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Abstract

In this thesis, an exponentially fitted modified upwind difference scheme is presented for

solving singularly perturbed convection-diffusion two point boundary value problems whose

solution exhibits right boundary layer. A fitting factor is introduced in a modified upwind

scheme and is obtained from the theory of singular perturbations. Then, fitted modified up-

wind scheme is developed and a three term recurrence relation is obtained. A tri-diagonal

finite difference scheme is obtained and is solved by using the Thomas algorithm. To validate

the applicability of the proposed method two model examples have been considered and solved

for different values of perturbation parameters ε and mesh size h. Both theoretical stability

and numerical first order of convergence have been established for the method. The numerical

results have been presented in tables, graphs and further to examine the effect of fitted param-

eter on right boundary layer of the solution and oscillatory behavior of the solution. Several

linear and nonlinear problems are solved and observed, which show the presented method ap-

proximates the exact solutions very well. Concisely, an exponentially fitted modified upwind

scheme gives better result than some existing numerical methods reported in the literature.

Key words: Exponentially fitted scheme, Modified upwind, Convection-diffusion, Boundary

layer, Singularly perturbed, Thomas Algorithm, Tri-diagonal.
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Chapter 1

Introduction

1.1 Background of the Study

Due to the difficulties in finding the exact solution or analytic solution of a mathematical

problems such as, the exact solution of differential equations, the root of non-linear equation,

the evaluation of integration involving complex expression and etc; leads to the development

of numerical analysis. Gauche, (2011), defined numerical analysis is a branch of mathematics

that provides tools and methods for solving mathematical problems in a numerical form. A

differential equation is any equation involving derivatives of one or more dependent variables

with respect to one or more independent variables.

Many real life problems are modeled by parameter dependent differential equations whose

solution behavior depends on the magnitude of the parameter. Differential equations in

which its highest order derivative term is multiplied by small parameter are called singu-

larly perturbed differential equations (SPDEs). Also it defines problems involving differential

equations having none smooth solutions with singularities related to the boundary. Such Sin-

gularly Perturbation problem (SPPs) are of common occurrence in many branches of applied

mathematics and engineering including fluid mechanics, chemical reactors theory, elasticity,

gas porous electrodes theory, heat and mass transfer processes in composite materials with
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small heat conduction or diffusion. Singularly perturbation theory is a vast collection of

mathematical methods used to obtain approximate solution to problems that have no closed

form analytic solution (Kumar and Parul*, 2011).

A second order singularly perturbed differential equation is said to be convection diffusion

type, if the order of the differential equation is reduced by one when the perturbation pa-

rameter tends to zero and a second order singularly perturbed differential equation is said

to be reaction diffusion type, if the order of differential equation is reduced by two when

the perturbation parameter tends to zero. The numerical solution of a singularly perturbed

equation exhibit multi-scale character. That is there is a thin layer(s) of the domain where

the solution changes rapidly (non-uniform) or jumps suddenly forming boundary layer(s),

while away from the layer(s) the solution behaves regularly (uniform) or changes slowly in

the outer region.

Therefore, the numerical treatment for singularly perturbed boundary value problems has

always been far from trivial. A boundary layer is defined to be a region of the independent

variable over which the dependent variables changes rapidly. Also it is small interval near

the initial point where the slope of the curve is changing most rapidly is known as bound-

ary layers. An interior layer occurs in the solution to singularly perturbed problems if the

coefficient or the source functions are not sufficiently smooth (Tesfaye et al.,2021).

The physical properties associated with a solution of singularly perturbed second order

linear two-point boundary value problems in the following form:

εu”(x)+p(x)u’(x)+q(x)u(x)=r(x),a≤ x ≤ b; a, b ∈ R with boundary conditions

u(a) = α ∈ R, u(b) = β ∈ R, where 0 < ε ≤ 1

and p(x), q(x) and r(x) are sufficiently smooth functions. As ε → 0+, the order of the dif-

ferential equation is reduced and the equation that we call reduced equation.

p(x)u’0(x) + q(x)u0(x) = r(x), a ≤ x ≤ b; a, b ∈ R is formed.
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One can observe that there are two boundary conditions in the original problems but only

one of them can be imposed to the reduced equation. Moreover, as ε tend to zero, because

of the reduction of the order, rapid changes occur in the solution.

The region in which these rapid changes occur is named as inner layer or boundary layer.

The sign of the coefficient function p(x) determines the type of the layer(s). Over the interval

[a, b], if p(x) > 0 for all x, then a boundary layer occurs at the left-end of the interval, if

p(x) < 0 for all x, then a boundary layer occurs at the right-end of the interval and p(x)

changes sign between (a, b), the interior layer(s) occurs at the zero(s) of p(x).

