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The present work was done to optimize the process parameters of the oil extraction from the algae species spirogyra by using n-
hexane as the solvent using the Soxhlet apparatus. The response surface methodology (RSM) and artificial neural network (ANN)
were employed to optimize the particle size of the algae powder, dryness level of the algae powder, solid to solvent ratio, reaction
time, and extraction temperature of the oil extraction process. Also, the physiochemical properties of the extracted oil were
investigated. The comparative evaluation was done between the RSM and ANN models to select the more precise and accurate
model. The coefficient of determination, R2 of 98.92%, and the mean absolute percentage deviation (MAPD) of 0.492% for
ANN revealed that the current model created with a network topology of 3 : 11 : 1 with tansig (hyperbolic tangent sigmoid)
transfer function in the input layer and purelin (pure linear) transfer function in the output layer trained with trainlm
(Levenberg–Marquardt) algorithm found to provide the optimal solution with better accuracy in prediction of the output. The
physicochemical properties investigated, such as heating value, flashpoint, density, viscosity, iodine number, acid value,
saponification value, and cetane index, showed that the extracted oil from the algae spirogyra species can be used as an
alternative fuel.

1. Introduction

The advancement of technology in the fields of different
energy-dependent sectors resulted in heavy energy con-
sumption. The world’s demand for energy to be met has
started increasing drastically. All these paved the path for
finding an alternative and renewable energy source. The
use of fossil fuels is a major reason for the emission of green-
house gases, which leads to the global warming effect. To
avoid such cases, biomass-based energy is welcomed inter-
nationally [1]. Various biomass-based energy sources are
available in that biofuels play a major role in replacing min-
eral fuels. Biomass is a renewable source, and it utilizes CO2
for its growth through the photosynthetic effect. Compared
to various biomasses available, the algae seem to have a
higher level of photosynthetic effect. They can be grown in
large quantities effectively in a controlled environmental
condition. Some of the algae species contain high lipid con-

tent, and around 15,000 gallons of oil for one acre of land for
one complete year can be produced from such a source glob-
ally [2, 3]. Yuvarani et al. [4] extracted oil from the algae
species Cladophora glomerate using various solvents like n-
hexane, toluene, chloroform, methanol, isopropanol, and
co-solvent mixtures of chloroform/methanol, hexane/iso-
propanol and they found that the oil yield for hexane was
highest compared to other types of solvents. For hexane,
the oil production was around 11.7 w/wt% for 100 g of the
biomass at an extraction temperature of 65 °C and extraction
time of 3.5 hours. Another group of researchers, Halim et al.
[5], used n-hexane as a solvent to extract oil from the algae
species Chlorococcum. They found that with four grams of
Chlorococcum sp. and 300ml of hexane in a Soxhlet appara-
tus for an extraction time of 7.5 hours; the oil yield was
around 5.5 w/wt%. Abdullah et al. [6] studied the effect of
operating parameters like extraction temperature, extraction
time, and mixing rate of the solvent for extracting oil from
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the algae species chlorella vulgaris using heptane as solvent.
Their study revealed that the optimum parameters were
65 °C of extraction temperature and 5 hours of extraction
time, resulting in an oil yield of 61.27%. Hidalco et al. [7]
carried out a solvent extraction process on the algae species
Botryococcus braunii with polar and nonpolar solvents and
mixtures of them. They found that the oil yield of 19.8 w/
wt% by using chloroform/Methanol in the ratio of 1 : 3.
When compared to other solvents, the mixture of polar
and nonpolar solvents showed more oil yield. Attach et al.
[8] performed the Soxhlet method to extract oil from pump-
kin, melon, oil bean, and rubber seeds using solvents with
different dielectric constants. They also exhibited that the
dielectric constant of the solvent had a noticeable effect on
the oil extraction rate. The dielectric constant was low for
a nonpolar solvent, whereas for the polar solvents, it was
high. Dasari et al. [9, 10] used the nonpolar solvent n-
hexane to extract the oil from castor seeds using the Soxhlet
method. The oil yield was around 52.8% for a solvent ratio of
1 : 3 for an extraction time of 13 hours. Lohani et al. [11] car-
ried out the solvent extraction process using n-hexane and
ethyl acetate as a solvent on various oil-bearing seeds like
camelina, flax, mustard, and canola by considering three
levels of process parameters such as extraction time and
extraction temperature with constant solid to solvent ratio
of 1 : 4. They documented that the oil yield was maximum
for canola which was in the range of 21-36% for n-hexane
solvent.

