

Jimma University

School of graduate studies

Floristic composition of Doprar forest, Jekow district, Gambella National Regional State, Ethiopia

By

Pul Deng Lul

May, 2019

Jimma, Ethiopia

Floristic composition of Doprar forest, Jekow district, Gambella National Regional State, Ethiopia

By

Pul Deng Lul

A Thesis submitted to Jimma University, College of Natural Science, and Department of Biology in Partial Fulfillment for the Requirements of Master of Science degree in Botanical Science.

May, 2019

Acknowledgements

I would like to express my sincere gratitude to Prof. Kitessa Hundera and Mr. Dasalegn Raga who kindly advised, commented and helped me starting from proposal development to the last day of completing this thesis.

I would like to extend my heartfelt gratitude to the academic staff members of Biology department, particularly lecturers who taught me, Jimma University Herbarium staffs are thanked for their kind cooperation while using herbarium materials and other staff especially secretaries are highly acknowledged for their great work.

My deepest appreciation goes to my wife, Nyakoach Gach and my uncle's wife, Nyamal Baruach who encouraged and assisted me throughout this study. Mr. Thil Lul, Kak Lul and late Mut Tut have invaluable inputs to the thesis work without which completion of this work would have been impossible.

I am grateful to Diew Unity for providing partial financial and moral support to carry out this research work on Doprar forest.

I am grateful to Ethio-Telecom, Nyinenyang branch specially staff for allowing me to use their internet where there is no business centers.

Last but not least, I am grateful to my sisters, Nyahok Lul, Nyaduoth Lul and nyabuony William.

Contents

Acknowledgements	i
List of Appendices	. vi
Acronyms	vii
Abstract	viii
1. INTRODUCTION	1
1.1 Background of the study	1
1.2. Statement of the problem	2
1.3 Research Questions	3
1.4. OBJECTIVES	3
1.4.1 General Objective	3
1.4.2 Specific Objectives	3
1.4.3. Scope of the study	3
2. LITERATURE REVIEW	4
2.1 Overview of Ethiopian Vegetation (History)	4
2.2.1. Wooded grasslands of the western Gambella region	5
2.2.2. Riverine vegetation	5
2.3 Threats to Biodiversity in Ethiopia	5
2.4. Plant Community	6
2.5 Plant Species Diversity, Species Richness and Evenness	6
2.6. Abundance and frequency	7
2.7 Importance Value Index (IVI)	7
3. METHODOLOGY	8
3.1. Description of study area	8
3.2. Vegetation Survey and sampling design	9
3.2.1 Vegetation survey	9
3.2.2 Sampling design	9

	3.3 Vegetation Data collection	9
	3.4. Data analysis	. 10
4.	RESULTS AND DISCUSSIONS	. 12
	4.1 Result	. 12
	4.1.1 Floristic Composition	. 12
	4.1.2 Plant community types	.13
	I. Grewia mollis - Combratum collinum type Community	.13
	II. Flueggea virosa - Accacia seyal type Community	.13
	III. Ficus sur – Cadaba heterotricha type community	.14
	IV. Acacia hockii – Cadaba hetrotricha type Community	. 14
	4.1.3 Species diversity, richness and equitability	. 16
	4.1.4. Similarity between the community types	. 16
	4.1.5 Vegetation structure	. 17
	4.1.6 Tree density	. 17
	4.1.7 Diameter at breast height (DBH)	. 19
	4.1.8 Tree height	.21
	4.1.9 Basal area	. 22
	4.1.10 Frequency	.26
	4.1.11 Importance Value Index (IVI)	. 27
	4.1.12 Population structure	. 28
4.	2 Discussion	. 30
	4.2.1 Floristic composition of Doprar Forest	. 30
	4.2.2 Community structure	. 30
	4.2.3 Plant diversity and species richness	.31
5.	CONCLUSION AND RECOMMENDATION	. 32
	5.1 Conclusion	.32

5.2. Recommendation	
Reference	34
APPENDICES	

List of Figures and Tables

List of Figures

Figure 1: Map of Doprar forest	7
Figure 2: Composition of plant species in the various life forms identified in Doprar forest	
Figure 3: Dendrogram showing plant community types of the study area.	. 15
Figure 4: DBH Class and Density of Tree species	.20
Figure 5A & 5B: Population structure of tree species in Doprar forest	.29

List of Tables

Table 1: Shannon–Wiener Diversity Index	16
Table 2: The Sorensen's similarity of the communities	16
Table 3: Density of tree species and DBH classes of Doprar forest	
Table 4: Comparison of tree densities with DBH >10 and 20 cm from Doprar Forest with	other
forests	:9916776
Table 5: The comparison of Doprar Forest with other four forests in Ethiopia regarding	
percentage distribution of tree species in different DBH classes	
Table 6: The class distribution for trees higher than 5 m in Doprar Forest	22
Table 7: Basal area (BA) of all tree species in Doprar Forest	
Table 8: Comparison of Doprar forest with other 8 forests in Ethiopia with respect to base	al area
Table 9: Basal area, density, and percentage contribution of ten (10) tree species in Dopra	ar Forest
	25
Table 10: Frequency distribution of tree species in Doprar forest	

List of Appendices

Annex1: Species list collected from Doprar Forest.	39
Annex 2: Proportions of family and genus	42
Annex 3 Plots with their characteristic	43
Annex 4. Communities and plots they contain	45
Annex 5 Synoptic Table	46

Acronyms

CSA: Central Statistical Agency

EFAP: Ethiopian Forestry Action Program

ETH: National Herbarium

EWNH: Ethiopian wild life and natural history

EWNHS: Ethiopian Wildlife and Natural History Society

m.a.s.l: meter above sea level

NBSAP: National Biodiversity Strategy and Action Plan

Abstract

The study was carried out at Doprar Forest, Southwestern Ethiopia to determine floristic composition and to identify community types in the study area. A total of 60 plots, 20 m x 20 m along horizontal distance were laid to collect the data on cover-abundance, DBH, height, and density for trees and shrub. The data on herbaceous species were collected from five, 1 m x 1 m subplots laid at four corners each and one at the center of the large plot. A total of 79 plant species belonging to 57 genera and 32 families were identified. The five most dominant families were: Fabaceae 21 species, Combretaceae and Vitaceae are each represented by 5 species Commelinaceae and Convolvulaceae are each represented by 4 species. Four communities were derived from the PC-ORD by clustering the plots into groups, based on the abundance of the species. The name for each community type was given based on high synoptic values of tree and/or shrub species. Grewia mollis – Combratum collinum type community, Flueggea virosa – Acacia seyal type community, Ficus sur – Cadaba heterotrica type community and Acacia hockii - Cadaba heterotricha type community are the communities in Doprar forest. The study on vegetation and population structure showed that the density of tree species was high at the lower class levels. Tree density was 737.56 individuals per hectare and the basal area was 52.17m2/ha, frequency of all the tree species (762/ha) and the respective IVI values for each tree species were also calculated. The species with highest important value index was Ficus sur (27.61) followed by Ficus sycomorus (23.16). The comparison of Doprar forest with other forests in Ethiopia with respect to tree densities, percentage distribution of tree species, and basal area was done. Two general patterns of population structure were recognized, the J-inverted shape and bell shaped population structure.

Key words/Phrases: Doprar, Floristic composition, Plant community type, and Vegetation structure

1. INTRODUCTION

1.1 Background of the study

Forests worldwide are known to be critically important habitats for the biodiversity they contain and for the ecological functions they serve (Pearce and Pearce, 2001). People living in or around forests depend on the forests for many forest products and environmental services. However, the increasing population demands additional land for agriculture which in most cases can be met by forest conversion.

Tropical forests are the most diverse ecosystems and are often considered as the reservoirs of biodiversity and Ethiopia is a country with diverse and many important biological resources with estimation of higher plants is about 6000 species with 10–12% endemism (Hedberg, 2009). Studies made by (Friis and Demissew, 2001; Awas *et al.*, 2001; Yeshitela and Bekele, 2002, and Ayalew *et al.*, 2006) are some of the main vegetation surveys in different parts of Ethiopia aimed at describing community types and their relationship with some natural feature and anthropogenic features.

The Ethiopian vegetation is broadly divided by (Friis *et al.*, 2011) as desert and semi-desert scrubland, Acacia-Commiphora woodland and wooded grassland of the Rift valley, wooded grassland of the western Gambella region, Combretum–Terminalia woodland and wooded grassland, dry evergreen Afromontane forest and grassland complex, Moist evergreen Afromontane forest, transitional rainforest, ericaceous belt, Afroalpine vegetation, riverine vegetation, freshwater lakes (including lake shores, marshes, swamps and floodplain vegetation), and salt water lakes (including lake shores, salt marshes and pan vegetation).

The historical sources show that extensive forest was once covered by 35% of Ethiopia's land and these forests have dramatically declined in size and quality in the last century by 19 million hectares or 16% of the total land area in the beginning of the early 1950's, and further reduced to 3.6 % by the early 1980's and continued on reduction to 2.7% by 1989 (Million Bekele and Leykun Berhanu, 2001). The sharp decline in forest cover of the country is thus very serious threat to the conservation of biological diversity. The most important reason which derived the rapid deforestation rate in the country is an increase in human population growth. This rapid increment in human population is associated with a very high demand for agricultural and grazing lands, forest resources for firewood, charcoal, timber, construction, and many other purposes (Feyera Senbeta and Demel Teketay, 2003;Teshome Soromessa *et al.*, 2004). Loss of such forest resources would have great implication for the environment, biological diversity and socio-economic setup of the communities.

Most of the less accessible forests in Ethiopia are confined to the south and southwest parts of Ethiopia, (Kumelachew Yeshitela and Tamrat Bekele, 2002). Nowadays, human being is putting serious threat on these remnant natural forests in the areas. A study had been carried out to document and describes the floristic composition of Mejengir Forest in Gelesha, Gambella. The forest in Mejang zone is considered as one of the forest priority areas (FPA) in Ethiopia, with a total area of about 12,000 hectares and is under serious threat due to rapid human population growth, the demand for new settlement area and the expansion of investment for coffee and crop cultivation. It has been continuously exploited by the surrounding people for agricultural land expansion, timber harvesting (logging), firewood collection and charcoal production, wood cutting for construction and other purposes (Bilew Alemu *et al.*, 2015).

Knowledge of floristic composition and structure of forest is useful in identifying ecologically and economically important plants and their diversities protecting threatened and economical important plant species (Addo-Fordjour *et al.*, 2009)., the sustainable use of natural forest was the aim of the study for Doprar forest.

1.2. Statement of the problem

Doprar Forest is near to the Gambella National Park which is found in southwestern Ethiopia. Gambella National Park is one of the Forest Priority Areas (FPA) in Ethiopia with some of its parts threatened by cotton plantation and camps of refugees. Doprar Forest is among the forests in the country, which have not been studied before and it is the concern of this study. For effective management and conservation of this irreplaceable forest in the country, there is an urgent need to develop a successful management plan and this in turn requires detailed baseline information regarding the floristic composition to identify the most threatened species from the study area.

The rise in population, absence of law enforcements, the need for new settlement area and the expansion of unexpected investment for different plantations are some of the serious threats to

the southwestern Ethiopia where the remnants of natural forests are found. The problem is also seen in the study area, and causes damage to the natural forest of Doprar.

1.3 Research Questions

- > What are the plant species found in the study area?
- > What are the plant community types of the study area?
- > What does the vegetation structure of the study area look like?

1.4. OBJECTIVES

1.4.1 General Objective

The general objective of the study was to investigate the floristic composition of Doprar forest, Jekow District, Gambella National Regional State, Ethiopia.

1.4.2 Specific Objectives

The specific objectives of this study were:

- > To identify plant species of Doprar Forest
- > To determine plant community types of Doprar Forest.
- > To identify the vegetation type and structure of Doprar Forest.
- To compare the similarity of Doprar Forest with some other forests of Ethiopia regarding its floristic composition

1.4.3. Scope of the study

The study was mainly focusing on investigation of the floristic composition, structure and diversity of Doprar forest plant communities and was compared to other forests community. Other environmental parameters were considered but, the rate of deforestation was not a concern of this study.

2. LITERATURE REVIEW

2.1 Overview of Ethiopian Vegetation (History)

Vegetation is defined as collection of plants growing together in a particular location, or it is an area in a particular location that is covered by plant community (Jennings *et al.*, 2003). Ethiopia is the tenth largest country in Africa and is located in the tropics in the Horn of Africa between 3°24' to 15°N latitude and 33°00' and 48°00'E longitude and covers a land surface area of 1,113,000 km2 (Friis *et al.*, 2010).