This thesis main focuses on exponential fitted modified upwind scheme for singularly per-

turbed of convection diffusion problem that exhibit right boundary layer.

1.2 Statement of the problem

The numerical analysis of singular perturbation problems has always been far from triv-

ial because of the boundary layer behavior of the solution. Such problems undergo rapid

changes within very thin layers near the boundary or inside the domain of the problem.

Some researchers are tried to develop numerical methods for solving such type of singularly

perturbed differential equation problem for different method used.

For instance, Kadalbajoo and Kumar, (2009) presented initial value technique for singularly

perturbed two-point boundary value problems using an exponentially fitted finite difference

scheme. They present an approximate method for the numerical solution of quasi-linear

singularly perturbed two-point boundary value problems in ordinary differential equation

having boundary layer at one end (left or right) point. The original problem is reduced to

an asymptotically equivalent first order initial value problem by approximating the zeroth

order term by outer solution obtained by asymptotic expansion, and then this initial value

problem is solved by an exponentially fitted finite difference scheme. It is observed that the
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presented method approximates the exact solution very well for crude mesh size h.

Mohapatra and Reddy, (2015) presented exponentially fitted finite difference scheme for

singularly perturbed two-point boundary value problems. They introduce a simple expo-

nentially fitted finite difference method for solving singularly perturbed two-point boundary

value problems with the boundary layer at one end (left or right). Several linear and non-

linear problems are solved to demonstrate the applicability of the method. This method

approximates the exact solution very well.

As clearly explained above, most of authors have attempted to obtain different methods to

find the solution of singularly perturbed problem. But when the perturbation parameter

becomes small the singularly perturbation problems are unstable and fail to give accurate

results. So, the issue of accuracy and convergence of the method still needs attention and im-

provement. In this study exponentially fitted modified upwind scheme is presented for solving

singularly perturbed differential equation of convection-diffusion problem. This method is

very important to develop an alternative numerical method which may be more improving

the accuracy, improving stability and order of convergence for solving singularly perturbed

differential equations.

Owning to this, the present study attempts to answer the following questions:

1. How does an exponential fitted modified upwind scheme be described for solving singu-

larly perturbed convection diffusion problems?

2. To what extent the proposed method is convergent?

3. To what extent the proposed method approximates the solutions?

4



1.3 Objectives of the study

1.3.1 General Objective

The main objective of this study is to develop exponentially fitted modified upwind scheme

for singularly perturbed convection diffusion problem.

1.3.2 Specific Objectives

The specific objectives of the present study are:

1. To formulate an exponentially fitted modified upwind scheme for singularly perturbed

convection diffusion problems.

2. To establish stability, convergence and consistency of the present scheme.

3. To investigate the accuracy of the present method.

1.4 Significance of the study

The outcomes of this study may help to introduce the application of numerical method

in solving problems arising in different field of studies and serve as reference material for

scholars who works on this area.

1.5 Delimitation of the study

This study is delimited to exponentially fitted modified upwind scheme for solving the

singularly perturbed convection diffusion problem of the form:

εy”(x)+a(x)y’(x)+b(x)y(x)=f(x), x∈ (0, 1),

subjected to the boundary conditions,

y(0) = A, y(1) = B,

where 0 < ε < 1 is small positive parameter called as perturbation parameter, A and B are

given constants, Further we assume that the functions a(x), b(x) and f(x) are sufficiently

smooth with a(x) ≤ α < 0 and b(x) ≤ β < 0 throughout the interval [0,1] for some given

constants α and β .
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Chapter 2

Review of Related Literature

2.1 Fitted Numerical Methods

The fitted numerical methods are designed to be robust with respect to changes in the sin-

gularly perturbation parameter. Secondly the error estimates, are valid at each point of the

mesh or domain, and they are measured in the maximum norm. The choice of fitting factor,

or the construction of the fitted mesh, requires a priori information about the location and

width of the layer that are to be resolved. Fortunately, such information is frequently avail-

able from the mathematical literature on the asymptotic analysis of singular perturbation

problems. Any scientist or engineer requiring accurate and robust numerical approximation

to the solutions.

