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The establishment of an unbiased protocol for the automated volumetric measure-

ment of iron-rich regions in the substantia nigra (SN) is clinically important for diag-

nosing neurodegenerative diseases exhibiting midbrain atrophy, such as progressive

supranuclear palsy (PSP). This study aimed to automatically quantify the volume and

surface properties of the iron-rich 3D regions in the SN using the quantitative MRI-

R2
* map. Three hundred and sixty-seven slices of R2

* map and susceptibility-weighted

imaging (SWI) at 3-T MRI from healthy control (HC) individuals and Parkinson's dis-

ease (PD) patients were used to train customized U-net++ convolutional neural net-

work based on expert-segmented masks. Age- and sex-matched participants were

selected from HC, PD, and PSP groups to automate the volumetric determination of

iron-rich areas in the SN. Dice similarity coefficient values between expert-

segmented and detected masks from the proposed network were 0:91�0:07 for R2
*

maps and 0:89�0:08 for SWI. Reductions in iron-rich SN volume from the R2
* map

(SWI) were observed in PSP with area under the receiver operating characteristic

curve values of 0.96 (0.89) and 0.98 (0.92) compared with HC and PD, respectively.

The mean curvature of the PSP showed SN deformation along the side closer to the

red nucleus. We demonstrated the automated volumetric measurement of iron-rich

regions in the SN using deep learning can quantify the SN atrophy in PSP compared

with PD and HC.

Abbreviations used: AC-PC, anterior commissure-posterior commissure; AI, artificial intelligence; AUC, area under the curve; BCE, binary cross-entropy; CLAHE, contrast-limited adaptive

histogram equalization; DSC, Dice similarity coefficient; ELU, exponential linear unit; HC, healthy control; H-Y, Hoehn and Yahr; ICC, intraclass correlation coefficient; IOU, intersection over

union; JSON, JavaScript object notation; MMSE, mini-mental state examination; MoCA, Montreal cognitive assessment; MRI, magnetic resonance imaging; PD, Parkinson's disease; PSP,

progressive supranuclear palsy; QSM, quantitative susceptibility mapping; RN, red nucleus; ROC, receiver operating characteristic; ROI, region of interest; SN, substantia nigra; SWI,

susceptibility-weighted imaging; TE, time of echo; TR, time of repetition; UPDRS, unified Parkinson's disease rating scale.
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1 | INTRODUCTION

A high susceptibility difference due to the deposition of iron in the substantia nigra (SN) following disease progression causes an inhomogeneous

magnetic field within the tissue and creates contrast on susceptibility-related MRI, enabling in vivo delineation of iron-rich SN areas.1,2 Therefore,

3D SN volumes reconstructed from manually segmented masks on susceptibility-related MRI have often been investigated to evaluate morpho-

logical changes in iron-rich SNs of Parkinson's disease.2–4 Accordingly, the volumetric measurements of iron-rich regions in the SN are important

for diagnosing atypical Parkinsonian syndromes exhibiting midbrain atrophy, such as progressive supranuclear palsy (PSP) from Parkinson's disease

(PD) patients and healthy subjects.5,6 However, manual delineation of iron-rich SN volumes requires both anatomical knowledge and experience,

is time-consuming, and can be rater-dependent.

Because unbiased and reproducible methods involving deep learning can potentially contribute to accurate segmentation, previous studies

have investigated the automatic segmentation of SN using a convolutional neural network.7–10 The segmentation of the SN has been mostly per-

formed on qualitative MRI, such as neuromelanin-sensitive MRI and susceptibility-weighted imaging (SWI), whose contrasts may vary depending

on the subjects, scanner, and scanning parameters.7–9 In recent years, for reasons of necessity, segmentation of SN was also performed using one

of quantitative MRI, quantitative susceptibility mapping (QSM).10,11 To maximize the diagnostic efficacy of PSP through investigating morphologi-

cal changes in the iron-rich SN region, a comparative study on the accuracy and diagnostic ability of automated measurements of SN volume and

surface area between quantitative (R2
* map) and qualitative (SWI) MRI is required, where both show iron-sensitive MR contrasts and are

reconstructed from one gradient-based sequence.12 Moreover, because the availability of clinical 3D SN image datasets for PSP is often limited, it

is also important to test the feasibility of the diagnosis of PSP without including SN images of PSP while training the convolutional neural

network.