Ethiopia has great variation in its topography with high mountains, river valleys, rolling plains, and with great variation of altitude from 126 meters below sea level to 4620 m a.s.l. (Girma Balcha *et al.*, 2003 and Tesfaye Awas, 2007). It has extreme variations in climate and landscape and the wide range of ecological systems. Ethiopia's flora consists of about 6,000 species of higher plants of which about 10% is considered endemic and also has over 300 tree species of which a few are important for industry and construction (Million Bekele and Leykum Berhanu, 2001). The plant species are distributed from below 100 up to 4500 m a.s.l. Species distribution reaches a maximum of 1600 taxa between 1200 and 1500 m. a.s.l., but shows decline below and above this altitudinal range (Friis and Sebsebe Demissew, 2001). Similarly, the highest numbers of endemic or near-endemic taxa are found in the same zone. But, the sum of near-endemic and strict endemic plants is still relatively high in between 0 and 305 m a.s.l. (Friis and Sebsebe Demissew, 2001). According to Friis and Sebsebe Demissew (2001), the flora composition and richness varies from region to region.

2.2 The vegetation type of Ethiopia

The vegetation type of Ethiopia is considered as extremely complex, where the complexity is due to the great variations in altitude and this difference in altitude in turn results in great variations of spatial distribution of vegetation in the country (Abate Ayalew, 2003).

Different researchers have studied the vegetation of Ethiopia at different times (Abate Ayalew, 2003; Fayera Senbeta, 2006; Motuma Didita, 2007; Sisay Nune, 2008; Haile Adamu *et al.*, 2012; Abyot Dibaba *et al.*, 2014) and some of them have classified the vegetation of Ethiopia into eight

categories, whereas others classify them into nine but the recent research by Friis *et al.*, 2010 have classified them in to twelve. These are:-

1) Desert and semi-desert scrubland, 2) *Acacia-commiphora* woodland and bushland, 3) Wooded grassland of the western Gambela region, 4) *Combretum-Terminalia* woodland and wooded grassland, 5) Dry evergreen Afromontane forest and grassland complex, 6) Moist evergreen Afromontane forest, 7) Transitional rain forest, 8) Ericaceous belt, 9) Afroalpine belt, 10) Riverine vegetation, 11) Salt lakes, salt-lake shores, marsh and pan vegetation and 12) Freshwater lakes, lake shores, marsh and floodplain vegetations. The description of vegetation that occurs in Gambella and a type of vegetation that occurs in the entire country is shortly described below.

2.2.1. Wooded grasslands of the western Gambella region

This type of vegetation occur only in Gambella region and it is characterized by a tall grass stratum that burns annually, and a canopy layer of trees that can both tolerate burning and temporary flooding. This vegetation is suffered from frequent occurrence of flood and fire (Friis *et al.*, 2010).

2.2.2. Riverine vegetation

This type of vegetation is highly variable in structure and density, and the floristic composition dependent on altitude and geographical location. As described by (Friis *et al.*, 2010), this vegetation is found almost in all parts of the country with permanent or temporary rivers and other streams below 1800m. However, it is relatively rare in the driest parts of Afar, Harerge and Sidama floristic regions.

2.3 Threats to Biodiversity in Ethiopia

Ethiopia is considered as a country having high biodiversity in Horn of Africa due to wide variations in climate, geology and topography working on different time scales (NBASAP, 2005). Historical sources indicates that, Ethiopia's land area was once covered with forest and reduced sharply due to clearance of natural vegetation, increase in human population, increasing in demand for agricultural land that resulted in extensive forest clearing for agricultural use, the increasing livestock population resulted in overgrazing, and an increasing demand for fire wood

and charcoal resulted that in exploitation of existing forests for fuel wood, and construction materials (Fayera Senbeta and Demel Teketay, 2003; Teshome Soromessa *et al.*, 2004).

Ecological and environmental problems such as soil degradation, soil erosion and alteration of natural resources are just some of the negative effects resulting from the destruction of these habitats (Kitessa Hundera *et al.*, 2007). Loss of such forest resources would have great implication for the environment, biological diversity and socio-economic setup of the communities.

2.4. Plant Community

The definition of Plant community is known to be groups of plants that occur together in repeating groups of associated plants. According to Kent and Coker (1992), plant communities are also defined as the collection of plant species growing together in a particular location that show a definite association or affinity with each other. A particular community is characterized by the identity and growth forms of the richest species, the largest species, or the most characteristic species. Plant communities cannot reproduce in environmentally different habitats or different climates without losing their identity (Mueller-Dombois and Ellenberg, 1974).

Plant communities are largely based on physical appearance or the growth form of the vegetation Kent and Coker (1992). Certain species are found growing together in certain locations and environments more frequently than would be expected by chance. This is because they have similar requirements for existence in terms of environmental factors such as light, temperature, water, drainage and soil.

2.5 Plant Species Diversity, Species Richness and Evenness

According to (van der Maarel, 1979), diversity has both an aspect of species richness, i.e. the number of species, and of evenness, the way species quantities are distributed. The description of a plant community includes the study of species diversity, evenness and similarity. The diversity and equitability of species in a given plant community is used to interpret the relative variations between and within the community and help explain the underlying reasons for differences. The idea of species diversity involves two relatively distinct concepts: species richness and evenness. Species richness refers to the total number of species in a community while evenness is the relative abundance of species within the sample or community (Kent and Coker, 1992). Patterns

of plant species diversity have often been noted for prioritizing conservation activities because they reflect the underlying ecological processes that are important for management (Lovett *et al.*, 2000; cited in Feyera Senbeta, 2006).

Species diversity can be viewed from different perspectives: alpha, beta and gamma diversity. Alpha diversity refers to the diversity of species within a particular habitat or community. Beta diversity is a measure of the rate and extent of change in species composition along a gradient from one habitat to another. Between-habitat diversity is used as a measure of turnover rates. Beta diversity is sometimes called habitat diversity (Kent and Coker, 1992). Gamma diversity is the diversity of species in comparable habitats along a geographical transects and it depends on the alpha and beta diversity (Kent and Coker, 1992). A species diversity index provides information about community composition rather than simply species richness.

Measures of species diversity are usually seen to be key indicators for the safety of ecological systems. The most widely used index that combines species richness with evenness is Shannon Diversity Index, which varies between 1.5 and 3.5 and rarely, exceeds 4.5 and Sorenson's Similarity ratio are important diversity measuring tools for ecology (Kent and Coker, 1992).

2.6. Abundance and frequency

According to (Kent and Coker, 1992), Abundance is the number of individual plants of a given species per unit area. It can be used to show spatial distribution and sorts over time. Frequency is the proportion of plots in which a species occurs. It is used to measure the occurrence of a given species in a given area. This indicates how the species are dispersed and is an ecologically meaningful parameter.

2.7 Importance Value Index (IVI)

Species important value is measured on the basis of species density, frequency and dominance values to permit a comparison of species in the vegetation being studied and reflects the occurrence, dominance and abundance of a given species in relation to other associated species in an area (Kent and Coker, 1992). Therefore, measuring the species importance value is a good index for summarizing vegetation features and ranking the species for management and conservation practices.

3. METHODOLOGY

3.1. Description of study area

Doprar forest is located in Jekow District, Southwestern Ethiopia, about 916 km away from Addis Ababa, capital of the country. The District as whole has a total area of 1,081.04 km² with sixteen rural villages. The geographical location of the District lies between latitude and longitude of 08°18'N 33°49'E to 08°28'N 33°53'E. Its altitudinal ranges between 300 to 600 meters above sea level. According to 2007 Census conducted by the Central Statistical Agency of Ethiopia (CSA, 2007), the District has a total population of 35,556, of whom 19,134 are men and 16,422 women. Jekow district is categorized under tropical rainy climatic zone. Its vegetation type is wooded grassland with an extensive plain topographic feature (PADS, 2004). The annual rainfall and mean annual temperature in the district are 1,247 mm and 34.37 0C, respectively (GRS, 2003). The rainfall regime is unimodal, referred to as the "Sudan Type", occurs in the lowlands along the border with South Sudan (PADS, 2004).

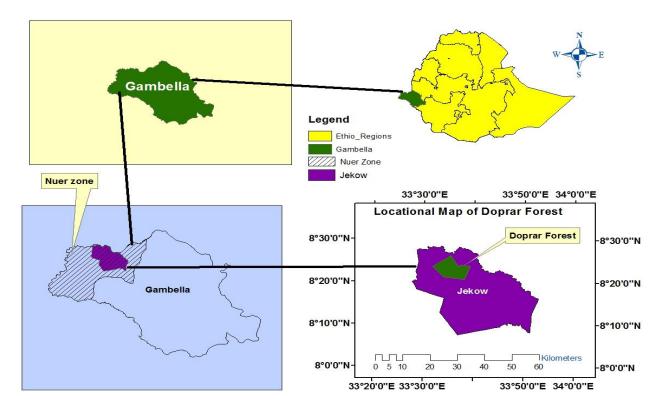


Figure 1: Map of Doprar Forest

3.2. Vegetation Survey and sampling design

3.2.1 Vegetation survey

A reconnaissance survey was made before the actual data collection to obtain information about the general vegetation forms of the study area. The data collection was conducted from March-April-2018.

3.2.2 Sampling design

A systematic sampling technique was used to collect vegetation data in the Forest. A total of 60 sampling plots of size $20m \times 20m (400m^2)$ were used for collecting trees, shrubs and lianas. For the ground flora (herb), five $1m \times 1m$ sub plot were established within the main sampling plot. Sampling plots was laid systematically at every 200m along four transect lines established parallel to the road that pass through the forest along horizontal distance. The distance between each transect was 400m apart from each other.

3.3 Vegetation Data collection

Plant species including, tree, shrubs and lianas in each quadrat was recorded in established plots along transects. Additional plant species occurring outside the quadrat, but inside the study area was also documented but only as "present", they were not used in the cluster and ordination of data analysis. The plant specimens were assigned by tentative field identifications and local name (Nuer and/or Amharic) and then brought to Jimma University Herbarium where voucher specimens are deposited. Taxonomic identification was made following the Flora of Ethiopia and Eritrea Vol. 4(2) (Hedberg *et al.*, 2004) by consulting experts. Cover-abundance values of trees and shrubs was estimated following modified 1–9 Braun-Blanquette scale as converted by Van der Maarel (1979). Height and diameter at breast height (DBH) was measured for any woody plant species with height ≥ 2 m and DBH ≥ 2 cm. Individuals having height <2 m and DBH <2 cm was not counted. Height and DBH was measured by using diameter tape.

3.4. Data analysis

i. Vegetation classification

The vegetation data analysis was conducted following Gauch (1982), Jongman *et al.* (1987) based on species abundances (the number of individuals). PC-ORD window version 5.31 software was used for plant community analysis. Sørensen (Bray-Curtis) was taken as distance measure and Flexible β as group linkage model with a flexible β of -0.50 was used on the vegetation data. The communities were refined into a synoptic table and the community name was derived based on the tree or shrub with high synoptic value.

ii. Vegetation structure

Structural analysis was performed on the basis of density, frequency, DBH and basal area per hectare. Ten DBH classes (2-10, 10-20, 20-30, 30-50, 50-70, 70-90, 90-110, 110-130, 130-150, and >150 cm) were constructed. The distribution of the size classes was evaluated by computing the density of individuals with DBH >10 cm and > 20.

Structural parameters were computed following Mueller-Dombois and Ellenberg (1974), and Martin (1995) as follow;

- > Basal area (m²) = $\pi d^2/4$, where π =3.14 and d= DBH in (cm)
- Percent frequency of a species = (the number of plots in which that species occurs / total number of plots) * 100.
- Relative frequency = (Frequency of species A / total frequency of all species) * 100
- > Density of a species = number of individuals of that species / area sampled.
- Relative density = (Density of species A / total density of all species) * 100
- Dominance = Total of basal area / area sampled
- Relative dominance = (Dominance of species A / total dominance of all species) * 100
- Importance value index = Relative density + Relative frequency + Relative dominance

iii. Diversity analysis

Shannon -Wiener Diversity Index was used to analyze the species diversity, species richness and evenness of the vegetation as:

 $H= - \sum PilnPi$

Where H: Shannon-Wiener Index.

Pi: proportion of individual tree species.

ln: log base_n

The equitability or evenness of the species in each quadrat was computed using the formula:

Equitability J = H'/H' max, where;

 $\mathbf{J} = \text{Evenness},$

H' = Shannon-Wiener diversity index and

H' max = lns, where s is number of species

iv. Similarity

The similarity index that was used for comparison was **Sorenson's Similarity Index.** It was used to evaluate the similarity between the four plant community types of the vegetation in the study area as well as the similarity between and other previously studied woodlands on the basis of their species composition.

