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Abstract
Sensorless speed control of Permanent Magnet Synchronous Motor (PMSM) is

still in development stage to overcome the existing drawbacks such as speed rip-

ples, torque ripples and poor performance at low speeds with no-load or lightly

loaded conditions. In this thesis, sensorless Field Oriented Control (FOC) system

which is based on artificial neural network (ANN) implementation is proposed.

The control system uses ANN aided Model Reference Adaptive System (MRAS)

for speed estimation. Both the speed estimator and the controller of the proposed

system use ANN based implementations. The performance of the proposed sys-

tem is analyzed for speed control of PMSM, for various speed and load torque

values. The simulation results of the proposed ANN based speed estimator and

controller model demonstrate that ANN aided MRAS based controller of PMSM

has the capability to enhance the performance of the system. Specifically, it re-

duces the overall complexity and initial speed overshoot by 1% as compared to

the conventional PI based MRAS controllers employed for PMSM speed control.

It has acceptable settling and rise time in its dynamic response.

Keyword: PMSM, Sensorless speed control, FOC, MRAS, ANN.
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Chapter 1

Introduction

The AC electric motors are commonly used in the industry. An AC motor is a

machine that converts alternating current into torque, in comparison to the DC

motor that produces torque from direct current. Transportation (such as trains

or automobiles), washing machines and industrial cranes are some applications for

AC motors [1].

There are two main classifications of AC motors: induction and synchronous [1].

The difference is that for an induction motor, currents are induced in the rotor

windings whenever the speed of the rotor differs from the speed of the rotating

magnetic field generated from the currents in the stator windings. While for

synchronous motors, the rotor always rotates at the same speed as the rotating

magnetic field. The synchronous speed can be achieved by either injecting current

into the rotor or using permanent magnets in the rotor.

Induction motors are the most popular in the industry, mainly because they are

rugged, robust and cheap motors available off the shelves but, difficult to control

because of its complexity and nonlinear behavior. However, their dominance is

challenged by permanent magnet synchronous motors (PMSM), because of their

high power density and high deficiency due to reduced rotor losses [2].

A motor that is very similar to the PMSM, and perhaps more used, is the brushless

DC (BLDC) motor. They have the same basic construction, consisting of perma-

nent magnets on the rotor and windings on the stator. However, one principal

1



Chapter 1. Introduction 2

difference is that the coils in the stator are evenly wound in a BLDC motor, and

in the case of PMSM they are wound symmetrically. As a result, the Back-EMF

generated in a BLDC motor is trapezoidal and Sinusoidal in PMSM motors. Con-

sequently, the PMSM motors are more efficient and produce less noise and torque

ripple however, it requires a more complex control algorithm [3, 4].

The control of the PMSM relative to the DC motor is not a trivial matter. Only

after the implementation of the idea of Vector Control (VC) in the early 1970s

was a specific control method used for both steady-state and transients [5].

Field Oriented Control (FOC) was the first and most common form of VC. A new

VC method called Direct Torque Control (DTC) appeared to be an alternative to

FOC later in the mid-eighties. Both FOC and DTC methods achieve decoupled

torque and flux control and were first implemented in Induction Motor (IM) drive

control. Due to high efficiency, smooth operation at low and high speeds resulting

in a wide range of speeds, fast dynamic response, better transient and steady-state

performance FOC is chosen in the drive system [3, 5].

Traditionally, some type of sensor is used for speed-dependent applications to mea-

sure the speed of the motor and return the value to the controller. The position

of the rotor is also needed when using FOC. Extra sensors, however, require addi-

tional physical space in the application, and it also adds another cause of system

failure. Economic, robust and compact drives are therefore needed; it is of great

interest to remove the position or speed sensors. The sensor can be replaced by

an estimator that measures the rotor’s speed or position mathematically. This is

called sensorless control. The advantages of this control include reduced hardware

complexity, lower cost, reduced drive size, elimination of the sensor cable, im-

proved noise tolerance, increased reliability and lower maintenance requirements

[6, 7].
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1.1 Statement of the Problem

To achieve efficient control of a PMSM it is necessary to know the position of

the permanent magnet flux. Such expertise has traditionally been gained by mea-

suring the physical position of the motor’s shaft. A lot of effort has been put

into estimating the flux based on electrical measurements alone to save cost and

increase the reliability of the motor drive.

The field of motor speed and position estimation is still in development and exists a

lot of literature of this technique with several methods used in applications to over-

come the existing drawbacks such as complexity, simplicity, speed ripples, torque

ripples and very poor performance at low speeds with no-load or lightly loaded

conditions. This thesis will, therefore, focuses on speed estimators to overcome

some of the above problems.

1.2 Scope of the Thesis

This thesis will focus on sensorless speed control of PMSM. A mathematical model

that represents PMSM is simulated on MATLAB/Simulink 2017a software. After

designing the model, FOC is applied for controlling the speed and torque of the

motor and simulate to check the ability of the controller applied with PI speed

controller then, the sensorless controller is modeled using MRAS as an estimator

and the PI controller in FOC as well as in MRAS are replaced by ANN, this also

simulated under MATLAB/Simulink 2017a software. After all, the effectiveness

of the proposed system will be studied in terms of percentage overshoot, rise time,

settling time, and steady-state error for a given reference speed with different load

torque.
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1.3 Limitation of the Thesis

The proposed system must be implemented on real motors under all the test cases

to access its performance in real control scenario but, due to lack of the hardware

accessories, the system is modeled and simulated only using MATLAB/Simulink

software.

1.4 Objectives of the Thesis

1.4.1 General Objective

The main objective of this thesis is to model ANN aided MRAS-based speed and

position estimator to increase the performance of PMSM.

1.4.2 Specific Objectives

The specific objectives of this thesis are:

• To review relevant literature available on the implementation of sensorless

speed controller of PMSM.

• To develop the mathematical model of PMSM

• To design and tuning PI controllers in cascaded form

• To design MRAS based estimator based on Hyper-stability theory

• To design ANN based controller

• To test and validate the results

1.5 Methodology

In this thesis, we propose Sensorless Field Oriented Control Based on ANN aided

MRAS Speed Observer for PMSM drive. The first task is to review distinctive

literature about sensorless speed control systems to build up a solid understanding
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of the thesis work have been done. The subsequent task is finding the mathematical

model of the PMSM with its respective parameter value, then control the flux and

torque by using a vector control method, FOC through the best tuning method

for PI controllers. This is followed by transferring the control strategies from

sensored to sensorless by designing an observer called model reference adaptive

control system. The stability analysis for the observer is based on the Popov

hyper-stability criterion. After these the mathematical model and the controllers

are simulated on MATLAB/Simulink 2017a, then all PI controllers presented in

FOC as well as in the adaptation mechanism of MRAS are replaced by trained

artificial neural network and re-simulate again. After all, the comparison of the

conventional method and the proposed system is presented.