In this work, we hypothesized that the volume of iron-rich regions in the SN of PSP brain is altered. We also hypothesized that an objective

diagnosis through automatic segmentation of iron-rich SN using a convolutional neural network, based upon quantitative MRI-R2
* maps, could

superiorly contribute to the differentiation of PSP. Thus, this study comparatively assessed the performance of automatic segmentation of iron-

rich SN using state-of-the-art and customized convolutional neural networks trained on R2
* maps and SWI images. To investigate the clinical feasi-

bility of unbiased diagnosis of PSP, the volume, surface area, and other surface properties were analyzed from automated iron-rich SN volumetric

measurements on the age- and sex-matched HC, PD, and PSP brains.

2 | MATERIALS AND METHODS

The overall workflow of this study is shown in Figure 1. This study was approved by the Institutional Review Board of the Pusan National Univer-

sity Yangsan Hospital and the Ulsan National Institute of Science and Technology. Informed consent was obtained from all participants. All proce-

dures were conducted in accordance with the Declaration of Helsinki.

2.1 | Study participants and inclusion criteria

A total of 93 participants were initially enrolled retrospectively, including 51 patients with PD, 11 patients with PSP, and 31 HC individuals. PD

and PSP were diagnosed by a neurologist (J. H. L., with 15 years of experience in movement disorders) following established criteria.13,14 Of the

93 participants, one patient with PD and one patient with PSP were excluded due to susceptibility artifacts in MRI. All participants underwent a

mini-mental state examination (MMSE). The unified Parkinson's disease rating scale (UPDRS) part III and Hoehn and Yahr (H-Y) stages were tested

to evaluate the disease severity in patients with PD and PSP.

2.2 | In vivo MRI

In vivo brain MRI was performed using a 3-T MRI scanner (MAGNETOM Skyra, Siemens) at Pusan National University Yangsan Hospital. 2D mul-

tiecho gradient-echo data were collected in parallel to the intercommissural (anterior commissure-posterior commissure [AC-PC]) line to
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encompass the whole brain for the reconstruction of the R2
* map and SWI using the following parameters: time of repetition (TR) = 2030 ms;

time of echo (TE) = 3.1–29.9 ms (ΔTE¼4:8,5:5,…,5:5ms); six echoes; matrix size=192 � 192; voxel size= 1 � 1 � 2 mm; flip angle=60
�
; dis-

tance factor= 10%; and number of slices=60. The R2
* value was calculated with the nonlinear fitting of a mono-exponential function of the R2

*

relaxation curve. SWI was generated by combining the magnitude and fourth power of the high pass-filtered positive phase mask of

TE=24.4 ms.15

2.3 | Data preparation

First, 10 individuals were selected from the HC and PD patient groups to match the cohort of PSP patients for age and sex distribution. Subse-

quently, five consecutive MRI slices per participant were used to test the segmentation algorithm and the quantitative analysis of the 3D SN

structure. If the SN regions were included in six slices, the slice having the smallest and/or most challenging to notice SN region was removed in

the test dataset to be consistent for all participants. A total of 367 MRI slices containing SN from the remaining 21 HC individuals and 40 patients

with PD were used to train the networks. Because the SN is located in the midbrain, the original image was center-cropped to 64 � 64, followed

by upsampling to 256 � 256 using the nearest interpolation to increase the size of the region of interest (ROI) and overall segmentation perfor-

mance of the networks. The boundary of the SN was then delineated from the processed R2
* map and SWI images independently, as the image

contrast is different, by H. L. (6 years of experience in neuroimaging) using LabelMe (4.5.5), a software that creates a JavaScript Object Notation

(JSON) file for labeled images, which was converted into the corresponding expert-segmented mask using an in-house Python (3.8, Python Soft-

ware Foundation) program.16 For the assessment of intra-rater reliability of manual SN segmentation, H. L. delineated the SN area again after a

7-month interval for 10 randomly selected participants (50 images of R2
* map). For the inter-rater reliability, another rater (J. H. L.) delineated the

SN area on 50 R2
* maps as well. Data augmentation using � 3-degree rotation, � 90-degree rotation, and horizontal and vertical flipping, were

applied to the training data of R2
* and SWI. Contrast-limited adaptive histogram equalization (CLAHE) was additionally applied to SWI data to

address the inconsistent image contrast.