 $\mathbf{Ss} = \frac{2a}{2a+b+c}$

Where: Ss = Sorensen's similarity coefficient

a = number of species common to both samples /communities/ study areas

 \mathbf{b} = number of species in sample 1

 \mathbf{c} = number of species in sample 2

4. RESULTS AND DISCUSSIONS

4.1 Result

4.1.1 Floristic Composition

A total of 79 plant species were recorded which belong to 57 genera and 32 families (Annex 1). Out of 79 species of plants recorded, 24 species were trees, 23 species were herbs, 17 species were shrubs, and climbers are represented by 14 species (Figure 2) is referred to their respective percentage.

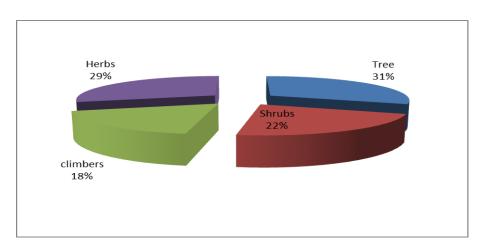


Figure 2: Composition of plant species in the various life forms identified in Doprar forest.

Out of 32 families identified the major families in decreasing orders are: Fabaceae represented by 21 species (26.58%), Combretaceae and Vitaceae are each by 5 species (6.32%), Commelinaceae and Convolvulaceae are each represented by 4 species (5.06%), Anacardiaceae, Capparidaceae, Cyperaceae, Euphorbiaceae and Rhamnaceae are each represented by 3species (3.79%), Lamiaceae, and Moraceae and Tilliaceae are each represented by 2 species (2.53%). The remaining families altogether account for 25.3% of the total species composition each family is represented by 1 species (Annex 2)

Among the identified 57 genera, the most diverse were *Acacia, Combratum, Crotolera* and *Ipomoea* each represented by 4 species, followed by *Cisscus, Convolvus, Cyperus* and *Zizypus* each represented by 3 species, *Cadaba, Ficus, Grewia*, and *Indigofera*, each represented by 2 species. The rest of the genera were represented each by 1 species (Annex 2).

4.1.2 Plant community types

A total of four clusters were derived from the PC-ORD to repeatedly cluster the plots into groups, based on the abundance of the species (Figure 3) and the name for each community type was given based on high synoptic values of tree and/or shrub species (Annex 5). Plots with their characteristics and communities with the number of Plots they contained are given in Annex 3 and 4 respectively.

I. Grewia mollis - Combratum collinum type Community

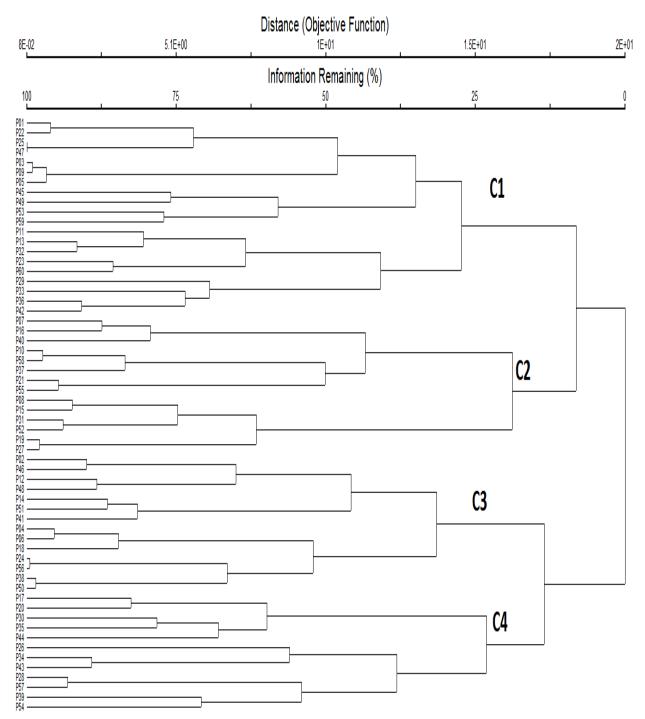
This community type is distributed between the altitudinal ranges of 408-453 m a.s.l. It is dominated by *Grewia mollis, Ficus sur, Combretom molle, Balanite aegyptica, Ficus sycomorus, Flueggea virosa, Acacia seyal, Crateva adansoni, Meyna tetraphylla* among tree species and Cadaba heterotricha, Senna septemtrinalis, Bridelia scleuromeura, Indigofera brevicalyx, Lannea barteri are among the shrub species. The herb layer is dominated by Cyperus eleusinoides, Cissus quadrangular, Crotolaria brevidens, Aeschynomenna abyssinica, Convolvulus siculus, Ipomoea purpurea, Ipomoea eriocarpa, Ipomoea aquatic, Leucas mollis, Erucastrum arebicum and the common Climbers/lianas of this community are Coccinia grandis, Plumbago zeylanica, Cissus petiolata, Dioscoria prehensilis, and Opilia amentacea.

II. Flueggea virosa - Accacia seyal type Community

This community is found between 409-441 m a.s.l. The most dominant species in the upper canopy of this community are *Accacia seyal*, *Ficus sycomorus*, *Grewia mollis*, *Ficus sur* and *Lannea welwitschii*, *Balanite aegyptica*, *Maytenus senegalensis*, *Crateva adansoni* are the other tree species of the community. The dominant climbers are *Ampelocissus schimperiana*, *Coccinia grandis*, *Cyphostemma adenocuale*, *Dioscoria prehensilis*, *Teramus labialis*.

The shrub layer includes Lannea barteri, Cadaba heterotricha, Combratom collinum, Combratum adenogonium. The dominant herbs are Erucastrum arebicum, Crotolaria brevidens, Leucas mollis, Cyperus eleusinoides, Convolvulus sagittatus, Cyperus esculentus, Aeschynomenna abyssinica, Cyperus rotundus, Indigofera preureana, Convolvulus olitorius, Leonotis raineriana, Ipomoea purpurea, Desmodium dichotunum. III. Ficus sur – Cadaba heterotricha type community

This community is found between 412-450 m a.s.l. The most dominant tree species of this community are *Ficus sur*, *Acacia hockii*, *Ficus sycomorus*, *Grewia tenax*, *Balanite aegyptica*, *Grewia mollis*, *Lannea welwitschii*, *Maytenus senegalensis*, *and Acacia seyal*. The shrub species dominating this community are *Cadaba heterotricha*, *Chlorophytum tordense*, *Combretom molle*, *Crotolaria bongenisis*. The climbers dominating this community are *Teramus labialis*, *Peripeloca linearifolia*, *Coccinia grandis*, *Plumbago zeylanica*.


The dominant herbs of this community are *Cyperus esculentus*, *Convolvulus olitorius*, *Crotolaria goreensis*, *Cyperus rotundus*, *Ipomoea eriocarpa*, *Crotolaria ochroleuca*, *Convolvulus siculus*, *Ipomoea aquatic*.

IV. Acacia hockii - Cadaba hetrotricha type Community

The plots in this community are distributed in the altitude range of 406 - 439 m a.s.l. The dominant tree species in the community are *Acacia hockii*, *Flueggea virosa*, *Ficus sur*, *Cadaba farinose*, *Grewia mollis*, *Grewia tenax*, *Maytenus senegalensis*, *Ziziphus spinachrstichrsti*, *Lannea welwitschii*.

Combretom adenogonium, Combratum collinum, Indigofera brevicalyx, Chlorophytum tordense, Bridelia scleuromeura are the common shrubs of this community. Combretum molle, Solanum nigrum, Crotolaria bongenisis, Rhynchosia malacaphylla, Gutenbergia corditolia, Senna septemtrinalis are also among the shrubs of this community.

The climbers found in this community type are *Ampelocissus schimperiana*, *Coccinia grandis*, *Vigna ambacensis*, *Peripeloca linearifolia*, *Plumbago zeylanica*.

Doprar Forest

Figure 3: Dendrogram showing plant community types of the study area.

4.1.3 Species diversity, richness and equitability

The Shannon-Wiener Diversity index computation of vegetation data from Doprar Forest is shown in Table 1.

Communities Types	Richness	Diversity (H ')	H'max	
				Shannon Eveness(H'/H'max)
1	77	3.91	4.34	0.90
2	74	2.62	4.30	0.61
3	74	2.62	4.30	0.61
4	73	2.44	4.29	0.57

Table 1: Shannon–Wiener Diversity Index

Community 1 have diversity index above 3.0. This community attained a species evenness index (J) of 0.90 showing the highest even distribution of species and the next communities 2 (J = 0.61) and 3 (J = 0.61) have diversity index of 2.62 respectively. Community 4 got a diversity index of 2.44 and is less diversified when compared to the others with (J=0.57).

4.1.4. Similarity between the community types

The Sorensen's similarity coefficient of the four communities shows that, community 1 and 2 have the highest similarity (49%) followed by community 1 and 3, 1 and 4, 2 and 3, 2 and 4 then 3 and 4 which have equal similarity ratios of 48%. The overall communities have showed relatively nearest/the same similarity amongst each other. This might be due to that many of the species are distributed throughout the communities and due to small variation in altitude.

Table 2: The Sorensen's similarity of the communities

Community	C1	C2	С3	C4
C1	_	0.49	0.48	0.48
C2		_	0.48	0.48
С3			—	0.48
C4				—

4.1.5 Vegetation structure

4.1.6 Tree density

Density is expressed as the number of individuals present per hectare of an area. The density of tree species with DBH greater than 2, 10, and 20 cm is shown in Table 3. The Density of trees with DBH greater than 2 cm in the study area is 543.12/ha. The number of stems with DBH >10 cm was found to be 290.62/ha and those with DBH >20 cm was 145.62. Flueggea virosa and Ficus sur alone contributed to 21% of the total density. Other tree species namely Lannea welwitschii (6.72%), Maytenus senegalensis (6.61%), Crateva adansoni (6.04%), Balanite aegyptica (5.70%), Grewia tenax (5.35%) and Ziziphus spinachrstichrsti (5.13%) contributed to 33.55% of the total density of tree with DBH greater than 2 cm. Regarding trees with DBH class greater than 10 cm, Ficus sur contributed 11.37%, Balanite aegyptica 10.72%, Ficus sycomorus 8.53%, Grewia tenax 7.87%, Cadaba farinosa 6.56%, Maytenus senegalensis 5.90%, Ziziphus abyssinica 5.25%, Zizyphus pubescens 5.03% and the others are less than 5 per cent. Concerning trees with DBH > 20 cm *Crateva adansoni* contributed to 12.01%, *Ficus sycomorus* (9.01%), Balanite aegyptica 7.72 %, Sclerocarya birrea 7.72%, Flueggea virosa 6.34%, Grewia tenax 6.43%, Lannea welwitschii 6%, Cadaba farinosa 5.15%, Ziziphus spinachrstichrsti 4.72%, Zizyphus pubescens 4.72%, Ficus sur 4.29% Maytenes senegalensis 4.29%, Vachellia seval 4.29% and the rest are less than 4 per cent.

			DBH	
No	Species	>2	>10	>20
1	Balanite aegyptica	31.25	30.62	11.25
2	Cadaba farinosa	26.25	18.75	07.50
3	Crateva adansoni	33.12	11.87	17.50
4	Ficus sur	52.50	32.50	06.25
5	Ficus sycomorus	38.12	24.37	13.12
6	Flueggea virosa	62.50	11.87	09.37
7	Grewia tenax	29.37	22.50	09.37
8	Lannea welwitschii	36.87	13.75	08.75
9	Lonchocarpus laxiflorus	20.00	09.37	04.37
10	Maytenus senegalensis	36.25	16.87	06.25
11	Meyna tetraphylla	23.12	11.87	05.00
12	Sclerocarya birrea	26.25	11.25	11.25
13	Tamarindus indica	08.75	13.75	05.62
14	Terminalia macroptera	06.87	03.12	02.50
15	Vachellia seyal	21.87	11.87	06.25
16	Ximenia americana	25.62	06.87	02.50
17	Ziziphus abyssinica	20.62	15.00	05.00
18	Ziziphus spinachrstichrsti	28.12	10.00	06.87
19	Zizyphus pubescens	15.62	14.37	06.87
Total	· · · ·	543.12	290.62	145.62

Table 3: Density of tree species and DBH classes of Doprar forest

A comparison was made for tree densities with DBH greater than 10 cm and 20 cm in Doprar Forest with that of five different forests in Ethiopia (Table 4). The ratio of tree densities with DBH >10 cm to tree densities > 20 cm is also included in the comparison.

Forest	DBH cla	Ratio	
	DBH >10 (A)	DBH >20 (B)	A/B
Masha Anderacha ¹	385.70	160.50	2.40
Dodola ²	521.00	351.00	1.50
Dindin ³	437.00	219.00	1.99
Magada ⁴	608.00	332.00	1.80
Bibita ⁵	500.50	265.60	1.90
Doprar Forest	285.62	145.62	1.96

Table 4: Comparison of tree densities with DBH >10 and 20 cm from Doprar Forest with other forests.

