods	30	0	8	38	23	9	6	38	1	16	21	38

Appendix Table 3 RMS computation for best fit

cont....

Distribution/Methods	GAM(2P)			GEV3(3)				EXP(2P)			
t.											
Cap.	MOM	PWM	Min.	MOM	PWM	MLM	Min.	MOM	PWM	MLM	Min.
1	<u>0.76339</u>	2.26948	0.76339	2.02509	<u>0.44818</u>	8.89146	0.44818	1.43102	0.54026	2.46231	0.54026
2	<u>0.72704</u>	1.95387	0.72704	2.1771	<u>0.65708</u>	10.0502	0.65708	1.24399	<u>0.73975</u>	8.86456	0.73975
3	<u>0.77361</u>	1.68849	0.77361	2.17637	<u>0.65001</u>	10.0328	0.65001	1.09626	<u>0.89733</u>	15.1102	0.89733
4	<u>0.76919</u>	1.52006	0.76919	2.19341	<u>0.66755</u>	10.1512	0.66755	<u>0.99053</u>	1.0101	28.7938	0.99053
5	<u>0.81864</u>	1.3885	0.81864	2.19496	<u>0.66308</u>	10.1501	0.66308	<u>0.90647</u>	1.09976	18.5585	0.90647
6	<u>0.81629</u>	1.2863	0.81629	2.20398	<u>0.66869</u>	10.2057	0.66869	<u>0.83574</u>	1.17521	17.7352	0.83574
7	0.86882	1.20069	0.86882	2.2098	<u>0.66947</u>	10.2359	0.66947	<u>0.77465</u>	1.24036	15.5778	0.77465
8	<u>0.85868</u>	1.13586	0.85868	2.29596	<u>0.78023</u>	10.8778	0.78023	<u>0.7018</u>	1.31807	13.433	0.7018
9	<u>0.91784</u>	1.06863	0.91784	2.32609	<u>0.81293</u>	11.0905	0.81293	<u>0.64274</u>	1.38107	13.8474	0.64274
10	<u>0.90726</u>	1.00707	0.90726	2.48765	<u>1.0236</u>	12.2999	1.0236	<u>0.54593</u>	1.48433	12.8	0.54593
11	0.97796	<u>0.92994</u>	0.92994	2.86764	<u>1.52705</u>	15.1599	1.52705	0.3682	1.6739	24.7923	0.3682
12	0.96873	<u>0.79995</u>	0.79995	3.6319	<u>2.54127</u>	20.9155	2.54127	<u>0.02847</u>	2.03626	37.4283	0.02847
13	1.12739	<u>0.66769</u>	0.66769	3.98126	<u>2.98764</u>	23.5127	2.98764	<u>0.18712</u>	2.26623	21.6008	0.18712
14	1.14088	0.52722	0.52722	4.27296	<u>3.35039</u>	25.6619	3.35039	<u>0.39366</u>	2.48652	18.9841	0.39366
15	1.36901	<u>0.36864</u>	0.36864	4.59933	<u>3.75235</u>	28.0589	3.75235	<u>0.6278</u>	2.73627	23.8996	0.6278
16	1.38691	0.23365	0.23365	4.7436	<u>3.90775</u>	29.075	3.90775	0.78853	2.9077	20.876	0.78853
17	2.05664	<u>0.45692</u>	0.45692	7.26222	<u>7.14724</u>	47.8414	7.14724	<u>2.1469</u>	4.35659	16.5507	2.1469
18	3.21722	2.45337	2.45337	18.1612	21.1451	29.0107	18.1612	8.03935	10.6417	26.7428	8.03935
19	5.1982	5.09669	5.09669	22.401	26.3738	60.1625	22.401	10.7823	13.5674	37.52	10.7823
20	5.1982	5.09669	5.09669	22.1865	25.8423	58.0649	22.1865	11.164	13.9745	18.1524	11.164
21	<u>63.4562</u>	53.7042	53.7042	26.0394	48.0647	54.7094	26.0394	38.7606	34.6075	45.5864	34.6075
22	15.6264	13.2981	13.2981	49.2465	63.2937	68.8303	49.2465	32.2155	32.2956	38.1119	32.2155
23	17.906	10.795	10.795	43.5464	55.5436	57.8387	43.5464	<u>29.7369</u>	29.6518	47.5772	29.6518
24	17.906	9.46101	9.46101	42.9591	54.0881	61.6264	42.9591	30.4261	30.3869	40.9521	30.3869
25	12.2113	4.97026	4.97026	23.502	30.1392	26.1039	23.502	18.013	17.1467	24.1369	17.1467
26	3.12637	1.96392	1.96392	6.53374	9.80601	64.3024	6.53374	6.42594	4.7875	46.1137	4.7875
27	<u>1.70146</u>	1.35594	1.35594	2.98214	5.56403	34.4357	2.98214	3.97588	2.17417	37.1487	2.17417
28	1.0373	1.13337	1.0373	1.9464	4.30139	25.9555	1.9464	3.28643	1.43878	65.577	1.43878
29	0.97039	0.98639	0.97039	1.30831	3.51891	20.7517	1.30831	2.86241	0.98651	51.9235	0.98651
30	0.38194	0.89541	0.38194	0.58039	2.67111	14.3768	0.58039	2.32828	0.41678	31.0889	0.41678
31	0.60695	0.79492	0.60695	0.47941	2.50541	13.9107	0.47941	2.2988	0.38534	19.6399	0.38534
32	0.4387	0.70779	0.4387	0.28243	2.24348	12.4474	0.28243	2.18062	0.25929	14.8241	0.25929
33	0.0122	0.75695	0.0122	0.28799	1.64808	6.81482	0.28799	1.69126	0.26268	12.3128	0.26268
34	0.13106	0.71322	0.13106	0.41723	1.4858	5.75433	0.41723	1.60172	0.35819	17.2505	0.35819
35	0.06338	0.62162	0.06338	0.4634	1.39119	5.65812	0.4634	1.59717	0.36303	54.8205	0.36303
36	0.00131	0.51911	0.00131	0.53614	1.26569	5.30916	0.53614	1.56954	0.39251	46.4939	0.39251
37	0.01188	0.50568	0.01188	0.70042	1.08939	3.69001	0.70042	1.42599	0.54563	18.5277	0.54563
38	0.05814	0.27659	0.05814	0.78473	0.911	3.49689	0.78473	1.41086	0.56177	23.9123	0.56177
Count of Min./Methods	28	10	38	20	18	0	38	19	19	0	38

Reach	River Sta	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slop	Vel Chnl	Flow Area	Top Width
		(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)
Bilate Reaches	162674	153.2	2007.36	2007.69	2006.92	2007.69	0.00091	0.16	362.45	494.01
Bilate Reaches	162674	193.15	2007.36	2007.81	2006.98	2007.82	0.0009	0.2	427.39	536.22
Bilate Reaches	162674	173.62	2007.36	2007.75	2006.95	2007.76	0.00091	0.18	395.98	516.24
Bilate Reaches	162674	305.31	2007.36	2008.11	2007.14	2008.12	0.00088	0.28	599.56	634.67
Bilate Reaches	162674	335.87	2007.36	2008.18	2007.17	2008.19	0.00087	0.29	644.87	658.14
Bilate Reaches	161986	153.2	2001.6	2003		2003.01	0.00086	0.43	359.41	500.42
Bilate Reaches	161986	193.15	2001.6	2003.14		2003.15	0.00083	0.45	431.59	548.27
Bilate Reaches	161986	173.62	2001.6	2003.07		2003.08	0.00084	0.44	396.75	525.72
Bilate Reaches	161986	305.31	2001.6	2003.45		2003.46	0.00079	0.49	621.4	657.69
Bilate Reaches	161986	335.87	2001.6	2003.53		2003.54	0.00078	0.5	670.59	683.2
Bilate Reaches	161003	153.2	1995.14	1997.08	1995.92	1997.09	0.00042	0.37	409.91	405.11
Bilate Reaches	161003	193.15	1995.14	1997.27	1996.01	1997.27	0.00042	0.4	486.62	441.29
Bilate Reaches	161003	173.62	1995.14	1997.18	1995.97	1997.19	0.00042	0.39	449.53	424.18
Bilate Reaches	161003	305.31	1995.14	1997.67	1996.2	1997.68	0.00042	0.45	682.24	522.32
Bilate Reaches	161003	335.87	1995.14	1997.77	1996.24	1997.78	0.00043	0.46	731.93	540.98
Bilate Reaches	159009	153.2	1987.9	1989.11		1989.12	0.00178	0.57	271.02	427.86
Bilate Reaches	159009	193.15	1987.9	1989.22		1989.24	0.00181	0.6	320.45	464.97
Bilate Reaches	159009	173.62	1987.9	1989.17		1989.18	0.00179	0.58	296.95	447.71
Bilate Reaches	159009	305.31	1987.9	1989.47	1988.76	1989.49	0.00186	0.68	446.69	548.47
Bilate Reaches	159009	335.87	1987.9	1989.53	1988.8	1989.55	0.00187	0.7	478.84	567.78
Bilate Reaches	147970	153.2	1912.8	1913.77	1913.39	1913.79	0.00439	0.74	235.29	475.44
Bilate Reaches	147970	193.15	1912.8	1913.85	1913.44	1913.88	0.00462	0.8	274.82	513.83
Bilate Reaches	147970	173.62	1912.8	1913.82	1913.42	1913.84	0.00445	0.77	257.3	497.17
Bilate Reaches	147970	305.31	1912.8	1914.04	1913.58	1914.08	0.00476	0.91	382.96	606.55
Bilate Reaches	147970	335.87	1912.8	1914.09	1913.61	1914.12	0.00475	0.93	411.64	628.86
	111661	152.0	1006.00	1000.02	1007.7	1000.06	0.0015	0.02	105.00	115.24
Bilate Reaches	144661	153.2	1896.28	1898.83	1897.7	1898.86	0.0015	0.83	185.08	145.34
Bilate Reaches	144661	193.15	1896.28	1899.1	1897.84	1899.14	0.00138	0.85	227.34	161.08
Bilate Reaches	144661	1/3.62	1896.28	1898.96	1897.78	1899	0.00146	0.84	205.5	153.15
Bilate Reaches	144001	225.07	1896.28	1899.07	1898.15	1899.71	0.00131	0.93	251.07	193.29
bilate Reacties	144001	555.67	1890.28	1699.79	1898.23	1699.64	0.0013	0.93	551.97	200.43
Rilata Raachas	1/2080	152.2	1999 70	1801 78	1800.22	1901.9	0.00065	0.6	252.84	160.04
Bilate Reaches	1/3080	103.15	1888.79	1802.17	1890.22	1802.18	0.00005	0.0	330.24	237.14
Bilate Reaches	143989	173.62	1888 79	1891.95	1890.29	1891.97	0.00067	0.58	283.49	187.34
Bilate Reaches	143989	305.31	1888 79	1892.78	1890.66	1892.8	0.00069	0.01	517.42	375 32
Bilate Reaches	143989	335.87	1888 79	1892.89	1890.74	1892.91	0.00069	0.57	561.97	401 27
Diate Reactions	113505	555.07	1000.79	10/2.0/	10/0./1	10)2.)1	0.0000)	0.0	501.57	101.27
Bilate Reaches	136193	153.2	1877.08	1881.59		1881.6	0.0003	0.53	287.61	128.9
Bilate Reaches	136193	193.15	1877.08	1882.12		1882.13	0.00026	0.54	360.12	144.71
Bilate Reaches	136193	173.62	1877.08	1881.96		1881.97	0.00025	0.51	337.49	139.97
Bilate Reaches	136193	305.31	1877.08	1882.91		1882.93	0.0003	0.63	484	168.33
Bilate Reaches	136193	335.87	1877.08	1883.08		1883.1	0.00031	0.65	513.53	173.49
Bilate Reaches	135198	153.2	1874.47	1875.74		1875.76	0.00226	0.66	233.08	351.69
Bilate Reaches	135198	193.15	1874.47	1875.65		1875.69	0.00563	0.96	201.79	343.03
Bilate Reaches	135198	173.62	1874.47	1875.58		1875.63	0.0063	0.97	178.51	322.64
Bilate Reaches	135198	305.31	1874.47	1875.87		1875.93	0.00493	1.08	281.71	360.14
Bilate Reaches	135198	335.87	1874.47	1875.94		1876	0.00468	1.1	304.45	364.02
Bilate Reaches	134291	153.2	1866.65	1868.42		1868.42	0.00041	0.34	453.98	514.01
Bilate Reaches	134291	193.15	1866.65	1868.71		1868.71	0.00029	0.31	615.94	598.71
Bilate Reaches	134291	173.62	1866.65	1868.64		1868.64	0.00028	0.3	573.91	577.93
Bilate Reaches	134291	305.31	1866.65	1869.09		1869.1	0.00029	0.35	867.07	710.36
Bilate Reaches	134291	335.87	1866.65	1869.18		1869.18	0.00029	0.36	928.16	734.96

