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Abstract

Introduction: COVID-19 is an infectious disease caused by severe acute respiratory

syndrome coronavirus-2. It was first reported in December 2019 in Wuhan, China, and

has since spread to pandemic proportions. Since then, the virus has rapidly spread to

the world and has caused over 637.351 million confirmed cases, more than 6,604 million

deaths, and more than 616.952 million recoveries worldwide as of November 05, 2022.

The accelerated failure time model which is an alternative to the proportional hazard

model when the proportional hazard assumptions doesn’t hold was used to analyze time

of event, death from COVID-19 pandemic.

Objective: This study aimed to analyze the time-to-death of COVID-19 pandemic

patients in Jimma Zone, southwest Ethiopia.

Methodology: A retrospective cohort study was conducted on 809 COVID-19 patients

who admitted to Jimma university medical center and Shenen gibe generalized hospital

from May 16, 2020 to March 9, 2022 in Jimma Zone, southwest Ethiopia. Kaplan-

Meier plots and Log-Rank test were used to compare the survival experience of different

categories and semi-parametric survival model and acceleration failure time models were

employed to identify survival time of the patients. The performances of acceleration

failure time models were compared using Akakie Information Criteria.

Results: From 809 patients, 135(16.7%) died in the follow-up period. Log-logistic

acceleration failure time model is better fit the data than other models. The result of

this model shows that the survival time of COVID-19 patients significantly affected by

age, comorbidity, status at admission, HIV/AIDS, symptom at admission, intranasal

oxygen use and diabetes.

Conclusions: The AFT model is a more valuable and realistic alternative to the

Cox PH model in situations where PH assumption cannot hold and therefore should be

considered as an alternative to the Cox PH for analyzing the time to death of COVID-19

patients. Older age, comorbidity, moderate or severe status at admission, HIV/AIDS,

being asymptomatic at admission, intranasal oxygen use, and diabetes are factors that

accelerate time to death in COVID-19 patients.

Keywords: Loglogistic, Accelerated failure time, COVID-19 Pandemic.
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Abbreviation and Acronym

AFT: Accelerated-Failure-Time

AIC: Akakie Informaion Criteria

COVID-19: Corona Virus Disease-19

Cox PH: Cox Proportional Hazard

EPHI: Etiopian Public Health Institute

HR: Hazard Ratio

ICU: Intensive Care Unit

IQR: Inter Quartile Range

JUMC-MTC: Jimma University Medical Center-Michu Trearmet Center

KM: Kaplan Meir

MLE: Maximum Likilihood Estimate

PL: Partial Likilihood

WHO: World Health Organization

SARS: Severe Acute Respiratory Syndrome

SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus-2

SHGGH-OTC: Shenenn Gibe Generalized Hospital-Oromia Treatment Center
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CHAPTER ONE

1 Introduction

1.1 Background of the Study

Coronavirus disease-19 (COVID-19) is an infectious illness caused by the SARS-CoV-2,

which was initially diagnosed in December 2019 in Wuhan, China, and has subsequently

grown to pandemic proportions (Rojas & Rodŕıguez, 2020). Most patients infected with

the virus will have mild to severe respiratory sickness and will recover without needing

any specific therapy. Some, though, will get very ill and require medical treatment.

The virus has swiftly spread over the world as of November 05, 2022, resulting in more

than 637.351 million confirmed cases, more than 6.604 million fatalities, and more than

616.952 million recoveries (Covid, 19).

Almost all African countries have been affected by the pandemic, since the first con-

firmed case were reported in Egypt on 14th February 2020 (Gilbert et al., 2020). On

November 05, 2022, more than 12.679 million confirmed COVID-19 cases with 257,934

deaths, and more than 12.006 million recoveries have been reported from Africa (Covid,

19). Ethiopia reported its first confirmed case of COVID-19 on 13th March 2020

(Kebede & Ababor, 2020). As of November 05, 2022, the total number of confirmed

COVID-19 cases in Ethiopia has reached 494,024 with 7,572 deaths and 472,117 recov-

eries (Covid, 19). Within less than three months after the first case of COVID-19, the

virus has quickly spread to all parts of the country. By the first week of June 2020, all

regions reported COVID-19 cases, with Addis Ababa and Oromia constituting about

75% and 6% of the cases, respectively (Zikargae, 2020).

The proportional hazards model (Cox) as a semi-parametric approach Cox (1972) and

the accelerated failure time model or linear model representation in log time as a para-

metric model are the two main regression models used for survival data. The baseline

hazard function’s type or form is not assumed by the model, which instead assumes
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that the underlying hazard rate is a function of the independent variables. Due to this,

Cox’s model is known as a semi-parametric model for the hazard function (D. Klein-

baum & Klein, 2005; Klein & Moeschberger, 1997). The baseline hazard is maintained

in this model as an arbitrary, unspecified, and non negative function of time. Because

of its simplicity and lack of assumptions about the survival distribution, it is the most

widely used and well-known model among researchers in the medical sciences (Th-

erneau & Grambsch, 2000).

A different approach for analyzing survival data is the Accelerated Failure Time (AFT)

model. Numerous common parametric models, including the Weibull, exponential, log-

normal, and log logistic models, are accelerated failure time models (D. Kleinbaum &

Klein, 2005). Parametric methods Andersen et al. (1993) do have a number of advan-

tages, even if the Cox regression model is the most often used methodology in survival

analysis.

To develop effective and efficient preventive and treatment measures, it is crucial to

have a depth sense of the epidemiological and clinical developments of COVID-19. In

environments with few health care resources, this kind of proof was very important.

When the epidemic first started in Ethiopia, for instance, every patient who tested pos-

itive for COVID-19 was isolated and monitored until they recovered. However, as the

number of cases grew, the admission and release standards were altered to accommo-

date individuals who needed the most service (Ababa, 2003). Sadly, there aren’t many

studies on COVID-19’s epidemiological and clinical development that examine survival

rates, patient traits, and risk factors for critical illness and mortality in low-income

settings (Kaso & Agero, 2022). The overall goal of this study is to identify factors

that substantially impact the survival time of COVID-19 patients and to establish the

AFT model if the assumption of the PH model fails in the analysis of time-to-death of

COVID-19 patient data.
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1.2 Statement of the Problem

The threat facing the entire world is the COVID-19 pandemic, which started in Wuhan

City (Rojas & Rodŕıguez, 2020). It has spread rapidly worldwide, causing major

public health concerns and economic crises having a massive impact on populations,

economies, and thereby placing an extra burden on health systems around the planet

(Villela, 2020; Iboi et al., 2020). Despite unrelenting global efforts to contain the spread

of COVID-19, the pandemic caused unprecedented crises to the world (Roychowdhury,

2020).

Short of the most lethal weapon for prevention and treatment, every country has re-

sorted to a trial-and-error approach to keep the balance between safeguarding the

health of its citizens and saving the economy (Moti & Ter Goon, 2020). This virus

has caused unprecedented morbidity and deaths mainly among older age people with

underlying health conditions (Alqahtani & Oyelade, 2020). Using the right model will

undoubtedly assist to uncover more accurate and reliable prognostic factors, which will

help to have a more successful treatment protocol. There are two main methods for

the regression analysis of censored data, such as the accelerated failure time and the

proportional hazard models (Cox, 1972). According to a review of the literature, non-

parametric techniques like Kaplan-Meier and Cox Proportional Hazards Model have

frequently been used to compare and pinpoint the variables that affect patients with

the COVID-19 pandemic’s survival time. The latter technique is used when the effect

of the covariate on the hazard ratio is desired.

In practice, the proportional hazards model has virtually always been employed. This is

most likely caused by the fact that enables parameter estimation and inference without

requiring a survival time distribution. However, the basic and most important assump-

tion underlying this model is the assumption of proportional hazard rates, which may

not be held in some situations. Where the PH assumption is not met, it is improper

to use the usual standard Cox PH model as it may entail serious bias and loss of

power when estimating or making inferences about the effect of predictors of mortality
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(Moran & Bersten, 2008).

Recent years have seen a significant increase in interest in AFT models as parametric

models, not only because they do not require the PH assumption but also because

they can be easily tested and parameterized using common methods like Maximum

Likelihood (Altman et al., 1995). The rare instances of AFT models being employed

may be found in studies of the period to menarche and kidney transplantation (Fag-

bamigbe et al., 2018). The predictors of death of COVID-19 patients worldwide have

not been identified using this method. In this study, AFT models were used to analyze

and find factors that have a statistically significant influence on the survival of patients

with COVID-19 since the assumption of PH fails. Thus, we are attempted to offer

empirical support for or, in the instance of Jimma Zone, a response to the following

study questions:

� What are the determinant factors to time-to-death of COVID-19 patients in the

study area?

� Which model best fit the time to death analysis of COVID-19 patients data?

1.3 Objectives of the study

1.3.1 General objective

The general objective of this study is to analyze time-to-death of COVID-19 patients

and identify the main factors that affect the survival time of COVID-19 patients in

Jmma zone, southwest Ethiopia.

1.3.2 Specific objectives

� To estimate the survival time and compare the survival of COVID-19 patients

among groups.

� To estimate the effects of the covariate on acceleration or deceleration of the

survival time of COVID-19 patients.
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1.4 Significance of the study

The findings or results obtained from this research are useful in many ways;

� Governmental organizations could take intervention measures and set appropriate

plans to reduce mortality by giving priority in significant predictors of mortality

among COVID-19 pandemic patients.

� It helps in making a decision as to which model to apply under specified conditions

defined by predictor variables.

� It would have added literature on determinants of time-to-death from COVID-19

pandemic.

1.5 Limitation of the study

� The study was conducted based on secondary data, so it may contain incomplete

information.

� In this study, all deaths were assumed to be caused by COVID-19.

� The study is based on baseline values of the variables of interest.
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CHAPTER TWO

2 Literature Review

2.1 Coronavirus disease-19 (COVID-19 )

COVID-19 is a significant global health emergency that has infected and killed millions

of people worldwide (Habenom et al., 2022). The World Health Organization declared

the disease a pandemic on March 11, 2020 (Ghebreyesus, n.d.). This pandemic is

widespread and crosses international borders, affecting many people (Porta, 2014). It

has been reported that the COVID-19 incident in Ethiopia happened in Addis Ababa,

the capital city (Kassaw, 2020). Quarantine centers and international destinations are

said to be the fastest-spreading places for diseases in Ethiopia. In addition, the partial

closure in Addis Ababa worsened the situation.

2.2 Literature in relation to explanatory variables of the study

The most common pathological symptom observed among COVID-19 infected indi-

vidual is that the virus damages the alveolar, which leads to a respiratory failure and

as normal like flu, fever, cold, cough and shortness of breath, along with them the

other severe symptoms observed are sputum production, haemoptysis, lymphophenia

and pneumonia, in some cases increasing dyspnea and hypoxemia in the upper lobe

of the lung were also observed (Rothan & Byrareddy, 2020). The silent feature of

COVID-19 is its associated symptoms that they will appear during incubation period

of 2–14 days (Rothan & Byrareddy, 2020). COVID-19 can infect individuals of all

ages and genders and can spread easily from one person to another, but the likelihood

of getting infected is higher among older population, on various medical conditions,

such as, diabetes, cardiovascular diseases, hypertension, cancer and chronic respira-

tory diseases (Wu & McGoogan, 2020; Wang & Zhang, 2020). Severe illness due to the

COVID-19 leads to death (mortality rate of 3% approximately) (Wang & Zhang, 2020).

Among COVID-19 cases reported in the WHO African area between March 21 and
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October 31, 2020, the study done in Africa reveals the risk variables linked to death.