Source: ¹Kumelachew Yeshitela and Taye Bekele (2003), ²Kitessa Hundera (2003), ³Simon Shibru and Girma Balcha (2004), ⁴Genene Bekele (2005), ⁵Dereje Denu (2007)

The comparison showed that, the ratio of tree densities with DBH >10 cm to density >20 cm in Doprar forest is nearly similar with Bibita and Dindin forests. The ratio A/B indicated that Doprar Forest has more trees in lower DBH classes than in the higher classes when compared to Dodolla, Magada and Bibita. Two forest types in the comparison (Masha Anderacha and Dindin) have more A/B ratio values than Doprar Forest indicating that there is more predominance of trees in the lower DBH class in these forests than in Doprar. Even though it is not as large as in the two forests with A/B ratio >2, the study shows that there is high proportion of tree density in the lower DBH class.

4.1.7 Diameter at breast height (DBH)

The diameter at breast height (DBH) class distribution of the tree species is given in Fig. 4. The density of DBH class less than 10 cm is 250/ha (25.7%) and the distribution of tree species in different DBH classes is 25.1/ha (23.12%) in 10-20 cm, 198.12/ha (20.36%) in 20-30 cm, 140.62/ha (14.45%) in 30-50 cm, and 78.12/ha (8.02%) in 50–70 cm, 37.5/ha (3.85%) in 70-90 cm, 25.03 (2.56%) in 90-110 cm, 12.5/ha (1.28%) in 110-130cm, 7.5/ha (0.77%) in 130-150 and the last class was found to be 10.62 (1.09%) of the total in the DBH class >150 cm. The distribution of trees in DBH class from lower to higher showed a decreasing inclination. Lower value of density was observed at higher DBH classes and this may be attributed to selective removal of mature trees for various purposes and this indicate that, the forest is secondary stage

of regeneration. Doprar Forest is also compared with other forests in Ethiopia regarding percentage distribution of tree species in different DBH Classes (Table 5)

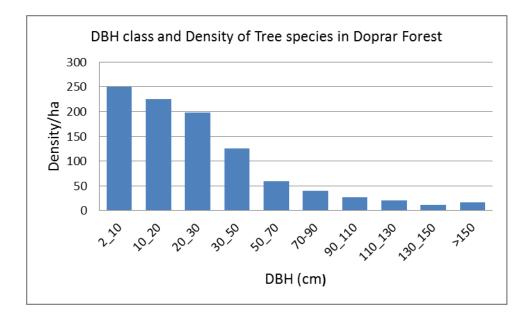


Figure 4: DBH Class and Density of Tree species

Table 5: The comparison of Doprar Forest with other four forests in Ethiopia regarding percentage distribution of tree species in different DBH classes

(I = 10-20, II = 20-50, III = 50-80, IV = 80-110, V = 110-140, VI = >140. i.e- the DBH class is similar for all forests)

Forest	DBH Classes (cm)					
	Ι	II	III	IV	V	VI
Menagesha ¹	56.9	32.8	06.5	02.5	0.0	0.0
Denkoro ²	46.0	46.0	06.3	01.1	0.2	0.4
Menna Angetu ³	32.8	25.5	08.9	02.4	0.7	1.1
Bibita ⁴	30.2	24.4	06.2	01.7	0.5	1.4
Doprar forest	23.1	20.3	14.4	2.5	0.7	1.1

Source: 1 = Tamrat Bekele (1993), 2 = Abate Ayalew (2003), 3 = Ermias Lulekal (2005), 4=Dereje Denu (2007)

In DBH class (I), Doprar forest is lower than all other forests and in DBH class (II), Doprar Forest show slight similarity to Bibita and Menna Angetu. The percent of trees in DBH class (III) in Doprar Forest is higher than all other forests. The percent of trees in DBH class IV in Doprar Forest is similar to that of Menagesha and Menna Angetu and higher than that of Denkoro and Bibita. The percent of trees in DBH class (V) in Doprar forest is similar to Menna Angetu and higher than that of Menagesha (has no tree in this DBH class), Denkoro and Bibita. The percent of trees in DBH class (VI) in Doprar forest is similar to that of Menagesha (has no tree in this DBH class), Denkoro and Bibita. The percent of trees in DBH class (VI) in Doprar Forest is similar to that of Menagesha (has no tree in this DBH class), Denkoro and Bibita. The percent of trees in DBH class (VI) in Doprar Forest is similar to that of Menna Angetu and higher than that of Menagesha (has no tree in this DBH class) and Denkoro, but lower than Bibita. This shows that Doprar forest is characterized by middle sized trees than others.

4.1.8 Tree height

The trees in the study area were divided into six height classes. The percent of trees decreased with increasing height classes (Table. 6). The height class (I) represents the highest number of individual of trees 246.87/ha (33.5%) and most of the tree species are found in this class. The height class (I) and (II) alone makes 417/ha (56.5%). Trees in the height classes III and IV together are found to be 231.87 (31.5%). The trees in height class (V) and (VI) together are found to be 88.72/ha (12%) and it is represented by only few species. The trees representing the

height class VII are *Ficus sur* (70.45%), *Lannea welwechii* (18.32%) and *Vachellia seyal*(12.32%).

As height rises from one class to the other, the density of individuals drops dramatically. This clearly reveals the dominance of small sized individuals and the presence of high regeneration but lower recruitment and absence of matured individuals and this could be caused by different factors including influx of people and selective cutting at larger size class. Fekadu Gurmessa (2010) stated that the density decreasing with increasing height could be attributed to a high rate of regeneration but irregular recruitment potential.

Height class	Density/ha	%	Class
5-10	246.87	33.5	Ι
10-15	170.1	23	II
15-20	159.37	21.5	III
20-25	72.5	10	IV
25-30	70	9.5	V
<30	18.72	2.5	VI
Total	737.56	100	

Table 6: The class distribution for trees higher than 5 m in Doprar Forest

4.1.9 Basal area

Basal area is an important parameter for measuring relative importance of plant species (Tamrat Bekele, 1994). Hence, plant species with larger basal area in a forest is considered as the most important species in that forest. The basal area in m²/ha and percentage contribution of all tree species was determined in Doprar Forest. The basal area of all tree species in Doprar Forest as calculated from DBH data is found to be 52.17 m²/ha (Table 7). *Ficus sur* took the largest share in the percentage contribution of basal area (11.38%) of this forest. Other large trees in this forest such as *Ficus sycomorus* (9.20%), *Maytenus senegalensis* (7.66%), *Balanite aegyptica* (6.84%), *Sclerocarya birrea* (6.80%), *Vachellia seyal* (6.25%), *Ziziphus spinachrstichrsti* (6.24%), *Grewia tenax* (5.86%), *Tamarindus indica* (5.57%) and *Ximenia americana* (5.50%) together with *Ficus sur* contributed to 71.24% of the total basal area. The trees with highest densities such

as Lonchocarpus laxiflorus, and Flueggea virosa with basal area values of 1.66 and 1.07 each did not contribute much to the total basal area of this forest, as area depends on the size of the tree. The plant species with highest basal area was *Ficus sur* which is about 1.23 times more important than *Ficus sycomorus*, and the second plant species with high basal area (*Ficus sycomorus*) was about 1.20 times more important than *Maytenus senegalensis*. The other tree species produced the highest basal area, but less density. The basal area of this forest is compared with the basal area of other 8 forests in Ethiopia (Table 8).

Species	BA/ha	Relative BA
Balanite aegyptica	03.57	6.84
Cadaba farinose	01.29	2.50
Crateva adansoni	02.60	5.00
Ficus sur	05.94	11.38
Ficus sycomorus	04.80	9.20
Flueggea virosa	00.56	1.07
Grewia tenax.	03.06	5.87
Lannea welwitschii	02.03	3.90
Lonchocarpus laxiflorus	00.87	1.67
Maytenus senegalensis	04.00	7.66
Meyna tetraphylla	01.95	3.73
Sclerocarya birrea	03.55	6.80
Tamarindus indica	02.91	5.60
Terminalia macroptera	01.53	2.93
Vachellia seyal	03.26	6.25
Ximenia americana	02.82	5.40
Ziziphus abyssinica	02.27	4.35
Ziziphus spinachrstichrsti	03.26	6.25
Zizyphus pubescens	01.90	3.64
Total	52.17	100

Table 7: Basal area (BA) of all tree species in Doprar Forest

Table 8: Comparison of Do	prar forest with	other 8 forests in	n Ethiopia with respect
	to basal	area	

Forest	Basal Area
Bibita ¹	69.9
Magada ²	68.52
Dindin ³	49
Donkoro ⁴	45
Masha Anderacha ⁵	81.9
Menagesha ⁶	36.1
Chilimo ⁶	30.1
Wof Washa ⁶	101.8
Doprar	52.17

Source: 1 = Dereje Denu (2007), 2 = Ermias Lulekal (2005), 3 = Simon Shibru and Girma Balcha (2004), 4 = Abate Ayalew (2003), 5 = Kumilachew Yeshitela and Taye Bekele (2003), 6 = Tamrat Bekele (1993)

Dindin Forest has almost the same Basal area with Doprar forest. Some forests such as Bibita, Magada, Masha Anderacha and Wof Washa have higher basal area while Dindin, Donkoro, Menagesha, and Chilimo have much less basal area than Doprar forest. When compared to Wof Washa and Masha Anderacha forests, Doprar Forest is much lower in its basal area. This may be due to the presence of plant species with larger DBH than the mentioned forests. The basal area and density of 10 tree species with their respective percentage contribution is given in Table 9.

Species	BA/ha	%	Density	%
Ficus sur	05.94	11.38	91.75	16.95
Ficus sycomorus	04.80	9.20	75.62	13.97
Maytenus senegalensis	04.00	7.66	59.37	11.01
Balanite aegyptica	03.57	6.84	73.12	13.51
Sclerocarya birrea	03.55	6.80	45.12	10.00
Vachellia seyal	03.26	6.24	31.87	05.88
Ziziphus spinachrstichrsti	03.26	6.24	44.37	08.19
Grewia tenax.	03.06	5.86	56.87	10.50
Tamarindus indica	02.91	5.57	28.12	05.19
Ximenia americana	02.82	5.40	35.00	06.46

Table 9: Basal area, density, and percentage contribution of ten (10) tree species in Doprar Forest

4.1.10 Frequency

Frequency is the proportion of plots in which a species occurs. It is a measure of the occurrence of a given species in a given area. It indicates how the species are dispersed and is an ecologically meaningful. The frequency of all the tree species in this forest is given in Table 10. Two tree species were most frequently occurring. These tree species are *Ficus sur* 86.67% (52 plots), *Balanite aegyptica* 83.33% (in 50 plots. All other tree species have more than 50% in their occurrence except the least frequent species which is *Terminalia macroptera* 20% (occur only in 12 plots).

Table 10: Frequency distribution of tree species in Doprar forest

Species	Fr	%Fr	RFr
Balanite aegyptica	50	83.33	6.56
Cadaba farinose	42	70.00	5.51
Crateva adansoni	49	81.67	6.43
Ficus sur	52	86.67	6.82
Ficus sycomorus	47	78.33	6.16
Flueggea virosa	45	75.00	5.90
Grewia tenax.	42	70.00	5.51
Lannea welwitschii	45	75.00	5.90
Lonchocarpus laxiflorus	34	56.67	4.46
Maytenus senegalensis	48	80.00	6.29
Meyna tetraphylla	41	68.33	5.38
Sclerocarya birrea	44	73.33	5.77
Tamarindus indica	32	53.33	4.19
Terminalia macroptera	12	20.00	1.57
Vachellia seyal	34	56.67	4.46
Ximenia Americana	34	56.67	4.46
Ziziphus abyssinica	37	61.67	4.85
Ziziphus spinachrstichrsti	38	63.33	4.98

(Fr = frequency, %Fr = % frequency, RFr = relative frequency).

Zizyphus pubescens	36	60.00	4.72
Total	762	1270	100

4.1.11 Importance Value Index (IVI)

Important Value Index reflects the combination of relative dominance, relative abundance and relative density of a given species in relation to other associated species in an area (Kent and Coker, 1992). It is important to compare the ecological significance of species. The importance value index for tree species in Doprar forest is shown in Table 11. Shibru and Balcha (2004) stated that, species with the greatest importance value are the leading dominant in specified vegetation. *Ficus sur* (27.61), *Ficus sycomorus* (23.16), *Balanite aegyptica* (20.94), *Maytenus senegalensis* (20.08), *Crateva adansoni* (17.85), *Grewia tenax* (17.75), *Sclerocarya birrea* (17.28), *Lannea welwitschii* (15.91), *Ziziphus spinachrstichrsti* (15.87), and *Flueggea virosa* (15.61) are ten most dominant tree species with IVI value greater than 15. They contribute 192.11 (64.03%) from a total of 300 IVI value. The reason why they have higher IVI value is that they have higher relative density, relative frequency and relative abundance in relation to other species in the Forest. The reason for dominance of *Ficus sur* in the forest may be due to its low demand for construction purposes.