1.6 Thesis Outline

The rest of the report is organized as follows. Chapter 2 presents different sen-

sorless control methods found in the literature. Different applications for these

methods will be discussed and the comparison among these methods is evaluated.

Chapter 3 presents system designs and mathematical models that this thesis will

build upon. This includes PMSM dynamical equations, Clarke and Park vector

transformations, FOC and MRAC. The simulation procedure, simulation model,

test cases and simulation results will be presented in Chapter 4. The work will then

be concluded and future work or recommendation will be presented in Chapter 5.



Chapter 2

Literature Review

In this chapter, several existing sensorless control methods for PMSMs will be

analyzed and discussed. In the analysis, the different methods will be compared

through some specific aspects. Such as, how much computational power is needed.

Thus, the lower the computational power needed, the better. The ability to es-

timate the position and speed of the rotor at all speed ranges. The estimation

error should be as low as possible and minimum sensitivity to motor parameter

variations. In recent years, several pieces of literature have proposed many speed

estimation techniques to perform vector-controlled PMSM drive speed-sensorless

operation. The approach based on the back electromotive force (EMF) is the most

common method for sensorless PMSM control [8]. The calculation is simple and

easy thus showing great performance in [9] high-speed control applications. Nev-

ertheless, with this type of method, a well-known problem is that the back-EMF

depends on the speed of the rotor. This means that the back-EMF is very small

at low speeds and therefore difficult to accurately estimate [9].

Extended Kalman Filter (EKF) is a state observer that estimates the state of a

dynamic linear system based on least-square optimization, it finds the optimal

state variables values. This usually gives a very good [10] estimate. Besides, EKF

serves as a low-pass filter, eliminating input noise effectively, but demanding a

high processor. Because multiplications of matrixes occur, the EKF is very costly

in computational terms and inefficient in time compared to other approaches.

6
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Sliding Mode Observer(SMO)estimation method is considered simple and performs

well in comparison to its non-complex implementation [11]. The main reason the

SMO is widely used is due to its robustness against variations in parameters,

disturbances, and noise [12]. The SMO is considered a method of back-EMF

estimation. This also means that the SMO shares certain features with the back-

EMF system, particularly the unsatisfactory low-speed performance[12].

Model reference adaptive system-based technique is implemented in [13], which

provides more benefits than other approaches because of its simple hardware re-

quirements and good stability [14]. Depending on the state variable to be esti-

mated, choice of a reference model, selection of adjustable model and choice of

adaptive mechanism, the MRAS can be implemented in various ways. A motor

variable, e.g. stator current or power, should be chosen as the state variable [13]

when using MRAS to estimate the rotor speed and position of a PMSM. Two

different models are then used: the reference model calculates the state variable

without using the speed or position of the rotor and the adjustable model cal-

culates the same state variable using the speed or position value of the adaptive

mechanism given by the rotor.

The choice of adaptation mechanism shows a little more diversity. The simplest

and most common method in applications is to tune the estimated speed value with

a PI adaptive mechanism [13]. This is essentially a PI controller performing the

actual and estimated state variables on a particular expression. By using Popov’s

hyper-stability theorem [15], this rule can be selected to ensure the estimator’s

stability. This is one reason why the process of PI adaptation is so common.

Some other solutions to the adaptation process can be used as an attempt to

improve the estimation efficiency. In [16] model reference adaptive observer based

on fuzzy PI is proposed. The parameters of adaptive PI regulator can be adjusted

by fuzzy controller.

Sugeno Fuzzy Inference System (FIS) also used in [17], which uses the error and

derivative error between the reference model and the adjustable model to esti-

mate the rotor speed. In [9], a combination of Sugeno FIS and a hybrid learning
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algorithm called the adaptive neuro-fuzzy inference system (ANFIS) is used as

the adaptation mechanism. To estimate the rotor speed, the mechanism uses the

estimated currents from the adjustable model. The error between measured and

estimated current is then used to adjust the estimation parameters.

The adaptive mechanisms in [9, 16, 17] improve the estimator accuracy of rotor

position and speed for PMSM by model reference adaptive observer. But, data

processing in PI and fuzzy controllers is a complex task that requires heavy com-

putation time. The neural network is a non-linear algorithm that can be worked

out easily because of its mathematical nature [18].

In [19] Reactive power (Q)-MRAS-based speed, sensorless PMSM drive with adap-

tive neural network for Performance enhancement at Low Speeds is proposed, this

thesis use ANN in the Q-MRAS based speed estimator. In the proposed estimator,

the adjustable part is modeled by ANN. This thesis improves existing Q-MRAS-

based speed estimator especially at low speeds and low torques but it only focuses

on the adjustable model.

The most common criticism against MRAS is its sensitivity to variations in motor

parameters [10, 20]. Since the model used includes mostly motor mathematical

equations, the accuracy of the parameter is important. However, according to [17],

using the motor itself as a reference model can somewhat reduce sensitivity to

variations in motor parameters. It makes easier to implement and ensures stability.

In studies and applications, this strategy is also well adopted.

In this thesis, ANN-based controller is introduced for both speed controller as well

as an adaptive controller to replace the conventional PI controllers to enhance the

performance by reducing the complexity and overshoot of sensorless FOC based

MRAS speed estimator for low speed at no load or slightly loaded PMSM, it also

introduces a simple tuning strategy by reducing the number of tuned controllers

from four to two.



Chapter 3

System Design and Mathematical

Modeling

A block diagram of sensorless FOC based speed estimator for PMSM is shown in

Figure 3.1. The controller works by decoupling currents. Speed observer block

differs from sensor-based approaches by removing the use of sensors for rotor in-

formation assessment.

Figure 3.1: Conventional Sensorless FOC based speed controller for PMSM.

9
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The estimated speed and angle values are obtained from PMSM’s input phase

current and voltage. The estimator then provides a rotor position for the transfor-

mations as well as rotor speed for the speed control. The model of the proposed

system, sensorless Field Oriented Control (FOC) based on ANN aided Model Ref-

erence Adaptive System (MRAS) is shown in Figure 3.2. This system uses MRAS

as a speed observer with FOC as a vector controller and the controllers are imple-

mented using ANN.

Figure 3.2: Sensorless FOC based MRAS speed estimator for PMSM.

3.1 The Model of PMSM

There are two different kinds of PMSMs that differ in distribution of the permanent

magnet in the rotor. These are surface permanent magnet synchronous motor

(SPMSM) and interior permanent magnet synchronous motor (IPMSM) which

are shown in Figure 3.3.

For the SPMSM, the magnets are mounted on the surface of the rotor. The

magnets are evenly distributed on the surface so the stator inductances do not

depend on the rotor position therefore, it has the same inductance’s along any

axis through the center of the machine. This type of motor is the easier one to

produce and control but the magnets are more exposed to damage [21].
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(a) SPMSM (b) IPMSM

Figure 3.3: Types of PMSM rotor design [21].