Researchers determined the median time to death for the major risk variables and the

average hazard ratios of death using weighted Cox regression. The study comprised

46,870 cases that were verified and reported by eight regional Member States. Using

803 deaths and 3 959 874 person-days of pertinent observation, an incidence of 20.06

per 100,000 people was calculated overall. Male sex (aHR 1.54 (95% CI 1.31-1.81)),

older age (aHR 1.08 (95% CI 1.07-1.08)), residents of urban areas (aHR 1.42 (95%

CI 1.22-1.65)), and those with one or more comorbidities (aHR 36.37 (95% CI 20.26-

65.27) had substantially shorter time to death with P < 0.001. Although possibly

understated, the COVID-19 mortality in the African area is comparable to that in

other locations (Impouma et al., 2022).

The study conducted by Kundu et al. (2021) presents a survival analysis to deter-

mine the variation in survivorship of COVID-19 patients in India by age group and sex

at various levels, including the national, state, and district levels. A total of 26,815

patients were included in the sample. The log rank test (P < 0.001) and Wilcoxon test

(P < 0.001) were added to the Kaplan-Meier survival function to compare the sur-

vival functions and revealed a drop in the likelihood of survival for COVID-19 patients

throughout the course of the 5-month research period. All of the survival estimates

show that the age groups showed significant variation, and that the chance of dying

from COVID-19 rose as age. The Cox proportional hazard model confirmed that male

COVID-19 patients had a 1.14 times greater chance of passing away than female pa-

tients (Hazard ratio 1.14; SE 0.11; 95 percent confidence interval (0.93-1.38); While

Eastern, North Eastern, and Southern India displayed somewhat improved outcomes

in terms of survival, Western and Central India showed declining survival rates within

the defined time period.

The COVID-19 survival analysis in the Mexican population was the subject of the

other study, which was carried out by Salinas-Escudero & Carrillo-Vega (2020). The

register of 16,752 confirmed COVID-19 cases with a mean age of 46.55 ± years, 58.02

percent males (n = 9719), and 9.37 percent deaths (n = 1569) was included in the
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analysis. The risk of dying from COVID-19 was independently increased by male sex,

advanced age, chronic renal disease, pneumonia, hospitalization, intensive care unit

admission, incubation, and medical attention from public health services (p < 0.001).

Using Kaplan-Meier and Cox regression analysis, Kaso & Agero (2022) conducted

a study on the survival analysis of COVID-19 patients in Ethiopia. A total of 422

COVID-19 patients who received treatment were examined; of them, 11.14 percent (or

6.35 cases per 1000 person-days) deceased. The majority (87.2%) of fatalities (with a

median time-to-death of nine; IQR: 8-12) days) happened within the first 14 days of

admission. Patients with HIV/AIDS (aHR = 3.66, 95%CI [1.20, 11.10]), age between

31 and 45 years (aHR = 2.55; 95%CI [1.03, 6.34]), older than 46 years (aHR = 2.59

95%CI [1.27, 5.30]), chronic obstructive pulmonary disease (aHR = 4.60, 95%CI [2.37,

8.91]), Chronic kidney disease (aHR = 5.58, 95%CI [1.70, 18.37]), admission to the

Intensive care unit(aHR = 7.44, 95%CI [1.82, 30.42]), and being on intranasal oxygen

care (aHR = 6.27, 95% CI [ 2.75, 4.30 ]), were independent risk factors increasing risk

of death from COVID-19 disease than their counterparts.

A retrospective cohort study conducted on incidence and predictors of mortality among

patients admitted with COVID-19 at Wollega University Referral Hospital (WURH),

in western Ethiopia, A total of 318 patients were included in the final analysis, with a

mean age of 44 (SD ± 16.7) years and a 67.9% male gender distribution. At the time of

admission, more than half of patients (55,7%) were comorbidity-free. 259 (81.45%) of

the patients recovered from COVID-19, and 267 (84%) were censored at the conclusion

of the follow-up. The mortality incidence rate was 14.1 per 1000 (95% CI: 10.7-18.5)

observational person days. Three factors were independent predictors of death among

COVID-19 patients: age 59 years (HR: 5.76, 95% CI: 2.58, 12.84), low oxygen satura-

tion (HR: 2.34, 95% CI: 2.34, 4.17), and delayed presentation (HR: 5.60, 95% CI: 2.97,

10.56) (Tolossa et al., 2022).
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2.3 Cox PH versus AFT models

The effects of variables on a possibly censored response variable may be naturally

expressed using the accelerated failure time model (Zeng & Lin, 2007). The semi-

parametric estimators that are now available are statistically ineffective and difficult

to compute. In their study, they suggested a roughly non-parametric maximum like-

lihood approach for the accelerated failure time model with potential time-dependent

variables. By maximizing a kernel-smoothed profile likelihood function, the regres-

sion parameters were computed. Using traditional gradient-based search techniques,

maximization was accomplished. The obtained estimators were asymptotically normal

and consistent. The semi-parametric efficiency constraint was reached by the limiting

covariance matrix, allowing for reliable estimation. Additionally, they offer a reliable

estimate for the error distribution. Numerous simulations showed that the new es-

timators outperformed the previous ones in terms of efficiency, while the asymptotic

approximations were correct in real-world settings.

The proportional hazard model and its extension were extensively employed in Ponnu-

raja & Venkatesan (2010) study to evaluate an intervention’s impact in the presence of

con-founders. They noticed that the assumptions might not hold in scenarios when the

intervention accelerates poverty, hence the AFT model is also suitable in these circum-

stances. The goal of their research was to create a model that produces physiologically

reasonable and understandable estimates of the impact of key factors on survival time.

It was discovered that the AFT model provided more accurate predictions than the

Cox PH model.

The proportional supposition is verified in their investigation and shown to be ac-

curate; however, the model diagnostic for the parametric situation has not yet been

established. Based on AIC, parametric and semi-parametric models were compared.

The study demonstrates that there cannot be a single model in univariate analysis that

is significantly superior to others. The lognormal regression was one of the parametric

models that the data most strongly supported, and it can produce findings that are
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more accurate than those produced by the Cox PH model.

According to the studies above, the time to death of a COVID-19-infected patient

after registering for hospitalization is a function of baseline variables like age, gender,

comorbidity, status at admission, symptom at admission, and so on. The purpose of

this study is to analyze time-to-death of COVID-19 pandemic patients using acceler-

ated failure time models and to investigate determinant factors for survival time of

COVID-19 patients in Jimma Zone, southwest Ethiopia.
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CHAPTER THREE

3 Data and Methodology

3.1 Study area

Jimma Zone is one of Oromia’s regional zones, located southwest of Ethiopia. It

has the most comprehensive and beautiful topography, surrounded by green areas. It

has 21 districts with two referral COVID-19 care centers. The study area was around

Jimma Town, which is the capital and administrative center of the zone and is located

at a distance of 350 km from the capital of Ethiopia, Addis Ababa. The study area

is between 1689 and 3018 meters above sea level and receives an average rainfall of

between 1200 and 2400 mm per year.

3.2 Study design

This study used a retrospective cohort study design to analyze survival of COVID-19

patients that was recorded in the two treatment centers.

3.3 Data source

Data is collected from the patient’s follow-up at Jimma University Medical Center-

Michu Treatment Center (JUMC-MTC) and Shenen Gibe Generalized Hospital-Oromia

Treatment Center (SHGGH-OTC). These two treatment centers are among public

hospitals in Ethiopia, and they belong to the Jimma administrative region. Currently,

both hospitals deliver COVID-19 care centers.

3.4 Inclusion and Exclusion Criteria

All COVID-19 patients registered for follow-up in SHGH-OTC and JUMC-MTC in

Jimma Zone from May 16, 2020, to March 9, 2022, were included in this study, other-

wise excluded. The COVID-19 data sets used in this thesis were extracted from patient
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cards and pertain to patients admitted between May 16, 2020, and March 9, 2022. This

study included 809 patients from 21 woredas in and around the Jimma zone.

3.5 Study Variables

3.5.1 Dependent Variable

The outcome of interest for this study is time to death since a patient hospitalized for

COVID-19. The status of respondents were assigned to “1” corresponding to when the

subject had developed an event (death) and “0” if they were cured, clinical improved,

and discharged with consent or transferred to out of the study area. This dependent

variable (in days) is measured as the length of time from treatment start date until the

date of death or censor.

3.5.2 Independent Variable

The explanatory variables included in the study are factors that are assumed to affect

the survival time of patients. The socio demographic factors, health-related factors,

comorbidity conditions, clinical manifestation, and treatment-related factors are con-

sidered. The description of explanatory variables are given in table 3.1.

3.6 Ethical issues

The ethical clearance and permission was obtained from Research Ethical Review Board

of college of Natural Sciences, Jimma, before starting data collection. An ethical

clearance letter from Jimma University would be given to Manager of the Jimma

Emergency Operation Center (JEOC) and Shenen Gibe General Hospital (SHGGH)

and a permission letter was obtained. The researcher collected: (1) Patient history from

record (hard/electronic sources) only by a trained health professional assigned by the

concerned institute. (2) All data collected were treated with maximum confidentiality;

the identity of the respondents/patients was never be expose to anyone at any time by

any means. (3) The information (data) was never be used for any other purpose than

for the scientific goal and was never be transferred to any third party with identity of

the respondents/patents.
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Table 3.1: Description and codes of the explanatory variables

Variables Description Code

Sex Sex of patients 0=Female, 1=Male

Age Age of patients 0=< 18,1=18-45, 2= > 45

Residence Residence of Patients 0=Rural,1= Urban

Comorbidity Comorbidity of patients 0= No, 1= Yes

Status at admission Patients status at admission 0=Asymptomatic, 1= Mild,

2= Moderate, 3= Sever

HIV/AIDS Patients having HIV/AIDS 0= No, 1= Yes

Symptom at admission Patients having Symptom 0= Yes, 1= No

Hypertension Patients having Hypertension 0= No, 1= Yes

Oxygen use Patients used intranasal oxygen 0= No, 1= Yes

Diabetes patients having diabetes 0= No, 1= Yes

3.7 Methods of Data Analysis

3.7.1 Survival Data Analysis

Basic survival analysis: In follow-up studies the exact survival time is only known

for those study participants or units who show the event of interest during the follow-

up period. For the others, what one can say is that they did not experience the event

of interest during the follow-up period. These study participants or units are called

censored observations. Individuals can be right censored, left censored or interval

censored.

Censoring: Subjects are censored to the right if it is known that the relevant event

occurred some time after the follow-up time that was recorded, and to the left if it

is known that the relevant event occurred some time before the follow-up time that

was recorded. When the actual time at which the event happened is unknown but an

interval bounded by this time is known, this is known as interval censoring. It is typical

to overlook this type of censorship when the period is relatively brief and choose one
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end point consistently. Clinical trials and follow-up studies, including those on AIDS

and cancer, commonly produce interval-censored survival data.

3.7.2 Descriptive Statistics

An initial step in the analysis of a set of survival data is to present numerical or graphi-

cal summaries of the survival times in a particular group. In summarizing survival data,

the two common functions applied are the survivor function and the hazard function

(Lemeshow et al., 2011).

3.6.2.1 Survival Function: The survivor function is the probability that the sur-

vival time of a randomly selected subject is greater than or equal to some specified

time. Thus, it gives the probability of an individual surviving beyond a specified

time. The distribution of survival time is characterized by survivor-ship, probability

density, and hazard function. Let T be a random variable associated with the survival

times, t be the specified value of the random variable T , and F (t) be the underlying

probability density function of the survival time T . The survivor function, S(t), is

S(t) = pr(T > t) = 1− F (t), t ≥ 0.

Where F (t) = pr(T < t) =
∫ t

0
f(u)du, t ≥ 0 is the c.d.f. of T and

The probability density function

F (t) =
d

dt
F (t) = − d

dt
S(t).