Appendix Table 4 HEC-RAS profile output table sample

						-	-			
Bilate Reaches	133632	153.2	1860.71	1862.16	1861.45	1862.17	0.00117	0.5	305.32	421.86
Bilate Reaches	133632	193.15	1860.71	1862	1861.52	1862.04	0.00339	0.79	244.02	377.14
Bilate Reaches	133632	173.62	1860.71	1861.93	1861.49	1861.97	0.00369	0.8	218.09	356.54
Bilate Reaches	133632	305.31	1860.71	1862.22	1861.69	1862.26	0.00371	0.92	332.46	440.21
Bilate Reaches	133632	335.87	1860.71	1862.28	1861.72	1862.33	0.00365	0.93	359.52	457.78
Bilate Reaches	122554	153.2	1791 18	1792 15		1792 15	0.001	0.35	432.93	895.05
Bilate Reaches	122554	103.15	1791.18	1792.13		1792.13	0.001	0.35	546.05	1005 21
Bilate Reaches	122554	173.62	1701.18	1702.27		1702.27	0.00003	0.35	401.67	053.84
Dilate Reaches	122554	205.21	1701.18	1702.21		1702.22	0.00071	0.35	950.02	1254.17
Dilate Reaches	122554	225.07	1791.10	1792.34		1792.54	0.00000	0.50	020.02	1234.17
Blate Reaches	122554	335.87	1/91.18	1/92.0		1/92.01	0.00062	0.30	930.03	1311.80
Dilata Darahar	120071	152.0	1794 72	1796 4		1796 41	0.00025	0.26	505.09	711.01
Bilate Reaches	120971	153.2	1/84./3	1/86.4		1/86.41	0.00025	0.26	595.08	/11.21
Bilate Reaches	120971	193.15	1784.73	1786.53		1786.53	0.00028	0.28	686.63	763.97
Bilate Reaches	120971	173.62	1784.73	1786.47		1786.47	0.00027	0.27	642.46	738.98
Bilate Reaches	120971	305.31	1784.73	1786.8		1786.8	0.00033	0.34	909.42	879.21
Bilate Reaches	120971	335.87	1784.73	1786.86		1786.87	0.00034	0.35	963.86	905.15
Bilate Reaches	119912	153.2	1779.86	1781.15		1781.16	0.00103	0.44	351.87	545.89
Bilate Reaches	119912	193.15	1779.86	1781.31		1781.32	0.00086	0.43	447.28	615.47
Bilate Reaches	119912	173.62	1779.86	1781.24		1781.25	0.00093	0.43	401.52	583.14
Bilate Reaches	119912	305.31	1779.86	1781.69		1781.7	0.00063	0.43	709.27	775.04
Bilate Reaches	119912	335.87	1779.86	1781.78		1781.79	0.00059	0.43	779.2	812.35
Bilate Reaches	118818	153.2	1775.5	1781.14		1781.14	1E-06	0.02	6201.73	1891.74
Bilate Reaches	118818	193.15	1775.5	1781.3		1781.3	1E-06	0.03	6502.88	1922.52
Bilate Reaches	118818	173.62	1775.5	1781.22		1781 22	1E-06	0.03	6362.62	1908 25
Bilate Reaches	118818	305.31	1775.5	1781.66		1781.66	1E-06	0.03	7203.49	1903.25
Bilate Reaches	118818	335.87	1775.5	1781.00		1781.00	1E-00	0.04	7260.61	2008 47
Dilate Reaches	110010	333.87	1775.5	1/01./4		1/01./4	112-00	0.05	7309.01	2008.47
Dilata Dagahag	117071	152.0	1771 74	1701 14		1701 14	1E.06	0.01	10920 6	2001.20
Blate Reaches	117971	102.15	1//1./4	1781.14		1/01.14	1E-00	0.01	10820.0	2081.29
Bilate Reaches	11/9/1	193.15	1//1./4	1/81.3		1/81.3	1E-06	0.02	11150.4	2111.95
Bilate Reaches	117971	173.62	1771.74	1781.22		1781.22	1E-06	0.02	10996.9	2097.74
Bilate Reaches	117971	305.31	1771.74	1781.65		1781.65	1E-06	0.03	11914.9	2181.37
Bilate Reaches	117971	335.87	1771.74	1781.73		1781.73	1E-06	0.03	12095.4	2197.44
							1E-06			
Bilate Reaches	117250	153.2	1772.19	1781.14		1781.14	1E-06	0.01	12757.7	2282.87
Bilate Reaches	117250	193.15	1772.19	1781.29		1781.29	1E-06	0.02	13118.8	2312.07
Bilate Reaches	117250	173.62	1772.19	1781.22		1781.22	1E-06	0.01	12951	2298.55
Bilate Reaches	117250	305.31	1772.19	1781.65		1781.65	1E-06	0.02	13951.8	2378.09
Bilate Reaches	117250	335.87	1772.19	1781.73		1781.73	1E-06	0.02	14147.8	2393.35
Bilate Reaches	116165	153.2	1777.89	1781.14		1781.14	1E-06	0.03	5300.45	2835.7
Bilate Reaches	116165	193.15	1777.89	1781.29		1781.29	1E-06	0.04	5747.14	2864.85
Bilate Reaches	116165	173.62	1777 89	1781.22		1781.22	1E-06	0.04	5539.98	2851.37
Bilate Reaches	116165	305.31	1777 89	1781.65		1781.65	2E-06	0.05	6771.82	2930.63
Bilate Reaches	116165	335.87	1777 89	1781.73		1781 73	2E-06	0.05	7012 33	2945.86
Dilate Reactics	110105	555.07	1777.07	1701.75		1701.75	21 00	0.05	7012.33	2745.00
Dilata Dagabas	115105	152.2	1784.0	1701 00	1780.4	1701 11	0.00218		105.06	224 54
Bilate Deceles	115105	102.15	1704.9	1701.08	1700.4	1701.11	0.00318		173.70	254.34
Dilate Reaches	115105	195.15	1784.9	1701.10	1780.3	1781.20	0.00322		252.04	235.21
Dilate Reaches	115105	1/3.02	1784.9	1701.10	1700.45	1/01.19	0.00319		215.04	245.09
Bilate Reaches	115105	305.31	1784.9	1781.56	1780.72	1781.6	0.00331		323.93	301.55
Bilate Reaches	115105	335.87	1784.9	1781.63	1780.76	1781.68	0.00333		347.22	312.2
										-
Bilate Reaches	113885	153.2	1779.43	1772.54	1772.54	1772.79	0.05101		69.24	139.46
Bilate Reaches	113885	193.15	1779.43	1772.64	1772.64	1772.91	0.04946		83.34	153
Bilate Reaches	113885	173.62	1779.43	1772.59	1772.59	1772.86	0.051		76.06	146.17
Bilate Reaches	113885	305.31	1779.43	1772.86	1772.86	1773.19	0.0464		120.34	183.85
Bilate Reaches	113885	335.87	1779.43	1772.91	1772.91	1773.25	0.04576		129.94	191.04

Bilate Reaches	113065	153.2	1768.24	1767.5	1766.74	1767.52	0.00252		213.99	245.05
Bilate Reaches	113065	193.15	1768.24	1767.67	1766.84	1767.7	0.00241		258.91	269.54
Bilate Reaches	113065	173.62	1768.24	1767.59	1766.79	1767.62	0.00246		237.04	257.91
Bilate Reaches	113065	305.31	1768.24	1768.07	1767.05	1768.11	0.00219		378.11	325.74
Bilate Reaches	113065	335.87	1768.24	1768.17	1767.1	1768.2	0.00214		409.67	339.06
Bilate Reaches	112488	153.2	1761.13	1763.63	1762.12	1763.64	0.00025	0.36	439.52	351.08
Bilate Reaches	112488	193.15	1761.13	1763.86	1762.22	1763.87	0.00025	0.39	521.9	382.58
Bilate Reaches	112488	173.62	1761.13	1763.75	1762.17	1763.76	0.00025	0.37	482.31	367.78
Bilate Reaches	112488	305.31	1761.13	1764.36	1762.44	1764.37	0.00026	0.44	732.98	453.4
Bilate Reaches	112488	335.87	1761.13	1764.48	1762.49	1764.49	0.00026	0.45	786.13	469.55
Bilate Reaches	111753	153.2	1755.41	1757.31		1757.33	0.00118	0.6	253.98	267.21
Bilate Reaches	111753	193.15	1755.41	1757.47		1757.5	0.00121	0.64	299.48	290.16
Bilate Reaches	111753	173.62	1755.41	1757.4		1757.42	0.0012	0.63	277.44	279.28
Bilate Reaches	111753	305.31	1755.41	1757.84		1757.87	0.00126	0.74	414.87	341.51
Bilate Reaches	111753	335.87	1755.41	1/5/.93		1/5/.96	0.00127	0.76	444.83	353.63
	100.420	152.0	1724 55	1726.02		1726.26	0.00011	0.74	206.40	246.22
Bilate Reaches	109420	153.2	1/34.55	1736.23		1/36.26	0.00211	0.74	206.49	246.33
Bilate Reaches	109420	193.15	1734.55	1726.39		1726.24	0.00205	0.78	248.47	270.21
Bilate Reaches	109420	305 21	1734.55	1736.31		1726.04	0.00207	0.76	228.33	239.04
Bilate Reaches	109420	303.31	1734.55	1736.24		1736.00	0.00193	0.05	385 21	324.4
Bilate Reacties	109420	555.67	1754.55	1730.84		1750.88	0.00192	0.87	363.31	550.49
Bilate Reaches	107883	153.2	1723 29	1725 61		1725 62	0.00041	0.41	376 77	324 69
Bilate Reaches	107883	193.15	1723.29	1725.82		1725.82	0.00041	0.43	447.04	353 67
Bilate Reaches	107883	173.62	1723.29	1725.72		1725.73	0.00041	0.42	413.03	339.95
Bilate Reaches	107883	305.31	1723.29	1726.27		1726.28	0.00042	0.49	621.5	417.03
Bilate Reaches	107883	335.87	1723.29	1726.37		1726.38	0.00042	0.51	662.11	430.45
Bilate Reaches	106035	153.2	1716.5	1718.59		1718.6	0.00071	0.5	306.91	293.65
Bilate Reaches	106035	193.15	1716.5	1718.78		1718.8	0.00071	0.53	365.78	320.58
Bilate Reaches	106035	173.62	1716.5	1718.69		1718.71	0.00071	0.51	337.67	308.02
Bilate Reaches	106035	305.31	1716.5	1719.22		1719.23	0.0007	0.59	518.42	381.66
Bilate Reaches	106035	335.87	1716.5	1719.32		1719.34	0.0007	0.6	557.41	395.75
Bilate Reaches	105083	153.2	1709.86	1712.15		1712.15	0.00044	0.42	366.56	320.79
Bilate Reaches	105083	193.15	1709.86	1712.35		1712.36	0.00044	0.44	436.19	349.93
Bilate Reaches	105083	173.62	1709.86	1712.26		1712.26	0.00044	0.43	402.44	336.12
Bilate Reaches	105083	305.31	1709.86	1712.82		1712.83	0.00044	0.5	614.24	415.25
Bilate Reaches	105083	335.87	1709.86	1712.93		1712.94	0.00044	0.51	659.8	430.38
Bilate Reaches	103749	153.2	1703.53	1705.65		1705.66	0.00066	0.48	315.94	297.88
Bilate Reaches	103749	193.15	1703.53	1705.84		1705.86	0.00066	0.51	375.28	324.65
Bilate Reaches	103749	173.62	1703.53	1705.75		1705.77	0.00066	0.5	346.99	312.18
Bilate Reaches	103749	305.31	1703.53	1706.27		1706.29	0.00067	0.58	526.93	384.7
Bilate Reaches	103749	335.87	1703.53	1706.37		1706.39	0.00067	0.59	565.64	398.57
Dista D 1	100700	152.2	10000	1000.10		1000.11	0.0007	0.41	240.01	212.22
Bilate Reaches	102739	153.2	1696.9	1699.13		1699.14	0.0005	0.44	349.84	313.33
Bilate Reaches	102739	193.15	1696.9	1699.34		1699.35	0.0005	0.46	417.76	342.4
Dilate Reaches	102739	1/3.62	1696.9	1699.24		1699.25	0.0005	0.45	384.76 502.22	328.6
Dilate Reaches	102/39	305.31	1696.9	1600.02		1699.82	0.00049	0.51	595.22	408.02
Bilate Reacties	102739	333.07	1090.9	1099.92		1099.93	0.00048	0.55	038.30	425.52
Bilate Reaches	102000	153.2	1691 52	1693 82	1692 51	1693 83	0.00043	0.41	372.04	323 13
Bilate Reaches	102000	103.15	1691.52	1694.03	1692.51	1694.04	0.00043	0.41	441.1	351.85
Bilate Reaches	102000	173.62	1691.52	1693.93	1692.01	1693 9/	0.00043	0.44	408.07	338.47
Bilate Reaches	102000	305 31	1691.52	1694 48	1072.50	1694 5	0.00043	0.43	616 57	415.99
Bilate Reaches	102000	335.87	1691.52	1694 59		1694.6	0.00044	0.5	660 73	430.63
	132300	222.07				202110		0.01	200.75	.20.00
Bilate Reaches	101087	153.2	1683.8	1685.67	1684.79	1685.69	0.00128	0.62	246.34	263.07
Bilate Reaches	101087	193.15	1683.8	1685.85	1684.89	1685.87	0.00127	0.66	293.72	287.25
Bilate Reaches	101087	173.62	1683.8	1685.76	1684.84	1685.78	0.00128	0.64	270.56	275.69
Bilate Reaches	101087	305.31	1683.8	1686.24	1685.11	1686.26	0.00125	0.73	416.92	342.23
Bilate Reaches	101087	335.87	1683.8	1686.33	1685.16	1686.36	0.00124	0.75	448.89	355.11