Apart from the production of oil from the algae and con-
version of the same into biodiesel, the effect of various pro-
cess parameters affecting the production rate of bio-oil from
biomass sources was studied, and researchers optimized the
parameters. The application of response surface methodol-
ogy (RSM) and artificial neural network (ANN) techniques
for optimizing the process seems to be commonly used in
many areas of research work. The ability to optimize the
process with a minimum number of experimental runs made
RSM and ANN popular tools for optimization. The optimi-
zation of oil extraction parameters was carried out in several
works with a combination of factorial designs.

Ajala et al. [12] optimized the process of extracting shea
butter from their kernels by using the Box-Behnken
response surface methodology. The significance of the pro-
cess parameters was also studied with analysis of variation
(ANOVA). The optimized oil extraction of 67% of shea but-
ter from the kernel was obtained for 30 g of kernels, 346ml
of n-hexane, and an extraction time of 40 minutes as optimal
process parameters. Selvan et al. [13] employed the central
composite design (CCD) for RSM with a second-order poly-
nomial equation and found the optimal conditions for
extracting oil from Aegle marmelos. They also employed
ANN for the prediction of optimal parameters. Their results
showed that the coefficient of determination was higher for
ANN (0.998) than for RSM (0.976). Bokhari et al. [14] found
the optimal conditions for extracting the oil from crude rub-
ber seed oils by solvent extraction method using CCD RSM.
The optimal conditions were found to be the seed to solvent
ratio of 1 : 40, extraction temperature of 60 °C, the reaction
time of 4.5 hours, and ventilation time for the seeds of 3

hours. Okeleye et al. [15] conducted extensive work in opti-
mizing the oil extraction from the Kariya seeds by solvent
extraction method using D-optimal RSM and ANN. Their
result showed that the prediction level was higher for ANN
when compared to RSM. Osman et al. [16] used different
optimization techniques to optimize the process parameters
for extracting the oil from the sesame seeds using various
solvents in the solvent extraction method. Their results
showed that the ANN model showed very consistent perfor-
mance compared to RSM and other modelling techniques.
Ajala et al. [17] optimized the process parameters using D-
optimal RSM and ANN for extracting oil from the yellow
oleander seed by solvent extraction method. The optimized
value obtained by both techniques was the same, but the
level of fit and coefficient of determination was better for
the ANN model.

Abdissa [18] implemented the RSM technique to opti-
mize the oil yield from the algae sludge using various sol-
vents like methanol, ethanol, and hexane. The optimization
result showed that the solvent hexane showed 61% of oil
yield compared to other solvents. Aygün et al. [19] opti-
mized Dyacrodes edulis seed oil extraction using polar and
nonpolar solvents using RSM and ANNmodels. The optimi-
zation results showed better results using both techniques.
Venkatesan et al. [20] used RSM and ANN models to opti-
mize and predict the oil extraction from the C. innophyllum.
The optimized biodiesel as 98.1% is derived with 0.94 vol-
ume to volume ratio of methanol to oil molar ratio, 0.98%
by weight of potassium hydroxide catalyst loading, and 1
hour 20 minutes of reaction time with 70 °C constant reac-
tion temperature as predicted by Kriging model. Kenechi
et al. [21] used the RSM model to predict the oil extraction
of the luffa seed oil. The RSM model showed significant
results with an R2 value of around 84.7% and with a mean
square error in the range of 0.55. The RSM indicated the
temperature as the major factor influencing oil extraction
from the luffa seed. Gul et al. [22], in their investigation,
used wet microalgae Chlorella pyrenoidosa to extract the
biodiesel by using the RSM model as the optimization tech-
nique. They used factors such as time, temperature, solvent-
to-wet biomass ratio, and hydrochloric acid concentration
with varying ranges. They identified that the RSM model
showed temperature as the significant factor with a low p
value and highest f value.

In the present work, algae oil was produced from spiro-
gyra species using the Soxhlet apparatus with n-hexane as
solvent. The process parameters involved during the oil

Table 1: Levels of the input parameters.