Early numerical solutions of singularly perturbed differential equations were obtained by

using a standard finite difference operator on a uniform mesh. In this method, as the sin-

gularly perturbation parameter decreases in magnitude, the mesh is refined sufficiently to

capture the boundary or interior layers. Even for problems in one dimension, such methods

are inefficient and inaccurate. The best known analysis of convergence for standard finite

difference methods involves the concepts of consistency and stability (E.O’Riordan et al.,

2021).
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When the rate of convergence is required then consistency is replaced by the more stringent

condition of accuracy of degree. Then, the fundamental theoretical results are that consis-

tency and order of convergence. It is clear that the standard finite difference methods can

be applied immediately to robust finite difference methods, provided that the conditions of

accuracy and stability are also robust. Moreover, in many cases, it is not easy to determine

if a given finite difference method has robust accuracy of some order, where orders and the

local truncation error constant are independent of perturbation parameter. In such cases

another method of a proof of the robust convergence may be required.

A finite difference method has two major ingredients: the finite difference operator that is

used to approximate the differential operator and the mesh that replaces the continuous do-

main. Generally, these methods are accurate and hence their solutions converge to the exact

solution, as mesh point tends to very large. It turns out however that none of these methods

is robust, and so some new attribute is required. There are two approaches to construction

of robust methods.

The first approach involves replacing the standard finite difference operator by a finite dif-

ference operator which reflects the singular perturbed nature of the differential operator and

such finite difference operator is called fitted finite difference operators(FFDO) (Miller,1996).

For the linear problems, they may be constructed by choosing their coefficients so that some

or all of the exponential functions in the null space of the differential operators, or a part

of it, are also in the null space of the finite difference operator. In such case the finite

difference operator is called an exponentially fitted finite difference operator(EFFDO). The

corresponding numerical method is obtained by applying the fitted finite difference operator

to obtain a system of finite difference equations on a standard mesh, which practice is often a

uniform mesh. Numerical methods with a fitted finite difference operator and standard mesh

are called fitted operator methods(FOM). The fitted operator comprises specially designed

finite difference operators on standard mesh. The fitted operator methods, which the mesh
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remains uniform and the difference reflects the qualitative behavior of the solution(s) inside

the layer regions. The fitted operator can be classified in to exponentially fitted parameters,

which reflects the implementation of these methods is not straight forward and usually the

introduce artificial viscosity and non-standard finite difference is general set of methods in

numerical analysis that gives numerical solutions to differential equations by constructing

discrete model.

The second approach, to construct robust numerical method involves the use of mesh that is

adapted to the singular perturbation. Such methods are called fitted mesh methods(Shishkin,

1990). A fitted mesh can be incorporated into both a finite difference and a finite element

method. The fitted mesh methods comprise standard finite difference operators on specially

designed meshes. The fitted mesh methods consist in choosing a fine mesh in the layer re-

gion(s). The simplest form of fitted mesh is a piecewise uniform mesh with specially chosen

transition points separating the coarse and fine meshes. If the boundary conditions happen

to be such that no boundary layer is present at the corresponding boundary point, then it

is not necessary for the mesh to condense at that boundary point, and consequently, in such

cases, the piecewise uniform mesh will be simpler than in the general case. In this approach

of numerical schemes, meshes are taken such that are not uniform; highly non-equidistant

grids, logarithmic grids. Of course, more complicated meshes may also be used, but the

simplicity of piecewise uniform meshes is considered to be one of their major attractions.

The main contribution of this study is developing exponentially fitted modified upwind

scheme which converges uniformly in maximum norm; develop the uniform convergence

analysis of the scheme.

2.2 Recent Works

The presence of perturbation parameter, lead to bad approximation or oscillation in the

computed using standard numerical methods. To avoid this oscillation, an unacceptability
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large number of mesh point are required when perturbation parameter is very small.

This is not practical and leads to rounding error. So, to overcome the draw backs associated

with standard numerical methods, different authors tries to develop numerical schemes that

converges free from oscillation.

Kadalbajoo and Kumar, (2009) presented initial value technique for singularly perturbed

two-point boundary value problems using an exponentially fitted finite difference scheme(EFFDS).

The authors provide insight to an approximate method (initial value techniques) for the nu-

merical solution of quasilinear singularly perturbed two-point boundary value problems in

ordinary differential equation having boundary layer at one end (left or right) point. The

original problem is reduced to an asymptotically equivalent first order initial value problem

by approximating the zeroth order term by outer solution obtained by asymptotic expan-

sion, and then this initial value problem is solved by an exponentially fitted finite difference

scheme. It is observed that the presented method approximates the exact solution very well

for crude mesh size h.