Balar Reaches 095712 127.5 1677.5 1677.6 0.00083 0.51 237.8 Balar Reaches 095712 127.5 1677.5 1677.6 0.00083 0.51 322.78 310.15 Balar Reaches 09571.2 335.87 1675.58 1677.96 1673.04 0.00081 0.61 566.73 339.81 Balar Reaches 99009.8 153.2 1672.9 1671.06 1671.36 0.04955 66.84 124.9 Balar Reaches 99009.8 153.2 1672.9 1671.31 1671.45 0.0461 115.18 163.56 Balar Reaches 99009.8 35.31 1672.9 1671.35 1671.45 0.04547 124.36 170.2 Balar Reaches 97494 153.2 1655.27 1657.94 1656.41 1657.90 0.0042 0.47 371.1 255.42 Balar Reaches 97494 153.2 1658.81 1656.81 1658.90 0.0013 0.65 257.31 243.23 Balar Reaches<	Bilate Reaches	99571.2	153.2	1675 58	1677 39	1676 28	1677.4	0.00084	0.49	310.97	295 41
Balan Reaches 9971 2 173 (2) 1073 (3) 1075 (1) 0.00081 0.51 342 (78) 340 (13) Blan Reaches 99571 (2) 335 87 1075 (5) 1076 (5) 1076 (5) 1076 (5) 1076 (5) 1076 (5) 1076 (5) 1076 (5) 1071 (5)	Bilate Reaches	00571.2	103.15	1675.50	1677.59	1676.28	1677.6	0.00082	0.12	371.76	223.11
Bale Reuches 9971.2 0.53.5 1675.5 1676.3 1677.5 0.00081 0.51 52.7.43 344.73 Bales Reuches 9971.2 305.87 1675.58 1678.01 1676.54 1678.04 0.00081 0.61 566.73 398.473 Bales Reuches 99009.8 153.2 1672.9 1671.06 1671.35 0.04955 666.44 124.9 Bales Reuches 99009.8 153.2 1672.9 1671.01 1671.3 1671.65 0.0461 113.16 163.54 Bales Reuches 99009.8 335.87 1672.9 1671.35 1671.23 0.00042 0.45 338.7 173.62 1655.27 1658.11 1655.45 1658.71 0.00043 0.0012 0.47 371.1 255.75 343.53 Bales Reuches 97494 135.35 1655.27 1658.81 1656.86 1658.71 0.00043 0.48 400.91 275.75 Bales Reuches 97494 355.87 1655.27 1658.88 0.00013 <t< td=""><td>Dilate Reacties</td><td>99371.2</td><td>193.13</td><td>1075.58</td><td>1077.38</td><td>1070.38</td><td>1077.0</td><td>0.00082</td><td>0.52</td><td>3/1.70</td><td>323</td></t<>	Dilate Reacties	99371.2	193.13	1075.58	1077.38	1070.38	1077.0	0.00082	0.52	3/1.70	323
Balar Reaches 9971.2 305.31 1675.58 1678.04 0.00081 0.0.99 227.43 384.73 384.73 Bilar Reaches 99009.8 153.2 1672.05 1670.06 1671.03 0.00181 0.0.99 227.43 384.73 Bilar Reaches 99009.8 153.2 1672.0 1671.06 1671.04 1671.35 0.04164 7.3.36 133.88 136.89 Bilar Reaches 99009.8 305.31 1672.9 1671.35 1671.25 0.0461 11.81 183.86 Bilar Reaches 99009.8 305.31 1675.27 1657.49 1656.43 1657.97 0.04041 1.45 0.38.77 253.6 Bilar Reaches 974.94 135.1 1655.27 1656.81 1656.54 1658.00 0.00042 0.43 338.77 253.6 Bilar Reaches 974.94 305.31 1655.27 1658.71 1656.40 658.00 0.0013 0.68 237.31 243.2 Bilar Reaches 974.94 305.31	Bilate Reaches	99571.2	1/3.62	16/5.58	16/7.49	16/6.33	1677.51	0.00083	0.51	342.78	310.15
Balar Renches 99009.8 153.2 1675.58 1678.14 0.00495 666.73 398.81 Balar Renches 99009.8 153.2 1672.9 1671.03 0.04955 666.4 124.9 Balar Renches 99009.8 173.62 1671.0 1671.3 0.04964 73.62 136.97 Balar Renches 99009.8 355.87 1672.9 1671.3 1671.65 0.0461 115.18 163.26 Balar Renches 97494 153.2 1655.27 1658.08 1656.49 1658.08 0.00042 0.445 338.77 255.67 Balar Renches 97494 153.2 1655.27 1658.08 1656.49 1658.08 0.00013 0.65 257.57.41 325.33 Balar Renches 97494 355.87 1655.27 1658.88 1656.49 1649.99 0.0013 0.65 257.57.41 325.33 Balar Renches 96602.2 153.2 1647.83 1649.98 1649.99 0.0013 0.67 260.74 254.92	Bilate Reaches	99571.2	305.31	1675.58	1678.02	1676.59	1678.04	0.00081	0.59	527.43	384.73
Balue Reaches 99009, 81, 137, 2 1672, 91, 1671, 06 1671, 23 0.04955 66, 44 124, 93 Balue Reaches 99009, 81, 035, 1 1672, 91, 1671, 01 1671, 13 0.04961 73, 36, 136, 93 Balue Reaches 99009, 83, 053, 1 1672, 91, 1671, 31 1671, 55 0.0461 115, 18 163, 95 Balue Reaches 99009, 83, 053, 1 1672, 91, 1654, 31 1657, 95 0.00042 0.445 38, 77 253, 61 Balue Reaches 97494 153, 2 1655, 27 1658, 80 0.00042 0.448 400, 91 275, 87 Balue Reaches 97494 335, 87 1655, 27 1658, 81 0.00043 0.055 557, 54 325, 33 Balue Reaches 97494 335, 87 1655, 27 1658, 81 1640, 90 0.0013 0.65 597, 19 336, 7 Balue Reaches 96602, 2 305, 31 1645, 27 1658, 88 1640, 90 0.0013 0.67 237, 31 243, 24 Balue Reaches 96602, 2 335, 87 1647, 83<	Bilate Reaches	99571.2	335.87	1675.58	1678.12	1676.64	1678.14	0.00081	0.61	566.73	398.81
Pather Resches 990009 81315 1672.9 1671.06 1671.06 1671.03 0.04961 88 158.07 Bike Resches 990009.8 305.31 1672.9 1671.31 1671.35 0.04961 73.36 130.86 Bike Resches 99009.8 335.37 1672.9 1671.33 1671.37 0.04547 115.18 163.96 Bike Resches 97494 193.15 1655.27 1658.08 1656.49 1658.08 0.00042 0.44 33.8.77 253.6 Bike Resches 97494 193.15 1655.27 1658.08 1656.49 1658.08 0.00042 0.47 371.1 255.73 325.37 Bike Resches 97494 355.87 1655.27 1658.81 1669.08 0.00013 0.65 237.31 235.37 Bike Resches 96602.2 153.2 1647.83 1649.98 1649.99 0.0013 0.65 237.1 243.24 225.89 Bike Resches 96602.2 353.1 1647.48 1650	Bilate Reaches	99009.8	153.2	1672.9	1670.96	1670.96	1671 23	0.04955		66 84	124.9
Bilan Reaches 99009 8 173.62 1677.9 1677.13 1677.35 0.0461 173.62 1673.9 Bilan Reaches 99009 8 305.31 1672.9 1677.13 1677.15 0.0461 115.18 1633.66 Bilan Reaches 99009 8 305.87 1672.9 1677.13 1677.15 0.0454 124.36 177.25 1635.27 1655.27 1655.27 1655.27 1656.49 1656.49 1656.49 1656.49 1656.49 1656.40 0.00412 0.45 328.77 235.6 Bilan Reaches 97494 133.1 1655.27 1656.81 1656.49 1658.8 0.00042 0.45 328.7 325.7 335.7 Bilan Reaches 97494 33.81 1655.27 1658.8 1656.86 1658.8 0.00013 0.65 257.54 325.7 335.7 Bilan Reaches 96602.2 153.1 1647.83 1649.49 0.0013 0.65 267.13 245.2 Bilan Reaches 96602.2 35.87 1	Bilate Reaches	99009.8	103.15	1672.9	1671.06	1671.06	1671.25	0.04815		80.38	136.97
Balte Reaches 99009.8 173.02 107.01 107.10 107.13 107.13 017.14 017.14 <th< td=""><td>Dilate Descher</td><td>99009.8</td><td>172.62</td><td>1672.9</td><td>1671.00</td><td>1671.00</td><td>1671.30</td><td>0.04815</td><td></td><td>72.26</td><td>120.97</td></th<>	Dilate Descher	99009.8	172.62	1672.9	1671.00	1671.00	1671.30	0.04815		72.26	120.97
Bilane Reaches 99009,8 303.31 167.2.9 1671.35 1652.37 1655.47 1658.81 1650.45 0.00013 0.65 237.31 243.23 Bilue Reaches 96602.2 193.15 1647.83 1649.96 1649.99 0.0013 0.66 267.74 243.29 2050.29 295.98 271.48 1649.29 0.00072 0.52 295.98 <td>Bilate Reaches</td> <td>99009.8</td> <td>1/3.62</td> <td>1672.9</td> <td>16/1.01</td> <td>16/1.01</td> <td>16/1.3</td> <td>0.04964</td> <td></td> <td>/3.36</td> <td>130.86</td>	Bilate Reaches	99009.8	1/3.62	1672.9	16/1.01	16/1.01	16/1.3	0.04964		/3.36	130.86
Bilanc Reaches 99009.8 335.87 1672.9 1671.35 1671.35 1671.72 0.04547 124.36 170.73 Bilanc Reaches 97494 153.2 1655.27 1656.81 1655.24 1655.95 1658.19 0.00042 0.45 338.77 2253.6 Bilanc Reaches 97494 173.02 1655.27 1658.81 1656.84 1658.87 10.00044 0.55 557.54 325.33 Bilanc Reaches 97494 335.87 1657.27 1658.81 1656.84 1658.81 0.00045 0.56 597.19 336.7 Bilanc Reaches 96602.2 135.1 1647.83 1649.96 1649.99 0.0013 0.67 400.79 316.92 281.69 281.01 260.74 245.8 316.92 316.92 316.92 316.92 316.92 316.92 316.92 316.92 316.92 316.92 316.92 316.92 326.97 328.27 284.6 Bilanc Reaches 95315.4 193.15 1637.49 1639.87 1633.89	Bilate Reaches	99009.8	305.31	1672.9	1671.3	1671.3	1671.65	0.0461		115.18	163.96
Bihue Reaches 97494 153.2 1657.24 1656.54 1655.45 1655.85 1655.85 1655.85 1655.85 1655.85 1655.85 1655.85 1655.85 1655.85 1655.85 1655.85 1655.85 1655.85 1655.85 1655.85 1656.85 1666.85 1666.85	Bilate Reaches	99009.8	335.87	1672.9	1671.35	1671.35	1671.72	0.04547		124.36	170.37
Bike Reaches 97494 193.15 1655.27 1658.49 1658.49 0.00043 0.48 400.91 275.87 Bike Reaches 97494 173.62 1655.27 1656.87 1656.49 1658.08 0.00044 0.45 557.54 325.33 Bike Reaches 97494 335.87 1655.27 1656.81 1656.81 0.00044 0.55 557.54 325.33 Bike Reaches 96602.2 153.5 1647.83 1649.96 1.049.99 0.0013 0.66 233.01 254.92 Bike Reaches 96602.2 305.31 1647.83 1650.47 1650.4 0.00126 0.76 402.99 316.32 224.92 316.82 200.012 0.77 433.74 328.79 Bike Reaches 95315.4 153.5 1637.49 1639.67 1639.68 0.00072 0.55 315.9 296.03 Bike Reaches 95315.4 1035.31 1637.49 1640.41 1640.42 0.00074 0.63 529.17 30.63	Bilate Reaches	97494	153.2	1655 27	1657 94	1656 43	1657.95	0.00042	0.45	338 77	253.6
Balter Reaches 97494 193.13 103.817 003.817 003.817 003.813 003.812 0.03.813 0.00042 0.47 37.11 265.82 Blater Reaches 97494 305.31 1655.27 1658.01 1656.40 1656.40 1656.40 1656.40 1656.81 0.00013 0.65 257.54 325.33 Bilater Reaches 96602.2 193.15 1647.83 1649.98 1649.99 0.0013 0.65 237.31 243.23 Bilate Reaches 96602.2 305.31 1647.83 1649.98 1.0012.6 0.077 402.99 316.92 Bilate Reaches 96602.2 305.31 1637.49 1639.67 1639.68 0.00072 0.52 295.98 221.43 Bilate Reaches 95315.4 193.15 1637.49 1639.87 1633.80 0.00072 0.53 325.27 284.69 Bilate Reaches 95315.4 193.15 1637.49 1640.3 1640.23 0.00074 0.62 833.17 1363.41 <t< td=""><td>Bilate Reaches</td><td>07404</td><td>103.15</td><td>1655.27</td><td>1659.19</td><td>1656.54</td><td>1658 10</td><td>0.00043</td><td>0.15</td><td>400.01</td><td>255.0</td></t<>	Bilate Reaches	07404	103.15	1655.27	1659.19	1656.54	1658 10	0.00043	0.15	400.01	255.0
Balter Reaches 97494 135.2 1635.0 1636.0 1	Dilate Reaches	97494	172.62	1655.27	1658.07	1656.40	1658.09	0.00043	0.48	271.1	275.87
Biate Reaches 9/494 305.31 1653.27 1658.7 1658.7 1658.7 0.00044 0.25 557.44 325.35 Bilate Reaches 976042 335.87 1655.27 1658.82 1656.86 1658.83 0.00013 0.65 237.31 243.23 Bilate Reaches 96602.2 173.62 1647.83 1649.98 1649.99 0.0013 0.65 237.31 243.23 Bilate Reaches 96602.2 305.31 1647.83 1650.47 1650.4 0.0012 0.76 402.99 316.92 Bilate Reaches 95315.4 193.15 1637.49 1639.87 1639.68 0.00072 0.52 295.98 271.48 Bilate Reaches 95315.4 193.15 1637.49 1640.32 106072 0.53 325.27 284.6 Bilate Reaches 95315.4 355.87 1637.49 1640.3 1640.42 1634.92 0.00074 0.62 833.17 363.0 Bilate Reaches 94347 153.2 1630.14	Blate Reaches	97494	173.62	1655.27	1658.07	1656.49	1658.08	0.00042	0.47	3/1.1	265.42
Bilate Reaches 97494 335.87 1655.27 1658.82 1658.83 0.00045 0.56 597.19 336.7 Bilate Reaches 96602.2 193.15 1647.83 1649.99 0.0013 0.66 233.01 265.33 1243.2 Bilate Reaches 96602.2 305.31 1647.83 1649.99 0.0013 0.66 233.01 265.33 254.92 Bilate Reaches 96602.2 335.87 1647.83 1650.47 1650.5 0.00125 0.77 433.74 328.79 Bilate Reaches 95315.4 193.15 1637.49 1639.67 1639.68 0.00072 0.52 257 284.6 Bilate Reaches 95315.4 305.31 1637.49 1640.41 1640.43 0.00074 0.62 493.17 350.43 Bilate Reaches 94347 153.2 1630.14 1634.27 1634.29 0.0005 0.58 335.26 199.33 Bilate Reaches 94347 193.15 1630.14 1635.04 1633.60	Bilate Reaches	97494	305.31	1655.27	1658.7	1656.8	1658.71	0.00044	0.55	557.54	325.33
Bilate Reaches 96602.2 153.2 1647.83 1649.78 1649.99 0.0013 0.65 237.31 243.2 Bilate Reaches 96602.2 193.15 1647.83 1649.99 0.0013 0.67 260.74 254.92 Bilate Reaches 96602.2 305.31 1647.83 1650.47 1650.4 0.0012 0.76 402.99 316.92 Bilate Reaches 96602.2 335.87 1647.83 1650.47 1639.68 0.00072 0.52 295.98 271.43 Bilate Reaches 95315.4 193.15 1637.49 1639.88 1639.98 0.00072 0.53 325.27 284.6 Bilate Reaches 95315.4 305.31 1637.49 1640.31 1640.32 0.00074 0.63 259.17 363 Bilate Reaches 95315.4 305.31 1630.14 1634.09 1633.49 0.00074 0.63 259.17 363 Bilate Reaches 94347 193.15 1630.14 1634.09 1634.9 10.0052	Bilate Reaches	97494	335.87	1655.27	1658.82	1656.86	1658.83	0.00045	0.56	597.19	336.7
Biate Reaches 96602.2 153.2 1647.83 1649.98 0.0013 0.65 237.31 243.2 Bilate Reaches 96602.2 193.15 1647.83 1649.99 0.0013 0.68 238.01 2265.58 Bilate Reaches 96602.2 305.31 1647.83 1650.47 1650.5 0.00126 0.76 402.99 316.92 Bilate Reaches 95315.4 153.2 1637.49 1639.78 1639.98 0.00072 0.52 295.98 271.48 Bilate Reaches 95315.4 173.62 1637.49 1639.79 10.00072 0.53 352.72 284.6 Bilate Reaches 95315.4 305.31 1637.49 1639.79 10.00072 0.63 529.17 363 Bilate Reaches 95315.4 305.31 1637.49 1639.79 10.00072 0.63 352.67 193.35 Bilate Reaches 94347 173.52 1630.14 1633.427 10.00054 0.58 365.26 193.35 1630.14 1634.27											
Biate Reaches 96002.2 193.15 1647.83 1649.98 1649.99 0.0013 0.68 283.01 255.92 Biate Reaches 96602.2 305.31 1647.83 1649.98 0.0013 0.67 260.74 254.92 Biate Reaches 96602.2 305.87 1637.49 1639.67 1639.68 0.00072 0.52 257.95 82.71.48 Biate Reaches 95315.4 173.22 1637.49 1639.78 1639.79 0.00072 0.52 251.93 296.03 Biate Reaches 95315.4 135.2 1637.49 1639.78 1639.79 0.00072 0.53 325.27 284.6 Biate Reaches 95315.4 305.31 1637.49 1640.3 1640.23 0.00074 0.63 329.17 363 Biate Reaches 95315.4 305.31 1630.14 1634.27 1634.99 0.00074 0.63 529.17 363 Biate Reaches 94347 173.62 1630.14 1634.09 1634.01 0.00054	Bilate Reaches	96602.2	153.2	1647.83	1649.78		1649.8	0.0013	0.65	237.31	243.2
Bilate Reaches 96602.2 173.62 1647.83 1649.88 1649.9 0.0013 0.67 260.24 235.81 0.647.83 1650.53 0.600126 0.76 402.99 316.92 Bilate Reaches 96602.2 335.87 1647.83 1650.47 1650.5 0.00125 0.77 433.74 328.79 Bilate Reaches 95315.4 193.15 1637.49 1639.87 1639.98 0.00072 0.52 295.98 271.48 Bilate Reaches 95315.4 373.51 1637.49 1639.79 0.00074 0.63 529.17 353.43 Bilate Reaches 95315.4 335.87 1637.49 1640.41 1640.43 0.00074 0.63 529.17 363 Bilate Reaches 94347 173.52 1630.14 1633.88 1633.99 0.00054 0.58 351.54 1634.29 10.6005 0.58 335.26 199.33 Bilate Reaches 94347 173.52 1630.14 1635.04 10.630.90 0.00024 0.59	Bilate Reaches	96602.2	193.15	1647.83	1649.96		1649.99	0.0013	0.68	283.01	265.58
Bihte Reaches 96602.2 335.87 1647.83 1650.47 1650.4 0.00125 0.77 433.74 328.79 Bihte Reaches 95315.4 153.2 1637.49 1639.87 1639.68 0.00072 0.55 295.98 271.48 Bihte Reaches 95315.4 193.15 1637.49 1639.87 1639.89 0.00072 0.55 351.93 296.03 Bihte Reaches 95315.4 305.31 1637.49 1640.3 1640.3 0.00074 0.63 292.17 363 Bihte Reaches 95315.4 305.31 1637.49 1640.41 1640.43 0.00074 0.63 292.17 363 Bihte Reaches 94347 153.2 1630.14 1633.88 1633.9 0.00054 0.58 353.26 199.33 Bihte Reaches 94347 305.31 1630.14 1635.04 1635.06 0.00044 0.59 516.44 269.17 Bihte Reaches 94347 305.31 1630.14 1635.02 1630.09 0.0	Bilate Reaches	96602.2	173.62	1647.83	1649.88		1649.9	0.0013	0.67	260.74	254.92
Bilate Reaches 96602.2 335.87 1647.83 1650.47 1650.5 0.00125 0.77 433.74 328.79 Bilate Reaches 95315.4 153.2 1637.49 1639.67 1639.68 0.00072 0.52 295.98 271.48 Bilate Reaches 95315.4 173.62 1637.49 1639.78 1639.78 0.00072 0.53 352.27 284.6 Bilate Reaches 95315.4 305.31 1637.49 1640.3 1640.32 0.00074 0.62 493.17 350.43 Bilate Reaches 95315.4 305.31 1630.14 1634.82 1633.98 0.00074 0.62 493.17 350.43 Bilate Reaches 94347 193.15 1630.14 1634.09 1634.11 0.00052 0.58 301.54 183.42 Bilate Reaches 94347 355.87 1630.14 1635.04 1635.06 0.00044 0.56 563.16 264.41 Bilate Reaches 93253.6 153.2 1625.9 1630.39 1630.4	Bilate Reaches	96602.2	305.31	1647.83	1650.37		1650.4	0.00126	0.76	402.99	316.92
Bilate Reaches 95315.4 153.2 1637.49 1639.87 1639.68 0.00072 0.52 295.98 271.48 Bilate Reaches 95315.4 173.62 1637.49 1639.87 1639.68 0.00072 0.52 295.98 271.48 Bilate Reaches 95315.4 173.62 1637.49 1649.37 1649.32 0.00074 0.63 292.17 350.43 Bilate Reaches 95315.4 305.31 1630.14 1633.88 1633.9 0.00074 0.63 529.17 363 Bilate Reaches 94347 153.2 1630.14 1634.27 1634.42 0.00054 0.58 353.26 199.33 Bilate Reaches 94347 173.52 1630.14 1635.21 1635.06 0.00044 0.59 516.44 269.17 Bilate Reaches 93253.6 173.62 1625.9 1630.07 1630.09 0.00028 0.52 372.19 165.81 Bilate Reaches 93253.6 173.62 1625.9 163.28 1630.20	Bilate Reaches	96602.2	335.87	1647.83	1650 47		1650.5	0.00125	0.77	433 74	328 79
Bilate Reaches 95315.4 153.2 1637.49 1639.67 1639.68 0.00072 0.52 295.98 271.48 Bilate Reaches 95315.4 193.15 1637.49 1639.78 1639.78 0.00072 0.55 351.93 296.03 Bilate Reaches 95315.4 305.31 1637.49 1640.41 1640.32 0.00074 0.62 493.17 350.43 Bilate Reaches 95315.4 335.87 1630.14 1633.88 1633.9 0.00054 0.58 355.62 199.33 Bilate Reaches 94347 193.15 1630.14 1634.09 1634.11 0.00054 0.58 355.62 199.33 Bilate Reaches 94347 305.31 1630.14 1635.04 1635.06 0.00044 0.59 516.44 269.17 Bilate Reaches 9325.6 153.2 1625.9 1630.07 1630.09 0.00026 0.48 321.76 154.17 Bilate Reaches 93253.6 173.62 1625.9 1630.24 1630.25	Diate Heuenes	,000212	222.07	101/102	1000117		1000.0	0.00120	0.77	100171	020177
Bilate Reaches 95315.4 193.15 1637.49 1639.87 1639.88 0.00072 0.55 351.93 296.03 Bilate Reaches 95315.4 1057.3 1637.49 1640.3 1640.3 0.00074 0.62 493.17 350.43 Bilate Reaches 95315.4 335.87 1637.49 1640.41 1640.43 0.00074 0.63 293.17 350.43 Bilate Reaches 94347 153.2 1630.14 1633.88 1633.9 0.00054 0.58 352.62 199.33 Bilate Reaches 94347 173.52 1630.14 1634.29 1634.29 0.0005 0.58 301.54 183.49 206.01 183.44 183.42 206.01 1634.11 100052 0.58 301.54 183.49 206.01 1634.29 100004 0.59 516.44 269.17 163.49 1630.09 0.00026 0.48 321.76 154.17 Bilate Reaches 93253.6 193.15 1625.9 1630.24 1630.24 1630.24	Bilate Reaches	95315.4	153.2	1637.49	1639.67		1639.68	0.00072	0.52	295.98	271.48
Bilate Reaches 95315.4 173.62 1637.49 1639.78 1639.79 0.00072 0.53 325.27 284.6 Bilate Reaches 95315.4 305.31 1637.49 1640.3 1640.32 0.00074 0.62 493.17 350.43 Bilate Reaches 95315.4 335.87 1637.49 1640.41 1640.43 0.00074 0.62 493.17 353.43 Bilate Reaches 94347 153.2 1630.14 1634.27 1634.29 0.0005 0.58 335.26 199.33 Bilate Reaches 94347 353.87 1630.14 1635.04 1635.23 0.00044 0.58 361.6 284.41 Bilate Reaches 94347 35.87 1630.24 1630.27 1630.40 0.00026 0.48 321.76 154.17 Bilate Reaches 9325.6 173.62 1630.27 1630.24 1630.25 0.00027 0.53 372.57 1645.9 1630.24 1630.25 0.00027 0.53 372.57 165.81 B	Bilate Reaches	953154	193 15	1637 49	1639.87		1639.88	0.00072	0.55	351 93	296.03
Bilate Reaches 95315.4 173.02 1637.49 1637.19 1637.19 1637.19 1637.19 1637.19 1637.19 1637.19 1640.31 1640.32 0.00072 0.62 493.17 350.43 Bilate Reaches 95315.4 335.87 1637.49 1640.41 1640.43 0.00074 0.63 529.17 363 Bilate Reaches 94347 193.15 1630.14 1634.29 0.00054 0.58 355.26 199.33 Bilate Reaches 94347 173.62 1630.14 1635.04 1635.06 0.00044 0.59 516.44 269.17 Bilate Reaches 94347 355.87 1630.14 1635.21 1635.23 0.00044 0.59 516.44 269.17 Bilate Reaches 93253.6 193.15 1625.9 1630.27 1630.40 0.00026 0.48 321.76 154.17 Bilate Reaches 93253.6 173.62 1625.9 1630.24 1630.25 0.00027 0.5 347.95 160.32	Bilate Reaches	95315.1	173.62	1637.19	1639.78		1639.70	0.00072	0.53	325.27	290.05
Bilate Reaches 95315.4 305.31 1637.49 1640.3 1640.43 0.00074 0.63 295.17 335.37 Bilate Reaches 95315.4 335.87 1637.49 1640.41 1640.43 0.00074 0.63 529.17 333 Bilate Reaches 94347 193.15 1630.14 1634.29 0.00054 0.58 335.26 199.33 Bilate Reaches 94347 173.62 1630.14 1634.09 1634.11 0.00052 0.58 331.54 183.4 Bilate Reaches 94347 335.87 1630.14 1635.04 1635.06 0.00043 0.6 563.16 284.41 Bilate Reaches 93253.6 193.15 1625.9 1630.07 1630.49 0.00027 0.5 347.95 1603.25 Bilate Reaches 93253.6 193.15 1625.9 1630.24 1630.25 0.00027 0.63 534.71 198.74 Bilate Reaches 93253.6 335.87 1625.23 1625.61 1626.63 0.0008	Dilate Reactics	05215.4	205.21	1627.40	1640.2		1640.22	0.00072	0.55	402.17	250.42
Bilate Reaches 95315.4 353.87 1637.49 1640.41 1640.43 0.00074 0.63 529.17 363 Bilate Reaches 94347 153.2 1630.14 1633.88 1633.9 0.00054 0.58 255.31 164.62 Bilate Reaches 94347 193.15 1630.14 1634.27 1634.29 0.00054 0.58 335.26 199.33 Bilate Reaches 94347 305.31 1630.14 1635.04 1635.06 0.00044 0.59 516.44 269.17 Bilate Reaches 93253.6 173.62 1625.9 1630.07 1630.09 0.00026 0.48 321.76 154.17 Bilate Reaches 93253.6 173.62 1625.9 1631.11 1631.13 0.00028 0.52 372.19 166.32 Bilate Reaches 93253.6 305.31 1625.9 1631.28 1631.3 0.0002 0.63 534.71 198.74 Bilate Reaches 93234.6 193.15 1622.23 1625.61 1625.63	Bilate Reaches	95315.4	305.31	1637.49	1640.3		1640.32	0.00074	0.62	493.17	350.43
Bilate Reaches 94347 153.2 1630.14 1633.88 1633.9 0.0005 0.58 265.31 1646.2 Bilate Reaches 94347 193.15 1630.14 1634.27 1634.29 0.0005 0.58 335.26 199.33 Bilate Reaches 94347 135.21 1630.14 1635.04 1635.06 0.00044 0.59 516.44 269.17 Bilate Reaches 94347 335.87 1630.14 1635.21 1635.23 0.00044 0.59 516.44 269.17 Bilate Reaches 93253.6 193.15 1625.9 1630.07 1630.09 0.00026 0.48 321.76 154.17 Bilate Reaches 93253.6 193.15 1625.9 1631.11 1631.13 0.00027 0.5 347.9 1603.25 Bilate Reaches 93253.6 305.31 1625.9 1631.12 1631.2 0.00027 0.5 347.9 1603.25 Bilate Reaches 93241.6 153.2 1622.23 1625.61 1635.63	Bilate Reaches	95315.4	335.87	1637.49	1640.41		1640.43	0.00074	0.63	529.17	363
Bilate Reaches 94347 193.15 1630.14 1634.27 1634.29 0.0005 0.58 335.26 199.33 Bilate Reaches 94347 173.62 1630.14 1634.09 1634.11 0.00052 0.58 301.54 183.42 Bilate Reaches 94347 305.31 1630.14 1635.21 1635.06 0.00044 0.59 516.44 269.17 Bilate Reaches 93253.6 153.2 1625.9 1630.07 1630.29 0.00026 0.48 321.76 154.17 Bilate Reaches 93253.6 173.62 1625.9 1630.24 1630.25 0.00027 0.5 347.95 1603.25 Bilate Reaches 93253.6 305.31 1625.9 1631.11 1631.3 0.0002 0.63 534.71 198.74 Bilate Reaches 92341.6 173.62 1622.23 1625.63 0.00071 0.72 241.3 133.5 Bilate Reaches 92341.6 173.62 1622.23 1625.85 1625.87 0.00045	Bilate Reaches	94347	153.2	1630.14	1633.88		1633.9	0.00054	0.58	265.31	164.62
Bilate Reaches 94347 137.62 163.12 163.12 163.11 0.00052 0.58 301.54 183.42 Bilate Reaches 94347 335.87 1630.14 1635.04 1635.03 0.00044 0.59 516.44 269.17 Bilate Reaches 94347 335.87 1630.14 1635.21 1635.23 0.00043 0.6 563.16 284.41 Bilate Reaches 93253.6 153.2 1625.9 1630.07 1630.09 0.00026 0.48 321.76 154.17 Bilate Reaches 93253.6 173.62 1625.9 1630.24 1630.25 0.00027 0.5 347.95 165.81 Bilate Reaches 93253.6 305.31 1625.9 1631.28 1631.3 0.00032 0.63 534.71 198.74 Bilate Reaches 93253.6 358.87 1622.23 1626.06 1626.03 0.00065 0.71 270.26 141.29 Bilate Reaches 92341.6 193.52 1622.23 1625.85 1625.87	Bilate Reaches	94347	193.15	1630.14	1634 27		1634 29	0.0005	0.58	335.26	199.33
Data Reaches 94347 173.02 103.14 103.40 10	Bilate Reaches	04347	173.62	1630.14	1634.00		1634.11	0.00052	0.50	301.54	193.33
Bilate Reaches 94347 305.31 1630.14 1635.04 1635.05 0.00044 0.55 516.44 269.17 Bilate Reaches 94347 335.87 1630.14 1635.21 1635.23 0.00043 0.6 563.16 284.41 Bilate Reaches 93253.6 153.2 1625.9 1630.07 1630.40 0.00028 0.52 377.19 165.81 Bilate Reaches 93253.6 173.62 1625.9 1630.24 1630.25 0.00027 0.5 347.95 160.32 Bilate Reaches 93253.6 335.87 1625.9 1631.128 1631.3 0.00032 0.63 534.71 198.74 Bilate Reaches 93253.6 335.87 1622.23 1625.61 1625.63 0.00048 0.71 270.26 141.29 Bilate Reaches 92341.6 173.62 1622.23 1627.85 1625.87 0.00071 0.72 241.3 133.5 Bilate Reaches 92341.6 335.87 1622.23 1627.05 1627.08 0.00048 0.71 428.92 177.99 Bilate Reaches <	Dilate Reacties	94347	175.02	1630.14	1634.09		1634.11	0.00032	0.58	516.44	165.42
Bilate Reaches 94347 335.87 1630.14 1635.21 1635.23 0.00043 0.6 563.16 284.41 Bilate Reaches 93253.6 153.2 1625.9 1630.07 1630.09 0.00026 0.48 321.76 154.17 Bilate Reaches 93253.6 193.15 1625.9 1630.24 1630.25 0.00027 0.5 347.95 160.32 Bilate Reaches 93253.6 305.31 1625.9 1631.11 1631.13 0.00031 0.61 501.55 192.48 Bilate Reaches 93253.6 335.87 1625.9 1631.28 1631.3 0.00032 0.63 534.71 198.74 Bilate Reaches 92341.6 193.15 1622.23 1625.61 1625.63 0.00065 0.71 270.26 141.29 Bilate Reaches 92341.6 193.15 1622.23 1627.05 1627.08 0.00048 0.71 428.92 177.99 Bilate Reaches 92341.6 335.87 1622.23 1627.28 1624.53 5.6E-05 0.26 585.47 208.23 Bilate Reaches	Bilate Reaches	94347	305.31	1630.14	1635.04		1635.06	0.00044	0.59	516.44	269.17
Bilate Reaches 93253.6 153.2 1625.9 1630.07 1630.09 0.00026 0.48 321.76 154.17 Bilate Reaches 93253.6 193.15 1625.9 1630.24 1630.24 0.00027 0.5 347.95 160.32 Bilate Reaches 93253.6 305.31 1625.9 1631.11 1631.13 0.00031 0.61 501.55 192.48 Bilate Reaches 93253.6 335.87 1625.9 1631.28 1631.3 0.00032 0.63 534.71 198.74 Bilate Reaches 92341.6 153.2 1622.23 1625.61 1625.63 0.00065 0.71 270.26 141.29 Bilate Reaches 92341.6 173.62 1622.23 1627.05 1662.68 0.00045 0.71 470.4 186.4 Bilate Reaches 92341.6 335.87 1622.23 1627.05 1662.68 0.00045 0.71 470.4 186.4 Bilate Reaches 92341.6 335.87 1622.33 1627.3 0.00045	Bilate Reaches	94347	335.87	1630.14	1635.21		1635.23	0.00043	0.6	563.16	284.41
Bilate Reaches 93253.6 193.15 1625.9 1630.39 1630.4 0.00028 0.52 372.19 165.81 Bilate Reaches 93253.6 173.62 1625.9 1630.24 1630.25 0.00027 0.5 347.95 1603.23 Bilate Reaches 93253.6 305.31 1625.9 1631.11 1631.3 0.00031 0.63 534.71 198.74 Bilate Reaches 93253.6 335.87 1622.23 1625.61 1631.3 0.00032 0.63 534.71 198.74 Bilate Reaches 92341.6 173.62 1622.23 1625.85 1625.87 0.00071 0.72 241.3 133.5 Bilate Reaches 92341.6 173.62 1622.23 1627.05 1627.08 0.00048 0.71 470.4 186.4 Bilate Reaches 92341.6 335.87 1622.23 1627.02 1624.1 5.2E-05 0.26 585.47 208.23 Bilate Reaches 91500 173.62 1618.47 1624.53 5.6E-05	Bilate Reaches	93253.6	153.2	1625.9	1630.07		1630.09	0.00026	0.48	321.76	154.17
Bilate Reaches 93253.6 173.62 1625.9 1630.24 1630.25 0.00027 0.5 347.95 1603.25 Bilate Reaches 93253.6 305.31 1625.9 1631.11 1631.13 0.00031 0.61 501.55 192.48 Bilate Reaches 93253.6 335.87 1625.9 1631.28 1631.3 0.00032 0.63 534.71 198.74 Bilate Reaches 92341.6 153.2 1622.23 1625.61 1626.08 0.00065 0.71 270.26 141.29 Bilate Reaches 92341.6 193.15 1622.23 1625.85 1627.08 0.00071 0.72 241.3 133.5 Bilate Reaches 92341.6 305.31 1622.23 1627.02 1627.08 0.00048 0.71 470.4 186.4 Bilate Reaches 91500 153.2 1618.47 1624.32 1624.33 5.4E-05 0.26 585.47 208.23 Bilate Reaches 91500 173.62 1618.47 1624.53 1625.51	Bilate Reaches	93253.6	193.15	1625.9	1630.39		1630.4	0.00028	0.52	372.19	165.81
Bilate Reaches 93253.6 305.31 1625.9 1631.11 1631.13 0.00021 0.0.32 0.0.32 Bilate Reaches 93253.6 305.31 1625.9 1631.12 1631.13 0.00031 0.61 501.55 192.48 Bilate Reaches 93253.6 335.87 1625.9 1631.28 1631.3 0.00032 0.63 534.71 198.74 Bilate Reaches 92341.6 153.2 1622.23 1625.61 1626.08 0.00065 0.71 270.26 141.29 Bilate Reaches 92341.6 173.62 1622.23 1627.05 1627.08 0.00048 0.71 428.92 177.99 Bilate Reaches 92341.6 335.87 1622.23 1627.05 1627.08 0.00048 0.71 428.92 177.99 Bilate Reaches 91500 153.2 1618.47 1624.09 1624.15 5.2E-05 0.26 585.47 208.23 Bilate Reaches 91500 193.15 1618.47 1624.53 5.6E-05 0.28	Bilate Reaches	93253.6	173.62	1625.9	1630.24		1630.25	0.00027	0.5	347.95	160.32
Bilate Reaches 93253.6 335.87 1625.9 1631.11 1631.13 0.00031 0.01 351.35 192.48 Bilate Reaches 93253.6 335.87 1625.9 1631.28 1631.3 0.00032 0.63 534.71 198.74 Bilate Reaches 92341.6 153.2 1622.23 1625.61 1652.63 0.0008 0.73 210.41 124.67 Bilate Reaches 92341.6 173.62 1622.23 1625.85 1625.87 0.00045 0.71 270.26 141.29 177.99 Bilate Reaches 92341.6 305.31 1622.23 1627.28 1625.87 0.00048 0.71 428.92 177.99 Bilate Reaches 91500 153.2 1618.47 1624.09 1624.1 5.2E-05 0.26 679.83 224.38 Bilate Reaches 91500 173.62 1618.47 1624.32 1624.53 5.4E-05 0.27 634.59 216.79 Bilate Reaches 91500 305.31 1618.47 1625.5 1625.51 6.3E-05 0.33 915.39 260.37 Bilate	Bilate Reaches	03253.6	205.21	1625.9	1631.11		1631.13	0.00021	0.5	501.55	102.48
Bilate Reaches 93253.6 3358.7 1625.9 1631.28 1631.3 0.00032 0.63 534.71 198.74 Bilate Reaches 92341.6 153.2 1622.23 1625.61 1625.63 0.0008 0.73 210.41 124.67 Bilate Reaches 92341.6 173.62 1622.23 1625.85 1625.87 0.00071 0.72 241.3 133.5 Bilate Reaches 92341.6 305.31 1622.23 1627.05 1627.08 0.00048 0.71 428.92 177.99 Bilate Reaches 92341.6 335.87 1622.23 1627.08 1624.1 5.2E-05 0.26 585.47 208.23 Bilate Reaches 91500 153.2 1618.47 1624.53 1624.33 5.4E-05 0.28 679.83 224.38 Bilate Reaches 91500 173.62 1618.47 1625.5 1625.51 6.3E-05 0.28 679.83 224.38 Bilate Reaches 91500 335.87 1618.47 1625.53 1625.51 6.3E-05 0.33 915.92 216.79 Bilate Reaches	Dilate Reacties	93253.0	305.51	1625.9	1631.11		1031.13	0.00031	0.01	501.55	192.46
Bilate Reaches 92341.6 153.2 1622.23 1625.61 1625.63 0.0008 0.73 210.41 124.67 Bilate Reaches 92341.6 193.15 1622.23 1626.06 1626.08 0.00065 0.71 270.26 141.29 Bilate Reaches 92341.6 173.62 1622.23 1625.85 1625.87 0.00071 0.72 241.3 133.5 Bilate Reaches 92341.6 305.31 1622.23 1627.05 1627.08 0.00048 0.71 428.92 177.99 Bilate Reaches 92341.6 335.87 1622.23 1627.28 1624.1 5.2E-05 0.26 585.47 208.23 Bilate Reaches 91500 153.2 1618.47 1624.33 1624.33 5.6E-05 0.28 679.83 224.38 Bilate Reaches 91500 173.62 1618.47 1625.51 1625.51 6.3E-05 0.33 915.99 260.37 Bilate Reaches 91500 335.87 1618.47 1625.73 1625.51 6.3E-05 0.34 974.47 268.64 Bilate Reaches <	Bilate Reaches	93253.6	335.87	1625.9	1631.28		1631.3	0.00032	0.63	534.71	198.74
Bilate Reaches 92341.6 193.15 1622.23 1626.06 1626.08 0.00065 0.71 270.26 141.29 Bilate Reaches 92341.6 173.62 1622.23 1625.85 1625.87 0.00071 0.72 241.3 133.5 Bilate Reaches 92341.6 305.31 1622.23 1627.05 1627.08 0.00048 0.71 428.92 177.99 Bilate Reaches 92341.6 335.87 1622.23 1627.28 1627.08 0.00045 0.71 470.4 186.4 Bilate Reaches 91500 153.2 1618.47 1624.53 1624.53 5.6E-05 0.28 679.83 224.38 Bilate Reaches 91500 173.62 1618.47 1625.5 1625.51 6.3E-05 0.28 679.83 224.38 Bilate Reaches 91500 305.31 1618.47 1625.5 1625.51 6.3E-05 0.33 915.39 260.37 Bilate Reaches 91500 335.87 1618.47 1625.53 1625.51 6.3E-05 0.34 974.47 268.64 Bilate Reaches	Bilate Reaches	92341.6	153.2	1622.23	1625.61		1625.63	0.0008	0.73	210.41	124.67
Bilate Reaches 92341.6 173.62 1622.23 1625.85 1625.87 0.00071 0.72 241.3 133.5 Bilate Reaches 92341.6 305.31 1622.23 1627.05 1627.08 0.00048 0.71 428.92 177.99 Bilate Reaches 92341.6 335.87 1622.23 1627.08 1627.08 0.00048 0.71 428.92 177.99 Bilate Reaches 92341.6 335.87 1622.23 1627.08 1627.08 0.00045 0.71 470.4 186.4 Bilate Reaches 91500 153.2 1618.47 1624.53 1624.53 5.6E-05 0.26 585.47 208.23 Bilate Reaches 91500 173.62 1618.47 1624.53 1624.53 5.6E-05 0.28 679.83 224.38 Bilate Reaches 91500 305.31 1618.47 1625.5 1625.51 6.3E-05 0.33 915.39 260.37 Bilate Reaches 91500 335.87 1618.47 1625.73 1625.51 6.3E-05 0.34 974.47 268.64 Bilate Reaches <td< td=""><td>Bilate Reaches</td><td>92341.6</td><td>193 15</td><td>1622.23</td><td>1626.06</td><td></td><td>1626.08</td><td>0.00065</td><td>0.71</td><td>270 26</td><td>141 29</td></td<>	Bilate Reaches	92341.6	193 15	1622.23	1626.06		1626.08	0.00065	0.71	270 26	141 29
Bilate Reaches92341.6305.311622.231627.051625.37 0.00011 0.72 2413153.2Bilate Reaches92341.6305.311622.231627.051627.08 0.00048 0.71 428.92177.99Bilate Reaches92341.6305.871622.231627.281627.3 0.00045 0.71 470.4186.4Bilate Reaches91500153.21618.471624.091624.1 $5.2E-05$ 0.26 585.47 208.23Bilate Reaches91500173.621618.471624.531624.33 $5.4E-05$ 0.27 634.59 216.79Bilate Reaches91500305.311618.471625.731625.51 $6.3E-05$ 0.33 915.39260.37Bilate Reaches91500305.311618.471625.731625.73 $6.5E-05$ 0.34 974.47268.64Bilate Reaches91472.1153.21618.361622.681622.69 0.00021 0.44 345.14159.81Bilate Reaches91472.1193.151618.361622.861622.88 0.00022 0.46 375.26166.63Bilate Reaches91472.1305.311618.361622.861622.88 0.00024 0.55 555.61202.76Bilate Reaches91472.1305.311618.361624.031624.05 0.00024 0.55 555.61202.76Bilate Reaches91472.1335.871618.361624.031624.05 0.00024 0.55 </td <td>Bilate Reaches</td> <td>92341.6</td> <td>173.62</td> <td>1622.23</td> <td>1625.85</td> <td></td> <td>1625.87</td> <td>0.00071</td> <td>0.72</td> <td>241.3</td> <td>133.5</td>	Bilate Reaches	92341.6	173.62	1622.23	1625.85		1625.87	0.00071	0.72	241.3	133.5
Bilate Reaches 92341.6 335.87 162223 1627.03 1627.03 0.00045 0.71 428.92 177.99 Bilate Reaches 92341.6 335.87 162223 1627.28 1627.30 0.00045 0.71 470.4 186.4 Bilate Reaches 91500 153.2 1618.47 1624.09 1624.1 $5.2E-05$ 0.26 585.47 208.23 Bilate Reaches 91500 173.62 1618.47 1624.53 1624.53 $5.6E-05$ 0.28 679.83 224.38 Bilate Reaches 91500 173.62 1618.47 1625.5 1625.51 $6.3E-05$ 0.33 915.39 260.37 Bilate Reaches 91500 305.31 1618.47 1625.5 1625.73 $6.5E-05$ 0.34 974.47 268.64 Bilate Reaches 91472.1 153.2 1618.36 1622.68 1622.69 0.00021 0.44 345.14 159.81 Bilate Reaches 91472.1 173.62 1618.36 1622.86 1622.88 0.00022 0.48 403.39 172.77 Bilate Reaches 91472.1 173.62 1618.36 1622.86 1622.86 0.00024 0.55 555.61 202.76 Bilate Reaches 91472.1 335.87 1618.36 1622.84 1622.88 0.00024 0.55 555.61 202.76 Bilate Reaches 91472.1 335.87 1618.36 1624.03 1624.05 0.00034 0.54 285.71	Bilate Reaches	02341.6	205.21	1622.23	1627.05		1627.08	0.000/1	0.72	428.02	177.00
Bilate Reaches 92341.6 335.87 1622.23 1622.28 1622.38 0.00043 0.71 470.4 180.4 Bilate Reaches 91500 153.2 1618.47 1624.09 1624.1 5.2E-05 0.26 585.47 208.23 Bilate Reaches 91500 193.15 1618.47 1624.53 5.6E-05 0.28 679.83 224.38 Bilate Reaches 91500 305.31 1618.47 1625.5 1625.51 6.3E-05 0.33 915.39 260.37 Bilate Reaches 91500 335.87 1618.47 1625.53 1625.51 6.3E-05 0.34 974.47 268.64 Bilate Reaches 91472.1 153.2 1618.36 1622.68 1622.69 0.00021 0.44 345.14 159.81 Bilate Reaches 91472.1 193.15 1618.36 1622.86 1622.88 0.00022 0.48 403.39 172.77 Bilate Reaches 91472.1 173.62 1618.36 1622.86 1622.88 0.00024 0.55 555.61 202.76 Bilate Reaches 91472.1 <td< td=""><td>Dilate Reaches</td><td>92341.0</td><td>225.97</td><td>1622.23</td><td>1627.03</td><td></td><td>1627.08</td><td>0.00048</td><td>0.71</td><td>428.92</td><td>177.33</td></td<>	Dilate Reaches	92341.0	225.97	1622.23	1627.03		1627.08	0.00048	0.71	428.92	177.33
Bilate Reaches 91500 153.2 1618.47 1624.09 1624.1 5.2E-05 0.26 585.47 208.23 Bilate Reaches 91500 193.15 1618.47 1624.53 1624.53 5.6E-05 0.28 679.83 224.38 Bilate Reaches 91500 173.62 1618.47 1624.32 1624.33 5.4E-05 0.27 634.59 216.79 Bilate Reaches 91500 305.31 1618.47 1625.5 1625.51 6.3E-05 0.33 915.39 260.37 Bilate Reaches 91500 335.87 1618.47 1625.73 1625.73 6.5E-05 0.34 974.47 268.64 Bilate Reaches 91472.1 153.2 1618.36 1622.68 1622.69 0.00021 0.44 345.14 159.81 Bilate Reaches 91472.1 193.15 1618.36 1622.86 1622.88 0.00022 0.48 403.39 172.77 Bilate Reaches 91472.1 173.62 1618.36 1623.84 1623.86 0.00024 0.55 555.61 202.76 Bilate Reaches <td< td=""><td>Bilate Reaches</td><td>92341.0</td><td>335.87</td><td>1622.23</td><td>1627.28</td><td></td><td>1627.3</td><td>0.00045</td><td>0.71</td><td>470.4</td><td>180.4</td></td<>	Bilate Reaches	92341.0	335.87	1622.23	1627.28		1627.3	0.00045	0.71	470.4	180.4
Bilate Reaches 91500 193.15 1618.47 1624.53 1624.53 5.6E-05 0.28 679.83 224.38 Bilate Reaches 91500 173.62 1618.47 1624.32 1624.33 5.4E-05 0.27 634.59 216.79 Bilate Reaches 91500 305.31 1618.47 1625.5 1625.51 6.3E-05 0.33 915.39 260.37 Bilate Reaches 91500 335.87 1618.47 1625.73 1625.73 6.5E-05 0.34 974.47 268.64 Bilate Reaches 91472.1 153.2 1618.36 1622.68 1622.69 0.00021 0.44 345.14 159.81 Bilate Reaches 91472.1 193.15 1618.36 1622.86 1622.88 0.00022 0.48 403.39 172.77 Bilate Reaches 91472.1 173.62 1618.36 1622.86 1622.88 0.00024 0.55 555.61 202.76 Bilate Reaches 91472.1 335.87 1618.36 1622.84 1623.86	Bilate Reaches	91500	153.2	1618.47	1624.09		1624.1	5.2E-05	0.26	585.47	208.23
Bilate Reaches 91500 173.62 1618.47 1624.32 1624.33 5.4E-05 0.27 634.59 216.79 Bilate Reaches 91500 305.31 1618.47 1625.5 1625.51 6.3E-05 0.33 915.39 260.37 Bilate Reaches 91500 335.87 1618.47 1625.73 1625.73 6.5E-05 0.34 974.47 268.64 Bilate Reaches 91472.1 153.2 1618.36 1622.68 1622.69 0.00021 0.44 345.14 159.81 Bilate Reaches 91472.1 193.15 1618.36 1622.86 1622.88 0.00022 0.48 403.39 172.77 Bilate Reaches 91472.1 173.62 1618.36 1622.86 1622.88 0.00022 0.46 375.26 166.63 Bilate Reaches 91472.1 305.31 1618.36 1622.84 1623.84 1623.86 0.00024 0.55 555.61 202.76 Bilate Reaches 91472.1 335.87 1615.18 1619.11 1619.13 0.00035 0.54 285.71 145.3 B	Bilate Reaches	91500	193.15	1618.47	1624.53		1624.53	5.6E-05	0.28	679.83	224.38
Bilate Reaches 91500 305.31 1618.47 1625.55 1625.51 6.3E-05 0.33 915.39 260.37 Bilate Reaches 91500 335.87 1618.47 1625.55 1625.51 6.3E-05 0.33 915.39 268.64 Bilate Reaches 91472.1 153.2 1618.36 1622.68 1622.69 0.00021 0.44 345.14 159.81 Bilate Reaches 91472.1 193.15 1618.36 1622.68 1622.69 0.00022 0.48 403.39 172.77 Bilate Reaches 91472.1 173.62 1618.36 1622.86 1622.88 0.00022 0.46 375.26 166.63 Bilate Reaches 91472.1 305.31 1618.36 1622.86 1622.88 0.00022 0.46 375.26 166.63 Bilate Reaches 91472.1 305.31 1618.36 1622.84 1623.86 0.00024 0.55 555.61 202.76 Bilate Reaches 90702.5 153.2 1615.18 1619.11 1619.13<	Bilate Reaches	91500	173 62	1618 47	1624 32		1624 33	5 4E-05	0.27	634 59	216 79
Bilate Reaches 91500 305.31 1616.47 1625.5 1625.51 6.52-65 0.33 914.59 260.57 Bilate Reaches 91472.1 153.2 1618.47 1625.73 1625.73 6.5E-05 0.34 974.47 268.64 Bilate Reaches 91472.1 153.2 1618.36 1622.68 1622.69 0.00021 0.44 345.14 159.81 Bilate Reaches 91472.1 193.15 1618.36 1622.86 1622.88 0.00022 0.48 403.39 172.77 Bilate Reaches 91472.1 173.62 1618.36 1622.86 1622.88 0.00022 0.46 375.26 166.63 Bilate Reaches 91472.1 305.31 1618.36 1624.03 1624.05 0.00024 0.55 555.61 202.76 Bilate Reaches 91472.1 335.87 1615.18 1619.11 1619.13 0.00024 0.56 595.28 209.87	Bilate Reaches	91500	305 31	1618 47	1625.5		1625.51	6 3E-05	0.33	915 39	260.37
Bilate Reaches 91472.1 153.2 1615.47 1622.75 0.32-05 0.32-05 0.34 974.47 200.04 Bilate Reaches 91472.1 153.2 1618.36 1622.68 1622.69 0.00021 0.44 345.14 159.81 Bilate Reaches 91472.1 193.15 1618.36 1622.86 1623.04 0.00022 0.48 403.39 172.77 Bilate Reaches 91472.1 173.62 1618.36 1622.86 1622.88 0.00022 0.46 375.26 166.63 Bilate Reaches 91472.1 305.31 1618.36 1622.84 1623.84 1623.86 0.00024 0.55 555.61 202.76 Bilate Reaches 91472.1 335.87 1618.36 1624.03 1624.05 0.00024 0.56 595.28 209.87	Bilate Reaches	91500	335.87	1618.47	1625.73		1625.51	6.5E-05	0.34	974 47	268.64
Bilate Reaches 91472.1 153.2 1618.36 1622.68 1622.69 0.00021 0.44 345.14 159.81 Bilate Reaches 91472.1 193.15 1618.36 1623.03 1623.04 0.00022 0.48 403.39 172.77 Bilate Reaches 91472.1 173.62 1618.36 1622.86 1622.88 0.00022 0.46 375.26 166.63 Bilate Reaches 91472.1 305.31 1618.36 1623.84 1623.86 0.00024 0.55 555.61 202.76 Bilate Reaches 91472.1 335.87 1618.36 1624.03 1624.05 0.00024 0.56 595.28 209.87 Bilate Reaches 90702.5 153.2 1615.18 1619.11 1619.13 0.00035 0.54 285.71 145.3 Bilate Reaches 90702.5 193.15 1615.18 1619.57 1619.59 0.00031 0.54 326.41 162.28 Bilate Reaches 90702.5 173.62 1615.18 1619.36 1619.37 0.00033 0.54 322.23 154.3 Bilate Reaches	Blate Reaches	91500	555.87	1018.47	1023.73		1025.75	0.51-05	0.54	974.47	208.04
Bilate Reaches 91472.1 193.15 1618.36 1623.03 1623.04 0.00022 0.48 403.39 172.77 Bilate Reaches 91472.1 173.62 1618.36 1622.86 1622.88 0.00022 0.46 375.26 166.63 Bilate Reaches 91472.1 305.31 1618.36 1622.86 1623.84 0.00024 0.55 555.61 202.76 Bilate Reaches 91472.1 335.87 1618.36 1624.03 1624.05 0.00024 0.56 595.28 209.87 Bilate Reaches 90702.5 153.2 1615.18 1619.11 1619.13 0.00035 0.54 285.71 145.3 Bilate Reaches 90702.5 193.15 1615.18 1619.57 1619.59 0.00031 0.54 326.41 162.28 Bilate Reaches 90702.5 173.62 1615.18 1619.36 1619.37 0.00033 0.54 322.23 154.3 Bilate Reaches 90702.5 335.31 1615.18 1620.59 1620.	Bilate Reaches	91472.1	153.2	1618.36	1622.68		1622.69	0.00021	0.44	345.14	159.81
Bilate Reaches 91472.1 173.62 1618.36 1622.86 1622.88 0.00022 0.46 375.26 166.63 Bilate Reaches 91472.1 305.31 1618.36 1623.84 1623.86 0.00024 0.55 555.61 202.76 Bilate Reaches 91472.1 335.87 1618.36 1624.03 1624.05 0.00024 0.56 595.28 209.87 Bilate Reaches 90702.5 153.2 1615.18 1619.11 1619.13 0.00035 0.54 285.71 145.3 Bilate Reaches 90702.5 193.15 1615.18 1619.57 1619.59 0.00031 0.54 356.41 162.28 Bilate Reaches 90702.5 173.62 1615.18 1619.36 1619.37 0.00033 0.54 322.23 154.3 Bilate Reaches 90702.5 305.31 1615.18 1620.59 1620.61 0.00026 0.56 540.54 199.85 Bilate Reaches 90702.5 335.87 1615.18 1620.82 1620.	Bilate Reaches	91472.1	193.15	1618.36	1623.03		1623.04	0.00022	0.48	403.39	172.77
Bilate Reaches 91472.1 305.31 1618.36 1623.84 1623.86 0.00024 0.55 555.61 202.76 Bilate Reaches 91472.1 335.87 1618.36 1624.03 1624.05 0.00024 0.56 595.28 209.87 Bilate Reaches 90702.5 153.2 1615.18 1619.11 1619.13 0.00035 0.54 285.71 145.3 Bilate Reaches 90702.5 193.15 1615.18 1619.57 1619.59 0.00031 0.54 356.41 162.28 Bilate Reaches 90702.5 173.62 1615.18 1619.36 1619.37 0.00033 0.54 322.23 154.3 Bilate Reaches 90702.5 305.31 1615.18 1620.59 1620.61 0.00026 0.56 540.54 199.85 Bilate Reaches 90702.5 335.87 1615.18 1620.82 1620.84 0.00025 0.57 587.81 208.41	Bilate Reaches	91472.1	173.62	1618.36	1622.86		1622.88	0.00022	0.46	375.26	166.63
Bilate Reaches 91472.1 335.87 1618.36 1624.03 1624.05 0.00024 0.56 595.28 209.87 Bilate Reaches 90702.5 153.2 1615.18 1619.11 1619.13 0.00035 0.54 285.71 145.3 Bilate Reaches 90702.5 193.15 1615.18 1619.57 1619.59 0.00031 0.54 356.41 162.28 Bilate Reaches 90702.5 173.62 1615.18 1619.36 1619.37 0.00033 0.54 322.23 154.3 Bilate Reaches 90702.5 305.31 1615.18 1620.59 1620.61 0.00026 0.56 540.54 199.85 Bilate Reaches 90702.5 335.87 1615.18 1620.82 1620.84 0.00025 0.57 587.81 208.41	Bilate Reaches	91472.1	305.31	1618.36	1623.84		1623.86	0.00024	0.55	555.61	202.76
Bilate Reaches 90702.5 153.2 1615.18 1619.11 1619.13 0.00032 0.55 285.71 145.3 Bilate Reaches 90702.5 153.2 1615.18 1619.11 1619.13 0.00035 0.54 285.71 145.3 Bilate Reaches 90702.5 193.15 1615.18 1619.57 1619.59 0.00031 0.54 356.41 162.28 Bilate Reaches 90702.5 173.62 1615.18 1619.36 1619.37 0.00033 0.54 322.23 154.3 Bilate Reaches 90702.5 305.31 1615.18 1620.59 1620.61 0.00026 0.56 540.54 199.85 Bilate Reaches 90702.5 335.87 1615.18 1620.82 1620.84 0.00025 0.57 587.81 208.41	Bilate Reaches	91472.1	335 87	1618 36	1624.03		1624.05	0.00024	0.56	595 28	209 87
Bilate Reaches90702.5153.21615.181619.111619.130.000350.54285.71145.3Bilate Reaches90702.5193.151615.181619.571619.590.000310.54356.41162.28Bilate Reaches90702.5173.621615.181619.361619.370.000330.54322.23154.3Bilate Reaches90702.5305.311615.181620.591620.610.000260.56540.54199.85Bilate Reaches90702.5335.871615.181620.821620.840.000250.57587.81208.41	Teachers		222.07	1010.00	- 52 1.05		1.52	2.00021	0.00	270.20	207.07
Bilate Reaches 90702.5 193.15 1615.18 1619.57 1619.59 0.00031 0.54 356.41 162.28 Bilate Reaches 90702.5 173.62 1615.18 1619.36 1619.37 0.00033 0.54 322.23 154.3 Bilate Reaches 90702.5 305.31 1615.18 1620.59 1620.61 0.00026 0.56 540.54 199.85 Bilate Reaches 90702.5 335.87 1615.18 1620.82 1620.84 0.00025 0.57 587.81 208.41	Bilate Reaches	90702.5	153.2	1615.18	1619.11		1619.13	0.00035	0.54	285.71	145.3
Bilate Reaches 90702.5 173.62 1615.18 1619.36 1619.37 0.00033 0.54 322.23 154.3 Bilate Reaches 90702.5 305.31 1615.18 1620.59 1620.61 0.00026 0.56 540.54 199.85 Bilate Reaches 90702.5 335.87 1615.18 1620.82 1620.84 0.00025 0.57 587.81 208.41	Bilate Reaches	90702.5	193.15	1615.18	1619.57		1619.59	0.00031	0.54	356.41	162.28
Bilate Reaches 90702.5 305.31 1615.18 1620.59 1620.61 0.00026 0.56 540.54 199.85 Bilate Reaches 90702.5 335.87 1615.18 1620.82 1620.84 0.00025 0.57 587.81 208.41	Bilate Reaches	90702.5	173.62	1615.18	1619.36		1619.37	0.00033	0.54	322.23	154.3
Bilate Reaches 90702.5 335.87 1615.18 1620.82 1620.84 0.00025 0.57 587.81 208.41	Bilate Reaches	90702.5	305.31	1615.18	1620.59		1620.61	0.00026	0.56	540.54	199.85
	Bilate Reaches	90702.5	335.87	1615.18	1620.82		1620.84	0.00025	0.57	587.81	208.41