2.4 | Convolutional neural networks

The convolutional neural networks based on U-net architecture with different designs of skip connections and application of deep supervision

were selected and compared to segment iron-rich regions in the SN because of their high performances in segmenting objects of interest in the

medical images using limited training data and ease of customization (Figure 2).17,18 The basic architecture of U-net has an encoder or a feature

extractor, a decoder, and skip connections that bring features from the encoder to the decoder with the same resolution for precise localization,

F IGURE 1 Block diagram of methodology. SN, substantia nigra; SWI, susceptibility-weighted imaging
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as shown in Figure 2A.17 Each block represents two convolution layers with a 3 � 3 kernel each followed by batch normalization and activation

operations. In the encoder, the pooling layer is used after each convolution block to reduce the spatial dimension of the features while transposed

convolution and concatenation layers precede each convolution block in the decoder. The skip connections in U-net combine low-level features

from the encoder with high-level features from the decoder that are semantically different.

U-net++ improves the design of skip connections through the nesting of multiple U-net networks with different pyramid size, processing the

low-level features from the encoder before it is fused to semantically rich features from the decoder.18 In addition, the loss is backpropagated to

all nested networks simultaneously through deep supervision. In this study, a customized U-net++ model was proposed by applying the deep

supervision only to the last two deepest network pyramids. A dropout layer was added in the middle of each convolutional block for the additional

regularization. The pyramid of the network was increased by one step making the customized network deeper than other networks. Lastly, an

additional convolutional block with a feature depth of 16 was inserted before applying a 1 � 1 convolution with sigmoid activation (Equations 1

and 2). Modification of the architecture and fine tuning of the network hyperparameters were performed to improve the performance of the net-

works in segmenting the iron-rich regions of SN. An exponential linear unit (ELU) with an alpha of 1.5 (Equations 3 and 4), AdaMax optimizer with

adaptive learning rate (initial learning rate = 10�5), L2-kernel regularization (L2 = 10�2), and ”he-uniform” kernel initializer were selected after a

rigorous assessment of segmentation performance.

Sigmoid xð Þ¼ 1
1þe�x

ð1Þ

Sigmoid0 xð Þ¼ e�x

e�xþ1ð Þ2
ð2Þ

ELU xð Þ¼ x, x≥0
α ex�1ð Þ, otherwise

�
ð3Þ

ELU0 xð Þ¼ 1, x≥0
ELU xð Þþα, otherwise

�
ð4Þ

where x is input and α is a parameter used to saturate the negative input.

Dropout rates of 0.3 and 0.2 were also used to train the proposed network on R2
* and SWI data, respectively. All networks were trained on

three Nvidia GeForce RTX 3090 (Nvidia Corporation, Santa Clara, CA, USA) graphics processors with a batch size of 48 using data parallelization.

F IGURE 2 Neural network models used for segmentation of substantia nigra. (A) U-net. (B) Nested U-net/U-net++ without deep
supervision. (C) U-net++ with deep supervision. (D) The proposed customized U-net++ with deep supervision. BN, batch normalization
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The maximum number of epochs was set to 500 and a stopping criterion was implemented by tracking the validation loss calculated using 10% of

the training data selected randomly to stop the training before overfitting occurred. Binary cross-entropy (BCE) loss was exploited as a loss func-

tion to train the networks according to Equation 5. The models were implemented using TensorFlow (2.5, Google Brain Team, Google LLC.)

installed in Python (3.8, Python Software Foundation).

BCE loss¼ �1
N

XN
i¼1

yi � log Pið Þþ 1�yið Þ� log 1�Pið Þ

¼ �1
N

XN
i¼1

yi � log Pið Þ
, ð5Þ

where Pi is the probability of foreground and 1 – Pi is the probability of background.

2.5 | Volumetric and shape analysis

A morphological opening was applied to the detected mask to remove the scattered pixels. After compensating for the distance factor between

each slice, a 3D SN mask was generated for each participant by cascading the detected mask of five consecutive slices. The SN volume was then

measured by counting the number of voxels in the 3D mask. The surface area was estimated on terraced field areas of the concatenated 3D mask

after compensating for the spatial resolution, slice thickness, and distance factor using an in-house MATLAB code (R2020b, MathWorks).