Kadalbajoo and Gupta, (2009) presented numerical solution of singularly perturbed convec-

tion diffusion problem using parameter uniform B-spline collection method. They concerned

with a numerical scheme to solve a singularly perturbed convection problem. The solution

of this problem exhibits the boundary layer on the right hand side of the domain due to

the presence of singularly perturbed parameter. The scheme involves B-spline collocation

method and appropriate piecewise uniform Shishkin mesh. Bounds are established for the

derivative of the analytic solution. Moreover, the present method is boundary layer resolving

as well as second order uniformly convergent in the maximum norm.

Geng et al., (2014) presented numerical solutions of singularly perturbed convection diffu-

sion problems. The authors developed numerical method based on the asymptotic expansion

method(AEM) and the variation iteration method (VIM). First a zeroth order asymptotic

expansion for the solution of the given singularly perturbed convection diffusion problem

9



is constructed. Then the reduced terminal value problem is solved by using the VIM. This

method can provide very accurate analytic approximation solutions not only in the boundary

layer, but it also away from layer.

Mohapatra and Reddy, (2015) presented exponentially fitted finite difference scheme(EFFDS)

for singularly perturbed two-point boundary value problems. They introduce a simple expo-

nentially fitted finite difference method for solving singularly perturbed two-point boundary

value problems with the boundary layer at one end (left or right). Several linear and non-

linear problems are solved to demonstrate the applicability of the method. It is observed

that the present method approximates the exact solution very well.

Mohapatra and Mahalik, (2015) presented an efficient numerical method for singularly per-

turbed second order ordinary differential equation. They introduce a simple exponentially

fitted finite difference method is presented for solving singularly perturbed two-point bound-

ary value problems with the boundary layer(s) at one end (left or right) point. A fitting

factor is introduced and the model equation is discretized by a finite difference scheme on

the uniform mesh. It is observed that the present method approximates the exact solution

very well.

As clearly explained above, the standard numerical have attempted to obtain different meth-

ods to find the solution of singularly perturbed problem. But when the perturbation parame-

ter becomes small the singularly perturbation problems are unstable and fail to give accurate

results. So it is difficult to find the solutions of problems easily. Know it needs improvement

and not to be recommended because of its low accuracy. Therefore, it is important to de-

velop suitable numerical methods for these problems, whose accuracy does not depend on

the parameter value, i.e. methods that are convergent robust. So in this thesis we discuss

only fitted operator method which develop an alternative numerical method. This method

is very important to develop an alternative numerical method which more improving the

accuracy and order of convergence for solution of singularly perturbed differential equations.
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Chapter 3

Methodology

This chapter consists; study area and period, study design, mathematical procedures, source

of information.

3.1 Study area and Period

The study would be conducted at Jimma University, department of mathematics from June

2022 to December 2022 G.C.

3.2 Study Design

This research was conducted by mixed design, i.e. documentary review and experimental

design.

3.3 Source of Information

Books, journals, published articles, and internet are some of the source that we have used

to perform this research.
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3.4 Mathematical Procedure

In this study the researchers follow the procedures:

1. Define the problem

2. Discretization the solution domain

3. Formulating exponentially fitted modified upwind scheme for the defined problem.

4. Establishing the convergence analysis of method,

5. Writing MATLAB code for the formulated method,

6. Provide numerical illustration in order to confirm the theoretical description, and

7. Discussing the results against the previous findings.
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Chapter 4

Description of the Method,Result and

Discussion

4.1 Description of the Method

Consider the singularly perturbed convection-diffusion problem of the form:

Ly(x) = εy′′(x) + a(x)y′(x) + b(x)y(x) = f(x), x ∈ (0, 1) (4.1.1)

subject to the boundary conditions:

y(0) = A, y(1) = B (4.1.2)

where 0 < ε ≤ 1 is a small perturbation parameter, and A and B are given constants.

Assume that the functions are sufficiently smooth with the properties of:

a(x) ≤ α < 0,∀x ∈ Ω̄, b(x) ≤ β < 0,∀x ∈ Ω̄ (4.1.3)

From the above conditions, the singularly perturbed convection-diffusion problem under

13



consideration possesses a unique smooth solution with boundary layer on the right side of

the solution domain.

Further, let us consider the singularly perturbed homogeneous differential equation:

εy′′(x) + αy′ = 0,∀x ∈ Ω := (0, 1) (4.1.4)

subject to the boundary conditions in Eq. (4.1.2).

The analytical solution for Eq. (4.1.4), is defined by:

y(x) = C1 + C2 exp(
−α
ε
x) (4.1.5)

where C1, C2 are constants which can be determined using the conditions in Eq. (4.1.2).

dividing the interval [0,1] into N (positive integer)equal subintervals of mesh length h= 1
N
.