Bilate Reaches	90000	153.2	1612.2	1617.97	1617.97	4.6E-05	0.25	610.85	211.85
Bilate Reaches	90000	193.15	1612.2	1618.41	1618.41	0.00005	0.27	707.3	227.96
Bilate Reaches	90000	173.62	1612.2	1618.2	1618.2	4.8E-05	0.26	661.03	220.38
Bilate Reaches	90000	305.31	1612.2	1619.37	1619.38	5.8E-05	0.32	945.41	263.56
Bilate Reaches	90000	335.87	1612.2	1619.6	1619.6	5.9E-05	0.33	1004.4	271.65
Diate redenes	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	555107	101212	1017.0	101510	0.72 00	0.00	100	2,1100
Bilate Reaches	89989 3	153.2	1612 16	1616.83	1616.84	0.00014	0.38	400.72	171 57
Bilate Reaches	80080 3	193.15	1612.16	1617.18	1617.19	0.00016	0.30	463.02	184.43
Bilate Reaches	87787.3	172.62	1612.16	1617.13	1617.02	0.00015	0.42	422.24	179.4
Dilate Reaches	89989.3	205.21	1612.10	1617.02	1617.03	0.00013	0.4	433.24	212.06
Bilate Reaches	89989.3	305.31	1612.16	1617.96	1617.97	0.00018	0.49	617.33	212.96
Bilate Reaches	89989.3	335.87	1612.16	1618.14	1618.15	0.00019	0.51	655.68	219.47
	00141.5	150.0	1 600 40	1 (10 (2	1 < 10 70	0.00000	1.02	02.01	70 72
Bilate Reaches	89141.5	153.2	1608.49	1610.62	1610.79	0.00928	1.83	83.91	/8./3
Bilate Reaches	89141.5	193.15	1608.49	1611.1	1611.22	0.00497	1.53	126.22	96.56
Bilate Reaches	89141.5	173.62	1608.49	1610.88	1611.02	0.00646	1.64	105.63	88.33
Bilate Reaches	89141.5	305.31	1608.49	1612.12	1612.2	0.00216	1.26	243.22	134.03
Bilate Reaches	89141.5	335.87	1608.49	1612.35	1612.42	0.00189	1.22	274.65	142.43
Bilate Reaches	87049.6	153.2	1603.06	1608.68	1608.69	5.3E-05	0.26	583.98	207.77
Bilate Reaches	87049.6	193.15	1603.06	1609.13	1609.13	5.6E-05	0.28	680.06	224.21
Bilate Reaches	87049.6	173.62	1603.06	1608.92	1608.92	5.4E-05	0.27	634.09	216.5
Bilate Reaches	87049.6	305.31	1603.06	1610.11	1610.12	6.2E-05	0.33	918.98	260.63
Bilate Reaches	87049.6	335.87	1603.06	1610.34	1610.34	6.4E-05	0.34	978.8	268.98
Bilate Reaches	87000	153.2	1602.84	1607.82	1607.82	0.0001	0.33	458.48	184.17
Bilate Reaches	87000	193.15	1602.84	1608.21	1608.22	0.00011	0.36	533.69	198.7
Bilate Reaches	87000	173.62	1602.84	1608.03	1608.03	0.0001	0.35	497.71	191.89
Bilate Reaches	87000	305 31	1602.84	1609.09	1609.1	0.00012	0.42	722.26	231.15
Bilate Reaches	87000	335.87	1602.84	1609 29	1609.3	0.00012	0.44	770.08	238.68
	01000	555107	1002101	1007.27	100915	0.00012	0		200.00
Bilate Reaches	86584	153.2	1601.01	1604.09	1604.12	0.00132	0.88	174 57	113 55
Bilate Reaches	86584	193 15	1601.01	1604 52	1604 56	0.00103	0.85	227.89	129.74
Bilate Reaches	86584	173.62	1601.01	1604.32	1604.36	0.00115	0.86	201.96	122.14
Bilate Reaches	86584	205.21	1601.01	1605.5	1605.53	0.0007	0.82	201.90	165 77
Bilate Reaches	86584	225.87	1601.01	1605.72	1605.55	0.0007	0.82	400.03	174.01
Bilate Reacties	80384	333.87	1001.01	1005.72	1005.70	0.00005	0.82	409.93	174.01
Dilata Dagahas	85500 7	152.0	1506.9	1602.21	1602.21	5 9E 05	0.27	562.07	204
Bilate Reaches	85500.7	102.15	1590.8	1602.31	1602.31	5.8E-05	0.27	554.04	204
Dilate Reaches	85509.7	193.13	1590.8	1602.73	1602.75	0.2E-03	0.29	634.94	220.21
Bilate Reaches	85509.7	1/3.62	1596.8	1602.54	1602.55	0.00006	0.28	610.43	212.6
Bilate Reaches	85509.7	305.31	1596.8	1603.72	1603.73	6.9E-05	0.34	886.13	256.14
Bilate Reaches	85509.7	335.87	1596.8	1603.94	1603.95	0.00007	0.36	943.88	264.36
		1 5 2 2			1.01.01				
Bilate Reaches	85500	153.2	1596.75	1601.03	1601.04	0.00022	0.45	339.83	158.72
Bilate Reaches	85500	193.15	1596.75	1601.42	1601.44	0.00022	0.48	404.7	173.21
Bilate Reaches	85500	173.62	1596.75	1601.24	1601.25	0.00022	0.46	373.49	166.4
Bilate Reaches	85500	305.31	1596.75	1602.29	1602.31	0.00022	0.54	569.64	205.5
Bilate Reaches	85500	335.87	1596.75	1602.49	1602.51	0.00022	0.55	611.23	212.87
Bilate Reaches	84575.8	153.2	1592.95	1596.9	1596.91	0.00035	0.53	287.48	145.73
Bilate Reaches	84575.8	193.15	1592.95	1597.22	1597.24	0.00036	0.57	337.2	157.83
Bilate Reaches	84575.8	173.62	1592.95	1597.07	1597.08	0.00036	0.55	313.24	152.12
Bilate Reaches	84575.8	305.31	1592.95	1597.97	1597.99	0.00038	0.66	464.65	185.27
Bilate Reaches	84575.8	335.87	1592.95	1598.14	1598.16	0.00039	0.68	497.41	191.69
Bilate Reaches	83348.1	153.2	1588.27	1591.99	1592.01	0.00048	0.6	255.29	137.3
Bilate Reaches	83348.1	193.15	1588.27	1592.38	1592.4	0.00044	0.62	312.11	151.81
Bilate Reaches	83348.1	173.62	1588.27	1592.2	1592.22	0.00046	0.61	284.61	144.97
Bilate Reaches	83348.1	305.31	1588.27	1593.27	1593.29	0.00039	0.66	460.88	184.48
Bilate Reaches	83348.1	335.87	1588.27	1593.47	1593.49	0.00038	0.67	499.03	191.96
Bilate Reaches	82336.5	153.2	1584.6	1589.34	1589.34	0.00013	0.37	414.05	174.89
Bilate Reaches	82336.5	193.15	1584.6	1589.73	1589.73	0.00014	0.4	485.25	189.33
Bilate Reaches	82336.5	173.62	1584.6	1589.54	1589.55	0.00013	0.38	451.1	182.55
Bilate Reaches	82336.5	305.31	1584.6	1590.59	1590.6	0.00015	0.46	662.67	221.25
Bilate Reaches	82336.5	335.87	1584.6	1590.79	1590.8	0.00015	0.47	708.28	228.74