In the IPMSM, the magnets are integrated with the rotor which contributes to

more mechanical durability and robustness. This motor is a saliency pole type

and the inductance does depend on the rotor position therefore it has unequal

inductances along with the d and the q axis. However, it is more expensive to

manufacture and more complex to control [21]. In this thesis, an SPMSM motor

type is used and it will be the only type studied. Therefore, for the rest of this

report, when referring to a PMSM it is the SPMSM.

3.1.1 Clark and Park Transformations

The three-phase motor dynamics can be described from a different point of view

by using different reference frames. The most standard frame is the three-phase

stationary reference frame, also called abc-frame. This is the physical reference

frame of the motor where the three axes a, b and c represent the three electrical

phases in the stator. Current and voltage measurements are also done in this

reference frame. The abc-frame is thus fixed to the stator. However it is difficult

to find the angle and magnitude of the three-phase frame so, it must be converted

into a two-phase system.
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To overcome the above problem Clarke and Park Transformations and their in-

verse are introduced. By applying these transformations, we can transform the

three phase currents of the stator into the rotating frame of the rotor. Using

Clarke Transformation, three-phase quantities are converted into the two-axis or-

thogonal stationary reference frame. The quantities are still in a fixed reference

frame, however, while the reference frame of the rotor is revolving continuously.

Transformation of Park transforms these quantities into an orthogonal frame of

reference consisting of the axis of direct and quadrature [2]. The three frames of

reference are shown in Figure 3.4.

Figure 3.4: The three reference frames [2]

The combined transformations of Clarke and Park can be written as:

 Id

Iq

 =
2

3

 cos(θ) cos(θ − 2π
3

) cos(θ + 2π
3

)

sin(θ) sin(θ − 2π
3

) sin(θ + 2π
3

)



Ia

Ib

Ic

 (3.1)

where Id and Iq are the direct axis and quadrature axis respectively, θ is the

angular position of the rotor. Likewise, the inverse transformation is given by:
Ia

Ib

Ib

 =


cos(θ) − sin(θ)

cos(θ − 2π
3

) − sin(θ − 2π
3

)

cos(θ + 2π
3

) − sin(θ + 2π
3

)


 Id

Iq

 (3.2)



Chapter 3. System Design and Mathematical Modeling 13

PMSM can be modeled by using one of the three reference frames. Therefore, it

can be modeled in dq, αβ or abc reference frames.

3.1.2 PMSM model in abc-frame

The three-phase stationary frame representation of a PMSM is given by [7].

Vabc = Rsiabc +
d

dt
φabc (3.3)

where Vabc =
[
Va Vb Vc

]T
is the voltages of each stator phase; Rs is the stator

resistance; iabc =
[
ia ib ic

]T
is the current in the stator windings in respective

phase and φabc =
[
φa φb φc

]T
is the stator fluxes, which are given as

φabc = Lssiabc + φrabc. (3.4)

The first term is the flux produced by the currents in the stator winding’s; Lss

is the stator inductance matrix which depends on the type of machine. Since

this thesis only deals with the SPMSM, the inductance of the d-axis is equal to

the inductance in the q-axis. This means that constant value can be used for

the stator inductances in the transformed representations of the machine [7]. The

second component, φrabc, is the flux induced in each stator phase by the permanent

magnets in the rotor. It has a sinusoidal waveform and depends on the rotor

position. Equation (3.3) can be rewritten as

Vabc = Rsiabc + ωe
d

dθe
φabc (3.5)

Both electrical speed and position has the same relation to their mechanical coun-

terparts, see Equations (3.6) and (3.7).

ωe = Pωr (3.6)

θe = Pθr (3.7)
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where ωr is the mechanical speed of the rotor, θr is the mechanical position of the

rotor and P is the number of pole pairs of the magnets in the rotor.

In this thesis we use the FOC method, the principle with field-oriented control is

that it controls the motor current in dq-frame, instead of directly in abc-frame.

Therefore for simplicity, we design PMSM in dq frame.

3.1.3 PMSM Model in dq-frame

By using ( 3.1), (3.2) and (3.5), the electrical and mechanical equations of the

PMSM in the rotor reference frame (d-q) are as follows and the equations are

mapped in MATLAB Simulink as shown in Figure 3.5. Assuming that there is no

core loss, constant rotor flux, and no damping winding [5]. The current dynamics

of the PMSM in dq-coordinates can be expressed as
d
dt
Id = −Rs

Ld
Id + ωr

Lq

Ld
Iq + Vd

d
dt
Iq = −Rs

Lq
Iq − ωr

Ld

Lq
Id − 1

Lq
ωrλaf + Vq

(3.8)

where:Id is direct axis stator current in ampere (A), Iq is quadrature axis stator

current in ampere(A), Rs is stator resistance in ohms (Ω), Ld is direct axis induc-

tance in Henry (H), Lq is quadrature axis inductance in Henry (H), J is moment

of inertia in Kgm2, B is friction vicious gain in Nm/rad/sec, P = number of poles,

λaf is rotor flux constant in V/rad/sec , ωe is rotor’s electrical speed in rad/sec,

TL is load torque in Nm and Te is electromagnetic torque in Nm.

Equation (3.8) can also be represented in state space form with state vector XT

= [Id Iq] is

Ẋ = AX +Bu

Y = CX

(3.9)

With coefficients:-

A =

 −Rs

Ls
ωe

−ωe −Rs

Ls

 , Bu =

 Vd
Ls

Vq−λafωe

Ls

 and C =

 1 0

0 1
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Since the motor is a surface permanent magnet synchronous motor (SPMSM), all

phase resistance and inductance were assumed to be equal to each other and equal

to the two-axis dq frame resistance and inductance. Therefore, Rd = Rq = Rs and

Ld = Lq = Ls The mechanical equations can be written as

Te =
3

2
P (λafIq + (Ld − Lq)IdIq) (3.10)

ωr =
P

2J

∫
(Te − TL

2Bωe
P

)dt (3.11)

Figure 3.5: PMSM model in dq-frame

3.2 Controller Modeling

3.2.1 Vector Control Method

There is an optimal direction for the net stator field for any rotor position that

maximizes the torque produced [1]. If the net stator field is in the same direction

as the rotor field, then no torque will be generated. This is because of the forces

produced by the field interaction act in line with the rotor’s axis of rotation and
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only result in motor bearings being compressed rather than rotated. If the sta-

tor field is perpendicular to the field of the rotor, the maximum torque will be

produced.

Any stator field can be represented as a result of two vector components, the

orthogonal (quadrature) component that produces torque, and the parallel (direct)

component that produces unwanted heat and compression forces. An optimal drive

should, therefore, be aimed at minimizing the parallel portion while maximizing

the quadrature component. This method is known as vector control [1].