3.6.2.2 Hazard Function: The hazard function is a measure of the risk of the event

happening at any point in time. It is the instantaneous probability of having an event

at time t (per unit time) given that one has survived (i.e. not had an event) up to time

t (D. G. Kleinbaum et al., 2012). It is denoted by h(t) and defined as

h(t) = lim
∆t→0

P (t ≤ T < t+∆t/T > t)

∆t
=
f(t)

S(t
= − d

dt
lnS(t).

The cumulative hazard function is given by

H(t) =

∫ t

0

h(u)du = − lnS(t),
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which implies that,

S(t) = exp[H(t)] = exp(−
∫ t

0

h(u)du).

3.8 Non-Parametric Estimation of Survival Function

Preliminary analysis of the data using non-parametric methods provides insight into

the shape of the survival function for each group and get an idea of whether or not

the groups are proportional, i.e, if the estimated survival functions for two groups are

approximately parallel (do not cross).

3.8.1 The Kaplan-Meier Estimator

The Kaplan-Meier Estimator is a non-parametric estimator of the survival function,

which is not based on the actual observed event and censoring times, but rather on the

order in which events occur. This principle of non-parametric estimation of the survival

function is to assign probability to and only to event failure times. The log-rank test is

utilized to test whether observed differences in survival experience between the groups

are significant or not.

The Kaplan-Meier survival curve used to compare the survival of COVID-19 patients

under different categories of categorical covariates. In general, patients belongs to the

categories whose survival curve lays below the survival curve of the other category has

a better survival time. In Kaplan Meier product limit method, survival probabilities

can be obtained as:

S =
k∏

j=1

(
nj − dj
nj

)
, k ≤ n, tj ≤ t < tj+1.

Where; dj = the number of failure in tj, nj is the number of incident cases at risk in

tj, k is the number of sequential observations, n is the total number of incident cases.

3.9 Comparison of Survival Function

The Kaplan-Meier plots are used to see whether there is a difference in survival time

or not between groups of covariates under investigation. But, the KM plot cannot be
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used to decide whether the survival time of patients living with COVID-19 in each

covariate is significantly different or not. Instead, we use log-rank test.

3.9.1 Log-rank Test

The non-parametric log rank test was created by Mantel & Haenszel (1959) to compare

two or more independent survival curves. Since it is a non-parametric test, there is no

need to make any assumptions about the distributional form of the data. The strongest

indication of a larger cure proportion in one group compared to the other is made by

this test. Let t1 < t2 < ... < tk be the ordered recovery times across two groups.

Suppose that dj failures occur at tj and that rj subjects are at risk just prior to tj,

j = 1, 2, 3, ..., k. Let dij and rij be the corresponding numbers in group i, i = (1, 2).

The log-rank test compares the observed number of recovery with the expected number

of recovers for group i . Consider the null hypothesis: S1t = S2t i.e. there is no difference

between survival curves in two groups. Given rj and dj the random variable d1j has

the hyper geometric distribution. dj

d1j

 rj − dj

r1j − d1j


 rj

r1j

 .

Under the null hypothesis, the probability of recovery at tj does not depend on the

group,i.e., the probability of recovery at tj is
dj
rj
.

χ2
logrank =

[∑k
j (d1j − r1j × dj/rj)

]2
∑k

j

r2jr1jdj(rj−dj)

r2j (rj−1)

,

this statistic approximate χ2 distribution with 1 df.

3.10 Survival Models

3.10.1 Cox Proportional Hazard Model

The Cox PH model is a semi parametric regression model which can be used to measure

the effects of covariates on the survival time. This model is represented by the relation-
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ship of the hazard function, the baseline hazard function, and one or more covariates

in the form

λ(t) = λ0(t) exp(β
′X) (1)

where t is survival time, λ(t) is the hazard function, λ0(t) is the baseline hazard function

which is left unspecified, β is a column vector of the regression coefficients, and X is a

column vector of the covariates. Cox proportional hazard model used for the analysis

of time to death of COVID-19 data in the presence of covariates or prognostic factors.

The corresponding survival functions are related as follows

S(t,X) = [S0(t)]
exp(

∑p
i=1 βiXi) (2)

where S0(t) = exp(λ0(t)) is a baseline survival function and βi coefficient of covariates

respectively. This model, also known as the Cox regression model, makes no assump-

tions about the form of λ0(t) (non-parametric part of model) but assumes parametric

form for the effect of the predictors on the hazard (parametric part of model). The

model is therefore referred to as a semi-parametric model. The Cox regression model

assumes that there is the proportionality of the hazard rate between any two individ-

uals in the population. The hazard ratio is defined as the ratio of the hazard functions

for two subjects with different values of covariates X1 and X2. The formula of the

hazard ratio is given by

Λ(t) =
λ0(t) exp(β2X2)

λ0(t) exp(β1X1)
=

exp(β2X2)

exp(β1X1)
= exp(β′(X2 −X1)) (3)

It can be seen that the hazard ratio Λ(t) = exp(β′(x2 − x1)) is independent of time.

In other words, the hazard ratio for any two individuals is constant over time. This

property is also known as the PH assumption. Assumptions of the Cox proportional

hazards model are;

� The ratio of the hazard function for two individuals with different sets of covari-

ates does not depend on time.

� Time is measured on a continuous scale and censoring occurs randomly.

Interpreting outputs from the Cox model involves examining the coefficients for each

explanatory variable. Negative regression coefficient for an explanatory variable indi-

cates that the hazard is lower and thus the prognosis worse. Conversely, positive a

17



regression coefficient implies a better prognosis for patients with higher values of that

variable when time to event is recovery and conversely for death (Walters, 2012).

3.10.2 Partial likelihood estimate for Cox proportional hazards model

Fitting the Cox proportional hazards model, we wish to estimate λ0(t) and β. One

approach is to attempt to maximize the likelihood function for the observed data si-

multaneously with respect to λ0(t) and β. A more popular approach is proposed by

Cox (1975) in which a partial likelihood function that does not depend on λ0(t) is

obtained for β. Partial likelihood is a technique developed to make inference about

the regression parameters in the presence of nuisance parameters λ0(t) in the Cox PH

model). In this section, we will construct the partial likelihood function based on the

proportional hazards model.

Let t1, t2, . . . , tn be the observed survival time for n individuals. Let the ordered death

time of r individuals be t(1) < t(2) < · · · < t(r) and let R(t(j)) be the risk set just

before t(j) and rj for its size. So that R(t(j)) is the group of individuals who are alive

and uncensored at a time just prior to t(j). The conditional probability that the ith

individual dies at t(j) given that one individual from the risk set on R(t(j)) dies at t(j)

is

P ( individual i dies at t(j)/ one death from the risk set R(t(j)) at t(j))

=
P ( individual i dies at t(j)
P one individual at t(j)

=
P ( individual i dies at t(j)∑

k∈R(t(j))
P ( individual k dies at t(j))

=
P ( individual i dies at t(j), t(j) +∆t)/∆t∑

k∈R(t(j))
P ( individual k dies at t(j), t(j) +∆t)/∆t

=
lim∆t↓0 P ( individual i dies at t(j), t(j) +∆t)/∆t

lim∆t↓0
∑

k∈R(t(j))
P ( individual k dies at t(j), t(j) +∆t)/∆t

=
λi(t(j))∑

k∈R(t(j)λk(t(j))

=
λ0(t(j)) exp(β

′Xi(t(j)))∑
k∈R(t(j)

λ0(t(j)) exp(β′Xk(t(j)))
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=
exp(β′Xi(t(j)))∑

k∈R(t(j)
exp(β′Xk(t(j)))

Then the partial likelihood function for the Cox PH model is given by

L(β) =
n∏

i=1

exp(β′Xi(t(j)))∑
k∈R(t(j)

exp(β′Xk(t(j)))
, (4)

in which Xi(t(j)) is the vector of covariate values for individual i who dies at t(j). The

general method of partial likelihood was discussed by Cox (1975).

Note that this likelihood function is only for the uncensored individuals. Let t1, t2, . . . , tn

be the observed survival time for n individuals and δi be the event indicator, which is

zero if the ith survival time is censored, and unity otherwise. The likelihood function

in equation (4) can be expressed by

L(β) =
n∏

i=1

(
exp(β′Xi(t(i)))∑

k∈R(t(i)
exp(β′Xk(t(i)))

)δi

, (5)

where R(ti) is the risk set at time ti.

The partial likelihood is valid when there are no ties in the data set. That means there

is no two subjects who have the same event time.

3.11 Proportional hazard assumption checking

The main assumption of the Cox proportional hazards model is proportional hazards.

Proportional hazards means that the hazard function of one individual is proportional

to the hazard function of the other individual, i.e., the hazard ratio is constant over

time. There are several methods for verifying that a model satisfies the assumption of

proportionality.

3.11.1 Graphical method

We can obtain Cox PH survival function by the relationship between hazard function

and survival function

S(t, x) = [S0(t)]
exp

(∑p
i=1 βixi

)
,
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Where x = (x1, x2, . . . , xp) is the value of the vector of explanatory variables for a

particular individual. When taking the logarithm twice, we can easily get

log[− logS(t, x1)]− log[− logS(t, x2)] =

p∑
i=1

βi(x1i − x2i).

This does not depend on t. This relationship is very helpful to help us identify situations

where we may have proportional hazards. By plotting estimated log (-log (survival))

versus survival time for two groups we would see parallel curves if the hazards are

proportional. This method does not work well for continuous predictors or categorical

predictors that have many levels because the graph becomes ”cluttered”. Furthermore,

the curves are sparse when there are few time points and it may be difficult to tell how

close to parallel is close enough.

However, looking at the K-M curves and log (-log (survival)) is not enough to as-

certain of proportionality since they are univariable analysis and do not show whether

hazards will still be proportional when a model includes many other predictors. But

they support our argument for proportionality. We will show some other statistical

methods for checking the proportionality.

3.11.2 Adding time-dependent covariates in the Cox model

We create time-dependent covariates by creating interactions of the predictors and a

function of survival time and including them in the model. For example, if the predictor

of interest is xj , then we create a time-dependent covariate xj(t), xj(t) = xj × g(t)

where g(t) is a function of time, e.g., t, log t or Heaviside function of t. The model

assessing PH assumption for xj adjusted for other covariates is

λ(t, x(t)) = λ0(t) exp
(
β1x1 + β2x2 + · · ·+ βjxj + · · ·+ βpxp + δxj × g(t)

)
.

Where x(t) = (x1, x2, . . . , xp, xj(t))
′ is the value of the vector of explanatory variables

for a particular individual. The null hypothesis to check proportionality is that δ = 0.

The test statistic can be carried out using either a Wald test or a likelihood ratio test.

In the Wald test, the test statistic is

W =
(

δ̂

se(δ̂)2

)
.
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The likelihood ratio test calculates the likelihood under null hypothesis, L0 and the like-

lihood under the alternative hypothesis La. The LR statistic is then LR = −2ln(L0/La) =

−2(La − L0) where L0, La are log likelihood under two hypotheses respectively. Both

statistics have a chi-square distribution with one degree of freedom under the null

hypothesis. If the time-dependent covariate is significant i.e., the null hypothesis is

rejected, and then the predictor is not proportional. In the same way, we also assessed

the PH assumption for several predictors simultaneously.

3.11.3 Tests based on the Schoenfeld residuals

The other statistical test of the proportional hazards assumption is based on the

Schoenfeld residual (Schoenfeld, 1982). The Schoenfeld residuals are defined for each

subject who is observed to fail. If the PH assumption holds for a particular covariate

then the Schoenfeld residual for that covariate will not be related to survival time. So

this test is accomplished by finding the correlation between the Schoenfeld residuals for

a particular covariate and the ranking of individual survival times. The null hypothesis

is that the correlation between the Schoenfeld residuals and the ranked survival time

is zero. Rejection of null hypothesis concludes that PH assumption is violated.