Coded level

Input parameter Unit −1 0 +1

Particle size θ1 μm 0.366 0.462 0.641

Dryness level θ2 % 50 75 100

Solid to solvent ratio θ3 g/ml 1 : 5 1 : 10 1 : 15

Reaction time θ4 Hours 1 2 3

Reaction temperature θ5
°C 65 70 75
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Table 2: The CCD arrived with Design-Expert factorial design and the response values.

Exp. no

Particle size Dryness level Solid to solvent ratio Reaction time Extraction temperature Oil yield %

θ1 θ2 θ3 θ4 θ5 Experimental value
Predicted
value

μm % g/ml Hours °C RSM ANN

1 − 1 -1 +1 − 1 − 1 22.13 22.42 22.15

2 − 1 +1 − 1 +1 − 1 20.97 21.44 20.98

3 − 1 -1 +1 +1 − 1 23.05 23.06 22.95

4 − 1 +1 +1 − 1 − 1 22.61 22.90 22.64

5 − 1 +1 − 1 − 1 1 21.56 21.71 21.59

6 − 1 +1 − 1 − 1 − 1 20.05 20.22 19.86

7 − 1 +1 − 1 +1 +1 23.19 22.98 23.46

8 − 1 − 1 +1 − 1 +1 23.58 23.30 23.60

9 − 1 +1 +1 − 1 +1 23.48 23.52 23.52

10 − 1 − 1 +1 +1 +1 23.53 24.00 23.54

11 − 1 − 1 − 1 +1 − 1 20.49 20.81 20.53

12 − 1 +1 +1 +1 − 1 23.53 23.56 23.55

13 − 1 − 1 − 1 − 1 +1 21.03 21.36 21.06

14 − 1 0 0 0 0 23.63 24.31 23.65

15 − 1 − 1 − 1 +1 +1 22.71 22.62 22.75

16 − 1 − 1 − 1 − 1 − 1 19.57 19.61 19.73

17 − 1 +1 +1 +1 +1 23.59 24.23 23.61

18 0 0 0 0 − 1 23.26 22.87 23.27

19 0 0 0 − 1 0 23.98 24.78 24.00

20 0 0 0 0 0 24.78 25.42 25.20

21 0 0 − 1 0 0 24.04 24.48 24.07

22 0 0 0 +1 0 26.10 25.80 26.12

23 0 0 +1 0 0 26.58 26.65 26.54

24 0 0 0 0 0 25.23 25.42 25.20

25 0 0 0 0 0 25.58 25.42 25.20

26 0 − 1 0 0 0 24.41 25.11 24.44

27 0 0 0 0 0 25.70 25.42 25.20

28 0 0 0 0 0 24.83 25.42 25.20

29 0 0 0 0 0 24.90 25.42 25.20

30 0 +1 0 0 0 25.72 25.52 25.75

31 0 0 0 0 0 25.35 25.42 25.20

32 0 0 0 0 +1 23.46 24.30 23.48

33 0 0 0 0 0 25.41 25.42 25.20

34 +1 +1 +1 − 1 +1 22.82 22.80 22.83

35 +1 − 1 +1 +1 +1 23.44 23.44 23.44

36 +1 +1 − 1 − 1 − 1 18.81 18.80 18.89

37 +1 − 1 − 1 +1 − 1 19.25 19.56 19.27

38 +1 +1 +1 +1 − 1 22.29 22.55 22.32

39 +1 +1 − 1 +1 +1 21.96 22.11 21.97

40 +1 − 1 +1 − 1 − 1 20.89 21.31 20.91

41 +1 − 1 +1 +1 − 1 21.81 22.08 21.83

42 +1 +1 − 1 +1 − 1 19.72 20.15 19.74

43 +1 − 1 − 1 − 1 − 1 18.34 18.22 18.38

44 +1 +1 +1 − 1 − 1 21.35 21.75 21.38

45 +1 +1 +1 +1 +1 23.34 23.64 23.35

46 +1 − 1 1 − 1 +1 22.34 22.61 22.44
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production process were the solid to solvent ratio, reaction
temperature, reaction time, the particle size of algae powder,
and the dryness level of the algae powder which were consid-
ered and analyzed. The effect of these parameters on the
yield of oil was computed using RSM and ANN. The com-
bined analysis by RSM and ANN gives optimized process
parameters for more oil yield. Also, a physiochemical analy-
sis for the produced oil was undergone to find the suitable
application of the produced algae oil.