3.2.2 Field-Oriented Control

Like induction motor, it is possible to achieve a decoupled control of the torque

and flux magnitudes in the PMSM. This is achieved using the d-q transformation

separating the d and q components of the stator current responsible for the pro-

duction of flux and torque respectively. There is no need to produce flux through

the Id current due to the presence of the permanent magnet’s constant flux, and

this current can be held to a zero value, which in effect decreases the stator current

and improves the drive’s performance [22].

As shown in Figure 3.1, the control system is divided into two loops: the d loop

controlling the flux; and the q-loop controlling the velocity and torque. The d-loop

executes Id control with an existing PI regulator. The reference value can be set

to zero for this loop. In a cascade, the q-loops are linked. By controlling Iq with

a current PI regulator, the internal loop regulates the torque.

3.2.2.1 Field-Oriented Control Design

As shown in the Figure 3.6, current controllers and the speed controller in the

FOC control system have to be tuned correctly to get a good system response.

The tuning process used is well adopted by the industry and is specified by [23].

The basic FOC has three PI controllers and therefore six separate controller gains

that need to be tuned.
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This tuning process is aimed at reducing the number of parameters to be tuned

to two: δ and τ . First, using the series PI topology for the current controllers,

the proportional and integral gains are given by the constant values in (3.12)

and (3.13), respectively.

IKP = LS.BWc (3.12)

IKi =
RS

LS
(3.13)

BWc is the current controller’s bandwidth. All current controllers use the same

values. The speed controller depends on the δ and τ tuning parameters. δ measures

how fast the system is and τ shows the damping of the system. Equations (3.14)

and (3.15), respectively, give the speed controller’s proportional and integral gains.

SKP =
1

δCτ
(3.14)

SKi =
1

δ2τ
(3.15)

In (3.14), C is a combination of the motor and load parameters and is given by

C =
3Pλaf

4J
(3.16)

To tune the FOC the parameters δ and τ are chosen such that the system response

is satisfactory. This is done by try and error method. In this thesis the conventional

PI controller is replaced by ANN based controller as shown in Figure. 3.6. The

error between the reference speed (w ref) and the estimated speed (w in) from

MRAS is given to ANN controller, then the output of ANN is compared to PMSM

quadrature current(iq in) after that it passes through PI current controller to

produce quadrature voltage(Vq) for PMSM. In the second loop, the difference

between reference direct current (id ref) and PMSM direct current (iq in) is passed

through PI current controller to produce direct voltage (Vd) for PMSM.
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Figure 3.6: Controller scheme for FOC based PMSM

3.2.3 Model Reference Adaptive System

The basics of MRAS are to use two independent models: One reference model

which is independent on the variable to be estimated and another one is the

adjustable model which is dependent on the variable to be estimated. The two

models use different sets of inputs to calculate the same state variables which are

in turn fed to a certain adaption mechanism. The adaption mechanism uses the

difference between the two signals to tune the estimated variable and feed it back

to the adjustable model. The estimated value will this way be driven to its true

value [13]. The MRAS scheme is illustrated in Figure 3.7.

Figure 3.7: Model refrence addaptive system
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3.2.3.1 MRAS Estimation Model

In the case of estimating the PMSM’s rotor speed and position the usual approach

is to allow the motor to serve as a reference model to improve robustness against

parameter uncertainties.

The measured motor currents are then compared to the currents of the adjustable

model; the adjustable model consists of the electrical motor equation provided

with the same voltage values as the real motor. The rotor speed is also included

in the electrical motor equations. The adaptation mechanism modifies the speed

value of the adjustable model to minimize the current estimation error, given the

different values for the current.

The adjustable model will be the PMSM electrical equations in the dq-frame

from (3.9) using estimated values for the currents and the rotor electrical speed.

The adjustable model is given in (3.17).

˙̂
X = ÂX̂ + B̂u

Y = CX̂

(3.17)

With coefficients:-

Â =

 −Rs

Ls
ω̂e

−ω̂e −Rs

Ls

 , B̂u =

 Vd
Ls

Vq−λaf ω̂e

Ls

 and C =

 1 0

0 1


The estimated state vector X̂ =

[
îd îq

]T
consists of the estimated currents

and ω̂e is the estimated speed. The adaptive mechanism will be the commonly

used PI-controller. This is because it is simple to implement while still performing

well. Also because the stability of the estimator can be assured [24]. Given the

measured state vector X =
[
id iq

]T
, the generalized error ε = X̂ − X can be

introduced. By analyzing the generalized error together with the Popov hyper-

stability theorem [24], which is described in detail in Appendix A. The transfer



Chapter 3. System Design and Mathematical Modeling 20

function of the adaptive PI-mechanism can be derived as [25].

ω̂e =

(
MKp +

MKi

S

)[
(îq − iq)(id +

λaf
Ls

) − (îd − id)iq

)
+ ω̂e(0) (3.18)

By integrating the speed, the position of the rotor is obtained.

θ̂e =

∫
(ω̂e)dt (3.19)

A PI controller is tuned using many methods. If a plant mathematical model can

be derived, then different design techniques can be applied to determine controller

parameters that will satisfy the closed-loop system’s transient and steady-state

requirements. However, if the plant is so complex that it can not easily obtain

its mathematical model, then an analytical approach to PI controller design is

not feasible. Then, we have to turn to experimental approaches to PI controller

tuning [26].

The best tuning method for the PID controller was given by Ziegler and Nichols,

which was now accepted as standard technique in control systems practice [26]. In

this thesis, the controller gains MKp and MKi are determined by using the Ziegler-

Nicholas method. The general formula for the controller of Ziegler-Nicholas tuning

rule for u(t) as input, y(t) as output and e(t) as the error is shown in equation

(3.20).

u(t) = Kpe(t) +

Ki︷︸︸︷
Kp

Ti

∫ t

0

e(t)dτ +

Kd︷ ︸︸ ︷
KpTd

de(t)

dt
(3.20)

Where:-Kp, Ki, Kd are proportional, integral and derivative constants respectively.

There are some steps to determine the controller parameters under Ziegler-Nicholas

method [26].

1. Start with Kp = small and set other parameters to zero. Hence Ki = Kd =

0.

2. Increase Kp from 0 to some critical value Kp = Kcr at which oscillations

occur. If it does not occur then other method has to be applied.
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3. Record the ultimate or critical period Tcr of the oscillation.

4. Finally find the value of Kp, Ki, Kd from the Ziegler Nicholas tuning formula

which is shown in Table 3.1.

Table 3.1: Ziegler-Nichols Tuning Formula [27]

Controller Type Kp Ti Td
P 0.5Kcr

PI 0.4Kcr 0.8Tcr
PID 0.6Kcr 0.5Tcr 0.12Tcr

In this thesis we have done all the procedures above and we get the following

values from the simulated Figure 3.8.