The template of the 3D SN volume for each group was produced separately for the right and left SNs using volumetric registration to align all

volumes and calculate the average. The final template SN surface was generated from the template volume, smoothed, and re-tessellated using

standard icosahedral re-tessellation to reconstruct the SN surface with consistent tessellation.19–21 The mean curvature and principal curvatures

were extracted from the re-tessellated template surface with 2562 vertices for each hemisphere to explore changes in the shape of the SN. At

each vertex, the shape index is calculated with (2π tan
�1 K1þK2

K1�K2Þ, 22 where K1 and K2 are the maximum and minimum principal curvatures,

respectively.

2.6 | Statistical analysis

Demographic and clinical data were compared between the three groups of testing data using the chi-square test, Kruskal–Wallis H test, and

Mann–Whitney U test. A Bonferroni post hoc correction using the Mann–Whitney U test was performed for three comparisons between groups

with a statistical significance threshold of p less than 0.0167 (0.05/3). The intraclass correlation coefficient (ICC) was calculated to determine the

intra-rater and inter-rater reliability between two segmentation products with a 7-month interval from one rater and between two segmentation

products from two raters on the R2
* map. The Dice similarity coefficient (DSC) and intersection over union (IOU) were measured between the

expert-segmented mask and the detected mask to evaluate and compare the segmentation performance of the networks on the testing dataset

according to Equations 6 and (7). The volume and surface area of 10 participants in each group generated from the detected mask were compared

between the three groups using the Kruskal–Wallis test followed by Bonferroni post hoc correction. The mean curvature and shape index of the

3D SN template surface with 5124 vertices corresponding to the surfaces of the SN in both hemispheres for each group were compared between

groups. The vertices that formed the concave regions of the SN were also compared. The correlation between the volume and surface area was

tested using linear regression and Pearson's correlation coefficient. Receiver operating characteristic (ROC) analysis was also performed to calcu-

late the area under the ROC curve (AUC) to assess the overall diagnostic performance to distinguish between groups of patients and HC individ-

uals. Statistical significance was set at p less than 0.05.

DSC yt,yp
� � ¼

2�Pr
i¼1

Pc
j¼1

ytij �ypij
� �

Pr
i¼1

Pc
j¼1

ytijþ
Pr
i¼1

Pc
j¼1

ypij

¼ 2 yt\ypð Þ
ytþ yp

ð6Þ

IOU yt,yp
� �¼

Pr
i¼1

Pc
j¼1

ytij �ypij
� �

Pr
i¼1

Pc
j¼1

ytij þ
Pr
i¼1

Pc
j¼1

ypij �
Pr
i¼1

Pc
j¼1

ytij �ypij
� � ¼ yt\yp

yt[yp
, ð7Þ

where yt is a ground truth image, yp is a predicted image, and r and c are the height and width of the image, respectively.

TESSEMA ET AL. 5 of 12



3 | RESULTS

Demographic information for each group is summarized in Table 1. There was no difference in sex and age between groups (p > 0.05). However,

due to the greater disease severity of PSP patients, the distributions of MMSE, UPDRS III, and H-Y stage were different between the PD and PSP

groups (all p < 0.05). The ICC values for the intra-rater and inter-rater reliability of the SN segmentations using the R2
* map were 0.997 and

0.987, respectively, showing almost perfect agreement based on the Landis and Koch criteria.23

3.1 | SN segmentation

The comparison of computational cost, inference time, and segmentation performance of different networks on testing data is shown in

Table 2. The customized U-net++ network outperformed all other models in terms of the segmentation performance using both R2* map

and SWI data with costs of computational complexity, training, and inference time. The performance of the proposed model on testing

images from R2
* map and SWI is shown for both the rostral and caudal levels of the three groups in Figures 3 and S1, respectively. The

overlap of the expert-segmented mask with the detected mask is presented with a corresponding original image for each group, where red

indicates true positives, green indicates false negatives, and blue indicates false positives. The DSC and IOU values between the expert-

segmented mask and detected mask were 0.91 � 0.07 (standard deviation) and 0.83 � 0.10, respectively, for R2
* data at a confidence threshold

of 0.8 on 150 test images. DSC and IOU values for SWI data were lower than R2
* data with 0.89 � 0.08 and 0.81 � 0.11, respectively, at a confi-

dence threshold of 0.6.