2. Materials and Methodology

2.1. Materials. The algae spirogyra species algae were culti-
vated in a water tank at Karpagam Academy of Higher Edu-
cation. Then, the collected algae were sun-dried and ground
to a fine powder using a mechanical grinder. The algae were
harvested with the help of a round metal mesh of a grid size

of 1mm. From 30 micron mesh, the powder obtained had an
average size of 0.366μm. Similarly, from a 40-micron mesh,
the average powder size was 0.462μm, and from a 60-
micron mesh, the average powder size obtained was
0.641μm. The n-hexane used for the experiments was pur-
chased from the local dealer, and it specifies to the standard.

2.2. Methodology. The Soxhlet apparatus was loaded with the
algae powder in the thimble fitted with the filter paper. The
round bottom flask was filled with n-hexane in the quantity
of 750ml, and the process was carried out as per the exper-
imental design [6–8]. At the completion of each experiment,
the oil was extracted from the oil-solvent mixture through
the distillation process by heating them to a temperature of
75 °C (boiling range of n-hexane). The oil yield is calculated
using the following equation:

3. Experimental Design and RSM Modelling

The response surface methodology (RSM) can be abridged
as defining the collaboration between the independent vari-
ables, modelling the system under design mathematically,
and it saves time and cost by reducing the number of trials.
With these advantages of RSM, a central composite design
(CCD) factorial design with five input parameters and a
second-order polynomial equation was employed to repre-
sent the oil yield (output parameter) [23]. The solid to sol-
vent ratio, reaction temperature, reaction time, the
powder’s particle size, and the algae powder’s dryness level
were considered the input parameters for the modelling.
The reason for selecting the input parameter for the optimi-
zation process is purely based on the factors influencing the
extraction of the oil content from the algae. The factors
which majorly influencing the oil extraction was found to
be solid to solvent ratio, reaction temperature, reaction time,
particle size of the powder, and the dryness level of the algae
powder. The levels for the input parameters are given in
Table 1. The level codes are given as −1 low, 0 middle, and

+1 upper. For RSM modelling, a second-order polynomial
was chosen as given in the following equation:

Y = β0 + β1θ1 + β2θ2 + β3θ3 + β4θ4 + β5θ5 + β12θ1θ2
+ β13θ1θ3 + β14θ1θ4 + β15θ1θ5 + β23θ2θ3 + β24θ2θ4

+ β25θ2θ5 + β34θ3θ4 + β35θ3θ5 + β45θ4θ5 + β11θ1
2

+ β22θ2
2 + β33θ3

2 + β44θ4
2 + β55θ5

2,
ð2Þ

where Y represents the output variable (i.e., oil yield)
and θ1 to θ5 represents the design factors. β0 denotes the
regression coefficient, and β1 to β55 denotes the linear, inter-
active, and quadratic regression coefficients, respectively.
According to the CCD factorial design, the number of exper-
imental runs was found to be 50. All the experiments were
carried out, and the coefficients of the second order polyno-
mial equation were fitted through regression analysis. The
significance of the statistical model was evaluated by using
ANOVA. The Design-Expert (version 11.0) was used to

Table 2: Continued.

Exp. no

Particle size Dryness level Solid to solvent ratio Reaction time Extraction temperature Oil yield %

θ1 θ2 θ3 θ4 θ5 Experimental value
Predicted
value

μm % g/ml Hours °C RSM ANN

47 +1 − 1 − 1 +1 +1 21.47 21.77 21.48

48 +1 0 0 0 0 23.54 23.32 23.65

49 +1 +1 − 1 − 1 +1 20.26 20.71 20.28

50 +1 − 1 − 1 − 1 +1 20.37 20.38 19.88

Oil yield %ð Þ = Mass of extracted algae oil
Mass of the total oil content present in 50g of algal powder used × 100%: ð1Þ
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(b)

(c)

Figure 1: Continued.
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conduct the statistical analysis. The coded levels using CCD
with the help of the Design-Expert factorial design and the
corresponding response values are shown in Table 2.