3.12 Cox proportional hazards model diagnostics

After a model has been fitted, the adequacy of the fitted model needs to be assessed.

The model checking procedures below are based on residuals. In linear regression

methods, residuals are defined as the difference between the observed and predicted

values of the dependent variable. However, when censored observations are present and

partial likelihood function is used in the Cox PH model, the usual concept of residual

is not applicable. A number of residuals have been proposed for use in connection with

the Cox PH model. For this study, three major residuals in the Cox model were used:

the CoxSnell residual, the deviance residual, and the Schoenfeld residual. Then we will

talk about influence assessment.

21



3.12.1 Cox-Snell residuals and deviance residuals

The Cox-Snell residual is given by Cox and Snell (Klein & Moeschberger, 1997). The

Cox-Snell residual for the ith with observed survival time ti is defined as

rci = exp
[

ˆβXi

]
Ĥ0(ti) = Ĥi(ti) = − log

(
Ŝi(t)

)
.

Where Ĥ0(ti) is an estimate of the baseline cumulative hazard function at time ti ,

which was derived by Kalbfleisch & Prentice (1973). This residual is motivated by the

following result.

Let T has continuous survival distribution S(t) with the cumulative hazard H(t) =

− log(S(t)). Let Z = H(t) be the transformation of T based on the cumulative func-

tion. Then the survival function for Y is

SZ(z) = P (Z > z) = P (H(t) > z)

= P
(
T > H−1

i (z) = ST

(
H−1

i (z)
))

= exp
(
−HT

(
H−1

T (z) = exp(−z)
))

.

Thus, regardless of the distribution of T , the new variable z = H(t) has an exponential

distribution with unit mean. If the model is be well fitted, the value Ŝi(ti) would have

similar properties to those Si(ti). So rci = − log Ŝi(ti) will have a unit exponential

distribution with fr(r) = exp(−γ).

Let SR(r) denote the survival function of Cox-Snell residual rci. Then

SR(r =

∫ ∞

r

fR(x)d(x) = exp(−r),

and

HR(r) = − log(SR(r)) = − log(exp) = r.

Therefore, we use plot of H(rci) versus rci to check the fit of the model. This gives

a straight line with unit slope and zero intercept if the fitted model is correct. Note,

the Cox Snell residuals will not be symmetrically distributed about zero and cannot

be negative.
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The deviance residual Subbaraman et al. (2007) is defined by

rDi = sign(rmi)
[
−2{rmi + δi log(δi − rmi)}

]1/2
.

Where the function sign(.) is the sign function, which takes the value, 1 if rmi is posi-

tive and -1 if rmi negative; rmi = δi − rci the martingale residuals for the ith individual

and δi = 1 for uncensored observation and δi = 0 for censored observation.

The martingale residuals take values between negative infinity and unity. They have a

skewed distribution with mean zero. The deviance residuals are a normalized transform

of the martingale residuals (Sayehmiri et al., 2008). They also have a mean of zero

but are approximately symmetrically distributed about zero when the fitted model is

appropriate. Deviance residual can also be used like residuals from linear regression.

The plot of the deviance residuals against the covariates can be obtained. Any unusual

patterns may suggest features of the data that have not been adequately fitted for the

model. Very large or very small values suggest that the observation may be an outlier

in need of special attention.

In a fitted Cox-PH model, the hazard of death for the ith individual at any time

depends on the value of exp(β′x) which is called the risk score. A plot of the deviance

residuals versus the risks core is a helpful diagnostic to assess a given individual on the

model. Potential outliers will have deviance residuals whose absolute values are very

large. This plot will give the information about the characteristic of observations that

are not well fitted by the model.

3.12.2 Schoenfeld residuals

All the above three residuals are residuals for each individual. We described covariate

wise residuals by (Schoenfeld, 1982). The Schoenfeld residuals were originally called

partial residuals because the Schoenfeld residuals for ith individual on the jth explana-

tory variable xij is an estimate of the ith component of the first derivative of the

logarithm of the partial likelihood function with respect to βj. From equation 4, this
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logarithm of the partial likelihood function is given by

∂ logL(β)

∂βj
=

p∑
i=1

δi{xij − aij},

Where xij is the value of the J th explanatory variable j = 1, 2, . . . , p for the ith indi-

vidual and

aij =

∑
l∈R(ti)

xjl exp(β
′xi)∑

l∈R(ti)
exp(β′xi)

.

The Schoenfeld residual for ith individual on xjis given rpij = δi{xij − aij}. The

schoenfeld residuals sum to zero.

3.12.3 Diagnostics for influential observations

Observations that have an undue effect on model-based inference are said to be influen-

tial. In the assessment of model adequacy, it is important to determine whether there

are any influential observations. The most direct measure of influence is β̂j − ˆβj(i).

Where β̂j is the jth parameter, j = 1, 2, . . . , p in a fitted Cox PH model and ˆβj(i) is

obtained by fitting the model after omitting observation i. In this way, we have to fit

the n+ 1 Cox models, one with the complete data and n with each observation elimi-

nated. This procedure involves significant amount of computation if the sample size is

large. We would like to use an alternative approximate value that does not involve an

iterative refitting of the model. To check the influence of observations on a parameter

estimate, Cain & Lange (1984) showed that an approximation to β̂j − ˆβj(i) is the jth

component of the vector rSiV
(
β̂
)
. Where rSi is the p × 1 vector of score residuals

for the ith observation (Collett, 2015).

Which are modifications of Schoenfeld residuals and are defined for all the observations,

and V
(
β̂
)
is the variance-covariance matrix of the vector of parameter estimates in

the fitted Cox PH model. The jth element of this vector is called delta-beta statistic

for the th jth explanatory variable, i.e.,∆iβ̂j ≈ β̂j− ˆβj(i), which tells us how much each

coefficient will change by removal of a single observation. Therefore, we were checked

whether there are influential observations for any particular explanatory variable. On

the other hand, the statistic, LDi = 2lp(β) − 2lp(β(i)), which is called the likelihood
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displacement statistic, can be used as a measure of how the maximized partial log

Likelihood changes if the ith observation was deleted from the data set. Observations

that influence a particular parameter estimate have a large absolute value of DFBETA

than other observations in the data set. Observations that do influence the overall fit of

the model are those which have large values of likelihood displacement statistics than

the other observations in the data set (Collett, 2015).

3.13 Accelerated Failure Time (AFT) Model

Although parametric PH models are very applicable to analyze survival data, there

are relatively few probability distribution for the survival time that can be used with

these models Jiezhi (2009). In these situations, the accelerated failure time model

(AFT) is an alternative to the PH model for the analysis of survival time data when

the proportional hazard assumptions doesn’t hold. The key differences between the

Cox-PH model and AFT models are the baseline hazard function and ways of estimat-

ing coefficients (D. Kleinbaum & Klein, 2005). The AFT is obtained by regressing the

logarithm of the survival time over the covariates and the effect of the explanatory vari-

ables on the survival time is directly measured. Some of the standard parametric AFT

models are exponential, Weibull, log-normal and log-logistic (Dätwyler & Stucki, 2011).

The AFT model describes the relationship between survival probabilities and a set

of covariates. For a group with covariates (X1i, X2i, ..., Xpi), the AFT model is written

mathematically as

S(t|x) = S0(t|ϕ(x)) (6)

Where S0(t) is the baseline survival function and ϕ is an acceleration factor (time ratio)

i.e. a ratio of survival times corresponding to any fixed value of S(t). The acceleration

factor is given according to the formula

ϕ(x) = exp(β1X1i + β2iX2 + ...+ βpXpi) (7)

According to the relationship of survival function and hazard function, the hazard

function for an individual with covariate X1i, X2i, ..., Xpi is given by

λ(t|x) =
[

1

ϕ(x)

]
λ0 [t|ϕ(x)] (8)
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Under an accelerated failure time model, the covariate effects are assumed to be con-

stant and multiplicative on the time scale, that is, the covariate impacts on survival by

a constant factor (acceleration factor). The corresponding log-linear form of the AFT

model with respect to time is given by

log Ti = µ+ β1X1i + β2X2i + ...+ βpXpi + σϵi (9)

Where µ is intercept, σ is scale parameter and is a random variable, ϵi assumed to

have a particular distribution. For each distribution of ϵi, there is a corresponding

distribution for T . The members of the AFT model class include the exponential AFT

model, Weibull AFT model, loglogistic AFT model, and log-normal AFT model. The

AFT models are named for the distribution of T rather than the distribution of ϵi or

log T . The survival function of Ti can be expressed by the survival function of ϵi :

Si(t) = P (Ti ≥ t) = P (log Ti ≥ log t)

= P (µ+ β1X1i + β2X2i + ...+ βpXpi + σϵi ≥ log t)

= P

(
ϵi ≥

log t− µ− β′x

σ

)
= Si(t) = Sϵi

(
log t− µ− β′x

σ

)
(10)

The effect size for the AFT model is the time ratio. The time ratio comparing two

levels of covariate xi (xi = 1 vs xi = 0) ; after controlling all the other covariates

is exp(βi), which is interpreted as the estimated ratio of the expected survival times

for two groups. A time ratio above 1 for the covariate implies that this covariate

prolongs the time to event, while a time ratio below 1 indicates that an earlier event

is more likely. Therefore, the AFT models can be interpreted in terms of the speed

of progression of a disease. The effect of the covariates in an accelerated failure time

model is to change the scale, and not the location of a baseline distribution of survival

times.
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Table 3.2: Commonly used distributions and parameters in AFT models

Distribution f(t) S(t) λ(t)

Exponential λe−λt e−λt λ

Weibull λρt−1e−ρt e−ρt λρt−1

Log-logistic λρt−1

[1+λρtρ]2
1

1+λρtρ
λρt−1

1+λρtρ

Log-normal 1√
2πσ

exp[− [log t−µ]2

2σ2 1- Φ[ log t−µ
σ

]
1√
2πσ

exp[− [log t−µ]2

2σ2

1−Φ[ log t−µ
σ

]

Where

� λ and ρ denotes scale parameter and shape parameter, respectively, for Expo-

nential, Weibull and Log-logistic distribution.

� σ and µ denote scale parameter and shape parameter, respectively, for Log-normal

distribution.

� Φ(.) denotes the standard normal distribution function.

3.13.1 Methods of Parameter Estimation

The parameters of semi-parametric Cox PH model is estimated by using partial like-

lihood estimation method. The partial likelihood estimation is a technique used to

make an inference about the regression parameters, β, in the presence of nuisance pa-

rameters λ(t|x) Cox (1972). Whereas, the fully likelihood estimation method is used

to estimate the regression parameters and baseline hazard functions in AFT models

(Collett, 2015).

3.13.2 Weibull and Exponential AFT Models

Suppose the survival time T has W(γ; δ) distribution with scale parameter and shape

parameter, under AFT model, the hazard function for the ith individual is

λi(t) =
1

[ϕi(x)] γ
δγ(t)γ−1 (11)

Where ϕi = exp(β1X1+β2X2+...+βpXpi) for individual i with p explanatory variables,

so the survival time is given as the Weibull distribution has the AFT property. If Ti has
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a Weibull distribution, then ϵi has an extreme value distribution (Gumbel distribution).