No	Species	RF	RD	RA	IVI
1	Balanite aegyptica	6.56	7.53	6.84	20.94
2	Cadaba farinosa	5.51	5.41	2.47	13.39
3	Crateva adansoni	6.43	6.44	4.98	17.85
4	Ficus sur	6.82	9.40	11.38	27.61
5	Ficus sycomorus	6.16	7.79	9.20	23.16
6	Flueggea virosa	5.90	8.63	1.07	15.61
7	Grewia tenax.	5.51	6.37	5.86	17.75
8	Lannea welwitschii	5.90	6.12	3.89	15.91
9	Lonchocarpus laxiflorus	4.46	3.47	1.66	9.60

Table 11: Importance value index of tree species in Doprar Forest (RF = Relative frequency, RD = Relative density, RA = Relative abundance, IVI = Importance value index)

10	Maytenus senegalensis	6.29	6.12	7.66	20.08
11	Meyna tetraphylla	5.38	4.25	3.73	13.37
12	Sclerocarya birrea	5.77	4.70	6.80	17.28
13	Tamarindus indica	4.19	2.89	5.57	12.67
14	Terminalia macroptera	1.57	1.28	2.93	5.79
15	Vachellia seyal	4.46	3.28	6.24	13.99
16	Ximenia americana	4.46	3.60	5.40	13.47
17	Ziziphus abyssinica	4.85	4.18	4.35	13.39
18	Ziziphus spinachrstichrsti	4.98	4.63	6.24	15.87
19	Zizyphus pubescens	4.72	3.80	3.64	12.16
	Total	100	100	100	300

4.1.12 Population structure

The patterns of diameter class distribution indicate the general trends of population dynamics and recruitment processes for a given species. Analysis of all tree species in the study site shows two general patterns (Figure 5A & 5B). The first pattern was positively skewed or an inverted Jshape, which has a high number of species in the lower DBH classes and the number of individuals in the species showed a gradual reduction at the highest DBH classes. This pattern was represented by the species *Cadaba farinosa*. The species that are in this population are *Balanite aegyptica, Crateva adansoni, Ficus sur, Ficus sycomorus, Flueggea virosa, Grewia tenax, Lannea welwitschii, Lonchocarpus laxiflorus, Meyna tetraphylla, Maytenus senegalensis, Sclerocarya birrea, Terminalia macroptera, Vachellia seyal, Ximenia americana, Ziziphus abyssinica, Ziziphus spinachrstichrsti* and *Zizyphus pubescens.* The species *Terminalia macroptera* and *Ximenia americana* failed only in the first lower DBH class. Thus these species are under recruitment.

The second type of population pattern was bell shaped and is characterized by the species *Tamarindus indica*. It shows a fairly high number of individuals of the species in the middle DBH classes but lower numbers of individuals of the species in the lower and higher DBH classes. This species has poor recruitment potential which might be due to intense competition between the other species found in its surroundings.

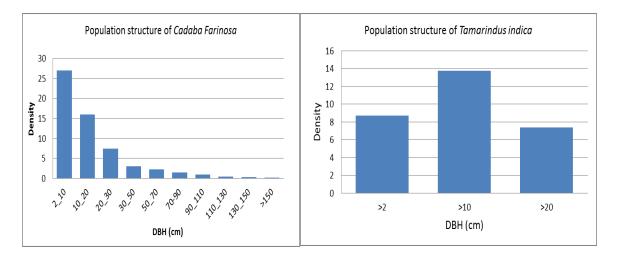


Figure 5A

Figure 5B

Figure 5A & 5B: Population structure of tree species in Doprar forest.

4.2 Discussion

4.2.1 Floristic composition of Doprar Forest

Doprar forest which is woody grassland in the south-west Ethiopia is rich in biodiversity. In Ethiopia, the available floristic data are either site specific (Yeshitela and Bekele, 2002) or covering a wide range of vegetation types (Friis, 2001); hence, it is difficult to make direct comparison with other similar studies. However, the overall species richness of a given vegetation type can give a general impression of their diversity. The species richness of Doprar forest (79 species) was less comparable with the Afromontane and transitional rainforest vegetation in southwestern Ethiopia, that is, 130 species (Kumelachew Yeshitela and Taye Bekele, 2003) and the Bibita (Gura Ferda) forest, also in southwestern Ethiopia, that is, 196 species (Dereje Denu, 2007).

4.2.2 Community structure

From the four plant communities identified in Doprar forest, community I was relatively far from human encroachment and has relatively higher diversity and species richness. However, community IV was less rich in species composition as it was located near to the human settlement, and vulnerable to human interference. It was observed that people from the surrounding village cut trees for construction of house and fence. They also let their domestic animals into the forest for grazing/browsing. Plant community distribution is the manifestation of physical gradients (elevation, soil heterogeneity and microclimate), biotic response to these gradients and historical disturbances (Urban et al., 2000). Horizontal distance influences the growth and development of plants and their distribution patterns. In addition to altitude, factors like slop and soil characters might have influenced the plant communities in Doprar forest. The patterns of diameter class distribution indicate the general trends of population dynamics and recruitment processes in plant communities. Accordingly, the plant communities in Doprar forest showed good recruitment except for community IV, which had less recruitment when compared with the other plant communities. The species richness among the plant communities in the Doprar forest varied significantly. These differences were a function of differences in habitat heterogeneity and human disturbance. It was observed that burning and grazing were common in areas where community IV was located. The low species richness in this community might be due to anthropogenic disturbances, which had significantly reduced species richness.

4.2.3 Plant diversity and species richness

Species evenness shows the relative abundance of a species in plots. Lower evenness in community IV indicates the dominance of a few species such as *Acacia hockii*, *Flueggea virosa*, *Ficus sur*, *Cadaba farinosa*, *Grewia mollis*, *Grewia tenax*, *Maytenus senegalensis*, *Ziziphus spinachrstichrsti* and *Lannea welwitschii* in the community. On the other hand, high evenness in community I indicates little dominance by any single species but repeated coexistence of species over all plots in a community. When there is a high evenness value in a given forest, the location of conservation sites might not be of such important compared with when the evenness value of the forest is low (Feyera Senbeta, 2006). Accordingly, conservation might not be of such important for community I to community III, which has the highest evenness value. The overall plant diversity in Doprar forest is high and its evenness is low with 3.91 and 0.90, respectively. The four plant communities in Doprar forest showed relative variation in their species richness, evenness and diversity. Human influence and effects of local climactic variation of the forest might have contributed to the variation to the plant communities at Doprar forest as also given by Feyera Senbeta (2006).

5. CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Results of the Floristic Composition of Doprar forest shows that, a total of 79 plants species were recorded, and these belong to 57 genera and 32 families. Fabaceae was the dominant family with 21 species followed by Combretaceae and Vitaceae each by 5 species. Of all the species recorded trees have got the highest share followed by herbs. Among the identified 57 genera, *Acacia*, *Combratum, Crotolera* and *Ipomoea* were represented by 4 species each, followed by *Cissus Cyperus* and *Zizypus* each represented by 3 species.

The vegetation was grouped into four community types each of which had varying degrees of species richness, diversity and evenness. Plant community type one has the highest species richness, diversity, and species evenness followed by community type two and three. The least evenness and diversity was observed for community type four.

The density and DBH class description of the forest indicated the dominance of small sized individuals declaring Doprar Forest is in a stage of secondary development. Thus, the forest is in good state of recruitment.

The population structure of tree species showed different dynamics. Most of the species have high population in the lower DBH and Height classes. Few species occur in all DBH and Height classes showing variation in population size.

5.2. Recommendation

Doprar Forest is one of the remnant forests in Ethiopia. It provides important economic and social value to the rural communities living around the area in different ways. To minimize the present human influence on this important resource for the future, developing management plan for the forest conservation and sustainable utilization is mandatory to have the following recommendations:

- Management programs should be introduced and implemented so that the local communities should get sense of responsibility for the management and conservation of the area.
- Awareness on the use and benefits of the vegetation should be given in different programs by agricultural officers to the public.
- More investigation on community types and regeneration of potential in the forest is needed.
- To promote the sustainable use of the area, ethno-botanical studies and exploration of indigenous knowledge on the diverse uses of the plants should be undertaken.

Reference

- Abate Ayalew (2003). Floristic composition and structural analysis of the Denkoro forest.M.Sc Thesis (Unpublished). Addis Ababa University.
- Abate Ayalew, Tamrat Bekele, and Sebsibe Demissew, (2006) The undifferentiated afromontane forest of Denkoro in the central highland of Ethiopia: a floristic and structure analysis. SINET: Ethiop. J. Sci. 29, 45–56.
- Abyot Dibaba, Teshome Soromessa, Ensermu Kelbessa and Abiyou Tilahun (2014).Diversity, Structure and Regeneration Status of the Woodland and Riverine Vegetation of Sire Beggo in Gololcha District, Eastern Ethiopia.Momona Ethiopian Journal of Science (MEJS), 6(1): 70-96
- Addo-Fordjour, P., Obeng, S., Anning, A. and Addo, M. (2009). Floristic composition, structure and natural regeneration in a moist semideciduous forest following anthropogenic disturbances and plant invasion. Int. J. Biodvers. Conserv, 1, 021- 037.
- Bilew Alemu, Kitessa Hundera and Balcha Abera (2015) Floristic composition and structural analysis of Gelesha forest, Gambella regional State, Southwest Ethiopia. J. Ecol. Nat. Environ. Vol. 7 No. 7.
- Central Statistical Authority (2007). The 2007 population and housing census of Ethiopia result for Gambella Regional State. Addis Ababa.
- Dereje Denu (2007). Floristic composition and ecological study of Bibita forest (GuraFerda), Southwest Ethiopia.Unpublished M.Sc. Thesis, Addis Ababa University, Addis Ababa, Ethiopia.
- Ermias Lulekal (2005). Ethnobotanical study of medicinal plants and floristic composition of the Menna – Angetu moist montane forest in Menna – Angetu District, Bale Ethiopia. MSc. Thesis, Addis Ababa University.
- Feyera Senbeta (2006). Biodiversity and Ecology of Afromontane Rainforests with Wild Coffeaarabica L. Populations in Ethiopia. Ecology and Development Series No. 38. Center for Development Research, University of Bonn.

- Feyera Senbeta. And Demel Teketay(2003). Diversity, Community types and Population Structure of Woody plants in Kimphee Forest, a virgin Nature Reserve in Southern Ethiopia.Ethiop. J. Boil. Sci., 2,169-187.
- Friis, B., Sebsebe Demissew and van Breugel, P. (2010). Atlas of the Vegetation of Ethiopia. The Royal Danish Academy of Sciences and Letters, Denmark.
- Friis, I. and Sebsibe Demissew (2001) Vegetation Maps of Ethiopia and Eritrea. A Review of Existing Map and the Need for the Flora of Ethiopia and Eritrea. In: Biodiversity Research in the Horn of Africa Regions (Eds I. Friis and O. Ryding). Proceedings of the Third International Symposium on the Flora of Ethiopia and Eritrea at Carlsberg Academy. Royal Danish Academy of Sciences and Letters, Copenhagen.
- Friis, I.B., Sebsibe Demissew, and Van, Bruegel P. (2011) Atlas of the Potential Vegetation of Ethiopia. Addis Ababa University Press and Shama Books, Addis Ababa 307 pp.
- Gauch, H.G. (1982). Multivariate Analysis in community Ecology. Cambridge University Press, London.
- Genene Bekele(2005) Floristic Composition and Structure of the Vegetation of Magada Forest, Borana Zone, Oromia National Regional State. M.Sc. Thesis, Addis Ababa University, Addis Ababa.
- Girma Balcha, Pearce, T. and Abebe Demissie (2003). Biological and current Ex Situ conservation practices in Ethiopia. In: Seed Conservation: Turning Science into Practice, pp. (Smith, R. D., Dickie, J. B., Linington, S. H., Pritchard, H. W. and Probert, R. J., eds). Kew Publishing, London.
- GRS (Gambella Regional State) (2003). Gambella Regional Land-use and Land Allotment Study. Amended Draft Final Report, Vol. II. Yeshi-Ber Consult (YBC). October 2003, Addis Ababa, Ethiopia.
- Haile Adamu, Tamrat Bekele and GemedoDalle (2012).Plant community and ecological analysis of woodland vegetation in Metema Area, Amhara National Regional State, Northwestern Ethiopia. Journal of Forestry Research, 23(4): 599–607.