That is,0=x0, x1, x2, ..., xN = 1 be the mesh points for xi = ih, i = 0, 1, 2, ...N.

Assume that y(x) has continuous higher order derivatives on [0,1] and for suitability let us

denote y(xi) = yi, y
′(xi) = y′i, y

′′(xi) = y′′i, ..., y
n(xi) = yni.

From Taylor series expansion, we obtain:

yi+1 = yi + hy′i +
h2

2!
y′′i +

h3

3!
y′′i +

h4

4!
y4i + ...

yi−1 = yi − hy′i +
h2

2!
y′′i −

h3

3!
y′′i +

h4

4!
y4i − ... (4.1.6)

Using the expansions in Eq. (4.1.6), we get the approximation for the first and second

derivatives respectively as:
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y′i =
yi − yi−1

h
+
h

2
y′′i +O(h2)

y′′i =
yi − 2yi + yi−1

h2
+O(h2) (4.1.7)

Considering Eq. (4.1.1) at the nodal point and substituting Eq. (4.1.7) in Eq. (4.1.1) after

neglecting the O(h2) from Eq. (4.1.7) yields:

ε
yi − 2yi + yi−1

h2
+ ai

yi − yi−1
h

+ ai
h

2
y′′i + biyi = fi +O(h2), 1 ≤ i ≤ N − 1. (4.1.8)

Further, Eq. (4.1.8) re-arranged as:

ε

h2
(1 +

aih

2ε
)(yi−1 − 2yi + yi+1) +

ai
h

(yi − yi−1) = fi − biyi (4.1.9)

Let denote ρ = h
ε

and assume that fi−biyi is bounded, then introduce the fitting parameterσ

into Eq. (4.1.9).

Also, multiplying both sides of Eq. (4.1.9) by h and evaluating its limits as h approaches to

zero, yields:

σ

ρ
=

αlimh→0(yi−1−yi)

limh→0(yi+1−2yi+yi−1)

(4.1.10)

where α = limh→0 ai (α is constant as defined in eq.(4.1.3))

In order to obtain the value of the introduced fitted parameter, considering Eq. (4.1.5) on

discreet form of xi ∈ [0, 1]as :
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y(xi) ≡ yi = C1 + C2 exp(
−α
ε
x)

=C1 + C2 exp(−α
ε
ix)

=C1 + C2 exp(−α ih
ε

)

= C1 + C2 exp(−αiρ) (4.1.11)

Then, allowing Eq.(4.1.11) in to Eq.(4.1.10), we get the value of fitting parameter:

σ =
ρα(exp(αρ)− 1)

exp(−αρ)− 2 + exp(αρ)
(4.1.12)

Thus, the exponentially fitted modified upwind scheme for solving the problem under con-

sideration can be provided as:

εσ

h2
(1 +

aiρ

2
)(yi+1 − 2yi + y + i+ 1) +

ai
h

(yi − yi−1) + biyi = fi, 1 ≤ i ≤ N − 1. (4.1.13)

Furthermore, Eq. (4.1.13), can be written in three-term recurrence relation of the form:

Eiyi−1 + Fiyi +Giyi+1 = Hi, i = 1, 2, 3, ..., N − 1 (4.1.14)

where,

Ei = εσ
h2

(1 + aiρ
2

)− ai
h
,

Fi = −2 εσ
h2

(1 + aiρ
2

) + ai
h

+ bi,

Gi = εσ
h2

(1 + aiρ
2

),

Hi = fi.
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This Eq.(1.4.14) gives us the tri-diagonal system which can be solved by Thomas Algorithm

since the conditions | Fi |≥| Ei | + | Gi | satisfied as:

| 2εσ
h2

(1 +
aiρ

2
) +
−ai
h
− bi |≥|

εσ

h2
(1 +

aiρ

2
)− ai

h
| + | εσ

h2
(1 +

aiρ

2
) |,

| ai
h

+ bi |≥|
ai
h
|,

| bi |≥| β |> 0, usingEq.(4.1.3) (4.1.15)

Further, the obtained system of equation in eq. (4.1.14) can be written in matrix form as:

MY = Z (4.1.16)

where the matrices

M = (mij) =



F1 G1 0 · · · 0

E2 F2 G2 · · · 0

0 E3
. . . . . .

...

... 0
. . . . . . GN−2

0 . . . 0 EN−1 FN−1



Y=yi1 =



y2

y2
...

yN−2

yN−1


and Z=Zi1 =



H1 − E1y0

H2

...

HN−2

HN−1 −GN−1YN


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Also, a square matrix M = (mij) is said to be strictly diagonally dominant if | mii |>
∑

j 6=i |

mij |,∀ias verified in Eq. (4.1.15) above.