-										
Bilate Reaches	81761	153.2	1582.23	1584.44		1584.59	0.00767	1.7	90.15	81.6
Bilate Reaches	81761	193.15	1582.23	1584.64		1584.81	0.00765	1.8	107.37	89.06
Bilate Reaches	81761	173.62	1582.23	1584.55		1584.7	0.00765	1.75	99.12	85.57
Bilate Reaches	81761	305 31	1582.23	1585.09	1584 46	1585 3	0.0075	2.02	150.78	103 19
Bilate Reaches	81761	335.87	1582.23	1585.23	1584.55	1585.44	0.0075	2.02	166.53	114.68
Blate Rederes	01701	555.07	1302.23	1505.25	1504.55	1505.44	0.0075	2.02	100.55	114.00
Dilata Dagahag	90591 7	152.2	1559 75	1561 50	1560.22	1561 61	0.00000	0.72	212.9	150.06
Bilate Reacties	80381.7	135.2	1338.73	1301.39	1300.22	1301.01	0.00099	0.72	212.0	130.00
Bilate Reaches	80581.7	193.15	1558.75	1561.84	1560.36	1561.87	0.00099	0.76	253.36	163.74
Bilate Reaches	80581.7	173.62	1558.75	1561.72	1560.29	1561.75	0.00099	0.74	233.77	157.28
Bilate Reaches	80581.7	305.31	1558.75	1562.42	1560.69	1562.46	0.00099	0.86	357.08	194.39
Bilate Reaches	80581.7	335.87	1558.75	1562.56	1560.75	1562.6	0.00099	0.88	383.47	201.45
Bilate Reaches	59123.3	153.2	1476.98	1485.75		1485.75	1E-06	0.05	3304.57	753.74
Bilate Reaches	59123.3	193.15	1476.98	1486.15		1486.15	1E-06	0.05	3611.23	787.93
Bilate Reaches	59123.3	173.62	1476.98	1485.96		1485.96	1E-06	0.05	3461.77	771.46
Bilate Reaches	59123.3	305.31	1476.98	1487.07		1487.07	2E-06	0.07	4376.42	867.4
Bilate Reaches	59123 3	335 87	1476 98	1487 28		1487 28	2E-06	0.07	4561.92	885.6
Blace redenes	07120.0	000.07	11/01/0	1107120		1.07.20	22.00	0.07		00010
Dilata Dagabas	57020	152.2	1480 22	1485 72		1485 72	1.1E.05	0.12	1216 11	470.10
Dilate Reaches	57029	102.15	1480.23	1485.72		1485.72	1.12-05	0.12	1510.11	479.19 512.41
Bilate Reaches	57029	193.15	1480.23	1486.12		1486.12	1.2E-05	0.13	1510.82	515.41
Bilate Reaches	57029	173.62	1480.23	1485.93		1485.93	1.1E-05	0.12	1415.33	496.92
Bilate Reaches	57029	305.31	1480.23	1487.03		1487.03	1.4E-05	0.15	2015.33	592.97
Bilate Reaches	57029	335.87	1480.23	1487.24		1487.24	1.4E-05	0.16	2140.96	611.17
Bilate Reaches	57014.1	153.2	1480.27	1485.54		1485.54	1.3E-05	0.13	1210.19	459.2
Bilate Reaches	57014.1	193.15	1480.27	1485.92		1485.92	1.5E-05	0.14	1387.88	491.76
Bilate Reaches	57014.1	173.62	1480.27	1485.73		1485.73	1.4E-05	0.13	1300.1	475.95
Bilate Reaches	57014.1	305.31	1480.27	1486.8		1486.8	1.7E-05	0.16	1854.8	568.49
Bilate Reaches	57014.1	335.87	1480.27	1487		1487	1.7E-05	0.17	1971.21	586.06
Bilate Reaches	555177	153.2	1/82 05	1484 62	1484.5	1/8/ 92	0.02302	2 /3	62.97	75.0
Dilate Reaches	55517.7	102.15	1482.95	1485.00	1484.5	1485.26	0.02302	1.45	104.42	100.00
Dilate Reaches	55517.7	172.62	1482.95	1403.09		1485.20	0.0098	1.65	04.42	100.09
Bilate Reaches	55517.7	1/3.02	1482.95	1484.88		1485.09	0.01374	2.05	84.57	89.33
Bilate Reaches	55517.7	305.31	1482.95	1485.99		1486.09	0.00363	1.42	215.55	146.4
Bilate Reaches	55517.7	335.87	1482.95	1486.19		1486.28	0.00311	1.37	245.54	156.57
Bilate Reaches	54000	153.2	1477.55	1482.33		1482.33	5.6E-05	0.24	630.38	263.87
Bilate Reaches	54000	193.15	1477.55	1482.71		1482.71	5.9E-05	0.26	735.3	284.98
Bilate Reaches	54000	173.62	1477.55	1482.53		1482.53	5.8E-05	0.25	685.08	275.08
Bilate Reaches	54000	305.31	1477.55	1483.56		1483.57	6.5E-05	0.31	997.42	331.91
Bilate Reaches	54000	335.87	1477.55	1483.75		1483.76	6.7E-05	0.32	1062.88	342.63
Bilate Reaches	53909.7	153.2	1477.18	1480.65		1480.66	0.00032	0.47	325.82	188
Bilate Reaches	53909.7	193.15	1477.18	1480.98		1480.99	0.00032	0.49	390.92	205.93
Bilate Reaches	53909.7	173.62	1477 18	1480.82		1480.83	0.00032	0.48	359 58	197 51
Bilate Reaches	53909.7	305.31	1477.18	1481 72		1481 73	0.00032	0.10	558.31	246.1
Bilate Reaches	53909.7	335.87	1477.18	1/81.80		1/81.0	0.0003	0.55	601.07	255 35
Bhate Reaches	55909.7	555.67	14//.10	1401.09		1401.9	0.0003	0.50	001.07	255.55
	52000.4	152.0	1472.46	1 477 12		1477 14	0.00026	0.11	250.02	101.02
Dilate Reaches	52990.4	153.2	14/3.46	14//.13		14//.14	0.00026	0.44	350.92	191.03
Bilate Reaches	52990.4	193.15	14/3.46	1477.44		1477.46	0.00027	0.47	412.7	207.16
Bilate Reaches	52990.4	173.62	1473.46	1477.3		1477.31	0.00026	0.45	382.95	199.56
Bilate Reaches	52990.4	305.31	1473.46	1478.14		1478.15	0.00028	0.54	569.28	243.31
Bilate Reaches	52990.4	335.87	1473.46	1478.3		1478.32	0.00028	0.55	609.06	251.67
Bilate Reaches	51893	153.2	1469.82	1472.9		1472.92	0.00066	0.62	246.01	159.98
Bilate Reaches	51893	193.15	1469.82	1473.21		1473.23	0.00063	0.65	298.15	176.12
Bilate Reaches	51893	173.62	1469.82	1473.06		1473.08	0.00064	0.64	272.97	168.52
Bilate Reaches	51893	305.31	1469.82	1473.91		1473.93	0.00058	0.7	434.61	212.63
Bilate Reaches	51893	335 87	1469 82	1474 07		1474 1	0.00057	0.71	469 75	221.06
	21075	222.01	1.07.02	1., 1.07		1.7.1.1	0.00007	0.71		221.00
Bilate Reaches	50985.8	153.2	1464.6	1468 31		1468 32	0.00028	0.46	334 27	180 44
Bilate Reaches	50985.8	102.15	1464 6	1468.62		1/69 62	0.00028	0.40	307.21	105 4
Dilata D 1	50005 0	172.02	1404.0	1469.02		1469.40	0.00029	0.49	264.61	193.0
Dilate Reaches	50005.0	205.21	1404.0	1408.47		1408.48	0.00029	0.48	5407	188.45
Bilate Reaches	50985.8	305.31	1464.6	1469.31		1469.33	0.00031	0.56	540.7	229.49
Bilate Reaches	50985.8	335.87	1464.6	1469.47		1469.49	0.00031	0.58	577.86	237.24