- Hailu Sharew (1982). An Ecological study of vegetation of forests in Jemjem, Sidamo.MSc. thesis.Addis Ababa University, Addis Ababa.
- Hedberg I, Friis I, Edwards S. 2004. Flora of Ethiopia and Eritrea, Vol. 4(2). The National Herbarium, Addis Ababa.
- Hedberg, I. (2009) The Ethiopian Flora Project An Overview. In: Flora of Ethiopia and Eritrea.Vol. 8 (Eds I. Hedberg, I. Friis and E. Persson). Addis Ababa University, Addis Ababa.
- Jennings, M., Jennings, O., Glenn-Lewin, D., Peet, R., Faber-Langendoen, D., Grossman, D., Damman, G., Barbour, M., Pfister, R., Walker, M., Talbot, S., Walker, J., Hartshorn, G., Waggoner, G., Abrams, M., Hill, A., Roberts, D. and Tart, D. (2003). Guidelines for describing Associations and Alliances of the U.S. National vegetation classification Panel.
- Jongman, R.H.G. terBraak, C.J.F. and Van Tongeren, O.F.R. (1987).Data analysis in Community and land scape ecology. Center for agricultural Publishing and documentation (Pudoc.), Wageningen, the Netherlands
- Kent, M. and Cooker, P. (1992). Vegetation Description and Analysis. A practical approach. John Wiley and Sons. New York, USA.
- Kitessa Hundera (2003). Floristic composition and structure of the Dodolla forest, Bale zone, Oromia Regional State. Unpublished M.Sc thesis, Addis Ababa University, AddisAbaba.
- Kitessa Hundera., Tamrat Bekele and Ensermu Kelbess (2007). Floristic and phytogeographic synopsis of a dry afromontane coniferous forest in Bale Mountains, Ethiopia: Implication to biodiversity conservation. SINET: Ethiop. J. Sci., 30, 1-12.
- Kumelachew Yeshital and Tamrat Bekele. 2002. Plant community analysis and ecology of Afromontane and transitional rainforest vegetation of southwestern Ethiopia. Ethiop J Sci, 25:155–175.
- Kumelachew Yeshitela and Tamrat Bekele (2002) plant community analysis and ecology of afromontane and transitional Rainforest vegetation of southwest Ethiopia. Sinet Ethiop. J. Sci. 25(2): 155-175.

- Kumelachew Yeshitela and Taye Bekele (2003). The Woody Species Composition and Structure of Masha Anderacha Forest, Southwestern Ethiopia. Ethiopian Journal of Biological Science.; 2: 31–48p.
- Million Bekele and LeykunBerhanu (2001).State of Forest genetic Resources in Ethiopia. Sub-Regional Workshop FAO/IPGRI/ICRAF on the conservation, management, sustainale utilization and enhancement of forest genetic resources in Sahelian and North-Sudanian Africa (Ouagadougou, Burkina Faso, 22-24 September 1998). Forest Genetic Resources Working Papers, Working Paper Forestry Department, FAO, Rome.
- Motuma Didita (2007). Floristic Analysis of the Woodland Vegetation AroundDelloMenna, Southeast Ethiopia. Thesis, Addis Ababa University, Addis Ababa, Ethiopia.
- Muller-Dombois, D. and Ellenberg, H. (1974). Aims and Methods of Vegetation Ecology. Wiley and Sons, New York, USA.
- NBSAP (2005). National Biodiversity Strategy and Action Plan, Addis Ababa, Ethiopia.
- PADS (Pastoral Areas Development Study) (2004). Review of the past and present trends of the pastoral areas. Pp.1-34. Livestock Resources. PADS Report Phase I. Section I, Vol. II, Techniplan, MCE, Agristudio, Addis Ababa and Rome.
- Pearce, D. & Pearce, C. (2001) The Value of Forest Ecosystems. A Report to the Secretariat Conventionon Biological Diversity (CBD).
- Pichi-Sermolli, R. E. G. (1957).Unacartageobotanica dell Africa Orientale (Eritrea, Ethiopia, Somali).Webbia 12: 15-132.
- Shibru, S. and Balcha, G. (2004). Composition, Structure and regeneration status of woody species in Dindin Natural Forest, Southeast Ethiopia: An implication for conservation. Ethiop. J. Biol. Sci., 13, 15-35.
- Simon Shibru and Girma Balcha (2004) Composition, Structure and Regeneration Status of Woody Species in Dindin Natural Forests, Conservation. Ethiopian Journal of Biological Sciences.; 3: 15–35p.

- Sisay Nune (2008). Flora Biodiversity Assessment in Bonga, Boginda and Mankira forests in Kafa, southwestern Ethiopia. PPP Project Work, Addis Ababa, Ethiopia.
- Tamrat Bekele (1993) Phytosociology and ecology of a humid Afromontane forest on the central plateau of Ethiopia. J Veg Sc, 5: 87–98.
- Tesfay Awas, Tamrat Bekele, and sebsibe Demissew (2001) An ecological study of Gambella region, southwestern Ethiopia. SINET: Ethiop. J. Sci. 24, 213–228.
- Tesfaye Awas (2007). Plant Diversity in Western Ethiopia: Ecology, Ethnobotany and Conservation. PhD Thesis. University of Oslo, Norway.
- Teshome Soromessa (1997). Ecological Study of Lowland Vegetation.Key-AfershalLuqua and Southwest of Lake Chamo.MSc. Thesis.Addis Ababa University, Addis Ababa.
- Teshome Soromessa, Demel Teketay and Sebsebe Demissew (2004). Ecological study of the vegetation in GamoGofa zone, Southern Ethiopia. Tropical Ecology, 45, 209-221.
- Urban, D., Miller, C., Halpin, P. & Stephenson, N. (2000) Forest gradient response in Sierran landscapes: the physical template. Landscape Ecol. 15, 603–620. (GTZ), Addis Ababa, Ethiopia.
- van der Maarel, E. (1979). Transformation of cover abundance values in phytogeography and its effects on community similarity. Vegetation 39:97-114.

PPENDICES

No	Scientific name	Family	Life form	Collection
				No
1	Acacia senegal Willd.	Fabaceae	Tree	PD40
2	Accacia hecatophylla A.Rich.	Fabaceae	Tree	PD28
3	Acacia hockii De Wild	Fabaceae	Tree	PD18
4	Acacia seyal	Fabaceae	Tree	PD55
5	Aeschynomenna abyssinica (A.Rich.) Vatke	Fabaceae	Herb	PD15
6	Ampelocissus schimperiana Planch.	Vitaceae	Climber	PD03
7	Balanite aegyptica Wall.	Balanitaceae	Tree	PD01
8	Bridelia scleuromeura Muell.Arg.	Euphorbiaceae	Shrub	PD44
9	Cadaba farinosa Frossk.	Cadabaceae	Tree	PD57
10	Cadaba hetrotrica Frossk	Capparidaceae	Shrub	PD06
11	Chlorophytum tordense Chiov.	Anthericaceae	Shrub	PD37
12	Cissus sp. (Baker) Planch	Vitaceae	Shrub	PD24
13	Cissus petiolata hook. F.	Vitaceae	Climber	PD67
14	Cissus quadrangular	Vitaceae	Herb	PD72
15	Coccinia grandis Voigt.	Cucurbitaceae	Climber	PD52
16	Combratum collinum Fresen.	Combretaceae	Shrub	PD48
17	Combretom adenogonium	Combretaceae	Shrub	PD29
18	Combretom molle R.Br. ex G.Don	Combretaceae	Shrub	PD61
19	Commelina spp. L.	Commelinaceae	Herb	PD64
20	Convolvulus olitorius L.	Convolvulaceae	Herb	PD07
21	Convolvulus sagittatus L.	Convolvulaceae	Herb	PD75
22	Convolvulus siculus L.	Convolvulaceae	Herb	PD31
23	Crateva adansoni DC.	Capparidaceae	Tree	PD27
24	Crotolaria bongenisis Benth.	Fabaceae	Shrub	PD78
25	Crotolaria brevidens Benth.	Fabaceae	Herb	PD08
26	Crotolaria goreensis Guill. & Perr.	Fabaceae	Herb	PD71