Figure 3.8: Oscilation responce at critical value

The critical value, Kcr is 1.2 and the critical time, Tcr is 2 seconds. Based on

equation (3.20) and Table 3.1, we can calculate MKp and MKi. Therefore,MKp =

0.4Kcr = 0.48 and MKi = 0.8Tcr = 1.6. The overall model reference adaptive

system is shown in Figure 3.9. In this thesis we replace conventional PI controller

by neural network controller as an adaptation mechanism.

Figure 3.9: ANN aided MRAS controller
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3.2.4 ANN Controller

The artificial neural network architecture is inspired by the features of biological

neurons. A natural brain is capable of learning new things, adapting to new

and changing environment. The brain has the most amazing ability to analyze

imperfect and vague, blurry information and make out of it its own decision. For

example, we can read the handwriting of others even though the way they write

may be completely different from the way we write. Even from a blurry photo we

can recognize a known person [28, 29].

Processing Units: a neural network’s fundamental processing element is a neu-

ron. The main tasks associated with processing units are to acquire input from

neighbors providing incoming activation, compute output, and sending output to

their neighbors. Such a system is inherently parallel since many processing units

can concurrently carry out their computations. In a neural network the processing

units can be classified as one of three types [30]:

1. Input processing units: which receive input from external sources, com-

pute their activation level, compute their output as a function of an activa-

tion level, and transmitting this information to the rest of the network.

2. Output processing units: which calculates and broadcasts their output

to external receivers upon receipt of input from the rest of the network, or

feeds their output back to the network input layer for further processing.

3. Hidden processing units: which only receive input from, and broadcast

their computed output to, processing units within the network

Weighting Factors: a neuron usually receives many simultaneous inputs. Each

input has its relative weight which determines the intensity of the input signal as

registered by the artificial neuron. They are a measure of the connection strength

of an input. These strengths can be modified in response to various training sets

and according to a network’s specific topology or through its learning.
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Summation (or Net) Function: The net function determines how the network

inputs are combined inside the neuron. In Figure 3.10, a weighted linear combi-

nation is adopted. The amount of information about the input that is required to

solve a problem is stored in the form of weights. Each signal is multiplied with an

associated weight w1, w2, w3, ..., wn before it is applied to the summing block. In

addition, the artificial neuron has a bias term w0, a threshold value ”θ” that has to

be reached or extended for the neuron to produce a signal, a linear or a nonlinear

function ”F” that acts on the produced signal ”net” and an output ”y” after this

function. It should be noted that the input to the bias neuron in Figure 3.10 is

assumed to be 1.

Figure 3.10: Basic neural model [28]

The following relation describes the transfer function of the basic neuron model:

net = w0 +
n∑
k=1

wkxk (3.21)

Y = F (net) (3.22)

Activation Function: The purpose of the linear or nonlinear activation function

is to ensure that the neuron’s response is bounded. Further, to achieve the ad-

vantages of multilayer nets compared with the limited capabilities of single-layer

networks, nonlinear functions are used, depending upon the paradigm and the

algorithm used for training the network [31].
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For each layer, you can define one specific activation function. There is no appro-

priate rule theoretically for defining the activation function of the various layers.

Although many studies present different functions for the individual layers, some

do have the same function for the input, hidden and output layers. The most

commonly used activation functions are summarized in Table 3.2.

Table 3.2: Activation functions [31]

Activation Function Formula MATLAB function
Linear f(x) = x purelin

Logistic(Sigmoid) f(x) = 1
1+e−x logsig

Hyperbolic Tangent ex−e−x

e−x+ex
tansig

Sinusoidal Weight sin

3.2.4.1 Artificial Neural Network Architectures

The organization of neurons into layers and the patterns of connections within and

between layers are called net architecture. A typical neural network is constructed

by layers. There is an input layer of source nodes and an output layer of neurons

within a single-layered network. A multi-layer network has, besides one or more

hidden layers of hidden neurons. More hidden neurons enhance the ability of the

network to extract higher-order statistics from input data.

The signal flow, and the connection between neurons, will define the net type.

Hence, ANNs have two architecture types, feed-forward networks, and Recurrent

or Feed-Back Networks.

Figure 3.11, shows feed-forward networks, the signal flow is from the input to the

output units, from the input nodes, through the hidden nodes (if any) and to

the output nodes. The network is without cycles or loops. Three types of Feed-

Forward networks are single layer perceptron, multi-layer perceptron (MLP), and

radial basis function nets.
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Figure 3.11: Feed-Forward Network

3.2.4.2 Training an Artificial Neural Network

A good set of weights is required to approximate a given target function. The

problem is that altering one weight will possibly alter the function’s output over

the entire input space, so it’s not as straightforward as using a grid-based approxi-

mation. One possible solution is to minimize an error function which measures just

how bad an approximation is. The process of finding weights that minimize the

error function is called training or learning by artificial intelligence researchers.

Learning or training method can be either supervised training or unsupervised

training.

3.2.4.3 Training Algorithms

In artificial neural networks, the Training algorithm refers to the process of altering

the weights of connections between the nodes of a given network to find the error

by comparing the network’s output value with the target value and then reducing

the difference (error) by altering the weights. There are many different training

algorithms for MLP. The backpropagation algorithm is one of the most popular

algorithms for training a network due to its success from both the simplicity and

applicability viewpoints [32].

The algorithm is built into two stages: the stage of training and the stage of

recall. The weights of the network are initialized randomly during the training
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phase. Then the network output is measured and correlated with the desired

value. Next, the network’s training error is measured and used to adjust the

output layer weights. Similarly, the network error is also propagated backward

and used to update the weights of the previous layers.

Figure 3.12 shows how the error values are generated and propagated to adjust the

weights of the network. In the recall phase, only the feed-forward computations

are used to assign weights from the training phase. The feed-forward process is

used in both phases of recall as well as preparation.

Figure 3.12: Back propagation algorithm [32]

The training phase will be terminated when the error value is less than the mini-

mum set value provided by the designer. One disadvantage of the Backpropagation

algorithm is that the training phase is very time-consuming [32].

The network with the final weights resulting from the training process will be

used during the recall phase. Therefore, the output will be determined using both

linear calculation and nonlinear activation functions for each input pattern in this

step. An important advantage of this method is that in the recall step, it gives a

very fast network [32].

In this thesis, we replace the PI speed controller in the field-oriented controller as

well as PI adaptive controller in the model reference adaptive controller to enhance

estimator performance at low speed with no-load or full load conditions.
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A neural network controller, which is trained to replace the conventional PI speed

controller is shown in Figure 3.13. To train neural network controller we have used

speed error as input and a vector controlled PMSM drive as a plant for FOC and

the current error used as the input for MRAS adaptive neural network controller

with the estimated speed as target data.