Bilate Reaches	50226	153.2	1459.48	1462.23		1462.27	0.00142	0.85	180.79	131.56
Bilate Reaches	50226	193.15	1459.48	1462.51		1462.55	0.00135	0.88	219.62	145
Bilate Reaches	50226	173.62	1459.48	1462.38		1462.42	0.00138	0.86	200.88	138.68
Bilate Reaches	50226	305.31	1459.48	1463.15		1463.19	0.00121	0.95	322.04	175.59
Bilate Reaches	50226	335.87	1459.48	1463.3		1463.35	0.00119	0.96	348.81	182.74
Bilate Reaches	48834.7	153.2	1451.17	1454.62		1454.64	0.00042	0.54	285.21	165.26
Bilate Reaches	48834.7	193.15	1451.17	1454.92		1454.93	0.00044	0.58	335.67	179.28
Bilate Reaches	48834.7	173.62	1451.17	1454.78		1454.79	0.00043	0.56	311.44	172.69
Bilate Reaches	48834.7	305.31	1451.17	1455.57		1455.59	0.00046	0.66	462.74	210.5
Bilate Reaches	48834.7	335.87	1451.17	1455.72		1455.74	0.00047	0.68	494.43	217.59
									.,	
Bilate Reaches	47632.5	153.2	1444.32	1447.02		1447.06	0.00156	0.88	174.83	129.38
Bilate Reaches	47632.5	193.15	1444.32	1447.3		1447.34	0.00148	0.91	211.82	142.41
Bilate Reaches	47632.5	173.62	1444 32	1447 17		1447.21	0.00152	0.9	193 93	136.26
Bilate Reaches	47632.5	305.31	1444 32	1447.92		1447 97	0.00135	0.99	309.6	172.16
Bilate Reaches	47632.5	335.87	1444.32	1448.06		1448.12	0.00132	1	335 35	170.18
Diate reaches	47052.5	555.07	1444.52	1440.00		1440.12	0.00152	1	555.55	179.10
Bilate Reaches	46469.9	153.2	1436 29	1439.82		1439.83	0.00038	0.51	297 73	168.88
Bilate Reaches	46469.9	103.15	1436.29	1440.12		1440.14	0.00038	0.51	352.01	183.63
Bilate Reaches	46469.9	172.62	1436.29	1440.12		1440.14	0.00038	0.53	332.01	176.7
Bilate Reaches	46469.9	205.21	1436.29	1439.98		1439.99	0.00038	0.53	480.42	216.52
Dilate Reaches	46469.9	225.07	1436.29	1440.81		1440.85	0.0004	0.62	469.45	210.33
Dilate Reaches	40469.9	335.87	1436.29	1440.97		1441	0.0004	0.64	525.41	225.58
Bilate Reaches	45249 1	152.0	1430 41	1/32 20	1/31 02	1/32 21	0.00116	0.76	201.2	1176
Dilato Desche-	45240.1	102.15	1420.41	1422 55	1422.00	1422 50	0.00116	0.70	201.2	162.01
Dilate Reaches	45248.1	193.13	1430.41	1433.33	1432.08	1433.36	0.00113	0.8	241.77	165.91
Bilate Reaches	45248.1	1/3.02	1430.41	1433.42	1432.01	1433.45	0.00116	0.78	222.19	156.25
Bilate Reaches	45248.1	305.31	1430.41	1434.12		1434.16	0.00113	0.88	346.65	200
Bilate Reaches	45248.1	335.87	1430.41	1434.25		1434.29	0.00113	0.9	373.23	208.15
Dilata Dagahas	44062.0	152.0	1402.45	1475 00	1424 51	1425 80	0.00045	0.44	251.04	280.42
Bilate Reaches	44062.9	102.15	1423.45	1425.88	1424.51	1425.89	0.00045	0.44	351.04	289.43
Bilate Reaches	44062.9	193.15	1423.45	1426.09	1424.61	1426.1	0.00045	0.47	415.1	314.73
Bilate Reaches	44062.9	173.62	1423.45	1425.99	1424.56	1426	0.00045	0.45	384.31	302.83
Bilate Reaches	44062.9	305.31	1423.45	1426.56	1424.84	1426.58	0.00047	0.53	577.48	371.22
Bilate Reaches	44062.9	335.87	1423.45	1426.67	1424.9	1426.69	0.00047	0.54	618.68	384.23
			10.00.00							
Bilate Reaches	32082	153.2	1369.65	1370.84	1370.14	1370.85	0.00044	0.28	573.87	961.97
Bilate Reaches	32082	193.15	1369.65	1370.95	1370.19	1370.95	0.00045	0.3	678.46	1045.97
Bilate Reaches	32082	173.62	1369.65	1370.9	1370.17	1370.9	0.00044	0.29	628.51	1006.73
Bilate Reaches	32082	305.31	1369.65	1371.18	1370.3	1371.19	0.00046	0.33	946.71	1235.55
Bilate Reaches	32082	335.87	1369.65	1371.24	1370.33	1371.24	0.00046	0.34	1016.16	1280.07
Bilate Reaches	10494.9	153.2	1209.25	1209.88		1209.89	0.00167	0.38	411.99	1303.65
Bilate Reaches	10494.9	193.15	1209.25	1209.94		1209.95	0.00164	0.41	486.72	1418.09
Bilate Reaches	10494.9	173.62	1209.25	1209.91		1209.92	0.00165	0.4	450.6	1363.97
Bilate Reaches	10494.9	305.31	1209.25	1210.07		1210.08	0.00161	0.48	683.17	1682.19
Bilate Reaches	10494.9	335.87	1209.25	1210.07		1210.08	0.00188	0.53	692.46	1693.66
Bilate Reaches	7745.74	153.2	1195.83	1196.67	1196.25	1196.67	0.00125	0.36	426.18	1019.16
Bilate Reaches	7745.74	193.15	1195.83	1196.74	1196.29	1196.75	0.00127	0.38	503.58	1107.85
Bilate Reaches	7745.74	173.62	1195.83	1196.71	1196.27	1196.71	0.00126	0.37	466.37	1066.14
Bilate Reaches	7745.74	305.31	1195.83	1196.9	1196.38	1196.91	0.00132	0.44	700.11	1306.26
Bilate Reaches	7745.74	335.87	1195.83	1196.97	1196.4	1196.98	0.00115	0.42	791.77	1389.14
Bilate Reaches	6955.07	153.2	1188.02	1188.94	1188.44	1188.94	0.00077	0.3	510.54	1114.39
Bilate Reaches	6955.07	193.15	1188.02	1189.02	1188.48	1189.03	0.00076	0.32	611.44	1219.56
Bilate Reaches	6955.07	173.62	1188.02	1188.98	1188.46	1188.99	0.00076	0.31	562.81	1170.05
Bilate Reaches	6955.07	305.31	1188.02	1189.22	1188.57	1189.23	0.00073	0.35	873.52	1457.68
Bilate Reaches	6955.07	335.87	1188.02	1189.23		1189.24	0.00083	0.37	896.67	1476.87
Bilate Reaches	5481.34	153.2	1173.66	1173.96	1173.96	1174.07	0.04721	1.12	110.33	517.35
Bilate Reaches	5481.34	193.15	1173.66	1174	1174	1174.12	0.04617	1.2	132.48	567.08
Bilate Reaches	5481.34	173.62	1173.66	1173.98	1173.98	1174.1	0.04625	1.16	122.18	544.52
Bilate Reaches	5481.34	305.31	1173.66	1174.09	1174.09	1174.24	0.0442	1.38	190.14	679.67
Bilate Reaches	5481.34	335.87	1173.66	1174.23		1174.3	0.01528	1.08	289.76	737.85