Annex1: Species list collected from Dopra	r Forest.
---	-----------

28Cyperus eleusinoides Kunth.CyperaceaeHerbPD3229Cyperus esculentus L.CyperaceaeHerbPD7630Cyperus rotundus L.CyperaceaeHerbPD2031Cyphostemma adenocuale A. Rich.VitaceaeClimberPD1032Desmodium dichotunum Willd.FabaceaeHerbPD2533Dioscoria prehensilis Benth.DioscoreaceaeClimberPD7334Erucastrum arebicum L.BrassicaceaeHerbPD6635Euphorbia abyssinica J.F.Gmel.EuphorbiaceaeShrubPD1736Ficus sur Forssk.MoraceaeTreePD6339Grewia rolisi Juss.MoraceaeTreePD6339Grewia mollis Juss.TilliaceaeTreePD6440Grewia tenax L.TilliaceaeTreePD2541Gutenbergia corditolia O. Hoffm.AsteraceaeShrubPD5642Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera brevicalyx Baker f.FabaceaeShrubPD6544Indigofera preureana L.FabaceaeHerbPD5145Ipomoea aquatic Parham.ComwelinaceaeHerbPD5146Ipomoea duptic Parham.ComwelinaceaeHerbPD5147Ipomoea duptic Parham.ComwelinaceaeHerbPD5148Ipomoea duptic Parham.ComwelinaceaeHerbPD5149Jasminum streptopus E. Mey. Ex. DC	27	Crotolaria ochroleuca Pohill.	Fabaceae	Herb	PD39
AndAndAnd30Cyperus rotundus L.CyperaceaeHerbPD2031Cyphostemma adenocuale A. Rich.VitaceaeClimberPD1032Desmodium dichotunum Willd.FabaceaeHerbPD2533Dioscoria prehensilis Benth.DioscoreaceaeClimberPD7334Erucastrum arebicum L.BrassicaceaeHerbPD6635Euphorbia abyssinica J.F.Gmel.EuphorbiaceaeShrubPD1736Ficus sur Forssk.MoraceaeTreePD7937Ficus sycomorus L.MoraceaeTreePD6339Grewia mollis Juss.TilliaceaeTreePD2640Grewia tenax L.TilliaceaeTreePD4341Gutenbergia corditolia O. Hoffm.AsteraceaeShrubPD5642Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera brevicalyx Baker f.FabaceaeShrubPD4944Indigofera preureana L.FabaceaeHerbPD5546Ipomoea aquatic Parham.CommelinaceaeHerbPD5148Ipomoea furphylla Hallier f. ex Engl.ConvolvulaceaeHerbPD1449Jasminum streptopus E. Mey, Ex. DCOliaceaeHerbPD5148Ipomoea eincarpa Brown, R.CommelinaceaeHerbPD5149Jasminum streptopus E. Mey, Ex. DCOliaceaeShrubPD6850Lannea welwitschii (Hiern) Engl.Anacordiaceae <t< td=""><td>28</td><td>Cyperus eleusinoides Kunth.</td><td>Cyperaceae</td><td>Herb</td><td>PD32</td></t<>	28	Cyperus eleusinoides Kunth.	Cyperaceae	Herb	PD32
31Cyphostemma adenocuale A. Rich.VitaceaeClimberPD1032Desmodium dichotunum Willd.FabaceaeHerbPD2533Dioscoria prehensilis Benth.DioscoreaceaeClimberPD7334Erucastrum arebicum L.BrassicaceaeHerbPD6635Euphorbia abyssinica J.F.Gmel.EuphorbiaceaeShrubPD1736Ficus sur Forssk.MoraceaeTreePD7937Ficus sycomorus L.MoraceaeTreePD6339Grewia mollis Juss.TilliaceaeTreePD2640Grewia mollis Juss.TilliaceaeTreePD4341Gutenbergia corditolia O. Hoffm.AsteraceaeShrubPD5642Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera preureana L.FabaceaeHuerbPD2144Indigofera preureana L.FabaceaeHerbPD7745Ipomoea aquatic Parham.CommelinaceaeHerbPD5148Ipomoea dicurphylla Hallier f. ex Engl.ConvolvulaceaeLianaPD5849Jasminum streptopus E. Mey. Ex. DCOliaceaeShrubPD6850Lannea barteri Engl.AnacardiaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeHerbPD1651Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD5854Lonchocarpu	29	Cyperus esculentus L.	Cyperaceae	Herb	PD76
32Desmodium dichotunum Willd.FabaceaeHerbPD2533Dioscoria prehensilis Benth.DioscoreaceaeClimberPD7334Erucastrum arebicum L.BrassicaceaeHerbPD6635Euphorbia abyssinica J.F.Gmel.EuphorbiaceaeShrubPD1736Ficus sur Forssk.MoraceaeTreePD7937Ficus sycomorus L.MoraceaeTreePD6339Grewia mollis Juss.TilliaceaeTreePD2640Grewia tenax L.TilliaceaeTreePD4341Gutenbergia corditalia O. Hoffm.AsteraceaeShrubPD5642Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera preureana L.FabaceaeShrubPD4944Indigofera preureana L.FabaceaeHerbPD5645Ipomoea aquatic Parham.CommelinaceaeHerbPD5146Ipomoea quatic Parham.CommelinaceaeHerbPD5147Ipomoea purpurea (L) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea welwitschi (Hiern) Engl.AnacardiaceaeShrubPD6551Leonotis raineriana Burm. f.LabiateaeHerbPD1154Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD1655Maytenes senegalensis (Lam.)CelastraceaeTreePD2656Meyna tetra	30	Cyperus rotundus L.	Cyperaceae	Herb	PD20
33Dioscoria prehensilis Benth.DioscoreaceaeClimberPD7334Erucastrum arebicum L.BrassicaceaeHerbPD6635Euphorbia abyssinica J.F.Gmel.EuphorbiaceaeShrubPD1736Ficus sur Forssk.MoraceaeTreePD7937Ficus sycomorus L.MoraceaeTreePD6339Grewia mollis Juss.TilliaceaeTreePD2640Grewia tenax L.TilliaceaeTreePD4141Gutenbergia corditolia O. Hoffm.AsteraceaeShrubPD5642Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera preureana L.FabaceaeShrubPD4944Indigofera preureana L.FabaceaeHerbPD5645Ipomoea aquatic Parham.CommelinaceaeHerbPD5146Ipomoea quatic Parham.CommelinaceaeHerbPD5148Ipomoea purpurea (L) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea welwitschi (Hiern) Engl.AnacardiaceaeShrubPD6851Leonotis raineriana Burm. f.LabiateaeHerbPD1153Leucas mollis Baker.LamiaceaeHerbPD5854Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD6955Maytenes senegalensis (Lam.)CelastraceaeTreePD1456Meyna tetraphylla	31	Cyphostemma adenocuale A. Rich.	Vitaceae	Climber	PD10
34Erucastrum arebicum L.BrassicaceaeHerbPD6635Euphorbia abyssinica J.F.Gmel.EuphorbiaceaeShrubPD1736Ficus sur Forssk.MoraceaeTreePD7937Ficus sycomorus L.MoraceaeTreePD6338Flueggea virosa (Willd.) VoigtEuphorbiaceaeTreePD6339Grewia mollis Juss.TilliaceaeTreePD2640Grewia tenax L.TilliaceaeTreePD4341Gutenbergia corditolia O. Hoffm.AsteraceaeShrubPD5642Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera brevicalyx Baker f.FabaceaeHerbPD7745Ipomoea aquatic Parham.CommelinaceaeHerbPD5146Ipomoea blepharophylla Hallier f. ex Engl.ConvolvulaceaeLianaPD3547Ipomoea purpurea (L.) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeShrubPD3650Lannea welwitschii (Hiern) Engl.AnacardiaceaeShrubPD3651Lannea welwitschii Regl.AnacordiaceaeTreePD1652Leonotis raineriana Burm. f.LabiateaeHerbPD5853Maytenes senegalensis (Lam.)CelastraceaeTreePD2654Moytenes senegalensis (Lam.)CelastraceaeTreePD2355Maytenes senegalensis (Lam.)CelastraceaeTreePD23<	32	Desmodium dichotunum Willd.	Fabaceae	Herb	PD25
35Euphorbia abyssinica J.F.Gmel.EuphorbiaceaeShrubPD1736Ficus sur Forssk.MoraceaeTreePD7937Ficus sycomorus L.MoraceaeTreePD4138Flueggea virosa (Willd.) VoigtEuphorbiaceaeTreePD6339Grewia mollis Juss.TilliaceaeTreePD2640Grewia tenax L.TilliaceaeTreePD4341Gutenbergia corditolia O. Hoffm.AsteraceaeShrubPD5642Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera brevicalyx Baker f.FabaceaeShrubPD4944Indigofera preureana L.FabaceaeHerbPD5545Ipomoea aquatic Parham.CommelinaceaeHerbPD5146Ipomoea aquatic Parham.CommelinaceaeHerbPD5147Ipomoea purpurea (L.) RothCommelinaceaeHerbPD5148Ipomoea purpurea (L.) RothCommelinaceaeHerbPD6850Lannea barteri Engl.AnacardiaceaeShrubPD6851Lannea welwitschii (Hiern) Engl.AnacardiaceaeShrubPD3652Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeTreePD6954Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD2655Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetrap	33	Dioscoria prehensilis Benth.	Dioscoreaceae	Climber	PD73
36Ficus sur Forssk.MoraceaeTreePD7937Ficus sycomorus L.MoraceaeTreePD4138Flueggea virosa (Willd.) VoigtEuphorbiaceaeTreePD6339Grewia mollis Juss.TilliaceaeTreePD2640Grewia tenax L.TilliaceaeTreePD4341Gutenbergia corditolia O. Hoffm.AsteraceaeShrubPD5642Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera brevicalyx Baker f.FabaceaeShrubPD4944Indigofera preureana L.FabaceaeHerbPD7745Ipomoea aquatic Parham.CommelinaceaeHerbPD5146Ipomoea aquatic Parham.CommelinaceaeHerbPD5148Ipomoea purpurea (L.) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea welwitschii (Hiern) Engl.AnacardiaceaeShrubPD3651Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD7454Lonchocarpus laxifforus Guill. & Perr.FabaceaeTreePD2855Maytenes senegalensis (Lam.)CelastraceaeTreePD2956Meyna tetraphylla RobynsRubiaceaeTreePD29	34	Erucastrum arebicum L.	Brassicaceae	Herb	PD66
37Ficus sycomorus L.MoraceaeTreePD4138Flueggea virosa (Willd.) VoigtEuphorbiaceaeTreePD6339Grewia mollis Juss.TilliaceaeTreePD2640Grewia tenax L.TilliaceaeTreePD4341Gutenbergia corditolia O. Hoffm.AsteraceaeShrubPD5642Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera brevicalyx Baker f.FabaceaeShrubPD6544Indigofera preureana L.FabaceaeHerbPD7745Ipomoea aquatic Parham.CommelinaceaeHerbPD5146Ipomoea aquatic Parham.ConvolvulaceaeLianaPD5148Ipomoea blepharophylla Hallier f. ex Engl.ConvolvulaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea barteri Engl.AnacordiaceaeHerbPD3651Leucas mollis Baker.LabiateaeHerbPD5853Leucas mollis Baker.LabiateaeHerbPD5854Maytenes senegalensis (Lam.)CelastraceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	35	Euphorbia abyssinica J.F.Gmel.	Euphorbiaceae	Shrub	PD17
38Fluegea virosa (Willd.) VoigtEuphorbiaceaeTreePD6339Grewia mollis Juss.TilliaceaeTreePD2640Grewia tenax L.TilliaceaeTreePD4341Gutenbergia corditolia O. Hoffm.AsteraceaeShrubPD5642Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera brevicalyx Baker f.FabaceaeShrubPD4944Indigofera preureana L.FabaceaeHerbPD7745Ipomoea aquatic Parham.CommelinaceaeHerbPD5546Ipomoea blepharophylla Hallier f. ex Engl.ConvolvulaceaeLianaPD5148Ipomoea purpurea (L.) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea barteri Engl.AnacordiaceaeShrubPD3651Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD5854Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	36	Ficus sur Forssk.	Moraceae	Tree	PD79
39Grewia mollis Juss.TilliaceaeTreePD2640Grewia tenax L.TilliaceaeTreePD4341Gutenbergia corditolia O. Hoffm.AsteraceaeShrubPD5642Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera brevicalyx Baker f.FabaceaeShrubPD4944Indigofera preureana L.FabaceaeHerbPD7745Ipomoea aquatic Parham.CommelinaceaeHerbPD5146Ipomoea alepharophylla Hallier f. ex Engl.ConvolvulaceaeLianaPD5148Ipomoea purpurea (L.) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea barteri Engl.AnacardiaceaeShrubPD3651Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD5854Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD24	37	Ficus sycomorus L.	Moraceae	Tree	PD41
40Grewia tenax L.TilliaceaeTreePD4341Gutenbergia corditolia O. Hoffm.AsteraceaeShrubPD5642Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera brevicalyx Baker f.FabaceaeShrubPD4944Indigofera preureana L.FabaceaeHerbPD7745Ipomoea aquatic Parham.CommelinaceaeHerbPD5146Ipomoea blepharophylla Hallier f. ex Engl.ConvolvulaceaeLianaPD5148Ipomoea purpurea (L.) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea barteri Engl.AnacardiaceaeShrubPD3651Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD5854Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD24	38	Flueggea virosa (Willd.) Voigt	Euphorbiaceae	Tree	PD63
41Gutenbergia corditolia O. Hoffm.AsteraceaeShrubPD5642Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera brevicalyx Baker f.FabaceaeShrubPD4944Indigofera preureana L.FabaceaeHerbPD7745Ipomoea aquatic Parham.CommelinaceaeHerbPD5146Ipomoea blepharophylla Hallier f. ex Engl.ConvolvulaceaeLianaPD5148Ipomoea eriocarpa Brown, R.CommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea barteri Engl.AnacardiaceaeShrubPD6851Leucas mollis Baker.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD5854Maytenes senegalensis (Lam.)CelastraceaeTreePD9356Meyna tetraphylla RobynsRubiaceaeTreePD54	39	Grewia mollis Juss.	Tilliaceae	Tree	PD26
42Hygrophylla auricula SchumachAcanthaceaeHerbPD2143Indigofera brevicalyx Baker f.FabaceaeShrubPD4944Indigofera preureana L.FabaceaeHerbPD7745Ipomoea aquatic Parham.CommelinaceaeHerbPD6546Ipomoea blepharophylla Hallier f. ex Engl.ConvolvulaceaeLianaPD3547Ipomoea eriocarpa Brown, R.CommelinaceaeHerbPD5148Ipomoea purpurea (L.) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea barteri Engl.AnacordiaceaeShrubPD3651Lannea welwitschii (Hiern) Engl.AnacordiaceaeTreePD1652Leonotis raineriana Burm. f.LabiateaeHerbPD7454Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	40	Grewia tenax L.	Tilliaceae	Tree	PD43
43Indigofera brevicalyx Baker f.FabaceaeShrubPD4944Indigofera preureana L.FabaceaeHerbPD7745Ipomoea aquatic Parham.CommelinaceaeHerbPD6546Ipomoea blepharophylla Hallier f. ex Engl.ConvolvulaceaeLianaPD3547Ipomoea eriocarpa Brown, R.CommelinaceaeHerbPD5148Ipomoea purpurea (L.) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea barteri Engl.AnacardiaceaeShrubPD3651Lannea welwitschii (Hiern) Engl.AnacordiaceaeHerbPD1652Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD7454Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	41	Gutenbergia corditolia O. Hoffm.	Asteraceae	Shrub	PD56
44Indigofera preureana L.FabaceaeHerbPD7745Ipomoea aquatic Parham.CommelinaceaeHerbPD6546Ipomoea blepharophylla Hallier f. ex Engl.ConvolvulaceaeLianaPD3547Ipomoea eriocarpa Brown, R.CommelinaceaeHerbPD5148Ipomoea purpurea (L.) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea barteri Engl.AnacardiaceaeShrubPD3651Lannea welwitschii (Hiern) Engl.AnacordiaceaeTreePD1652Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD7454Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	42	Hygrophylla auricula Schumach	Acanthaceae	Herb	PD21
45Ipomoea aquatic Parham.CommelinaceaeHerbPD6546Ipomoea blepharophylla Hallier f. ex Engl.ConvolvulaceaeLianaPD3547Ipomoea eriocarpa Brown, R.CommelinaceaeHerbPD5148Ipomoea purpurea (L.) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea barteri Engl.AnacardiaceaeShrubPD3651Lannea welwitschii (Hiern) Engl.AnacordiaceaeTreePD1652Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeTreePD0954Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	43	Indigofera brevicalyx Baker f.	Fabaceae	Shrub	PD49
46Ipomoea blepharophylla Hallier f. ex Engl.ConvolvulaceaeLianaPD3547Ipomoea eriocarpa Brown, R.CommelinaceaeHerbPD5148Ipomoea purpurea (L.) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea barteri Engl.AnacardiaceaeShrubPD3651Lannea welwitschii (Hiern) Engl.AnacordiaceaeTreePD1652Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD7454Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	44	Indigofera preureana L.	Fabaceae	Herb	PD77
47Ipomoea eriocarpa Brown, R.CommelinaceaeHerbPD5148Ipomoea purpurea (L.) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea barteri Engl.AnacardiaceaeShrubPD3651Lannea welwitschii (Hiern) Engl.AnacordiaceaeTreePD1652Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD7454Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	45	Ipomoea aquatic Parham.	Commelinaceae	Herb	PD65
48Ipomoea purpurea (L.) RothCommelinaceaeHerbPD1149Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea barteri Engl.AnacardiaceaeShrubPD3651Lannea welwitschii (Hiern) Engl.AnacordiaceaeTreePD1652Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD7454Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	46	Ipomoea blepharophylla Hallier f. ex Engl.	Convolvulaceae	Liana	PD35
49Jasminum streptopus E. Mey. Ex. DCOliaceaeLianaPD6850Lannea barteri Engl.AnacardiaceaeShrubPD3651Lannea welwitschii (Hiern) Engl.AnacordiaceaeTreePD1652Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD7454Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	47	Ipomoea eriocarpa Brown, R.	Commelinaceae	Herb	PD51
50Lannea barteri Engl.AnacardiaceaeShrubPD3651Lannea welwitschii (Hiern) Engl.AnacordiaceaeTreePD1652Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD7454Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	48	Ipomoea purpurea (L.) Roth	Commelinaceae	Herb	PD11
51Lannea welwitschii (Hiern) Engl.AnacordiaceaeTreePD1652Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD7454Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	49	Jasminum streptopus E. Mey. Ex. DC	Oliaceae	Liana	PD68
52Leonotis raineriana Burm. f.LabiateaeHerbPD5853Leucas mollis Baker.LamiaceaeHerbPD7454Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	50	Lannea barteri Engl.	Anacardiaceae	Shrub	PD36
53Leucas mollis Baker.LamiaceaeHerbPD7454Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	51	Lannea welwitschii (Hiern) Engl.	Anacordiaceae	Tree	PD16
54Lonchocarpus laxiflorus Guill. & Perr.FabaceaeTreePD0955Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	52	Leonotis raineriana Burm. f.	Labiateae	Herb	PD58
55Maytenes senegalensis (Lam.)CelastraceaeTreePD2356Meyna tetraphylla RobynsRubiaceaeTreePD54	53	Leucas mollis Baker.	Lamiaceae	Herb	PD74
56 Meyna tetraphylla Robyns Rubiaceae Tree PD54	54	Lonchocarpus laxiflorus Guill. & Perr.	Fabaceae	Tree	PD09
	55	Maytenes senegalensis (Lam.)	Celastraceae	Tree	PD23
57Neorantanenia mitis (A. Rich) Verdc.FabaceaeClimberPD12	56	Meyna tetraphylla Robyns	Rubiaceae	Tree	PD54
	57	Neorantanenia mitis (A. Rich) Verdc.	Fabaceae	Climber	PD12