The main advantage of implementing the controller with the neural network con-

troller is to simplify the control implementation by reducing the complexity. This

is because the ANN controller is a digital controller as compared to the conven-

tional PI controller which is analog and it needs additional hardware [33].

The ANN have the advantages of that they can be implemented in parallel, which

gives relatively fast computation [34]. Another advantage is that the neural net-

work has the generalization property and the neural controller’s control surface is

smooth [35].

In addition to the above benefits, the tuning effort of an AI based system is less

than that of a conventional PI system. Such a system leads to reduced development

time [33].

Figure 3.13: Training of neural network controller [33].



Chapter 4

Simulation Results and

Discussion

4.1 Experimental Setup

A simulation is a good and effective way to see the overall performance of a system.

The results from the simulation should mirror the results of the real hardware. The

simulations are made in Simulink. For each method connected to the PMSM, i.e

conventional PI and ANN controllers, the simulation will go through a few test

cases that represent different operating situations of the application. The methods

will then be compared based on these test cases.

4.1.1 Motor Parameters:

To simulate the PMSM model, parameters had to be either measured or estimated

through appropriate calculations. The phase and synchronous resistance and in-

ductance of the machine, the moment of inertia, the viscous friction coefficient,

the number of the poles, the rated current, the rated torque and the rotor flux

aligned with the d-axis required for simulation can be measured or calculated [36].

PMSM parameters used in this simulation are shown in Table 4.1.

28
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Table 4.1: PMSM parameters [37]

Parameter Symbol Value SI unit
Reference Speed S 1000 rpm
Load Torque TL 2 Nm
Stator Resistance Rs 2.875 Ohms (ω)
d,q-axis Inductance Ld,Lq 8.5e-6 Henry(H)
Moment of Inertia J 0.0010 Kgm2

Friction Vicious Gain B 3.8e-4 Nm/rad/sec
Rotor Flux Constant λaf 0.0012 weber(Wb)
Number of Poles P 4 nos

4.1.2 ANN Training:

A three-layer neural feed-forward network is built with one input neuron and one

output neuron. For the input- and output-layer neurons, the activation function is

log sigmoids and purelin, respectively. The network with 15 hidden layer neurons

is trained for the given set of inputs and desired outputs. A supervised back

propagation training algorithm is used [38], and the neural network is trained until

an error goal of 5e−8 is reached. Training data is obtained from simulating MRAS

speed estimator for PMSM with PI controllers based on sensorless field oriented

controller. First the ANN controller in the adaptation of MRAS is trained, then

ANN speed controller is trained after replacement of PI adaptive controller by

ANN adaptive controller.

4.2 Simulation Result

The simulation of the proposed PMSM speed controller model is performed in var-

ious load situations. Here we present two cases, one in which the motor is started

on with no load that remains on no load condition throughout the operation, and

the other in which the load applied is increased after some time has passed.
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4.2.1 PI speed and PI adaptive MRAS:

4.2.1.1 Case 1:-Constant Reference Speed Response With No Load:

The reference speed is set to a constant of 100 rpm through out the time. The

motor is started on no load which remains on no load condition throughout the

operation.

Figure 4.1: Phase currents response.

Figure 4.2: Zoomed view.
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Due to the high starting torque, Figure. 4.1 and Figure. 4.2 show, the initial

current overshoots but soon settles to sinusoidal waveforms within 0.01 seconds

but gains its uniformity after 0.03 seconds but, they have higher rippled wave. We

can also note that each waveform is displaced 120o from each other.

Figure 4.3: Speed response of the motor.

Figure 4.4: zoomed speed response of the motor.



Chapter 4. Simulation Results and Discussion 32

Figure. 4.3 and Figure. 4.4, show the response of the speed in of PMSM. The

estimated speed has high overshoot initially and tries to track the reference speed

within 0.03 seconds.

Figure 4.5: Torque response.

As shown in Figure. 4.5, the torque response is very high initially but, it approaches

to zero immediately before 0.01 second.

4.2.1.2 Case 2:-Constant Reference Speed Response With Full Load:

The reference speed is set to a constant of 100 rpm through out the time but,

the motor is started on no load and full loaded(rated torque=2NM) at time

t = 0.02sec.The system has the following response.

Figure 4.6: Phase currents response.
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Figure 4.7: Zoomed Phase currents response.

Due to the high starting torque, Figure. 4.6 and Figure. 4.7 show, the initial

current overshoots but soon settles to sinusoidal waveforms within 0.01 seconds.

The amplitude of the currents are increased, due to the addition of external load.

We can also note that each waveform is displaced 120o from each other and have

no ripple after addition of the load.

Figure 4.8: Speed response of the motor.
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Figure 4.9: Zoomed speed response of the motor.

Figure. 4.8 and Figure. 4.9, show the response of the speed of PMSM. The es-

timated speed has high overshoot initially and tries to track the reference speed

within few seconds but, it goes down at 0.02 second due to the addition of external

load. The system tries to track the reference speed even after the load disturbance.

Figure 4.10: Torque response.
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Figure 4.11: Zoomed view of torque response.

Figure. 4.10 and its zoomed view Figure. 4.11 show, the response of the system

torque, initially it has high torque then drop to zero until additional 2NM load

torque is applied, then it remains the same through out the operation time.

4.2.1.3 Case 3:-Step Reference Speed Response at no Load

The reference speed is set to 100 rpm for the first 0.03 seconds then drops to 70

rpm for the next 0.02 seconds and again drops to -100 rpm for the 0.02 seconds

then goes to -70 rpm for 0.02 seconds, finally the reference speed reaches 80 rpm

for the remaining seconds. The motor is started on no load and remaining no load

through out the time.

Figure 4.12: Phase currents response.
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Figure 4.13: Zoomed view Phase currents response.

Due to the high starting torque, Figure. 4.12 and its zoomed view Figure. 4.13

show, the initial current overshoots but soon settles for uniform sinusoidal wave-

forms within 0.01 seconds, but at the time of transition the amplitude is getting

high. We can also note that each waveform have ripple and displaced 120o from

each other and for the reverse operation two phases change their wave form but

still they displaced 120o from each other.

Figure 4.14: Speed response of the motor.
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(a) speed response at motoring mode (b) speed response at reversing mode

Figure 4.15: Zoomed speed responses.

Figure. 4.14 and its zoomed view Figure. 4.15, show the response of the speed for

different step reference input. The estimated speed tries to track the reference

speed with high initial overshoot and low tracking error. Figure. 4.21 shows, the

response of the system torque, initially it has high torque then drop to zero and

getting high at the transition time. After time of transition, it comeback to zero

and gets high when another transition is coming.

Figure 4.16: Torque response of the motor.
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4.2.1.4 Case 4:-Step Reference Speed Response With Full Load:

The reference speed is set to 100 rpm for the first 0.03 seconds then drops to 70

rpm for the next 0.02 seconds and again drops to -100 rpm for the 0.02 seconds

then goes to -70 rpm for 0.02 seconds, finally the reference speed reaches 80 rpm

for the remaining seconds. The motor is started on no load and full loaded (rated

torque=2NM) at time t = 0.02sec.