4. ANN Modelling

The artificial neural network (ANN) model can learn by
itself with a limited set of input data and has high accuracy
in predicting the output data. Also, the input data are stored
in their database and have not been considered a separate
data set, which is another benefit. This nature of ANN helps
avoid the loss of data that does not work effectively in the
model. Hence, based on these advantages, an ANN model
was created using MATLAB R2009a version with neural net-
work toolbox. The experimental data were normalized to
avoid surfeiting the data set due to low to high variations.
This normalization enhances the training of the prediction
model. The standardization is done using the following
equation [23]:

standardization = 2 αactual − αminð Þ
αmaxi − αminð Þ

� �
− 1, ð3Þ

where αactual, αmin, and αmax are the experimental data’s
actual, minimum and maximum values. The standardization
process produces data from – 1 to +1. The performance of
the ANN model relies on the number of the input layer,
the number of neurons in the hidden layer and the number
of output layers with different transfer functions and train-
ing algorithms. The x − y − z topology was followed, where
x denotes the number of the input layers, y represents the
number of neurons in the hidden layer, and z denotes the
number of the output layer. A three-layer (x = 3) feed-
forward network with transig as a transfer function in the
hidden layer, with the number of neurons ranging from

y = 5 to 20, was studied by taking different transfer func-
tions in the output layer (z = 1). The ANN model was
trained using different training algorithms, and the model
with the best coefficient of determination (R2) and mean
square error (MSE) was selected as the best prediction
model.

5. Model Validation

The RSM and ANN models were validated to check for their
efficiency in predicting the optimal values of the process
parameters. This validation can be done by comparing the
experimental data set with the predicted data set by the
two models. In order to help this validation process, statisti-
cal formulas can be employed. Equations (4), (5), (6), (7),
(8), and (9) represent the coefficient of determination,
adjusted R2, mean absolute error, root mean square error,
standard error prediction, and the mean absolute percentage
deviation, respectively [15, 17, 23–25]:

coefficient of determination, R2 = 1 −
∑m

j=1 zj,p − zj,e
� �2

∑m
j=1 zj,p − ze,avg
� �2 ,

ð4Þ

adjustedR2 = 1 − 1 − R2� �
× m − 1
m − k − 1

� �
, ð5Þ

Mean absolute error, MAE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

j=1 zj,e − zj,p
� ��� ��
m

s
, ð6Þ

Rootmean square error, RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

j=1 zj,e − zj,p
� �2

m ,

s
ð7Þ
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Figure 1: (a), (b), (c), (d) 3D surface plot and contour plot of the effect of oil yield % with the design factors.
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Standard error prediction, SEP = RMSE
zavg,e

× 100, ð8Þ

Mean absolute percentage deviation, MAPD = 100
m 〠

m

j=1

zj,e − zj,p
� ��� ��

zj,e
� ��� �� ,

ð9Þ

where zj,p denotes the predicted response, zj,e denotes the
experimental value, ze,avg is the average of the total experi-
mental data, m is the total number of experiments con-
ducted, and k is the total number of design factors.

6. Results and Discussion

6.1. Results Obtained from the RSM. The experimental
design based on CCD for full factorial was created, and the
50 sets of experiments were carried out. The results are
shown in Table 2. The range of oil yield was found to be
around 18.34 to 26.58%. The regression analysis was per-

formed, and the regression of the second order polynomial
equation was found to be

Y oil yieldð Þ = +25:2 − 0:4907 θ1 + 0:2013 θ2 + 1:0751 θ3
+ 0:5076 θ4 + 0:7054 θ5 − 0:0074 θ1θ2
+ 0:0685 θ1θ3 + 0:0334 θ1θ4 + 0:1025 θ1θ5
− 0:0331 θ2θ3 + 0:0042 θ2θ4 − 0:0649 θ2θ5
− 0:1376 θ3θ4 − 0:2140 θ3θ5 + 0:0128 θ4θ5
− 1:5918 θ12 − 0:1102 θ22 + 0:1289 θ32

− 0:1362 θ42 − 1:8205 θ52:
ð10Þ

The optimal process parameters were found using the
regression equation (Equation (10)). On solving this equa-
tion, for an optimal oil yield of 26.62%, the optimal
parameters were found to be 0.336μm of particle size,
98.2% of dryness level, 1 : 14.9 solid to solvent ratio, 1.75
hours of reaction time, and 70.98 °C of extraction temper-
ature. To confirm the above predicted optimal values

Table 3: ANOVA analysis.