Lemma:(Hermitian Minkowski) Suppose that the square matrix M = (mij) satisfies

mij ≤ 0,∀i 6= j.Then,M−1 exists and each entries ofM−1 are greater or equal to zero for all

i,j if M is strictly diagonally dominant with mii>0, ∀i.

A square matrix M = (mij) is said to be an M- matrix if mij ≤ 0 for all i6= j and M−1

exists with all its entries are greater than or equal to zero. Hence, difference schemes that

employ M- matrices are generally stable (Martin and David, 2018) .

Truncation Error

The local truncation error T(h) between the exact solution y(xi), and the approximate

solution yi is given by:

T (h) ≡ εy′′(xi) + a(xi)y
′(xi) + b(xi)y(xi)

= −
{εσ
h2

(1 +
aiρ

2
)(yi+1 − 2yi + y + i+ 1) +

ai
h

(yi − yi−1) + biyi

}
(4.1.17)

From Eq. (4.1.7), we have the approximation:

yi − yi−1
h

= y
′

i −
h

2
y
′′

i +O(h2)

yi+1 − 2yi + yi−1
h2

= y
′′

i −
h2

12
y4i +O(h4) (4.1.18)

Substituting Eq. (4.1.18) in to Eq. (4.1.17) gives:

T (h) ≡ εy′′(xi) + a(xi)y
′(xi) + b(xi)y(xi)
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= −
{
εσ(1 +

aiρ

2
)(y

′′

i −
h2

12
y4i ) + ai(y

′

i +
h

2
y
′′

i ) + biyi

}
(4.1.19)

Considering the following approximations at the specified nodal point as:

εy
′′
(xi) ' εy

′′

i

a(xi)y
′
(xi) ' aiy

′

i, (4.1.20)

b(xi)y(xi) ' biyi.

By this equality in Eq. (4.1.20), Eq. (4.1.19) becomes:

T (h) = (
aih

2
− aiεσρ

2
)y
′′

i +
h2

12
(εσ +

aiεσρ

2
)y4i , (4.1.21)

T (h) = h(
ai
2
− aiσ

2
)y
′′

i + h2(
εσ

12
+
aiσh

24
)y4i ,

since ρ = h
ε
.Hence, the norm of truncation error for the formulated scheme is:

| T |≤ CN−1, forh = N−1, (4.1.22)

where

C=| (ai
2
− ai

2
)y
′′
i |= 1

2
| ai − aiσ |

∥∥∥∥y′′i ∥∥∥∥∞ is arbitrary constant.

Therefore,the described method is first-order convergent. Truncation errors measure how

well a finite difference discretization approximates the differential equation. Thus, the de-

scribed scheme is first-order accurate.

19



As anyone know, a finite difference scheme is known as consistent if the limit of truncation

error is equal to zero as the mesh size goes to zero. Hence, this definition of consistency on

the described method with the local truncation error in Eq. (4.1.21) is satisfied. Therefore,

using this consistency and stability criteria provided in terms of M- matrix, the proposed

scheme is convergent.

4.2 Numerical Illustration

Sample of modeled numerical examples are considered and solve to demonstrate the appli-

cability of proposed method.

Example 1: Consider the singularly perturbed convection-diffusion boundary value prob-

lem:  εy
′′
(x)− e−xy′(x)− y(x) = f(x), x ∈ (0, 1),

y(0) = y(1) = 0.

where f(x) is selected such that the exact solution is

y(x) = x(ε+
x

2
)−

(ε+ 1
2
)(e

x−1
ε − e−1

ε )

1− e−1
ε

Example 2: Consider the singularly perturbed convection-diffusion boundary value prob-

lem: 
εy
′′
(x)− y′(x)− y(x) = 0, x ∈ (0, 1),

y(0) = 1 + exp(−1+ε
ε

).

y(1) = 1 + 1
ε

The exact solution for this example is y(x) = exp(−x) + exp( (x−1)(1+ε)
ε

)

For this considered examples, the maximum absolute error evaluated by formula:
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EN
ε = max∀xi∈[0,1]

∣∣∣∣y(xi)− yi
∣∣∣∣

where y(xi) and yi are exact and approximated solutions respectively.