The survival function of Gumbel distribution is given as

Sϵi(ϵ) = exp(− exp(ϵ)) (12)

The AFT representation of the survival function of the Weibull model is given by

Si(t) = exp

[
− exp

(
−µ− β1X1i − β2X2i − ...− βpXpi

σ

)
t
1
σ

]
(13)

The AFT representation of hazard function of the Weibull model is given by

λi(t) =
1

σ
t
1
σ
−1 exp

(
−µ− β1X1i − β2X2i − ...− βpXpi

σ

)
(14)

The median survival time is t(50) = exp [σ log(log 2) + µ+ β′xi]

The exponential distribution can be derived fromWeibull distribution, that is by taking

σ = 1 or β = 1, so that the equation (16) become

Si(t) = exp [− exp (−µ− β1X1i − β2X2i − ...− βpXpi) t], where Si(t) are the survival

functions for exponential AFT model.

3.13.3 The Log-logistic AFT model

One limitation of the Weibull hazard function is that it is a monotonic function of time.

However, the hazard function can change direction in some situations. We will describe

the log-logistic model in this section. The log-logistic survival and hazard function are

given by

S(t) =
1

1 + eθtk
h(t) =

eθktk−1

1 + eθtk
(15)

Where θ and k are unknown parameters and k > θ. When k ≤ 1, the hazard rate

decreases monotonically and when k > 1, it increases from zero to a maximum and

then decreases to zero.

Suppose that the survival times have a log-logistic distribution with parameter and

k, under the AFT model, the hazard function for the ith individual is

λ(t) =
eθ−k log ϕiktk−1

1 + eθ−k log ϕitk
(16)
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Where, ϕi = exp(β1X1 + β2X2 + ...+ βpXp) for individual i
th with p explanatory vari-

ables. Therefore, the survival time for the ith individual has a log-logistic distribution

with parameter θ − k log η and k, log-logistic distribution has AFT property.

If the baseline survival function is S0(t) = {1 + eθtk}−1, where θ and k are unknown

parameters then, the base line odds of surviving beyond time t are given by

S0(t)

1− S0(t)
= e−θt−k

. The survival time for the ith individual also has a log-logistic distribution, which is

Si(t) =
1

1 + eθ−k log ϕitk
(17)

The AFT representation of survival function of the log-logistic model is given by

Si(t) =

[
1 + t1/σ exp

(
−µ− β1X1i − β2X2i − ...− βpXpi

σ

)]−1

(18)

Comparing the formula (17) and (18), we can easily find θ = −µ
σ
, k = σ−1.

According to the relationship of survival and hazard function, the hazard function for

the ith individual is given by

λi(t) =
1

σt

[
1 + t−1/σ exp

(
µ+ β1X1i + β2X2i − ...+ βpXpi

σ

)]−1

(19)

The median survival time is ti(50) = exp(µ+ β′xi).

3.13.4 The Log-normal AFT model

If the survival times are assumed to have a log-normal distribution, the baseline survival

function and hazard function are given by

S0(t) = 1− Φ

(
log t− µ

σ

)
h0(t) =

Φ
(
log t
σ

)
1− Φ

[
log t−µ

σ

]
σt

(20)

Where µ is intercept, σ is scale parameter and is a random variable; Φ(x) is the

cumulative density function of the standard normal distribution. The survival function

for the ith individual is

Si(t) = S0(t|ϕi) = 1− Φ

(
log t− β′Xi

σ

)
(21)
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Where ϕi = exp(β1X1 + β2X2 + ... + βpXp). Therefore the log survival time for the

ith individual has normal (µ + β′Xi, δ). The log-normal distribution has the AFT

property.In a two-group study, we can easily get

Φ−1(1− S(t)) =
1

σ
(log t− βXi − µ),

Where Xi is the value of a categorical variable, which takes the value one in one group

and zero in the other group. This implies that a plot of Φ−1[1− S(t)] versus log t will

be linear if the log-normal distribution is appropriate.

3.14 Model building

The methods of selecting a subset of covariates in Cox-PH and AFT models are es-

sentially similar to those used in any other regression models. Hos-mer and Lemeshow

recommended the following steps in selecting the variables by Lemeshow et al. (2011):

� The first step is to fit model that contain each of the variables one at a time.

� We begin by fitting a multivariable model containing all variables significant in

the univariable analysis at the 10 percent level.

� Use backward selection to eliminate non-significant variables and examine the

effect of remaining variables.

� Starting with step (3) model, consider each of the non-significant variables from

step (2) using forward selection and do the analysis.

� Fit the final model by omitting variables that are non-significant and adding

variables that are significant.

3.15 Checking the Adequacy of AFT models

The graphical methods can be used to check if a parametric distribution fits the ob-

served data. Specifically, if the survival time follows an exponential distribution, a plot

of log[− logS(t)] versus log t should yield a straight line with slope of 1. If the plots are

parallel but not straight, then PH assumption holds but not the Weibull. If the lines for
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two groups are straight but not parallel, the Weibull assumption is supported but the

PH assumption is violated. The log-logistic assumption can be graphically evaluated

by plotting log[ (1−S(t))
S(t)

] vs log t. If the distribution of survival functions is log-logistic,

then the resulting plot should be a straight line. For the log-normal distribution, a

plot of Φ−1(1 − S(t)) versus log t should be linear. All these plots are based on the

assumption that the sample is drawn from a homogeneous population, implying that

no covariates are taken into account. So this graphical method is not very reliable in

practice. There are other methods to check the fitness of the model.

3.15.1 Quantile-Quantile plot

An initial method for assessing the potential for an AFT model is to produce a quantile-

quantile plot. For any value of p in the interval (0; 100), the P th percentile is

t(p) = S−1
(

100−p
100

.
)

Let t0(p) and ti(p) be the P th percentiles estimated from the survival functions of the

two groups of survival data. The percentiles for the two groups may be expressed as

t0(p) = S−1
0

(
100−p
100

)
; t1(p) = S−1

1

(
100−p
100

)
.

Where S0(t) and S1(t) are the survival functions for the two groups. So we can get

S1[t1(p)] = S0[t0(p)]. Under the AFT model , S1(t) = S0(t ∗ exp(−β′x)), and so

S1[t1(p)] = S0[t1(p) ∗ exp(−β′x)]. Therefore we get t0(p) = t1(p) ∗ exp(−β′x).

The percentiles of the survival distributions for two groups can be estimated by the

K-M estimates of the respective survival functions. A plot of percentiles of the K-M

estimated survival function from one group against another should give an approximate

straight line through the origin if the accelerated failure time model is appropriate. The

slope of this line will be an estimate of the acceleration factor exp(−β′x).

3.15.2 Statistical criteria

We can use statistical tests or statistical criteria to compare all these AFT models.

Nested models can be compared using the likelihood ratio test. The exponential model,
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the Weibull model and lognormal model are nested within gamma model. For com-

paring models that are not nested, the Akaike information criterion (AIC) were used

instead, which is defined as

AIC = −2l + 2(k + c),

Where l the log-likelihood, k is is the number of covariates in the model and c is the

number of model-specific ancillary parameters. The addition of 2(k+c) can be thought

of as a penalty if nonproductive parameters are added to the model. Lower values of

the AIC suggest a better model. But there is a difficulty in using the AIC in that there

are no formal statistical tests to compare different AIC values.

3.15.3 Residual Plots

Residual plots can be used to check the goodness of fit of the model. Procedures based

on residuals in the AFT model are particularly relevant with the Cox PH model. One of

the most useful plots is based on comparing the distribution of the Cox-Snell residuals

with the unit exponential distribution. The Cox-Snell residual for the ith individual

with observed time ti is defined as

Ŝ(t) = Sϵi

(
log t−µ̂−β′xi

σ̂

)
,

Where µ̂, β′ and σ̂ are the maximum likelihood estimator of µ, β and σ respectively.

Sϵi(ϵ) is the survival function of ϵi in the AFT model, and log t−µ̂−β′xi

σ̂
= rϵi is referred

to as standardized residual.

The Cox-Snell residual can be applied to any parametric model. The correspond-

ing form of residual based particular AFT model can be obtained. For example, under

the Weibull AFT model, since Sϵi(ϵ) = exp(−eϵ), the Cox-Snell residual is then

rϵi = − log
{
Ŝ(ti)

}
= − logSϵi(rsi) = exp(rSi

).

Under the log-logistic AFT model, since Sϵi(ϵ) = (1 + eϵ)−1, the Cox-Snell residual is

then

rϵi = log
[
1 + exp(rsi)

]
.
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If the fitted model is appropriate, the plot of log(− logS(rϵi)) versus rϵi is a straight

line with unit slope through the origin. These residuals lead to the deviance residuals

for the particular AFT model. A plot of deviance residuals against the survival time or

explanatory variables is used to check whether there are particular times, or particular

values of explanatory variables, for which the model is not a good fit.
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CHAPTER FOUR

4 Result and Discussion

4.1 Results

Descriptive statistics of socioeconomic, demographic, and biological characteristics on

survival of patients with the COVID-19 pandemic are shown in Tables 4.1 and 4.2.

According to table 4.2, a total of 809 patients with COVID-19 participated in this

study. Of the 809 patients, 135 (16.7%) died while 674 (83.3%) were censored during

the follow-up period.

Out of all patients about 326 (40.3%) are females and 483 (59.7%) are males. Of

these, 43 (5.3%) female patients and 92 (11.4%) male patients died, leaving 283 (35%)

female and 391 (48.3%) male patients censored. In the table, 192 (23.7%) patients

were under 18 years, 376 (46.5%) patients and 241 (29.8%) patients were between 18

to 45 and above 45 years, respectively. Of the patients, 484 (59.8%) were from urban

areas and 325 (40.2%) were from rural areas from this residence, 58(7.2) and 77(9.5)

died of covid-19 respectively.

Table 4.2 also displays the situation of patients at admission; out of 212 (26.2%) asymp-

tomatic patients, 1 (0.1%) died, 103 (12.7%) mild patients, 4 (0.5%) died, 155 (19.2%)

moderate patients, 24 (3.3%) died, and 339(41.9%) severe patients 106 (13.1%) death

cases are recorded. Regarding comorbidity, about 375(46.4%) of patients had no co-

morbidity whereas 434(53.6) are patients with comorbidity. Among the patients, 484

(59.8%) patients had no symptoms when admitted to the hospital, while 325 (40.2%)

did. Of a total of 809 individuals, 193 (23.9%) had HIV/AIDS while 586 (76.1%) did

not. Of them, 105 (13.0%) and 30 (3.7%) passed away with covid-19 respectively.

In addition, 86(10.6%) of the total deaths were observed in COVID-19 patients who

received intranasal oxygen use. Of those COVID-19 patients, 451 (55.8%) were hyper-
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tensive, with a higher mortality rate of 96 (11.9%) compared to the non-hypertensive

group. Finally, 451 (55.8%) were diabetic patients with a higher mortality rate of 79

(9.8%) compared to non-diabetic patients.

Table 4.1, suggests that patients were followed up for a minimum of one day and

a maximum of forty days. During the study period, the overall mean and median pre-

dicted survival times for patients were 11 and 10 days, respectively, with a standard

deviation of 6.43 days and inter-quartile range [7,14] days. The median follow-up time

of the death was 6.0 days (Inter quartile range: 3-10 days) and censored patients was

10 days (Inter quartile range: 7-15 days).

Table 4.1: Summary statistics for time

Variable Status Mean S.deviation Median Q1 Q3 Min Max

Death 7 5 6 3 10 1 27

Time Censored 12 6 10 7 15 1 40

Over all 11 6.43 10 7 14 1 40

Source: Jimma Zone COVID-19 Treatment Centers, southwest Ethiopia from May

16, 2020 through March 9, 2022
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Table 4.2: Descriptive summaries of patient’s characteristics diagnosed for COVID-19.