Source SS Df MS F value p value

Model 199.75 20 9.99 62.85 < 0.0001 Significant

θ1 − θ1 8.19 1 8.19 51.53 < 0.0001

θ2 − θ2 1.38 1 1.38 8.68 0.0063

θ3 − θ3 39.30 1 39.30 247.30 < 0.0001

θ4 − θ4 8.76 1 8.76 55.13 < 0.0001

θ5 − θ5 16.92 1 16.92 106.47 < 0.0001

θ1θ2 0.0018 1 0.0018 0.0111 0.9169

θ1θ3 0.1504 1 0.1504 0.9462 0.3387

θ1θ4 0.0358 1 0.0358 0.2255 0.6385

θ1θ5 0.3365 1 0.3365 2.12 0.1563

θ2θ3 0.0351 1 0.0351 0.2206 0.6421

θ2θ4 0.0006 1 0.0006 0.0035 0.9533

θ2θ5 0.1349 1 0.1349 0.8490 0.3644

θ3θ4 0.6062 1 0.6062 3.81 0.0605

θ3θ5 1.47 1 1.47 9.22 0.0050

θ4θ5 0.0053 1 0.0053 0.0332 0.8567

θ1
2 6.27 1 6.27 39.44 < 0.0001

θ2
2 0.0300 1 0.0300 0.1888 0.6671

θ3
2 0.0411 1 0.0411 0.2585 0.6150

θ4
2 0.0459 1 0.0459 0.2887 0.5952

θ5
2 8.20 1 8.20 51.58 < 0.0001

Residual 4.61 29 0.1589

Lack of fit 3.75 22 0.1704 1.39 0.3440 Not significant

Pure error 0.8595 7 0.1228

Cor total 204.36 49

R2 0.9854 Adj R2 0.9752

C. V % 1.76
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using a regression equation, an experimental run was con-
ducted, and the oil yield was found to be 26.34%. Figure 1
shows the interaction of different process parameters with
the oil yield in the form of 3D surfaces and contour sur-
faces. All the contours showed that smaller particle size,
maximum dryness level, maximum solid to solvent ratio,
intermediate reaction time, and extraction temperature of
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Figure 2: (a) Training data, (b) validation data, (c) test data, and (d) relation between predicted and experimental data set of the optimal
ANN model.

Table 4: Evaluated results of RSM and ANN model.

Performance
parameters

R2
Adj
R2 MAE RMSE SEP %

MAPD
%

RSM 0.9854 0.9752 0.8524 0.4892 1.4251 1.3054

ANN 0.9892 0.9887 0.3057 0.1973 0.8365 0.4092
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the solvent resulted in the maximum oil yield from the
algae spirogyra species. In order to know the significance
of this model, an ANOVA analysis is given in Table 3.
The p value less than 0.05 is considered to be significant;
in this present RSM model, the interaction levels of the
design factors θ1 to θ5, θ3θ4, θ1

2, and θ5
2 were less than

0.05. The R2 of this present model is 0.9854, and the adj
R2 is 0.9752, which is in reasonable agreement and thus
makes the model significantly. The lack of fit F value of
1.39 implies that the lack of fit is not significant relative
to the pure error. There is a 34.40% chance of a lack of
fit F value. This large F value could have occurred due
to noise. Nonsignificant lack of fit is good [24, 26]. Also,
the C.V of this model is 1.76, which is less than 5%, which
shows that the model’s reproducibility is good.