The corresponding order of convergence is determined by:

RN
ε =

logRN
ε − logR2N

ε

log2

The obtained numerical results are given in following Tables 1-5, and Figures 1and 2

Table 4.1: Comparison of maximum absolute errors for example 1:
ε N=16 N=32 N=64 N=128 N= 256

ε ↓ N → 16 32 64 128

Present Method
10−3 1.21144e-02 5.8313e-03 2.5957e-03 3.8809e-03
10−6 1.2874e-02 6.5536e-03 3.3062e-03 1.6604e-03
10−9 1.2874e-02 6.5544e-03 3.3069e-03 1.6611e-03

Runchang Lin(2009)
10−3 7.9515893e-02 5.6767294e-02 4.0393762e-02 2.8390349e-02
10−6 7.9599192e-02 5.6274836e-02 3.9782178e-02 2.8125784e-02
10−9 7.9598746e-02 5.6274329e-02 3.9781548e-02 2.8124954e-02

Table 4.2: Effects of introduced fitting parameter on maximum absolute errors for example1:
ε ↓ N → 16 32 64 128

With fitted Parameter
10−3 1.2144e-02 5.8313e-03 2.5957e-03 3.8809e-03
10−6 1.2874e-02 6.5536e-03 3.3062e-03 1.6604e-03
10−9 1.2874e-02 6.5544e-03 3.3069e-03 1.6611e-03

Without fitted Parameter
10−3 3.6591e-01 3.2686e-01 2.3444e-01 9.2864e-02
10−6 4.5873e-01 4.9304e-01 5.1138e-01 5.1845e-01
10−9 4.5886e-01 4.9344e-01 5.1268e-01 5.2279e-01
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Table 4.3: Comparison of maximum absolute errors for example 2:
ε ↓ N → 16 32 64 128 256 512 1024

Present
Method

10−4 1.1137e-02 5.6340e-03 2.8185e-03 1.3957e-03 6.8063e-04 3.2221e-04 1.4275e-04
10−6 1.1172e-02 5.6699e-03 2.8546e-03 1.4319e-03 7.1697e-04 3.5860e-04 1.7919e-04
10−8 1.1173e-02 5.6702e-03 2.8550e-03 1.4323e-03 7.1734e-04 3.5896e-04 1.7955e-04
10−10 1.1173e-02 5.6702e-03 2.8550e-03 1.4323e-03 7.1734e-04 3.5896e-04 1.7956e-04
10−12 1.1173e-02 5.6702e-03 2.8550e-03 1.4323e-03 7.1734e-04 3.5896e-04 1.7956e04

Kadalbajoo,
Gupta(2009)

10−4 3.2912e-02 1.4195e-02 6.3383e-03 2.9970e-03 1.4339e-03 6.8495e-04 3.2200e-04
10−6 3.2918e-02 1.4156e-02 6.2306e-03 2.8522e-03 1.3590e-03 6.7467e-04 3.4811e-04
10−8 3.2918e-02 1.4156e-02 6.2292e-03 2.8489e-03 1.3518e-03 6.6094e-04 3.2841e-04
10−10 3.2918e-02 1.4156e-02 6.2291e-03 2.8488e-03 1.3517e-03 6.6079e-04 3.2810e-04
10−12 3.2925e-02 1.4175e-02 6.2236e-03 2.8524e-03 1.3544e-03 6.6086e-04 3.2835e-04

Table 4.4: Effects of introduced fitting parameter on maximum absolute errors for example
2:

ε ↓ N → 16 32 64 128 256 512

With FP
10−4 1.1137e-02 5.6340e-03 2.8185e-03 1.3957e-03 6.8063e-04 3.2221e-04
10−6 1.1172e-02 5.6699e-03 2.8546e-03 1.4319e-03 7.1697e-04 3.5860e-04
10−8 1.1173e-02 5.6702e-03 2.8550e-03 1.4323e-03 7.1734e-04 3.5896e-04
10−10 1.1173e-02 5.6702e-03 2.8550e-03 1.4323e-03 7.1734e-04 3.5896e-04
10−12 1.1173e-02 5.6702e-03 2.8550e-03 1.4323e-03 7.1734e-04 3.5896e-04

Without FP
10−4 1.2114e+00 1.1532e+00 1.0129e+00 9.4305e-01 8.9907e-01 8.1263e-01
10−6 1.2526+00 1.2808e+00 1.2914e+00 1.2819e+00 1.2274e+00 1.0955e+00
10−8 1.2530e+00 1.2824e+00 1.2975e+00 1.305-e+00 1.3082e+00 1.3073e+00
10−10 1.2530e+00 1.2824e+00 1.2976e+00 1.3053e+00 1.3091e+00 1.3110e+00
10−12 1.2530e+00 1.2824e+00 1.2976e+00 1.3053e+00 1.3091e+00 1.3111e+00
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Table 4.5: Rate of convergence for the two considered examples:
ε ↓ N → 32 64 128 256 512 1024