58	Ociumum basilicum L.	Lamiaceae	Herb	PD22
59	<i>Opilia amentacea</i> Roxb.	Opiliaceae	Climber	PD45
60	Peripeloca linearifolia A. Rich.	Asclepiadaceae	Climber	PD05
61	Plumbago zeylanica L.	Plumbaginaceae	Climber	PD38
62	Portulaca oleracea L.	Portulaceae	Shrub	PD62
63	Pterocarpus lucens Lepr. Ex. Guill. & Perr.	Fabaceae	Shrub	PD30
64	Rhynchosia malacaphylla L.	Fabaceae	Shrub	PD42
65	Sclerocarya birrea A.Rich.	Anacordiaceae	Tree	PD02
66	Senna septemtrinalis Willd.	Fabaceae	Shrub	PD34
67	Sida ovata Guill. & Perr.	Malvaceae	Herb	PD46
68	Solanum nigrum L.	Solonaceae	Shrub	PD69
69	Tamarindus indica L.	Fabaceae	Tree	PD50
70	Terminalia macroptera Guill. & Perr.	Combretaceae	Tree	PD19
71	Tephrosia liniaris Willd.	Fabaceae	Herb	PD14
72	Teramus labialis Spreng.	Combritaceae	Climber	PD59
73	Tylosema fasoglensis Torre & Hillc.	Caesalpiniaceae	Climber	PD13
74	Vachellia seyal(Delile) P.J.H.Hurter	Fabaceae	Tree	PD04
75	Vigna ambacensis Welwe. Ex Bak	Fabaceae	Climber	PD53
76	Ximenia americana Linn.	Olacaceae	Tree	PD70
77	Ziziphus abyssinica Hochst.	Rhamnaceae	Tree	PD33
78	Ziziphus spinachrstichrsti L.	Rhamnaceae	Tree	PD47
79	Zizyphus pubescens Oliver.	Rhamnaceae	Tree	PD60
	1			

Annex 2: Proportions of family and genus

Family	Species	%	Genus	%
Fabaceae	21	26.58228	14	24.5614
Combretaceae	5	6.329114	3	5.263158
Vitaceae	5	6.329114	3	5.263158
Commelinaceae	4	5.063291	2	3.508772
Convolvulaceae	4	5.063291	2	3.508772
Anacardiaceae	3	3.797468	2	3.508772
Capparidaceae	3	3.797468	2	3.508772
Cyperaceae	3	3.797468	1	1.754386
Euphorbiaceae	3	3.797468	3	5.263158
Rhamnacaea	3	3.797468	1	1.754386
Lamiaceae	2	2.531646	2	3.508772
Moraceae	2	2.531646	1	1.754386
Tilliaceae	2	2.531646	1	1.754386
Acanthaceae	1	1.265823	1	1.754386
Anthericaceae	1	1.265823	1	1.754386
Asclepiadaceae	1	1.265823	1	1.754386
Asteraceae	1	1.265823	1	1.754386
Balanitaceae	1	1.265823	1	1.754386
Brassicaceae	1	1.265823	1	1.754386
Caesalpiniaceae	1	1.265823	1	1.754386
Celastraceae	1	1.265823	1	1.754386
Cucurbitaceae	1	1.265823	1	1.754386
Dioscoreaceae	1	1.265823	1	1.754386
Labiateae	1	1.265823	1	1.754386
Malvaceae	1	1.265823	1	1.754386
Olacaceae	1	1.265823	1	1.754386
Oliaceae	1	1.265823	1	1.754386

Opiliaceae	1	1.265823	1	1.754386
Plumbaginaceae	1	1.265823	1	1.754386
Portulaceae	1	1.265823	1	1.754386
Rubiaceae	1	1.265823	1	1.754386
Solonaceae	1	1.265823	1	1.754386
Total	79	100	57	100

Annex 3 Plots with their characteristic

Dil			- · ·
Pilots	Altitude	latitude	Longitude
P01	408	8.37699	33.68149
P02	412	8.38209	33.67705
P03	409	8.36048	33.69059
P04	414	8.36015	33.69045
P05	405	8.36065	33.69016
P06	421	8.35968	33.68932
P07	418	8.35992	33.68883
P08	410	8.36056	33.68835
P09	420	8.36098	33.68752
P10	417	8.35953	33.68961
P11	411	8.36009	33.68654
P12	424	8.35929	33.68561
P13	420	8.36008	33.68367
P14	431	8.35897	33.68282
P15	409	8.35779	33.68346
P16	412	8.35602	33.68296
P17	431	8.35685	33.68284
P18	430	8.35901	33.68276
P19	410	8.36037	33.68369
P20	433	8.36181	33.68462

P21	424	8.35609	33.68536
P22	403	8.35728	33.68762
P23	427	8.35569	33.68401
P24	430	8.36023	33.68992
P25	418	8.35495	33.68358
P26	439	8.36183	33.67855
P27	432	8.36469	33.68325
P28	426	8.36295	33.68397
P29	425	8.36498	33.68596
P30	413	8.36457	33.68933
P31	441	8.36379	33.96045
P32	430	8.36521	33.69007
P33	424	8.36426	33.68549
P34	411	8.36023	33.68986
P35	407	8.35781	33.68852
P36	438	8.35666	33.68565
P37	420	8.35631	33.68413
P38	440	8.35764	33.68521
P39	435	8.35721	33.68748
P40	421	8.35097	33.68878
P41	415	8.35167	33.68344
P42	409	8.35112	33.69652
P43	406	8.35322	33.68169
P44	413	8.35575	33.67453
P45	432	8.36377	33.68602
P46	446	8.34021	33.69494
P47	453	8.33656	33.69279
P48	450	8.34055	33.69103
P49	441	8.33815	33.70063
P50	434	8.34982	33.68856
L	I	1	

P51	430	8.36845	33.68742
P52	421	8.35355	33.66124
P53	417	8.35047	33.68994
P54	436	8.33584	33.72546
P55	434	8.35442	33.68987
P56	423	8.36429	33.68924
P57	425	8.37554	8.384701
P58	419	8.36471	33.35142
P59	425	8.35472	33.68901
P60	420	8.35724	33.66021

Annex 4. Communities and plots they contain

Community	Plots it contains	Altitudinal
		Range
Ι	01,03,05,09,11,13,22,23,25,29,32,33,36,42,45,47,49,53,59,60	408-453
II	07,08,10,15,16,19,21,27,31,37,40,52,55,58	409-441
III	02,04,06,12,14,18,24,38,41,46,48,50,51,56	412-450
IV	17,20,26,28,30,34,35,39,43,44,54,57	406-439

	Communities			
Species	Ι	II	III	IV
Acacia Senegalensis	0.17	0.06	0.2	1.17
Acacia hecatophylla	0.32	0.61	1.5	0.5
Acacia hockii	0.38	0.1	2.13	2.6
Acacia seyal	0.84	1.9	0.84	1.3
Aeschynomenna abyssinica	4.8	3.26	0.00	0.7
Ampelocissus schimperiana	0.2	1.27	0.00	3.15
Balanite aegyptica	1.08	1.2	1.29	1.11
Bridelia scleuromeura	0.72	0.8	0.6	1.11
Cadaba farinose	0.1	0.6	0.4	1.7
Cadaba heterotricha.	0.8	1.19	1.75	3
Chlorophytum tordense	0.1	0.2	1.45	1.23
Cissus heterotricha.	0.1	0.61	0.64	1.66
Cissus petiolata	0.42	0.82	0.11	0.8
Cissus quadrangular	5.25	1.32	1.83	0.86
Coccinia grandis	0.84	0.6	0.45	1.8
Combratum collinum	2.71	1.15	0.61	1.85
Combretom adenogonium	2.3	1.11	0.3	1.9
Combretom molle	1.23	0.16	1.2	0.9
Commelina spp.	2.41	6.44	4.7	2.2
Convolvulus olitorius	1.9	2.4	6.34	3.1
Convolvulus sagittatus	2.5	4.3	2.25	2.1
Convolvulus siculus	4.1	0.41	3.3	5.12
Crateva adansoni	0.84	0.9	0.7	1.11
Crotolaria bongenisis	0.1	0.16	0.8	0.5
Crotolaria brevidens	5.2	6.02	0.64	1.4
Crotolaria goreensis	2.5	1.7	4.85	3.7
Crotolaria ochroleuca	1.05	0	3.74	0.00

Annex 5. Synoptic Table

Cyperus eleusinoides	6.03	5	2	0.00
Cyperus esculentus	0.12	3.6	6.5	2.3
Cyperus rotundus	2.7	2.8	4.4	4
Cyphostemma adenocuale	0.12	0.53	0.1	0.00
Desmodium dichotunum	0.6	2.02	0.8	5.7
Dioscoria prehensilis	0.42	0.5	0.1	0.37
Erucastrum arebicum	2.77	7.5	0.53	3.6
Euphorbia abyssinica	0.15	0.08	0.07	0.12
Ficus sur	1.3	1.3	2.3	2
Ficus sycomorus	1.08	1.5	1.45	0.8
Flueggea virosa	1.02	2	1	2.03
Grewia mollis	1.4	1.3	1.2	1.6
Grewia tenax	0.6	0.53	1.45	1.5
Gutenbergia corditolia	0.27	0.3	0.15	0.24
Hygrophylla auricular	1.5	0	1.2	0.74
Indigofera brevicalyx	0.5	0.6	0.15	1.35
Indigofera preureana	0.54	2.5	2.1	1.05
Ipomoea aquatic	3	1.11	2.36	0.9
Ipomoea blepharophylla	0.15	0.37	0.2	0.37
Ipomoea eriocarpa	3.4	0.53	4.1	0.6
Ipomoea purpurea	4.1	2.14	2.02	0.6
Jasminum streptopus	0.3	0.45	0.00	0.43
Lannea barteri	0.5	1.32	0.72	0.43
Lannea welwitschii	0.42	1.27	1	1.42