6.2. Results of ANN Model. The ANN model built for this
present study was investigated by considering three layers
(x = 1) of input factors of feed-forward type, the hidden layer
withstanding transfer function with neurons ranging from
y = 5 to 20 and the output layer of z = 1 for various training
algorithms like Traingda, Traingdm, Traingdx, Trainlm,
Trainrp, and Trainseg. The experimental data set was segre-
gated into 70% of data for training remaining 30% of data
for testing and validation [24]. The network model was
run for various topologies, and the optimal topology was
found with the model’s best R2 value and MSE. It was found
that the optimal network topology was 3 : 11 : 1 with transig
as transfer function in the input layer and purelin as transfer
function in the output layer for Levenberg–Marquardt train-
ing algorithm [15, 17, 24]. The optimal network is show-
cased in Figures 2(a)–2(d) with R values for training,
validation, testing, and overall, as 0.9987, 0.9973, 0.9976
and 0.9938, respectively. These R values confirm the degree
of better correlation with the experimental and predicted
data. The coefficient of determination for the optimal net-

work topology was 0.9892 and MAE of 0.012; this shows that
the prediction accuracy of the optimal model is very high.
The oil yield values predicted by this model are equivalence
to the experimental oil yield values [27, 28].

6.3. Evaluation of the RSM and ANN Model. The precision
and accuracy of the developed RSM and ANN models were
evaluated by calculating the performance parameters like R2,
adj R2, MAE, RMSE, SEP, and MAPD using the Equations
(4) to (9). The values calculated are shown in Table 4. The
R2 value for the RSM and ANN model seems to be nearby,
making both the models better for optimizing the oil yield
parameters. But the MAPD for RSM is higher than the
ANN, which makes the ANN model reliable and consistent.
Figure 3 compares the predicted values of RSM and ANN
with the experimental values. It can be seen that the pre-
dicted values of the ANN model were very close to the
experimental value when compared to the RSM predicted
values. The capability of the ANN model for nonlinear data
evaluation is more precise than the second-order polynomial
model of RSM. Hence, the ANN model efficacy is better than
the RSM model for optimization and modelling of this pres-
ent study [24, 26].

6.4. Physiochemical Properties of the Extracted Oil. The vari-
ous physicochemical properties of the extracted oil were
compared with standard algae oil, diesel, biodiesel, algae oil
from other species, and biomass using the solvent extraction
method, shown in Table 5 [29]. The heating value of the
extracted oil was found to be 32.57MJ/kg, comparable to
diesel biodiesel standard [28, 30]. The flash point of the
extracted oil was around 79 °C, which is in range with the
standard value. The density and the kinematic viscosity of
the extracted oil were less than the standard values, which
shows that the oil extracted can be used as an alternative fuel
source in IC engines. The saponification value shows the
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Figure 3: Comparison of experimental, predicted values of RSM and ANN.
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amount of potassium hydroxide required to form soap from
one gram of lipid content. For the present study, the value
found was 174.56mg KOH/g of oil, which is within the stan-
dard value [30]. The free fatty acids present in the oil have
saturated and unsaturated parts. The amount of unsaturated
fatty acids present in the oil can be identified with the iodine
value of that particular oil. Higher the values of iodine num-
ber, the higher the presence of double bonds of C = C in the
oil. The iodine value of the algae oil in this study is in the
range, which shows that the oil can be a better alternative
energy source. The acid value illustrates the damaging effect
of the oil-used material. The higher the acid value, the higher
the damaging effects. In this present study, the acid value for
the extracted oil was found to be 67 g I2/100 g of oil, which is
in the permissible range [28]. The cetane index of the
extracted oil was found to be 32.7, which is a better value
and shows that it can be used as fuel in CI engines [30]. In
comparison, it can be shown that the algae oil obtained from
the Spirogyra can be used as an alternative fuel.

7. Conclusion

The present work represents the modelling of the solvent
extraction process by the Soxhlet apparatus to extract oil
from the algae species spirogyra. The optimization models
were created using RSM and ANN to find the optimal pro-
cess parameters for oil extraction from the algae. The opti-
mal conditions were found to be 0.336μm of particle size,
98.2% of dryness level, 1 : 14.9 solid to solvent ratio, 1.75
hours of reaction time, and 70.98 °C of extraction tempera-
ture for an optimum oil yield of 26.62%. The ANN model
was found to be the best model when compared with the
RSM model with improved performance parameters. The
physiochemical properties were determined as per ASTM
standards for the extracted oil, and the results showed that
the extracted oil from the spirogyra species could be a better
alternative energy source. Further, the extracted oil from the
algae spirogyra species can be produced in large quantity by
cultivating them in large tanks. And this extracted oil can be
mixed with the mineral fuels in certain ratio and used as an
alternative fuel in the diesel engine.
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