TABLE 1 Clinical and demographic characteristics of PD and PSP patients along with HC participants

HC (N = 10) PD (N = 10) PSP (N = 10) Group comparison (p)

Post hoc (p)

HC versus PD HC versus PSP PD versus PSP

Gender (M/F) 6/4 6/4 6/4 1a 1 1 1

Age (years) 63.3 � 2.2 63.9 � 2.0 65.8 � 3.2 0.09b 0.51 0.07 0.08

MMSE 28.6 � 1.5 27.3 � 2.8 23.4 � 4.1 0.01b* 0.48 0.003** 0.03*

UPDRS III - 24.5 � 5.7 37.8 � 11.5 0.005c** - - 0.005**

H-Y stage - 2.5 � 0.4 3.7 � 0.9 0.001c** - - 0.001**

Duration (years) - 6.8 � 3.7 4.4 � 2.1 0.04c* - - 0.04*

Data are shown as mean � standard deviation.

Abbreviations: HC, healthy controls; H-Y, Hoehn and Yahr; MMSE, mini-mental state examination; PD, Parkinson's disease; PSP, progressive supranuclear

palsy; UPDRS III, the motor part of the unified Parkinson's disease rating scale. The significant p values are displayed in bold.

Post hoc (p): p values from post hoc analysis of χ2 testa and Mann–Whitney U testb,c.

*p < 0.05 and **p < 0.005. (For post hoc analysis: *p < 0.05 and **p < 0.005 after Bonferroni correction.)
aχ2 test.
bKruskal–Wallis H test.
cMann–Whitney U test.

TABLE 2 Comparison among convolutional neural networks

Model

Network properties Segmentation performance

Number of parameters (M) Training time (h) Inference time (s) Mean IOU Mean DSC

U-net �7.8 �3 �0.025 (0.74, 0.73) (0.84, 0.83)

U-net++ �9 �7 �0.035 (0.75, 0.74) (0.86, 0.85)

U-net++ with DS �9 �7.5 �0.035 (0.76, 0.75) (0.87, 0.85)

Customized U-net++ �36 �10 �0.040 (0.83, 0.81) (0.91, 0.89)

The number of parameters refers to all trainable and nontrainable parameters. The first and second numbers in parenthesis show the results on R2* and

SWI data, respectively.

Abbreviations: DS, deep supervision; DSC, Dice similarity coefficient; Inference time, time to process a single image on a single graphics processing unit;

IOU, intersection over union; M, million; SWI, susceptibility-weighted imaging. The numbers in bold shows maximum performance.
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3.2 | Quantitative analysis

3D SN surfaces generated from five consecutive 2D detected masks are shown from four individuals in each group (Figures 4 and S2). The SN vol-

ume (R2
* = 1128.2 � 232.2 mm3; SWI=1206.9 � 193.8 mm3) in PSP was reduced compared with HC and PD (R2

* =1474.7 � 124.4 mm3 with

p <0.001 in HC, 1445.3 � 64.4 mm3 with p <0.001 in PD; SWI=1527.3 � 179.4 mm3 with p <0.004 in HC, 1506.2 � 79.8 mm3 with p <0.002

in PD) (Table 3). The surface area consistently showed a significant difference in PSP (p <0.05) compared with the HC and PD groups. However,

there was no difference between the HC and PD groups in either case (p >0.05).

The SN volume and surface area were highly associated with each other in the three groups (Figure 5). Pearson correlation values were 0.92

(HC), 0.77 (PD), 0.96 (PSP), and 0.96 (all) for R2
* and 0.93 (HC), 0.76 (PD), 0.90 (PSP), and 0.93 (all) for SWI. ROC curve analysis indicated that the

F IGURE 3 Detection of SN in R2
* maps using the U-net++ model. I-III show the caudal level. IV-VI show the rostral level. I and IV are

representative of HC individuals (61-year-old male). II and V are representative of PD patients (61-year-old male). III and VI are representative of
PSP patients (60-year-old male). (A) R2

* maps with the expert-segmented mask of iron-rich SN. (B) Detected mask from U-net++. (C) The overlap
of expert-segmented mask and detected mask. (D) The overlap of R2

* maps with performance masks. The red area in (C) shows the true positives,
the green area shows the false negatives, and the blue area shows the false positives. HC, healthy control; PD, Parkinson's disease; PSP,
progressive supranuclear palsy; SN, substantia nigra

F IGURE 4 SN surfaces constructed from the generated mask using R2
* maps. I represents HC individuals. II represents PD patients. III

represents PSP patients. (A-D) Four sample SN surfaces randomly selected in each group. HC, healthy control; PD, Parkinson's disease; PSP,
progressive supranuclear palsy; SN, substantia nigra
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AUC values of the SN volume were high enough to distinguish PSP from the other two groups (R2
* = 0.96 with HC, 0.98 with PD; SWI = 0.89

with HC, 0.92 with PD). However, AUC values were low for the differentiation between HC and PD patients (R2
* = 0.61; SWI = 0.65 with HC).