Patients Status

Covariates Categories Censored Death Total

n(%) n(%) n(%)

Age < 18 190(23.5) 2(0.2) 192(23.7)

18-45 321(39.7) 55(6.8) 376(46.5)

> 45 163(20.1) 78(9.6) 241(29.8)

Sex Female 283(35.0) 43(5.3) 326(40.3)

Male 391(48.3) 92(11.4) 483(59.7)

Residence Rural 267(33.0) 58(7.2) 325(40.2)

Urban 407(50.3) 77(9.5) 484(59.8)

Status at Asymptomatic 211(26.1) 1(0.1) 212(26.2)

admission Mild 99(12.2) 4(0.5) 103(12.7)

Moderate 131(16.2) 24(3.0) 155(19.2)

Sever 233(28.8) 106(13.1) 339(41.9)

Comorbidity No 350(43.3) 25(3.1) 375(46.4)

Yes 324(40.0) 110(13.6) 434(53.6)

Symptom at Yes 260(32.1) 65(8.0) 325(40.2)

admission No 414(51.2) 70(8.6) 484(59.8)

HIV/ No 586(72.4) 30(3.7) 616(76.1)

AIDS Yes 88(10.9) 105(13.0) 193(23.9)

Oxygen use No 403(49.8) 49(6.1) 452(55.9)

Yes 271(33.5) 86(10.6) 357(44.1)

Hypertension No 319(39.4) 39(4.8) 358(44.2)

Yes 355(43.9) 96(11.9) 451(55.8)

Diabetics No 499(61.7) 56(6.9) 555(68.6)

Yes 175(21.6) 79(9.8) 254(31.4)

Total 674(83.3%) 135(16.7%) 809(100%)

Source: Jimma Zone COVID-19 Treatment Centers, from May 16, 2020 through March

9, 2022
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4.1.1 The Kaplan-Meier Estimator

As shown in Figure 4.1, as the survival time of the patient increases, the survival

probability decreases.

Figure 4.1: Estimated survival function of COVID-19 patients

4.1.2 Comparison of Survival function of COVID-19 patients

The survivor-ship estimate curve for age, status at admission, comorbidity, symptom

at admission, HIV/AIDS, oxygen care, hypertension, and diabetes are displayed (see

appendix A). It shows that there was a difference in survival times among the levels of

covariates. For comparing the survival experiences between groups, the log-rank test

was applied to all categorical variables. From table 4.3 the log-rank results suggest that

comparison of survival function for each independent categorical variables. The table

shows there is a significant difference in survival functions between the categories of age,

sex, comorbidity, status at admission, HIV/AIDS, symptom at admission, intranasal

oxygen use, hypertension and diabetes at 5% level of significance while residence does

not have a different survival experience. The K-M curves also show the same result as

the log-rank test (see appendix A).
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Table 4.3: Results of the log-rank test for each categorical variables of COVID-19

patients

Covariates Chi-square df P-value

Age 76.1 2 <0.001

Sex 5.7 1 0.02

Residence 0 1 0.9

Comorbidity 49.1 1 <0.001

Status at admission 94.9 3 <0.001

HIV/AIDS 24.2 1 <0.001

Symptom at admission 9.5 1 0.002

Intranasal Oxygen use 26.2 1 <0.001

Hypertension 13.4 1 <0.001

Diabetics 61.8 1 <0.001

4.2 Standard Cox PH model

This study used uni-variable analysis to check all the risk factors before proceeding to

more complicated models. And also it used a uni-variable Cox proportional hazards re-

gression for every potential risk factor. The Wald test is considered in each univariable

Cox PH model. Variables are identified as significant using a 25% significance level in

the univariable model. We then fit the full multi-variable Cox PH model including all

the potential risk factors. Consequently, in the univariable Cox proportional hazard

models the model with a single covariate, Age, sex, comorbidity, status at admission,

HIV/AIDS, symptom at admission, hypertension, intranasal oxygen use and diabetes

show a statistically significant association with the survival time. But the predictor

variable place of residence is not statistically significant, suggesting that these variable

is not associated with the survival time revealing that these variable is not included in

the multivariable model. Therefore, this study considered the model that includes all

the significant predictors.

38



Table 4.4: Uni-variable and multi-variable Cox PH model

Covariates UnivariableAnalysis MultivariableAnalysis

β HR P -value 95%CI[HR] β HR P -value 95%CI[HR]

Age 18-45 2.61 13.64 0.0003 [3.33,55.95] 1.66 5.26 0.028 [1.19,23.12]

>45 3.54 34.44 0.000 [8.46,140.16] 2.42 11.30 0.001 [2.59,49.25]

Sex Male 0.44 1.55 0.02 [1.02,2.23] 0.30 1.36 0.102 [0.94,1.96]

Comorbidity Yes 1.43 4.17 0.000 [2.7,6.4] 1.48 4.38 0.0007 [1.86,10.32]

St.at.admn. Mild 2.16 8.74 0.0525 [0.97,78.2] 1.65 4.68 0.145 [0.56,48.51]

Moderate 3.62 37.5 0.0004 [5.1,277.2] 2.79 16.32 0.007 [2.12,125.60]

Sever 4.31 744.4 0.0002 [10.4,533.1] 3.38 29.55 0.001 [3.86,225.70]

HIV/AIDS Yes 0.97 2.66 0.000 [1.8,3.4] 1.16 3.19 0.006 [1.41,12.62]

Hypertension Yes 0.68 1.98 0.0003 [1.36,2.88] 0.44 1.56 0.026 [1.05,2.31]

Symptom at

admission No 0.53 1.70 0.002 [1.12,2.89] 0.82 2.27 0.0004 [1.28,4.63]

Oxygen

use Yes 0.89 2.43 0.000 [1.71,3.45] 0.67 1.95 0.0050 [1.02,2.85]

Diabetics Yes 1.29 3.63 0.000 [2.57,5.12] 0.52 1.68 0.017 [1.10,2.58]

LRT 205.8

AIC 1502.507

AIC: Akaike Information Criterion; LRT: Likelihood Ratio Test; β: coefficient for

covariate, HR: hazard ratio; p-value: probability value, 95%CI[HR]: 95% confidence

interval for HR

From table 4.4, a predictor variable sex is significant in the Uni-variable model at 5%

level of significance but not significant in the multivariable model. Then by removing

the variable sex from table 4.4, we get the model containing age, comorbidity, status at

admission, HIV/AIDS, symptom at admission, oxygen use, hypertension, and diabetes

variables that are significant.
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Table 4.5: Uni-variable and multi-variable Cox PH model

Covariates Uni-variableAnalysis Multi-variableAnalysis

β HR P -value 95%CI[HR] β HR P -value 95%CI[HR]

Age 18-45 2.61 13.64 0.0003 [3.33,55.95] 1.66 5.26 0.028 [1.20,23.12]

>45 3.54 34.44 0.000 [8.46,140.16] 2.46 11.67 0.001 [2.68,50.73]

Comorbidity Yes 1.43 4.17 0.000 [2.7,6.4] 1.49 4.43 0.0005 [1.90,10.34]

St.at.admn. Mild 2.16 8.74 0.0525 [0.97,78.2] 1.56 4.75 0.170 [0.51,43.92]

Moderate 3.62 37.5 0.0004 [5.1,277.2] 2.79 16.29 0.007 [2.12,125.34]

Sever 4.31 744.4 0.0002 [10.4,533.1] 3.36 28.84 0.001 [3.77,220.27]

HIV/AIDS Yes 0.97 2.66 0.000 [1.8,3.4] -1.17 0.31 0.005 [0.14,0.70]

Hypertension Yes 0.68 1.98 0.0003 [1.36,2.88] 0.42 1.52 0.035 [1.03,2.26]

Symptom at

admission No 0.53 1.70 0.002 [1.12,2.89] 0.83 2.27 0.0003 [1.28,4.63]

Oxygen

use Yes 0.89 2.43 0.000 [1.71,3.45] 0.68 1.97 0.0045 [1.04,2.87]

Diabetics Yes 1.29 3.63 0.000 [2.57,5.12] 0.52 1.68 0.017 [1.10,2.57]

LRT 203.0

AIC 1503.261

AIC: Akaike Information Criterion; LRT: Likelihood Ratio Test; β: coefficient for

covariate, HR: hazard ratio; p-value: probability value, 95%CI[HR]: 95% confidence

interval for HR

After developing a multi-variable model of the major impacts of the variables, we as-

sessed the model’s appropriateness by examining its goodness of fit and PH assumption.

The proportional hazards assumption (PH) of the variables and their interaction with

the log of survival time and Schoenfeld residuals were statistically tested, and the PH

assumption was checked using a graphical technique. The PH assumption for all of

the categorical variables was tested using the log (-log (survival)) against the survival

time plot. The graphs in Appendix B for each of the categorical variables show lines
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that appear to be parallel, suggesting that the proportional-hazards assumption among

covariates such as comorbidity, status at admission, HIV/ADS, and diabetes has not

been violated but that it has appeared to be violated for age, symptom at admission,

hypertension, and intranasal oxygen use (see appendix B). The proportional hazards

assumption (PH) for intranasal oxygen use is fails, according to a test of the variables

and their interaction with the log of time in table 4.6 (p-values for intranasal oxygen

use*log(time) are less than 0.05, which is 0.046).

The PH assumption in Table 4.6 is further examined using the Schoenfeld residuals.

The ranked survival time and Schoenfeld residual for this covariate are correlated, and

the p-value tests whether this association is zero. The p-values for status at admission

and intranasal oxygen usage are less than 0.05, whereas all other variables are more

than 0.05, indicating that the PH assumption is violated for status at admission and

intranasal oxygen use but is valid for all other covariates. The proportional hazard

assumption was not found to be generally acceptable by the global test (p-value =

0.0043). Additionally, this shows that the intranasal oxygen consumption and covari-

ate status at admission both contradict the PH assumption at the level of 0.05.

A plot of the Cox-Snell residuals against the cumulative hazard of Cox-Snell resid-

uals is presented in Figure 4.2. There is some evidence of a systematic deviation from

the straight line, which gives us some concern about the adequacy of the fitted model.

The plot of deviance residual against the risk score shows that the deviance residuals

seem not to be symmetrically distributed about zero. There are very high or very

low deviance residuals which suggest that these observations may be outliers (Figure

4.3). Therefore, we have some concern about the adequacy of the fitted Cox PH model.

We also use delta-beta statistic to measure the influential observations on the model as

a whole. It shows that the coefficients do not change too much when the observations

corresponding to the largest delta-beta statistics are removed. Therefore, we do not

remove them from the dataset and conclude that there are no influential observations

(Figure 4.2). Lastly, we can say that applying Cox proprtional hazards for COVID-19
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Table 4.6: Statistical test for proportional hazards assumption (PH) of the covariates

and their interaction with log of time (time to death) and Schoenfeld residual.