Figure 4.17: Phase currents response.

Figure 4.18: Zoomed view Phase currents response.
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Due to the high starting torque, Figure. 4.17 and its zoomed view Figure. 4.18

show, the initial current overshoots but soon settles for uniform sinusoidal wave-

forms within 0.01 seconds,but, when load is applied at 0.02 second the amplitude

of waves gets larger. The amplitude also high at the time of transition. We can

also note that each waveform have no ripple after the load disturbance and dis-

placed 120o from each other and for the reverse operation two phases change their

wave form but still they displaced 120o from each other.

Figure 4.19: Speed response of the motor.

(a) Speed response at motoring mode (b) Speed response at reversing mode

Figure 4.20: Zoomed speed responses.
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Figure. 4.19 and its zoomed view Figure. 4.20, show the response of the speed for

different step reference input. The estimated speed tries to track the reference

speed with high initial overshoot and low tracking error but,it goes down at 0.02

second due to the addition of external load. The system tries to track the reference

speed after the load disturbance.

Figure 4.21: Torque response of the motor.

Figure 4.22: Zoomed view of torque response.

Figure. 4.21 and its zoomed view Figure. 4.22 show, the response of the system

torque, initially it have high torque then drop to zero until additional load is

applied (rated torque=2NM) at time t = 0.02sec. The torque also getting high

at the transition system. After time of transition it comeback to the previous

torque value and gets high when another transition is come.
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4.2.2 ANN speed and ANN adaptive MRAS:

4.2.2.1 Case 1:-Constant Reference Speed Response With No Load

The reference speed is set to a constant of 100 rpm through out the time. The

motor is started on no load which remains on no load condition throughout the

operation.

Figure 4.23: Phase currents response.

Figure 4.24: Zoomed Phase currents response.
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Due to the high starting torque, Figure. 4.23 and Figure. 4.24 show, the initial

current overshoots but soon settles to uniform sinusoidal waveforms within 0.01

seconds. We can also note that each waveform has no ripple and they displaced

120o from each other.

Figure 4.25: Speed response of the motor.

Figure 4.26: Zoomed speed response of the motor.
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Figure. 4.25 and Figure. 4.26, show the response of the speed in of PMSM. The

estimated speed has low overshoot initially and tries to track the reference speed

with minimum steady state error.

Figure 4.27: Torque response.

As shown in Figure. 4.27, the torque response is very high initially but, it ap-

proaches to zero immediately before 0.01 second.

4.2.2.2 Case 2:-Constant Reference Speed Response With Full Load

The reference speed is set to a constant of 100 rpm through out the time but,

the motor is started on no load and full loaded(rated torque=2NM) at time

t = 0.02sec. The system has the following response.

Figure 4.28: Phase currents response.



Chapter 4. Simulation Results and Discussion 44

(a) Before addition of load torque (b) After addition of load torque

Figure 4.29: Zoomed Phase currents responses.

Due to the high starting torque, Figure. 4.28 and Figure. 4.29 show, the initial

current overshoots but soon settles to uniform sinusoidal waveforms within 0.03

seconds. The amplitude of the currents are increased its amplitude due to the

addition of external load. We can also note that each waveform is displaced 120o

from each other and have no ripple before and after the addition of the external

load.

Figure 4.30: Speed response of the motor.



Chapter 4. Simulation Results and Discussion 45

Figure 4.31: Zoomed speed response of the motor.

Figure. 4.30 and Figure. 4.31, show the response of the speed of PMSM. The

estimated speed has very low overshoot initially and tries to track the reference

speed with very low steady state error but, it goes down at 0.02 second due to the

addition of external load. The system tries to track the reference speed even after

the load disturbance, the steady state error increases slightly but, it is acceptable

even for sensitive operations.

Figure 4.32: Torque response.
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Figure 4.33: Zoomed view of torque response.

Figure. 4.32 and its zoomed view Figure. 4.33 show, the response of the system

torque, initially it has high torque then drop to zero until additional 2NM load

torque is applied, then it remains the same through out the process.

4.2.2.3 Case 3:-Step Reference Speed Response at no Load:

The reference speed is set to 100 rpm for the first 0.04 seconds then drops to -100

rpm for the next 0.02 seconds and go-up to -50 rpm for 0.02 seconds , finally the

reference speed reaches 70 rpm for the remaining seconds. The motor is started

on no load and remaining no load through out the time.

Figure 4.34: Phase currents response.
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Figure 4.35: Zoomed view Phase currents response.

Due to the high starting torque, Figure. 4.34 and its zoomed view Figure. 4.35

show, the initial current overshoots but soon settles for uniform sinusoidal wave-

forms within 0.01 seconds but, at the time of transition the amplitude is getting

high. We can also note that each waveform have ripple and displaced 120o from

each other and for the reverse operation two phases change their wave form but

still they displaced 120o from each other.

Figure 4.36: Speed response of the motor.
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(a) Speed response at motoring mode (b) Speed response at reversing mode

Figure 4.37: Zoomed speed responses.

Figure. 4.36 and its zoomed view Figure. 4.37, show the response of the speed for

different step reference input. The estimated speed tries to track the reference

speed with high initial overshoot and low tracking error. Figure. 4.38 shows, the

response of the system torque, initially it have high torque then drop to zero and

getting high at the transition system. After time of transition it comeback to zero

and gets high when another transition is come.

Figure 4.38: Torque response of the motor.
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4.2.2.4 Case 4:-Step Reference Speed Response With Full Load

The reference speed is set to 100 rpm for the first 0.04 seconds then drops to -100

rpm for the next 0.02 seconds and go-up to -50 rpm for 0.02 seconds , finally the

reference speed reaches 70 rpm for the remaining seconds. The motor is started

on no load and full loaded (rated torque=2NM) at time t = 0.02sec.

Figure 4.39: Phase currents response.

Figure 4.40: Zoomed Phase currents response.
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Due to the high starting torque, Figure. 4.39 and its zoomed view Figure. 4.40

show, the initial current overshoots but soon settles for uniform sinusoidal wave-

forms within 0.01 seconds, but, when load is applied at 0.02 second the amplitude

of waves gets larger. The amplitude also high at the time of transition. We can

also note that each waveform have no ripple and displaced 120o from each other

and for the reverse operation two phases change their wave form but still they

displaced 120o from each other.

Figure 4.41: Speed response of the motor.

(a) Speed response at motoring mode (b) Speed response at reversing mode

Figure 4.42: Zoomed speed responses.
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Figure. 4.41 and its zoomed view Figure. 4.42, show the response of the speed for

different step reference input. The estimated speed tries to track the reference

speed with high initial overshoot and low tracking error but, it goes down at 0.02

second due to the addition of external load. The system tries to track the reference

speed even after the load disturbance.