Bilate Reaches	50226	153.2	1459.48	1462.23		1462.27	0.00142	0.85	180.79	131.56
Bilate Reaches	50226	193.15	1459.48	1462.51		1462.55	0.00135	0.88	219.62	145
Bilate Reaches	50226	173.62	1459.48	1462.38		1462.42	0.00138	0.86	200.88	138.68
Bilate Reaches	50226	305.31	1459.48	1463.15		1463.19	0.00121	0.95	322.04	175.59
Bilate Reaches	50226	335.87	1459.48	1463.3		1463.35	0.00119	0.96	348.81	182.74
	400247	152.0	1451.17	1454 60		1454.64	0.000.10	0.54	205.21	1
Bilate Reaches	48834.7	153.2	1451.17	1454.62		1454.64	0.00042	0.54	285.21	165.26
Bilate Reaches	48834.7	173.62	1451.17	1434.92		1454.95	0.00044	0.56	311.44	179.28
Bilate Reaches	48834.7	305.31	1451.17	1455 57		1455 59	0.00045	0.50	462 74	210.5
Bilate Reaches	48834.7	335.87	1451.17	1455.72		1455 74	0.00047	0.68	494 43	217.59
Diate redenes	1005 117	555107	1101117	1.00.72		1.00.71	0.00017	0.00	12 11 12	217.022
Bilate Reaches	47632.5	153.2	1444.32	1447.02		1447.06	0.00156	0.88	174.83	129.38
Bilate Reaches	47632.5	193.15	1444.32	1447.3		1447.34	0.00148	0.91	211.82	142.41
Bilate Reaches	47632.5	173.62	1444.32	1447.17		1447.21	0.00152	0.9	193.93	136.26
Bilate Reaches	47632.5	305.31	1444.32	1447.92		1447.97	0.00135	0.99	309.6	172.16
Bilate Reaches	47632.5	335.87	1444.32	1448.06		1448.12	0.00132	1	335.35	179.18
Bilate Reaches	46469.9	153.2	1436.29	1439.82		1439.83	0.00038	0.51	297.73	168.88
Bilate Reaches	46469.9	193.15	1436.29	1440.12		1440.14	0.00038	0.55	352.01	183.63
Bilate Reaches	46469.9	173.62	1436.29	1439.98		1439.99	0.00038	0.53	325.92	176.7
Bilate Reaches	46469.9	305.31	1436.29	1440.81		1440.83	0.0004	0.62	489.43	216.53
Bilate Reacties	46469.9	555.67	1430.29	1440.97		1441	0.0004	0.64	323.41	223.38
Bilate Reaches	45248 1	153.2	1430 41	1433 20	1431 02	1433 31	0.00116	0.76	201.2	1476
Bilate Reaches	45248.1	193.15	1430.41	1433.55	1432.08	1433.51	0.00115	0.70	241 77	163.91
Bilate Reaches	45248.1	173.62	1430.41	1433.42	1432.01	1433.45	0.00116	0.78	222.19	156.25
Bilate Reaches	45248.1	305.31	1430.41	1434.12		1434.16	0.00113	0.88	346.65	200
Bilate Reaches	45248.1	335.87	1430.41	1434.25		1434.29	0.00113	0.9	373.23	208.15
Bilate Reaches	44062.9	153.2	1423.45	1425.88	1424.51	1425.89	0.00045	0.44	351.04	289.43
Bilate Reaches	44062.9	193.15	1423.45	1426.09	1424.61	1426.1	0.00045	0.47	415.1	314.73
Bilate Reaches	44062.9	173.62	1423.45	1425.99	1424.56	1426	0.00045	0.45	384.31	302.83
Bilate Reaches	44062.9	305.31	1423.45	1426.56	1424.84	1426.58	0.00047	0.53	577.48	371.22
Bilate Reaches	44062.9	335.87	1423.45	1426.67	1424.9	1426.69	0.00047	0.54	618.68	384.23
Dilata Daaahaa	22082	152.2	1260.65	1270.94	1270.14	1270.95	0.00044	0.28	572 07	061.07
Bilate Reaches	32082	103.15	1369.63	1370.84	1370.14	1370.83	0.00044	0.28	575.87	1045.07
Bilate Reaches	32082	173.62	1369.65	1370.93	1370.19	1370.93	0.00043	0.3	628.51	1045.97
Bilate Reaches	32082	305.31	1369.65	1371.18	1370.3	1371.19	0.00046	0.33	946.71	1235.55
Bilate Reaches	32082	335.87	1369.65	1371.24	1370.33	1371.24	0.00046	0.34	1016.16	1280.07
Bilate Reaches	10494.9	153.2	1209.25	1209.88		1209.89	0.00167	0.38	411.99	1303.65
Bilate Reaches	10494.9	193.15	1209.25	1209.94		1209.95	0.00164	0.41	486.72	1418.09
Bilate Reaches	10494.9	173.62	1209.25	1209.91		1209.92	0.00165	0.4	450.6	1363.97
Bilate Reaches	10494.9	305.31	1209.25	1210.07		1210.08	0.00161	0.48	683.17	1682.19
Bilate Reaches	10494.9	335.87	1209.25	1210.07		1210.08	0.00188	0.53	692.46	1693.66
Bilate Reaches	7745 74	153.2	1195.83	1196 67	1196.25	1196.67	0.00125	0.36	426.18	1019.16
Bilate Reaches	7745.74	193.15	1195.83	1196.74	1196.29	1196.75	0.00127	0.38	503.58	1107.85
Bilate Reaches	7745.74	173.62	1195.83	1196.71	1196.27	1196.71	0.00126	0.37	466.37	1066.14
Bilate Reaches	7745.74	305.31	1195.83	1196.9	1196.38	1196.91	0.00132	0.44	700.11	1306.26
Bilate Reaches	7745.74	335.87	1195.83	1196.97	1196.4	1196.98	0.00115	0.42	791.77	1389.14
Bilate Reaches	6955.07	153.2	1188.02	1188.94	1188.44	1188.94	0.00077	0.3	510.54	1114.39
Bilate Reaches	6955.07	193.15	1188.02	1189.02	1188.48	1189.03	0.00076	0.32	611.44	1219.56
Bilate Reaches	6955.07	173.62	1188.02	1188.98	1188.46	1188.99	0.00076	0.31	562.81	1170.05
Bilate Reaches	6955.07	305.31	1188.02	1189.22	1188.57	1189.23	0.00073	0.35	8/3.52	1457.68
Bilate Reacties	0933.07	335.87	1188.02	1189.23		1189.24	0.00083	0.37	890.07	1470.87
Bilate Reaches	5481.34	153.2	1173.66	1173.96	1173.96	1174.07	0.04721	1.12	110.33	517.35
Bilate Reaches	5481.34	193.15	1173.66	1174	1174	1174.12	0.04617	1.2	132.48	567.08
Bilate Reaches	5481.34	173.62	1173.66	1173.98	1173.98	1174.1	0.04625	1.16	122.18	544.52
Bilate Reaches	5481.34	305.31	1173.66	1174.09	1174.09	1174.24	0.0442	1.38	190.14	679.67
Bilate Reaches	5481.34	335.87	1173.66	1174.23		1174.3	0.01528	1.08	289.76	737.85
Bilate Reaches	4320.35	153.2	1173.9	1173.3	1165.41	1173.3	2E-06	0.01	2505.47	564.83
Bilate Reaches	4320.35	193.15	1173.9	1173.54	1165.54	1173.54	3E-06	0.01	2656.25	690.14
Bilate Reaches	4320.35	1/3.62	1173.9	11/3.42	1165.48	11/3.42	2E-06	0.01	2581.2	630.88
Bilate Reaches	4320.35	335 97	1172.0	1174.08	1105.82	1174.08	5E-06	0.01	3250.62	1060.61
mate reaches	+520.55	555.67	11/3.9	11/4.21		11/4.21	51-00	0.01	5250.05	1009.01
Bilate Reaches	1484.9	153.2	1170.76	1173.23	1172	1173.25	0.001	0.68	254.55	206.33
Bilate Reaches	1484.9	193.15	1170.76	1173.46	1172.12	1173.48	0.001	0.72	302.98	225.11
Bilate Reaches	1484.9	173.62	1170.76	1173.35	1172.06	1173.37	0.001	0.7	279.58	216.24
Bilate Reaches	1484.9	305.31	1170.76	1173.96	1172.39	1173.99	0.001	0.81	427.42	267.37
Bilate Reaches	1484.9	335.87	1170.76	1174.08	1172.44	1174.1	0.001	0.82	459.12	277.11