Covariates Covariates interaction Schoenfeld

with log(time) Residual

β HR P -value 95%CI[HR] P -value

Age:log(time)

18-45 -26.29 3.815e-12 0.061 (6.2e-15, 2.3e-09) 0.348

>45 -25.81 6.149e-12 0.069 (1.0e-14, 3.7e-09) 0.300

Comorbidity:log(time) 0.83 2.30 0.213 (1.34,3.95) 0.944

Status at admission:log(time)

Mild -0.28 0.75 0.632 (0.24,2.38) 0.035

Moderate -0.78 2.18 0.100 (0.86,5.51) 0.007

sever 1.08 2.95 0.202 (1.17,7.42) 0.002

HIV/AIDS:log(time) -0.71 0.49 0.080 0.29,0.83 0.963

Hypertension:log(time) 0.26 1.30 0.401 (1.10,1.66) 0.813

Symptom at admission:log(time) -0.28 0.76 0.054 (0.57,1.00) 0.805

Oxygen use:log(time) -0.30 0.74 0.046 (0.55,0.99) 0.025

Diabetics:log(time) 0.33 1.39 0.104 (1.07,1.82) 0.454

Global test 0.0043

β: coefficient for covariate, HR: hazard ratio; p-value: probability value, 95%CI[HR]:

95% confidence interval for HR

data is not suggested because the basic assumptions of Cox prortional hazards are

violated. The residuals also support the violation of assumptions. So we don’t need

to talk about the hazards ratio and the relation of covariates with time to death of

COVID-19 patients. It is better to apply AFT models.
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Figure 4.2: Cumulative hazard plot of the Cox-Snell residual for Cox PH model

Figure 4.3: Index plots of dfbeta for the multivariate Cox regression model
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Figure 4.4: Deviance residuals plotted against the risk score for Cox PH model

4.3 Accelerated Failure Time Models

This study used uni-variable analysis before preceding the multi-variable analysis. The

uni-variable analyses were fitted for each covariate with a p-value less than 0.25 by us-

ing different AFT models such as Exponential, Weibull, Log-logistic, and Log-normal

distributions. As shown in table 4.7, the univariable AFT model shows that all co-

variates except residence are found to be significant with survival times of COVID-19

patients at 25% level. The multi-variable analysis of AFT models was done by using all

significant covariates in uni-variable analysis at a 25% level. In this study the backward

elimination method is used to select the final significant covariates. The covariates such

as age, sex, comorbidity, status at admission, HIV/AIDS, hypertension, symptom at

admission, intranasal oxygen use, and diabetes were significant in uni variable analysis

of all AFT models at 25% level. The model comparison was done using those significant

covariates for each AFT models.
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Table 4.7: Uni-variable AFT models

Exponential Weibull Log-normalLog-logistic

Covariates Categories β̂[P -value] β̂[P -value] β̂[P -value] β̂[P -value]

<18

Age 18-45 -2.58[0.0003] -2.31[0.0006] -2.15[0.0004] -1.62[0.0005]

>45 -3.51[0.000] -3.16[0.0000] -3.02[0.0000] -2.54[0.0000]

Rural

Residence Urban 0.008[0.96] -0.003[0.98] -0.001[0.994] -0.003[0.98]

Female

Sex Male -0.45[0.015] -0.41[0.014] -0.41[0.017] -0.41[0.021]

No

Comorbidity Yes -1.416[0.0000] -1.28[0.0000] -1.27[0.0000] -1.24[0.0000]

Status Asymptomatic

at Mild -2.18[0.05] -1.94[0.053] -1,75[0.0499] -144[0.019]

admission Moderate -3.63[0.0004] -3.23[0.0005] -2.95[0.0004] -2.46[0.0001]

Sever -4.32[0.0001] -0.12[0.0000] -3.60[0.0000] -3.15[0.0000]

No

HIV/AIDS Yes -0.95[0.0000] -0.86[0.0000] -0.88[0.0007] -0.90[0.0000]

No

Hypertension Yes -0.64[0.0007] -0.58[0.0012] -0.61[0.0007] -0.59[0.0011]

Symptom at Yes

admission No -0.56[0.001] -0.51[0.001] -0.52[0.0013] -0.51[0.0031]

Oxygen No

use Yes -0.91[0.0000] -0.82[0.0000] -0.81[0.0000] -0.78[0.0000]

No

Diabetics Yes -1.31[0.0000] -1.16[0.0000] -1.16[0.0000] -1.16[0.0000]

Source: Jimma Zone COVID-19 Treatment Centers, southwest Ethiopia from May 16,

2020 through March 9, 2022
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4.3.1 Model Selection

The value of AIC for all AFT models are displayed in table 4.8. A model with smaller

value of AIC can be considered as a better model compared to other models under

consideration because it is valid for comparing models that are not nested. The AIC

value for log-logistic AFT model is the smallest compared to other AFT models. This

indicates that the log-logistic AFT model better fits the COVID-19 patients data.

Table 4.8: Comparisons of AFT models using AIC

Distribution AIC

Exponential 1220.387

Weibull 1218.267

Log-logistic 1215.298

Log-normal 1216.916

4.3.2 Log-logistic Accelerated Failure Time Model

Table 4.9 displays the estimated regression coefficient values for the log-logistic AFT

model using multivariable analysis and backward elimination. Age, comorbidity, sta-

tus at admission, HIV/AIDS, symptom at admission, intranasal oxygen usage, and

diabetes all had a significant impact on the survival times of COVID-19 patients.

As shown in table 4.9, the estimated acceleration factor for patients whose ages 18

up to 45 and above 45 compared with age under 18 is estimated to be 0.28 with 95%

CI [0.09, 0.86] and 0.14 with 95% CI [0.05, 0.43] respectively. By holding all other

model parameters constant, this suggests that the expected survival time for COVID-

19 patients falls by 72% and 86% for age 18-45 and above 45 respectively as compared

to age less than 18. With a 95% confidence interval of [0.114, 0.4255], the estimated

acceleration factor for patients with comorbidity is 0.29. Accordingly, individuals with

comorbidities had a 71% shorter predicted survival time than those without comor-

bidities by holding all other model parameters constant. Patients who experienced

moderate or severe status at the time of their admission were estimated to have an
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acceleration factor of 0.12 with 95% CI [0.2664, 0.9062] and 0.06 with 95% CI [0.01,

0.29] respectively, compared to asymptomatic status at admission. Consequently, as

compared to patients who were asymptomatic status at admission and all model pa-

rameters are held equal, the anticipated survival time of COVID-19 patients decreases

by 88% and 94% for moderate and severe status, respectively.

The estimated acceleration factor for patients who had HIV/AIDS is 0.37, with a 95%

CI of [0.261, 1.76]. This indicates that, while other variables in the model remain con-

stant, the estimated survival time of COVID-19-infected individuals falls by 63% when

compared to those without HIV/AIDS. For patients with no symptoms at admission,

the estimated acceleration factor was 0.47, with a 95% confidence interval [0.13, 1.15].

Accordingly, when all model parameters were held constant, patients who were without

symptom at entry had a 53% shorter survival time than those who were with symptom.

With a 95% confidence range of [0.15, 1.03], the estimated acceleration factor for

patients who took intranasal oxygen is 0.49. When comparing patients who utilized in-

tranasal oxygen to those who did not, the expected survival time of COVID-19-infected

patients was reduced by 51% while other model parameters remained the same. The

estimated acceleration factor for diabetic patients is 0.62, with a 95 percent confidence

range of [0.43, 0.90]. This suggests that, when all model parameters are maintained

constant, the estimated survival time of COVID-19-infected people with diabetes is

reduced by 38% compared to those without diabetes.
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We now derive model-based predictions. Using equation (18 and 19), the fitted

Loglogistic survival function and hazard function for the ith individual is

Ŝi(t) = {1 + t1/σ̂ exp(ψ̂i)}−1 = {1 + t1/0.714 exp(ψ̂i)}−1, and

λ̂i(t) =
1

σ̂t

{
1 + t

−1
σ̂ exp(−ψ̂i)

}−1

=
1

0.714t

{
1 + t

−1
0.714 exp(−ψ̂i)

}−1

.

Where ψ̂i =
−µ− ˆβXi

σ̂

=
1

0.714
{−7.214+1.26Age(18-45) +1.95Age(above 45) +0.25SexMale+1.22ComorbdtyY es

+ 1.27Mild+ 2.15Moderate+ 2.73sever − 0.99HIV yes+ 0.32HyprtensionY es

+ 0.75SymptomNo+ 0.70oxgenuseY es+ 0.48DiabetesY es}

48



Table 4.9: The fitted Multivariable Loglogistic AFT model

Covariate Categories β̂ SE[β̂] ϕ̂ p-value 95% CI[ϕ̂]

<18

Age 18-45 -1.2599 0.5661 0.28 0.02605 [0.09,0.86]

>45 -1.9475 0.5698 0.14 0.00063 [0.05,0.43]

Sex Female

Male -0.2474 0.1645 0.78 0.13262 [0.56,1.08]

No

Comorbidity Yes -1.2219 0.3998 0.29 0.00224 [0.13,0.64]

Status Asymptomatic

at Mild -1.2736 0.8320 0.28 0.12583 [0.05,1.43]

admission Moderate -2.1462 0.7684 0.12 0.00522 [0.02,0.53]

Sever -2.7323 0.7725 0.06 0.00040 [0.01,0.29]

No

HIV/AIDS Yes -0.9923 0.3868 0.37 0.01032 [0.26,0.76]

No

Hypertension Yes -0.3247 0.1782 0.72 0.06839 [0.51,1.02]

Symptom at Yes

admission No -0.7549 0.2008 0.47 0.00017 [0.13,0.75]

Oxygen No

use Yes -0.7007 0.2090 0.49 0.00080 [0.15,0.83]

No

Diabetics Yes -0.4764 0.1916 0.62 0.01289 [0.43,0.90]

Intercept 7.2137 0.9303 1357 0.0000 [219.29,8409.11]

Scale(σ) = 0.714

β̂: coefficient estimate; ϕ̂: indicates Acceleration factor (time ratio); 95%CI [ϕ̂]: 95%

confidence interval for acceleration factor; SE: standard error.
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4.4 Adequacy of Accelerated Failure Time

4.4.1 Quantile-Quantile plot

The Q-Q plot of the fitted model with adequacy fit for accelerated factor for the failure

time has fitted linear or not. By plotting different prognostic covariates with q-q plots

has checked the adequacy for fit failure-time of COVID-19 data set using log-logistic

AFT model. The adequacy of the failure time model is well-fitted within the significant

prognostic covariate groups shown in the figure 4.5.

Figure 4.5: Quantile-Quantile plot of fitted log-logistic AFT model

4.4.2 The Cox Snell Residual Plots

The log-logistic AFT model appears to be an appropriate AFT model according to AIC

compared with other AFT models in multi-variable analysis, although it is only slightly
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better than exponential and Weibull model. However the Log-normal AFT model is

best in the uni-variable analysis but has poor fit according to AIC in multi-variable

analysis. Furthermore, we check the goodness of fit of the model using residual plots.

Cumulative hazard plot of the Cox-Snell residuals in AFT model is presented in figure

4.6. The plotted points lie on a line that has a unit slope and zero intercept for log-

logistic model. So there is no reason to doubt the suitability of this fitted log-logistic

model. At last,we conclude that the Log-logistic model is the best fitting the AFT

model based on AIC criteria and residuals plot containing the statistically significant

covariates age, comorbidity, status at admission, HIV/AIDS, symptom at admission,

intranasal oxygen use and diabetes.

Figure 4.6: Cox-Snell residual plots of staging subgroup for Exponential model; Weibull

model; Weibull model ,Log-logistic model and Log-normal comparing these graphs, the

straight line in the Log-logistic plot appears to provide the best fit to the COVID-19

patients data.
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4.5 Discussion of the result

The main goal of this study is to investigate the time-to-death of COVID-19 patients

at Jimma Zone, southwest Ethiopia. The COX-PH model was first used to analyze

the data. However, because the proportionality assumption of the Cox-PH model was

violated, baseline distributions including exponential, Weibull, log-logistic, and log-

normal were considered using AFT models. To evaluate several AFT models, AIC has

been used, and the log-logistic AFT model was found to fit the time-to-death analysis

of COVID-19 patients better than the others. Multivariable analysis showed that age,

comorbidity, status at admission, HIV/AIDS, symptoms at admission, intranasal oxy-

gen use, and diabetes were significantly associated with time-to-death in COVID-19

patients.