Figure 4.43: Torque response of the motor.

Figure 4.44: Zoomed view of torque response.

Figure. 4.43 and its zoomed view Figure. 4.44 show, the response of the system

torque, initially it have high torque then drop to zero until additional load is

applied (rated torque=2NM) at time t = 0.02sec. The torque also getting high

at the transition system. After time of transition it comeback to the previous

torque value and gets high when another transition is come.
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4.3 Comparison

The comparison of both conventional method and proposed method based on key

performance parameters is shown in Table 4.2.

Table 4.2: Performance Analysis

Method Rise Time (ms) Overshoot (%) Settling Time (ms) St.state error
Proposed 0.337 0.500 0.448 0.110
Conventional 0.336 1.534 0.432 0.109



Chapter 5

Conclusion and Recommendation

5.1 Conclusion

This thesis proposes ANN aided Model Reference Adaptive System speed observer

in sensorless FOC to enhance the PMSM performance at no load and low speed

operation. The PMSM, FOC and MRAS estimator were modeled in Simulink. A

predefined set of test cases were then simulated using the conventional and the

proposed estimation method. The results from the test cases were then compared

between each method.

From the result we conclude that, ANN based implementation of the speed es-

timator and FOC reduces the complexity of the controller. Hence, tuning the

parameters become a trivial task.

This system also replaces those PI controllers with ANN, due to their mathemat-

ical nature ANN can work easily, resulting in a reduction of complexity. Besides

simplicity, the proposed controller plays a major role in reducing the initial over-

shoot, which is about 1% improvement from the traditional PI controller. It also

achieve a comparable settling time, steady state error and rise time to that of a

conventional implementation.

53
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5.2 Recommendation

For further improvement of overall sensorless system,we recommend an additional

stator resistance estimator. In MRAS, there are instances where the stator resis-

tance is estimated together with the speed and position. Stator resistance esti-

mation could improve the performance further and also gives the opportunity to

estimate the motor temperature.

In addition, to get the model more realistic it would also be good to model the

SVM/SVPWM-function and the voltage inverter.

The next step would be to implement the proposed controller in hardware and

access its performance in real control scenario in future. Then apply all the test

cases with the real motor and analyze the motor behavior. A preference would be

if the motor had an encoder so the speed and position values could be properly

compared.
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Appendix A

Adaptation Mechanism

Formulation of the adaptation mechanism plays a significant role on the perfor-

mance of the MRAS. The adaptation mechanism is formed according to the fol-

lowing steps.

Step 1: Formulation of the equivalent model In this step, the MRAS is trans-

formed into an equivalent model composed of linear time invariant (LTI) feed-

forward block and a linear time varying (LTV) feedback block, as shown in Figure

A.1.

Figure A.1: Nonlinear time varying feedback system.

The generalized error is given by ε = X̂ − X and using Equations 3.9 and 3.17

gives A.1
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ε̇ =
˙̂
X − Ẋ

= (ÂX̂ + B̂u) − (AX +Bu)

= Â(X̂ −X) + (Â− A)X + B̂u) −Bu

= Âε+ ω1

(A.1)

let ω =-w1

ω =
[
(Â− A)X + B̂u) −Bu]

]
=

 −iq
id + λr

Ls

 (ω̂ − ω)

= K(ω̂ − ω)

(A.2)

Introducing the generalized error output as

v = Dε (A.3)

A.1 Popov hyper-stability theorem

Given a system of this form, three conditions must be met to guarantee that

Equations A.1-A.3 is an asymptotically hyperstable system. These conditions are

[24], [39]:

1. The pair [D,Â] is completely observable and the pair [Â,I] is completely

controllable.

2. The transfer function Z(s) = D(sI − Â)−1 must be strictly positive real.

3. The nonlinear time-varying block satisfies the Popov’s integral inequality

Equation A.8.

∫ t

0

vTwdt>− γ2 (A.4)

Here,γ2 is a positive constant, independent of t.
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Since rank[I ÂI] = 2 and rank[DT ÂT DT ] = 2, condition 1 is fulfilled.

According to [39], condition 2 is satisfied if there exist two definite symmetric

matrices, P and Q such that

ÂTP + PÂ = −Q (A.5)

Choosing Q = I yields

P =

 Ls

2Rs
0

0 Ls

2Rs


Both P and Q are symmetrical and definite then condition 2 is proven.

As for condition 3, according to [? ], to verify Equation A.8, another integral

inequality can be used, given by

∫ t

0

[
df(t)

dt

]
(kf(t))dt>− 1

2
kf 2(0) (A.6)

where k is a positive constant.

Inserting v and w into Equation A.8 gives

∫ t

0

[
(îq − iq)(id +

λr
Ls

) − (îd − id)iq

]
(ω̂e − ωe)dt>− γ2 (A.7)

As the adjustable parameter ω̂e which has converged to the real parameter ωe

in reference model is necessary to vector control, there should be ”memory” in

adaptive mechanism. Then the integrator can be adopted and ω̂e can be assumed

as follow

ω̂e =

∫ t

0

φ(e)dt+ ω̂e(0) (A.8)

Where,φ(e) is an expression relative to generalized error e.Then the inequality A.7

will transform to inequality A.9.

∫ t

0

[
(îq − iq)(id +

λr
Ls

) − (îd − id)iq

]
(

∫ t

0

φ(e)dt+ ω̂e(0) − ωe)dt>− γ2 (A.9)
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According to the inequality A.6, it is easy to make assumptions described by

equation (15) and (16).

df(t)

dt
= (îq − iq)(id +

λr
Ls

) − (îd − id)iq (A.10)

kf(t) =

∫ t

0

φ(e)dt+ ω̂e(0) − ωe) (A.11)

Where f(t) is a function for the use of derivation, ω̂e(0) is initial estimated rotor

speed. Then the derivation from equation A.11 will be obtained:

φ(e) = k

(
(îq − iq)(id +

λr
Ls

) − (îd − id)iq

)
(A.12)

Therefore the estimated speed will be obtained by combining equation A.8 and

A.12

ω̂e =

∫ t

0

k

[
(îq − iq)(id +

λr
Ls

) − (îd − id)iq

]
dt+ ω̂e(0) (A.13)

or the transfer function representation of equation A.13 is:

ω̂e =
k

s

[
(îq − iq)(id +

λr
Ls

) − (îd − id)iq

]
dt+ ω̂e(0) (A.14)

In order to improve the dynamic performance, the proportional regulation can

be added into the adaptive mechanism Ḟinally the adaptive mechanism is a PI

regulator shown by equation A.15:

ω̂e =

(
kp +

ki
s

)[
(îq − iq)(id +

λr
Ls

) − (îd − id)iq

]
dt+ ω̂e(0) (A.15)
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