Example 1
10−4 6.4813e-03 3.2337e-03 1.5878e-03 7.5962e-04 3.4490e-04 1.9178e-04

1.0031 1.0262 1.0637 1.1391 0.8467
10−6 6.5536e-03 3.3062e-03 1.6604e-03 8.3170e-04 4.1596e-04 2.0773e-04

0.9871 0.9936 0.9974 0.9996 1.0017
10−8 6.5544e-03 3.3069e-03 1.6611e-03 8.3244e-04 4.1669e-04 2.0846e-04

0.9870 0.9933 0.9967 0.9984 0.9992
Example 2

10−4 5.6340e-03 2.8185e-03 1.3957e-03 6.8063e-04 3.2221e-04 1.4275e-04
0.9992 1.0139 1.0360 1.0789 1.1745

10−6 5.6699e-03 2.8546e-03 1.4319e-03 7.1697e-04 3.5860e-04 1.7919e-04
0.9900 0.9956 0.9979 0.9995 1.0009

10−8 5.6702e-03 2.8550e-03 1.4323e-03 7.1734e-04 3.5896e-04 1.7955e-04
0.9899 0.9952 0.9976 0.9988 0.9994
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Figure 4.1:
Numerical solution obtained with fitted scheme via exact solution when ε = 10−4, N = 64
for example 1 and 2 respectively.
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Figure 4.2:
Numerical solution obtained without fitted scheme via exact solution when ε = 10−4, N = 64
for example 1 and 2 respectively.
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4.3 Discussion

In this thesis, exponentially fitted modified upwind scheme is presented for solving singu-

larly perturbed convection- diffusion problems. First, the singularly perturbed convection-

diffusion equation is replaced by an asymptotically equivalent the modified upwind scheme

two-point boundary value problem by using the Taylors series expansion. Then a fitting

parameter is introduced into modified upwind scheme to control perturbation parameter

and the three term recurrence relation is obtained. The truncation error and convergence

analysis of the method have been investigated.The numerical results have been presented in

Tables (1) (5) with fitted parameter and without fitted parameter for different values of the

perturbation parameter E and mesh points N.

Table 1 and Table 3 show that maximum absolute errors decrease rapidly on the number

of mesh interval increases and perturbation parameter become decreases which imply the

convergence of the presented method. Table 2 and Table 4 show that effect of introduced

fitting parameter on maximum absolute errors decrease rapidly as the number of mesh in-

terval increase and perturbation parameter become decreases which imply the convergence

with fitted parameter. We can observe from the Table 5 indicates that the rate of conver-

gence for the present method is almost first order which is in agreement with the theoretical

expectation.

To further justify the applicability of the proposed method; graphs have been plotted for

the two model examples to compare the exact solutions and approximate solutions at same

mesh size h. With fitted scheme plotted in Figure 1 examine the effect of introduced fitting

parameter on maximum absolute error are rapidly decreases as mesh size h decreases. So, the

present method approximates the exact solution in an excellent manner. But without fitted

scheme plotted in Figure 2 indicates the computed solution with uniform mesh oscillates in

the right boundary layer regions.
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Chapter 5

Conclusion and Scope of Future Work

5.1 Conclusion

This study is implemented on two model examples by taking different values of perturbation

parameter, mesh size and the computational results are presented in the Tables and Figures.

One can conclude that, the results observed from the Tables demonstrate that the present

method approximate the solution very well. A numerical result presented in this thesis

shows the betterment of the proposed method over some existing methods reported in the

literature. Furthermore, the truncation error and convergence analysis of the method is

established well. The results presented (Table 5) confirmed that the computational rate

of convergence as well as theoretical estimates indicates that the present method is of first

order convergence. The effect of the fitted parameter on the solution of singularly perturbed

differential equation is showed by sketching graphs (Figures 1 2). Furthermore, decreases

the absolute error also deceases (see Tables (1 4) and Figures(1-2)).In general, the present

method is stable, convergent and more accurate for solving singularly perturbed differential

equations.
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5.2 Scope of the Future Work

In this thesis, the numerical method based on exponential fitted modified scheme method

is introduced for solving singularly perturbed convection- diffusion differential equations.

Hence, the scheme proposed in this thesis can also be extended to second order finite differ-

ence method for solving singularly perturbed convection diffusion differential equations.

The researcher believes that the search for numerical method that involves exponential fitted

technique is an interesting and effective work in numerical analysis. so, the forth coming

postgraduate and PhD students of mathematics department can exploit this opportunity

and conduct their research work in this area.
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