These results were consistent with the analysis of the SN surface area with AUC values of 0.9 between HC and PSP, 0.95 between PD and PSP,

and 0.56 between HC and PD for R2
*, and 0.82 between HC and PSP, 0.88 between PD and PSP, and 0.52 between HC and PD for SWI.

Template SN surfaces with mean curvature properties and the distribution of vertices with negative mean curvatures are presented for each

group in Figures 6 and S3. The SN volume shrinkage and the change in the negative mean curvature were clearly observed in PSP. Table 4 shows

that the negative mean curvature was shifted to the positive side in PSP compared with HC and PD. The mean curvature was significantly differ-

ent in PSP (0.20 � 0.14) only when using the SN surface acquired from SWI data, compared with HC (0.19 � 0.16 [p <0.001]) and PD (0.19 �

TABLE 3 SN volume and surface area of PD and PSP patients along with HC participants

HC PD PSP

Kruskal–Wallis Post hoc (p)

χ 2 p HC versus PD HC versus PSP PD versus PSP

SN volume (mm3)

R2
* 1474.7 � 124.4 1445.3 � 64.4 1128.2 � 232.2 17.36 < 0.001** 0.43 < 0.001** < 0.001**

SWI 1527.3 � 179.4 1506.2 � 79.8 1206.9 � 193.8 13.17 0.001** 0.27 0.004** 0.002**

SN surface area (mm2)

R2
* 1564.0 � 84.7 1569.2 � 49.2 1357.9 � 176.7 14.17 <0.001** 0.68 0.003** 0.001**

SWI 1602.8 � 106.9 1615.6 � 58.2 1406.9 � 171.1 9.55 0.008* 0.91 0.017 0.005*

Data are shown as mean � standard deviation. The measurements were the sum of left and right SNs.

Post hoc (p): p values from post hoc analysis of Mann–Whitney U test. *p < 0.05 and **p < 0.005. (For post hoc analysis: *p < 0.05 and **p < 0.005 after

Bonferroni correction). The significant p values are displayed in bold.

Abbreviations: HC, healthy control; PD, Parkinson's disease; PSP, progressive supranuclear palsy; SN, substantia nigra; SWI, susceptibility-weighted

imaging.

F IGURE 5 Correlation between SN volume and surface area and ROC curve analysis. (A, B) The correlation between SN volume and surface
area using R2

* and SWI data, respectively. (C, D) ROC curves of SN volume from R2
* and SWI data, respectively. (E, F) ROC of the SN surface area

from R2
* and SWI data, respectively. HC, healthy control; PD, Parkinson's disease; PSP, progressive supranuclear palsy; ROC, receiver operating

characteristic; SN, substantia nigra; SWI, susceptibility-weighted imaging
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0.15 [p <0.001]). However, there was no difference between surfaces from R2
* data (HC=0.19 � 0.15; PD=0.19 � 0.15; and PSP=0.19 �

0.15). The negative mean curvature was also significantly different in PSP (R2
*: �0.02 � 0.02; SWI: �0.02 � 0.01) than in HC (R2

*: HC= �0.04 �
0.02 [p <0.001] and PD= �0.03 � 0.02 [p <0.001]; SWI: HC= �0.05 � 0.03 [p <0.001] and PD= �0.04 � 0.02 [p <0.001]). Although there

was no difference in the mean curvature between HC and PD (R2
*: p =0.70; SWI: p =0.80), PD was differentiated from HC by the negative mean

F IGURE 6 The representative template surface and curvature properties of the SN surface from R2
* maps. I represents HCs. II represents PD

patients. III represents PSP patients. (A) The template surfaces. (B) The template surfaces with mean curvature scaled between 0 and 0.1 mm�1.
(C) Histograms of the negative mean curvature of SN surfaces. H in the scale bar is the mean curvature property. C, caudal; D, dorsal; HC, healthy
control; PD, Parkinson's disease; PSP, progressive supranuclear palsy; R, rostral; RN, red nucleus; SN, substantia nigra; V, ventral

TABLE 4 Mean curvature of PD and PSP patients along with HC participants

HC PD PSP

Kruskal–Wallis Post hoc (p)