APPENDIX FIGURE

Appendix Figure 1 Double Mass Curve For Bilate at Tena Bilata Station

File Edit Run View Options GIS Tools Help			
	न्- Steady Flow Data - P	eak Flow at Bilate Nr Blate Station	
Project: RAS_Proccessing For Bilate Flood	File Options Help		
Plan: Plan 01	Enter/Edit Number of Profile	es (32000 max): 5 Reach Boundary (Conditions Apply Data
Geometry: Geometric Data_Bilate River			
Steady Flow: Peak Flow at Bilate Nr Blate Station		Locations of Flow Data Changes	
Unsteady Flow:	River: Bilate River		Add Multiple
Description :	Reach: Bilate Reaches	▼ River Sta.: 166388.1	Add A Flow Change Location
Junct.	Flow Change River Re 1 Bilate River Bila dy Flow Boundary Conditi	Write Geometry Information	mes and Elow Pates
Brdg/Culv Biaty Inline Structure	nown W.S. Crit	River: Bilate River Reach: Bilate River Profile: 200YRS Flood	RS: 2498.827 Node Type: Cross Section
Cross Section Data - Geometric Data Bilate Ri Rive	ar A Steady Flow Apaly	Simulation: 5/5	
Exit Edit Options Plot Help	Eile Optionr Hala	Computation Messages	
River: Bilate Diver	Plan i Plan 01	Event Conditions Complete	
Pearty Dilate Parate	Plan 01	Steady Flow Simulation HEC-RAS 5.0.1 A	pril 2016
Description	Geometry File : Steady Flow File	Finished Steady Flow Simulation	
Del Row Ins Row Downst Station Cross Section Coordinates LOB Station LOB Station LOB Station LOB Station Station LOB Station Station LOB Station Station LOB Station LOB Station Station Station Station Station LOB Station Station Station Station Station Manning's r Chain Station Station	Flow Regime Subcritical Supercritical Mixed Optional Programs Floodplain Mapping	Computations Summary Computation Task Completing Geometry Steady Flow Computations (64) Complete Process Fields Fields Compute Compute	<u>Time(bh:mm:ss)</u> <1 <1 <1

Appendix Figure 2 RAS Process at Research Station

lelp			and the second				
Steady Flow Data - P	eak Flow at Bilate Nr Blate Station						
File Options Help							
Enter/Edit Number of Profiles (32000 max): 5 Reach Boundary Conditions Apply Data							
	Locations of Flow Data Changes						
River: Bilate River	River: Bilate River Add Multiple						
Reach: Bilate Reaches	▼ River Sta.: 166388.1	Add A Flow Change	Location				
Flow Chang	e Location Profile	Names and Flow Rates					
1663 River Re 1590 I Bila 151413 Steady Flow Boundary Conditi	HEC-RAS Finished Computations Write Geometry Information Layer: Complete	<u>L</u> 3					
Set boundary for all profiles Known W.SCrit	Steady Flow Simulation River: Bilate River Reach: Bilate Reaches Profile: 200YRS Flood	RS: 249 Node Type: Cro	8.827 ss Section				
River A Steady Flow Analy	Simulation: 5/5		Comr				
Bilate File Options Help	Event Conditions Complete						
Plan : Plan 01 5(Geometry File : Steady Flow File	Steady Flow Simulation HEC-RAS 5.0.1 Finished Steady Flow Simulation	April 2016					
Steads Flow Regime Computation Tack							

Appendix Figure 3 Steady Flow Simulation

Appendix Figure 4 Water Surface Profile Plots of Different Return Period

Appendix Figure 6 Sample Rating Curve at Station 137960.5

Appendix Figure 7 Post-RAS Processing

83

C.

Appendix Figure 8 A, B, C And D Showing Hazard Maps of Different Return Period

Appendix Figure 9 Flood Hazard in study area, 2019