As a result of this study, it was discovered that the age of the patients is strongly

correlated with the predictor variable for time till death. Accordingly, this study found

that patients over the age of 45 had a nearly double-increased chance of dying compared

to those under the age of 18, which was corroborated by a number of other investiga-

tions (Noor et al., 2020; Palaiodimos & Kokkinidis, 2020). Additionally in line with

previous findings that reported old-aged peoples had an increased risk of death due to

COVID-19 disease (Zhou et al., 2020). This may be due to the deterioration of physi-

ologic functioning, pre-existing age-related immunosuppression, and increasing risk of

comorbidities with advancing age, which further complicates the prognosis of COVID-

19 patients’ treatments (Kang & Jung, 2020).

According to this study patients who had comorbidity also have a greater risk of

death than their counterparts, which is supported by studies Ayana et al. (2021);

Bello-Chavolla & Bahena-López (2020). Because COVID-19 patients with these co-

morbidities are more prone to acquire serious health issues that result in immunosup-

pression and poor treatment results, a cytokine storm and the creation of an immediate

hyper-inflammatory response might make these fatalities worse (Bhaskar et al., 2020).

This study also found that status at admission is significantly associated with time
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to death of patients from COVID-19 pandemic. Thus, moderate and sever status at

admission had decreased the survival rate of COVID-19 infected patients as compared

to asymptomatic state at admission. This finding is in agreement with the study of

factors associated with death outcome in patients with severe coronavirus disease-19

(Pan et al., 2020). Because patients with moderate and severe status had more promi-

nent laboratory abnormalities than those with asymptomatic status (Guan et al., 2020).

Similarly, the time to death of HIV-infected COVID-19 patients was significantly lower

than that of HIV-negative individuals in this analysis. The same finding was revealed

in a study conducted among patients admitted to Wuhan pulmonary hospital in China

(Du et al., 2020). This might be explained by the adverse effects of comorbidities on

autoimmune response and metabolic stress that characterizes systemic diseases and

decreases the ability to respond against pathogenic agents (Zhou et al., 2020).

According to this study, patients with no symptoms have a greater risk of dying than

those with symptoms. A Korean study that found that initially asymptomatic pa-

tients are the best predictors of patient death lends credence to this finding (Park et

al., 2021). This may be because people with symptoms are more likely to go to a

medical facility sooner than those without. Additionally, patients with early symp-

toms may be more likely to require ICU care Park et al. (2021) than patients without

early symptoms (Dessie et al., 2022). Early detection and treatment of the disease

have reduced the death rate of COVID-19, helping patients avoid complications. It

may also be related to how these asymptomatic individuals cope in terms of immunity.

This study also revealed that the risk of death from COVID-19 infections was greater in

people who received intranasal oxygen therapy than in people who did not. This result

is in line with the study conducted in Ethiopia on the survival analysis of patients with

COVID-19, which found that patients admitted to the ICU and receiving intranasal

oxygen supplementation had a higher probability of dying from COVID-19 infections

than non-ICU patients did (Kaso & Agero, 2022). Additionally, this result is supported

by the earlier study Hu et al. (2020) that found patients getting these services had a
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higher likelihood of poor treatment results also lends weight to this conclusion. The

observed mortality may be attributable to patients who were given intranasal oxygen

therapy having an unregulated autoimmune response and being at a high degree of

disease severity.

Finally, those who had diabetes were more likely to pass away than their non-diabetic

counterparts. This finding is consistent with a study from China that looked at the

clinical trajectory and mortality risk factors of adult inpatients with COVID-19 and

discovered that those with diabetes had a greater chance of dying from COVID-19

infections than people without diabetes (Zhou et al., 2020). This could be due to the

fact that the activity of cytokines depending on type I helper T cells is disrupted by

glycosylation of cytokines because innate immunity is reduced in diabetes individuals

as a result of high blood glucose levels (Rashedi & Poor, 2020). One limitation of the

present study is its high percentage of right-censored observations. The right censored

observations in this study is about 83.3 percent. To reach an appropriate fit for para-

metric models, it is better not to have right-censored observations more than 40 to 50

percent (Nardi & Schemper, 2003).
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CHAPTER FIVE

5 Conclusion and Recommendations

5.1 Conclusions

Various parametric acceleration failure time models were used for this thesis to analyze

time to death of COVID-19 patients. From that log-logistic acceleration failure time

model was best fitted model for COVID-19 data set. Based on this result the variables

age, comorbidity, admission status, HIV/AIDS, symptoms at admission, intranasal

oxygen use, and diabetes were found to be associated with time-to-death in COVID-19

patients. From this finding elders, individuals with comorbidity, patients with moderate

or severe status at admission, those who were asymptomatic at admission, patients who

have HIV/AIDS, individuals who received intranasal oxygen therapy and diabetes were

more likely to die from COVID-19 disease than their counterparts.

5.2 Recommendations

Based on the findings of the study, the recommendation is as follows

� To increase the survival time of COVID- 19 patients, it is important to closely

monitor aged patients, patients with comorbidity, moderate and severe patients

at admission, patients with HIV/AIDS, asymptomatic patients, and patients with

diabetes.

� As a result, when the Cox model’s assumption of proportionality is not satisfied,

researchers studying COVID-19 patients should consider the AFT model as an

alternative.

� Further studies should be conducted to identify other factors that are not iden-

tified in this study.
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Appendices

A. K-M estimate of survival of patients with COVID-19

Figure 5.1: Kaplan-Meier Estimate of Survival of Patients with COVID-19
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B. Log (-Log (Survival)) Versus Survival Time for Variables

Figure 5.2: Plot of Log (-Log (Survival)) Versus Survival Time for Categorical Variables
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Table 5.1: Result of Cox PH model

Covariates Categories β HR se(β) Z P -value 95%CI for HR

<18

Age 18-45 1.7057 5.5051 0.7540 2.262 0.0237 [1.25,24.13]

>45 2.4775 11.9112 0.7493 3.306 0.0009 [2.74,51.74]

Rural

Residence Urban 0.4218 1.5246 0.2126 1.984 0.0473 [1.00,2.31]

Female

Sex Male 0.3192 1.3760 0.1877 1.701 0.089 [0.95,1.99]

No

comorbidity Yes 1.3039 3.6837 0.4238 3.077 0.002 [1.60,8.45]

Status Asymptomatic

at Mild 1.5431 4.6792 1.1388 1.355 0.1754 [0.50,43.60]

admission Moderate 2.6428 14.0524 1.0424 2.535 0.0112 [1.82,108.40]

Sever 3.2925 26.9094 1.0381 3.172 0.0015 [3.52,205.86]

No

HIV/AIDS Yes 1.0060 2.7346 0.4103 2.452 0.0142 [1.61,4.82]

No

Hypertension Yes 0.5316 1.7017 0.2041 2.605 0.0092 [1.14,2.54]

Symptom at Yes

admission No 0.9683 2.6334 0.2413 4.012 0.0000 [1.24,5.61]

Oxygen No

use Yes 0.6352 1.8874 0.2395 2.652 0.0080 [1.03,3.85]

No

Diabetics Yes 0.6122 1.8445 0.2197 2.787 0.0053 [0.20,2.83]
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Table 5.2: Result of maximum likelihood parameter estimates of the Exponential AFT

model

Covariate Categories β̂ SE[β̂] ϕ̂ p-value 95% CI[ϕ̂]

<18

Age 18-45 -1.623 0.756 0.20 0.03186 [0.04,0.87]

>45 -2.361 0.751 0.09 0.00167 [0.02,0.41]

Sex Female

Male -0.305 0.187 0.74 0.10231 [0.51,1.06]

No

comorbidity Yes -1.496 0.442 0.22 0.0007 [0.09,0.53]

Status Asymptomatic

at Mild -1.683 1.135 0.18 0.13833 [0.02,1.72]

admission Moderate -2.791 1.041 0.06 0.00732 [0.08,0.47]

Sever -3.394 1.037 0.03 0.00107 [0.004,0.26]

No

HIV/AIDS Yes -1.192 0.426 0.30 0.00514 [0.04,0.76]

No

Hypertension Yes -0.431 0.200 0.65 0.0311 [0.44,0.96]

Symptom at Yes

admission No -0.825 0.232 0.44 0.00038 [0.13,0.59]

Oxygen No

use Yes -0.649 0.240 0.52 0.00682 [0.09,0.73]

No

Diabetics Yes -0.535 0.218 0.58 0.01420 [0.38,0.90]

Intercept 8.944 1.193 7665.01 0.0000 [740.22,79371.55]

β̂: coefficient estimate; ϕ̂:indicates Acceleration factor; 95%CI [ϕ̂]: 95% confidence

interval for acceleration factor; SE: standard error.
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Table 5.3: Result of maximum likelihood parameter estimates of the Weibull AFT

model

Covariate Categories β̂ SE[β̂] ϕ̂ p-value 95% CI[ϕ̂]

<18

Age 18-45 -1.363 0.368 0.25 0.0327 [0.07,0.89]

>45 -1.983 0.642 0.14 0.0020 [0.04,0.48]

Sex Female

Male -0.270 0.156 0.76 0.0838 [0.56,1.04]

No

comorbidity Yes -1.277 0.378 0.28 0.0007 [0.13,0.58]

Status Asymptomatic

at Mild -1.450 0.949 0.23 0.1265 [0.04,1.51]

admission Moderate -2.344 0.881 0.09 0.0078 [0.02,0.54]

Sever -2.851 0.885 0.06 0.0013 [0.01,0.33]

No

HIV/AIDS Yes -1.024 0.362 0.36 0.0047 [0.21,0.76]

No

Hypertension Yes -0.374 0.168 0.69 0.0257 [0.49,0.95]

Symptom at Yes

admission No -0.725 0.196 0.47 0.0002 [0.03,0.65]

Oxygen No

use Yes -0.531 0.204 0.59 0.0094 [0.15,0.69]

No

Diabetics Yes -0.452 0.184 0.64 0.0116 [0.44,0.91]

Intercept 7.915 1.064 2737.57 0.0000 [340.29,22022.89]

β̂: coefficient estimate; ϕ̂:indicates Acceleration factor; 95%CI [ϕ̂]: 95% confidence

interval for acceleration factor; SE: standard error.
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Table 5.4: Result of maximum likelihood parameter estimates of the Log-normal AFT

model

Covariate Categories β̂ SE[β̂] ϕ̂ p-value 95% CI[ϕ̂]

<18

Age 18-45 -0.774 0.415 0.46 0.0622 [0.20,1.04]

>45 -1.526 0.421 0.22 0.0003 [0.09,0.49]

Sex Female

Male -0.214 0.169 0.81 0.205 [0.58,1.12]

No

comorbidity Yes -1.302 0.432 0.27 0.0026 [0.12,0.63]

Status Asymptomatic

at Mild -1.095 0.639 0.33 0.0866 [0.09,1.17]

admission Moderate -1.919 0.579 0.15 0.0009 [0.04,0.46]

Sever -2.547 0.586 0.08 0.0013 [0.02,0.25]

No

HIV/AIDS Yes -1.078 0.422 0.34 0.0107 [0.08,0.66]

No

Hypertension Yes -0.266 0.178 0.77 0.135 [0.54,1.09]

Symptom at Yes

admission No -0.761 0.199 0.47 0.0001 [0.14,0.58]

Oxygen No

use Yes -0.741 0.210 0.48 0.0004 [0.15,0.72]

No

Diabetics Yes -0.532 0.186 0.59 0.0116 [0.41,0.84]

Intercept 6.588 0.697 726.52 0.0000 [185.16,2850.62]

β̂: coefficient estimate; ϕ̂:indicates Acceleration factor; 95%CI [ϕ̂]: 95% confidence

interval for acceleration factor; SE: standard error.
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