χ 2 p HC versus PD HC versus PSP PD versus PSP

Mean curvature (mm�1)

R2
* 0.19 � 0.15 0.19 � 0.15 0.19 � 0.15 3.85 0.15 0.42 0.06 0.21

SWI 0.19 � 0.16 0.19 � 0.15 0.20 � 0.14 18.06 < 0.001** 0.61 < 0.001** < 0.001**

Negative mean curvature (mm�1)

R2
* �0.04 � 0.02 �0.03 � 0.02 �0.02 � 0.02 91.97 < 0.001** < 0.001** < 0.001** < 0.001**

SWI �0.05 � 0.03 �0.04 � 0.02 �0.02 � 0.01 186.91 < 0.001** < 0.001** < 0.001** < 0.001**

Data are shown as mean � standard deviation.

Post hoc (p): p values from post hoc analysis of Mann–Whitney U test. **p < 0.005. (For post hoc analysis: **p < 0.005 after Bonferroni correction). The

significant p values are displayed in bold. Abbreviations: HC, healthy control; PD, Parkinson's disease; PSP, progressive supranuclear palsy; SWI,

susceptibility-weighted imaging.
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curvature (R2
*: p <0.001; SWI: p <0.001). The shape index of each group is shown in Figure S4. Similar to the mean curvature analysis, the con-

cave areas of the SN that enfold the red nucleus (RN) shrunk in PSP. However, it was not possible to distinguish PD and PSP patients from HC

individuals (all p >0.05).

4 | DISCUSSION

We examined the hypothesis that the SN structure is specifically altered with significant volume loss in patients with PSP. 3D iron-rich regions in

the SN tissue can be reconstructed after automatic segmentation using a customized U-net++ convolutional neural network, which was trained

based on expert-segmented SN masks of HC and PD using the quantitative MRI-R2
* maps. The automated measurements of volume, surface area,

and mean curvature of the iron-rich region in the SN allowed differentiation of patients with PSP from HC and patients with PD.24 Therefore, we

demonstrated the unbiased and reproducible quantification of the SN atrophy in the patients with PSP objectively through automatic segmenta-

tion of iron-rich regions in the SN using deep learning.

An automatic system that provides volume, surface area, and other shape properties of 3D iron-rich regions in SN from raw MRI data using

deep learning is highly valuable because it contributes to computer-aided diagnosis that can reduce subjectivity and increase overall sensitivity in

stratifying patients. Although previous studies with convolutional neural networks have been proposed for automatic segmentation of SN, most

of them focused on qualitative MRI imaging.7,8,25 In this study, customized U-net++ was implemented and a comparative study was performed

with other U-net types to assess the segmentation performance using both qualitative SWI and quantitative R2
* map. The 3D SN volume and sur-

face were subsequently reconstructed using the customized network. The proposed model outperformed others with a larger margin in terms of

segmenting the iron-rich regions in the SN. The application of deep supervision to all nested networks of U-net++ with different pyramid depths

is prone to underfitting and overfitting of shallowest and deepest networks, respectively, which is a challenging problem to solve simultaneously.

Applying the deep supervision to the deepest pyramids only and using dropout and batch normalization together prevented overfitting and

improved the overall performance of the network. Using the proposed network, the DSC between the expert-segmented mask and the detected

mask was 0.91 in the segmentation of SN from the R2
* maps. Although the inconsistent contrast in SWI was compensated by CLAHE and an opti-

mized convolutional neural network, the DSC for SWI was 0.89, which is slightly lower than that of the R2
* maps. However, the statistics remained

approximately the same in both cases, which is important in terms of clinical application, as SWI is commonly used for the diagnosis of various

brain disorders. Although R2
* maps are quantitative and sensitive to iron deposition around the SN, which is helpful for the automatic SN segmen-

tation, slightly longer acquisition time compared with SWI should be cautiously considered to reduce motion artifacts from the patients.

A few prior studies have been conducted to correctly segment the SN region using different methods involving both quantitative and qualita-

tive MRI. We compared the performance of SN segmentation in our study with that of previous studies. One recent study reported the segmenta-

tion of SN using QSM data by advanced image analysis with DSC values of 0.75 and 0.76 in left and right SN, respectively.11 Different

neuromelanin- and iron-containing midbrain nuclei were also segmented using a template of the brain from QSM data and achieved a DSC of

0.85 and 0.87 for neuromelanin- and iron-containing SN, respectively.10 3D SN segmentation on neuromelanin-sensitive MRI and SWI using a V-

net convolutional neural network yielded an average DSC in five-fold cross-validation of 0.7.8 Further, SN segmentation was also performed using

an ensemble of five state-of-the-art convolutional neural networks that achieved average DSC in five-fold cross-validation of 0.87–0.93 using

SWI images collected only from healthy individuals, which may be highly computationally intensive.7 These comparisons validated that our cus-

tomized U-net++ network consistently produced efficient SN segmentation results for HC, PD, and PSP compared with other methods.

Midbrain shrinkage, which is a marked characteristic of patients with PSP, is observed in conventional structural MRI by visual inspection.26,27

In this study, it was demonstrated that PSP, which has severe neuronal loss and heavy iron accumulation in the SN, can be differentiated from

HC and PD through quantification of SN volume, surface area, and shape properties following deep learning-based automatic SN segmentation.

The distribution of mean curvature values clearly showed deformation of the SN surface in PSP due to the severe atrophy and flattened surface

on the side of the enfolding RN, which may also be induced by iron accumulation along with the myelinated fibers of the third cranial nerve (ocu-

lomotor nerve) passing through the gap between the SN and RN.27 Progression of PD may also cause morphological changes in the SN. There

was no difference in the volume and surface area between HC and PD patients; however, because various factors including age, disease duration,

and disease severity of PD patients that affect the SN morphological changes were not considered in our cohort, negative mean curvature values

provided a possibility of differentiating between PD patients and HC individuals.

In previous studies, there was high inconsistency in SN volume measurements using MRI data. Variability in the MRI protocols, the geometry

of slices, and the segmentation mechanisms of SN are among the main reasons for nonreproducible SN volume measurements. Because SN is

very small in whole-brain structural MRI and each MRI contrast shows a disparate boundary, accurate SN segmentation is challenging and remains

controversial.2,28–30 In most previous studies, measured bilateral SN volumes range from 110 to 700 mm3, showing a high degree of varia-

tion.3,10,30,31 In one previous paper investigating susceptibility-related MRI, average SN volumes of 541 and 621 mm3 for HC and PD, respec-

tively, were reported from manually segmented masks surrounding the hypointense area in T2
*-weighted images.3 By comparison, the bilateral SN

volumes in our study ranges from 1128 to 1527 mm3. Therefore, the measured SN volume of our study was several times higher than that of
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others. Our in vivo SN volume measurement was quantitatively supported by applying the same procedures in postmortem R2
* maps of ex vivo

midbrain tissues (see the supporting information: Methods, Results, Table S1, and Figure S5).32

In this study, the expert-segmented SN masks were delineated in the R2
* map and SWI separately, which may not reveal the precise SN

boundary, but are sensitive to the area of iron accumulation that creates a large magnetic susceptibility difference within and around the

SN. Although the measured SN volume using iron-sensitive MRI images may be larger than the actual histological SN boundary, because iron can

also accumulate outside the SN, 3D SN volume related to iron deposits was reconstructed, which helps to differentiate PSP patients from other

groups.33 The accurate in vivo segmentation of SN boundary with MRI will be needed to investigate the distinct morphological change of SN tis-

sue with the disease progression.

This study had several limitations. First, the training datasets in this study purposedly included HC and PD. The DSC values were 0.92 for HC,

0.92 for PD, and 0.88 for PSP using R2
* maps and 0.90 for HC, 0.90 for PD, and 0.87 for PSP using SWI, showing a slightly lower performance in

segmenting the SN of PSP, which likely derives from the absence of PSP SN images in the training datasets. On the other hand, it is important to

note that automatic PSP diagnosis was still feasible with high AUC values, even without PSP in the training dataset. Second, the extent and direc-

tion of anisotropic deformation of the SN in the PSP brains should be further investigated in the 3D axis with higher resolution images, although

mean curvature values showed an altered morphology in PSP relative to HC individuals.

In conclusion, this study highlighted the automatic reconstruction of 3D iron-rich SN volumes from the segmentation in susceptibility-related

MRI, specifically quantitative R2
* maps, using deep learning to help in the diagnosis of diseased brains. We demonstrated the automated volumet-

ric measurement of iron-rich regions in the SN using deep learning can quantify the SN atrophy in PSP compared with PD and HC.
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